NIST Technical Note 2170

Modeling of Combustion of Fluorine-Containing Refrigerants

Valeri I. Babushok Donald R. Burgess, Jr Dennis K. Kim Michael J. Hegetschweiler Gregory T. Linteris

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170

NIST Technical Note 2170

Modeling of Combustion of Fluorine-Containing Refrigerants

Valeri I. Babushok Donald R. Burgess, Jr Dennis K. Kim Michael J. Hegetschweiler Gregory T. Linteris National Institute of Standards and Technology

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170

November 2021

U.S. Department of Commerce Gina M. Raimondo, Secretary

National Institute of Standards and Technology James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce for Standards and Technology & Director, National Institute of Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2170 Natl. Inst. Stand. Technol. Tech. Note 2170, 93 pages (November 2021) CODEN: NTNOEF

> This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170

Abstract

A gas-phase chemical kinetic model for the combustion of C₁-C₃ fluorine-containing refrigerants is presented, including a list of relevant species, their thermodynamic and transport properties, and the Arrhenius parameters for their reactions. Also included are tables of available experimental data in the literature for the laminar burning velocities for these HFC refrigerants and their mixtures. A comparison is made between the experimental data and predicted burning velocities as a function of the fuel-air equivalence ratio for the refrigerants. The model has been developed for the refrigerants: R-32, R-125, R-134a, R-152a, R-143, R-143a, R-1234yf, R-1234ze(E), R-1243zf and their mixtures. Agreement between predicted and measured burning velocity is very good for most of the refrigerant mixtures, and reasonably good agreement for a few.

Key words

Burning velocity; flame speed; GWP; enthalpy of formation; global warming potential; hydrofluorocarbons; chemical kinetic model; low-GWP refrigerants; refrigerant flammability; R-1234yf; R-1234ze(E); R-1243yf; R-134a; R-152a; R-125, R-32; R-143; R-143a; fluoropropenes.

Table of Contents

1.	Introduction1
2.	Available experimental data on burning velocities of HFC refrigerants 2
3.	Thermodynamic data
4.	Kinetic model
5.	Modelling procedure7
6.	Comparison of simulation results with experimental data7
7.	Summary
Acl	knowledgements
Ref	Serences
Ap	pendix A: Thermodynamic data for fluorine-containing species (Chemkin format).31
Ap	pendix B: Kinetic model, Chemkin format
Ap	pendix C: Transport properties of fluorine-containing species (Chemkin format) 75
Ap	pendix D: Tables of burning velocity data in figuresError! Bookmark not defined.

List of Tables

Table 1. List of HFC refrigerants with experimental data on burning velocities	2
Table 2. Thermodynamic properties of fluorine-containing species considered in the kineti model	c 3
Table 3. Summary of differences between modeled and experimental burning velocities	25

List of Figures

Figure 1. Burning velocity dependence on the equivalence ratio (R-32/air, \blacksquare – OTL,[5]; \bullet – ADI, [5]; x –[16]; \blacktriangle - [10])
Figure 2. Burning velocity dependence on the equivalence ratio for R-134a/Oxygen mixture (experimental data of Kim et al. [16])
Figure 3. Dependence of burning velocity on the volume fraction of R-143 and of R-143a (298 K, 1 bar, \blacklozenge - [10], \blacksquare - [10], \blacklozenge - [6])
Figure 4. Dependence of burning velocity on the equivalence ratio for R-152a (\diamond - tube method [10], \blacklozenge - Schlieren method [10], \blacktriangle - SV method [10], \bullet - [18], \Box - [16], \circ - [18]). 11
Figure 5. Burning velocity dependence on the equivalence ratio for R-1234yf at different volume fractions of oxygen in air ($X_{O_2,ox} = 21, 33, 45$ and 50 % of O ₂ in air, experimental data of Takizawa et al. [11])
Figure 6. Burning velocity dependence for R-1243zf at different volume fractions of oxygen in air ($X_{O_2,ox} = 21, 25$, and 30 % of O_2 in air). All points are, measurements of Takizawa et al. [11]
Figure 7. Dependence of burning velocity on volume fraction of R-1234yf in mixture of R- 1234yf/R-32 (♦ - [22], ● - [22], ■ - [7]). Experimental data of [7,22] were taken from Fig.4 of [7]
Figure 8. Burning velocity dependence of R-152a and of mixtures of R-152a/R-134a on the equivalence ratio (\Box – NIST[16], \blacklozenge , \bullet -[19], \diamondsuit , \circ – NIST [16])
Figure 9. Burning velocity dependence on the equivalence ratio for mixtures R-152a/R-125 (experimental data of Takizawa et al. [19])
Figure 10. Burning velocity dependence on the equivalence ratio for mixtures R-152a/R-116 (experimental data of Takizawa et al. [19])
Figure 11. Burning velocity dependence on the equivalence ratio for R-152a and mixtures R-152a/R-1234yf (experimental data of Kim et al. [16])
Figure 12. Burning velocity dependence on the R-1234yf volume fraction in the mixture $C_3H_8/R-1234yf$ (experimental data of Papas et al. [7])
Figure 13. Burning velocity dependence on the volume fraction of R-134a in the mixture R-134a/CH ₄ for 18.5 % of oxygen in air (experimental measurements if Choi et al. [24])* 20
Figure 14. Burning velocity dependence on the volume fraction of R-134a in the mixture R-134a/CH ₄ for 30 % of oxygen in air (experimental measurements if Choi et al. [24])
Figure 15. Burning velocity dependence on the volume fraction of R-134a in the mixture R-134a/CH ₄ for 40 % of oxygen (experimental measurements if Choi et al. [24])
Figure 16. Burning velocity dependence on the equivalence ratio for R-161 and R-152 (experimental data of Takizawa et al. [17])
Figure 17. Burning velocity dependence on the equivalence ratio for R-41 (experimental data of Takizawa et al. [17])

1. Introduction

Hydrofluorocarbons (HFCs) that are currently used as refrigerants have high global warming potentials (GWPs). They are projected to be major contributors to increases in radiative forcing in the Earth's atmosphere [1]. Their production and use are being phased down as stipulated in the Kigali Agreement to the Montreal Protocol [2]. New low-GWP replacements have been developed such as fluorinated propenes, which are being adopted by the heating, ventilating, air conditioning and refrigeration (HVAC&R) industry. Unfortunately, the modifications to reduce their tropospheric lifetimes (such as adding double bonds and hydrogen atoms) also makes these compounds have higher reactivities, and makes them slightly flammable.

The unstretched laminar burning velocity S_u^0 is a useful metric for flammability since it is a fundamental combustion parameter related to flammability limits, turbulent burning velocity and rate of pressure rise in explosions, and it also used in fire safety standards. For example, ASHRAE Standard 34, Designation and Safety Classification of Refrigerants [3] and ISO 817, Refrigerants - Designation and safety classification [4], use the burning velocity of hydrofluorocarbon/air mixtures for safety classification. Mixtures with peak burning velocity (over all values of the equivalence ratio, ϕ) less than 10 cm/s receive the less-flammable 2L classification, while those above 10 cm/s are designated class 2.

The burning velocity can be calculated using detailed kinetic models, and the ability to accurately calculate and predict burning velocities is useful to the industry. New refrigerants will be blends that are optimized for the simultaneous requirements of cycle efficiency, volumetric capacity, material compatibility, low toxicity, low-GWP, and low flammability. All these properties, except flammability, can presently be calculated or estimated fairly well for most refrigerants and their blends. The ability to predict burning velocity will allow more complete discovery and then optimization of new refrigerant blends, since it is faster and easier to predict burning velocities than to measure them, once a good kinetic mechanism has been developed and validated.

The proposed kinetic mechanism has been developed and validated, and consists of kinetic, thermodynamic, and transport data for the relevant fluorine-containing species and includes a hydrocarbon sub-mechanism. Using this mechanism with its associated data, the planar, 1-D, adiabatic laminar burning velocities have been calculated for a range of equivalence ratios ϕ . The model has been optimized by matching the calculated burning velocity with available experimental data from the literature. Note that although stretch, radiation heat losses, buoyancy and other secondary effects may affect the experiments, the published experimental data are adopted without alteration for comparison to the laminar, planar, adiabatic calculations presented here. This is necessary since the raw experimental data are not available for more sophisticated post-processing that could, to some extent, account for these effects. Hence, the experimental burning velocities presently compared to the model are suspected to have variable secondary deviations, and the present mechanism, while a useful first step, is an approximation that can serve until more accurate experimental data become available.

The mechanism has been developed for the refrigerant-air flames of: R-32, R-125, R-134a, R-152a, R-1234yf, R-1234ze(E), R-1243zf, R-227ea and their mixtures. In addition, the fluoropropene refrigerants have been examined for oxidizers with different O_2/N_2 ratios. Table

1 contains the list of HFC compounds and their mixtures considered in the present kinetic model (marked by asterisk after the name of compounds). That is, comparisons have also been made for the additional compounds: R-41, R-161, R-143, R143a, R152, and R116. As shown in the figures following, the model predictions are generally good, except for the compounds: R-41, R152, and R-161. For these compounds, the kinetic model overpredicts the burning velocity up to 2-5 cm/s depending on the equivalence ratio. While these compounds are included in the model (for completeness, and because experimental data are available), the lack of good agreement is not a major constraint since they are not widely-used refrigerants. Hence, the model is presently described as applying only to the compounds R-32, R-152a, R-134a, R-125, R-227ea, R-1234yf, R-1234ze(E), and R-1243zf.

2. Available experimental data on burning velocities of HFC refrigerants

Table 1 lists the HFC refrigerants along with the references for the experimental burning velocities available in literature. As it was indicated above, HFC compounds and their mixtures marked by asterisk were studied in this work.

HFC refrigerant	CAS number	References
C ₁ -hydrofluorocarbons		
R-32, CH ₂ F ₂ , difluoromethane,*	75-10-5	[5-16]
R-41, CH ₃ F, fluoromethane, *	593-53-3	[11, 17]
C ₂ - hydrofluorocarbons		
R-134a, CH ₂ FCF ₃ , 1,1,1,2-	811-97-2	[18]
tetrafluoroethane, *		
R-143, CH ₂ FCHF ₂ , 1,1,3-	430-66-0	[10]
trifluoroethane, *		
R-143a, CH ₃ CF ₃ , 1,1,1-	420-46-2	[6, 10, 11]
trifluoroethane, *		
R-152, CH ₂ FCH ₂ F, 1,2-	624-72-6	[17]
difluroethane, *		
R-152a, CH ₃ CHF ₂ , 1,1-	75-37-6	[6, 10-12, 14, 16, 18, 19]
difluoroethane, *		
R-161, C ₂ H ₅ F, fluoroethane, *	353-36-6	[11, 17]
C ₃ -hydrofluorocarbons		
R-1234yf, CH ₂ =CFCF ₃ , 1-	754-12-1	[7, 11, 20, 21]
propene, 2,3,3,3-tetrafluoro, *		
R-1234ze(E), E-CHF=CHCF ₃ , E-	29118-24-9, 1645-83-6	[20, 21]
1-propene, 1,3,3,3-tetrafluoro		
R-1243zf, CH ₂ =CHCF ₃ , propene,	677-21-4	[11]
3,3,3-trifluoro, *		
R-1243yf, CH ₂ =CFCHF ₂ , 1-	158664-13-2	[11]
propene, 2,3,3-trifluoro, *		
HFCs mixtures		
R-32/R-1234yf, *		[7, 22]
R-152a/R-134a, *		[16, 19]

Table 1. List of HFC refrigerants with experimental data on burning velocities.

R-152a/R-125, *	[19]
R-152a/R-116, *	[19]
R-152a/R-1234yf, *	[16]
R-32/R-134a	[8, 9]
R-32/R-1234ze(E)	[23]
R-1234yf/C ₃ H ₈ , *	[7]
R-134a/CH4, *	[24]

3. Thermodynamic data

Oxidized C1 Fluorocarbons

CHFO

Table 2 lists the fluorine-containing hydrocarbon and oxidized-hydrocarbon species considered in the kinetic model with their standard enthalpies of formation $\Delta_f H^{\circ}$, standard entropies S_{\circ} , and heat capacities at constant pressure $C_{p,\circ}^{\circ}$ (all at 298.15 K). Thermochemical data for the species CF₃CCF, CF=CHCF₃, CHF=CCF₃ and CH=CFCF₃ were estimated using group additivity approaches, using several sources [7, 25-31]. Data for the other species were taken from the literature [27-29, 32]. Note that the thermodynamic data for fluorine-containing species were updated from a previous set of data [33] using two main sources [32, 34]. Thermodynamic polynomials in Chemkin format are presented in Appendix A.

Spacios	$\Delta f H^0$ (298	U	<i>S</i> °(298 K)	Сро (298 К)	Reference
species	K) kJ/mol	kJ/mol	J/mol/K	J/mol/K	
Fluoromethanes					
CH ₃ F	-235.55	0.70	259.375	37.505	[34]*
CH ₂ F ₂	-451.66	0.68	246.347	42.869	[34]*
CHF ₃	-697.45	0.65	222.826	51.139	[34]*
CE4	-933.4		261.459	61.052	[32]*
CF4	-933.47	0.25			[35]
Fluoromethyls					
CH ₂ F	-30.39	0.50	229.665	42.869	[34]*
CHF ₂	-243.45	0.51	258.000	43.062	[34]*
CF ₃	-469.06	0.52	264.521	49.642	[34]*
Fluoromethylenes					
CUE	148.614	0.45	223.342	34.588	[32]*
СПГ	148.66	0.43			[35]
CF ₂	-194.06	0.41	240.831	38.915	[34]*
CE	246.932	0.7	213.034	30.056	[32]*
UГ	246.74	0.13			[35]

Table 2. Thermodynamic properties of fluorine-containing species considered in the kinetic model.

0.47

246.727

40.019

[32]*

-382.529

	382.23	0.31			[35]
CF ₂ O	-606.65	0.50	258.971	47.365	[32]*
CEO	-176.305	0.50	248.992	38.880	[32]*
CFU	176.04	0.37			[35]
CF ₃ O	-630.696	n/a	283.750	64.550	[32]*
Fluoroethanes					
	-272.54	0.94	270.630	59.575	[32]*
СП3-СП2Г	-272.07	0.36			[35]
CH ₂ F-CH ₂ F	-447.97	0.98	286.321	66.868	[34]*
CH. CHE.	-503.00		282 502	67 266	[34]*
	-502.72	0.56	282.302	07.200	[35]
CH ₂ F-CHF ₂	-668.37	0.97	72.609	17.996	[34]*
CH ₃ -CF ₃	-753.94	0.89	287.652	78.074	[34]*
CHF ₂ -CHF ₂	-880.86	1.05	313.143	84.129	[34]*
CH ₂ F-CF ₃	-909.70	0.95	315.752	86.273	[34]*
CHF ₂ -CF ₃	-1114.81	1.04	334.635	95.808	[34]*
CF ₃ -CF ₃	-1345.51	1.00	341.033	106.294	[34]*
Fluoroethyls					
CH ₂ F-CH ₂	-59.77	0.85	278.832	60.737	[34]*
CH ₃ -CHF	-74.06	0.84	273.994	58.671	[34]*
CH ₂ F-CHF	-247.94	0.85	293.335	69.307	[34]*
CHF ₂ -CH ₂	-282.72	0.80	297.938	66.752	[34]*
CH ₃ -CF ₂	-298.20	0.79	290.406	67.075	[34]*
CH ₂ F-CF ₂	-446.0	10	311.329	73.757	[33]*
CHF ₂ -CHF	-451.9	10	310.91	75.822	[33]*
CF ₃ -CH ₂	-527.95	0.91	302.541	77.046	[34]*
CHF ₂ -CF ₂	-664.921	10	328.485	84.011	[33]*
CF ₃ -CHF	-699.45	1.07	326.393	85.544	[34]*
CF ₃ -CF ₂	-898.77	0.97	340.995	94.231	[34]*
Fluoroethylenes					
CH ₂ CHF	-142.93	0.84	252.674	50.407	[34]*
CUECUE[7]	-306.5		268.723	58.349	[32]*
	-309.66	0.9			[35]
CH ₂ CF ₂	-351.07	0.84	266.054	60.237	[34]*
CHECE	-487.84	8.21	292.665	69.191	[32]*
	-495.98	0.41			[35]
CF ₂ CF ₂	-674.30	0.78	300.128	80.459	[34]*
Fluoroethenyls					
CHFCH[Z]	123.025	10	256.93	50.531	[33]*
CH ₂ CF	109.216	10	256.9	50.031	[33]*
CHFCF[Z]	-41.008	10	279.526	57.3	[33]*

CF ₂ CH	-67.8	10	277.016	58.984	[33]*
CF ₂ CF	-228.175	10	297.643	66.178	[32]*
Fluoroethynes					
	104.419	0.93	231.573	52.268	[32]*
C ₂ HF	105.66	0.41			[35]
~ 7	5.59	0.66	256.504	61.987	[36]*
C_2F_2	5.69	0.65			[35]
	353.847		231.036	42.6	[32]*
	453.9	10		_	[33]
C ₂ F	460.2	10			[33]
2	449.8	1.6			[35]
	455.8	8.0			[37]
Fluoroketenes					
CHFCO	-147.2	10	270.739	56.538	[33]*
CF ₂ CO	-290.4	10	288.732	67.692	[33]*
CFCO	69.0	10	276.179	56.702	[33]*
C3-fluorinated. etc					
C ₃ F ₇ H	-1564.816		399.058	136.690	[32]*
	-1347.122		416.386	135.964	[32]*
C ₃ F ₇	-1346.9	n/a			[]
5 1	-1349.0	8.0			[37]
	-1157.253		373.675	121.759	[32]*
C_3F_6	-1157.05	n/a			
	-1154.95				[37]
CF ₃ COF	-1028.43	5.9	340.28	88.79	[38]*
CF ₃ CHO	-775.71	2.1	318.28	80.42	[38]*
CF ₃ CO	-602.08	3.8	264.35	72.59	[38]*
C ₂ F ₅ COC ₃ F ₇	-2723.	n/a	676.0	588.69	[39]
CE COCH	-837.3		357	108.5	[40]*
CF ₃ COCH ₃	-831.1	4.4			[41]
CUL CEO	-250.6		274.5	62.9	[29]*
CH ₂ CFO	-251.46	2.9			[35]
					<u> </u>
Fluoropropenes					
CF ₃ CHCH ₂ (R-	(21.121	()	210.460	00.704	[22]*
1243zf)	-631.131	6.0	319.468	90.704	[32]*
CH ₂ CFCF ₃ (R-	012 2(1	0.4	227 7(0	101 255	[20]¥
1234yf)	-813.261	8.4	327.768	101.255	[32]*
CHFCHCF ₃ (R-	020.0		242 7	00.4	[) 7 401*
1234ze(E))	-830.0		342.7	98.4	[27, 42]*

Fluoropropenyls					
CF ₃ CCH ₂	-374.941	7.9	325.439	91.100	[32]*
CF ₃ CHCH	-376.895	n/a	323.105	90.727	[32]*
CFCHCF ₃	-564.4		346.885	96.439	[42, 43]*
CHCFCF3	-567.6	n/a	332.1	99.9	[44]*
CHFCCF ₃	-548.2		347.7	96.0	[42, 43]*
Fluoropropynes					
CECCU	-428.5		314	88.3	[41]*
СГЗССП	-419.0	5.7			[35]
CFCCF ₃	-531.2	n/a	333.4	96.6	[44]*

* Data used in the current work.

U – expanded uncertainty (2σ), kJ/mol

4. Kinetic model

Four sub-mechanisms form the framework for the kinetic model: 1) GRI-Mech 3.0 [45], which includes reactions important for high-temperature oxidation of hydrocarbons up to C₃ species; 2) the NIST C₁-C₂ hydrofluorocarbon model [46] with modifications [47, 48], developed to describe hydrocarbon flames with added HFC fire suppressants; 3) the C₃-hydrofluorocarbon reactions developed for flame inhibition by heptafluoropropane (R-227ea, FM-200) [49] and 2-bromo-3,3,3-trifluoropropene (2-BTP) [40, 41], which is a bromo-substituted fluoropropene; and 4) the model for the decomposition of 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene [43,44]. Several rate constants of the model were adjusted, based on reaction pathway and sensitivity analyses, to obtain agreement with experimental data for the burning velocities for the set of HFC refrigerants.

Note that in this version of the kinetic model we used GRI-Mech 3.0 model as the hydrocarbon part of the model. Since it was found that there are shifts in the predicted burning velocity with changes in the hydrocarbon oxidation model (particularly for the mono-fluorinated HFCs (R-41 and R-161), the hydrocarbon part of the model will eventually be modified. In the interim, we have modified several termolecular reactions of GRI-Mech 3.0 including third body efficiencies for some HFC compounds, and we changed the reaction channel for reaction HCCO+O₂ (below). Due to the relatively large sensitivity of the results to the rate constants of hydrocarbon/hydrogen reaction system, like $H+O_2=OH+O$, $CO+O+M=CO_2+M$. HCO+M=CO+H+M, CO+O+M=CO₂+M etc., some shift in the results was observed. The experiments with the replacement of the hydrocarbon part of the model (propane model [50], C₁-C₃ block of reactions from JetSurF-2.0 [51]) demonstrated the difference in the results from 1 cm/s to 4 cm/s depending on the HFC refrigerant and on the equivalence ratio (R-134a, R-152a, R-1234yf and R-1243zf).

Appendix B provides a table of the Arrhenius rate parameters for the kinetic model (Chemkin format). The main assumption during construction of the fluoropropene part of the model was that intermediate species formed by the addition of radicals to the double bond decompose very quickly to the presumed set of products. Rate constants were estimated by analogy with similar reactions and using empirical structure-reactivity relationships. For consumption of

CF₃CHCH₂ (R-1243zf) by radicals it was assumed that the major pathway is the radical addition with further elimination of the CF₃ radical (CF₃CHCH₂+H=CF₃+C₂H₄, CF₃CHCH₂+OH=CF₃+CH₃CHO). It is of interest that the reaction proceeding in the flame zone of R-1234yf, R-1243zf and R-1234ze(E) is sensitive to the channel for the reaction of the HCCO radical with oxygen molecule. It was necessary to change the channel in the GRI-Mech model (OH+CO+CO) to the channel with the products H+CO+CO₂ with the same rate constant. The mechanism of this reaction was discussed in [52, 53]. Appendix C provides the transport parameters (in CHEMKIN format) for all of the species in the model.

Flame equilibrium calculations and preliminary burning velocity simulations provided rough estimates of the intermediate species concentrations, which were used to evaluate the possible reactions. The complete model contains 1064 reactions with 113 species. Numerous changes to both the rates and the reactions may be made once a variety of experimental data and theoretical results are available for testing the mechanism.

5. Modeling procedure

The Chemkin set of programs [54-56] and the open-source software package Cantera [57] were used for combustion equilibrium calculations and for laminar flame calculations. For burning velocity calculations, the equations of mass, species, and energy conservation are solved numerically for the initial gas compositions, temperature, and pressure corresponding to those in the experiments. The solution assumes isobaric, adiabatic, steady, planar, one-dimensional, laminar flow and neglects radiation and the Dufour effect, but includes thermal diffusion. Molecular diffusion is modeled using the Hirschfelder approximation and the multi-component transport. The boundary conditions, corresponding to a freely propagating flame, are inlet mass fractions, velocity and temperature, and vanishing gradients downstream from the flame.

6. Comparison of simulation results with experimental data

The results of model validation are presented for HFC refrigerants and their mixtures in the figures below. Experimental results are presented as symbols, modeling data as a line. The burning velocity data in the original publications were typically manually extracted from plots using a digitizer program, and the determined numerical values are provided in tables in Appendix E. All experiments were performed at standard initial conditions: 1 bar and 298 K. Mixture compositions are provided as molar fractions.

Figure 1. Burning velocity dependence on the equivalence ratio (R-32/air, \blacksquare – OTL,[5]; \bullet – ADI, [5]; x –[16]; \blacktriangle - [10])

Figure 2. Burning velocity dependence on the equivalence ratio for R-134a/Oxygen mixture (experimental data of Burrell et al. [18]).

Figure 3. Dependence of burning velocity on the volume fraction of R-143 and of R-143a (298 K, 1 bar, \blacklozenge - [10], \blacksquare - [10], \blacklozenge - [6])

Figure 4. Dependence of burning velocity on the equivalence ratio for R-152a (\diamond - tube method [10], \blacklozenge - Schlieren method [10], \blacktriangle - SV method [10], \bullet - [18], \Box - [16], \circ - [18]).

Figure 5. Burning velocity dependence on the equivalence ratio for R-1234yf at different volume fractions of oxygen in air ($X_{O_2,ox} = 21, 33, 45$ and 50 % of O₂ in air, experimental data of Takizawa et al. [11]).

Figure 6. Burning velocity dependence for R-1243zf at different volume fractions of oxygen in air ($X_{O_2,ox} = 21, 25$, and 30 % of O₂ in air). All points are measurements of Takizawa et al. [11].

Figure 7. Dependence of burning velocity on volume fraction of R-1234yf in mixture of R-1234yf/R-32 (♦ - [22], ● - [22], ■ - [7]). Experimental data of [7,22] were taken from Fig.4 of [7].

Figure 8. Burning velocity dependence of R-152a and of mixtures of R-152a/R-134a on the equivalence ratio $(\Box - \text{NIST}[16], \bullet, \bullet -[19], \diamond, \circ - \text{NIST}[16])$.

Figure 9. Burning velocity dependence on the equivalence ratio for mixtures R-152a/R-125 (experimental data of Takizawa et al. [19]).

Figure 10. Burning velocity dependence on the equivalence ratio for mixtures R-152a/R-116 (experimental data of Takizawa et al. [19]).

Figure 11. Burning velocity dependence on the equivalence ratio for R-152a and mixtures R-152a/R-1234yf (experimental data of Kim et al. [16]).

Figure 12. Burning velocity dependence on the R-1234yf volume fraction in the mixture C_3H_8/R -1234yf (experimental data of Papas et al. [7]).

Figure 13. Burning velocity dependence on the volume fraction of R-134a in the mixture R-134a/CH₄ for 18.5 % of oxygen in air (experimental measurements if Choi et al. [24])*.

*Note: Ref. [24] also includes data for $X_{O_2,ox}=0.20$; however, it was found that these experimental data do not agree with either data for pure methane/air flames at $X_{O_2,ox}=0.20$ in the literature [45,58,59] or the present modeling results. Since the results for CH₄/O₂/N₂ flames at $X_{O_2,ox}=0.185$ from these authors do agree with literature values, we use that data with added R134a for our comparisons.

Figure 14. Burning velocity dependence on the volume fraction of R-134a in the mixture R-134a/CH₄ for 30 % of oxygen in air (experimental measurements if Choi et al. [24]).

Figure 15. Burning velocity dependence on the volume fraction of R-134a in the mixture R- $134a/CH_4$ for 40 % of oxygen (experimental measurements if Choi et al. [24]).

Figure 16. Burning velocity dependence on the equivalence ratio for R-161 and R-152 (experimental data of Takizawa et al. [17]).

Figure 17. Burning velocity dependence on the equivalence ratio for R-41 (experimental data of Takizawa et al. [17]).

Table 3 describes the accuracy of the predicted burning velocity data as compared to the experimental results.

R-32/air		Model 3 % lower than AD, 10 % higher than OTL
R-134a/O ₂	100 % O ₂	Model agrees with data to within (3 to 5) %
R-143/air		Model agrees with data to within (3 to 5) %
R-152a/air		Model agrees with data to within (3 to 5) %
R-134a/CH ₄ /air	18.5, 30, 40%	Model agrees with data to within about 5%
	O ₂	
R-152a/R-134a/air	80/20 ratio	Model agrees with data to within 5%
	50/50 ratio	Model is low by about 20 %
R-1234yf/air	45 %, 50 % O ₂	Model agrees to within about 3 %
R-1234yf/air	33 % O ₂	Model is high by about 15%
R-1234yf/air	21 % O ₂	Model is high by a factor of two. 3 cm/s versus
		1.5 cm/s
R-1243zf/air	18 %, 21 % O ₂	Model agrees to within about 5 %
R-1243zf/air	25 % O ₂	Model is low by about 10 %
R-152a/R-	100/0 ratio	Model agrees to within about 5 %
1234yf/air		
	50/50 ratio	Model is low by about 10 %
	40/60 ratio	Model is low by about 10 %
R-152a/R-116/air	80/20 ratio	Model is low by about 7 %
	60/40 ratio	Model is low by about 15 %
R-161/air		Model is high by about (10 to 15) %
R-142a/air		Model is high by about 15 %
R-152a/R-125/air	80/20 ratio	Model is high by about 10 %
	60/40 ratio	Model is high by about 20 %
R-41		Model is high by about (20 to 25) %

Table 3. Summary of differences between modeled and experimental burning velocities

Comparison of modeling results obtained with the developed model with the experimental data of different authors demonstrate good agreement except the monofluorinated compounds: R-41 and R-161, for which differences up to 25% can be observed depending on the equivalence ratio. The comparisons demonstrate a tendency of the model to overpredict burning velocities below (7 to 10) cm/s, which is the result of radiation heat losses, and which were not considered in the present simulations. For some refrigerants, the equivalence ratio of peak burning velocity is shifted slightly as compared to the experimental results; however, even in those cases the model predicts the maximum values of burning velocity reasonably well.

7. Summary

A kinetic mechanism is proposed for the combustion of the C_1 - C_3 hydrofluorocarbon refrigerants: difluoromethane (R-32), fluoroethanes (R-125, R134a, R-143, R-143a, and R-

152a,), and fluoropropenes (R-1234yf, R-1234ze(E), R-1243zf) and their mixtures/blends (R-152a/R-134a, R-152a/R-116, R-152a/R-125, R-152a/R-1234yf, R-134a/CH₄, R-32/R-1234yf, R-1234yf/C₃H₈). The thermodynamic and transport data for fluorine-containing species considered in the model, are provided in Chemkin format. The overall kinetic model includes 1064 reactions with 113 species. The kinetic model was validated against experimental burning velocities as a function of the equivalence ratios of the blend in air. Additionally, for some cases, the experimental data and modeling were performed for different oxygen loadings in the oxidizer. Comparison of modeling results with available experimental measurements demonstrates reasonably good agreement. The largest disagreement occurs for burning velocities below about 5 cm/s (e.g., R1234yf with air) for which the prediction is about factor of two higher than the experiment, likely due to radiation heat losses not accounted for in the experiments.

Acknowledgements

This work was supported by the Buildings Technologies Office of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy under contract no. DE-EE0007615 with Antonio Bouza serving as Project Manager. This work was also supported by the U.S. Department of Defense, Strategic Environmental Research and Development Program (SERDP), project WP19-1385.

References

- [1] Velders GJ, Ravishankara AR, Miller MK, Molina MJ, Alcamo J, Daniel JS, Fahey DW, Montzka SA, Reimann S (2012) Preserving Montreal Protocol climate benefits by limiting HFCs. *Science* 335(6071):922-923.
- [2] United Nations Environment Programme (2016) *Further Amendment of the Montreal Protocol*, United Nations Environment Programme, Kigali, Rwanda, UNEP/OzLPro28/CRP/10.
- [3] ASHRAE (2010) Designation and Safety Classification of Refrigerants, ANSI/ASHRAE Addendum to ANSI/ASHRAE Standard 34-2016, ASHRAE, Atlanta, GA, USA.
- [4] ISO (2017) International Organization for Standarization (ISO-817): Refrigerants— Designation and safety classification. Geneva, Switzerland.
- [5] Burrell RR, Pagliaro JL, Linteris GT (2019) Effects of stretch and thermal radiation on difluoromethane/air burning velocity measurements in constant volume spherically expanding flames. *Proceedings of Combustion Institute* 37:4231-4238.
- [6] Clodic D, Jabbour T (2011) Method of test for burning velocity measurement of flammable gases and results. *HVAC&R Research* 17(1):51-75. https://doi.org/10.1080/10789669.2011.543252
- [7] Papas P, Zhang S, Kim W, Zeppieri SP, Colket MB, Verma P (2017) Laminar flame speed of 2,3,3,3-tetrafluoropropene mixtures. *Proceedings of Combustion Institute* 36(1):1145-1154.
- [8] Takizawa K, Igarashi N, Tokuhashi K, Kondo S, Mamiya M, Nagai H (2013) Assessment of Burning Velocity Test Methods for Mildly Flammable Refrigerants,

Part 2: Vertical-Tube Method. ASHRAE Transactions 2013, Vol 119, Pt 2 119:255-264.

- [9] Takizawa K, Takagi S, Tokuhashi K, Kondo S, Mamiya M, Nagai H (2013) Assessment of Burning Velocity Test Methods for Mildly Flammable Refrigerants, Part 1: Closed-Vessel Method. ASHRAE Transactions 2013, Vol 119, Pt 2, 119:243-254.
- [10] Takizawa K, Takahashi A, Tokuhashi K, Kondo S, Sekiya A (2005) Burning velocity measurement of fluorinated compounds by the spherical-vessel method. *Combust Flame* 141(3):298-307. <u>https://doi.org/DOI 10.1016/j.combustflame.2005.01.009</u>
- [11] Takizawa K, Tokuhashi K, Kondo S (2009) Flammability assessment of CH2=CFCF3: Comparison with fluoroalkenes and fluoroalkanes. *Journal of Hazardous Materials* 172(2-3):1329-1338. <u>https://doi.org/10.1016/j.jhazmat.2009.08.001</u>
- [12] Davis SG, Pagliaro JL, Debold TF, van Wingerden M, van Wingerden K (2017) Flammability and explosion characteristics of mildly flammable refrigerants. *Journal* of Loss Prevention in the Process Industries 49:662-674. https://doi.org/10.1016/j.jlp.2017.05.019
- [13] Jabbour T (2004) Flammable Refrigerant Classification Based on the Burning Velocity, Ph.D. Thesis, L'Ecole des Mines de Paris, Paris, France.
- [14] Moghaddas A, Bennett C, Rokni E, Metghalchi H (2014) Laminar burning speeds and flame structures of mixtures of difluoromethane (HFC-32) and 1,1-difluoroethane (HFC-152a) with air at elevated temperatures and pressures. *HVAC&R Research* 20(1):42-50. <u>https://doi.org/10.1080/10789669.2013.822252</u>
- [15] Burgess Jr DR, Burrell RR, Babushok VI, Manion JA, Hegetschweiler MJ, Linteris GT (2020) Burning Velocities of R-32/O2/N2 Mixtures: Experimental Measurements and Development of a Validated Detailed Chemical Kinetic Model. Submitted. *Combustion* and Flame.
- [16] Kim DK, Linteris GT (2021) Study of Flame Propagation in R-152a/air Mixtures and in the Blends of R-152a with R-134a and R-1234yf, to be submitted. *Combustion Science and Technology*.
- [17] Takizawa K, Takahashi A, Tokuhashi K, Kondo S, Sekiya A (2006) Burning velocity measurement of HFC-41, HFC-152, and HFC-161 by the spherical-vessel method. *Journal of Fluorine Chemistry* 127(12):1547-1553. <u>https://doi.org/10.1016/j.jfluchem.2006.07.013</u>
- [18] Burrell RR, Hegetschwiler MJ, Burgess Jr DR, Manion JA, Babushok VI, Linteris GT (2019) R-152a/air and R-134a/oxygen constant volume spherical flame burning velocity measurements. *11th US National Combustion Meeting*, Pasadena, CA.
- [19] Takizawa K, Takahashi A, Tokuhashi K, Kondo S, Sekiya A (2006) Reaction stoichiometry for combustion of fluoroethane blends. *ASHRAE Transactions* 112(2):459-468.
- [20] Takizawa K (2015) Fundamental Flammability (Section 2). *Risk Assessment of Mildly Flammable Refrigerants. Technical report,* JSRAE, Tokyo, Japan.
- [21] Takizawa K, Hihara E, Dang C, Ito M (2017) 2. Fundamental flammibility. 2.3.1. Effect of humidity on burning velocity. *Risk Assessment of Mildly Flammable Refrigerants Final Report 2016*, The Japan Society of Refrigerating and Air Conditioning Engineers, Tokyo, Japan, pp 22-67.

- [22] Takizawa K, Tokuhashi K, Kondo S, Mamiya M, Nagai H (2010) Flammability assessment of CH2=CFCF3 (R-1234yf) and its mixtures with CH2F2 (R-32). 2010 International Symposium on Next-generation Air Conditioning and Refrigeration Technology Tokyo, Japan 2010.
- [23] Liu Q, Li Y, Gao W, Zhang K, Huang L, Bi M (2020) Hazard evaluation of R32/R1234ze(E) cloud explosion. *International Journal of Refrigeration-Revue Internationale Du Froid* 111:159-167. <u>https://doi.org/10.1016/j.ijrefrig.2019.11.025</u>
- [24] Choi BC, Park JS, Ghoniem AF (2016) Characteristics of outwardly propagating spherical flames of R134a(C2H2F4)/CH4/O-2/N-2 mixtures in a constant volume combustion chamber. *Energy* 95:517-527. https://doi.org/10.1016/j.energy.2015.11.043
- [25] Holmes JL, Aubry C (2012) Group Additivity Values for Estimating the Enthalpy of Formation of Organic Compounds: An Update and Reappraisal. 2. C, H, N, O, S, and Halogens. *Journal of Physical Chemistry A* 116(26):7196-7209. https://doi.org/10.1021/jp303780m
- [26] Luo Y-R (2003) Handbook of Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, FL.
- [27] Matsugi A , Shiina H (2014) Kinetics of Hydrogen Abstraction Reactions from Fluoromethanes and Fluoroethanes. *Bulletin of the Chemical Society of Japan* 87(8):890-901. <u>https://doi.org/10.1246/bcsj.20140101</u>
- [28] Matsugi A , Takahashi K (2017) Thermal Decomposition of 2,3,3,3-and trans-1,33,3-Tetrafluoropropenes. *Journal of Physical Chemistry A* 121(26):4881-4890. <u>https://doi.org/10.1021/acs.jpca.7b04086</u>
- [29] Needham CD, Westmoreland PR (2017) Combustion and flammability chemistry for the refrigerant HFO-1234yf (2,3,3,3-tetrafluroropropene). *Combustion and Flame* 184:176-185. <u>https://doi.org/10.1016/j.combustflame.2017.06.004</u>
- [30] Orlov YD, Zaripov RK, Lebedev YA (1998) Determination of enthalpies of formation of organic free radicals from bond dissociation energies 2. Halosubstituted radicals. *Russian Chemical Bulletin* 47(4):621-624. <u>https://doi.org/10.1007/bf02495965</u>
- [31] Stein SE, Brown RL (2019) Structures and Properties Group Additivity Model. in NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg, MD, retrieved 2019.
- [32] Goos E, Burcat A, Ruscic B (2012) *Extended Third Millennium Thermodynamic Database for Combustion and Air-Pollution Use with updates from Active Thermochemical Tables*, Technion-IIT, Haifa, Israel. Available at: ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/BURCAT.THR.
- [33] Burgess DR, Zachariah MR, Tsang W, Westmoreland PR (1995) Thermochemical and chemical kinetic data for fluorinated hydrocarbons. *Progress in Energy and Combustion Science* 21(6):453-529. <u>https://doi.org/10.1016/0360-1285(95)00009-7</u>
- [34] Ganyecz A, Kallay M, Csontos J (2018) High Accuracy Quantum Chemical and Thermochemical Network Data for the Heats of Formation of Fluorinated and Chlorinated Methanes and Ethanes. *Journal of Physical Chemistry A* 122(28):5993-6006. <u>https://doi.org/10.1021/acs.jpca.8b00614</u>
- [35] Ruscic B , Bross DH (2020) Active thermochemical tables (ATcT), version 1.122p (Argonne National Laboratory). Available at: https://atct.anl.gov/Thermochemical%20Data/version%201.122p/.
- [36] Ruscic B, Bross DH (2019) Active thermochemical tables (ATcT), version 1.122d (Argonne National Laboratory). Available at: https://atct.anl.gov/Thermochemical%20Data/version%201.122d/index.php.
- [37] Bauschlicher CW, Ricca A (2000) Heats of formation for CnFm, CnFm+, CHFm, and CHFm+. *Journal of Physical Chemistry A* 104(19):4581-4585. https://doi.org/10.1021/jp9942771
- [38] Purnell DL, Jr., Bozzelli JW (2019) Thermochemical Properties: Enthalpy, Entropy, and Heat Capacity of C2-C3 Fluorinated Aldehydes. Radicals and Fluorocarbon Group Additivity. *Journal of Physical Chemistry A* 123(3):650-665. <u>https://doi.org/10.1021/acs.jpca.8b09065</u>
- [39] Linteris GT, Babushok VI, Sunderland PB, Takahashi F, Katta VR, Meier O (2013) Unwanted combustion enhancement by C6F12O fire suppressant. *Proceedings of the Combustion Institute* 34:2683-2690. <u>https://doi.org/10.1016/j.proci.2012.06.050</u>
- [40] Babushok VI, Linteris GT, Burgess DR, Baker PT (2015) Hydrocarbon flame inhibition by C3H2F3Br (2-BTP). *Combustion and Flame* 162(4):1104-1112. <u>https://doi.org/10.1016/j.combustflame.2014.10.002</u>
- [41] Burgess DR, Babushok VI, Linteris GT, Manion JA (2015) A Chemical Kinetic Mechanism for 2-Bromo-3,3,3-trifluoropropene (2-BTP) Flame Inhibition. *International Journal of Chemical Kinetics* 47(9):533-563. https://doi.org/10.1002/kin.20923
- [42] Balaganesh M, Rajakumar B (2012) Rate Coefficients and Reaction Mechanism for the Reaction of OH Radicals with (E)-CF3CH=CHF, (Z)-CF3CH=CHF, (E)-CF3CF=CHF, and (Z)-CF3CF=CHF between 200 and 400 K: Hybrid Density Functional Theory and Canonical Variational Transition State Theory Calculations. *The Journal of Physical Chemistry A* 116(40):9832-9842. https://doi.org/10.1021/jp3077276
- [43] Babushok VI, Burgess DR, Jr., Hegetschweiler MJ, Linteris GT (2020) Flame propagation in the mixtures of O-2/N-2 oxidizer with fluorinated propene refrigerants (CH2CFCF3, CHFCHCF3, CH2CHCF3). Combustion Science and Technology. <u>https://doi.org/10.1080/00102202.2020.1720663</u>
- [44] Babushok VI, Linteris GT (2017) Kinetic mechanism of 2,3,3,3-tetrafluoropropene (HFO-1234yf) combustion. *Journal of Fluorine Chemistry* 201:15-18. <u>https://doi.org/10.1016/j.jfluchem.2017.07.005</u>
- [45] Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner JWC, Lissianski VV, Qin Z (2000) GRI Mech 3.0, University of California, Berkeley, Berkeley, CA). Available at: http://www.me.berkeley.edu/gri_mech.
- [46] Burgess Jr DR, Zachariah MR, Tsang W, Westmoreland PR (1995) Thermochemical and chemical kinetic data for fluorinated hydrocarbons. *Prog Energy Combust Sci* 21(6):453-529. <u>https://doi.org/10.1016/0360-1285(95)00009-7</u>
- [47] Babushok VI, Linteris GT, Meier O (2012) Combustion properties of halogenated fire suppressants. *Combust Flame* 159:3569-3575.
- [48] Linteris GT, Burgess DR, Takahashi F, Katta VR, Chelliah HK, Meier O (2012) Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements. *Combustion and Flame* 159(3):1016-1025. <u>https://doi.org/10.1016/j.combustflame.2011.09.011</u>

- [49] Williams BA, L'Esperance DM, Fleming JW (2000) Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: Comparison of experimental data with kinetic modeling. *Combust Flame* 120(1-2):160-172.
- [50] Qin ZW, Lissianski VV, Yang HX, Gardiner WC, Davis SG, Wang H (2000) Combustion chemistry of propane: A case study of detailed reaction mechanism optimization. *Proceedings of the Combustion Institute* 28:1663-1669. https://doi.org/10.1016/s0082-0784(00)80565-2
- [51] Wang H, Dames E, Sirjean B, Sheen DA, Tango R, Violi A, Lai JYW, Egolfopoulos FN, Davidson DF, Hanson RK, Bowman CT, Law CK, Tsang W, Cernansky NP, Miller DL, Lindsted RP (2010) *A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0.* Available at: http://melchior.usc.edu/JetSurF/JetSurF2.0.
- [52] Klippenstein SJ, Miller JA, Harding LB (2003) Resolving the mystery of prompt CO2: The HCCO+O-2 reaction. *Proceedings of the Combustion Institute* 29:1209-1217. https://doi.org/10.1016/s1540-7489(02)80150-x
- [53] Zou P, Osborn DL (2004) On the mechanism of the HCCO+O-2 reaction: Probing multiple pathways to a single product channel. *Physical Chemistry Chemical Physics* 6(8):1697-1705. <u>https://doi.org/10.1039/b400183d</u>
- [54] Kee RJ, Rupley FM, Miller JA (1989) CHEMKIN-II: A fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Report SAND89-8009B, Sandia National Laboratories, Livermore, CA, USA.
- [55] Kee RJ, Rupley FM, Miller JA (1990) The Chemkin Thermodynamic Data Base. Report SAND87-8215B, Sandia National Laboratories, Livermore, CA, USA.
- [56] Kee RJ, Grcar JF, Smooke MD, Miller JA (1991) A fortran computer program for modeling steady laminar one-dimensional premixed flames. Report SAND85-8240, Sandia National Laboratories, Livermore, CA, USA.
- [57] Goodwin DG, Moffat HK, Speth RL (2016) Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. <u>http://www.cantera.org</u>, Version 2.1.1. (California Institute of Technology, Pasedena, CA).
- [58] Dyakov IV, Konnov AA, De Ruyck J, Bosschaart KJ, Brock ECM, De Goey LPH (2001) Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures. *Combustion Science and Technology* 172:81-96. https://doi.org/10.1080/00102200108935839
- [59] Stone R, Clarke A, Beckwith P (1998) Correlations for the laminar-burning velocity of methane/diluent/air mixtures obtained in free-fall experiments. *Combustion and Flame* 114(3-4):546-555. <u>https://doi.org/10.1016/s0010-2180(97)00329-5</u>
- [60] Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin RE, Miller JA (1986) A Fortran Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties. Report SAND86-8246, Sandia National Laboratory, Livermore, CA.
- [61] Reid RC, Prausnitz JM, Sherwood TK (1977) *The Properties of Gases and Liquids* (McGraw-Hill).
- [62] Avendano C, Lafitte T, Adjiman CS, Galindo A, Mueller EA, Jackson G (2013) SAFTgamma Force Field for the Simulation of Molecular Fluids: 2. Coarse-Grained Models

of Greenhouse Gases, Refrigerants, and Long Alkanes. *Journal of Physical Chemistry* B 117(9):2717-2733. <u>https://doi.org/10.1021/jp306442b</u>

- [63] Teja AS, Smith RL, King RK, Sun TF (1999) Correlation and prediction of the transport properties of refrigerants using two modified rough hard-sphere models. *Int J Thermophys* 20(1):149-161. <u>https://doi.org/10.1023/a:1021438516081</u>
- [64] Setokuchi O, Kutsuna S, Sato M (2006) A theoretical study of thermal decomposition of CF3CO, C2F5CO and C3F7CO. *Chemical Physics Letters* 429(4-6):360-364. https://doi.org/10.1016/j.cplett.2006.08.040
- [65] Wang H , Frenklach M (1994) Transport-properties of polycyclic aromatichydrocarbons for flame modeling. *Combustion and Flame* 96(1-2):163-170. https://doi.org/10.1016/0010-2180(94)90167-8

Appendix A: Thermodynamic data for fluorine-containing species (Chemkin format).

F J 6/82F 0 0G 6000.000 1000. 1 1 0 200.000 burcat,2013 0.26716339E+01-0.17461853E-03 0.69066504E-07-0.11953478E-10 0.75236739E-15 2 0.87874123E+04 0.39842568E+01 0.24196743E+01 0.29392909E-02-0.89212228E-05 3 0.99118537E-08-0.37947152E-11 0.87573220E+04 0.47468987E+01 0.95483679E+04 4 ΗF 0. 0.G 200.000 6000.000 1000. T 2/11F 1.H 1. 1 burcat,2013 2.92491143E+00 8.50523032E-04-1.58179777E-07 1.17507204E-11-1.43309132E-16 2 -3.36352481E+04 4.19018883E+00 3.48137108E+00 2.12245717E-04-6.86359044E-07 3 8.56185857E-10-2.34581508E-13-3.38607305E+04 1.02579990E+00-3.28178089E+04 4 F2 REF ELEMENT RUS 89F 2 0 0 0G 200.000 6000.000 1000. 1 burcat,2013 3.86166219E+00 7.88367679E-04-1.81982940E-07-9.17436560E-12 2.65193472E-15 2 -1.23238655E+03 2.04119869E+00 3.20832415E+00 1.25919179E-03 3.89747979E-06 3 -7.22184984E-09 3.31837862E-12-1.03425794E+03 5.61903603E+00 0.0000000E+00 4 HOF T 5/11H 1.0 1.F 1. 0.G 200.000 6000.000 1000. 1 burcat,2013 4.12528386E+00 2.31519777E-03-7.76666333E-07 1.19549024E-10-6.91728055E-15 2 -1.19136862E+04 2.89862207E+00 3.92035391E+00-1.39927977E-03 1.39115337E-05 3 -1.79018174E-08 7.24565658E-12-1.16927573E+04 4.87858424E+00-1.04951464E+04 4 F20 71STU/F 20 1 0 0G 300.00 3000.00 1245.00 1 0.60502237E+01 0.11801203E-02-0.62998049E-06 0.16265308E-09-0.16630594E-13 2 0.86796609E+03-0.55559173E+01 0.23117985E+01 0.14403418E-01-0.18975198E-04 3 0.11788725E-07-0.28156285E-11 0.17661785E+04 0.13044809E+02 4 200.000 6000.000 1000. F0 ATcT/AF 1.0 1. 0. 0.G 1 burcat,2013 4.10435161E+00 3.22444815E-04-6.01630664E-08-1.10998596E-11 1.61567239E-15 2 1.20593514E+04 2.35480534E+00 4.34438108E+00-5.37168023E-03 1.77166504E-05 3 -2.00073120E-08 7.67510992E-12 1.22051341E+04 2.24948929E+00 1.33822679E+04 4 F02 71STU/F 10 2 0 0G 300.00 3000.00 1360.00 1 0.56242097E+01 0.17066411E-02-0.89995239E-06 0.22561211E-09-0.22048285E-13 2 -0.40013089E+03-0.17257001E+01 0.36727894E+01 0.76317941E-02-0.79426701E-05 3 0.40752038E-08-0.83001063E-12 0.13887520E+03 0.82723509E+01 4

```
!*** C1 Fluorocarbons ***
CH3F FC-41 -236 T05/11C 1.H 3.F 1. 0.G
                                              200.000 6000.000 1000.
                                                                            1
2018GAN/KAL(burcat, 2013)
3.31348457E+00 8.59183430E-03-3.07886159E-06 4.96069542E-10-2.96514660E-14
                                                                            2
-3.00122760E+04 4.75257452E+00 5.03514272E+00-1.46119198E-02 6.06479225E-05
                                                                            3
-6.60649862E-08 2.42867162E-11-2.95973280E+04 3.08070101E-01-2.84535108E+04
                                                                            4
       FC-32
                 Т 9/99С
                         1H 2F 2
                                         0G
                                              200.000 6000.000 1000.
CH2F2
                                                                            1
2018GAN/KAL(burcat, 2013)
5.06948195E+00 7.23193135E-03-2.64021025E-06 4.30854708E-10-2.59873096E-14
                                                                            2
-5.65991527E+04-2.34590394E+00 4.25023157E+00-6.84861262E-03 4.85583334E-05
                                                                            3
-5.83442752E-08 2.24503933E-11-5.56073052E+04 5.76716418E+00-5.44480432E+04
                                                                            4
                                              200.000 6000.000 1000.
CHF3 FLUOROFORM T 9/99C 1H 1F
                                    3
                                         0G
                                                                            1
2018GAN/KAL(burcat, 2013)
7.24609031E+00 5.42386441E-03-2.02314394E-06 3.34946402E-10-2.04067524E-14
                                                                            2
-8.68239019E+04-1.28982398E+01 2.73539203E+00 8.72478957E-03 1.74821510E-05
                                                                            3
-3.21504750E-08 1.41694928E-11-8.51820557E+04 1.24879863E+01-8.33830015E+04
                                                                            4
CF4
      FC-14
                 g 7/99C 1.F 4. 0.
                                        0.G
                                              200.000 6000.000 1000.
                                                                            1
burcat,2013
9.47336526E+00 3.59407743E-03-1.40334012E-06 2.39113889E-10-1.48513407E-14
                                                                            2
-1.15816621E+05-2.49736848E+01 1.05119594E+00 2.78318369E-02-2.46683439E-05
                                                                            3
 6.75882532E-09 9.14850873E-13-1.13574198E+05 1.81936795E+01-1.12227900E+05
                                                                            4
                 T 8/09C 1.H 2.F 1.
CH2F
                                        0.G
                                              200.000 6000.000 1000.
                                                                            1
2018GAN/KAL(burcat, 2013)
                                                                            2
4.11283513E+00 5.00104452E-03-1.74095833E-06 2.75007611E-10-1.62099637E-14
-5.25924503E+03 2.38852694E+00 3.78123930E+00-4.49840351E-04 1.88358140E-05
                                                                            3
-2.40702692E-08 9.53477519E-12-4.88500871E+03 5.56895443E+00-3.85801124E+03
                                                                            4
                 g 6/88C 1.H 1.F 2.
CHF2
                                        0.G
                                              200.000 6000.000 1000.
                                                                            1
2018GAN/KAL(burcat, 2013)
5.52321120E+00 4.21970092E-03-1.58435294E-06 2.63969157E-10-1.61337618E-14
                                                                            2
-3.14404682E+04-2.40335469E+00 4.12220872E+00-2.33706659E-03 2.99282606E-05
                                                                            3
-3.88422961E-08 1.55352879E-11-3.05990045E+04 7.22245467E+00-2.87329019E+04
                                                                            4
                 ATcT/AC 1.F 3. 0.
                                              200.000 6000.000 1000.
CF3
                                        0.G
                                                                            1
2018GAN/KAL(burcat, 2013)
7.42981696E+00 2.61728694E-03-1.02141596E-06 1.73975666E-10-1.08028191E-14
                                                                            2
-5.91795501E+04-1.22816891E+01 2.38179059E+00 1.37269527E-02-3.47674937E-06
                                                                            3
-9.01697393E-09 5.57384083E-12-5.76871035E+04 1.43743316E+01-5.62149784E+04
                                                                            4
                 T 7/11C 1.H 1.F 1. 0.G
                                              200.000 6000.000 1000.
CHF singlet
                                                                            1
burcat,2013
2.09415280E+00 5.34934017E-03-1.69762943E-06 2.19446141E-10-1.00205977E-14
                                                                            2
1.72042147E+04 1.37860960E+01 4.42272584E+00-5.60196198E-03 2.21848969E-05
                                                                            3
-2.39634368E-08 8.91306513E-12 1.66515542E+04 2.54111183E+00 1.78740539E+04
                                                                            4
                 ATcT/AC 1.F 2. 0. 0.G
                                              200.000 6000.000 1000.
CF2
                                                                            1
2018GAN/KAL(burcat, 2013)
5.35787718E+00 1.80622418E-03-7.80465045E-07 1.47642691E-10-9.44754424E-15
                                                                            2
-2.52559006E+04-2.63410779E+00 3.56435487E+00 1.23021056E-03 1.39909866E-05
                                                                            3
-2.13708286E-08 9.10710807E-12-2.45418819E+04 7.83907808E+00-2.30031595E+04
                                                                            4
CF
                 ATcT/AC 1.F 1. 0. 0.G
                                              200.000 6000.000 1000.
                                                                            1
burcat,2013
3.74644062E+00 8.01632001E-04-2.95064248E-07 5.03803598E-11-3.08738254E-15
                                                                            2
2.84554882E+04 3.84191679E+00 3.99598712E+00-4.62546013E-03 1.58270762E-05
                                                                            3
-1.73528410E-08 6.45553921E-12 2.86045210E+04 3.67054970E+00 2.96989239E+04
                                                                            4
!*** Oxidized C1 Fluorocarbons ***
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

```
T07/11C 1.0 1.F 1.H 1.G
CHFO
                                               200.000 6000.000 1000.
                                                                               1
burcat,2013
4.78813214E+00 4.76650220E-03-1.74367126E-06 2.84956025E-10-1.72050907E-14
                                                                               2
-4.79424476E+04 3.51967468E-01 3.74246307E+00-1.31011108E-03 2.46792673E-05
                                                                               3
-3.12953787E-08 1.22624735E-11-4.72269701E+04 7.89719615E+00-4.60074015E+04
                                                                              4
CF20
                 T 5/11C 1.0 1.F 2.
                                               200.000 6000.000 1000.
                                         0.G
                                                                               1
burcat,2013
6.81631709E+00 3.16473302E-03-1.21776278E-06 2.05582278E-10-1.26893138E-14
                                                                               2
-7.55374518E+04-9.52865117E+00 2.12979433E+00 1.41019782E-02-5.94383395E-06
                                                                               3
-5.30542094E-09 3.97366263E-12-7.41637142E+04 1.51109046E+01-7.29630489E+04
                                                                               4
CFO (CFO/COF)
                 T 9/11F 1.C 1.O 1.
                                         0.G
                                               200.000 6000.000 1000.
                                                                               1
burcat,2013
5.01565891E+00 1.95763376E-03-7.49685297E-07 1.25610155E-10-7.59885072E-15
                                                                               2
-2.29785255E+04 3.69669039E-01 3.37992233E+00 4.19050548E-03 2.12353533E-06
                                                                               3
-6.20586665E-09 2.85352218E-12-2.24063200E+04 9.39466699E+00-2.12044967E+04
                                                                               4
                 T07/04C 1.F 3.O 1.
                                         0.G
                                               200.000 6000.000 1000.
CF30 Radical
                                                                               1
burcat,2013
9.76423201E+00 3.30092424E-03-1.28961521E-06 2.19815579E-10-1.36560199E-14
                                                                               2
-7.94771282E+04-2.37694198E+01 1.82041152E+00 2.65327204E-02-2.45066904E-05
                                                                               3
7.86171828E-09 2.73540764E-13-7.73780958E+04 1.68621895E+01-7.58568931E+04
                                                                               4
!*** Fluoroethanes ***
!*********************
                 T 6/11C 2.H 5.F 1.
                                                                               1
CH3-CH2F
                                         0.G
                                               200.000 6000.000 1000.
burcat.2013
6.18081698E+00 1.35890229E-02-4.87040213E-06 7.84862029E-10-4.69209214E-14
                                                                               2
-3.58341343E+04-7.96594699E+00 4.00577312E+00-3.11043983E-04 5.57188865E-05
                                                                               3
-7.28404563E-08 2.90642195E-11-3.43213851E+04 7.92813391E+00-3.27788408E+04
                                                                               4
CH2F-CH2F HFC-152T 9/10C 2.H 4.F 2.
                                         0.G
                                               200.000 6000.000 1000.
                                                                               1
2018GAN/KAL(burcat, 2013)
1.00315710E+01 1.11994308E-02-4.26519119E-06 7.11447245E-10-4.35028559E-14
                                                                               2
-5.85296182E+04-2.85864919E+01 5.58943786E+00-1.13537115E-02 9.78443079E-05
                                                                               3
-1.22110880E-07 4.76646013E-11-5.56834525E+04 2.61081947E+00-5.41655491E+04
                                                                               4
CH3-CHF2 HFC-152aT 6/11C 2.F 2.H 4. 0.G
                                               200.000 6000.000 1000.
                                                                               1
2018GAN/KAL(burcat, 2013)
7.67995887E+00 1.22243125E-02-4.37573530E-06 7.04756402E-10-4.21223621E-14
                                                                               2
-6.40850702E+04-1.47344376E+01 3.25212905E+00 1.18717590E-02 2.57923969E-05
                                                                               3
-4.29488908E-08 1.82237758E-11-6.22767756E+04 1.11051557E+01-6.01899571E+04
                                                                               4
CH2F-CHF2 68LACSKI96ZAC C
                           2H 3F 3
                                          0G
                                               300.00
                                                        3000.00 1100.00
                                                                               1
2018GAN/KAL
0.92726485E+01 0.12040181E-01-0.48605999E-05 0.88656689E-09-0.59650602E-13
                                                                               2
-8.43982994E+04-0.21387996E+02 0.64737590E+00 0.36292494E-01-0.31143200E-04
                                                                               3
0.14464592E-07-0.30120967E-11-8.19413424E+04 0.23295333E+02
                                                                               4
CH3-CF3 FC-143A
                 T11/03C 2.H 3.F 3.
                                         0.G
                                               200.000 6000.000 1000.
                                                                               1
2018GAN/KAL(burcat, 2013)
1.00540918E+01 1.02515900E-02-3.70172133E-06 5.99863654E-10-3.60117460E-14
                                                                               2
-9.48129775E+04-2.72330585E+01 1.75260632E+00 3.04395701E-02-1.49788607E-05
                                                                               3
-5.70775683E-09 5.66225345E-12-9.24091835E+04 1.62401353E+01-9.08838885E+04
                                                                               4
                 T 5/03C 2.H 2.F 4.
                                         0.G
                                               200.000 6000.000 1000.
CHF2-CHF2
                                                                               1
2018GAN/KAL(burcat, 2013)
1.19960865E+01 8.98721146E-03-3.36363101E-06 5.54000254E-10-3.35654907E-14
                                                                              2
-1.10809976E+05-3.53416069E+01 3.98924014E+00 1.72571738E-02 2.36853869E-05
                                                                               3
-4.89142700E-08 2.21225708E-11-1.08018610E+05 9.12364634E+00-1.06235966E+05
                                                                              4
                 T 5/03C 2.H 2.F 4.
                                         0.G
                                               200.000 6000.000 1000.
                                                                               1
CH2F-CF3
2018GAN/KAL(burcat,2013)
```

```
1.25551115E+01 8.40186071E-03-3.12077291E-06 5.12284572E-10-3.10110291E-14
                                                                              2
-1.14409890E+05-3.80374329E+01 2.29239681E+00 3.03108483E-02-5.33713985E-06
                                                                              3
-2.19456612E-08 1.29970288E-11-1.11354002E+05 1.62830568E+01-1.09844116E+05
                                                                              4
                                         0.G
                                               200.000 6000.000 1000.
CHF2-CF3
                 A 4/05C 2.H 1.F 5.
                                                                              1
2018GAN/KAL(burcat, 2013)
1.45281312E+01 6.80984691E-03-2.67132939E-06 4.54433791E-10-2.81433657E-14
                                                                              2
-1.39668599E+05-4.67174252E+01 2.56680624E+00 3.63877723E-02-1.93606756E-05
                                                                              3
-9.02362714E-09 8.52266342E-12-1.36273767E+05 1.56968804E+01-1.34704270E+05
                                                                              4
CF3-CF3
                 T 6/11C 2.F 6.
                                    0.
                                         0.G
                                               200.000 6000.000 1000.
                                                                              1
2018GAN/KAL(burcat, 2013)
1.70284831E+01 4.64174937E-03-1.92155485E-06 3.37538839E-10-2.13452416E-14
                                                                              2
-1.68162295E+05-5.98112608E+01 1.56503771E+00 5.10909623E-02-5.07167534E-05
                                                                              3
1.88993955E-08-7.73770882E-13-1.64148368E+05 1.89556430E+01-1.62429295E+05
                                                                              4
!*** Fluoroethyls ***
CH2F-CH2 beta-Flu T 4/10C 2.H 4.F 1.
                                               200.000 6000.000 1000.
                                         0.G
                                                                              1
2018GAN/KAL(burcat, 2013)
6.17560952E+00 1.07042948E-02-3.78369889E-06 6.04072338E-10-3.58779020E-14
                                                                              2
-9.89977825E+03-5.63727120E+00 4.38588734E+00 4.44184913E-03 2.81593156E-05
                                                                              3
-3.89282386E-08 1.56055864E-11-8.87171985E+03 6.28370097E+00-7.34746654E+03
                                                                              4
CH3-CHF alfa-Flu T 4/10C 2.H 4.F 1.
                                         0.G
                                               200.000 6000.000 1000.
                                                                              1
2018GAN/KAL(burcat, 2013)
5.75331333E+00 1.11537753E-02-3.96206053E-06 6.34664198E-10-3.77832181E-14
                                                                              2
-1.15237093E+04-3.95888581E+00 4.74843909E+00 5.09114984E-04 3.62637445E-05
                                                                              3
-4.54978044E-08 1.75184149E-11-1.05832291E+04 4.50273732E+00-9.09966697E+03
                                                                              4
CH2F-CHF 95BURZAC91CHE C
                           2H
                                3F
                                    2
                                          0G
                                               300.00
                                                        3000.00 1250.00
                                                                              1
2018GAN/KAL (NIST)
0.87214510E+01 0.86815505E-02-0.35422910E-05 0.66313495E-09-0.44742292E-13
                                                                              2
-3.34060307E+04-0.18251835E+02 0.22898344E+01 0.25577305E-01-0.19912795E-04
                                                                              3
0.75880439E-08-0.11237829E-11-3.14764727E+04 0.15431326E+02
                                                                              4
                           2H 3F
                                    2
                                               300.00
CHF2-CH2 90CHERAU
                       С
                                          0G
                                                        3000.00 1100.00
                                                                              1
2018GAN/KAL (NIST)
0.67982556E+01 0.12130852E-01-0.52871420E-05 0.10362364E-08-0.74087387E-13
                                                                              2
-3.69269815E+04-0.72160920E+01 0.12123746E+01 0.29952820E-01-0.27809679E-04
                                                                              3
0.14586627E-07-0.33536338E-11-3.54757375E+04 0.21112708E+02
                                                                              4
CH3-CF2
         78ROD90CHERAU C
                           2H
                               3F
                                    2
                                          0G
                                               300.00
                                                        3000.00 1150.00
                                                                              1
2018GAN/KAL (NIST)
0.64772061E+01 0.12487615E-01-0.53578191E-05 0.10304861E-08-0.72450865E-13
                                                                              2
-3.86798594E+04-0.63195346E+01 0.23142186E+01 0.23701830E-01-0.16389184E-04
                                                                              3
0.57257237E-08-0.80729590E-12-3.74727734E+04 0.15358357E+02
                                                                              4
CH2F-CF2 91CHERAU
                       С
                           2H
                               2F
                                     3
                                          0G
                                               300.00
                                                        3000.00 1150.00
                                                                              1
0.88702445E+01 0.10089497E-01-0.43915564E-05 0.85758186E-09-0.61164127E-13
                                                                              2
-0.57295496E+05-0.17248955E+02 0.20900802E+01 0.29390131E-01-0.25553336E-04
                                                                              3
0.11710794E-07-0.23112930E-11-0.55373132E+05 0.17813614E+02
                                                                              4
                           2H
                                2F
                                     3
                                               300.00
CHF2-CHF 91CHERAU
                       С
                                          0G
                                                        3000.00 1250.00
                                                                              1
0.94245630E+01 0.93845534E-02-0.40694952E-05 0.79548881E-09-0.56874376E-13
                                                                              2
-0.58166030E+05-0.20313155E+02 0.18136794E+01 0.32776675E-01-0.32420504E-04
                                                                              3
0.16831319E-07-0.36002411E-11-0.56094627E+05 0.18591066E+02
                                                                              4
CF3-CH2
         78ROD90CHERAU C
                           2H 2F
                                     3
                                          0G
                                               300.00
                                                        3000.00 1150.00
                                                                              1
2018GAN/KAL (NIST)
0.95879571E+01 0.92998799E-02-0.40774688E-05 0.80571741E-09-0.58185489E-13
                                                                              2
-6.72872509E+04-0.22107686E+02 0.71700835E+00 0.40531459E-01-0.47864066E-04
                                                                              3
0.29440811E-07-0.73125849E-11-6.51420629E+04 0.22103248E+02
                                                                              4
                           2H
                               1F
                                     4
                                          0G
                                               300.00
CHF2-CF2 95BURZAC91CHE C
                                                        3000.00 1250.00
                                                                              1
```

```
0.11627462E+02 0.71020241E-02-0.30321751E-05 0.58031013E-09-0.40595926E-13
                                                                             2
-0.84517281E+05-0.30486515E+02 0.30303759E+01 0.31363562E-01-0.29518978E-04
                                                                             3
 0.13983874E-07-0.27124342E-11-0.82031363E+05 0.14088813E+02
                                                                             4
CF3-CHF
         95BURZAC91CHE C
                           2H 1F
                                     4
                                          0G
                                               300.00
                                                        3000.00 1250.00
                                                                             1
2018GAN/KAL (NIST)
0.11753063E+02 0.71311773E-02-0.31225055E-05 0.61530080E-09-0.44414594E-13
                                                                             2
-8.86441929E+04-0.31333337E+02 0.21777569E+01 0.37699208E-01-0.41607296E-04
                                                                             3
0.23110573E-07-0.51391529E-11-8.61215759E+04 0.17267626E+02
                                                                             4
CF3-CF2
                 T03/10C 2.F 5.
                                    0.
                                         0.G
                                               200.000 6000.000 1000.
                                                                             1
2018GAN/KAL (burcat, 2013)
1.45575510E+01 4.16794014E-03-1.72789494E-06 3.02375137E-10-1.90423730E-14
                                                                             2
-1.13453173E+05-4.50857249E+01 2.35961717E+00 4.06759536E-02-3.97029086E-05
                                                                             3
1.42583579E-08-3.10091084E-13-1.10281694E+05 1.70748780E+01-1.08475901E+05
                                                                             4
!*** Fluoroethylenes ***
RUS 91C 2.H 3.F 1.
                                               200.000 6000.000 1000.
CH2CHF
                                         0.G
                                                                             1
2018GAN/KAL (burcat, 2013)
5.92787061E+00 8.89384427E-03-3.17971566E-06 5.11681548E-10-3.05632459E-14
                                                                             2
-1.98276668E+04-7.04448245E+00 2.61149895E+00 6.68683582E-03 2.76818258E-05
                                                                             3
-4.33824699E-08 1.85254269E-11-1.84326315E+04 1.26328255E+01-1.68500609E+04
                                                                             4
                                               200.000 6000.000 1000.
CHFCHF[E]
                 RUS 91C 2.H 2.F 2.
                                         0.G
                                                                             1
burcat,2013
7.73658780E+00 7.46809856E-03-2.71232867E-06 4.41227895E-10-2.65588270E-14
                                                                             2
-3.96779496E+04-1.52286382E+01 2.82321391E+00 1.39737055E-02 8.79179901E-06
                                                                             3
-2.39558133E-08 1.12741216E-11-3.80129641E+04 1.17612525E+01-3.65144789E+04
                                                                             4
CHFCHF[Z]
                 RUS 91C 2.H 2.F 2.
                                         0.G
                                               200.000 6000.000 1000.
                                                                             1
burcat,2013
7.64662972E+00 7.55622756E-03-2.74600447E-06 4.46890910E-10-2.69075698E-14
                                                                             2
-4.00302113E+04-1.46982798E+01 2.69825023E+00 1.23878271E-02 1.53768601E-05
                                                                             3
-3.23557844E-08 1.47696831E-11-3.82972358E+04 1.28259603E+01-3.68632667E+04
                                                                             4
                 RUS 91C 2.H 2.F 2.
                                               200.000 6000.000 1000.
CHFCHF(Z)
                                         0.G
                                                                             1
burcat,2013
7.64662972E+00 7.55622756E-03-2.74600447E-06 4.46890910E-10-2.69075698E-14
                                                                             2
-4.00302113E+04-1.46982798E+01 2.69825023E+00 1.23878271E-02 1.53768601E-05
                                                                             3
-3.23557844E-08 1.47696831E-11-3.82972358E+04 1.28259603E+01-3.68632667E+04
                                                                             4
CH2CF2 FC-1132A T 6/11C 2.H 2.F 2.
                                         0.G
                                               200.000 6000.000 1000.
                                                                             1
2018GAN/KAL (burcat, 2013)
8.95189658E+00 7.14641061E-03-2.79505418E-06 4.77439020E-10-2.97191427E-14
                                                                             2
-4.60294637E+04-2.29204220E+01 1.28301801E+00 2.31903824E-02-9.70095198E-06
                                                                             3
-4.40973912E-09 3.38826355E-12-4.35424071E+04 1.82378552E+01-4.00420470E+04
                                                                             4
CHFCF2
                 T 6/11C 2.H 1.F 3.
                                         0.G
                                               200.000 6000.000 1000.
                                                                             1
burcat,2013
9.56303811E+00 6.03922396E-03-2.24656246E-06 3.71316848E-10-2.25981353E-14
                                                                             2
-6.23666082E+04-2.23573620E+01 2.00354119E+00 2.74140646E-02-2.30032301E-05
                                                                             3
7.09389407E-09 1.96148641E-13-6.03000360E+04 1.65697402E+01-5.86733313E+04
                                                                             4
CF2CF2
                 ATcT/AC 2.F 4.
                                    0.
                                         0.G
                                               200.000 6000.000 1000.
                                                                             1
2018GAN/KAL; burcat, 2013
1.14178412E+01 4.59161071E-03-1.77520928E-06 3.00598731E-10-1.85921260E-14
                                                                             2
-8.52927617E+04-3.16445526E+01 1.99308667E+00 3.84734406E-02-5.32322754E-05
                                                                             3
3.92122720E-08-1.19302747E-11-8.30021485E+04 1.53134111E+01-8.12242694E+04
                                                                             4
!*** Fluorovinyls ***
2H
CHFCH[E] 96ZACWES
                       С
                                2F
                                     1
                                          0G
                                               300.00
                                                        3000.00 1050.00
                                                                             1
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

```
0.58993136E+01 0.70760772E-02-0.28887543E-05 0.53085830E-09-0.35873561E-13
                                                                              2
0.12541439E+05-0.53585386E+01 0.26848631E+00 0.27945434E-01-0.35411860E-04
                                                                              3
 0.25148746E-07-0.73773052E-11 0.13892575E+05 0.22559566E+02
                                                                              4
                                2F
CHFCH[Z] 96ZACWES
                       С
                           2H
                                     1
                                          0G
                                               300.00
                                                        3000.00 1050.00
                                                                              1
 0.52720505E+01 0.81754708E-02-0.34673780E-05 0.64788558E-09-0.43922904E-13
                                                                              2
 0.12647789E+05-0.19972542E+01 0.44420192E+00 0.26606878E-01-0.31480981E-04
                                                                              3
 0.20535551E-07-0.55252516E-11 0.13722215E+05 0.21668910E+02
                                                                              4
         96ZACWES
                           2H
                                2F
                                          0G
                                               300.00
                                                        3000.00 1050.00
CH2CF
                       С
                                    1
                                                                              1
 0.59366687E+01 0.65440923E-02-0.23741343E-05 0.38223533E-09-0.22535997E-13
                                                                              2
0.10745181E+05-0.55730445E+01 0.93664567E+00 0.23455005E-01-0.26099122E-04
                                                                              3
0.16833431E-07-0.46658292E-11 0.12014041E+05 0.19594667E+02
                                                                              4
                 T 6/02C 2.H 1.F 2.
                                         0.G
                                               200.000 6000.000 1000.
CHFCF[E]
                                                                              1
burcat,2013
7.87499232E+00 4.77134517E-03-1.76600789E-06 2.90903847E-10-1.76623863E-14
                                                                              2
-8.08846630E+03-1.36036843E+01 3.08690083E+00 1.60213261E-02-7.49407266E-06
                                                                              3
-3.65234768E-09 3.19176449E-12-6.67208283E+03 1.15973919E+01-5.11154596E+03
                                                                              4
CHFCF[Z] 96ZACWES
                           2H 1F
                                          0G
                       С
                                    2
                                               300.00
                                                        3000.00 1050.00
                                                                             1
0.77264612E+01 0.50029540E-02-0.18613080E-05 0.31199442E-09-0.19536071E-13
                                                                              2
-0.79003013E+04-0.12864265E+02 0.14830603E+01 0.25289629E-01-0.28989928E-04
                                                                              3
0.18356855E-07-0.49865919E-11-0.62750421E+04 0.18768190E+02
                                                                              4
CF2CH
         96ZACWES
                       С
                           2H
                                1F
                                     2
                                          0G
                                               300.00
                                                        3000.00 1050.00
                                                                              1
0.74110309E+01 0.64817026E-02-0.30631409E-05 0.62562526E-09-0.45512604E-13
                                                                              2
-0.11017369E+05-0.11617089E+02 0.64712617E+00 0.31659599E-01-0.41452904E-04
                                                                              3
0.28609364E-07-0.80609769E-11-0.94385390E+04 0.21799374E+02
                                                                              4
CF2CF
                 tpis91C 2.F 3.
                                    0.
                                         0.G
                                               200.000 6000.000 1000.
                                                                              1
burcat,2013
9.28002368E+00 3.72628116E-03-1.44027826E-06 2.43838247E-10-1.50793717E-14
                                                                              2
-3.08448687E+04-1.92329718E+01 2.41464240E+00 2.68291562E-02-3.39283388E-05
                                                                              3
2.31906358E-08-6.71131007E-12-2.90990246E+04 1.53576825E+01-2.74437210E+04
                                                                              4
!*** Fluoroacetylenes ***
T 7/11C 2.H 1.F 1.
C2HF
                                         0.G
                                               200.000 6000.000 1000.
                                                                             1
burcat,2013
6.20949775E+00 3.69584855E-03-1.29973578E-06 2.06830940E-10-1.22578311E-14
                                                                              2
1.04017383E+04-8.93525071E+00 1.30649331E+00 2.77924488E-02-4.86268691E-05
                                                                              3
4.25956865E-08-1.42675759E-11 1.12860035E+04 1.39346815E+01 1.25586475E+04
                                                                              4
C2F
                                         0.G
                 tpis91C 2.F 1.
                                    0.
                                               200.000 6000.000 1000.
                                                                              1
burcat,2013
 5.26094396E+00 2.14579712E-03-8.07509859E-07 1.34379596E-10-8.21353206E-15
                                                                              2
4.07468230E+04-3.14254580E+00 2.70218031E+00 1.27931571E-02-2.04432188E-05
                                                                              3
1.78526199E-08-6.17934124E-12 4.13318085E+04 9.33996365E+00 4.25578275E+04
                                                                              4
C2F2
                 T 7/11C 2.F 2.
                                    0.
                                         0.G
                                               200.000 6000.000 1000.
                                                                              1
ATcT,2019 (burcat,2013)
7.53993696E+00 2.75655100E-03-1.01925304E-06 1.67696082E-10-1.01706808E-14
                                                                              2
-1.85733725E+03-1.32743125E+01 4.21917369E+00 1.74654857E-02-2.90187341E-05
                                                                              3
 2.55812733E-08-8.81243821E-12-1.15082175E+03 2.68488791E+00 3.43976975E+02
                                                                              4
!*** Fluoroketenes ***
2H
                                1F
                                     10
                                          1G
                                               300.00
                                                        3000.00 1050.00
                                                                             1
CHECO
         96ZACWES
                       С
0.67776435E+01 0.62335944E-02-0.25595800E-05 0.47531383E-09-0.32595082E-13
                                                                              2
-0.20336925E+05-0.85911299E+01 0.19623675E+01 0.22507519E-01-0.25638947E-04
                                                                              3
0.16791690E-07-0.47348234E-11-0.19104027E+05 0.15674252E+02
                                                                              4
                                          0G
CF2C0
         96ZACWES
                       С
                           2F
                                20
                                     1
                                               300.00
                                                        3000.00 1050.00
                                                                              1
```

0.88684122E+01 0.42627717E-02-0.17381349E-05 0.31228667E-09-0.20426586E-13 CFC0 CF30F This burcat,2013 burcat,2013 burcat,2013 CF302 C3F70 C3F702 CF3C0F

-0.38145628E+05-0.17907486E+02 0.34054339E+01 0.22694311E-01-0.28035260E-04 3 0.19124705E-07-0.55121984E-11-0.36737327E+05 0.96487236E+01 4 10 96ZACWES С 2F 1 0G 300.00 3000.00 1050.00 1 0.73033099E+01 0.29793943E-02-0.13058250E-05 0.25407405E-09-0.18103465E-13 2 0.57355650E+04-0.98434103E+01 0.37594179E+01 0.14231997E-01-0.16010254E-04 3 0.98885732E-08-0.26613184E-11 0.66747250E+04 0.81859183E+01 4 10 1F 0G 300.00 3000.00 1440.00 71STU/C 4 1 0.12399629E+02 0.32529590E-02-0.14291450E-05 0.29960628E-09-0.25133306E-13 2 -0.96721165E+05-0.34715971E+02 0.24959868E+01 0.32773790E-01-0.35901194E-04 3 0.18734756E-07-0.37862643E-11-0.93915478E+05 0.16231910E+02 4 **|***************** !***C3-fluorinated,etc*** C3F7H FC227EA 7 1F 0G 200.000 6000.000 1000. 1 T12/99C 3H 2.03195617E+01 1.04618873E-02-3.99351610E-06 6.70976809E-10-4.12886922E-14 2 -1.96070480E+05-7.39087817E+01 3.19381844E+00 5.64358210E-02-4.24435538E-05 3 6.01422805E-09 4.21730731E-12-1.91302556E+05 1.47970140E+01-1.88203033E+05 4 C3F7 CF3CF*CF3 M T12/99C 7 3F Ø 0G 200.000 6000.000 1000. 1 2.05301132E+01 7.60062764E-03-2.96491015E-06 5.04882378E-10-3.13452721E-14 2 -1.69702083E+05-7.19281430E+01 3.14241614E+00 6.03443070E-02-6.17598017E-05 3 2.79379580E-08-4.02551172E-12-1.65147364E+05 1.66897624E+01-1.62020670E+05 4 C3F6 CF2=CF-CF3 A11/04C 3.F 6. 0. 0.G 200.000 6000.000 1000. 1 1.87296098E+01 5.74055067E-03-2.31302367E-06 4.01017749E-10-2.51741915E-14 2 -1.46123551E+05-6.59853551E+01 2.35781302E+00 5.80498289E-02-6.67557556E-05 3 3.68109988E-08-7.92990472E-12-1.41947032E+05 1.68586208E+01-1.39184698E+05 4 1F 30 NIST C 2 0G 300.000 5000.000 1 0.1005499E+02 0.8205633E-02 -0.5062363E-05 2 0.1433123E-08 -0.1534602E-12 -0.1015453E+06 -0.2260937E+02 0.4379631E+00 0.4555659E-01 -0.6176471E-04 3 0.4131473E-07 -0.1106784E-10 -0.8164120E+05 0.2413379E+02 4 3F 70 1 0G 300.000 5000.000 1 Hynes C 0.2287185E+02 0.7640052E-02 -0.1657346E-05 -0.2941549E-09 0.1035168E-12 2 -0.1880432E+06 -0.8666051E+02 0.1136218E+01 0.7336590E-01 -0.7413762E-04 3 0.3256982E-07 -0.4255755E-11 -0.1823545E+06 0.2413339E+02 4 0G 3F 70 2 300.000 5000.000 Hynes C 1 0.3718392E-08 -0.3930683E-12 0.1787408E+02 0.2373510E-01 -0.1367114E-04 2 -0.1860711E+06 -0.5607585E+02 0.1641474E+01 0.8751624E-01 -0.1100224E-03 3 0.7251820E-07 -0.2041578E-10 -0.1828074E+06 0.2252190E+02 4 2F 40 1 0G 300.000 5000.000 1 С Purnell/Bozzelli,2019 0.1006273E+02 0.1214340E-01 -0.7263414E-05 0.2011440E-08 -0.2118963E-12 2 -1.27589631E+05 -0.2073074E+02 0.1769974E+01 0.4245083E-01 -0.5069665E-04 3 0.3111379E-07 -0.7895977E-11-1.25711631E+05 0.2018299E+02 4 C3F60 hynes C 3F 60 0G 300.000 5000.000 1 1 0.1704561E+02 0.1455861E-01 -0.8812300E-05 0.2462951E-08 -0.2613377E-12 2 -0.1744044E+06 -0.5524056E+02 0.2606280E+01 0.7231953E-01 -0.1005112E-03 3 0.7052793E-07 -0.1995183E-10 -0.1713574E+06 0.1482562E+02 4 CF3CH0 NIST C 300.000 5000.000 2F 3H 10 1G 1 Purnell/Bozzelli,2019 (NIST) 0.8047711E+01 0.1377502E-01 -0.7751215E-05 0.2053101E-08 -0.2090976E-12 2 -9.65904246E+04 -0.1217682E+02 0.2986401E+01 0.2819500E-01 -0.2091598E-04 3 0.5048025E-08 0.6025630E-12-9.52619146E+04 0.1374664E+02 4

2

CF3C0 NIST C 2F 30 1 0G 300.000 5000.000 1 Purnell/Bozzelli,2019 (NIST) 0.8273660E+01 0.9456556E-02 -0.5544948E-05 0.1509502E-08 -0.1566714E-12 2 -7.56835411E+04 -0.1889926E+02 -0.7058443E+01 0.1041643E+00 -0.2377523E-03 3 0.2500676E-06 -0.9594719E-10-7.32842611E+04 0.4950205E+02 4 3F C3F70H hynes C 70 1H 1G 300.000 5000.000 1 0.1696278E+02 0.2565773E-01 -0.1513042E-04 0.4192663E-08 -0.4490027E-12 2 -0.2188921E+06 -0.5534448E+02 0.1429132E+01 0.8909125E-01 -0.1141049E-03 3 0.7694099E-07 -0.2212097E-10 -0.2159364E+06 0.1918044E+02 4 C2F5C0C3F7 6F 120 1 G 300.000 3000.000 1000.00 0C 1 Hf -650.8;Cp,S-Smith KD data 0.30630959E+02 0.38184828E-01-0.24308864E-04 0.70308675E-08-0.76600556E-12 2 -0.33931382E+06-0.11703101E+03 0.47864609E+01 0.12945436E+00-0.14305048E-03 3 0.74083490E-07-0.14502047E-10-0.33353949E+06 0.10680870E+02 4 C2F5C0 0C 3F 50 1H 0G 300.000 2500.000 1000.00 1 0.10993560E+02 0.22635009E-01-0.16215860E-04 0.53906966E-08-0.68205687E-12 2 -0.12892516E+06-0.29543968E+02 0.58825005E+01 0.31427282E-01-0.11926324E-04 3 -0.91209576E-08 0.58588476E-11-0.12732035E+06-0.19730690E+01 4 C2F5CH0 0C 3F 50 1H 1G 300.000 2500.000 1000.00 1 0.70011481E+01 0.36515406E-01-0.27132992E-04 0.93304054E-08-0.12151653E-11 2 -0.14764381E+06-0.28355041E+01 0.23841549E+01 0.57546395E-01-0.62523998E-04 3 0.35487425E-07-0.83951742E-11-0.14684857E+06 0.18798064E+02 4 4F 70 C3F7C0 0C 1 G 300.000 2500.000 1000.00 1 0.49092940E+01 0.56218006E-01-0.44870281E-04 0.16215609E-07-0.21904541E-11 2 -0.18448922E+06 0.12881551E+02 0.45819062E+01 0.62040688E-01-0.60374001E-04 3 0.31064553E-07-0.70309731E-11-0.18464940E+06 0.13332725E+02 4 C3F7CH0 0C 4F 70 1H 1G 300.000 2500.000 1000.00 1 0.10618414E+02 0.46140362E-01-0.34401925E-04 0.11943552E-07-0.15745340E-11 2 -0.20345971E+06-0.11769315E+02 0.45903305E+01 0.62406189E-01-0.47030908E-04 3 0.12516368E-07 0.24388842E-12-0.20186177E+06 0.19274330E+02 4 ! 3C 3F 3 CF3CHCH2 Н 0g 200.00 6000.00 1000.00 1 Burcat 1.22166309E+01 1.11177411E-02-4.07566929E-06 6.63454514E-10-3.98729557E-14 2 -8.08780489E+04-3.63340348E+01 1.56834820E+00 3.70715693E-02-1.66534622E-05 3 -1.15669918E-08 9.46282072E-12-7.78570098E+04 1.92579065E+01-7.59072147E+04 4 CF3CCH2 2C 3F 3 0g 200.00 6000.00 1000.00 1 н Burcat 1.25859962E+01 8.12317961E-03-2.95982852E-06 4.80631726E-10-2.89086264E-14 2 -4.99277916E+04-3.65971752E+01 1.34293581E+00 4.37082126E-02-4.41291023E-05 3 1.98066011E-08-2.52757681E-12-4.70859152E+04 2.02494155E+01-4.50947551E+04 4 CF3CHCH CF3-CH=CH A10/04C 3H 2F 3 0G 200.000 6000.00 1000.00 1 Burcat 1.27774168E+01 7.93163451E-03-2.88750413E-06 4.67651599E-10-2.80481227E-14 2 -5.02306417E+04-3.79660841E+01 6.81987133E-01 4.69264463E-02-4.86400872E-05 3 2.20469507E-08-2.75414626E-12-4.72313621E+04 2.29560885E+01-4.53297573E+04 4 CF3CCH 1C 3F 0g 3 300.00 5000.00 1000.00 н 1 1.20875571E+01 6.73607631E-03-2.69300970E-06 4.89991898E-10-3.33727293E-14 2 -5.60204633E+04-3.43479861E+01 2.81616474E-01 5.25169846E-02-7.44406106E-05 3 5.35249568E-08-1.53175885E-11-5.33966440E+04 2.34333278E+01 4 L 1 CF3C0CH3 Н 3C 30 1F 3g 300.00 5000.00 1000.00 1.37707128E+01 1.39114007E-02-5.56646243E-06 1.01277226E-09-6.89535233E-14 2 -1.06311755E+05-4.15671452E+01 2.31183560E+00 4.62931613E-02-3.86726491E-05 3 1.45780128E-08-1.48757320E-12-1.03127581E+05 1.75781936E+01 4

CH2CFCF3 2,3,3,3-T 1/10C 3H 2F 4 0G 200.000 6000.000 1000.00 1 Burcat 1.43109945E+01 9.44785369E-03-3.52268169E-06 5.79391979E-10-3.50621207E-14 2 -1.03384074E+05-4.69130460E+01 1.00153498E+00 4.98007666E-02-4.61878165E-05 3 1.64791672E-08-3.13155879E-13-9.99486839E+04 2.07746963E+01-9.78122362E+04 4 1C 3F CH-CFCF3 Н 4 0g 200.00 6000.00 1000.00 1 est 1.43232063E+01 6.55666899E-03-2.43587955E-06 3.98836047E-10-2.40439148E-14 2 -7.35563379E+04-4.52117067E+01 4.99663120E-01 5.71202270E-02-7.49546439E-05 3 4.83897613E-08-1.22362197E-11-7.03969480E+04 2.30298398E+01 4 CFCCF3 0C 3F 4 0g 300.00 5000.00 1000.00 1 н est, Dixon/Smart, 1989 1.38905011E+01 5.04274517E-03-2.01504138E-06 3.33703287E-10-1.85455570E-14 2 -6.89349055E+04-4.23902350E+01 1.66216798E+00 5.04259227E-02-7.06032551E-05 3 4.96669771E-08-1.39443207E-11-6.60891537E+04 1.80212557E+01 4 CHFCHCF3 0F 4C ЗH 2 G 300.000 3000.000 1000.00 1 matsugi,2017/balaganesh,2012 0.94812168E+01 0.20003084E-01-0.11232250E-04 0.29986969E-08-0.30926159E-12 2 -0.10389801E+06-0.19385037E+02 0.94199275E+00 0.48232398E-01-0.44684845E-04 3 0.19372845E-07-0.29209028E-11-0.10189379E+06 0.23293679E+02 4 0F 4C 3H 300.000 3000.000 1000.00 CFCHCF3 1 G 1 est/balaganesh,2012 0.97942485E+01 0.16627541E-01-0.96960143E-05 0.26570454E-08-0.27915513E-12 2 -0.71851659E+05-0.19584352E+02 0.22137780E+01 0.41937544E-01-0.40143199E-04 3 0.17943289E-07-0.28477463E-11-0.70084971E+05 0.18240006E+02 4 CHFCCF3 0F 4C 3H 1 G 300.000 3000.000 1000.00 1 est/balaganesh,2012 0.97242171E+01 0.16694442E-01-0.97176099E-05 0.26585199E-08-0.27889692E-12 2 -0.69892141E+05-0.19116208E+02 0.23285801E+01 0.40806304E-01-0.37679375E-04 3 0.15829011E-07-0.22038484E-11-0.68139480E+05 0.17931137E+02 4 CH2CF0 Н 2C 20 1F 1g 300.00 5000.00 1000.00 1 Needham et.al, CNF, 2017 8.36520592E+00 7.20529018E-03-2.94164587E-06 5.42254381E-10-3.72494180E-14 2 -3.34931011E+04-1.79788801E+01 8.07509260E-01 3.06961531E-02-3.16571339E-05 3 1.70422410E-08-3.77730061E-12-3.14927535E+04 2.05215635E+01 4

Appendix B: Kinetic model, Chemkin format.

(ATⁿe^{-E/RT}, units: mole, K, cm, cal, s)

```
ELEMENTS
O H C N F AR
end
species
          0
                                H02
H2
     Н
                02
                     OH
                           H20
                                      H202
С
     СН
          CH2
                CH2(S)
                     CH3
                           CH4
                                C0
                                      C02
HCO
     CH20
          CH20H
                CH30
                     CH30H
                           C2H
                                C2H2
                                      C2H3
C2H4
     C2H5
          C2H6
                HCC0
                     CH2CO
                           HCCOH
AR
     C3H7
          C3H8
                СН2СНО СН3СНО
                           N2
CH3C0
     C3H6
          CH3CCH2
!*** Hydrogen/Oxygen/Fluorine ***
F
HF
             F2
!*** C1 Fluorocarbons ***
CF3
CH3F
      CH2F2
             CHF3
                    CF4 CH2F
                              CHF2
             CHF
                    CF2 CF
!*** Oxidized C1 Fluorocarbons ***
CF30 CF20 CHF0 CF0
!*** Fluoroethanes ***
CH3-CH2F CH3-CHF2 CH3-CF3
CH2F-CH2F CH2F-CHF2 CH2F-CF3
      CHF2-CHF2 CHF2-CF3
             CF3-CF3
!*** Fluoroethyls ***
CH3-CHF
             CH3-CF2
CH2F-CH2
      CH2F-CHF
             CH2F-CF2
CHF2-CH2 CHF2-CHF
             CHF2-CF2
CF3-CH2
      CF3-CHF
             CF3-CF2
!*** Fluoroethenes ***
CH2CHF
      CH2CF2
CHFCHF[Z] CHFCF2
CF2CF2
! **********************
!*** Fluorovinyls ***
CH2CF
CHFCH[Z] CHFCF[Z]
CF2CH
      CF2CF
```

```
C2HF
               CHFCO
This
publication
S
               CF3C0CH3
available
free of charge from: https://doi.org/10.6028/NIST.TN.2170
               CHFCHCF3
               end
               THERMO
               END
               REACTIONS
```

!*** Fluoroethynes ***

C2F2 !*** Fluoroketenes *** CF2C0 CFC0 !** FM-200 species ** C3F7H C3F7 C3F6 C3F702 C3F70 C3F60 C3F70H CF3C0F CF3C0 CF3CH0 !*** 2BTP **** CF3CHCH2 CF3CCH2 CF3CHCH CF3CCH !*** HF01234yf********** CH2CFCF3 CH-CFCF3 CFCCF3 !*** HF01234zee ********* !1234zee CFCHCF3 CHFCCF3 CH2CF0 20+M<=>02+M 1.200E+17 -1.000 .00 H2/ 2.40/ H20/15.40/ CH4/ 2.00/ CO/ 1.75/ CO2/ 3.60/ C2H6/ 3.00/ AR/ .83/ CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./ O+H+M<=>OH+M5.000E+17 -1.000 .00 H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./ 0+H2<=>H+OH 3.870E+04 2.700 6260.00 .000 .00 0+H02<=>0H+022.000E+13 0+H202<=>0H+H02 9.630E+06 2.000 4000.00 .00 0+CH<=>H+C0 5.700E+13 .000 0+CH2<=>H+HC0 8.000E+13 .000 .00 0+CH2(S)<=>H2+C0 1.500E+13 .000 .00 0+CH2(S)<=>H+HC0 .000 .00 1.500E+13 0+CH3<=>H+CH20 .000 .00 5.060E+13 0+CH4<=>0H+CH3 1.020E+09 1.500 8600.00 0+CO(+M) < = >CO2(+M)1.800E+10 .000 2385.00 LOW/ 6.020E+14 3000.00/ .000 H2/2.00/ 02/6.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/3.50/ C2H6/3.00/ AR/ .50/ CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./ 0+HCO<=>0H+CO 3.000E+13 .000 .00 0+HCO<=>H+CO2 3.000E+13 .000 .00

0+CH20<=>0H+HC0	3.900E+13	.000	3540.00	
0+CH2OH<=>0H+CH20	1.000E+13	.000	.00	
0+CH30<=>0H+CH20	1.000E+13	.000	.00	
0+CH30H<=>0H+CH20H	3.880E+05	2.500	3100.00	
0+CH30H<=>0H+CH30	1.300E+05	2.500	5000.00	
0+C2H<=>CH+C0	5.000E+13	.000	.00	
0+C2H2<=>H+HCC0	1.350E+07	2.000	1900.00	
0+C2H2<=>0H+C2H	4.600E+19	-1.410	28950.00	
0+C2H2<=>C0+CH2	6.940E+06	2.000	1900.00	
0+C2H3<=>H+CH2C0	3.000E+13	.000	.00	
0+C2H4<=>CH3+HC0	1.250E+07	1.830	220.00	
0+C2H5<=>CH3+CH20	2.240E+13	.000	.00	
0+C2H6<=>0H+C2H5	8.980E+07	1.920	5690.00	
0+HCCO<=>H+2C0	1.000E+14	.000	.00	
0+CH2CO<=>0H+HCC0	1.000E+13	.000	8000.00	
0+CH2CO<=>CH2+CO2	1.750E+12	.000	1350.00	
02+C0<=>0+C02	2.500E+12	.000	47800.00	
02+CH20<=>H02+HC0	1.000E+14	.000	40000.00	
H+02+M<=>H02+M	2.800E+18	860	.00	
02/ .00/ H20/ .00/ CO/ .75/ CO2/1.50/ C	2H6/1.50/ N2/	.00/ AR/	.00/	
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF	/2.00/ CF20	/5./ CF4	/6./ CH3-CHF	2 /6./
H+202<=>H02+02	2.080E+19	-1.240	.00	
H+02+H20<=>H02+H20	11.26E+18	760	.00	
H+02+N2<=>H02+N2	2.600E+19	-1.240	.00	
H+O2+AR<=>HO2+AR	7.000E+17	800	.00	
H+02<=>0+0H	2.650E+16	6707	17041.00	
2H+M<=>H2+M	1.000E+18	-1.000	.00	
H2/ .00/ H20/ .00/ CH4/2.00/ CO2/ .00/	C2H6/3.00/ AR	/ .63/		
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF	- /2.00/ CF20	/5./ CF4	/6./	
2H+H2<=>2H2	9.000E+16	600	.00	
2H+H2O<=>H2+H2O	6.000E+19	-1.250	.00	
2H+C02<=>H2+C02	5.500E+20	-2.000	.00	
H+OH+M<=>H2O+M	2.200E+22	-2.000	.00	
H2/ .73/ H20/3.65/ CH4/2.00/ C2H6/3.00/	′ AR/ .38/			
H+H02<=>0+H20	3.970E+12	.000	671.00	
H+H02<=>02+H2	4.480E+13	.000	1068.00	
H+H02<=>20H	0.840E+14	.000	635.00	
H+H202<=>H02+H2	1.210E+07	2.000	5200.00	
H+H202<=>0H+H20	1.000E+13	.000	3600.00	
H+CH<=>C+H2	1.650E+14	.000	.00	
H+CH2(+M)<=>CH3(+M)	6.000E+14	.000	.00	
LOW / 1.040E+26 -2.760 1600.	.00/			
TROE/ .5620 91.00 5836.00 855	52.00/			
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ C	CO2/2.00/ C2H6	/3.00/ AR	/ .70/	
H+CH2(S)<=>CH+H2	3.000E+13	.000	.00	
H+CH3(+M)<=>CH4(+M)	13.90E+15	534	536.00	
LOW / 2.620E+33 -4.760 2440.	.00/			
TROE/ .7830 74.00 2941.00 69	964.00 /			
H2/2.00/ H20/6.00/ CH4/3.00/ CO/1.50/ C	CO2/2.00/ C2H6	/3.00/ AR	/ .70/	
H+CH4<=>CH3+H2	6.600E+08	1.620	10840.00	
H+HCO(+M)<=>CH2O(+M)	1.090E+12	.480	-260.00	
LOW / 2.470E+24 -2.570 425.	.00/			
TROE/ .7824 271.00 2755.00 65	570.00 /			
H2/2 00/ H20/6 00/ CH4/2 00/ CO/1 50/ C				
112/2.00/1120/0.00/014/2.00/00/1.00/0	CO2/2.00/ C2H6	/3.00/ AR	/ .70/	

H+CH2O(+M) < = >CH2OH(+M)5.400E+11 .454 3600.00 LOW / 1.270E+32 -4.820 6530.00/ .7187 103.00 1291.00 4160.00 / TROE/ H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ H+CH2O(+M)<=>CH3O(+M) 5.400E+11 .454 2600.00 LOW / 2.200E+30 -4.800 5560.00/ .7580 94.00 1555.00 4200.00 / TROE/ H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ H+CH2O<=>HCO+H25.740E+07 1.900 2742.00 H+CH2OH(+M) <=>CH3OH(+M)1.055E+12 .500 86.00 LOW / 4.360E+31 -4.650 5080.00/ TROE/ .600 100.00 90000.0 10000.0 / H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ .000 H+CH20H <=>H2+CH202.000E+13 .00 H+CH2OH<=>OH+CH3 .650 -284.00 1.650E+11 H+CH2OH <=>CH2(S)+H2O-.090 610.00 3.280E+13 H+CH3O(+M) <=>CH3OH(+M).515 50.00 2.430E+12 LOW / 4.660E+41 -7.440 14080.0/ TROE/ .700 100.00 90000.0 10000.00 / H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ H+CH30 < = >H+CH2OH4.150E+07 1.630 1924.00 .000 H+CH30<=>H2+CH20 2.000E+13 .00 .500 H+CH3O<=>OH+CH3 1.500E+12 -110.00 1070.00 H+CH30<=>CH2(S)+H202.620E+14 -.230 H+CH30H<=>CH20H+H2 1.700E+07 2.100 4870.00 H+CH30H<=>CH30+H2 4.200E+06 2.100 4870.00 H+C2H(+M) <=>C2H2(+M)1.000E+17 -1.000 .00 1900.00/ LOW / 3.750E+33 -4.800 TROE/ .6464 132.00 1315.00 5566.00 / H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ .000 2400.00 H+C2H2(+M) < = >C2H3(+M)5.600E+12 LOW / 3.800E+40 -7.270 7220.00/ .7507 98.50 1302.00 4167.00 / TROE/ H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 6.080E+12 H+C2H3(+M) <=>C2H4(+M).270 280.00 LOW / 1.400E+30 -3.860 3320.00/ TROE/ .7820 207.50 2663.00 6095.00 / H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ .000 H+C2H3<=>H2+C2H2 3.000E+13 .00 H+C2H4(+M) <=>C2H5(+M)0.540E+12 .454 1820.00 LOW / 0.600E+42 -7.620 6970.00/ TROE/ .9753 210.00 984.00 4374.00 / H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ H+C2H4<=>C2H3+H2 1.325E+06 2.530 12240.00 -.990 H+C2H5(+M) <=>C2H6(+M)5.210E+17 1580.00 LOW / 1.990E+41 -7.080 6685.00/ .8422 125.00 2219.00 6882.00 / TROE/ H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ .000 H+C2H5 <=>H2+C2H42.000E+12 .00 H+C2H6<=>C2H5+H2 1.150E+08 1.900 7530.00 H+HCCO<=>CH2(S)+CO1.000E+14 .000 .00 H+CH2CO<=>HCCO+H2 8000.00 5.000E+13 .000 H+CH2CO<=>CH3+CO 1.130E+13 .000 3428.00 .000 H+HCCOH<=>H+CH2CO 1.000E+13 .00 H2+CO(+M) <=>CH2O(+M)4.300E+07 1.500 79600.00

LOW / 5.070E+27 -3.420 84350.0	0/		
TROE/ .9320 197.00 1540.00 1030	0.00 /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO	2/2.00/ C2H	6/3.00/ AR	/ .70/
0H+H2<=>H+H20	2.160E+08	1.510	3430.00
20H(+M)<=>H2O2(+M)	7.400E+13	370	.00
LOW / 2.300E+18900 -1700.0	0/		
TROE/ .7346 94.00 1756.00 518	2.00 /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO	2/2.00/ C2H	6/3.00/ AR	/ .70/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF	/2.00/ CF20	/5./ CF4	/6./
20H<=>0+H20	3.570E+04	2.400	-2110.00
0H+H02<=>02+H20	1.450E+13	.000	-500.00
DUPLICATE			
0H+H202<=>H02+H20	2.000E+12	.000	427.00
DUPLICATE			
0H+H202<=>H02+H20	1.700E+18	.000	29410.00
DUPLICATE			
OH+C<=>H+CO	5.000E+13	.000	.00
OH+CH<=>H+HCO	3.000E+13	.000	.00
0H+CH2<=>H+CH20	2.000E+13	.000	.00
0H+CH2<=>CH+H20	1.130F+07	2.000	3000.00
OH+CH2(S) <=>H+CH2O	3.000F+13	.000	.00
OH+CH3(+M) <=>CH3OH(+M)	2.790F+18	-1.430	1330.00
10W / 4.000F+36 -5.920 3140.0	0/		
TROF/ .4120 195.0 5900.00 6394	. 00/		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO	2/2.00/ C2H	6/3.00/	
0H+CH3<=>CH2+H20	5.600F+07	1,600	5420.00
OH+CH3<=>CH2(S)+H2O	6 440F+17	-1 340	1417 00
0H+CH4<=>CH3+H20	1 000F+08	1 600	3120 00
$0H+CO_{2}=>H+CO_{2}$	4 760E+00	1 228	70 00
0H+HCO<=>H2O+CO	5 000E+13	999	90.00
OH+CH2O/=>HCO+H2O	3 430F+09	1 180	-447 00
0H+CH20H2=>H20+CH20	5 000F+12	900	00.7+F 00
0H+CH30/=>H20+CH20	5 000E+12	.000	.00
OH+CH3OH<=>CH2OH+H2O	1 440F+06	2 000	-840.00
OH+CH3OH<=>CH3O+H2O	6 300E+06	2.000	1500 00
$OH+C2H_{2}=2H+HCCO$	2 000E+13	2.000	1300.00
0H+(2H)/(=)H+(H)/(0)	2.000E-15	4 500	-1000 00
OH+C2H2 <= >H+HCCOH	5 040F+05	2 300	13500.00
0H+C2H2<=>C2H+H20	3 370E+07	2.000	14000 00
0H+(2H)(=)(H)+(0)	4 830F-04	4 000	-2000.00
0H+C2H3<=>H20+C2H2	5 000E+12	4.000	2000.00
0H+C2H44 = >C2H3+H20	3 600E+06	2 000	2500 00
0H+C2H6<=>C2H5+H20	3 540E+06	2.000	870.00
0H+CH2CO<=>HCCO+H2O	7 500F+12	2.120	2000.00
2H02<=>02+H202	1 300E+11	.000	-1630.00
	1.5001.11	.000	1050.00
2H02<=>02+H202	4 200F+14	999	12000 00
	4.2001114	.000	12000.00
	2 000E+13	000	00
H02+CH32=>00+CH4	1 000E+13	.000	.00 00
	3 780F±12	.000	.00 00
H02+C02=>0H+C02	1 500E+13	.000	23600 00
H02 + CH207 = 2HC0 + H202	5 600F±06	2 000	12000.00
	5 800E+00	2.000	576 00
	5 000E+12	.000	00.00
	J.000LTI3	.000	.00

C+CH3<=>H+C2H2	5.000E+13	.000	.00
CH+02<=>0+HC0	6.710E+13	.000	.00
CH+H2<=>H+CH2	1.080E+14	.000	3110.00
CH+H2O<=>H+CH2O	5.710E+12	.000	-755.00
CH+CH2<=>H+C2H2	4.000E+13	.000	.00
CH+CH3<=>H+C2H3	3.000E+13	.000	.00
CH+CH4<=>H+C2H4	6.000E+13	.000	.00
CH+CO(+M)<=>HCCO(+M)	5.000E+13	.000	.00
LOW / 2.690E+28 -3.740 1936.0	00/		
TROE/ .5757 237.00 1652.00 500	69.00 /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO	02/2.00/ C2H	16/3.00/ A	R/ .70/
CH+C02<=>HC0+C0	1.900E+14	.000	15792.00
CH+CH2O<=>H+CH2CO	9.460E+13	.000	-515.00
CH+HCCO<=>CO+C2H2	5.000E+13	.000	.00
CH2+02=>0H+H+C0	5.000E+12	.000	1500.00
CH2+H2<=>H+CH3	5.000E+05	2.000	7230.00
2CH2<=>H2+C2H2	1.600F+15	.000	11944.00
CH2+CH3<=>H+C2H4	4.000F+13	.000	.00
CH2+CH4<=>2CH3	2 460F+06	2 000	8270 00
$(H_2 + C_1) + (H_2 + C_2) + (H_2 + C_1) + (H_2 + C_2) + (H_2 + $	8 100E+00	500	4510.00
L_{0W} / 2 690E+33 -5 110 7095 (0.100L/11	. 500	4910.00
TROE / 5007 275 00 1226 00 51	85 AA /		
$\mu_2/2$ $\rho_0/\mu_20/6$ $\rho_0/\mu_1/2$ $\rho_0/\mu_2/2$	00.00 / 02/2 00/ C24	16/2 00/ 1	D/ 70/
(12)/2.00/(120/0.00) $(14/2.00/(0)/1.50)$ $(12)/(0)/1.50/(0)$	2 000E 12	10/5.00/ A	
	1 EQ0E+13	.000	.00
$(\Pi 2 (S) + \Pi 2 < = > (\Pi 2 + \Pi 2)$	1.500E+15	.000	600.00
CH2(S) + AR < = > CH2 + AR	9.000E+12	.000	600.00
(H2(S)+02<=>H+0H+C0	2.800E+13	.000	.00
(H2(5)+02<=>(U2+H20)	1.200E+13	.000	.00
(H2(S)+H2(=>)(H3+H)	7.000E+13	.000	.00
CH2(S)+H2U(+M)<=>CH3OH(+M)	4.820E+1/	-1.160	1145.00
LUW / 1.880E+38 -6.360 5040.0	00/		
IROE/ .602/ 208.00 3922.00 10	180.0 /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO	02/2.00/ C2H	16/3.00/	
CH2(S)+H2O<=>CH2+H2O	3.000E+13	.000	.00
CH2(S)+CH3<=>H+C2H4	1.200E+13	.000	-570.00
CH2(S)+CH4<=>2CH3	1.600E+13	.000	-570.00
CH2(S)+CO<=>CH2+CO	9.000E+12	.000	.00
CH2(S)+C02<=>CH2+C02	7.000E+12	.000	.00
CH2(S)+C02<=>C0+CH20	1.400E+13	.000	.00
CH2(S)+C2H6<=>CH3+C2H5	4.000E+13	.000	-550.00
CH3+02<=>0+CH30	3.560E+13	.000	30480.00
CH3+02<=>0H+CH20	2.310E+12	.000	20315.00
CH3+H202<=>H02+CH4	2.450E+04	2.470	5180.00
2CH3(+M)<=>C2H6(+M)	6.770E+16	-1.180	654.00
LOW / 3.400E+41 -7.030 2762.0	00/		
TROE/ .6190 73.20 1180.00 9999	9.00 /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO	02/2.00/ C2H	16/3.00/ A	R/ .70/
2CH3<=>H+C2H5	6.840E+12	.100	10600.00
CH3+HCO<=>CH4+CO	2.648E+13	.000	.00
CH3+CH2O<=>HCO+CH4	3.320E+03	2.810	5860.00
CH3+CH30H<=>CH20H+CH4	3.000E+07	1.500	9940.00
CH3+CH30H<=>CH30+CH4	1.000E+07	1.500	9940.00
CH3+C2H4<=>C2H3+CH4	2.270E+05	2.000	9200.00
CH3+C2H6<=>C2H5+CH4	6.140E+06	1.740	10450.00
HC0+H20<=>H+C0+H20	1.500E+18	-1.000	17000.00

HCO+M<=>H+CO+M H2/2 00/ H2O/ 00/ CH4/2 00/ CO/1 50/	1.870E+17	-1.000	17000.00
(1272.00) (120) (00) $(14/2.00)$ (0) (1.50)			16 1
$(1)^{-1} ($	12 /EE,12	/5./ CF4	100,00
	1 9005+12	.000	400.00
	1.000ETI3	.000	2520.00
$C_{13}U_{+}U_{2} <= >HU_{2}U_{1}C_{2}$	4.2000-13	7.600	- 3530.00
	1.000E+15	.000	-/55.00
C2H+HZX=2H+C2HZ	J.000E+10	1 200	1995.00
$C_{2} = C_{2} = C_{2$	4.580E+10	-1.390	1015.00
$(2\pi4(+\pi)) < >\pi2+(2\pi2(+\pi))$	8.000E+12	.440	80//0.00
LUW / 1.380E+31 -9.300 9780 TDOE / 724E 180 00 103E 00	0.00/ E117 00 /		
1000/ ./345 100.00 1055.00	5417.00 / 60/	(2 00/ AD	1 70/
(2)(5,00) $(2)(5,00)$ $(14/2,00)$ $(0/1,50)$		000 AN	2075 00
(2H5+02<=>H02+02H4	8.400E+11	.000	38/5.00
H(U)+U2<=>H+U0+U02	1.000E+12	.000	854.00
	1.000E+13	.000	.00
	3.3/0E+13	.000	.00
	6./00E+06	1.830	220.00
	1.096E+14	.000	.00
0H+H02<=>02+H20	0.500E+16	.000	1/330.00
	0,0005.00	500	1755 00
OH+CH3=>H2+CH2O	8.000E+09	.500	-1/55.00
CH+H2(+M)<=>CH3(+M)	1.9/0E+12	.430	-3/0.00
LOW/ 4.820E+25 -2.80 590.0 /	,		
IROE/ .5/8 122.0 2535.0 9365.0			· ·
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/	CO2/2.00/ C2H6	0/3.00/ AR	./0/
CH2+02=>2H+C02	5.800E+12	.000	1500.00
CH2+02<=>0+CH20	2.400E+12	.000	1500.00
	2.000E+14	.000	10989.00
CH2(S)+H2O=>H2+CH2O	6.820E+10	.250	-935.00
C2H3+02<=>0+CH2CH0	3.030E+11	.290	11.00
C2H3+02<=>H02+C2H2	1.337E+06	1.610	-384.00
0+CH3CH0<=>0H+CH2CH0	2.920E+12	.000	1808.00
0+CH3CH0=>0H+CH3+C0	2.920E+12	.000	1808.00
02+CH3CH0=>H02+CH3+C0	3.010E+13	.000	39150.00
H+CH3CH0<=>CH2CH0+H2	2.050E+09	1.160	2405.00
H+CH3CH0=>CH3+H2+C0	2.050E+09	1.160	2405.00
OH+CH3CHO=>CH3+H2O+CO	2.343E+10	0.730	-1113.00
H02+CH3CH0=>CH3+H202+C0	3.010E+12	.000	11923.00
CH3+CH3CH0=>CH3+CH4+C0	2.720E+06	1.770	5920.00
H+CH2CO(+M)<=>CH2CHO(+M)	4.865E+11	0.422	-1755.00
LOW/ 1.012E+42 -7.63 3854.0/	• <i>i</i>		
TROE/ 0.465 201.0 1773.0 5333.	0 /		/ <u>-</u> /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/	CO2/2.00/ C2H6	6/3.00/ AR	.70/
0+CH2CH0=>H+CH2+C02	1.500E+14	.000	.00
02+CH2CH0=>0H+C0+CH20	1.810E+10	.000	.00
02+CH2CH0=>0H+2HC0	2.350E+10	.000	.00
H+CH2CHO<=>CH3+HCO	2.200E+13	.000	.00
H+CH2CH0<=>CH2CO+H2	1.100E+13	.000	.00
OH+CH2CHO<=>H2O+CH2CO	1.200E+13	.000	.00
OH+CH2CHO<=>HCO+CH2OH	3.010E+13	.000	.00
CH3+C2H5(+M)<=>C3H8(+M)	.9430E+13	.000	.00
LOW/ 2.710E+74 -16.82 13065.0	/		
TROE/ .1527 291.0 2742.0 7748	.0 /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/	CO2/2.00/ C2H6	5/3.00/ AR	.70/

```
0+C3H8<=>0H+C3H7
                                 1.930E+05
                                            2.680
                                                  3716.00
H+C3H8<=>C3H7+H2
                                 1.320E+06
                                            2.540
                                                  6756.00
                                            1.800
OH+C3H8<=>C3H7+H20
                                 3.160E+07
                                                   934.00
C3H7+H202<=>H02+C3H8
                                 3.780E+02
                                            2.720
                                                  1500.00
CH3+C3H8<=>C3H7+CH4
                                 0.903E+00
                                            3.650
                                                  7154.00
CH3+C2H4(+M) < >C3H7(+M)
                                 2.550E+06
                                            1.600
                                                  5700.00
     LOW/ 3.00E+63 -14.6 18170./
     TROE/ .1894 277.0 8748.0 7891.0 /
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
0+C3H7<=>C2H5+CH20
                                             .000
                                 9.640E+13
                                                      .00
H+C3H7(+M) < = >C3H8(+M)
                                 3.613E+13
                                             .000
                                                      .00
     LOW/ 4.420E+61 -13.545 11357.0/
     TROE/ .315 369.0 3285.0 6667.0 /
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
H+C3H7<=>CH3+C2H5
                                                   890.00
                                 4.060E+06
                                            2.190
OH+C3H7<=>C2H5+CH2OH
                                 2.410E+13
                                             .000
                                                      .00
                                            0.255
H02+C3H7<=>02+C3H8
                                 2.550E+10
                                                  -943.00
H02+C3H7=>OH+C2H5+CH2O
                                 2.410E+13
                                             .000
                                                      .00
CH3+C3H7<=>2C2H5
                                           -0.320
                                                      .00
                                 1.927F+13
!******** HYDROGEN/OXYGEN/FLUORINE *********
!*** HF, F, F2: Combination, decomposition ***
H + F + M = HF + M
                                                  0.
                                 1.70e21 -2.0
H2/2.00/ H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
!*** HF, F, F2: Atom transfer ***
650.
H2
      + F
            = H
                    + HF
                             2.56E12
                                     0.50
OH
      + F
            = 0
                    + HF
                             5.00E13
                                     0.00
                                               0.
H02
      + F
            = 02
                    + HF
                             2.89E12
                                     0.50
                                              0.
H20
      + F
            = OH
                    + HF
                             1.30E09
                                     1.50
                                              0.
H202
      + F
            = H02
                    + HF
                             1.73E12
                                     0.50
                                              0.
!********* C1 FLUOROCARBONS *********
!*** FLUOROMETHANES: THERMAL DECOMPOSITIONS ***
CH3F (+M) = CH2(S) + HF (+M)
                             1.00E14
                                     0.0
                                           85000.
LOW /1.50E16
           0.0
                      67499./
H2/2.00/ H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/
CHF
       + H2 = CH3F
                             2.25E17 -2.85
                                           13000.
CH2F
       + H
           = CH3F
                             3.03E21 -3.38
                                            3460.
CH2F2(+M)
                = CHF
                           + HF(+M)
                                        1.5E+15
                                                 0.00
                                                       81800.
  LOW /
                         62600./
         0.65E+18
                  0.00
  TROE/ 0.08 1E-30 1E+30
  H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
  HF/2.0/ CH2F2/2.0/ CH3-CHF2/2.0/ CH2F-CF3/2.0/ CF20 /5./ CF4 /6./
```

CF2 CHF2 I*****	+ H2 + H ******	= CH2F2 = CH2F2 ********	*****	1.70E06 2.75E06 *****	-0.71 -0.32 **	40900. 7690.
CHF3 (+M) =	CF2 + H	F(+M) 5.	0E+15 0.	00 74	4000.
H2 CH	/2.00/ 2F2 /2.	H2O/6.00/ 00/ CHF3 /	LOW/ 1. CH4/2.00/ C 2.00/ HF /2	23E+16 0 0/1.50/ CO .00/ CF20	.00 ! 2/2.00/ /5./ Cl	H2F-CF3 /2.0/
! *****	******	******	******	******	**	
CF4 (+	M) = CF W /9.0F	3 + F (+ M 34 -4.64) 122400.	6.31E	16 0.0	0 128940.
H2/2.00 CH3F /6	/ H2O/9 .00/ CH	.00/ CH4/2 2F2 /6.00/	.00/ CO/1.5 CHF3 /6.00	, 0/ CO2/2.0 / HF /2.00	0/ C2H6, / CF20 ,	/3.00/ /5./ CF4 /6./
!*** ⊏I	******	**********	**************************************	********** METUVIC *	**	
: IL !*****	******	********	*****	********	**	
!****** !*** Fl !*****	******* uoromet ******	*********** hanes: Rea ********	************ ctions with ***********	***** H *** ****		
· CH3F	+ H	= CH2F	+ H2	6.51E07	1.96	10710.
CH2F2	+ H	= CHF2	+ H2	5.72E03	2.69	12340.
CHF3	+ H	= CF3	+ H2	7.83E06	2.06	12300.
!*****	******	******	*******	*****		
CH3F	+ H	= CH3	+ HF	1.73E08	1.77	31000.
CH3F	+ H	= CH4	+ F	2.83E08	1.61	38350.
CH2F2	+ H	= CH2F	+ HF	4.90E08	1.73	35370.
CHF3	+ H	= CHF2	+ HF	2.11E08	1.77	39800.
CHF3	+ H	= CH2F2	+ F	4.32E08	1.60	62990.
CF4	+ H	= CF3	+ HF	3.07e09	1.58	41330.
CF4	+ H	= CHF3	+ F	9.15e08	1.45	63590.
CH2F2	+ H	= CH3F	+ F	4.87E00	1.61	51070.
! *****	******	*******	*******	*******	****	
!*** Fl	uoromet	hanes: Rea	ctions with	О, ОН, НО	2 ***	
! *****	******	******	*******	*******	****	
CH3F	+ 0	= CH2F	+ OH	3.01E03	3.13	4890.
CH2F2	+ 0	= CHF2	+ OH	1.20E03	3.17	5410.
CHF3	+ 0	= CF3	+ OH	3.07E14	0.00	18950.
! *****	******	******	******	*******	****	
CH3F	+ OH	= CH2F	+ H2O	2.60E08	1.50	2940
CH2F2	+ OH	= CHF2	+ H2O	2.64E02	3.27	950.
CHF3	+ 0H	= CF3	+ H2O	1.25E07	1.55	3670.
! *****	******	********	********	*******	****	
·******	******	******	*********	*****	****	
!~^^ F⊥	uoromet *******	nanes: Kea	ccions With ************	снз, C2H3 *********	****	
	L CUD			1 EQE11	0 00	11/00
CHOEO		- CHE7	+ CH4 + CH4	2 70E11	0.00	10200
		- CHF2		0./UEIU	0.00	10200.
	+ LA4	3E ± CE2	T LID	0.54EII 0 64004	00.00 7 /1	10720. 26130
UH + U	пэ – сп	JI T (F)		2.04004	2.41	ZUIJU.

```
+ C2H4
                                     10300.
CH3F
     + C2H3 = CH2F
                         1.50E11
                                0.00
CH2F2
     + C2H3 = CHF2
                 + C2H4
                         9.00E10
                                0.00
                                      9200.
CF3
     + C2H4 = CHF3
                 + C2H3
                         8.00E11
                                0.00
                                     12000.
CF3 (+ M) = CF2 + F (+ M)
                           1.0e15
                                   0.0
                                         82370.
  LOW / 5.0e15 0.0 59660. /
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
!*** Fluoromethyls: Reactions with Fluoromethanes ***
CH3F
     + CF3 = CH2F
                 + CHF3
                         5.75E11
                                0.00
                                     11210.
     + CH2F = CHF2
                 + CH3F
                         9.00E10
                                0.00
                                     14000
CH2F2
     + CF3 = CHF2
                 + CHF3
                                0.00
                                     11300.
CH2F2
                         4.27E11
******
!*** Fluoromethyls: Reactions with CH30, CH20, HCO ***
CH30H
     + CH2F = CH30
                 + CH3F
                         1.44E01
                                      9800.
                                3.10
CH30H
     + CHF2 = CH30
                 + CH2F2
                         1.44E01
                                3.10
                                      9000
CH30H
     + CF3 = CH30
                 + CHF3
                         1.44E01
                                3.10
                                      5500
*********
                                *********
CH30H
     + CH2F = CH2OH
                 + CH3F
                                3.20
                                     10000.
                         3.20E01
CH30H
     + CHF2 = CH2OH
                 + CH2F2
                         3.20E01
                                3.20
                                      9300.
CH30H
     + CF3 = CH2OH
                 + CHF3
                         3.20E01
                                3.20
                                      5700.
!*********
        ******
                      *******
     + CH2F = HCO
                                2.81
CH20
                 + CH3F
                         5.54E03
                                      8300.
CH20
     + CHF2 = HCO
                 + CH2F2
                         5.54E03
                                2.81
                                      7800.
CH20
     + CF3 = HC0
                 + CHF3
                         5.54E03
                                2.81
                                      4600.
**********
HC0
     + CH2F = CO
                 + CH3F
                         9.00E13
                                0.00
                                        0.
HC0
     + CHF2 = CO
                 + CH2F2
                         9.00E13
                                0.00
                                        0.
     + CF3 = C0
HCO
                 + CHF3
                         9.00E13
                                0.00
                                        0.
**
                         *******
                                ****
HCO
     + CH2F = CH2CO
                 + HF
                         3.00E13
                                0.00
                                        0.
HCO
     + CHF2 = CHFC0
                 + HF
                         3.00E13
                                0.00
                                        0.
HC0
     + CF3 = CF2C0
                 + HF
                         2.70E13
                                0.00
                                        0.
!*** Fluoromethyls: Reactions with H2O2 ***
CH2F
     + H202 = CH3F
                 + H02
                                0.00
                                      -600.
                         1.20E10
CHF2
     + H202 = CH2F2
                 + H02
                                0.00
                                      -600.
                         1.20E10
CF3
     + H202 = CHF3
                 + H02
                         1.20E10
                                0.00
                                      -600.
!*** Fluoromethyls + H
CH2F
      + H <=> CH2(S) + HF
                         11.000E+13
                                   0.0
                                          0.0
CH2F
      + H <=> CHF + H2
                         5.000E+13
                                   .000
                                          0.0
CHF2
          = CHF
                 + HF
      + H
                         1.49E14
                                  -0.11
                                          101.
          = CF2
CHF2
      + H
                 + H2
                         5.50E03
                                  2.42
                                         -420.
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

CF3	+ H	= CF2	+ HF	5.33E13	0.00	0.		
! *****	******	*******	*******	*********	*****			
!*** F	luoromet	thyls + F	******	********	*****			
CH3	+ F	= CH2(S)	+ HF	1.62E16	-0.88	-981.		
СНЗ	+ F	= CH2F	+ H	1.36E12	-0.39	-265.		
CH2F	+ F	= CHF	+ HF	5.00F13	0.00	0.		
CHF2	+ F	= CF2	+ HF	3.00E13	0.00	0.		
!****	******	********	********	**********	*******	**		
!*** F !****	*1uorome	tnyis: Kea ********	CT1ON W1TN *********	02,0,0H	,HU2 ** *******	** **		
СПЭЕ	+ 02		т O т H	1 3051/	0 00	25000		
	+ 02			10 2511	0.00	23000.		
	+ 02	= CHF0	+ 0H	10.3EII	0.0	2400		
	+ 02	= CF20	+ UH	4.9E10	0.0	3490.		
CF3	+ 02	= CF30	+ 0	3.4E09	1.14	21000.		
! *****	******	*******	*******	********	*******	**		
CH2F	+ 0	= CHFO	+ H	5.70E13	0.00	0.		
CHF2	+ 0	= CF20	+ H	3.70E13	0.00	0.		
CF3	+ 0	= CF20	+ F	1.54E13	0.00	0.		
! ****	******	******	*******	*******	******	**		
CH2F	+ OH	= CH2O	+ HF	2.50E13	0.00	0.		
CHF2	+ OH	= CHFO	+ HF	1.00E13	0.00	0.		
CF3	+ OH	= CF20	+ HF	1.46E13	-0.06	-266.		
! ****	******	******	*******	******	******	**		
CH2F	+ H02	=> CHFO	+ OH + H	1.50E13	0.00	0.		
CHE2	+ H02	=> CF20	+ 0H + H	1.50F13	0.00	0.		
CES	+ H02	= CF30	+ 0H	1 00F13	0.00	0. 0		
!****	******	*****	******	*********	*******	**		
CH2F	+ H02	= CH3F	+ 02	3.00E12	0.00	0.		
CHF2	+ H02	= CH2F2	+ 02	3.00E12	0.00	0.		
CF3	+ H02	= CHF3	+ 02	2.00E12	0.00	0.		
! ****	******							
!*** C	F30 ***							
!****	******							
CF30	+ M	= CF20 +	F	9.03E26	-3.42	21700.		
CF30	+ H	= CF20 +	HF	1.00E14	0.00	0.		
CF30	+ H2	=> CF20+	HF + H	1.00E13	0.00	5000.		
CF30	+ H20	=> CF20+	HF + OH	5.13F07	1.40	6220		
CF 30	+ CH4	=> CF20+	HF + CH3	2.70F12	0.00	3200		
CF30	+ (2)	5 = 201	HF + C2H5	6.81F12	0 00	1280		
CE30	+ C2H	1 = 5 CF 20+		1 00512	0.00 0 00	5000		
CE30	+ C2D4	+ - 2 CF 20 +		1 00513	0.00	5000.		
		2 = 2 CF 20		T.00ET3	0.00			
	+ CH20	J = X CF 20+		5.0012	0.00	2000.		
	+ HCO	=> CF20+		5.00E12	0.00	2000.		
CF30	+ +	= F2 +		6.e13	0.00	/000.	ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	• • • • • • • • • •
·*****	******	*********	********	*********	******	*****	*****	****
!*** F !****	LUOROCA	<pre>KBENES: (C **********</pre>	H2SING,) C	HF, CF2 ** [;] **********	********	***********	**************	*****

!*** Fluorocarbenes: Reaction with 02, 0, OH, H2O *** + 02 = CHFO + OCHF 2.0E14 0.00 2100. CF2 + 02 = CF20 + 0 2.7E13 0.00 26500. + HF CHF + 0 = CO 9.00E13 0.00 0. CF2 + 0 = CF0 + F 5.0E12 0.00 0. **!******* ************ **** + OH = CHFO + H 2.00E13 0.00 0. CHF + OH = CF20 + H 3.00E12 0.00 3500. CF2 CHF + OH = HCO + HF 4.00E12 0.00 0. CF2 + OH = CFO + HF 1.00E13 0.00 0. + H02 = CHF0CHF + OH 1.00E13 0.00 0. + OH CF2 + H02 = CF201.00E13 0.00 3500. CHF + HO2 = CH2F+ 02 2.00E12 0.00 0. + HO2 = CHF2+ 02 5.00E11 0.00 CF2 4500. CHF + H20 = CH20+ HF 5.00E12 0.00 6500. CF2 + H20 = CHF0 + HF 5.00E12 0.00 25000. !*** Fluorocarbenes *** CF2 (+ M) = CF + F (+ M)5.3E14 0.0 118300. LOW / 2.29e15 0.0 95470. / H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/ CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./ !*** Fluorocarbenes: Reaction wih H *** CHF + H = CH + HF 0.65E14 0.00 0. CHF + H = CF+ H2 2.30E14 0.00 0. = CF CF2 + H + HF 3.98E13 0.00 4540. !*** Fluorocarbenes: Reaction with RH *** CH20 + CHF = HCO+ CH2F 1.00E13 0.00 15000. CH20 + CHF = CH2CO+ HF 1.00E13 0.00 15000. 1.00E13 CH20 + CF2 = HC0+ CHF2 0.00 41000. + CF2 = CHFCOCH20 + HF 1.00E13 0.00 41000. HC0 + CHF = CO+ CH2F 2.00E13 0.00 15000. HC0 + CF2 = CO+ CHF2 2.00E13 0.00 41000. !*** Fluorocarbene misc. reactions *** CH2(S) + HF = CHF+ H2 2.08E07 1.27 8330.

i

CHF + HF = CF2 + H !******** !*** CF ***	2	9.0e11	0.0	0.		
! ********						
CF + 02 = C	FO + 0	6.62F12	0.00	1690.		
$CE + H_{2}O - O$		2 00E13	a aa	17000		
		2.00L1J	0.00	1160		
		8.00E13	0.00	1410		
		8.00E13	0.00	1410.		
CF + OH = C		8.00E13	0.00	1410.		
CF + H02 =>C	FO + OH	3.00E13	0.00	0.		
CF + CH3 =>C	H2CF + H	3.00E13	0.00	0.		
CF + C2H3 =>C	2HF + CH2	3.00E13	0.00	0.		
CF + CH2 =>C	2HF + H	3.00E13	0.00	0.		
CF + CH2(S) =>	C2HF + H	3.00E13	0.00	0.		
CF + CH4 =>C	H2CHF + H	5.00E12	0.00	10000.		
CF + C2H4 =>C	2H2 + CH2F	1.00E13	0.00	0.		
CF + CH20 =>C	HF + HCO	1.00E13	0.00	8000.		
CF + HCO =>C	HF + CO	1.00E13	0.00	0.		
CH + HF = C	F + H2	2.00F13	0.00	0.		
!*************************************						
CF30 + C0 = C02 +	CF 5	2.12610	0.0	0.		
!*************************************	**************************************	***** ** ***** 2.48E25	-3.00	43000.		
CFO + F = CF	20	1.00E12	0.00	0.		
<pre>!************************************</pre>						
!CHFO + H = C	F0 + H2	1.10E08	1.77	3000.		
· · · · · · · · · · · · · · · · · · ·	*****	*****				
CF20 + H = CF	0 + HF	2.40E07	1.88	35900.		
DUP						
CF20 + H = CF	0 + HF	1.20E10	0.83	22300.		
DUP						
CF20 + H = CF	0 + HF	5.50E08	1.42	18900.		
DUP						
!*************	*******	********	******	****		
!*** CHFO & CF20:	Reactions with H	120, 0, OH	, HO2 **	**		
!**************	*******	********	******	****		
CF20 + H20 => C	02 + HF + HF	7.40E-3	3.84	25100.		
CHFO + O = CF	0 + 0H	9.00E12	0.00	3080.		
CHEO + OH = CE	0 + H20	2.83F13	0.00	6620.		
CE20 + 0H => C	02 + F + HF	2 70F03	2 38	21000		
CEO + H2O2 = CH	E0 + H02	1 00F11	0 00	3900		
$c_1 \circ c_1 = c_1 \circ c_2 = c_1 \circ c_2 \circ c_2 = c_1 \circ c_2 $	102		5.00	5500.		
* * * * * * * * * * * * * * * * * * *	******	*********	***			
· 1*** CHEO & CEDO.	Reactions with M	lothyle **	k			
; CHFU & CFZU;	**************************************	**************************************	***			
	0 + CHA	2 00F12	0 00	9000		
			5.00			

```
CHFO
     + CH2F = CF0
                  + CH3F
                            2.00E12
                                    0.00
                                          9000
CHFO
     + CHF2 = CF0
                  + CH2F2
                            2.00E12
                                    0.00
                                          9000.
                  + CHF3
                           2.00E12
                                    0.00
                                          9000.
CHFO
     + CF3 = CF0
CHFO
     + C2H3 = CF0
                  + C2H4
                            2.00E12
                                    0.00
                                          5000.
!*** CFO Reactions ***
CO + F + M
            = CF0
                   + M
                            3.09E19 -1.40
                                           -487.
H2/2.00/ H20/18.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
CF0
     + H
           = CO
                   + HF
                            2.50F13
                                    0.00
                                             0.
           = CO2
                                    0.00
CFO
     + 0
                   + F
                            3.00E13
                                             0.
CFO
     + OH
           = CO2
                   + HF
                            3.00E13
                                    0.00
                                             0.
CF0
     + HO2 => CO2
                   + F + OH
                            3.00E13
                                    0.00
                                             0.
           = CH2CO
CFO
     + CH3
                   + HF
                            2.70E13
                                    0.00
                                             0.
CF0
     + CH2F = CHFCO
                   + HF
                            2.70E13
                                    0.00
                                             0.
CFO
     + CFO = CO
                  + CF20
                            2.23E13
                                    0.00
                                            318.
     + CHF2 = CF2C0
                                    0.00
CFO
                   + HF
                            2.70E13
                                          20000.
CFO + CF2 = CF3 + CO
                            5.4e11
                                    0.0
                                             0.
!*** C2 FLUOROCARBONS ***
!*** Fluoroethanes: (C2H6,) CH3F, CH2F2, CHF3, CF4 ***
!*** Fluoroethane <A name=c2h6d>decompositions (HF elimination)</A> ***
CH3-CH2F (+M)
             = C2H4 + HF (+M)
                                       0.00
                                             59900.
                              1.83E13
LOW / 0.87E+69
                -14.94 75710.00/
    TROE/
          .652 10.00 1496.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
CH3-CHF2
              = CH2CHF + HF
                            7.9E13
                                    0.00
                                          63800.
              = CH2CF2 + HF
                            1.00E14
                                          68700.
CH3-CF3
                                    0.00
                                    0.00
CH2F-CH2F
              = CH2CHF + HF
                            2.50E13
                                          62900.
CH2F-CHF2
             = CHFCHF[Z]+HF
                            1.26E14
                                    0.00
                                          69100.
CH2F-CHF2
              = CH2CF2 + HF
                            1.00E13
                                    0.00
                                          65400.
CH2F-CF3
              = CHFCF2 + HF
                            5.70E11
                                    0.00
                                          62690.
CHF2-CHF2
              = CHFCF2 + HF
                            2.00E13
                                    0.00
                                          69400.
CHF2-CF3
              = CF2CF2 + HF
                            4.00E13
                                    0.00
                                          71600.
!*** Ethyl + Hydrogen with HF elimination ***
+ HF
                                            1730.
CH2F-CH2 + H
             = C2H4
                             1.44E20 -2.12
CH3-CHF + H
             = C2H4
                      + HF
                             2.27E20 -2.21
                                            1950.
CH2F-CHF + H
             = CH2CHF + HF
                            2.06E23 -3.23
                                           2280.
880.
CHF2-CH2 + H
             = CH2CHF
                     + HF
                            5.24E16
                                   -0.933
CH3-CF2 + H
             = CH2CHF + HF
                            2.09E16 -0.854
                                            848.
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

```
= CHFCHF[Z]+HF
                             1.86E20 -2.29
                                             1750.
CHF2-CHF + H
                             9.95E19
                                     -2.34
                                             1780.
CHF2-CHF + H
             = CH2CF2 + HF
             = CHFCHF[Z]+HF
                             6.32E19
                                    -2.21
CH2F-CF2 + H
                                             1630.
CH2F-CF2 + H
             = CH2CF2 + HF
                             3.36E19
                                     -2.26
                                             1660.
CF3-CH2 + H
             = CH2CF2 + HF
                             1.12E21
                                    -2.27
                                             2240.
CF3-CHF + H
            = CHFCF2 + HF
                             6.56E24
                                     -3.57
                                             4225
CHF2-CF2 + H
             = CHFCF2
                     + HF
                             1.81E22
                                    -2.92
                                             3070.
                                    -2.40
CF3-CF2 + H
             = CF2CF2 + HF
                             1.41E21
                                             3630.
!*** Ethyl + Hydrogen with C-C breakage ***
CH2F-CH2 + H
             = CH3
                       + CH2F
                              3.80E11
                                       0.635
                                              633.
CH3-CHF + H
             = CH3
                       + CH2F
                                       0.90
                                             1370.
                              3.47E10
CH2F-CHF + H
             = CH2F
                       + CH2F
                              1.79E14
                                      -0.105
                                             1320.
451.
CHF2-CH2 + H
             = CH3
                       + CHF2
                              2.02E06
                                       2.16
             = CH3
                       + CHF2
                              1.62E05
                                       2.50
                                              1370.
CH3-CF2 + H
             = CH2F
                       + CHF2
                              6.36E12
                                       0.318
CHF2-CHF + H
                                             1460.
CH2F-CF2 + H
             = CH2F
                       + CHF2
                              3.64E12
                                       0.329
                                              1180.
             = CH3
                       + CF3
                              2.48E11
                                       0.816
                                              2870.
CF3-CH2 + H
                                             4750.
CF3-CHF + H = CF3 + CH2F
                             4.28E16
                                      -0.74
CHF2-CF2 + H
             = CHF2
                       + CHF2
                              3.25E15
                                      -0.524
                                             3000.
CF3-CF2 + H
             = CHF2
                       + CF3
                              4.37E16
                                      -0.746
                                             4360.
!*** Ethyl + Hydrogen with stablized product ***
CH2F-CH2 + H
             = CH3-CH2F
                              1.19E35 -8.51
                                             8140.
CH3-CHF + H
             = CH3-CH2F
                              9.57E38
                                     -9.24
                                             7360.
             = CH2F-CH2F
                              1.56E45 -10.80
                                             8070.
CH2F-CHF + H
CHF2-CH2 + H
             = CH3-CHF2
                              2.96E37
                                     -9.05
                                             7160.
CH3-CF2 + H
             = CH3-CHF2
                              3.11E40 -9.59
                                             7190.
CHF2-CHF + H
             = CH2F-CHF2
                              1.20E44 -10.60
                                             7520.
             = CH2F-CHF2
                                             7670.
CH2F-CF2 + H
                              2.74E43 -10.50
CF3-CH2 + H
             = CH3-CF3
                              7.27E42 -9.86
                                             7360.
CHF2-CF2 + H
             = CHF2-CHF2
                              3.77E46 -10.80
                                             8980.
CF3-CF2 + H
             = CHF2-CF3
                              1.12E47 -10.80
                                             4100.
!*** Methvl + Methvl combination with HF elimination ***
+ HF
CH3
       + CH2F = C2H4
                              1.85E19
                                     -1.86
                                             1870.
                                    -2.79
CH2F
       + CH2F = CH2CHF
                     + HF
                             7.56E21
                                             2590.
CH3
       + CHF2 = CH2CHF
                     + HF
                             1.30E15
                                     -0.586
                                             634.
CH2F
       + CHF2 = CHFCHF[Z]+HF
                             3.88E20
                                     -2.35
                                             2888.
CH2F
       + CHF2 = CH2CF2 + HF
                                     -2.41
                             2.23E20
                                             2910.
CH3
       + CF3 = CH2CF2
                      + HF
                             5.53E19
                                     -1.94
                                             2440.
CHF2
       + CHF2 = CHFCF2
                     + HF
                             2.20E19
                                     -1.95
                                             4100.
CHF2
       + CF3 = CF2CF2 + HF
                             7.00E16
                                     -1.17
                                             4330.
      + CF2 = CH3-CHF2
                                            39000.
CH4
                             1.5e11
                                      0.0
!*** Methyl + Methyl with product stabilization ***
CH3
       + CH2F = CH3-CH2F
                              1.57E31 -6.27
                                             4440.
```

CH2F + CH2F = CH2F-CH2F	2.37E24 -3.79 229	0.
CH3 + CHF2 = CH3-CHF2	1.93E35 -7.69 576	0.
CH2F + $CHF2$ = $CH2F$ - $CHF2$	9.61E38 -8.36 694	0.
CH3 + CF3 = CH3-CF3	1.78E33 -6.64 502	0.
CHE2 + CHE2 = CHE2-CHE2	2 26F24 - 3 50 336	0
CHE2 + CE3 - CHE2 - CE3	2.2022 + 5.50 550 2.61E26 - 4.16 410	0. 0
CE2 + CE2 (1M) = CE2 (CE2 (1M))		0.01
$(r_{5} + (r_{5} + (r_{1})) = (r_{5} - (r_{5} + (r_{1})))$	9.09010 0.77	0.0 !
LUW / 2.12000 -12.51 5910	• /	
IRUE / 0.069 260. 880. /		
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1	.50/ CO2/2.00/ C2H6/3.00	/ AR/0.70/
!*************************************	* * * * * * * * * * * *	
<pre>!*** Ethyl + Hydrogen with H atom</pre>	disprop. ***	
!*************************************	*****	
CH2F-CH2 + H = CH3-CHF + H	1.87E01 3.10 13	7.
CHF2-CH2 + H = CH3-CF2 + H	1.59E-3 4.35 15	7.
CH2F-CF2 + H = CHF2-CHF + H	0.64E00 3.53 183	0.
······································	*****	
CE3-CE3 + H = CE3-CE2 + HE	1 00F15 0 00 3000	a
	*****	***
: 1*** Mothana + Mothylana combinat	ion with HE olimination	***
	ION WICH HE EIIMINACION	***
• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	ጥ ጥ ጥ
****	*****	
!*** Fluorocarbenes: Reaction wit	n Fluoromethanes ***	
!*************************************	******	
CH3F + CH2(S) = C2H4 + HF	3.00E13 0.00 0.	
CH2F2+CH2(S) = CH2CHF + HF	2.00E13 0.00 0.	
CHF3 + CH2(S) = CH2CF2 + HF	1.00E13 0.00 0.	
CF4 + CH2(S) = CHFCF2 + HF	4.00E13 0.00 31000.	
!*************************************	******	
CH4 + CHF = C2H4 + HF	4.00F13 0.00 15000.	
CH3E + CHE = CH2CHE + HE	3 00E13 0 00 15000	
CH2E2 + CHE - CH2CE2 + HE	1 00E13 0 00 15000	
$CH_{2}E_{2} + CHE = CHECHE[7] + HE$	1 00513 0.00 15000.	
$CUE_2 + CUE_2 - CUECE_2 + UE_2$		
CHF3 + CHF = CHFCF2 + HF	1.00213 0.00 13000.	
$LF4 \qquad + LHF = LF2LF2 + HF$	4.00E13 0.00 31000.	
····	* * * * * * * * * * * * * * * * * * * *	
CH4 + CF2 = CH2CHF + HF	4.00E13 0.00 41000.	
CH3F + CF2 = CH2CF2 + HF	1.50E13 0.00 41000.	
CH3F + CF2 = CHFCHF[Z]+HF	1.50E13 0.00 41000.	
CH2F2 + CF2 = CHFCF2 + HF	2.00E13 0.00 41000.	
CHF3 + CF2 = CF2CF2 + HF	1.00E13 0.00 41000.	
CF4 + CF2 => CF3-CF3	4.00E13 0.00 51000.	
!*************************************	******	
CH3 + CH2F = CH4 + CHF	3.00E13 0.00 3400	•
CH2F + CH2F = CH3F + CHF	3.00F13 0.00 4800	
CHF2 + CH2F = CH2F2 + CHF	1.00F13 0.00 4400	
	3 00F13 0 00 1600	-
	***************************************	•
•		
CH2F + CHF2 = CH3F + CF2	3.00E13 0.00 2200	•
CHF2 + CHF2 = CH2F2 + CF2	1.00E13 0.00 1600	•
 ************************************	******	

```
!*** FLUOROETHANES: ABSTRACTION REACTIONS</A> ***
!*** CH3-CH2F: Reactions with H,O,OH ***
CH3-CH2F + H
            = CH2F-CH2 + H2
                          5.50E08
                                  1.60
                                       9100.
CH3-CH2F
      + 0
            = CH2F-CH2 + OH
                          2.90E08
                                  1.60
                                       6100.
CH3-CH2F + OH
            = CH2F-CH2 + H20
                          2.23E02
                                  3.58
                                        1040.
CH3-CH2F
       + H
            = CH3-CHF
                    + H2
                          3.30E08
                                  1.60
                                       9100.
                          1.60E08
                                  1.60
                                       6100.
CH3-CH2F
      + 0
            = CH3-CHF
                    + OH
CH3-CH2F + OH
                                  2.85
                                        250.
            = CH3-CHF
                   + H2O
                          1.94E04
!*** CH3-CHF2: Reactions with H,O,OH ***
CH3-CHF2 + H
            = CH3-CF2 + H2
                          2.0E+4
                                  2.67
                                       6280.
CH3-CHF2
            = CHF2-CH2 + H2
                          0.747e5
                                   2.66
                                        9720.
       + H
                                  2.97
CH3-CHF2
            = CH3-CF2 + OH
                          3.31E+03
                                        5624.
       + 0
CH3-CHF2
      + 0
            = CHF2-CH2 + OH
                          7.83E+02
                                  3.32
                                       6936.
CH3-CHF2
      + OH
            = CHF2-CH2 + H20
                          3.73E+03
                                  2.81
                                       1696.
CH3-CHF2
      + OH
            = CH3-CF2 + H20
                          3.37E+05
                                  2.11
                                       1012.
                                       1700.
CH3-CHF2
      + F
            = CH3-CF2 + HF
                          3.0E13
                                 0.00
CH3-CHF2 + F
            = CHF2-CH2 + HF
                          7.7E13
                                 0.00
                                       2700.
!*** CH3-CF3: Reactions with H,O,OH ***
12700.
CH3-CF3
       + H
            = CF3-CH2 + H2
                          4.00E10
                                  1.10
CH3-CF3
       + 0
            = CF3-CH2 + OH
                          2.00E10
                                  1.10
                                       9700.
                          4.08E09
CH3-CF3
       + 0H
            = CF3-CH2 + H20
                                  1.10
                                       4670.
!*** CH2F-CH2F: Reactions with H,0,0H ***
CH2F-CH2F + H
            = CH2F-CHF + H2
                          6.00E08
                                  1.70
                                       9600.
            = CH2F-CHF + OH
CH2F-CH2F + 0
                          3.00E08
                                  1.70
                                       6600.
CH2F-CH2F + OH
            = CH2F-CHF + H2O
                          6.16E07
                                  1.70
                                        1610.
!*** CH2F-CHF2: Reactions with H,0,0H ***
CH2F-CHF2 + H
            = CHF2-CHF + H2
                          2.00E08
                                  1.70
                                       9800.
CH2F-CHF2 + 0
            = CHF2-CHF + OH
                          1.00E08
                                  1.70
                                       6800.
CH2F-CHF2 + OH
            = CHF2-CHF + H2O
                          2.05E07
                                  1.70
                                       1800.
CH2F-CHF2 + H
            = CH2F-CF2 + H2
                          1.00E08
                                  1.70
                                       11000.
            = CH2F-CF2 + OH
                          5.00E07
                                  1.70
                                       8000.
CH2F-CHF2 + 0
CH2F-CHF2 + OH
            = CH2F-CF2 + H2O
                          1.06E07
                                  1.70
                                        3000.
!*** CH2F-CF3: Reactions with H,O,OH ***
CH2F-CF3 + H
            = CF3-CHF + H2
                                  1.70
                                       10500.
                          2.00E08
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

```
CH2F-CF3 + 0
             = CF3-CHF + OH
                           1.4300E07
                                    1.70
                                          7500.
CH2F-CF3 + OH
             = CF3-CHF
                           2.10E07
                    + H20
                                   1.70
                                         2524.
!*** CHF2-CHF2: Reactions with H,0,0H ***
CHF2-CHF2 + H
             = CHF2-CF2 + H2
                                   1.70
                                        10600.
                           1.60F07
                                         7600.
CHF2-CHF2 + 0
             = CHF2-CF2 + OH
                           8.00E07
                                   1.70
CHF2-CHF2 + OH
             = CHF2-CF2 + H20
                           1.60E07
                                   1.70
                                         2643.
!*** CHF2-CF3: Reactions with H,0,0H ***
10200.
CHF2-CF3 + H
             = CF3-CF2 + H2
                           1.40F07
                                   1.60
             = CF3-CF2 + OH
CHF2-CF3 + 0
                                         12700.
                           7.00E07
                                   1.60
             = CF3-CF2 + H20
CHF2-CF3 + OH
                           1.40E07
                                   1.60
                                         2246.
!*** Abstraction from fluoroethanes: By HO2 ***
+ H202 = CH3-CH2F + H02
                           9.00E09
                                         1000.
CH3-CHF
                                   0.00
       + H202 = CH3-CHF2 + H02
                           9.00E09
                                   0.00
                                         1000.
CH3-CF2
CH2F-CH2 + H202 = CH3-CH2F + H02
                           9.00E09
                                   0.00
                                         1000.
       + H202 = CH2F-CH2F+ H02
CH2F-CHF
                           9.00E09
                                   0.00
                                         1000.
CH2F-CF2 + H202 = CH2F-CHF2+ H02
                           9.00E09
                                   0.00
                                         1000.
CHF2-CH2 + H2O2 = CH3-CHF2 + HO2
                           9.00E09
                                   0.00
                                         1000.
CHF2-CHF
       + H2O2 = CH2F-CHF2+ HO2
                           9.00E09
                                   0.00
                                         1000.
CHF2-CF2 + H202 = CHF2-CHF2+ H02
                           9.00E09
                                   0.00
                                         1000.
CF3-CH2
       + H202 = CH3-CF3 + H02
                           9.00E09
                                   0.00
                                         1000.
CF3-CHF
       + H202 = CH2F-CF3 + H02
                           9.00E09
                                   0.00
                                         1000.
CF3-CF2
       + H202 = CHF2-CF3 + H02
                                   0.00
                                         1000.
                           9.00E09
!*** CH3-CH2F: Abstraction by CH3,C2H3 ***
CH3-CH2F + CH3 = CH2F-CH2 + CH4
                                   0.00
                                        13400.
                           2.00F11
CH3-CH2F + C2H3 = CH2F-CH2 + C2H4 2.00E11
                                   0.00
                                        10000.
10000.
CH3-CH2F + CH3 = CH3-CHF + CH4
                           1.50E11
                                   0.00
CH3-CH2F + C2H3 = CH3-CHF
                    + C2H4 1.50E11
                                   0.00
                                         7000.
!*** CH3-CHF2: Abstraction by CH3,C2H3 ***
CH3-CHF2 + CH3 = CHF2-CH2 + CH4
                           2.00E11
                                   0.00
                                        12000.
CH3-CHF2 + C2H3 = CHF2-CH2 + C2H4 2.00E11
                                   0.00
                                         9000.
CH3-CHF2 + CH3 = CH3-CF2 + CH4
                           8.00E10
                                   0.00
                                        10000.
CH3-CHF2 + C2H3 = CH3-CF2 + C2H4 8.00E10
                                   0.00
                                         7000.
!*** CH3-CF3: Abstraction by CH3,C2H3 ***
12000.
CH3-CF3
       + CH3 = CF3-CH2 + CH4
                           2.00E11
                                   0.00
       + C2H3 = CF3-CH2 + C2H4 2.00E11
CH3-CF3
                                   0.00
                                         9000.
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

```
!*** CH2F-CH2F: Abstraction by CH3,C2H3 ***
CH2F-CH2F + CH3 = CH2F-CHF + CH4
                        3.00E11
                               0.00
                                    10400.
CH2F-CH2F + C2H3 = CH2F-CHF + C2H4
                        3.00E11
                               0.00
                                     7000.
!*** CH2F-CHF2: Abstraction by CH3,C2H3 ***
CH2F-CHF2 + CH3 = CHF2-CHF + CH4
                               0.00
                                    10000.
                        2.00E11
CH2F-CHF2 + C2H3 = CHF2-CHF + C2H4 2.00E11
                               0.00
                                     7000.
CH2F-CHF2 + CH3 = CH2F-CF2 + CH4
                        1.00E11
                               0.00
                                     9600.
CH2F-CHF2 + C2H3 = CH2F-CF2 + C2H4 1.00E11
                               0.00
                                     7000.
!*** CH2F-CF3: Abstraction by CH3,C2H3 ***
|***************
CH2F-CF3 + CH3 = CF3-CHF + CH4
                        2.00E11
                               0.00
                                    10000.
CH2F-CF3 + C2H3 = CF3-CHF + C2H4 2.00E11
                               0.00
                                     7000.
!*** CHF2-CHF2: Abstraction by CH3,C2H3 ***
CHF2-CHF2 + CH3 = CHF2-CF2 + CH4
                               0.00
                                    10000.
                        3.00E11
CHF2-CHF2 + C2H3 = CHF2-CF2 + C2H4 3.00E11
                               0.00
                                     7000.
!*** CH2F-CF3: Abstraction by CH3,C2H3 ***
CHF2-CF3 + CH3 = CF3-CF2 + CH4
                        5.70E10
                               0.00
                                     9500.
CHF2-CF3 + C2H3 = CF3-CF2 + C2H4 6.00E10
                               0.00
                                     7000.
!*** CH2F-CF3: Abstraction by CH3CH2 etc.
CHF2-CF3 + C2H5
                             5.7E10 0.0 11800.
               = CF3-CF2 + C2H6
               = CF3-CF2 + C3H8
                             5.7E10 0.0 10300.
CHF2-CF3 + C3H7
DUPLICATE
CHF2-CF3 + C3H7
               = CF3-CF2 + C3H8
                             5.7E10 0.0 13500.
DUPLICATE
!*** Fluoroethanes: CH2SING insertion & CH3 elimination ***
!*** Abstraction from fluoroethanes: By CH2F ***
CH3-CH2F + CH2F = CH2F-CH2 + CH3F
                        2.00E11
                               0.00
                                    13000.
CH3-CH2F + CH2F = CH3-CHF + CH3F
                        1.50E11
                               0.00
                                    10000.
CH3-CHF2 + CH2F = CHF2-CH2 + CH3F
                        2.00E11
                               0.00
                                    12000.
CH3-CHF2 + CH2F = CH3-CF2 + CH3F
                        8.00E10
                               0.00
                                    10000.
CH3-CF3
      + CH2F = CF3-CH2 + CH3F
                        2.00E11
                               0.00
                                    12000.
CH2F-CH2F + CH2F = CH2F-CHF + CH3F
                        3.00E11
                               0.00
                                    10000.
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

```
CH2F-CHF2 + CH2F = CHF2-CHF + CH3F
                              2.00E11
                                      0.00
                                            10000.
CH2F-CHF2 + CH2F = CH2F-CF2 + CH3F
                              1.00E11
                                      0.00
                                            10000.
CH2F-CF3 + CH2F = CF3-CHF + CH3F
                              2.00E11
                                      0.00
                                            10000.
CHF2-CHF2 + CH2F = CHF2-CF2 + CH3F
                              3.00E11
                                      0.00
                                            11000.
CHF2-CF3 + CH2F = CF3-CF2 + CH3F
                              2.00E11
                                      0.00
                                            10000.
!*** Abstraction from fluoroethanes: By CHF2 ***
CH3-CH2F + CHF2 = CH2F-CH2 + CH2F2 2.00E11
                                      0.00
                                            13000.
       + CHF2 = CH3-CHF + CH2F2 1.50E11
                                      0.00
                                            10000.
CH3-CH2F
CH3-CHF2 + CHF2 = CHF2-CH2 + CH2F2 2.00E11
                                      0.00
                                            12000.
CH3-CHF2 + CHF2 = CH3-CF2 + CH2F2 8.00E10
                                      0.00
                                            10000.
        + CHF2 = CF3-CH2 + CH2F2 2.00E11
                                      0.00
                                            12000.
CH3-CF3
CH2F-CH2F + CHF2 = CH2F-CHF + CH2F2 3.00E11
                                      0.00
                                            10000.
CH2F-CHF2 + CHF2 = CHF2-CHF + CH2F2 2.00E11
                                      0.00
                                            10000.
CH2F-CHF2 + CHF2 = CH2F-CF2 + CH2F2 1.00E11
                                      0.00
                                            10000.
CH2F-CF3 + CHF2 = CF3-CHF + CH2F2 2.00E11
                                      0.00
                                            10000.
CHF2-CHF2 + CHF2 = CHF2-CF2 + CH2F2 3.00E11
                                      0.00
                                            10000.
CHF2-CF3 + CHF2 = CF3-CF2 + CH2F2 2.00E11
                                      0.00
                                            10000.
!*** Abstraction from fluoroethanes: By CF3 ***
CH3-CH2F
       + CF3
             = CH2F-CH2 + CHF3 9.50E11
                                      0.00
                                             8200.
CH3-CH2F + CF3
             = CH3-CHF + CHF3 9.50E11
                                      0.00
                                             8200.
CH3-CHF2 + CF3
             = CHF2-CH2 + CHF3
                                      0.00
                                             7100.
                              3.10E10
CH3-CHF2 + CF3
              = CH3-CF2 + CHF3
                              3.10E10
                                      0.00
                                             7100.
              = CF3-CH2 + CHF3
CH3-CF3
        + CF3
                              1.45E12
                                      0.00
                                            13500.
CH2F-CH2F + CF3
              = CH2F-CHF + CHF3
                              5.00E11
                                      0.00
                                             7600.
CH2F-CHF2 + CF3
             = CHF2-CHF + CHF3
                             3.00E11
                                      0.00
                                             7200.
CH2F-CHF2 + CF3
             = CH2F-CF2 + CHF3
                             2.00E11
                                      0.00
                                             8000.
CH2F-CF3 + CF3 = CF3-CHF + CHF3
                             6.00E10
                                      0.00
                                             6400.
CHF2-CHF2 + CF3
             = CHF2-CF2 + CHF3
                              5.70E11
                                      0.00
                                            11900.
CHF2-CF3 + CF3 = CF3-CF2 + CHF3
                             1.40E11
                                      0.00
                                            10100.
CF3-CF3
        + CF3 = CF4 + CF3-CF2
                              7.1e11
                                       0.0
                                             12300.
!*** Fluoroethyl decompositions (see H + fluoroethene) ***
CF3-CHF (+M)=CHFCF2 + F (+M)
                                                   0.0
                                                         70000.0
                                           4.5E13
LOW /5.5E19
          0.0 70000.0/
H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
CF3-CF2 = CF2 + CF3
                                           4.27e14 0.0
                                                          56240.
!*** Fluoroethyl associations: + 02 ***
1977.
CH3-CHF
        + 02
              = CH2CHF + H02
                             2.56E18 -2.77
CH3-CF2
        + 02
              = CH2CF2 + H02
                             1.23E17
                                    -1.87
                                            1400.
CH2F-CH2 + 02
              = CH2CHF + HO2
                             2.56E18 -2.77
                                            1977.
```

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170

CH2F-CHF	+ 02	<pre>= CHFCHF[Z]+H02</pre>	2.56E19 -2	.77	1977.
CH2F-CF2	+ 02	= CHFCF2 + HO2	2.56E19 -2	.77	1977.
! ******	******	*******	****		
CHF2-CH2	+ 02	= CH2CF2 + H02	1.23E17	-1.87	1400.
CHE2-CHE	+ 02	= CHECE2 + HO2	2.56F19	-2.77	· 1977.
CHE2-CE2	+ 02	= CF2CF2 + H02	2.50E12	-2 77	' 1977
******	*******	*****	****	2.,,,	1977.
СЕЗ-СН2	+ 02	=> CF3 + CH20 + 0	1 30F13	a aa	44000
	+ 02 + 02		1 55511	0.00	23000
	+ 02	= 2 CHI 0 + CI 3+0	1 20512	0.00	23000.
	+ 02	= $CF3 + CF20 + 0$	T.20ET2	0.00	23000.
	+ 02 =	CFZCFZ + HOZ	5.560	0.00	-7800.
******	*****	*****	****		
	• • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	****		
!*** F1U	oroetnyi	associations: + 0	***		
	* * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * *		
1*******	******	********	****	•	•
CH2F-CH2	+ 0	= CH2CO+HF + H	6.60E13	0.	0.
CHF2-CH2	+ 0	= CHFCO+HF + H	6.60E13	0.	0.
CF3-CH2	+ 0	= CF2CO+HF + H	6.60E13	0.	0.
! ******	******	******************	****		
CH3-CHF	+ 0	= CH2CO+HF + H	4.40E13	0.	0.
CH2F-CHF	+ 0	= CHFCO+HF + H	4.40E13	0.	0.
!CHF2-CHI	F + O	= CF2CO+HF + H	4.40E13	0.	0.
CF3-CHF	+ 0	= CF3 + CHF0	4.40E13	0.	0.
! *******	******	*******	****		
CH3-CF2	+ 0	= CH2CO+HF + F	2.20E13	0.	0.
CH2F-CF2	+ 0	= CHFCO+HF + F	2.20E13	0.	0.
CHF2-CF2	+ 0	= CF2CO+HF + F	2.20E13	0.	0.
CF3-CF2	+ 0	=>CF3+CF0 + F	2.20E13 0		0.
! *******	******	*****	****		
CH2F-CH2	+ 0	= CH20 + CH2F	3.30E13	0.	0.
CHF2-CH2	+ 0	= CH20 + CHF2	3.30E13	0.	0.
CE3-CH2	+ 0	= CH20 + CF3	3.30F13	0.	0.
******	· • *******	*****	****	•••	
CH3-CHF	+ 0	= CHFO + CH3	2.20F13 0).	0.
CH2E-CHE	+ 0	= CHFO + CH2F	2 20F13 0	•	0
CHE2-CHE	+ 0	= CHFO + CHE2	2 20E13 0	•	0. 0
	10		2.20115 0	•	0.
******	******	*****	****		
СНЗ_СЕ2	+ 0	– CE20 – CH3	1 10F13 0		ø
	+ 0	= CF20 + CH3	1 10512 0	•	0.
	+ 0	= CF20 + CH2F	1 10512	•	0.
	+ 0	= CF20 + CHF2	1.10E13 C	•	0.
CF3-CF2	+ 0	= CF20 + CF3	1.10E13 e	•	0.
• • • • • • • • • • •	* * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * *		
	******	• • • • • • • • • • • • • • • • • • • •	****		
!*** F100	oroethyl	associations: + 0	H ***		
!******	******	*************	****	_	
CH2F-CH2	+ OH	=>CH2CO+HF + H2	6.60E13	0.	0.
CHF2-CH2	+ 0H	=>CHFCO+HF + H2	6.60E13	0.	0.
CF3-CH2	+ OH	=>CF2CO+HF + H2	6.60E13	0.	0.
! ******	******	*******	****		
CH3-CHF	+ OH	=>CH2CO+H2 + HF	4.40E13	0.	0.

CH2F-CHF CHF2-CHF	+ OH + OH	=>CH2CO+HF + HF =>CHFCO+HF + HF	4.40E13 4.40E13	0. 0.	0. 0.
CF3-CHF	+ OH	= CF3CH0 + HF	4.40E13	0.	0.
! *******	*****	******	****		
CH3-CF2	+ OH	=>CH2CO+HF + HF	1.0E12	0.	10000.
CH3-CF2	+ OH	=>CH3 + CF0 +HF	1.0E12	0.	10000.
CH2F-CF2	+ OH	=>CHFCO+HF + HF	2.20E13	0.	0.
CHF2-CF2	+ OH	=>CF2CO+HF + HF	2.20E13	0.	0.
CF3-CF2	+ OH	=>CF3+CF0 + HF	2.20E13	0.	0.
! *******	*****	*****	****		
CH2F-CH2	+ OH	= CH2CHF $+$ H2O	6.60E13	0.	3000.
CHF2-CH2	+ OH	= CH2CF2 $+$ H2O	4.40E13	0.	3000.
!********	*****	*****	****		
CH3-CHF	+ OH	= CH2CHF $+$ H2O	6.60E13	0.	3000.
CH2F-CHF	+ OH	= CHFCHF[Z]+H20	4.40E13	0.	3000.
CHF2-CHF	+ 0H	= CHFCF2 + H20	2.20E13	0.	3000.
1*******	******	-**************	***** C COF10	0	2000
	+ UH	$= CH_2CF_2 + H_2O$	6.60E13	0.	3000.
	+ UH	= CHFCF2 + H20	4.40E13	0.	3000.
CHF2-CF2	+ UH	= CF2CF2 + H20	2.20E13	0.	3000.
 *******	******	****	****		
: l*** Disn	ronorti	onation with CH3	****		
· • • • • • • • • • • • • • • • • • • •	******	*****	****		
CH2E-CH2	+ CH3	= CH2CHE $+$ CH4	1.30F13	-0.5	0.
CHE2-CH2	+ CH3	= CH2CF2 + CH4	6.50F12	-0.5	0.
[********	******	****	****	0.5	
CH3-CHF	+ CH3	= CH2CHF + CH4	1.95E13	-0.5	0.
CH2F-CHF	+ CH3	= CHFCHF[Z]+CH4	1.30E13	-0.5	0.
CHF2-CHF	+ CH3	= CHFCF2 + CH4	6.50E12	-0.5	0.
! *******	******	*****	****		
CH3-CF2	+ CH3	= CH2CF2 + CH4	1.95E13	-0.5	0.
CH2F-CF2	+ CH3	= CHFCF2 + CH4	1.30E13	-0.5	0.
CHF2-CF2	+ CH3	= CF2CF2 + CH4	6.50E12	-0.5	0.
! *******	******	*****	*****		
!*** Fluo	roethyl	s reaction with H	02 ***		
!*******	******	******	*****		-
CH3-CHF	+ H02	=>CH3+CHFO+ OH	3.00E13	0.	0.
CH3-CF2	+ H02	=>CH3+CF2O+ OH	3.00E13	0.	0.
CH2F-CH2	+ H02	=>CH2F+CH2O+ OH	3.00E13	0.	0.
CH2F-CHF	+ H02	=>CH2F+CHF0+0H	3.00E13	0.	0.
	+ H02	=>CH2F+CF20+0H	3.00E13	0.	0.
	+ HUZ		3.00E13	0.	0.
			3.00E13	0.	0.
	+ HO2		3 00E13	0.	0.
	+ i102 ⊥ µ∩2	->CF3 +CH2O+ OH ->CF3 +CHEA+AH	3 00513	ø. 0	ы. А
	+ HOZ ⊥ HO2	->CF3 +CF20+0F	3 00513	0. 0	0. A
LIJ-LFZ *******	******	-/CI J TCI 20T01	**********	U. ******	••• *******
CH3-CHF	+ H02	= CH2CHF + H2O2	3.00F11	0.	0.
CH3-CF2	+ H02	= CH2CF2 + H2O2	3.00F11	0.	0.
CH2F-CH2	+ H02	= CH2CHF $+$ H2O2	2.00E11	0.	0.

CH2F-CHF	+ HO2	= CHFCHF[Z]+H202	4.00E11	0.	0.		
CH2F-CF2	+ H02	= CHFCF2	+ H2O2	2.00E11	0.	0.		
CHF2-CH2	+ H02	= CH2CF2	+ H2O2	1.00E11	0.	0.		
CHE2-CHE	+ H02	= CHECE2	+ H202	1.00F11	0	0		
	⊥ HO2	- (E2(E2	± H2O2	1 00E11	ø.	ø.		
	* 1102	- CI ZCI Z	* 11202	*********	U . *******	********	*	
internet				2 00511	•	•		
CH3-CHF	+ HUZ		2F + 02	3.00E11	0.	0.		
CH3-CF2	+ HO2	= CH3-CHF	2 + 02	3.00E11	0.	0.		
CH2F-CH2	+ H02	= CH3-CH2	2F + 02	3.00E11	0.	0.		
CH2F-CHF	+ HO2	= CH2F-CH	12F+ 02	3.00E11	0.	0.		
CH2F-CF2	+ H02	= CH2F-CH	IF2+ 02	3.00E11	0.	0.		
CHF2-CH2	+ H02	= CH3-CHF	2 + 02	3.00E11	0.	0.		
CHE2-CHE	+ H02	= CH2E-CH	IF2+ 02	3.00F11	0.	0.		
	⊥ HO2	- CHE2_CH		3 00E11	9	9		
				2 00511	0.	0.		
	+ 102		5 + 02	5.00EII	0.	0.		
CF3-CHF	+ H02	= CH2F-CF	-3 + 02	3.00E11	0.	0.		
CF3-CF2	+ HO2	= CHF2-CF	3 + 02	3.00E11	0.	0.		
!*******	****							
CH3-CHF	+ CH20	= CH3-CH2	2F + HCO	5.50E03	2.80	5900.		
CH3-CF2	+ CH20	= CH3-CHF	2 + HCO	5.50E03	2.80	5900.		
CH2F-CH2	+ CH20	= CH3-CH2	2F + HCO	5.50E03	2.80	5900.		
CH2E-CHE	+ CH20	= CH2F-CH	12F+ HCO	5.50F03	2.80	5900.		
	+ CH20	- CH2E_CH		5 50E03	2 80	5900		
				5.50205	2.00	5900.		
				5.50205	2.00	5900.		
CHF2-CHF	+ CH20	= CH2F-CF	IF2+ HCU	5.50E03	2.80	5900.		
CHF2-CF2	+ CH20	= CHF2-CF	IF2+ HCO	5.50E03	2.80	5900.		
CF3-CH2	+ CH20	= CH3-CF3	3 + HCO	5.50E03	2.80	5900		
CF3-CHF	+ CH20	= CH2F-CF	3 + HCO	5.50E03	2.80	5900.		
CF3-CF2	+ CH20	= CHF2-CF	3 + HCO	5.50E03	2.80	5900.		
!*******	******	******						
!*** FIUC	ROFTHYI	FNFS ***						
*******	******	******						
•								
*******	******	*******	*******	*****				
1*** Г Ша	noo+hv1			~~ ***				
!*** F1U0	proetuyi	enes: Isou	ierizati(2U				
•	* * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	* * * * * *				
!*******	*****	*******	******	*******	****			
!*** Fluc	roethyl	enes: HF e	eliminat	ion (kINF)	***			
!******	******	*******	******	*******	****			
CH2CHF	=	C2H2 +	HF 2	2.31e14	0.00	71300.	!	
CH2CF2(+M))	= C2H	łF	+ HF(+M)		5.19E14	0.00	86400.
IOW /	1.48	F39 -12	85 8	7150./`´				
	A 017	1102 30	6181	/				
	0.91/	1192. 39.	0101.	/				
		0/						
CO/1.50/	CO2/2.0	0/						
HF/2.0/	CH2F2/2	.0/ CH3-C	CHF2/2.0,	/ CH2F-CF	3/2.0/			
CHFCHF[Z]	(+M)	= C2HF	+ HF (·	+M) 2.50E	14 0.0	0 78000.		
LOW /	9.00E1	5 1.00	78000.	/				
H2/2.00/	H20/6.0	0/ CH4/2.0	00/ CO/1	.50/ CO2/2	.00/ C2H	6/3.00/		
CH3F /6.0	0/ CH2F	2 /6.00/ 0	CHF3 /6.0	00/ HF /2.	00/ CF20	/5./ CF4	/6./	
		-		-				
CHFCF2 (+M) =	C2F2 +	- HF (·	+M) 2.0E1	4 0.00	80000.		

```
LOW / 1.50E15 1.00 80000./
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
CF2CF2 (+M)
               = CF2 + CF2 (+ M)
                                 5.01e14
                                         0.0
                                               68070.
    LOW/3.96E50 -9.06
                    85300./
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
!*** Fluoroethylenes: Decomposition ***
CH2(S)
       + CHF = C2H2
                       + HF
                            17.02E19 -2.12
                                            2380.
       + CF2 = C2HF
                       + HF
                            17.02E19 -2.12
                                            2380.
CH2(S)
CHF
       + CHF = C2HF
                       + HF
                                      .00
                                            -5000.
                             2.70E+13
        + CF2 = C2F2
                        + HF
CHF
                              8.51E19 -2.12
                                            2380.
CH2(S)
       + CHF = CH2CHF
                            3.10E24 -3.80
                                            2830.
CH2(S)
       + CF2 = CH2CF2
                            3.10E24 -3.80
                                            2830.
        + CHF = CHFCHF[Z]
CHF
                             3.10E24
                                    -3.80
                                            2830
CHF
        + CF2 = CHFCF2
                             3.10E24 -3.80
                                            2830.
+ CHF = CH2CF
                      + H
                            1.64E07
                                     1.56
                                            5740.
CH2(S)
CH2(S)
       + CHF = CHFCH[Z] + H
                            1.64E07
                                     1.56
                                            5740.
CH2(S)
       + CF2 = CF2CH
                      + H
                            3.28E07
                                     1.56
                                            5740.
CHF
        + CHF = CHFCF[Z] + H
                             1.64E07
                                     1.56
                                            5740.
CHF
        + CF2 = CF2CF
                       + H
                             1.64E07
                                      1.56
                                            5740.
*****
CH2CF
       + H
             = C2H2
                       + HF
                             5.98E20 -2.31
                                            1940.
CHFCH[Z] + H
             = C2H2
                       + HF
                             5.98E20 -2.31
                                            1940.
CF2CH
             = C2HF
                       + HF
                             2.0E20 -2.31
      + H
                                            1940.
             = C2HF
                             5.98E20 -2.31
CHFCF[Z] + H
                       + HF
                                            1940.
             = C2F2
CF2CF
      + H
                       + HF
                             5.98E20 -2.31
                                            1940.
2.40E34
                                   -7.11
                                            5040.
CH2CF
       + H
             = CH2CHF
CHFCH[Z] + H
             = CH2CHF
                            2.40E34
                                   -7.11
                                            5040.
                            2.40E34
                                    -7.11
                                            5040.
CF2CH
       + H
             = CH2CF2
                                    -7.11
                            2.40E34
                                            5040.
CHFCF[Z] + H
             = CHFCHF[Z]
                                    -7.11
                                            5040.
CF2CF
      + H
             = CHFCF2
                            2.40E34
!*** Fluoroethylene + H: Association/Stabilization ***
CH2CHF
       + H(+M) = CH2F-CH2 (+M)
                             4.20E08
                                      1.5
                                             990.
    LOW/3.19E27
               -2.8
                       -54./
    H2/2.0/ C0/2.0/ C02/3.0/ H20/5.0/
                                             990.
CH2CHF
       + H(+M) = CH3-CHF
                       (+M)
                             4.20E08
                                      1.5
                -2.8
    LOW/3.19E27
                       -54./
    H2/2.0/ C0/2.0/ C02/3.0/ H20/5.0/
      + H(+M)= CHF2-CH2 (+M)
                                             990.
CH2CF2
                             4.20E08
                                      1.5
    LOW/3.19E27
               -2.8
                       -54./
    H2/2.0/ C0/2.0/ C02/3.0/ H20/5.0/
                       (+M)
CH2CF2
      + H(+M)= CH3-CF2
                             4.20E08
                                      1.5
                                             990.
    LOW/3.19E27
               -2.8
                       -54./
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

H2/2.0/ C0/2.0/ C02/3.0/ H20/5.0/

CHFCHF[Z]+ H(+M)= CH2F-CHF (+M) LOW/6.37E27 -2.8 -54.7	8.40E08 1.5	990.
H2/2.07 CO/2.07 CO2/3.07 H2CCHFCF2 + H(+M) = CHF2-CHF (+M)LOW/3.19E27 -2.8 -54.7	4.20E08 1.5	990.
H2/2.0/ CO/2.0/ CO2/3.0/ H2(CHFCF2 + H(+M)= CH2F-CF2 (+M) LOW/3.19E27 -2.8 -54.,	D/5.0/ 4.20E08 1.5 /	990.
H2/2.0/ CO/2.0/ CO2/3.0/ H2C CF2CF2 + H(+M)= CHF2-CF2 (+M) LOW/6.37E27 -2.8 -54.,	D/5.0/ 8.40E08 1.5 /	990.
H2/2.0/ CO/2.0/ CO2/3.0/ H20	0/5.0/	
!*************************************	******	*****
<pre>!*** Fluoroethylene + H: Associat !************************************</pre>	tion with HF-Elimin; *********************	ation *** *******
!**************************************	****	
<pre>!*** Fluoroethylenes + H: H-Abstr</pre>	raction *** ******	
CH2CHF + H = CHFCH[Z] + H2	0.33E06 2.53	14300.
CH2CHF + H = CH2CF + H2	0.33E06 2.53	14300.
CH2CF2 + H = CF2CH + H2	0.67E06 2.53	14300.
CHFCHF[Z] + H = CHFCF[Z] + H2	0.33E06 2.53	14300.
CHFCF2 + H = CF2CF + H2	0.33E06 2.53	12241.
!*************************************	********** ination *** ******	
C2H4 + F = CH2CHF + H	2.00E13 0.00	0.
CH2CHF + F = CH2CF2 + H	2.00E12 0.00	0.
CH2CHF + F = CHFCHF[Z]+H	5.00E12 0.00	0.
CHFCHF[Z] + F = CHFCF2 + H	4.00E12 0.00	0.
CH2CF2 + F = CHFCF2 + H	1.0E13 0.0	0.
CHECE2 + E = CE2CE2 + H	2.00F12 0.00	Ø
!CHFCF2 + F = CF2CF2 + H	3.00E12 0.00	Ő.
!CHFCF2 + F = CF2CF2 + H	5.00E12 0.00	0
!CHFCF2 + F = CF2CF2 + H	8.1500E12 0.00	0.
!CHFCF2 + F = CF2CF2 + H	1.200E13 0.00	0.
!CHFCF2 + F = CF2CF2 + H	1.200E13 0.00	0.
CHFCF2 + F = CF2CF2 + H	5.00E12 0.00	0.
CH2CHF + F = CH2CF + HF	5.700E13 0.00	3000.
CH2CHF + F = CHFCH[Z] + HF	F 7.00E13 0.00	4000.
CH2CF2 + F = CF2CH + HF	7.00E13 0.00	5000
		7770
CF2CF2 + F = CF3-CF2	3.15013 0.0	///0.
1 + + + + + + + + + + + + + + + + + + +	***************************************	****
<pre>: FIUD OCTIVIENCE + 0. ISOMEN12 [************************************</pre>	2ac1017 uecompos1c101	****
CH2CHF + 0 = CH2F + HCO	1.750E09 1.00	1310. !
CHECHE[7] + 0 = CH2E + CE0	7.00E09 1.00	1590.

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
CH2CF2 + 0 = CHF2 + HCO 0.550E09 1.00 3700. CH2CF2 + 0 = CF20 + CH2 1.10E12 0.00 7400. = CHF2 6.00E09 1.00 1150. CHFCF2 + 0 + CF0 CHFCF2 + 0 = CF2 + CHF0 0.48E07 2.00 0. CHFCF2 = CHF + CF20 + 0 0.48E07 2.00 2000. + CF20 1.01E08 1.48 CF2CF2 + 0 = CF20. ***** CH2CHF + 0 = CH3 + CF0 1.33E09 1.00 2300. CH2CHF = CH2CO + HF 3.7e12 0.00 2100. + 0 !*** Fluoroethylene + OH: Abstraction of H *** CH2CHF = CHFCH[Z] + H202850. + OH 4.00E06 2.00 + OH = CH2CF + H2O 4.00E06 2.00 2850. CH2CHF + CH3 5550. CH2CHF + 0H = CHFO 1.50E06 2.00 CHFCHF[Z]+ OH = CHFCF[Z]+ H20 2.00E06 2.00 2850. = CF2CH + H20 2.00 6100. CH2CF2 + OH 2.00E06 CHFCF2 + OH = CF2CF + H20 1.00E06 2.00 2850. CHFCF2 + OH = CF20 + CH2F2.0E06 2.00 2850. CHFCF2 + OH = CHFO + CHF24.0E06 2.00 2850. !*** Fluorovinyl + 02: Addition/decomposition *** CH2CF + 02 = CH20 + CFO 1.12E25 -4.55 5480. DUP + 02 = C2HF CH2CF + H02 1.0e11 0.0 10000. CHFCH[Z] + 02= CHFO + HCO 1.12E25 -4.55 5480 DUP CHFCF[Z] + 02= CHFO + CFO 4.48E26 -4.55 5480. DUP CF2CH + 02 = CF20 + HCO 5.0e11 0.0 8000. CF2CF + 02 + CFO 4.48E26 -4.55 5480 = CF20 DUP CH2CF + CFO 1.05E38 -8.22 7030. + 02 = CH20 DUP CHFCH[Z] + 02= CHFO + HCO 1.05E38 -8.22 7030. DUP 7030. CHFCF[Z] + 02= CHFO + CF0 1.05E38 -8.22 DUP CF2CF + 02 = CF20 + CFO 1.05E38 -8.22 7030. DUP !*** Fluorovinyl + 0 Addition/decomposition *** + F CH2CF + 0 = CH2CO 9.00E13 0.00 0.

```
CHFCH[Z] + 0
           = CHFCO
                   + H
                         9.00E13 0.00
                                        0.
CHFCF[Z] + 0
           = CHFCO
                   + F
                         3.00E13
                               0.00
                                        0.
                                        0.
CF2CH
      + 0
           = CF2CO
                   + H
                         3.00E13 0.00
CF2CF
      + 0
           = CF2CO
                   + F
                         3.00E13 0.00
                                        0.
!*** Fluorovinyl + OH: Addition/decomposition ***
CH2CF
      + OH
           = CH2CO
                   + HF
                         3.00E13 0.00
                                        0.
CHFCH[Z] + OH
           = CH2CO
                   + HF
                         3.00E13 0.00
                                        0.
CHFCF[Z] + OH
           = CHFCO
                   + HF
                         2.00E13 0.00
                                        0.
CF2CF
      + OH
           = CF2CO
                   + HF
                         1.00E13 0.00
                                        0.
+ CF0
                                       0.
CH2CF
      + OH
           = CH3
                        3.00E13 0.00
CHFCH[Z] + OH
                   + HCO
           = CH2F
                         3.00E13 0.00
                                        0.
                   + CFO
                        4.00E13 0.00
CHFCF[Z] + OH
           = CH2F
                                       0.
                   + CFO 5.00E13 0.00
CF2CF
     + OH
           = CHF2
                                       0
CF + CF = C2F2
                          5.0e13
                                0.0
                                         0.
!*** Fluoroethynes + H Addition/stabilization ***
C2HF
       +H (+M) = CH2CF
                   (+M)
                         2.80E12 0.00
                                      2410.
   LOW/1.33E27
             -3.5
                    2410./
   H2/2./ C0/2./ C02/3./ H20/5./
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
C2HF
       +H (+M) = CHFCH[Z](+M)
                         1.40E12 0.00
                                      2410.
   LOW/0.67E27 -3.5
                    2410./
   H2/2./ CO/2./ CO2/3./ H2O/5./
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
C2F2
       +H (+M) = CHFCF[Z](+M)
                         2.80E12 0.00
                                      2410.
   LOW/1.33E27
             -3.5
                    2410./
   H2/2./ C0/2./ C02/3./ H20/5./
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
C2HF
       +F (+M) = CF2CH
                   (+M)
                         8.40E12 0.00
                                      2410.
   LOW/4.00E27
             -3.5
                    2410./
H2/2./ C0/2./ C02/3./ H20/5./
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
                           8.40E12 0.00
C2HF
      +F (+M) = CHFCF[Z] (+M)
                                        2410.
   LOW/4.0E27
            -3.5
                   2410./
H2/2./ C0/2./ C02/3./ H20/5./
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20 /5./ CF4 /6./
!*** FLUORO-ACETYLENE DESTRUCTION PATHWAYS ***
0.00
C2HF + 0
          = CFCO
                  + H
                                    2.25E12
                                                  4530.
                                                  2000.
C2HF
       + 0
              = CO
                       + CHF
                                    9.00E+13
                                            0.00
C2F2 + 0
          = CFCO
                  + F
                                      1900.
                          1.00E07
                                  2.00
```

```
This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

C2HF +	⊦ OH	= CHFCO	+ H	2.18E-4	4.50	-1000.							
C2HF +	⊦ OH	= CH2F	+ CO	2.50E-4	4.00	-2000.							
C2HF +	⊦ OH	= HCCO	+ HF	2.50E-4	4.00	-2000.							
C2F2 +	⊦ OH	= CF2C0	+ H	2.18E-4	4.50	-1000.							
C2F2 +	⊦ OH	= CFCO	+ HF	2.50E-4	4.00	-2000.							

<pre>!*** Fluoromethylenes (CHF, CF2): ***</pre>													
! *****	******	*******	*******	****									
!*****	******	******	****										
!*** Ra	adical c	ombinatio	n ***										
! *****	******	*******	****										
CH2F	+ CH	2 = CH2C	HF + H	4.00E13	0.00	0.							
CH2F	+ CH	2 = C2H4	+ F	4.00E13	0.00	0.							
CHF2	+ CH	2 = CH2C	F2 + H	4.00E13	0.00	0.							
CHF2	+ CH	2 = CH2C	HF + F	4.00E13	0.00	0.							
CF3	+ CH	2 = CH2C	F2 + F	4.00E13	0.00	0.							
·*****	*******	********	*********	******									
1*** TL	1Sertion	into bon	as of metr	IYIS ***									
1*****	******	*******	**********	4 00540	0 00	•							
CH2F	+ CH2(S) = CH2CH	F + H	4.00E12	0.00	0.							
CH2F	+ CH2(S) = C2H4	+ +	2.00E12	0.00	0.							
CHF2	+ CH2(S) = CH2CF	2 + H	2.00E12	0.00	0.							
CHF2	+ CH2(S) = CH2CH	F + F	4.00E12	0.00	0.							
CF3	+ CH2(S) = CH2CF	2 + F	6.00E12	0.00	0.							
1****** CUD	*******	******	********** F	· · · · · · · · · · · · · · · · · · ·	0 00	0							
			F + H	6.00E12	0.00	0.							
			F[Z]+ H	4.00E12	0.00	0.							
CHZF	+ CHF	= CH2CH	F + F	2.00E12	0.00	0.							
	+ CHF		2 + H	2.00E12	0.00	0.							
CHFZ	+ CHF		F[Z]+ F	4.00E12	0.00	0.							
	+ CHF	= CHFCF	2 + F *********	6.00E12	0.00	0.							
(LI)			ຳ	6 00510	0 00	2500							
			2 + 1	0.00E12	0.00	2500.							
			2 T F 7 I U	2.00112	0.00	2500.							
			2 + 11 7 - 14	2.00112	0.00	20000							
			2 + 11	1 00E12	0.00	20000.							
	+ CIZ	- 01101	2 71	1.00111	0.00	0500.							
*****	******	******	******										
• *** FI		ENE CHEMT	STRV ***										
!*****	******	******	******										
CHECO H	ьH	= CH2F	+ (0	1.13F13	0.00	3428.							
CHECO +	F H	= CFCO	+ H2	5.00F13	0.00	8000.							
CF2C0 +	 ь Н	= CHF2	+ (0	1,13F13	0.00	3428.							
*****	 *******	*******	*******	1,19219	0.00	5.201							
CHFCO +	+ 0	= CHFO	+ CO	1.00E13	0.00	8000.							
CF2C0 -	+ 0	= CF20	+ CO	1.00F13	0.00	8000							
CHFCO +	⊦ OH	= CFCO	+ H20	7.50E12	0.00	2000.							
!*****	******	******	******										
CFCO	+ H	= CHF	+ CO	1.00E14	0.00	0.							
CFCO	+ 0	= CFO	+ C0	1.00E14	0.00	0.							
НССО	+ F	= CHF	+ CO	9.00E13	0.00	0.							

CFC0	+ F	= CF2	+ CO	3.00E13	0.00	0.							
<u> </u> *****	******	******	*******	*****									
!*** Fluoromethanes Reactions with F ***													
! *****	******	********	******	*****									
CH4	+ F	= CH3	+ HF	5.90E12	0.50	450.							
CH3F	+ F	= CH2F	+ HF	1.35E14	0.00	1200.							
	+ +	= CHF2	+ HF	3.1E0/	2.10	30.							
CHF3 + F = CF3 + HF 9.00E03 2.69 990.													
!*************************************													
!*** CHFO & CF2:0: Reactions with F ***													
! *****	******	********	******	*****									
CH30H	+ F	= CH30	+ HF	2.62E09	1.44	-205.							
CH30H	+ F ******	= CH2OH	+ HF	4.62E07	1.97	-300.							
1******	+ F	– HCO	+ HF	6 00F13	a aa	2000							
CHFO	+ F	= CFO +	• HF	2.65E13 (0.00 0.00	1800.							
!*****	******	*******	*******	*****									
CH30	+ F	= CH20	+ HF	3.00E13	0.00	0.							
HCO	+ F	= CO	+ HF	1.00E13	0.00	0.							
I de de de de de de de		ale											
!******	*******	**************************************	*********	*****	****** ~m ***								
!**** AU	*******	VII TI'OIII T1	.uoroetnan *********	es: by r-dl(JII *****								
C2H6	+ F	= C2H5	+ HF	8.00E12	0.00	300.							
CH3-CH2	F + F	= CH2F-CH	12 + HF	9.00E13	0.00	800.							
!CH3-CH	F2 + F	= CHF2-C	:H2 + HF	1.00E14	0.00	800.							
CH3-CF3	+ F	= CF3-CH2	2 + HF	1.00E14	0.00	4000.							
!*****	******	*******	******	**********	*****								
CH3-CH2	F + F	= CH3-CHF	+ HF	6.00E13	0.00	200.							
	2F + F		1F + HF	1.30E14	0.00	800.							
	72 + F 3 + F	= CHF2-CF	іг + пг `НЕ _ НЕ	1.50014	0.00	4500.							
	J T I	- 015-0	.111 - 111	1.0115	0.00	4500.							
! *****	******	*******	*******	*********	*****								
!CH3-CH	F2 + F	= CH3-CF	2 + HF	3.00E13	0.00	800.							
CH2F-CH	F2 + F	= CH2F-CF	2 + HF	3.00E13	0.00	1200.							
CHF2-CH	F2 + F	= CHF2-CF	2 + HF	1.25E5	2.49	790.							
CHF2-CF	3 + F	= CF3-CF2	2 + HF	7.11E3	2.72	-910.							
!*****	******	**********	******	***********	*****	0							
CF3-CF2	+ F =	(F3 + (F3		3.16013	0.0	0.							
<u> </u> *****	******	*******	*******	*********	*****								
C2H4	+ F	= C2H3	+ HF	1.00E14	0.00	2000.							
CF2CF2	+ F	= CF3	+ CF2	3.00E13	0.00	0.							
!*****	******	********	********	**********	****								
!*** Fl	uorovin ******	y⊥ + F: Ad *********	ldition/de	composition ************	*** ****								
1	+ F	= C0H0	+ HF	2 00F13	a aa	A							
CHECE[7		= C2112 = CHF	+ CF2	1.00F13	0.00	0.							
CF2CF	, + F	= CF2	+ CF2	2.00E13	0.00	0.							

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170

! **** CF3CHO,CF3OF, CF3CO reactions ****			
CF3CO (+M) = CF3 + CO (+M)	2.65e14	0.00	12000.00
LOW /2.05E16 0.0 9200.0 /			
TROE/ 1.0 100.0 520.0 /			
CF3CO + F = CF3 + CFO	3.e12	0.0	0.0
CF3CO + F = CF4 + CO	5.e12	0.0	0.0
! ****			
CF3CHO + H = CF3CO + H2	4.00e13	0.00	4200.00
CF3CHO + OH = CF3CO + H2O	7.0e12	0.00	1410.0
CF3CHO + O = CF3CO + OH	1e12	0.0	0.0
CF3CHO + CH3 = CF3CO + CH4	1e11	0.00	7400.0
CF3CHO + CF3 = CHF3 + CF3CO	1e12	0.00	8400.0
CF3CHO (+M) = CF2CO + HF (+M)	1e13	0.00	85000.0
LOW /8.75E17 0.0 85000.0 /			
H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/			
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ HF /2.00/ CF20	/5./ CF4	/6./	
CF3CHO + F = CF3CO + HF	4e13	0.00	1000.0
CF3CHO(+M) = CF3 + HCO(+M)	4e16	0.00	80000.00
IOW /3.50F21 0.0 80000.0 /			
$H_{20}/9.00/$ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/			
CH3E /6.00/ CH2E2 /6.00/ CHE3 /6.00/ HE /2.00/ CE20	/5./ CF4	/6./	
CE3COE+ H = CE3CO + HE	2e13	, c., a aa	3000 00
CF3COE(+M) = CF3ECFO(+M)	4 3F+16	0.00 0 00	9000.00
10W/3 76F21 0 0 90000 0/	4.52.10	0.00	50000.00
$H_{20}/9$ $A_{0}/CH_{4}/2$ $A_{0}/C_{0}/1$ $5A/C_{0}/2$ $A_{0}/C_{2}H_{6}/3$ $A_{0}/C_{0}/2$			
$(H_{20}, 5.00)$ $(H_{20}, 2.00)$ $(0, 1.00)$ $(0, 2.00)$ (2.00)	/5 / CE4	16 /	
CF3COF + CF3 = CF3CO + CF4	2 e12	, o., a a	9000
$CF3COF + CF3_CF3 - CF3CO + CF3_CF3$	2،012 11م S	0.0	1/000
CF3COF + F - CF3 + CF3O	2 o12	0.0	1500.
CF3COF + 0 = CF30 + CF0	2,012	0.0 0 0	9500.
	2.612	0.0	5500.
! *** F2 reactions ***			
F + F + M = F2 + M	1.0e14	0.0	0.
F2 + H = F + HF	2.9e9	1.4	1330.
$F_2 + CF_3 = CF_4 + F_2$	2.65e12	0.0	2500.
CH3 + F2 = CH3F + F	4.e12	0.0	1100.
(F2 + F2 = (F3 + F))	1.2e12	0.0	3000.
CEO + E2 = CE2O + E	1.e12	0.0	0.
$H^2 + F^2 = HF + F + H$	3.44e12	0.0	19790.
$F_2 + C_2 = C_{F_0} + F_1$	4.7e11	0.0	13500.
$C + F^2 = CF + F$	1 7e12	0.0 0 0	1500
CF + F2 = CF2 + F	2 4e12	0.0 0 0	-300.
$C^{2}H4 + F^{2} = CH^{2}F^{2}CH^{2} + F$	4 8e10	9.0	4590
CH4 + F2 = CH3 + HF + F	2 612	0.0	11230
OH + F2 - HF + F + O	2،012 7 م13	0.0	9000
01 + 12 = 11 + 1 + 0	/.612	0.0	5000.
 ************************************	**		
*** 2_BTD reactions ***			
	1 0F+	.12 0.00	a 1780
	1.017	0.00	, -,00.
! TRTELUOROPROPENE			
CF3CHCH2+H=C2H4+CF3	0 7F	13 00	9100
CF3CHCH2 + H = CF3CCH2 + H2	3 0F+	-13 0.0	3 14000
CF3CHCH2 + H = CF3CHCH + H2	4.3F+	-13 0.00	14000

	_
	5
	<u> </u>
	0,
	D
	<u> </u>
	0
	<u> </u>
	ω
	₫.
	0
	<u>.</u> .
	<u>m</u>
	\sim
	≞.
	0
	5
	Ē
	Ψ.
	÷.
	Φ
	Φ
	0
	Ξh
	0
	<u>m</u>
c	0
	Φ
	2
	9
	\exists
	<u> </u>
	2
	Ξ.
	8
	~
	_
	0
	<u> </u>
	¥.
ς	0
	~
	\circ
	Š.
	\sim
	m
	\leq
	\geq
	0
	~
	-
	Z
	5
	Ň
	_
	2
	-

$\begin{array}{rcl} CF3CHCH2 + O &= CH3CO &+ CF3 \\ CF3CHCH2 + OH &= CH3CHO &+ CF3 \\ CF3CHCH2 + CH3 &= C3H6 &+ CF3 \\ CF3CHCH2 + F &= HF + CF3CCH2 \\ CF3CHCH2 + F &= HF + CF3CHCH \\ CF3CHCH2 + F &= CF4 + C2H3 \\ CF3CHCH2 + F &= CF3 + CH2CHF \end{array}$	1.5E+13	0.00	4000.
	5.0E+12	0.00	1500.0
	5.0E+12	0.00	11850.
	2.e13	0.0	5000.
	2.7e13	0.0	5000.
	4.e12	0.0	6000.
	3.e13	0.0	8000.
CF3CHCH2 + CF3 = CHF3 + CF3CCH2 $CF3CHCH2 + CF3 = CHF3 + CF3CHCH$ $CF3CHCH2 + CF3 = CF3-CF3 + C2H3$	1.2e13	0.0	12500.
	1.7e13	0.0	15000.
	2.e13	0.0	15500.
CF3CHCH2 = CF3 + C2H3 $CF3CHCH2 = CF3CCH + H2$ $CF3CHCH2 = CHF3 + C2H2$ $CF3CHCH2 = CF2 + CH2CHF$	8.e16	0.0	109000.
	9.7e13	0.0	67500.
	9.21e13	0.0	71000.0
	5.e12	0.0	77000.
<pre>!! TRIFLUOROPROPENYL REACTIONS CF3CCH + H = CF3CCH2 CF3CCH + H = CF3CHCH CF3CCH2 = C2H2 + CF3 CF3CHCH = C2H2 + CF3</pre>	6.0E+14 4.0E+14 2.E+13 2.E+13	0.00 0.00 0.00 0.00	4780. 4780. 37000. 37000.
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.0E+13 4.0E+13 2.0E+13 1.0E+13 2.0E+13 2.0E+13 2.0E+13	0.00 0.00 0.00 0.00 0.00 0.00	23900. 4780. 0. 23900. 4780. 0.
CF3CCH2 + 0 = CH2C0 + CF3 $CF3CCH2 + 0 = CF3CCH + 0H$ $CF3CCH2 + 0H = CH2C0 + CF3 + H$ $CF3CCH2 + 0H = CF3CCH + H20$ $CF3CCH2 + CH3 = CH3CCH2 + CF3$ $CF3CCH2 + CH3 = CF3CCH + CH4$	5.0E+13	0.00	0.0
	5.0E+13	0.00	2390.
	5.0E+13	0.00	9560.
	5.0E+13	0.00	4780.
	4.0E+13	0.00	4780.
	1.0E+13	0.00	0.
$\begin{array}{rcl} CF3CHCH &+ 0 &= CH2C0 &+ CF3 \\ CF3CHCH &+ 0 &= CF3CCH &+ 0H \\ CF3CHCH &+ 0H &= CF3CCH &+ H20 \end{array}$	5.0E+13	0.00	0.0
	5.0E+13	0.00	2390.
	5.0E+13	0.00	4780.
CF3CHCH + CH3 = CH3CCH2 + CF3	4.0E+13	0.00	4780.
CF3CHCH + CH3 = CF3CCH + CH4	1.0E+13	0.00	0.
CF3CCH2 + F = CF3CCH + HF $CF3CCH2 + CF2 = CHF2 + CF3CCH$ $CF3CCH2 + CF3 = CHF3 + CF3CCH$	5.e13	0.0	0.
	3.e13	0.0	3500.
	2.e13	0.0	0.
CF3CHCH + F = CF3CCH + HF $CF3CHCH + CF2 = CHF2 + CF3CCH$ $CF3CHCH + CF3 = CHF3 + CF3CCH$	5.e13	0.0	0.
	3.e13	0.0	3500.
	2.e13	0.0	0.
! TRIFLUOROPROPYNE REACTIONS CF3CCH + H = C2H2 + CF3	2.0E+14	0.00	9560.

$\begin{array}{rcl} CF3CCH &+ 0 &= HCCO &+ CF3 \\ CF3CCH &+ OH &= CH2CO &+ CF3 \end{array}$	4.0E+13 2.0E+14	0.00 0.00	1500. 3300.
!! TRIFLUOROPROPANONE REACTIONS			
CH3C0 + CF3 = CF3C0CH3	4.0E+13	0.00	0.0
CH3CO + CF3 = CH2CO + CHF3	1.0E+13	0.00	0.0
CH3CO + F = CH2CO + HF	1.0E+13	0.00	0.0
CH3CO + CF3 = CO + CH3 + CF3	2.0F+13	0.00	9560.0
CE3COCH3 + CE3 = CH2CO + CHE3 + CE3	2.0F+13	0.00	21500.0
CE3COCH3 + H = CH2CO + H2 + CE3	6 0F+14	a aa	23900
CF3COCH3 + OH = CH2CO + H2O + CF3	5.0E+13	0.00	3585.
CF3COCH3 + F = HF + CH2CO + CF3	1.e13	0.0	10000.
CF3CCH + F = CF3 + C2HF	7.e12	0.0	12500.
CF3CCH + CF2 = CF2CF2 + C2HF	5.e11	0.	50000.
CF3CCH + CF3 = CF2CF2 + CF2CH	1.e12	0.	60000.
CF3CCH + 0 = CO + CHFCF2	3.0E+12	0.00	1500.
CHFCCF3 = CF3 + C2HF	2.e13	0.0	54000.
C3H8 + F = C3H7 + HF	3.5e13	0.0	0.
C3H8 + F = C3H7 + HF	4.1e13	0.0	0.
DUPLICATE	5 /011	0 0	8540
DUPLICATE	5.4611	0.0	0,00
C3H8 + CF3 = C3H7 + CHF3 DUPLICATE	1.8e11	0.0	6520.
C3H8 + CF3-CF2 = C3H7 + CHF2-CF3 DUPLICATE	3.9e11	0.0	7800.
C3H8 + CF3-CF2 = C3H7 + CHF2-CF3	3.3e11	0.0	6100.
DUPLICATE			
· ************************************	********	******	*****
!***HF01234zee***********************************	***********	*********	*****
	4 72.52	10 007	100070
	4.72052	-10.89/	102870.
CHFCHCF3 = CF3 + CHFCH[2]	0.5010	0.0	116000.
CHFCHCF3 + 02 = CFCHCF3 + H02	4.02012	0.0	57640.
CHFCHCF3 + 02 = CHFCCF3 + H02	3.02012	0.0	57640.
CHFCCF3 + H = CHFCHCF3	0.1e14	0.0	0.0
CFCHCF3 + H = CHFCHCF3	0.1e14	0.0	0.0
<pre>!*** Abstraction, association/decomposition</pre>			
CHFCHCF3 + H = CFCHCF3 + H2	3.5e13	0.0	16000.
CHFCHCF3 + H = CHFCCF3 + H2	2.5e13	0.0	18000.
CHFCHCF3 + H = CF3 + CH2CHF	0.9e13	0.0	5000.
CHFCHCF3 + 0 = CFCHCF3 + OH	1.2e12	0.7	15000.
CHFCHCF3 + O = CHFCCF3 + OH	1.e12	0.7	17000.
CHFCHCF3 + 0 = CF3 + CH2F + C0	3.25e6	1.83	0.
CHFCHCF3 + 0 = CF0 + CF3-CH2	1.3e7	1.83	0.

CHFCHCF3 + OH = CFCHCF3 + H2C)		1.5e13	0.0	7500.
CHFCHCF3 + OH = CHFCCF3 + H2C)		1.5e13	0.0	9000.
CHFCHCF3 + OH = CHFO + CF3-CH	12		3.75e11	0.0	240.
CHFCHCF3 + F = HF + CFCHCF3			9.3e13	0.	4500.
CHFCHCF3 + F = HF + CHFCCF3			1.1e13	0.	7500.
CHFCHCF3 + F = CF3 + CH2CF2			0.2e13	0.	8200.
CHFCHCF3 + F = CF3 + CHFCHF[Z]	2]		0.5e13	0.	9000.
	`E2		5 o10	0	17000
CHECHCE3 + CE3 = CHE3 + CHECHC	2 2		5.012	0.	15000.
	.гэ		J.612	0.	13000.
<pre>!*** consumption of CFCHCF3,</pre>	CHFCCF3, r	adical reacti	ons ***		
!CHFCCF3 = CF3 + C2HF			2.e13	0.	56000.
CFCHCF3 = CF3 + C2HF			1.e13	0.	55000.
CHFCCF3 + 02 = H02 + CFCCF3			3.e11	0.	17000.
CFCHCF3 + 02 = H02 + CFCCF3			3.e11	0.	18500.
CHFCCF3 + H = CF3 + CHFCH[Z]			2.e13	0.	8000.
CFCHCF3 + H = CF3 + CH2CF			2.e13	0.	8000.
CHFCCF3 + H = H2 + CFCCF3			2.e13	0.	3000.
CHECCE3 + H = HE + CE3CCH			3.e13	0.	2000.
CECHCE3 + H = H2 + CECCE3			2.e13	0.	3000.
CECHCE3 + H = HE + CE3CCH			3 613	о. 0	2000
$CHECCE3 \pm OH = H2O \pm CECCE3$			2 013	0. 0	2000.
CECHCE2 + OH = H2O + CECCE2			2.012	0.	0.
CFCHCF3 + OH = H2O + CFCCF3			2.e15 5 o12	0.	2000
CHFCCF3 + OH = CF3 + CH2CFO			5.012	0.	3000.
CFCHCF3 + OH = CF3 + CH2CFO			5.012	0.	4000.
CHFUCF3 + CH3 = CH4 + CFUCF3			5.e12	0.0	2000.
CFCHCF3 + CH3 = CH4 + CFCCF3			3.e12	0.0	3000.
CHFCCF3 + CF3 = CHF3 + CFCCF3	}		3.e12	0.0	1000.
CFCHCF3 + CF3 = CHF3 + CFCCF3	3		2.e12	0.0	2000.
CHFCCF3 + CF2 = CHF2 + CFCCF3	8		8.e12	0.0	7000.
CFCHCF3 + CF2 = CHF2 + CFCCF3	3		7.e12	0.0	7000.
CHFCCF3 + F = HF + CFCCF3			1.e13	0.0	1000.
CFCHCF3 + F = HF + CFCCF3			1.e13	0.0	1000.
CHFCCF3 + F = CF3 + CHFCF[Z]			3.5e12	0.0	9000.
CFCHCF3 + F = CF3 + CHFCF[Z]			3.5e12	0.0	10000.
CH2CFO (+M) = CH2F + CO (+M)			2.e13	0.00	30000.
LOW /2.0E16 0.0 30000.0 /					
TROE/ 1.0 100.0 520.0 /					
CH2CFO + H = CH3 + CFO			8.e12	0.0	11000.0
CH2CFO + F = CH2F + CFO			5.e12	0.0	9000.0
CH2CFO + CF3 = CF3-CH2 + CFO			3.e12	0.0	8000.0
l ****					
!*** 1234yT ******					
				•	
CH2CFCF3 (+M) => CF3 + CH2CF (+M) 5.0E+1	6 0.00	107000.0	0	
LOW /5.40E18 0.0 108700.0/					
H20/9.00/ CH4/2.00/ CO/1.50/	CO2/2.00/	C2H6/3.00/			
CH3F /6.00/ CH2F2 /6.00/ CHF3	8 /6.00/ HF	/2.00/ CF20	/5./ CF4 /	6./ CH2	2CFCF3/10./
CH2CFCF3 = CF3CCH + HF	1.1E+44	-8.492	99304.00	1	!100kPa
CF3CCH2 + F = CH2CFCF3	5.0e13	0.		0.	
CF3CHCH + F = CHFCHCF3	5.0e13	0.		0.	
	_ /				

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170

CH-CFCF3 + H = CH2CFCF3	5.0e13	0.		0.		
CH2CFCF3 + 02 = CH-CFCF3 + H02	6.02e12	0.0	5764	0.		
CH2CFCF3 + H = CH-CFCF3 + H2	2.5e13	0.	1600	0.		
CH2CFCF3 + H = CH2CHF + CF3	2.5e13	0.	500	0.		
CH2CFCF3 + OH = CH-CFCF3 + H2O	2.e13	0.	680	0.		
CH2CFCF3 + OH = CH3 + CF3COF	7.5e11	0.	24	.0.		
CH2CECE3 + 0 = CH-CECE3 + 0H	0 6e12	0.7	150	00		
$CH_2CE_2CE_3 + 0 = CE_3CHE + HC_0$	3 2506	1 83	190	а а		
$CH_{2}CF_{2}CF_{3} + 0 = CH_{2}F_{3} + CO_{4} + CF_{3}$	1 706	1 83		о. а		
$CH_{2}CE_{1}CE_{2} + CE_{2} = CH_{1}CE_{1}CE_{2} + CE_{2}$	2 1 5012	1.05	220	0.		
$CH_2CF_2CF_3 + CF_3 = CH_2CF_2CF_3 + CH_2$		0.	220	00.		
$CH_2CF_2CF_3 + CH_3 = CH_2CF_2CF_3 + CH_4$	6 7o12	0.	200	00.		
$CH_2CF_CF_3 + F = CH_2CF_2 + GF_2$	0.7e15	0.	54	00.		
$CH_2CF_CF_3 + F = CH_2CF_2 + CF_3$	1.2012	0.	63			
$CH_2CFCF_3 + F = CHFCHF[2] + CF_3$	2.0e12	0.	86	199.		
CH-CFCF3 = CF3CCH + F	1.e13	0.	5700	0.		
CH-CFCF3 = CF3 + C2HF	2.e13	0.	4500	0.		
	2 - 11	0	2500			
CH-CFCF3 + U2 = HU2 + CFCCF3	3.eII	0.	2506	.0		
CH-CFCF3 + H = CF3 + CH2CF	2.e13	0.	506	10.		
CH-CFCF3 + H = H2 + CFCCF3	2.e13	0.	306	10.		
CH-CFCF3 + H = HF + CF3CCH	3.e13	0.	206	10.		
CH-CFCF3 + OH = CF3 + CH2CFO	5.e1	2 0.	40	00.		
CH-CFCF3 + OH = H2O + CFCCF3	2.e13	0.		0.		
CH-CFCF3 + CH3 = CH4 + CFCCF3	5.e12	0.	300	0.		
CH-CFCF3 + CF3 = CHF3 + CFCCF3	5.e12	0.	150	0.		
CH-CFCF3 + CF2 = CHF2 + CFCCF3	7.e12	0.	800	0.		
CH-CFCF3 + F = HF + CFCCF3	1.e13	0.	100	0.		
CH-CFCF3 + F = CF3 + CHFCF[Z]	3.5e12	0.	900	0.		
CECCE3 + H = CE3 + C2HE	5.e13	0.	750	0.		
CFCCF3 + 0 = CF3 + CFC0	1.e13	0.		0.		
CFCCF3 + OH = CF3 + CHFCO	3.e13	0.	500	0.		
CFCCF3 + F = CF3 + C2F2	1 e13	о. О	700	10		
CFCCF3 = CF2 + C2F2	3 615	0.	896	100		
*****	5.015	0.	050			
CH2CE + CE3 <=> CE3CCH + HE			1 180F+13	aa	100	5880
$E + CH2CO < - \Sigma HE + HCCO$			1 5000F+13	0.0 0 0	200	3000.
$CE3_CE3_+ECE3_+CE4$			7 011	0.0	лоо а	7500.
			/.етт	0.	5	7500.
!*************************************	*******	*******				
C3F7H+0 = C3F7+0H			7.000E+07	1.60	7	200.00
C3F7H+CF3 = C3F7+CHF3			1.400E+11	0.00	10	100.00
C3F7H (+M) = $CF3+CF3-CHF$ (+M)	1		7.900E+15	0.00	85	000.00
LOW /3.46E21 0.0 85000.0/						
H20/9.00/ CH4/2.00/ CO/1.50/ CO	02/2.00/ C	2H6/3.00/				
CH3F /6.00/ CH2F2 /6.00/ CHF3 /	′6.00/ C3F	7H /12.00/	HF /2.00/			
(3E7H (+M) - C3E6+4E (+M)			7 900F±10	0 00	60	600 00
$10W / 3 \ 46F18 \ 0 \ 0 \ 69600 \ 0 \ /$			/.JUULTIZ	0.00	09	
H20/9.00/ CH4/2.00/ CO/1.50/ CO)2/2.00/ C	286/3,00/				
CH3F /6.00/ CH2F2 /6.00/ CHF3 /	'6.00/ C3F	7H /12.00/	HF /2.00/			
C3F7H+F = C3F7+HF			4.000E+13	0.00	2	400.00
CSF/H+CHS = CSF/+CH4			2.100F+T0	0.00	9	200.00

```
C3F7H+C2H3 = C3F7+C2H4
                                                    6.000E+10
                                                                0.00
                                                                        7000.00
C3F7H+CH2F = C3F7+CH3F
                                                    2.000E+11
                                                                0.00
                                                                        10000.00
                                                    2.000E+11
                                                                0.00
                                                                        10000.00
C3F7H+CHF2 = C3F7+CH2F2
C3F7H+0H = C3F7+H20
                                                    9.92e5
                                                                1.7
                                                                        1400.0
C3F7H+H = C3F7+H2
                                                    1.400E+07
                                                                1.60
                                                                        10200.00
C3F7+H = C3F6+HF
                                                                -13.87 44675.00
                                                    2.415E+63
C3F7+H = CF3-CHF+CF3
                                                    5.284E+70
                                                                -15.71
                                                                       57151.00
                                                               -14.85 32739.00
C3F7+H = C3F7H
                                                    8.551E+64
C3F7+F = CF3-CF2 + CF3
                                                    2.5e11
                                                                0.
                                                                        6000.0
T
C3F70 = C3F60 + F
                                                     2e14
                                                                0.00
                                                                      55000.00
C3F70 = CF3C0F + CF3
                                                     1e15
                                                                0.00
                                                                       10000.00
C3F60 = CF3C0 + CF3
                                                     8.5e16
                                                                0.00
                                                                       76000.00
C3F60 + H = CF3CH0 + CF3
                                                     1.3e11
                                                                0.00
                                                                       3000.00
CF3CO = CF3 + CO
                                                     2.2e13
                                                                0.00
                                                                       10000.00
C3F7(+M) = CF2CF2 + CF3(+M)
                                                     1.0e14
                                                                0.00
                                                                      76000.00
             0.0 76000.0/
LOW /4.38E19
H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ C3F7H/12.00/ HF /2.00/
C3F7 (+M) = C3F6 + F (+M)
                                                     2.0e14
                                                                0.00 69000.00
LOW /8.75E19
              0.0 69000.0/
H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ C3F7H/12.00/ HF /2.00/
|******
CF3-CHF+CF3 = C3F6+HF
                                                    7.000E+16
                                                               -1.17
                                                                         4330.00
C3F7+H202 = C3F7H+H02
                                                    9.000E+09
                                                                0.00
                                                                         1000.00
C3F7+H02 = 02+C3F7H
                                                    3.000E+11
                                                                0.00
                                                                            0.00
C3F7+CH20 = C3F7H+HC0
                                                    5.500E+03
                                                                2.80
                                                                         5900.00
C3F7+02 = C3F702
                                                    3.954E+66 -16.34
                                                                        24194.00
C3F7+02 = C3F70+0
                                                                        20065.00
                                                    1.033E+20
                                                               -1.86
|****
C3F70H => C3F60 + HF
                                                   2.000E+14
                                                                0.00
                                                                        57000.00
C3F7 + OH = CF3 + HF + CF3CO
                                                    2.2E13
                                                                 0.0
                                                                             0.0
C3F70H+H => C3F7 + H20
                                                   1.0E+13
                                                                0.00
                                                                         5000.00
C3F7+0 = CF3C0F+CF3
                                                   2.400E+13
                                                                0.00
                                                                            0.00
C3F6+OH = CF3-CHF + CF20
                                                   5.0e+12
                                                                0.00
                                                                            0.00
C3F6+F = CF3-CF2 + CF2
                                                   3.000E+13
                                                                0.00
                                                                            0.00
C3F6+0 = CF3C0F+CF2
                                                                0.00
                                                   5.800E+12
                                                                         2500.00
C3F6+0 = CF2CF2+CF20
                                                                0.00
                                                                         6300.00
                                                   3.500E+12
C3F6(+M)=CF3+CF2CF(+M)
                                                   3.200E+13
                                                                0.00
                                                                      105600.00
LOW /1.40E19
              0.0 105600.0/
H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ C3F7H/12.00/ HF /2.00/
C3F6(+M)=CF2CF2+CF2(+M)
                                                   3.200E+13
                                                                0.00
                                                                       94000.00
               0.0 94000.0/
LOW /1.40E19
H20/9.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
CH3F /6.00/ CH2F2 /6.00/ CHF3 /6.00/ C3F7H/12.00/ HF /2.00/
C3F6+H = CF3+CHFCF2
                                                    1.170E+21 -2.213
                                                                         9912.00
```

```
publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2170
```

end

This

Appendix C: Transport properties of fluorine-containing species (Chemkin format).

- 1. Species name
- 2. Molecule index: 0 = atom, 1 = linear molecule, 2 = nonlinear molecule
- 3. L-J potential well depth, ε/k_b (K)
- 4. L-J collision diameter, A^o
- 5. Dipole moment in Debye
- Polarizability in cubic Angstroms
 Rotational relaxation number, Z_{rot} at 298K
- 8. Reference, comment

1	2	3	4	5	6	7	8
F	0	80.000	2.750	0.000	0.000	0.000	! [60]
F2	1	125.700	3.301	0.000	1.600	3.800	! [60]
HF	1	330.000	3.148	1.920	2.460	1.000	!
[60](sv/mec)							
HOF	2	107.400	3.458	0.000	0.000	0.000	!
[60](ois)							
F20	2	107.400	3.458	0.000	0.000	0.000	!prwH2O2?
FO	1	109.600	3.412	0.000	0.000	0.000	!
[60](ois)							
HOOF	2	107.400	3.458	0.000	0.000	0.000	!prwH202?
F202	2	107.400	3.458	0.000	0.000	0.000	!prwH202?
F02	2	107.400	3.458	0.000	0.000	0.000	!prwH202?
CH3F	2	262.	4.123	1.8	0.000	0.000	! [61]
CH2F2	2	318.	4.08	1.8	0.0	0.0	! [60]sve
CHF3	2	240.	4.33	0.0	0.0	1	! [60]sve
CF4	2	265.57	4.35	0.0	0.0	0.0	! [62]
CH2F	2	276.7	4.15	1.8	0.0	0.0	!wtc*
CHF2	2	288.2	4.29	1.8	0.0	0.0	!wtc*
CF3	2	297.2	4.45	0.0	0.0	1	!wtc*
CHF	2	276.0	4.14	1.8	0.0	0.0	!wtc*
CF2	2	287.6	4.28	0.0	0.0	1	!wtc*
CF	1	94.2	3.635	0.0	0.0	1	!
[60](Svehla)							
CF30H	2	305.0	4.61	0.0	0.0	0.0	!wtc*
CF30F	2	314.0	4.8	0.0	0.0	0.0	!wtc*
CH2F0	2	287.0	4.27	0.0	0.0	0.0	!wtc*
CHF20	2	296.2	4.43	0.0	0.0	0.0	!wtc*
CF30	2	304.5	4.6	0.0	0.0	0.0	!wtc*
CHFO	2	286.5	4.27	0.0	0.0	0.0	!wtc*
CF20	2	350.5	4.906	0.0	0.0	0.0	!(ois)
CF0	2	285.9	4.26	0.0	0.0	0.0	!wtc*
CH3-CH2F	2	312.2	4.583	2.	0.0	0.0	! [61]
CH3-CHF2	2	323.4	4.798	2.3	0.0	0.0	! [61]
CH2F-CH2F	2	312.2	4.583	2.	0.0	0.0	! [61]
CH3-CF3	2	289.1	4.911	2.3	0.0	0.0	! [61]
CH2F-CHF2	2	323.4	4.798	2.3	0.0	0.0	! [61]
CH2F-CF3	2	323.4	4.85	2.3	0.0	0.0	! [61]
CHF2-CHF2	2	323.4	4.85	2.	0.0	0.0	! [61]
CHF2-CF3	2	265.77	4.6831	1.5	0.0	0.0	! [63]
CF3-CF3	2	231.8	4.969	0.0	0.0	0.0	! [61]
CH3-CHF	2	285.9	4.26	2.0	0.0	0.0	!wtc*

CH2F-CH2	2	285.9	4.26	2.0	0.0	0.0	!wtc*
CH3-CF2	2	295.3	4.41	2.3	0.0	0.0	!wtc*
CH2F-CHF	2	295.3	4.41	2.	0.0	0.0	!wtc*
CHF2-CH2	2	295.3	4.21	2.3	0.0	0.0	!wtc*
CH2F-CF2	2	303.6	4.58	2.3	0.0	0.0	!wtc*
CHE2-CHE	2	303.6	4.58	2.3	0.0	0.0	!wtc*
CHE2-CE2	2	312 3	4 76	2	0 0	0.0 0 0	lwtc*
	2	303 6	4.78	2.	0.0	0.0 0 0	lwtc*
	2	312 3	4.56	2.5	0.0	0.0 0 0	lwtc*
	2	512.5	4.70	2.5	0.0	0.0	:wcc
	2	223.3	4.90	1.5	0.0	0.0	
	2	2/2.2	4.522	1.4	0.0	0.0	: [C1]
	2	251.5	4.442	1.4	0.0	0.0	: [01]
	2	251.5	4.442	1.4	0.0	0.0	: [61]
	2	251.5	4.442	1.4	0.0	0.0	! [61]
CHECHE[Z]	2	251.5	4.442	1.4	0.0	0.0	! [61]
CHFCHF(Z)	2	251.5	4.442	1.4	0.0	0.0	! [61]
CHFCF2	2	303.1	4.57	1.4	0.0	0.0	!wtc*
CF2CF2	2	254.2	4.647	0.0	0.0	0.0	! [61]
CH2CF	2	284.7	4.24	1.4	0.0	0.0	!wtc*
CHFCH-E	2	284.7	4.24	1.4	0.0	0.0	!wtc*
CHFCH-Z	2	284.7	4.24	1.4	0.0	0.0	!wtc*
CHFCH[Z]	2	284.7	4.24	1.4	0.0	0.0	!wtc*
CHFCF-E	2	294.3	4.39	1.4	0.0	0.0	!wtc*
CHFCF-Z	2	294.3	4.39	1.4	0.0	0.0	!wtc*
CHFCF[Z]	2	294.3	4.39	1.4	0.0	0.0	!wtc*
CF2CH	2	294.3	4.39	1.4	0.0	0.0	!wtc*
CF2CF	2	302.7	4.56	1.4	0.0	0.0	!wtc*
C2HF	1	225.	4.25	1.	0.0	0.0	1 [61]
C2F2	1	240	4 4	<u> </u>	0 0	0.0 0 0	· [61]
C2F	1	283 5	4.73	0.0 0 0	0.0	0.0 0 0	. [∪⊥] lwtc*
	2	202.2	4.25	0.0	0.0	0.0	lwtc*
CE2C0	2	301 3	4.57	0.0	0.0	0.0	lwtc*
	2	201.3	4.55	0.0	0.0	0.0	:wcc lwtc*
	2	292.4	4.50	0.0	0.0	0.0	lute*
	2	292.4	4.50	0.0	0.0	0.0	
	2	380.2	5.02	0.0	0.0	0.0	
	2	3/8.5	5.0	0.0	0.0	0.0	!WTC*
	2	351.9	5.35	0.0	0.0	0.0	!WTC↑
	2	354.4	4.8/	0.0	0.0	0.0	! [64]
CF3CH0	2	310.8	4.73	0.0	0.0	0.0	!wtc*
CF3C0F	2	321.2	4.93	0.0	0.0	0.0	!wtc*
C3F60	2	373.7	5.56	0.0	0.0	0.0	!wtc*
C3F70H	2	410.2	5.85	0.0	0.0	0.0	!wtc*
C3F70	2	408.1	5.84	0.0	0.0	0.0	!wtc*
C3F702	2	445.4	6.08	0.0	0.0	0.0	!wtc*
C2F5C0C3F7	2	1045.0	8.2	0.0	0.0	0.0	! mw -
cor.[65]							
C3F7C0	2	398.4	6.16	0.0	0.0	0.0	! [64]
C2F5C0	2	376.4	5.59	0.0	0.0	0.0	! [64]
C3F7CH0	2	437.8	6.03	0.0	0.0	0.0	!wtc*
C2F5CH0	2	349.5	5.32	0.0	0.0	0.0	!wtc*
CF3CHCH2	2	335.	4.7	0.0	0.0	0.0	!btp-
spec,wtc*							
CF3CCH2	2	333.	4.7	2.444	6.006	0.0	!wtc*
CF3CHCH	2	333.	4.7	2.444	6,006	0.0	!wtc*
CE3CCH	2	331	4,7	0.0	0.0	0.0	lwtc*
	-			~ . •		0.0	

CF3C0CH3	2	367.	5.0	0.0	0.0	0.0	!wtc*
CH2CFCF3	2	371.	4.9	0.0	0.0	0.0	
rest, anal/cor	r	261	1 0	0 0	0 0	0 0	
!est,anal/cor	Z	501.	4.0	0.0	0.0	0.0	
CH-CFCF3	2	367.	4.9	0.0	0.0	0.0	
!est,anal/cor							
CHFCHCF3	2	371.	4.9	0.0	0.0	0.0	!R1234yf
CFCHCF3	2	335.000	4.700	2.722	4.631	1.000	
!eCHCFCF3, [29]							
CHFCCF3	2	335.000	4.700	2.722	4.631	1.000	
!eCHCFCF3, [29]							
CH2CF0	2	312.200	4.583	3.302	3.442	1.000	! [29]

! * - estimation, mw correlations

Appendix D: Tables of burning velocity data in figures.

Key: CVM: Constant volume method; CPM: constant pressure method; Tube: Vertical tube metod.

Table A- 1: Burning velocity as a function of ϕ for R-32/air mixtures. [5, 10, 16], CVM, $X_{\text{R-32}}$, stoic = 0.1736; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

Takiza	wa et al.							
[10]	E	Burrell et al	. [5]		Kim et al. [16]		
C	VM		CVM		_		CVM	
			Su	Su			Su	Su
	Su		[cm/s]	[cm/s]			[cm/s]	[cm/s]
ϕ	[cm/s]	ϕ	(OTL)	(ADI)	¢	5	(UV)	(HP)
0.9	5.97	0.9	6.1	7.04	0.	9	5.161	4.996
0.95	6.38	0.95	6.58	7.59	1	-	6.718	6.452
1	6.56	1	6.81	7.8	1.()5	7.02	6.758
1.05	6.71	1.05	7.06	8.03	1.	1	6.973	6.77
1.1	6.71	1.1	7.06	8.13	1.	2	6.599	6.513
1.2	6.35	1.2	6.66	7.75	1.	3	5.881	5.846
1.3	5.7	1.3	5.95	6.96	1.	4	4.675	4.66
1.4	4.68	1.4	4.99	5.97				

Table A- 2: Burning velocity as a function of ϕ for R-134a/O₂ mixtures from Burrell et al. [18], CVM, $X_{\text{R-134a,stoic}} = 0.400$ when $X_{\text{O}_2,\text{ox}} = 1.0$; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

$$\begin{array}{c} S_{\rm u}\\ \phi \quad [{\rm cm/s}]\\ 0.6 \quad 10.26 \end{array}$$

5
5

Table A- 3: Burning velocity as a function of the volume fraction of refrigerant in the air X_i for R-143/air mixtures [10] and R-143a/air mixtures [6, 10]; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

Takizaw [10]	va et al. CVM	Takizaw [10] (Takizawa et al. [10] CVM		Clodic ar [6]	nd Jabbour Tube
	Su		Su			Su
X R-143	[cm/s]	X R-143a	[cm/s]	_	X R-143a	[cm/s]
0.0734	8.37	0.0897	6.75		0.0901	5.94
0.0732	9.43	0.0954	6.44		0.0952	6.31
0.0787	10.77	0.0952	7.01		0.0951	6.57
0.0894	12.6	0.101	6.97		0.1051	6.59
0.0948	12	0.1066	6.86		0.1052	6.67
0.0947	13.2	0.1118	6.43		0.1151	6.01
0.1005	13.2	0.118	5.55		0.1251	4.36
0.112	12.4	0.12368	5.18			

Table A- 4: Burning velocity as a function of ϕ for R-152a/air mixtures [6, 10, 16, 18]; $X_{\text{R-152a,stoic}} = 0.0775$; initial conditions: $T_{\text{i}} = 298$ K, $P_{\text{i}} = 1$ bar.

Takizav	wa et al.	Takizav	wa et al.	Burre	ell et al.	C	lodic 8	k Jabbour	K	im et al.
[10]	CVM	[10]	CPM	[18]	CVM		[6]	CVM	[2	L6] CVM
	Su		Su		Su			Su		Su
ϕ	[cm/s]	ϕ	[cm/s]	ϕ	[cm/s]		ϕ	[cm/s]	ϕ	[cm/s]
0.76	15.07	0.757	13.47	0.8	15.55	(0.638	7.92	0.8	3 16.37
0.826	18.14	1	21.39	0.85	17.54	(0.719	11.75	0.9	20.01
0.897	20.62			0.9	18.79	(0.719	11.9	1	23.6
0.962	22.34			0.95	21.09	(0.909	19.74	1.1	24.43
1.034	23.76			1	21.89	(0.908	20.66	1.2	22.96
1.104	23.47			1.05	22.54	(0.964	22.3	1.3	19.31
1.176	22.74			1.1	23.22		1	23.03	1.4	15.15
1.251	21.2			1.15	23.01		1	23.21		
1.317	17.48			1.2	22.23		1.03	23.07		
				1.3	19.61		1.11	22.96		
							1.1	24.05		

1.18	20.77
1.18	21.42
1.32	16.17
1.34	17.15

Table A- 5: Burning velocity as a function of ϕ for R-1234yf/O₂/N₂ mixtures from Takizawa et al. [11]; CVM; $X_{\text{R-1234yf,stoic}} = 0.167, 0.153, 0.116$, and 0.0775 when $X_{\text{O}_2,\text{ox}} = 0.5, 0.45, 0.33$, and 0.21, respectively; initial conditions: $T_i = 298$ K, $P_i = 1$ bar;

X02,0	_{ox} = 0.5	X02,0x	= 0.45	Xo	$X_{O_2,ox} = 0.33$		$X_{O_2,ox} = 0.21$		
	Su		Su		Su		Su		
ϕ	[cm/s]	ϕ	[cm/s]	ϕ	[cm/s	σ] φ	[cm/s]		
0.8	15.5	0.904	13.64	1	6.721	L 0.828	0.882		
0.9	16.3	1.003	14.29	1.04	1 7.037	0.83	0.945		
1	16.75	1.058	14.52	1.14	1 7.352	0.894	1.22		
1.1	17.2	1.136	14.63	1.24	2 7.73	0.964	1.306		
1.27	17	1.221	14.77	1.35	5 7.538	0.966	1.188		
1.4	15.45	1.307	14.33	1.45	7 7.197	0.996	1.259		
		1.394	13.78			0.996	1.436		
						1	1.527		
						1.035	1.416		
						1.037	1.365		
						1.104	1.325		
						1.109	1.42		
						1.175	1.459		
						1.178	1.53		
						1.25	1.427		
						1.25	1.494		
						1.321	1.454		
						1.328	1.399		
						1.396	1.454		
						1.471	1.501		
						1.473	1.571		
						1.546	1.504		

Table A- 6: Burning velocity as a function of ϕ for R-1243zf/O₂/N₂ mixtures from Takizawa et al. [11]; CVM; $X_{\text{R-1243yf,stoic}} = 0.0567, 0.0654$, and 0.0769 when $X_{\text{O}_2,\text{ox}} = 0.21, 0.25$, and 0.30, respectively; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

<i>X</i> O ₂ ,ox = 0.21		X02,0x	<i>X</i> o ₂ ,ox = 0.25			<i>X</i> o ₂ ,ox = 0.30		
	Su		Su			Su		
ϕ	[cm/s]	ϕ	[cm/s]		ϕ	[cm/s]		
0.752	11.05	0.766	18.6	0.	.754	28.2		
0.833	12.82	0.834	20.34	C).81	25.56		
0.91	13.92	0.903	21.06	C).87	30.35		
0.958	14.14	1.0	20.98	0.	.928	30.65		
0.994	14.11	1.044	20.76		1.0	30.28		
1.025	13.99	1.116	19.87	1.0	0497	29.6		
1.075	13.61			1.	.113	28.69		
1.158	12.48							
1.242	11.01							
1.328	9.31							

Table A-7: Burning velocity as a function of the mole fraction $X_{i,f}$ of R-1234yf the mixture of (R-32/R-1234yf); CPM, 0g [22]; CVM, 1g [22]; Tube, 1g [7]; $\phi = 1$; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

Takizaw [22] <i>,</i> CP	a et al. 'M, Og	Takizaw [22], CV	a et al. ′M, 1g	Papas [7], Tu	s et al. Ibe, 1g
X _{i,f}	Su	X _{i,f}	Su	X _{i,f}	Su
	[cm/s]		[cm/s]		[cm/s]
0.3	2.27	0.488	1.74	0	6.61
0.502	1.71	0.7	1.4	0.102	4.81
		1	1.55	0.201	3.79
		1	1.22	0.3	2.86

Table A- 7: Burning velocity as a function of ϕ for R-152a/R-134a mixtures with air; CVM; data are shown for two values (0.2, 0.5) of the mole fraction $X_{i,f}$ of R-134a in the R-152a/R-134a fuel; $X_{i,stoic} = 0.0837$ and 0.0951 at $X_{i,f} = 0.2$ and 0.5; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

Takiza [19]	wa et al. , CVM	Takizav [19],	wa et al. CVM	Kir [16	n et al. j], CVM	Kim [16]	i et al. , CVM
XR-134	la,f = 0.2	$X_{ m R-134a,b}$	lend = 0.5	XR-134a	a,blend = 0.2	$X_{ m R-134a}$,	blend = 0.5
	Su		Su		Su		Su
ϕ	[cm/s]	ϕ	[cm/s]	ϕ	[cm/s]	ϕ	[cm/s]
0.755	14.3	0.77	9.37	0.8	12.11	0.85	8.26
0.887	17.72	0.826	10.96	0.9	15.96	0.9	9.41
1	19.5	0.939	11.47	1	18.2	1	10.13
1.15	17.85	0.995	11.43	1.1	18.51	1.1	10.2
1.28	13.46	1.12	10.31	1.2	17.31	1.2	9.22
		1.23	8.09	1.3	14.2	1.3	8
				1.4	11.05	1.4	6.47

Table A- 8: Burning velocity as a function of ϕ for R-152a/R-125 mixtures with air from Takizawa et al. [19]; CVM; data are shown for two values (0.2, 0.4) of the mole fraction $X_{i,f}$ of R-125 in the R-152a/R-125 blend; $X_{i,stoic} = 0.0871$ and 0.0995 at $X_{i,fuel} = 0.2$ and 0.4; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

$X_{ m i,fu}$	el = 0.2	XR-125,	fuel = 0.4
	Su		Su
ϕ	[cm/s]	ϕ	[cm/s]
0.73	12.67	0.838	7.72
0.847	15.34	0.947	7.84
0.998	17.64	1	7.44
1.17	15.95	1.06	7.16
1.29	12.05	1.12	6.92
		1.24	5.35

Table A- 9: Burning velocity as a function of ϕ for R-152a/R-116 mixtures with air from Takizawa et al. [19]; CVM; data are shown for two values (0.2, 0.4) of the mole fraction $X_{i,f}$ of R-116 in the R-152a/R-116 blend; $X_{i,stoic} = 0.0909$ and 0.110 at $X_{i,f} = 0.2$ and 0.4; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

$X_{\mathrm{R-116}}$	Χ	$X_{\text{R-116,fuel}} = 0.4$			
	Su			Su	
ϕ	[cm/s]		ϕ	[cm/s]	
0.752	13.76	C).8	5.25	
0.869	15.01	0.	847	5.86	
0.998	15.18	0.	898	5.46	
1.11	14.42		1	4.78	
1.24	11.56				

Table A- 10: Burning velocity as a function of ϕ for R-152a/R-1234yf mixtures with air from Kim et al. [16]; CVM; data are shown for two values (0.5, 0.6) of the mole fraction $X_{i,f}$ of R-1234yf in the R-152a/R-1234yf blend; $X_{i,stoic} = 0.0775$ at $X_{i,f} = 0.5$ and 0.6; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

X_{R-12}	34yf, fuel = 0.5	$X_{ m R-1234yf, fuel} = 0.6$			
	Su		Su		
ϕ	[cm/s]	ϕ	[cm/s]		
0.8	10.88	0.9	9.23		
0.9	12.68	1	9.81		
1	13.47	1.1	9.14		
1.1	13.55	1.2	8.02		
1.2	12.41	1.3	6.7		
1.3	10.2	1.4	5.52		
1.4	8.14				
1.5	6.61				

Table A- 11: Burning velocity as a function of $X_{i,f}$ of R-1234yf in R-1234yf/C₃H₈ mixtures in air from Papas et al. [7]; tube method; $\phi = 1$; initial conditions: $T_i = 298$ K, $P_i = 1$ bar.

$X_{ ext{R-1234yf,fuel}}$	Su
	[cm/s]
0.721	22.4
0.777	18.25
0.838	13.81
0.902	7.1
1	1.29

Table A- 12: Burning velocity as a function of the volume fraction $X_{i,f}$ of R-134a in R-134a/CH₄ mixtures in air with $X_{O_2,ox} = 0.185$ from Choi et al. [24]; CPM; $\phi = 1$; initial conditions: $T_i = 298$ K, $P_i = 1$ bar;

$X_{134a, fuel}$	Su
	[cm/s]
0	26.67
0.1	20.53
0.2	17.03
0.3	13.36
0.4	10.07
0.5	7.36
0.6	5.55
0.7	3.52
0.75	1.27

Table A- 13: Burning velocity as a function of the volume fraction $X_{i,f}$ of R-134a in R-134a/CH₄ mixtures in air with $X_{O_2,ox} = 0.30$ from Choi et al. [24]; $\phi = 1$; CPM; initial conditions: $T_i = 298$ K, $P_i = 1$ bar;

$X_{134a,fuel}$	Su
	[cm/s]
0	78.45
0.1	63.82
0.2	49.55
0.3	38
0.4	31.23
0.5	23.23
0.6	15.97
0.7	9.02
0.8	3.36
0.85	1.54

Table A- 14: Burning velocity as a function of the volume fraction $X_{i,f}$ of R-134a in R-134a/CH₄ mixtures in air with $X_{O_2,ox} = 0.40$ from Choi et al. [24]; CPM; $\phi = 1$; initial conditions: $T_i = 298$ K, $P_i = 1$ bar;

$X_{ m 134a, fuel}$	Su	
	[cm/s]	
0	129.7	
0.1	102.1	
0.2	82.56	
0.3	64.18	
0.4	51.25	
0.5	40.37	
0.6	28.62	
0.7	18.08	
0.8	5.908	
0.9	2.2	
0.95	1.44	

Table A- 15: Burning velocity as a function of ϕ for R-161/air and R-152/air mixtures from Takizawa et al. [17]; CVM; $X_{\text{R-152,stoic}} = 0.0775$, $X_{\text{R-161,stoic}} = 0.0654$; initial conditions: $T_i = 298 \text{ K}$, $P_i = 1 \text{ bar}$.

R-152		R -:	R-161		
ϕ	Su	ϕ	Su		
	[cm/s]		[cm/s]		
0.756	20.7	0.593	13.2		
0.823	24.2	0.668	19.5		
0.893	27	0.75	26.1		
0.962	29.1	0.834	31.3		
1.031	30.4	1.156	36.7		
1.103	30.3	1.24	33.1		
1.172	28.7	1.324	27.7		
1.249	26.9	1.407	21.2		
1.319	23.2				

Table A- 16: Burning velocity as a fi	unction of ϕ for R-41/air	mixtures from	Takizawa et al.
[17]; CVM; X _{R-41,stoic} =0.1228; initia	l conditions: $T_i = 298 \text{ K},$	$P_i = 1$ bar.	

ϕ	Su
	[cm/s]
0.706	15.5
0.749	18.4
0.794	21.3
0.838	23.9
0.883	26
0.926	27.4
0.972	28.6
0.998	28.4
1.019	28.4
1.067	27.7
1.113	26.1
1.162	23.9
1.217	20.3