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Abstract

The computation of the elastic registration of two simple curves in higher dimensions and
therefore of the elastic shape distance between them has been investigated by Srivastava
et al. Assuming the first curve has one or more starting points, and the second curve has
only one, they accomplish the computation, one starting point of the first curve at a time,
by minimizing an L2 type distance between them based on alternating computations of op-
timal diffeomorphisms of the unit interval and optimal rotation matrices that reparametrize
and rotate, respectively, one of the curves. We recreate the work by Srivastava et al., but
in contrast to it, again for curves in any dimension, we present a Dynamic Programming
algorithm for computing optimal diffeomorphisms that is linear, and justify in a purely
algebraic manner the usual algorithm for computing optimal rotation matrices, the Kabsch-
Umeyama algorithm, which is based on the computation of the singular value decompo-
sition of a matrix. In addition, we minimize the L2 type distance with a procedure that
alternates computations of optimal diffeomorphisms with successive computations of op-
timal rotation matrices for all starting points of the first curve. Carrying out computations
this way is not only more efficient all by itself, but, if both curves are closed, allows appli-
cations of the Fast Fourier Transform for computing successively in an even more efficient
manner, optimal rotation matrices for all starting points of the first curve.

Key words

dynamic programming; elastic shape distance; FFT; rotation matrix; shape analysis; singu-
lar value decomposition.
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1. Introduction

In this paper, following ideas in [13, 14], we address the problem of computing the elastic
shape distance between two simple curves, not necessarily closed, in d−dimensional space,
d a positive integer, or equivalently the problem of computing the elastic registration of
two such curves. If neither curve is closed so that each curve has a fixed starting point,
this is done by finding a diffeomorphism of the unit interval, and a d× d rotation matrix,
that reparametrizes and rotates, respectively, one of the curves, not necessarily the same
curve for both operations, so that an L2 type distance between the curves is minimized.
The resulting minimum distance is then the elastic shape distance between the curves and
the result of the reparametrization and rotation of the curves is their elastic registration.
On the other hand, if, say, the first curve is closed so that any point in it can be treated
as a starting point of the curve, then a finite subset of consecutive points is selected in
the curve in the direction in which the curve is defined, in such a way that the subset
is reasonably dense in the curve (by joining consecutive points in the subset with line
segments, the resulting piecewise linear curve should be a reasonable approximation of the
curve). This finite subset of the first curve is interpreted to be the set of starting points of the
curve. A fixed starting point is then identified on the other curve, the second curve, perhaps
arbitrarily if the curve is closed. In [13, 14], given a point in the set above interpreted to
be the set of starting points of the first curve, using the point as the starting point of the
(first) curve, an optimal diffeomorphism and an optimal rotation matrix are found in the
same manner as described above for the case in which neither curve is closed. Again in
[13, 14], this is done for each point in the set, and the point for which the L2 type distance
is the smallest is then considered to be the optimal starting point in the first curve, and the
optimal diffeomorphism and optimal rotation matrix associated with it are then treated as
the optimal diffeomorphism and optimal rotation matrix that produce the elastic registration
of the two curves and the elastic shape distance between them.

We note that above we have tacitly assumed that the curves are defined in the proper
directions for the purpose of unambiguously comparing their shapes. We have done this
for simplicity as in reality it may not be the case. Given a simple curve in d−dimensional
space, it has two possible directions in which it can be defined. In particular, in 2−dimensio-
nal space (the plane), a closed simple curve is defined in either the clockwise direction
or the counterclockwise direction, and if the shapes of two closed simple curves in the
plane are to be compared, it only makes sense that both be defined in the same direc-
tion (clockwise or counterclockwise). Unfortunately, in general, defining two curves in
d−dimensional space in the proper directions cannot be done this way, and the only alter-
native is first to compute the elastic shape distance and registration with the curves as given
and then reverse the direction of one of the curves and do the computations again. The
smaller of the two computed elastic shape distances then determines the proper directions
of the curves, and therefore their correct elastic registration. Again for simplicity, in the
rest of this paper, given two simple curves in d−dimensional space, we assume they are
defined in the proper directions for all purposes, keeping in mind that if this is not the case,
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Fig. 1. Two views of the same two helices, curves in 3−d space. The positive z−axis is the axis of
rotation of one helix, while the positive x−axis is the axis of rotation of the other one. Their shapes
are essentially identical thus the elastic shape distance between them should be essentially zero.

all that is required to fix them, is that the direction of one of the curves be reversed.
Being able to compute the elastic registration of two curves and the elastic shape dis-

tance between them in higher dimensions, in particular in three dimensions, is useful for
studying fiber tracts, geological terrains, protein structures, facial surfaces, color images,
cylindrical helices, etc. See Figure 1 that depicts two such curves in 3−dimensional space.
(Note that in the plots there, the y−axis is not to scale relative to the x−axis and the z−axis).

As mentioned above, in this paper, we address the problem of computing the elastic
registration of two simple curves in d−dimensional space, and the elastic shape distance
between them following ideas in [13, 14]. However, in contrast to [13, 14], we present
a method for computing optimal diffeomorphisms that is linear, and justify in a purely
algebraic manner the usual algorithm for computing optimal rotation matrices. With the
convention that if at least one of the curves is closed, the first curve is closed, so that
any point in it can then be treated as a starting point of the curve, we redefine the L2 type
distance to allow for the second curve to be reparametrized while the first one is rotated, and
select, in the appropriate manner, just as it is done in [13, 14], a finite subset of points in the
(first) curve (one point if neither curve is closed) which we interpret to be the set of starting
points of the curve. We then minimize the redefined L2 type distance with an iterative
procedure that alternates computations of optimal diffeomorphisms (a constant number of
them per iteration for reparametrizing the second curve) with successive computations of
optimal rotation matrices (for rotating the first curve) for all starting points of the first
curve. (Note that in [13, 14] the alternating computations occur one starting point of the
first curve at a time). As noted in [4], carrying out computations this way is not only more
efficient all by itself, but, if both curves are closed, allows applications of the Fast Fourier
Transform (FFT) as demonstrated in [5] for d = 2, for computing successively in an even
more efficient manner, optimal rotation matrices for all starting points of the first curve.

In Section 2 of this paper, we describe a fast linear Dynamic Programming (DP) algo-
rithm for computing an approximately optimal diffeomorphism for the elastic registration
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of two simple curves in d−dimensional space, the curves not necessarily closed, each curve
with a fixed starting point, the computation of the registration based only on reparametriza-
tions (with diffeomorphisms of the unit interval) of one of the curves. In Section 3, we
describe and justify the usual algorithm, the Kabsch-Umeyama algorithm, for computing
an approximately optimal d×d rotation matrix for the rigid alignment of two simple curves
in d−dimensional space, the curves not necessarily closed, each curve with a fixed starting
point, the computation of the alignment based only on rotations (with rotation matrices) of
one of the curves. The algorithm, which is based on the computation of the singular value
decomposition of a matrix, is justified in a purely algebraic manner. In Section 4, given
two simple curves in d−dimensional space, one considered to be the first curve, the other
the second curve, and then keeping in mind that the first curve can have one or more start-
ing points while the second curve has only one, we redefine the L2 type distance between
them as hinted above, and present the iterative procedure mentioned above that minimizes
this distance by alternating computations of approximately optimal diffeomorphisms (a
constant number of them per iteration) with successive computations of approximately op-
timal rotation matrices for all starting points of the first curve. In Section 5, assuming both
curves are closed, we show how the FFT can be used to speed up the successive compu-
tations of approximately optimal rotation matrices for all starting points of the first curve.
Finally, in Section 6, we present results computed with implementations of our methods
applied on curves in 3−d space of the helix and spherical ellipsoid kind.

2. Computation of Diffeomorphism for Registration of Curves

In this section, we describe a fast Dynamic Programming (DP) algorithm that runs in linear
time to compute an approximately optimal diffeomorphism for the elastic registration of
two simple curves in d−dimensional space, d a positive integer, the curves not necessarily
closed, each curve with a fixed starting point. Here the computation of the registration is
based only on reparametrizations (with diffeomorphisms) of one of the curves. Because
the algorithm depends on a couple of input parameters that should be small but sometimes
are too small, it is not guaranteed to succeed every time, but in our experiments we have
observed very convincing results for every problem on which the algorithm was applied,
a few times after adjustments to the parameters. Here and in what follows, given T > 0
and an integer N > 0, we say a curve is discretized by a partition {ti}N

i=1, t1 = 0 < t2 <
.. . < tN = T , of [0,T ], if a function β : [0,T ]→ Rd has been identified to represent the
curve (β is continuous and satisfies that its range is exactly the curve), and the curve is
given as the set of N nodes equal to {β (ti), i = 1, . . . ,N}. On input, the two curves under
consideration are given as discrete sets of nodes in the curves, the result of discretizing the
curves by partitions not necessarily uniform of [0,1], the numbers of nodes in the curves not
necessarily equal. Given that the numbers of nodes in the curves are N and M, respectively,
then the algorithm is indeed linear as it runs in O(N +M) time (see below). We note that
what follows in this section about the algorithm, already appears in [1] for d = 2. We repeat
it not only for self-containment but for clarity as it is what must be said about the algorithm
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for any d besides d = 2.
Assume the curves can be represented by functions βn : [0,1]→ Rd, n = 1,2, that are

absolutely continuous (see [2, 13]) and of unit length, and given n, n = 1,2, assume βn(0)
is the fixed starting point of βn, and if βn is closed, then βn(0) = βn(1), β̇n(0) = β̇n(1)
(here and in what follows, we may refer to the curve that βn represents simply by βn).
With ‖ · ‖ as the d−dimensional Euclidean norm, we define qn : [0,1]→ Rd, n = 1,2, by
qn(t) = β̇n(t)/‖β̇n(t)‖1/2 (d−dimensional 0 if β̇n(t) equals d−dimensional 0), qn the shape
function or square-root velocity function (SRVF) of βn, and note that because βn is of unit
length, then

∫ 1
0 ‖qn(t)‖2dt = 1 < ∞, the integral here and in what follows computed as a

Lebesgue integral, so that qn is square integrable for n = 1,2 (see [2, 13]). Note as well

that for d = 1, qn(t) equals sign(β̇n(t))
√
|β̇n(t)|, n = 1,2, the square-root slope function

(SRSF) of βn, and for any d, any real number C and any square-integrable q : [0,1]→ Rd

with
∫ 1

0 ‖q(t)‖2dt = 1, the function β : [0,1]→Rd defined by β (t) =C+
∫ t

0 q(s)|q(s)|ds is
absolutely continuous and of unit length with SRVF equal to q almost everywhere on [0,1]
(see [2, 13]). Finally, we note, given an absolutely continuous function β : [0,1]→Rd and γ

a diffeomorphism of [0,1] onto itself with γ(0) = 0,γ(1) = 1, γ̇ > 0, then (β ◦γ)(0) = β (0),
and if q is the SRVF of β , then the SRVF of β ◦ γ equals (q◦ γ)

√
γ̇ almost everywhere on

[0,1] (see [2, 13]). Defining F(t,γ(t), γ̇(t)) = ‖q1(t)−
√

γ̇(t)q2(γ(t))‖2, γ as above, we
minimize the following energy with respect to γ

E(γ) =
∫ 1

0
F(t,γ(t), γ̇(t))dt. (1)

In practice, we need to solve a discretized version of the problem. Thus, for positive in-
tegers N, M, not necessarily equal, and partitions of [0,1], {ti}N

i=1, t1 = 0< t2 < .. . < tN = 1,
{z j}M

j=1, z1 = 0< z2 < .. .< zM = 1, not necessarily uniform, we assume β1 and β2 are given
as lists of N and M points or nodes in the curves, respectively, where for i = 1, . . . ,N, β1(ti)
is the ith point in the list for β1, and for j = 1, . . . ,M, β2(z j) is the jth point in the list for β2.
We note that {β1(ti), i = 1, . . . ,N} is then a set of consecutive points in β1 in the direction
in which β1 is defined, and it should be defined in such a way that it is reasonably dense
in β1 (by joining consecutive points in it with line segments, the resulting piecewise linear
curve should be a reasonable approximation of β1). Similarly for {β2(z j), j = 1, . . . ,M}
with respect to β2. We also assume β̇1(ti), i = 1, . . . ,N, and β̇2(z j), j = 1, . . . ,M, are
approximately computed with centered finite differences from the lists of points for β1
and β2, respectively, so that q1(ti), i = 1, . . . ,N, and q2(z j), j = 1, . . . ,M, are then ap-
proximately computed by setting q1(ti) = β̇1(ti)/‖β̇1(ti)‖1/2 (d−dimensional 0 if β̇1(ti)
equals d−dimensional 0), i = 1, . . . ,N, and q2(z j) = β̇2(z j)/‖β̇2(z j)‖1/2 (d−dimensional 0
if β̇2(z j) equals d−dimensional 0), j = 1, . . . ,M. Finally, given γ , treating (1) as a Riemann
integral, we discretize (1) with the trapezoidal rule:

E(~γ) =
1
2

N−1

∑
i=1

hi(F(ti+1,γi+1, γ̇i+1)+F(ti,γi, γ̇i)), (2)
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where hi = ti+1−ti for i = 1, . . . ,N−1, F(ti,γi, γ̇i) is understood to be ‖q1(ti)−
√

γ̇iq2(γi)‖2

for i= 1, . . . ,N,~γ = (γi)
N
i=1, γ1 = 0,γN = 1, γi = γ(ti), γ̇i = (γi+1−γi)/hi for i= 1, . . . ,N−1,

γ̇N = γ̇1, and q2(γi), i = 1, . . . ,N, are approximations of q2 at each γi obtained from the
interpolation of q2(z j), j = 1, . . . ,M, by a cubic spline. Thus, the problem of minimizing
(1) with respect to γ then becomes, in practice, the problem of minimizing (2) with respect
to a discretized γ .

For this purpose, we consider the N×M grid on the unit square with grid points labeled
(i, j), i, j integers, 1 ≤ i ≤ N, 1 ≤ j ≤M, each grid point (i, j) coinciding with the planar
point (ti,z j).

If the mesh of each partition, i.e., max(tm+1− tm),1 ≤ m ≤ N − 1, and max(zm+1−
zm),1 ≤ m ≤M− 1, is sufficiently small, then the set of diffeomorphisms γ of [0,1] onto
itself with γ(0) = 0,γ(1) = 1, γ̇ > 0, can be approximated by the set of homeomorphisms
of [0,1] onto itself whose graphs are piecewise linear paths from grid point (1,1) to grid
point (N,M) with grid points as vertices, each linear component of a path having positive
slope. We refer to the latter set as Γ. Then γ in Γ is an approximate diffeomorphism of [0,1]
onto itself and as such an energy conceptually faithful to (2) can be defined and computed
for it. This is done one linear component of the graph of γ at a time.

Accordingly, given grid points (k, l), (i, j), k < i, l < j, that are endpoints of a linear
component of the graph of γ , an energy of a trapezoidal nature over the line segment joining
(k, l) and (i, j) is defined as follows:

E(i, j)
(k,l) ≡

1
2

i−1

∑
m=k

(tm+1− tm)(Fm+1 +Fm), (3)

Fm ≡ F(tm,α(tm),L), m = k, . . . , i,

where F(tm,α(tm),L) is understood to be ‖q1(tm)−
√

Lq2(α(tm))‖2 for m = k, . . . , i, where
α is the linear function from [tk, ti] onto [zl,z j] whose graph is the line segment, α(tk) = zl ,
α(ti) = z j, L is the slope of the line segment, and q2(α(tm)), m= k . . . , i, are approximations
of q2 at each α(tm) obtained again from the interpolation of q2(zr), r = 1, . . . ,M, by a
cubic spline. Note, L =

z j−zl
ti−tk

> 0 as z j > zl, ti > tk. The energy for γ , which we denote
by E0(γ), is then defined as the sum of the energies over the linear components of the
graph of γ with α in (3) coinciding with γ on each component. Thus, the problem of
minimizing (2) is then replaced by the approximately equivalent and easier to solve problem
of minimizing E0(γ) for γ ∈ Γ.

For the purpose of efficiently computing γ∗ ∈ Γ of approximately minimum energy, i.e.,
γ∗ ∈ Γ such that γ = γ∗ approximately minimizes E0(γ) for γ ∈ Γ, we present an algorithm
below that uses DP on sets of grid points around graphs of estimates of γ∗, one set at a time,
each set containing the corner grid points (1,1) and (N,M), each set defined each time a
new estimate of γ∗ is identified, each set coarser than the previous one, each set contained
in and associated with an essentially thin region, i.e., a strip, in the unit square that contains
the current estimate of γ∗. In this algorithm, a general DP procedure, Procedure DP, whose
outline follows, is executed, for each strip as just described, on the set R of grid points
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associated with the strip, for the purpose of minimizing E0(γ) (adjusted for R, see below)
for γ ∈ Γ, γ satisfying that all of its vertices are in R. For such sets R the computational cost
is low (the search space is relatively small), and their selection is such that it is highly likely
the final DP solution is of approximately minimum energy and therefore can be assumed
to be the desired γ∗. Since the collection of strips has the appearance of one single strip
whose shape evolves as it mimics the shapes of graphs of estimates of γ∗, we think of
the collection as indeed being one single strip, a dynamic strip that we call adapting strip
accordingly. Thus, we propose using an adapting strip as just described with a width that
is constant (O(1)) as it evolves around graphs of estimates of γ∗. Obviously we do not
know γ∗, but can estimate it using DP solutions as the sets R associated with the strips
become coarser. However, before going into the specifics of our proposed algorithm, we
will describe Procedure DP operating on a generic R.

The set R of labeled grid points can be any subset of the interior grid points plus the
corner grid points (1,1), (N,M). Given any such R, we denote by Γ(R) the set of elements
of Γ with all vertices in R (note, R can have as few as three points in which case Γ(R)
has only one element). Accordingly, with the energy in (3) adjusted for R (see below) and
E0(γ) for γ ∈ Γ(R) adjusted accordingly, given a positive integer layrs (e.g., layrs = 5)
which determines the size of certain neighborhoods to be searched (see below), then, based
on DP, Procedure DP that follows, in O(|R|) time, will often (depending on layrs) compute
γ∗ ∈ Γ(R) such that γ = γ∗ approximately minimizes E0(γ) (adjusted for R, see below)
for γ ∈ Γ(R), |R| the cardinality of R.

As the DP procedure progresses over the indices (i, j) in R, it examines function values
on indices (k, l) in a trailing neighborhood N(i, j) of (i, j). In the full DP, we would be
examining all (k, l) in R, 16 k < i,16 l < j. This has high computational cost, and is not
necessary for our applications. Using a much smaller square neighborhood N(i, j) of ω

points (ω = layrs) per side gives satisfactory results. Thus, for each (i, j) in R, we examine
at most ω2 indices (k, l) in the trailing neighborhood N(i, j) (defined below). Then the
overall time complexity is O(ω2|R|). We formally define N(i, j) by

N(i, j) = {(k, l) ∈ R : k is one of ω largest indices < i
and l is one of ω largest indices < j}.

Note that in the case in which N(i, j) happens to be empty then a grid point (k, l) in R, k < i,
l < j, perhaps (k, l) = (1,1), is identified and N(i, j) is set to {(k, l)}

The DP procedure follows. First, however, we clarify some implicit conventions in the
procedure logic. Grid points (i, j) in R are processed one at a time. However, the main loop
in the DP procedure takes place over the single index i. We process index i in increasing
order, and for each i, each grid point (i, j) in R is processed before moving to the next i.
Also in the procedure, pairs of indices m1, m2 are retrieved from an index set M , satisfying
m1 < m2 with no other index in M greater than m1 and less than m2. This has the effect of
adjusting for R energies computed according to (3).

6
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procedure DP
E(1,1) = 0
for each (i, j) 6= (1,1) in R in increasing order of i do

for each (k, l) ∈ N(i, j) do
α = linear function, α(tk) = zl , α(ti) = z j

L = slope of line segment (k, l)(i, j)
M = {m : k ≤ m≤ i,∃(m,n) ∈ R}
Fm = F(tm,α(tm),L) for each m ∈M

E(i, j)
(k,l) =

1
2 ∑m1,m2∈M (tm2− tm1)(Fm2 +Fm1)

end for
E(i, j) = min(k,l)∈N(i, j)(E(k, l)+E(i, j)

(k,l))

P(i, j) = argmin(k,l)∈N(i, j)(E(k, l)+E(i, j)
(k,l))

end for
end procedure

We note that γ∗ ∈ Γ(R) such that γ = γ∗ approximately minimizes E0(γ) (adjusted for
R) for γ ∈ Γ(R) can then be obtained by backtracking from (N,M) to (1,1) with pointer
P above. Accordingly, Procedure opt-diffeom that follows, will produce γ∗ in the form
~γ∗ = (γ∗m)

N
m=1 = (γ∗(tm))N

m=1:

procedure opt-diffeom
γ∗N = 1
(i, j) = (N,M)
while (i, j) 6= (1,1) do

(k, l) = P(i, j)
γ∗k = zl
for each integer m,k < m < i do

γ∗m = (ti−tm)
(ti−tk)

zl +
(tm−tk)
(ti−tk)

z j

end
(i, j) = (k, l)

end while
end procedure

In what follows, we present the linear DP algorithm which we call adapt-DP, based on
DP restricted to an adapting strip, to compute an approximately optimal diffeomorphism
for the elastic registration of two curves in d−dimensional space. It has parameters layrs,
lstrp, set to small positive integers, say 5, 30, respectively. Parameter layrs is as previously
described, while lstrp is an additional parameter that determines the width of the adapting
strip (see below). Although adapt-DP is not guaranteed to be always successful (one or
both of layrs, lstrp may be too small), it has been observed to produce convincing results
for every problem on which the algorithm has been applied, a few times after adjustments
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to one or both parameters. The original ideas for this algorithm are described in [8, 12] in
the context of graph bisection and dynamic time warping.

As presented below, adapt-DP is essentially an iterative process that restricts its search
to the adapting strip around graphs of estimated solutions. Each iteration culminates with
the execution of Procedure DP for recursively projecting a diffeomorphism obtained from
a lower resolution grid to one of higher resolution until full resolution is attained. For
simplicity, we assume here N = M = 2n + 1 for some positive integer n. Extending the
algorithm to allow N, M to have any values is straightforward. Note, we don’t assume
partitions {tl}, {zl} are uniform. Finally, after the last execution of Procedure DP in adapt-
DP, Procedure opt-diffeom is performed to obtain, depending on layrs and lstrp, optimal
γ∗ in Γ. Algorithm adapt-DP follows:

algorithm adapt-DP (DP algorithm)
2. I(1) = J(1) = 1
3. P(N,M) = (1,1)

for r = 1 to n do
5. NI = NJ = 2r +1
6. for m = 1 to NI−1 do
7. I(m+1) = m ·2n−r +1
8. r′m = 1

2(tI(m)+ tI(m+1))

end for
for m = 1 to NJ−1 do

J(m+1) = m ·2n−r +1
12. s′m = 1

2(zJ(m)+ zJ(m+1))

end for
14. r′1 = s′1 = 0
15. r′NI−1 = s′NJ−1 = 1

(i, j) = (N,M)
D = /0

18. while (i, j) 6= (1,1) do
(k, l) = P(i, j)

**********************************************
20. Here below, for integers m′, n′, 1 < m′ < NI,
21. 1 < n′ < NJ, bin B(m′,n′)≡
22. {(x,y) : r′m′−1 ≤ x≤ r′m′,s

′
n′−1 ≤ y≤ s′n′}

**********************************************
identify bins B(m′,n′), 1 < m′ < NI,
1 < n′ < NJ, the interiors of which are
intersected by line segment (i, j)(k, l)
D′ = {(m′,n′) : (i, j)(k, l)∩B(m′,n′) 6= /0}
D = D∪D′

(i, j) = (k, l)
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end while
R = {(1,1),(N,M)}

31. for each (m′,n′) in D do
i0 = max{2,m′− lstrp}
j0 = max{2,n′− lstrp}
R1 = {(i, j) : i = I(i′), i0 ≤ i′ ≤ m′, j = J(n′)}
R2 = {(i, j) : j = J( j′), j0 ≤ j′ ≤ n′, i = I(m′)}
R = R∪R1∪R2

end for
38. execute procedure DP on R

end for
execute procedure opt-diffeom to obtain γ∗

end algorithm

In the outline of adapt-DP above, we note in line 5, NI starts equal to 3 (for r = 1) and
then it is essentially doubled at each iteration r > 1 until it becomes equal to N at the nth

iteration. We note in line 2 and in line 7 inside the for loop at line 6, the range of I starts with
3 integers (for r = 1) and then essentially doubles in size at each iteration r > 1, contains
the previous range of I from preceding iteration, and is evenly spread in the set {1,2, . . . ,N}
until it becomes this set. We note as well from the well-known sum of a geometric series
that since N = 2n +1 then the sum of the NI’s, i.e., (21 +1)+(22 +1)+ . . .+(2n +1), is
O(N). Clearly, all of the above applies to NJ, M, and the range of J.

We note that the while loop at line 18 identifies certain cells in the Voronoi diagram
[16] of the set of grid points R′ ≡ {(i, j) : i = I(m′), j = J(n′), 1 < m′ < NI, 1 < n′ < NJ}
restricted to the unit square. Indeed bin B(m′,n′) as defined in lines 20-22, in terms of the
computations in lines 8, 12, 14, 15, is exactly the Voronoi cell of (I(m′),J(n′)), and all
such cells together partition the unit square. Accordingly, with γ∗ encoded in P in line 3
(r = 1) or in line 38 (r > 1) through the execution of Procedure DP in the previous iteration
(r−1), it must be that every point in the graph of γ∗ is in some bin B(m′,n′). Thus, it then
seems reasonable to say that a reliable region of influence of γ∗ is the region around the
graph of γ∗ formed by the union of bins within a constant number of bins from the graph.
Accordingly, to be precise, a bin B is part of this region if and only if there is a bin B′,
the interior of which the graph of γ∗ intersects, B within a constant number (lstrp) of bins
from B′, B directly below or to the left of B′, or B equal to B′ (see Figure 2). We note that
identifying this region is essentially accomplished in the while loop at line 18 and the for
loop at line 31, with the region understood to be the union of bins or Voronoi cells B(m′,n′)
of grid points in R at the end of the for loop. Clearly, the region contains the graph of γ∗,
and has the appearance of a strip whose shape evolves from one iteration to the next as it
closely mimics the shape of the graph of γ∗ (see Figure 2), and thus it is referred to as an
adapting strip. Finally, we note that at the end of the for loop, γ∗ in Γ(R)⊆ Γ(R′) encoded
in P for the current iteration, is obtained in line 38 with Procedure DP restricted to the
region or adapting strip, a region that as just described depends on all previous γ∗ functions
from previous iterations. The last γ∗ obtained is then, depending on layrs, optimal in Γ(R),
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Fig. 2. On left is γ∗ from 2nd iteration, NI = NJ = 22 +1 = 5. In center, during 3rd iteration,
NI = NJ = 23 +1 = 9; shaded bins are bins the interior of which γ∗ intersects. On right, shaded
bins form adapting strip in which next γ∗ is computed. Each shaded bin is within 2 bins (lstrp = 2)
of a bin which is above, to the right of, or equal to it, and whose interior has nonempty intersection
with the current γ∗.

and, depending on layrs and lstrp, in Γ(R′).
With γ∗ as above during the execution of the while loop at line 18 for iteration r, we

note that since γ∗ is in Γ(R) then the number of bins B(m′,n′) whose interiors the graph
of γ∗ intersects must be O(NI +NJ), which is also the time required to find them one
linear component of the graph at a time. Since |R| at end of the for loop at line 31 is then
O(lstrp) ·O(NI +NJ), i.e., O(NI+NJ), the complexity of Procedure DP at line 38 is then
O(NI+NJ), and since as mentioned above the sum of the NI’s and NJ’s is O(N) and O(M),
respectively, then the complexity of adapt-DP must be O(N +M), implying adapt-DP is
linear.

3. Computation of Rotation for Rigid Alignment of Curves

In this section, we describe and justify in a purely algebraic manner the usual algorithm for
computing an optimal rotation for rigid alignment of two simple curves in d−dimensional
space, d a positive integer, the curves not necessarily closed, each curve with a fixed starting
point. Here the computation of the alignment is based only on rotations (with d×d rotation
matrices) of one of the curves. We note, if d equals 1, the only 1×1 rotation matrix possible
is the one whose sole entry is 1. For simplicity we say that this matrix equals 1. We also
note, results presented here for the justification already appear in [9], although not in the
context of shape analysis.

We assume we have two simple curves in d−dimensional space represented by func-
tions βn : [0,1]→Rd , n= 1,2, that are absolutely continuous and of unit length, and square-
integrable functions qn : [0,1]→ Rd , ‖qn‖2

L2 =
∫ 1

0 ‖qn(t)‖2dt = 1, n = 1,2, the shape func-
tions or SRVF’s of βn, n = 1,2, respectively, where ‖ · ‖ is the d−dimensional Euclidean
norm and ‖ ·‖L2 is the L2 norm for functions in L2([0,1],Rd). Given n, n = 1,2, we also as-
sume βn(0) is the fixed starting point of βn. Note, given an absolutely continuous function
β : [0,1]→Rd and R a rotation matrix in Rd , if q is the SRVF of β , then Rq is the SRVF of
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Rβ (see [13]). Ideally, an optimal rotation matrix R in Rd is found, i.e., a d×d orthogonal
matrix R with det(R) = 1 (of determinant 1), that minimizes

E(R) =
∫ 1

0
‖q1(t)−Rq2(t)‖2dt. (4)

For this purpose E(R) in (4) is rewritten as follows:

E(R) = ‖q1‖2
L2 +‖q2‖2

L2−2
∫ 1

0
qT

1 (t)Rq2(t)dt = 2−2
∫ 1

0
qT

1 (t)Rq2(t)dt

(note, ‖Rq2(t)‖ = ‖q2(t)‖ since R is a rotation matrix). Then minimizing (4) over all
rotation matrices R is equivalent to maximizing∫ 1

0
qT

1 (t)Rq2(t)dt = tr(RAT ),

where tr(RAT ) is trace of RAT and A is a d×d matrix with entries Ak j =
∫ 1

0 q1k(t)q2 j(t)dt,
where q1k(t), q2 j(t) are the kth and jth coordinates of q1(t) and q2(t), respectively, for each
pair k, j = 1, . . . ,d. We refer to this matrix as the matrix A associated with (4).

As noted in Section 2, in practice, we need to solve a discretized version of the problem.
Thus, β1 and β2 are given as finite lists of points, say N points per curve for some integer
N > 0. For some partition {tl}N

l=1, t1 = 0 < t2 < .. . < tN = 1, (not necessarily uniform) of
[0,1], then for n = 1,2, βn is given as βn(tl), l = 1, . . . ,N. Similarly for q1, q2, except that
for l = 1, . . . ,N, q1(tl) and q2(tl) are computed as described in Section 2. That the lists for
β1 and β2, and therefore for q1 and q2, must have the same number of points with the same
partition is dictated by the way optimal rotation matrices are computed as described below.
In what follows, for l = 1, . . . ,N, k = 1, . . . ,d, j = 1, . . . ,d, ql

1 is q1(tl), ql
2 is q2(tl), ql

1k is
the kth coordinate of ql

1, and ql
2 j is the jth coordinate of ql

2. We then discretize integral (4)
using the trapezoidal rule:

Ediscr(R) =
N−1

∑
l=1

1/2(tl+1− tl)(‖q1(tl)−Rq2(tl)‖2 +‖q1(tl+1)−Rq2(tl+1)‖2)

=
N

∑
l=1

hl ‖q1(tl)−Rq2(tl)‖2 =
N

∑
l=1

hl ‖ql
1−Rql

2‖2, (5)

where h1 = (t2− t1)/2, hN = (tN − tN−1)/2, and for l = 2, . . . ,N−1, hl = (tl+1− tl−1)/2.
Note, hl > 0 for each l, l = 1, . . . ,N, and ∑

N
l=1 hl = 1.

Note that minimizing (5) over all rotation matrices R is an instance of solving the so-called
Wahba’s problem [11, 17] which is the problem of minimizing ∑

N
l=1 wl ‖ql

1−Rql
2‖2 over

all rotation matrices R, where the wl’s are nonnegative weights.
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Noting ‖Rql
2‖= ‖ql

2‖, l = 1, . . . ,N, we can rewrite (5) as follows

Ediscr(R) =
N

∑
l=1

hl (‖ql
1‖2 +‖ql

2‖2)−2
N

∑
l=1

hl ((ql
1)

T Rql
2),

so that minimizing (5) over all rotation matrices R is equivalent to maximizing

N

∑
l=1

hl (ql
1)

T Rql
2 = tr(RAT ), (6)

where A is the d×d matrix with entries Ak j = ∑
N
l=1 hl ql

1kql
2 j, for each pair k, j = 1, . . . ,d.

We refer to this matrix as the matrix A associated with (5). Focusing our attention on this
matrix, as opposed to doing it on the matrix A associated with (4), then an optimal rota-
tion matrix R for (6), thus for (5), can be computed from the singular value decomposition
of A or, more precisely, with the Kabsch-Umeyama algorithm [6, 7, 15] (see Algorithm
Kabsch-Umeyama below, where diag{s1, . . . ,sd} is the d× d diagonal matrix with num-
bers s1, . . . ,sd as the elements of the diagonal, in that order running from the upper left to
the lower right of the matrix). A singular value decomposition (SVD) [10] of A is a repre-
sentation of the form A =USV T , where U and V are d×d orthogonal matrices and S is a
d× d diagonal matrix with the singular values of A, which are nonnegative real numbers,
appearing in the diagonal of S in descending order, from the upper left to the lower right
of S. Note that any matrix, not necessarily square, has a singular value decomposition, not
necessarily unique [10]. Note as well that an optimal rotation matrix R for integral (4) can
also be computed in a similar manner using the matrix A associated with (4). However,
in what follows, for the obvious reasons, we focus our attention on the discretized inte-
gral (5). Finally, note that applications of the Kabsch-Umeyama algorithm similar to the
one just decribed here can be found in [5, 13].

Algorithm Kabsch-Umeyama (KU algorithm)

Set h1 = (t2− t1)/2, hN = (tN− tN−1)/2, hl = (tl+1− tl−1)/2 for l = 2, . . . ,N−1.
Set ql

1k equal to kth coordinate of q1(tl) for l = 1, . . . ,N, k = 1, . . . ,d.
Set ql

2 j equal to jth coordinate of q2(tl) for l = 1, . . . ,N, j = 1, . . . ,d.
Compute Ak j = ∑

N
l=1 hl ql

1kql
2 j for each pair k, j = 1, . . . ,d.

Identify d×d matrix A with entries Ak j for each pair k, j = 1, . . . ,d.
Compute SVD of A, i.e., identify d×d matrices U , S, V , so that A =USV T

Set s1 = . . .= sd−1 = 1.
if det(UV )> 0 then set sd = 1.
else set sd =−1. end if
Set S̃ = diag{s1, . . . ,sd}.
Compute and return R =US̃V T and maxtrace = tr(RAT ).
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We note that if d = 1, the KU algorithm still computes R and maxtrace, with the re-
sulting R always equal to 1. We should also note that alternative methods for d = 2, 3 to
the Kabsch-Umeyama algorithm, i.e., that do not use the SVD to compute a rotation matrix
R that maximizes tr(RM) over all d× d rotations matrices, M a d× d matrix, have been
presented in [3].

Now we justify the KU algorithm using exclusively simple concepts from linear alge-
bra, mostly in the proof of the proposition that follows. The algorithm has been previously
justified in [6, 7, 15], however the justifications there are not totally algebraic as they are
based on the optimization technique of Langrange multipliers. The justification here al-
ready appears in [9], however it was not developed there in the context of shape analysis.
Accordingly we develop it here with that context in mind (the matrix A in the outline of the
KU algorithm above is defined in that context) but mainly for self-containment and clarity.

Proposition 1: If D = diag{σ1, . . . ,σd}, σ j ≥ 0, j = 1, . . . ,d, and W is a d×d orthogonal
matrix, then
1. tr(WD)≤ ∑

d
j=1 σ j.

2. If B is a d×d orthogonal matrix, S = BT DB, then tr(WS)≤ tr(S).
3. If det(W ) =−1, σd ≤ σ j, j = 1, . . . ,d−1, then tr(WD)≤ ∑

d−1
j=1 σ j−σd .

Proof: Since W is orthogonal and if Wk j, k, j = 1, . . . ,d, are the entries of W , then, in par-
ticular, Wj j ≤ 1, j = 1, . . . ,d, so that
tr(WD) = ∑

d
j=1Wj jσ j ≤ ∑

d
j=1 σ j, and therefore 1. holds.

Accordingly, assumming B is a d×d orthogonal matrix, since BWBT is also orthogonal, it
follows from 1. that
tr(WS) = tr(WBT DB) = tr(BWBT D)≤ ∑

d
j=1 σ j = tr(D) = tr(S), and therefore 2. holds.

If det(W ) = −1, we show next that a d× d orthogonal matrix B can be identified so that
with W̄ = BTWB, then W̄ =

(
W0 O
OT −1

)
, W0 interpreted as the upper leftmost d− 1× d− 1

entries of W̄ and as a d− 1× d− 1 matrix as well; O interpreted as a vertical column or
vector of d−1 zeroes.
With I as the d×d identity matrix, then det(W )=−1 implies det(W +I)=−det(W )det(W +
I) =−det(W T )det(W + I) =−det(I +W T ) =−det(I +W ) which implies det(W + I) = 0
so that x 6= 0 exists in Rd with Wx =−x. It also follows then that W TWx =W T (−x) which
gives x =−W T x so that W T x =−x as well.
Letting bd = x, vectors b1, . . . ,bd−1 can be obtained so that b1, . . . ,bd form a basis of Rd ,
and by the Gram-Schmidt process starting with bd , we may assume b1, . . . ,bd form an or-
thonormal basis of Rd with Wbd =W T bd =−bd . Letting B = (b1, . . . ,bd), interpreted as a
d×d matrix with columns b1, . . . ,bd , in that order, then it follows that B is orthogonal, and
with W̄ = BTWB and W0, O as previously described, noting BTWbd = BT (−bd) =

(
O
−1
)

and bT
d WB = (W T bd)

T B = (−bd)
T B = (OT −1), then W̄ =

(
W0 O
OT −1

)
. Note, W̄ is orthog-

onal and therefore so is the d−1×d−1 matrix W0.
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Let S = BT DB and write S =
(

S0 a
bT γ

)
, S0 interpreted as the upper leftmost d− 1× d− 1

entries of S and as a d−1×d−1 matrix as well; a and b interpreted as vertical columns or
vectors of d−1 entries, and γ as a scalar.
Note, tr(WD)= tr(BTWDB)= tr(BTWBBT DB)= tr(W̄S), so that W̄S=

(
W0 O
OT −1

) (
S0 a
bT γ

)
=(

W0S0 W0a
−bT −γ

)
gives tr(WD) = tr(W0S0)− γ .

We show tr(W0S0) ≤ tr(S0). For this purpose let Ŵ =
(

W0 O
OT 1

)
, W0 and O as above. Since

W0 is orthogonal, then clearly Ŵ is a d×d orthogonal matrix, and by 2. tr(ŴS)≤ tr(S) so
that ŴS =

(
W0 O
OT 1

) (
S0 a
bT γ

)
=
(

W0S0 W0a
bT γ

)
gives tr(W0S0)+γ = tr(ŴS)≤ tr(S) = tr(S0)+γ .

Thus, tr(W0S0)≤ tr(S0).
Note, tr(S0) + γ = tr(S) = tr(D), and if Bk j, k, j = 1, . . . ,d are the entries of B, then
γ = ∑

d
k=1 B2

kdσk, a convex combination of the σk’s, so that γ ≥ σd . It then follows that
tr(WD) = tr(W0S0)−γ ≤ tr(S0)−γ = tr(D)−γ−γ ≤∑

d−1
j=1 σ j−σd , and therefore 3. holds.

�

Finally, the following theorem, which is a consequence of Proposition 1, justifies the
Kabsch-Umeyama algorithm.
Theorem: Given a d× d matrix M, let U , S, V be d× d matrices such that the singu-
lar value decomposition of M gives M = USV T . If det(UV T ) > 0, then R = UV T max-
imizes tr(RMT ) over all d × d rotation matrices R. Otherwise, if det(UV T ) < 0, with
S̃ = diag{s1, . . . ,sd}, s1 = . . . = sd−1 = 1, sd = −1, then R = US̃V T maximizes tr(RMT )
over all d×d rotation matrices R.
Proof: Let σ j, j = 1, . . . ,d, σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0, be the singular values of M, so that
S = diag{σ1, . . . ,σd}.
Assume det(UV T )> 0. If R is any rotation matrix, then R is orthogonal. From 1. of Propo-
sition 1 since UT RV is orthogonal, then
tr(RMT ) = tr(RV SUT ) = tr(UT RV S)≤ ∑

d
j=1 σ j.

On the other hand, if R = UV T , then R is clearly orthogonal, det(R) = 1, and tr(RMT ) =
tr(UV TV SUT ) = tr(USUT ) = tr(S) = ∑

d
j=1 σ j.

Thus, R =UV T maximizes tr(RMT ) over all d×d rotation matrices R.
Finally, assume det(UV T )< 0. If R is any rotation matrix, then R is orthogonal and det(R)=
1. From 3. of Proposition 1 since UT RV is orthogonal and det(UT RV ) =−1, then
tr(RMT ) = tr(RV SUT ) = tr(UT RV S)≤ ∑

d−1
j=1 σ j−σd.

On the other hand, if R =US̃V T , then R is clearly orthogonal, det(R) = 1, and tr(RMT ) =
tr(US̃V TV SUT ) = tr(US̃SUT ) = tr(S̃S) = ∑

d−1
j=1 σ j−σd.

Thus, R =US̃V T maximizes tr(RMT ) over all d×d rotation matrices R. �

In the rest of this section, although not exactly related to the goal of this paper, for the
sake of completeness, we show how another problem of interest reduces to the problem
just solved above so that it can then be solved with the Kabsch-Umeyama algorithm. The
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problem of interest is the so-called orientation-preserving rigid motion problem. With q1,
q2, hl , ql

1, ql
2, l = 1, . . . ,N, as above, the problem is then that of finding an orientation-

preserving rigid motion φ of Rd that minimizes

∆(φ) =
N

∑
l=1

hl ‖ql
1−φ(ql

2)‖2. (7)

An affine linear function φ , φ : Rd → Rd , is a rigid motion of Rd if it is of the form
φ(q) = Rq+ t for q ∈ Rd , where R is a d× d orthogonal matrix, and t ∈ Rd . The rigid
motion φ is orientation preserving if det(R) = 1. We note that the justification of the
reduction here, apparently already appears in [9]. However there the problem being reduced
does not involve a partition of [0,1] the way it does here, a partition that can be either
uniform or nonuniform, although, if so desired, it is not hard to show that a partition can
actually be associated with the problem in [9], a partition that must be uniform. Thus the
problem being reduced here is more general than the problem in [9].

Let q̄1 and q̄2 denote the centroids of the discretized q1 and q2, respectively:

q̄1 =
N

∑
l=1

hl ql
1 and q̄2 =

N

∑
l=1

hl ql
2.

The following proposition shows, in particular, that φ(q̄2) = q̄1 if φ minimizes (7) over
either the set of all rigid motions of Rd or the smaller set of rigid motions of Rd that are
orientation preserving.
Proposition 2: Let φ be a rigid motion of Rd with φ(q̄2) 6= q̄1 and define an affine linear
function τ , τ : Rd → Rd , τ(q) = φ(q)− φ(q̄2)+ q̄1 for q ∈ Rd . Then τ is a rigid motion
of Rd , τ(q̄2) = q̄1, ∆(τ)< ∆(φ), and if φ is orientation preserving, then so is τ .
Proof: Clearly τ(q̄2) = q̄1. Let R be a d × d orthogonal matrix and t ∈ Rd such that
φ(q) = Rq+ t for q in Rd . Then τ(q) = Rq−Rq̄2 + q̄1 so that τ is a rigid motion of Rd , τ

is orientation preserving if φ is, and for each l, l = 1, . . . ,N, we have

‖ql
1−φ(ql

2)‖2−‖ql
1− τ(ql

2)‖2

= (ql
1−Rql

2− t)T (ql
1−Rql

2− t)
−(ql

1−Rql
2 +Rq̄2− q̄1)

T (ql
1−Rql

2 +Rq̄2− q̄1)
= (ql

1−Rql
2)

T (ql
1−Rql

2)−2(ql
1−Rql

2)
T t + tT t− (ql

1−Rql
2)

T (ql
1−Rql

2)
−2(ql

1−Rql
2)

T (Rq̄2− q̄1)− (Rq̄2− q̄1)
T (Rq̄2− q̄1)

=−2(ql
1−Rql

2)
T t + tT t−2(ql

1−Rql
2)

T (Rq̄2− q̄1)
−(Rq̄2− q̄1)

T (Rq̄2− q̄1)+2(Rq̄2− q̄1)
T t−2(Rq̄2− q̄1)

T t + tT t− tT t
= 2(Rql

2−ql
1)

T t +2tT t +2(Rql
2−ql

1)
T (Rq̄2− q̄1)+2(Rq̄2− q̄1)

T t
−((Rq̄2− q̄1)

T (Rq̄2− q̄1)+2(Rq̄2− q̄1)
T t + tT t)

= 2(Rql
2−ql

1 + t)T (Rq̄2− q̄1 + t)− (Rq̄2− q̄1 + t)T (Rq̄2− q̄1 + t).

It then follows that
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∆(φ)−∆(τ) = ∑
N
l=1 hl‖ql

1−φ(ql
2)‖2−∑

N
l=1 hl‖ql

1− τ(ql
2)‖2

= ∑
N
l=1 hl(‖ql

1−φ(ql
2)‖2−‖ql

1− τ(ql
2)‖2)

= ∑
N
l=1 hl(2(Rql

2−ql
1 + t)T (Rq̄2− q̄1 + t)− (Rq̄2− q̄1 + t)T (Rq̄2− q̄1 + t))

= 2(R∑
N
l=1 hl ql

2−∑
N
l=1 hl ql

1 + t ∑
N
l=1 hl)

T (Rq̄2− q̄1 + t)
−(Rq̄2− q̄1 + t)T (Rq̄2− q̄1 + t)∑

N
l=1 hl

= 2(Rq̄2− q̄1 + t)T (Rq̄2− q̄1 + t)− (Rq̄2− q̄1 + t)T (Rq̄2− q̄1 + t)
= (Rq̄2− q̄1 + t)T (Rq̄2− q̄1 + t) = ‖Rq̄2− q̄1 + t‖2 = ‖φ(q̄2)− q̄1‖2 > 0. �

Finally, the following corollary is a consequence of Proposition 2. Here pl
1 = ql

1− q̄1,
pl

2 = ql
2− q̄2, for l = 1, . . . ,N, and if p̄1 = ∑

N
l=1 hl pl

1, p̄2 = ∑
N
l=1 hl pl

2, then clearly p̄1 =
p̄2 = 0. It shows that the problem of finding an orientation-preserving rigid motion φ of Rd

that minimizes (7) can be reduced to the problem of finding a d × d rotation matrix R
that minimizes ∑

N
l=1 hl ‖pl

1−Rpl
2‖2 which, of course, then can be solved with the Kabsch-

Umeyama algorithm.
Corollary: Let R̂ be such that R = R̂ minimizes ∑

N
l=1 hl ‖pl

1−Rpl
2‖2 over all d×d rotation

matrices R. Let t̂ = q̄1− R̂q̄2, and let φ̂ be given by φ̂(q) = R̂q+ t̂ for q ∈ Rd . Then φ = φ̂

minimizes ∑
N
l=1 hl ‖ql

1−φ(ql
2)‖2 over all orientation-preserving rigid motions φ of Rd .

Proof: One such R̂ can be computed with the Kabsch-Umeyama algorithm. By Propo-
sition 2, in order to minimize ∑

N
l=1 hl ‖ql

1− φ(ql
2)‖2 over all orientation-preserving rigid

motions φ of Rd , it suffices to do it over those for which φ(q̄2) = q̄1. Therefore, it suffices
to minimize ∑

N
l=1 hl ‖ql

1− (Rql
2 + t)‖2 with t = q̄1−Rq̄2 over all d×d rotation matrices R,

i.e., it suffices to minimize

N

∑
l=1

hl‖ql
1−Rql

2− q̄1 +Rq̄2‖2 =
N

∑
l=1

hl ‖(ql
1− q̄1)−R(ql

2− q̄2)‖2

over all d × d rotation matrices R. But minimizing the last expression is equivalent to
minimizing ∑

N
l=1 hl ‖pl

1−Rpl
2‖2 over all d×d rotation matrices R. Since R= R̂ is a solution

to this last problem, it then follows that R = R̂ minimizes ∑
N
l=1 hl ‖ql

1−Rql
2− q̄1+Rq̄2‖2 =

∑
N
l=1 hl ‖ql

1−(Rql
2+t)‖2 with t = q̄1−Rq̄2 over all d×d rotation matrices R. Consequently,

if t̂ = q̄1− R̂q̄2, and φ̂ is given by φ̂(q) = R̂q+ t̂ for q ∈ Rd , then φ = φ̂ clearly minimizes
∑

N
l=1 hl ‖ql

1−φ(ql
2)‖2 over all orientation-preserving rigid motions φ of Rd . �

4. Computation of the Elastic Shape Distance between Two Curves

Let β1, β2, q1, q2 be as above, i.e., βn : [0,1]→ Rd , n = 1,2, are absolutely continuous
functions representing simple curves in Rd of unit length, and qn : [0,1]→Rd , n = 1,2, are
square-integrable functions that are the shape functions or SRVF’s of βn, n = 1,2, respec-
tively. In the case one of the curves is closed, say β1, then, in particular, q1 is interpreted
to be a periodic function from R into Rd so that q1(t +1) = q1(t) for all vaues of t. Define
a finite subset K of [0,1] as follows. If neither curve is closed let K = {0}. Otherwise, as-
sume the curve represented by β1, the first curve, is closed, and for an integer T > 0 choose
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numbers t̂l , l = 1, . . . ,T , in [0,1], t̂1 = 0 < .. . < t̂T = 1, so that B = {β1(t̂l), l = 1, . . . ,T} is
reasonably dense in β1 (by joining consecutive points in B with line segments, the result-
ing piecewise linear curve should be a reasonable approximation of β1). Accordingly, let
K = {t̂1, . . . , t̂T} in this case. Either way, K is a finite subset of [0,1] and {β1(t), t ∈ K} is
interpreted to be the set of starting points of β1. With SO(d) as the set of d× d rotation
matrices, and Γ as the set of diffeomorphisms of [0,1] onto itself (γ(0) = 0, γ(1) = 1, γ̇ > 0,
for γ ∈ Γ), given t0 ∈ K, R ∈ SO(d), γ ∈ Γ, a mismatch energy E(t0,R,γ) is defined by

E(t0,R,γ) =
∫ 1

0
‖
√

γ̇(t)Rq1(t0 + γ(t))−q2(t)‖2dt (8)

which as noted in [5], for the purpose of minimizing it with respect to t0, R and γ , without
any loss of generality, can be reformulated as

E(t0,R,γ) =
∫ 1

0
‖Rq1(t0 + t)−

√
γ̇(t)q2(γ(t))‖2dt (9)

which allows for the second curve to be reparametrized while the first one is rotated. Note,
SO(d) = {1} if d = 1.
As established in [13, 14], given t0 ∈ K, R ∈ SO(d), γ ∈ Γ, so that the triple (t0,R,γ) is a
global minimizer of (8), then E(t0,R,γ) can be interpreted to be the elastic shape distance
between β1 and β2, and the elastic registration of β1 and β2 is obtained by reparametrizing
and rotating β1 with γ and R, respectively, with starting point β1(t0). Note, if β1 is closed,
we assume γ̇(0) = γ̇(1) to ensure the periodicity of

√
γ̇(t)Rq1(t0+γ(t)) for t ∈ [0,1]. Sim-

ilarly, if (t0,R,γ) is a global minimizer of (9) then again E(t0,R,γ) is interpreted to be
the elastic shape distance between β1 and β2, and the elastic registration of β1 and β2 is
obtained by rotating β1 with R, with starting point β1(t0), and reparametrizing β2 with γ .

As noted in Section 2 and Section 3, in practice, we work with curves β1, β2, given as
finite lists of points in the curves. Unless otherwise specified, here and in what follows, for
simplicity, although mostly out of necessity as will be made clear below, we assume that β1
and β2 are discretized by the same partition of [0,1]. Even if at first they are not, this can be
easily accomplished by interpolating with a cubic spline one or both curves. Accordingly,
for some integer N > 0, and a partition of [0,1], {tl}N

l=1, t1 = 0 < t2 < .. . < tN = 1, for
n = 1,2, the curve βn is given as a list of N points in the curve, where for l = 1, . . . ,N,
βn(tl) is the lth point in the list for βn. Similarly for q1, q2, except that for l = 1, . . . ,N,
q1(tl) and q2(tl) are computed as described in Section 2. That the lists for β1 and β2, and
therefore for q1 and q2, must have the same number of points with the same partition is
dictated by the way optimal rotation matrices are computed as described in Section 3. If
neither curve is closed so that each curve has a fixed starting point, then the partition does
not have to be uniform as pointed out in Section 3. The starting points of β1 and β2 are
then β1(t1) = β1(0) and β2(t1) = β2(0), respectively, and as pointed out above the finite
subset K of [0,1] defined above must equal {0} = {t1}. However if one curve is closed,
assumed to be β1, then β2 has a fixed starting point which is β2(0), and any point in β1 can
then be treated as a starting point of β1. In this case, for simplicity, K is purposely chosen
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to equal {t1, . . . , tN−1} or a subset of it, so that B = {β1(t), t ∈ K} can be assumed to be
reasonably dense in β1 and therefore essentially of size O(N). B is then interpreted to be the
set of starting points of the curve, and if the partition {tl}N

l=1 is uniform, an optimal rotation
matrix can then be easily computed as described in Section 3 for each starting point in B.
We note that if K equals {t1, . . . , tN−1}, then the partition must indeed be uniform. To see
this we note that, in particular, for each m, m = 1, . . . ,N−1, it should be that tm+ t2 = tm+1
so that tm+1− tm = t2 = t2− t1 and therefore the partition is uniform. Even if K is not all of
{t1, . . . , tN−1} but a subset of it so that B = {β1(t), t ∈ K} is reasonably dense in β1, again,
for simplicity, we still assume the partition is uniform. Thus, with K as above, for any d,
given t0 ∈ K, R ∈ SO(d), γ ∈ Γ, we discretize (8) with the trapezoidal rule:

Ediscr(t0,R,~γ) =
N

∑
l=1

h′l ‖
√

γ̇lRq1(t0 + γl)−q2(tl)‖2, (10)

where h′1 = (t2 − t1)/2, h′N = (tN − tN−1)/2, h′l = (tl+1 − tl−1)/2 for l = 2, . . . ,N − 1,
~γ = (γl)

N
l=1, γ1 = 0,γN = 1, γl = γ(tl), γ̇l = (γl+1− γl)/hl for l = 1, . . . ,N − 1, γ̇N = γ̇1,

hl = tl+1− tl for l = 1, . . . ,N−1, and q1(t0 + γl), l = 1, . . . ,N, are approximations of q1 at
each value of t0+γl obtained from the interpolation of q1(tl), l = 1, . . . ,N, by a cubic spline.
Accordingly, in [13, 14] (10) is minimized using a procedure based on alternating compu-
tations of approximately optimal diffeomorphisms (for reparametrizing the first curve) and
approximately optimal rotation matrices (for rotating the first curve) computed as described
in Section 2 and Section 3, respectively, one starting point of β1 at a time. For the sake of
completeness, the procedure, with d, K, q1(tl), q2(tl), l = 1, . . . ,N, as input, is summarized
in Procedure 1 below. We note that in Section 2 and Section 3 computations are carried
out that involve shape functions q1, q2, that if discretized by the same partition {tl}N

l=1 are
given as finite lists of points: q1(tl), q2(tl), l = 1, . . . ,N. Thus, in what follows, given shape
functions q, q̂, to say “ Execute DP algorithm for q(tl), q̂(tl), l = 1, . . . ,N ” will mean the DP
algorithm (adapt-DP) should be executed with q, q̂ taking the place of q1, q2, respectively,
in the DP algorithm as outlined in Section 2. The same for the Kabsch-Umeyama algorithm,
i.e., the KU algorithm, as outlined in Section 3, and in the next section the KU2 algorithm
which is the Kabsch-Umeyama algorithm using the FFT.

Procedure 1

Set hl = tl+1− tl for l = 1, . . . ,N−1.
Set h′1 = (t2− t1)/2, h′N = (tN− tN−1)/2, h′l = (tl+1− tl−1)/2 for
l = 2, . . . ,N−1.
for each t0 ∈ K do

Set q̂1(tl) = q1(t0 + tl) for l = 1, . . . ,N.
if d 6= 1 then execute KU algorithm for q2(tl), q̂1(tl), l = 1, . . . ,N,
to get rotation matrix R.
else set R = 1. end if
Set q̄1(tl) = Rq̂1(tl) for l = 1, . . . ,N.
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Execute DP algorithm for q2(tl), q̄1(tl), l = 1, . . . ,N, to get
discretized diffeomorphism~γ = (γl)

N
l=1.

Set γ̇l = (γl+1− γl)/hl for l = 1, . . . ,N−1, γ̇N = γ̇1.
From interpolation of q1(tl), l = 1, . . . ,N, with a cubic spline
set q̂1(tl) =

√
γ̇lq1(t0 + γl) for l = 1, . . . ,N.

if d 6= 1 then execute KU algorithm for q2(tl), q̂1(tl), l = 1, . . . ,N,
to get rotation matrix R.
else set R = 1. end if
Set q̂1(tl) = Rq̂1(tl) for l = 1, . . . ,N.
Compute Ediscr(t0,R,~γ) = ∑

N
l=1 h′l ‖

√
γ̇lRq1(t0 + γl)−q2(tl)‖2

= ∑
N
l=1 h′l ‖q̂1(tl)−q2(tl)‖2.

Keep track of triple (t0,R,~γ), Ediscr(t0,R,~γ),
q̂1(tl), l = 1, . . . ,N, with smallest value for Ediscr(t0,R,~γ).

end for
From interpolation of β1(tl), l = 1, . . . ,N, with a cubic spline
set β̂1(tl) = Rβ1(t0 + γl) for l = 1, . . . ,N.
Return (t0,R,~γ), Ediscr(t0,R,~γ), β̂1(tl), q̂1(tl), l = 1, . . . ,N.

On output, Ediscr(t0,R,~γ) is interpreted to be the elastic shape distance between β1 and
β2. On the other hand, β̂1(tl) and β2(tl), l = 1, . . . ,N, are interpreted to achieve the elastic
registration of β1 and β2.
Although Procedure 1 above is set up to handle the particular case in which d equals 1 and
neither curve is closed, we note, for the obvious reasons, that if Procedure 1 is adjusted
appropriately, the requirement that the two curves β1 and β2 must have the same number
of points with the same partition, is then no longer necessary for this case, this case then
being the only case in which the requirement can be ignored. The adjusted Procedure 1,
with q1(tl), l = 1, . . . ,N, q2(z j), j = 1, . . . ,M, as input, is summarized in Procedure 1’
below. There to say “ Execute DP algorithm for q1(tl), l = 1, . . . ,N, q2(z j), j = 1, . . . ,M ”
will mean the DP algorithm (adapt-DP) should be executed with q1, q2 exactly as q1, q2
appear in the DP algorithm as outlined in Section 2.

Procedure 1’

Set hl = tl+1− tl for l = 1, . . . ,N−1.
Set h′1 = (t2− t1)/2, h′N = (tN− tN−1)/2, h′l = (tl+1− tl−1)/2 for
l = 2, . . . ,N−1.
Execute DP algorithm for q1(tl), l = 1, . . . ,N, q2(z j), j = 1, . . . ,M,
to get discretized diffeomorphism~γ = (γl)

N
l=1.

Set γ̇l = (γl+1− γl)/hl for l = 1, . . . ,N−1, γ̇N = γ̇1.
From interpolation of q2(z j), j = 1, . . . ,M, with a cubic spline
set q̂2(tl) =

√
γ̇lq2(γl) for l = 1, . . . ,N.
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Compute Ediscr(0,1,~γ) = ∑
N
l=1 h′l ‖q1(tl)−

√
γ̇lq2(γl)‖2

= ∑
N
l=1 h′l ‖q1(tl)− q̂2(tl)‖2.

From interpolation of β2(z j), j = 1, . . . ,M, with a cubic spline
set β̂2(tl) = β2(γl) for l = 1, . . . ,N.
Return (0,1,~γ), Ediscr(0,1,~γ), β̂2(tl), q̂2(tl), l = 1, . . . ,N.

On output, Ediscr(0,1,~γ) is interpreted to be the elastic shape distance between β1 and β2.
On the other hand, β1(tl) and β̂2(tl), l = 1, . . . ,N, are interpreted to achieve the elastic
registration of β1 and β2.

Finally, with K, q1(tl), q2(tl), l = 1, . . . ,N, as above, and the partition {tl}N
l=1 uniform

if at least one of the curves is closed, given t0 ∈ K, R ∈ SO(d), γ ∈ Γ, we discretize (9) with
the trapezoidal rule as follows:

Ediscr(t0,R,~γ) =
N

∑
l=1

h′l ‖Rq1(t0 + tl)−
√

γ̇lRq2(γl)‖2, (11)

where h′1 = (t2 − t1)/2, h′N = (tN − tN−1)/2, h′l = (tl+1 − tl−1)/2 for l = 2, . . . ,N − 1,
~γ = (γl)

N
l=1, γ1 = 0,γN = 1, γl = γ(tl), γ̇l = (γl+1− γl)/hl for l = 1, . . . ,N − 1, γ̇N = γ̇1,

hl = tl+1− tl for l = 1, . . . ,N−1, and q2(γl), l = 1, . . . ,N, are approximations of q2 at each
γl obtained from the interpolation of q2(tl), l = 1, . . . ,N, by a cubic spline. Accordingly,
for the purpose of minimizing (11), we use a procedure that alternates computations, as
described in Section 2 and Section 3, of approximately optimal diffeomorphisms (a con-
stant number of them per iteration for reparametrizing the second curve) and successive
computations of approximately optimal rotation matrices (for rotating the first curve) for
all starting points of the first curve. As noted in [4], carrying out computations this way is
not only more efficient all by itself, but, if both curves are closed, allows applications of the
Fast Fourier Transform (FFT) as demonstrated in [5] for d = 2, for computing successively
in an even more efficient manner, as described in the next section, optimal rotation matrices
for all starting points of the first curve. The procedure, with K, q1(tl), q2(tl), l = 1, . . . ,N, as
input, is summarized in Procedure 2 below. Note, itop in the procedure is an input variable
that must be set equal to a positive integer that is constant relative to N, and not larger than
the cardinality of K. It is the number of times the second for loop in the repeat loop of the
procedure is executed during each iteration of the repeat loop. It is in the second for loop
that the DP algorithm is executed, thus the execution time of the procedure can be large if
itop is greater than 1. Actually the first for loop in the repeat loop of the procedure takes a
lot less time than the second for loop even if itop equals 1. It is in the first for loop that the
KU algorithm is executed. We note, in our experiments, itop equal to 1 has usually sufficed
for curves of relatively simple curvature, e.g., spherical ellipsoids in 3−dimensional space
(see Section 6). For curves of more complex curvatures, higher values have usually been
required for the successful execution of the procedure.
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Procedure 2

Set hl = tl+1− tl for l = 1, . . . ,N−1.
Set h′1 = (t2− t1)/2, h′N = (tN− tN−1)/2, h′l = (tl+1− tl−1)/2 for
l = 2, . . . ,N−1.
Set q̂2(tl) = q2(tl) for l = 1, . . . ,N.
Set iter = 0, Ecurr = 10 6, iten = 10, tol = 10−6.
repeat

Set iter = iter+1, E prev = Ecurr.
for each t0 ∈ K do

Set q̂1(tl) = q1(t0 + tl) for l = 1, . . . ,N.
Execute KU algorithm for q̂2(tl), q̂1(tl), l = 1, . . . ,N, to get rotation matrix R and
maxtrace.
Identify (t0,R) as a couple of interest and associate with it the value of maxtrace.
Keep track of identified couples of interest (t0i,Ri), i = 1, . . . , itop, satisfying that
for each i, i = 1, . . . , itop, the value of maxtrace associated with (t0i,Ri) is one of
the itop largest values among the values of maxtrace associated with all couples of
interest identified so far.

end for
for i = 1, . . . , itop do

Set t0 = t0i, R = Ri.
Set q̂1(tl) = Rq1(t0 + tl) for l = 1, . . . ,N.
Execute DP algorithm for q̂1(tl), q2(tl), l = 1, . . . ,N, to get
discretized diffeomorphism~γ = (γl)

N
l=1.

Set γ̇l = (γl+1− γl)/hl for l = 1, . . . ,N−1, γ̇N = γ̇1.
From interpolation of q2(tl), l = 1, . . . ,N, with a cubic spline
set q̂2(tl) =

√
γ̇lq2(γl) for l = 1, . . . ,N.

Compute Ecurr = Ediscr(t0,R,~γ) = ∑
N
l=1 h′l ‖Rq1(t0 + tl)−

√
γ̇lq2(γl)‖2

= ∑
N
l=1 h′l ‖q̂1(tl)− q̂2(tl)‖2.

Keep track of triple (t0,R,~γ), Ecurr, q̂1(tl), q̂2(tl), l = 1, . . . ,N, with smallest value
for Ecurr.

end for
until |Ecurr−E prev|< tol or iter > iten.
From interpolation of β2(tl), l = 1, . . . ,N, with a cubic spline
set β̂2(tl) = β2(γl) for l = 1, . . . ,N.
Set β̂1(tl) = Rβ1(t0 + tl) for l = 1, . . . ,N.
Return (t0,R,~γ), Ediscr(t0,R,~γ) (= Ecurr), β̂1(tl), q̂1(tl), β̂2(tl), q̂2(tl),
l = 1, . . . ,N.
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On output, Ediscr(t0,R,~γ) is interpreted to be the elastic shape distance between β1 and
β2. On the other hand, β̂1(tl) and β̂2(tl), l = 1, . . . ,N, are interpreted to achieve the elastic
registration of β1 and β2.
Similar to Procedure 1, Procedure 2 above is also set up to handle the particular case in
which d equals 1 and neither curve is closed. But since similar to Procedure 1 the require-
ment that the two curves β1 and β2 must have the same number of points with the same
partition, is not necessary for this case, Procedure 1’ can be used instead of Procedure 2 in
the absence of the requirement.

5. Successive Computations of Rotations with FFT for Rigid Alignment of Curves

Again, let β1, β2, q1, q2 be as above, i.e., βn : [0,1]→ Rd , n = 1,2, are absolutely continu-
ous functions representing simple curves in Rd of unit length, and qn : [0,1]→Rd , n = 1,2,
are square-integrable functions that are the shape functions or SRVF’s of βn, n = 1,2, re-
spectively. In this section, using arguments similar to those used in [5] for d = 2, we first
present an alternative version of the KU algorithm that uses the FFT for the purpose of
speeding up the successive computations in Procedure 2 in the previous section, of ap-
proximately optimal rotation matrices for all starting points of one of the curves. These
computations actually take place in the first for loop of that procedure. Taking into account
the nature of the FFT, we assume both curves are closed (this will become evident below),
and without any loss of generality, for the purpose of developing the alternative version of
the KU algorithm in a manner similar to the way in which the KU algorithm was developed
in Section 3, assume that any point in β2 can be treated as a starting point of β2, and that it
is β1 that has a fixed starting point. In particular, it follows then that q2 can be interpreted
to be a periodic function from R into Rd , q2(t + 1) = q2(t) for all vaues of t. Taking into
account as well the part of Procedure 2 in the previous section that we are trying to improve
(the first for loop), and following the reasoning in Section 3 to obtain (4), ideally, we would
like to solve a problem of the following type: Find t0 ∈ [0,1], and a d×d rotation matrix R
that minimize

E(t0,R) =
∫ 1

0
‖q1(t)−Rq2(t0 + t)‖2dt. (12)

As noted above, in practice, we work with curves β1, β2, given as discrete sets of points.
Accordingly, for some integer N > 0, and a partition of [0,1], {tl}N

l=1, t1 = 0 < t2 < .. . <
tN = 1, for n = 1,2, the curve βn is given as a list of N points in the curve, where for
l = 1, . . . ,N, βn(tl) is the lth point in the list for βn. Similarly for q1, q2, except that for
l = 1, . . . ,N, q1(tl) and q2(tl) are computed as described in Section 2. Again, we assume K
as defined in the previous section equals {t1, . . . , tN−1} or a subset of it, a subset essentially
of size O(N), so that {β2(t), t ∈ K} is then interpreted to be the set of starting points of β2.
Also, as justified in the previous section, the partition {tl}N

l=1 must then be uniform. In
what follows, for l = 1, . . . ,N, k = 1, . . . ,d, j = 1, . . . ,d, ql

1 is q1(tl), ql
2 is q2(tl), ql

1k is the
kth coordinate of ql

1, ql
2 j is the jth coordinate of ql

2, and q̂ l
1k is q N− l+1

1k .
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In order to discretize integral (12), we define for each m = 1, . . . ,N−1, points qm⊕ l
2 , l =

1, . . . ,N, by
qm⊕ l

2 = q2(tm + tl),

and let qm⊕ l
21 , . . . ,qm⊕ l

2d be the d coordinates of qm⊕ l
2 so that

(qm⊕ l
21 , . . . ,qm⊕ l

2d )T = qm⊕ l
2 .

We note as well that for m = 1, . . . ,N−1, we may then assume the existence of additional
functions qm

2 : [0,1]→ Rd , given in their discretized form as

qm
2 (tl) = q2(tm + tl) = qm⊕ l

2 , l = 1, . . . ,N.

With 1 ≤ m ≤ N − 1, letting h = 1/(N − 1), we then discretize integral (12) using the
uniform trapezoidal rule for when both curves are closed:

Ediscr(m,R) = h
N−1

∑
l=1
‖q1(tl)−Rqm

2 (tl)‖2 = h
N−1

∑
l=1
‖ql

1−Rqm⊕ l
2 ‖2. (13)

Thus, the problem of finding t0 ∈ [0,1] and a d× d rotation matrix R that minimize (12)
becomes the problem of finding m, 1≤m≤N−1, with tm in K, and a d×d rotation matrix
R that minimize (13).
For this purpose, for each m, m = 1, . . . ,N−1, we define a d×d matrix A(m) by defining
its entries Ak j(m) for each pair k, j = 1, . . . ,d, by

Ak j(m) =
N−1

∑
l=1

ql
1kqm⊕ l

2 j , (14)

so that for fixed m, minimizing (13) over all d × d rotation matrices R is equivalent to
maximizing

N−1

∑
l=1

(ql
1)

T Rqm⊕ l
2 = tr(RA(m)T ). (15)

We note that for fixed m, we can execute the KU algorithm for q1(tl), qm
2 (tl), l = 1, . . . ,N,

to compute R that maximizes (15). Doing this for each m, 1≤m≤ N−1, with tm in K, we
identify among them an m for which the maximization of (15) is the largest. The solution is
then that m together with the rotation matrix R at which the maximization is achieved. We
also note that computing A(m) for each m is O(N) so that computing O(N) of them is then
O(N2) if each A(m) is computed separately. This is exactly how it is done in Procedure 2
in the previous section.

For each pair k, j = 1, . . . ,d, with Ak j(m) as in (14), we propose to compute all of
Ak j(1), . . . ,Ak j(N−1) in O(N logN) time using the FFT to accomplish the Discrete Fourier
Transform (DFT). For this purpose, for k = 1, . . . ,d, let q̂1k = (q̂ 1

1k, . . . , q̂
N−1
1k ), and for

j = 1, . . . ,d, let q2 j = (q 1
2 j, . . . ,q

N−1
2 j ). Given arbitrary vectors x, y of length N−1, we let
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DFT(x) and DFT−1(y) denote the DFT of x and the inverse DFT of y, respectively. With
the symbol · indicating component by component multiplication of two vectors, then by
the convolution theorem for the DFT we have for each pair k, j = 1, . . . ,d,

(Ak j(1), . . . ,Ak j(N−1)) = (
N−1

∑
l=1

ql
1kq1⊕ l

2 j , . . . ,
N−1

∑
l=1

ql
1kq(N−1)⊕ l

2 j )

= DFT−1[DFT(q̂1k) ·DFT(q2 j)]

which for each pair k, j = 1, . . . ,d, enables us to reduce the computation of all of Ak j(1), . . . ,
Ak j(N−1) to three O(N logN) FFT operations. Thus, we can compute all of A(1), . . . ,A(N−
1) in O(N logN) time with the FFT.

An outline of the alternative version of the KU algorithm, the KU2 algorithm, that uses
the FFT, follows. Here for arbitrary vectors x, y of length N−1, FFT(x), IFFT(y) denote
DFT(x), DFT−1(y), respectively, computed with the FFT. Note, itop in the algorithm is
an input variable as described in the previous section before the outline of Procedure 2, an
input variable used there exclusively in that procedure, its purpose to control the number of
times the DP algorithm is executed in the procedure. Here, with the same purpose, before
it is an input variable of the KU2 algorithm, it is first an input variable of a procedure in
which the KU2 and DP algorithms are executed, Procedure 3, the outline of which appears
later in this section, its purpose discussed as well.

Algorithm Kabsch-Umeyama with FFT (KU2 algorithm)

Set ql
1k equal to kth coordinate of q1(tl) for l = 1, . . . ,N, k = 1, . . . ,d.

Set ql
2 j equal to jth coordinate of q2(tl) for l = 1, . . . ,N, j = 1, . . . ,d.

Set q̂ l
1k = q N− l+1

1k for l = 1, . . . ,N, k = 1, . . . ,d.
Set q̂1k = (q̂ 1

1k, . . . , q̂
N−1
1k ) for k = 1, . . . ,d.

Set q2 j = (q 1
2 j, . . . ,q

N−1
2 j ), for j = 1, . . . ,d.

for each pair k, j = 1, . . . ,d do
Compute (Ak j(1), . . . ,Ak j(N−1)) = IFFT[FFT (q̂1k) · FFT(q2 j)].

end for
for each m, 1≤ m≤ N−1, with tm ∈ K do

Identify d×d matrix A(m) with entries Ak j(m) for
each pair k, j = 1, . . . ,d.
Compute SVD of A(m), i.e., identify d×d matrices U , S, V ,
so that A(m) =USV T in the SVD sense.
Set s1 = . . .= sd−1 = 1.
if det(UV )> 0 then set sd = 1.
else set sd =−1. end if
Set S̃ = diag{s1, . . . ,sd}.
Compute R =US̃V T and maxtrace = tr(RA(m)T ).
Identify (m,R) as a couple of interest and associate with it the value of maxtrace.
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Keep track of identified couples of interest (mi,Ri), i = 1, . . . , itop, satisfying that for
each i, i = 1, . . . , itop, the value of maxtrace associated with (mi,Ri) is one of the itop
largest values among the values of maxtrace associated with all couples of interest
identified so far.

end for
Return couples (mi,Ri), i = 1, . . . , itop.

We note that if d = 1, the KU2 algorithm still computes couples (mi,Ri), i = 1, . . . , itop,
with the resulting Ri’s always equal to 1.

Finally, a modified version of Procedure 2 in the previous section, Procedure 3, follows.
Here β1, β2, q1, q2, N, {tl}N

l=1, β1(tl), β2(tl), q1(tl), q2(tl), l = 1, . . . ,N, are as above. Thus,
β1, β2 are closed curves and {tl}N

l=1 is uniform. The procedure with K, itop, q1(tl), q2(tl),
l = 1, . . . ,N, as input, is essentially the same as Procedure 2, except that the for loop
in Procedure 2 that executes the KU algorithm of Section 3 as many times as there are
starting points of the first curve (β1), is replaced by the execution of the KU2 algorithm
outlined above. This has the effect of speeding up the successive computations appearing
in Procedure 2 of approximately optimal rotation matrices for all starting points of the first
curve due to the fact that the KU2 algorithm uses the FFT which takes O(N logN) time,
while the for loop in Procedure 2 computes each approximately optimal rotation matrix
separately thus taking O(N2) time.

Procedure 3

Set h = 1/(N−1).
Set q̂2(tl) = q2(tl) for l = 1, . . . ,N.
Set iter = 0, Ecurr = 10 6, iten = 10, tol = 10−6.
repeat

Set iter = iter+1, E prev = Ecurr.
Execute KU2 algorithm for q̂2(tl), q1(tl), l = 1, . . . ,N, to get
couples (mi,Ri), mi an integer, 1≤ mi ≤ N−1, Ri a rotation matrix, i = 1, . . . , itop.
for i = 1, . . . , itop do

Set m = mi, R = Ri.
Set q̂1(tl) = Rq1(tm + tl) for l = 1, . . . ,N.
Execute DP algorithm for q̂1(tl), q2(tl), l = 1, . . . ,N, to get
discretized diffeomorphism~γ = (γl)

N
l=1.

Set γ̇l = (γl+1− γl)/h for l = 1, . . . ,N−1, γ̇N = γ̇1.
From interpolation of q2(tl), l = 1, . . . ,N, with a cubic spline
set q̂2(tl) =

√
γ̇lq2(γl) for l = 1, . . . ,N.

Compute Ecurr = Ediscr(tm,R,~γ)
= ∑

N−1
l=1 h‖Rq1(tm + tl)−

√
γ̇lq2(γl)‖2 = ∑

N−1
l=1 h‖q̂1(tl)− q̂2(tl)‖2.
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Keep track of triple (tm,R,~γ), Ecurr, q̂1(tl), q̂2(tl), l = 1, . . . ,N, with smallest value
for Ecurr.

end for
until |Ecurr−E prev|< tol or iter > iten.
From interpolation of β2(tl), l = 1, . . . ,N, with a cubic spline
set β̂2(tl) = β2(γl) for l = 1, . . . ,N.
Set β̂1(tl) = Rβ1(tm + tl) for l = 1, . . . ,N.
Return (tm,R,~γ), Ediscr(tm,R,~γ) (= Ecurr), β̂1(tl), q̂1(tl), β̂2(tl), q̂2(tl),
l = 1, . . . ,N.

On output, Ediscr(tm,R,~γ) is interpreted to be the elastic shape distance between β1 and
β2. On the other hand, β̂1(tl) and β̂2(tl), l = 1, . . . ,N, are interpreted to achieve the elastic
registration of β1 and β2.

6. Results from Computations with Implementation of Methods

A software package that incorporates the methods presented in this paper for computing
the elastic registration of two simple curves in d−dimensional space, d a positive integer,
and therefore the elastic shape distance between them, has been implemented. The imple-
mentation is in Matlab1 with the exception of the Dynamic Programming routine which is
written in Fortran but is executed as a Matlab mex file. In this section, we present results
obtained from executions of the software package with d = 3. We note, the sofware pack-
age as well as input data files, a README file, etc. can be obtained at the following link

https://doi.org/10.18434/mds2-2329

With the exception of the Matlab driver routine, ESD driv 3 dim.m, which is designed for
the case d = 3, all Matlab routines in the package can be executed for any d if the current
driver routine is adjusted or replaced to handle the value of d. However, parameter dimx in
the Fortran routine DP MEX WNDSTRP ALLDIM.F may have to be modified so that
instead of having a value of 3, it has the value of d. The Fortran routine must then be
processed to obtain a new mex file for the routine by typing in the Matlab window: mex
- compatibleArrayDims DP MEX WNDSTRP ALLDIM.F

Given discretizations of two simple curves β1, β2, β1 : [0,T1]→ Rd , β2 : [0,T2]→ Rd ,
T1, T2 > 0, the elastic registration of β1 and β2 to be computed together with the elastic
shape distance between them, irrespective of the value of d, the program always proceeds
first to compute an approximation of the length of each curve by computing the length
of each line segment joining consecutive points on the curve in the discretization of the
curve and adding these lengths, and then proceeds to scale the two curves so that each
curve has approximate length 1 (each point in the discretization of each curve is divided by
the approximate length of the curve). The program then proceeds to scale, if any, the two

1The identification of any commercial product or trade name does not imply endorsement or recommendation
by the National Institute of Standards and Technology.
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partitions that discretize the curves so that they become partitions of [0,1], or if no partitions
are given, to create two partitions of [0,1], one for each curve, according to the number of
points in the discretization of each curve, the discretization of each curve then assumed to
be the result of discretizing the curve by the corresponding partition, each partition uniform
if at least one curve is closed, each partition parametrizing the corresponding curve by arc
length otherwise. Utilizing the given or created partitions and the discretizations of the
curves, with the exception of the case in which d equals 1 and both curves are open, the
program then proceeds to create a common partition of [0,1] for the two curves and to
discretize each curve by this common partition using cubic splines. If at least one curve
is closed, and the numbers of points in the first curve and second curve are N and M,
respectively, letting L equal the larger of N and M, the common partition is then taken to be
the uniform partition of [0,1] of size equal to L. This is in accordance with the requirement
established in Section 4 that if at least one curve is closed (the set of starting points of one of
the curves will have more than one point), in order to compute the elastic shape distance and
registration in the appropriate manner, the curves should be discretized by the same uniform
partition. Note that a set of starting points of one of the curves having more than one point
is then identified satisfying that it is the discretization by the uniform partition of one of
the curves (a closed curve), or a subset of it. On the other hand, if both curves are open,
d not equal to 1, the common partition is then taken to be the union of the two partitions
discretizing the curves minus certain points in this union that are eliminated systematically
so that the distance between any two consecutive points in the common partition does not
exceed some tolerance. This is in accordance with the requirement established in Section 4
that if both curves are open (each curve has exactly one starting point), d not equal to 1,
in order to compute the elastic shape distance and registration in the appropriate manner,
the curves should be discretized by the same partition, a partition not necessarily uniform.
Finally, if both curves are open and d = 1, no common partition is created and the curves
continue to be discretized by the same given or created partitions. All of the above is
accomplished by Matlab routine ESD comp alldim.m during the execution of the software
package. Once this routine is done, the actual computations of the elastic shape distance
and registration are carried out by Matlab routine ESD core alldim.m in which all of the
procedures presented in Section 4 and Section 5 have been implemented.

The results that follow were obtained from applications of our software package on
discretizations of curves in 3−dimensional space of the helix and spherical ellipsoid kind.
With an observer at the origin of the 3−dimensional Euclidean space whose line of sight
is the positive z−axis, given T > 0, a circular helix of radius 1 with axis of rotation the
positive z−axis and that moves away from the observer in a clockwise screwing motion, is
defined by

x(t) = cos t, y(t) = sin t, z(t) = t, t ∈ [0,T ].

On the other hand, with an observer at the origin of the 3−dimensional Euclidean space
whose line of sight is the positive z−axis, given r,a,b, with r > a> 0, r > b> 0, a spherical
ellipsoid with axis of rotation the positive z−axis and that as viewed by the observer moves
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Fig. 3. Three plots of helices. The elastic registration of the two helices in each plot and the elastic
shape distance between them were computed.

around its axis of rotation in a clockwise direction, is defined by

x(t) = acos t, y(t) = bsin t, z(t) = (r2− x(t)2− y(t)2)1/2, t ∈ [0,2π].

We note that in the obvious similar manner, helices and spherical ellipsoids with axis of
rotation the positve/negative x−,y−,z−axis can be defined as well. We also note that as
defined above helices are open curves, and spherical ellipsoids are closed curves.

Three plots depicting helices are shown in Figure 3. (Note that in the plots there, the
x−axis, the y−axis and the z−axis are not always to scale relative to one another). In each
plot two helices appear. The helix in each plot with the positive z−axis as its axis of ro-
tation was considered to be the first curve or helix in the plot. In each plot this helix was
obtained by setting T to 6π in the definiton of a helix above so that it has three loops in
each plot and thus is the same helix in all three plots. The other helix in each plot has the
positive x−axis as its axis of rotation and was considered to be the second curve or helix
in each plot. From left to right in the three plots, the second helix was obtained by setting
T to 6π , 8π , 10π , respectively, in the definition of a helix above, the definition modified in
the obvious manner so that the helix has the positive x−axis as its axis of rotation. Thus the
second helix has three, four, five loops, from left to right in the three plots. All helices in
the plots were then discretized as described below and the elastic registration of the two he-
lices in each plot and the elastic shape distance between them were then computed through
executions of our software package (mostly executions of Procedure 2 in Section 4). Ac-
cordingly, one would expect the elastic shape distances, if given in the order of the plots
from left to right, to have been in strictly increasing order with the first distance essentially
equal to zero. That is exactly what we obtained: 0.00000 0.48221 0.60352.
We note that on input the first helix in each plot was given as the same discretization of a
3−loop helix, a helix discretized by a uniform partition of [0,6π], the discretization con-
sisting of 451 points. On the other hand, the second helix in each plot was given as well as
the discretization of a helix, from left to right in the three plots a helix having 3, 4, 5 loops,
respectively, a helix discretized by a uniform partition of [0,6π], [0,8π], [0,10π], respec-
tively, the discretizations consisting of 451, 601, 751 points, respectively. Given a pair of
helices in one of the three plots, as described above for the case in which neither curve is
closed, d 6= 1, the program then, after scaling each helix in the pair to have approximate
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Fig. 4. Optimal diffeomorphisms for pairs of helices.

Fig. 5. Views of first helix of 3 loops and second helix of 5 loops before computation of elastic
shape distance and registration (left), of rotated first helix (middle) and reparametrized second
helix (right) after computations.

length 1 and scaling the partition discretizing each helix to be a partition of [0,1], created a
common partition of [0,1] for the two helices, a nonuniform partition, and discretized each
helix by the common partition using cubic splines. From left to right in the three plots, the
common partitions were of size 451, 901, 1051, respectively. We note as well that in each
case we assumed (correctly) the helices to be defined in the proper directions (see second
paragraph of the Introduction section), thus cutting the times of execution for each case by
about half. For each case from left to right in the three plots, the times of execution were
5.4, 19.4, 39.2 seconds, respectively, with the repeat loop in Procedure 2 in Section 4 exe-
cuted 2, 3, 5 times, respectively. Plots of the computed optimal diffeomorphisms for each
pair of helices from left to right in the three plots in Figure 3, are shown in Figure 4. The
computed optimal rotation matrix for the pair in the leftmost plot in Figure 3, was

(
0 0 1
1 0 0
0 1 0

)
.

For each of the other two pairs it was almost the same matrix, the entries slightly different.
Finally, Figure 5 shows results of the elastic registration of the helix of 3 loops and the
helix of 5 loops. The two helices are shown in the leftmost plot of the figure before any
computations took place. In the middle plot we see the first helix (of 3 loops) after it was
rotated with the computed optimal rotation matrix, its axis of rotation becoming a ray of
direction not far from that of the positive x−axis. In the rightmost plot we see the second
helix (of 5 loops) after it was reparametrized with the computed optimal diffeomorphism,
some of the consecutive points in its discretization becoming slightly separated, in partic-
ular near the end of the first loop and the beginning of the fifth loop, so that the plot of the

29

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2164



Fig. 6. Two spherical ellipsoids, curves in 3−d space. The positive z−axis is the axis of rotation
of one spherical ellipsoid, while the positive x−axis is the axis of rotation of the other one. Their
shapes are essentially identical thus the elastic shape distance between them should be
essentially zero.

helix, which is drawn by joining with line segments consecutive points in the discretization
of the helix, has a slighly flat appearance in these areas.

Finally, we note that we could generate results using spherical ellipsoids similar to the
results just presented for helices. Since such an exercise is tantamount to repeating what has
already been done, in its place, we have opted to use spherical ellipsoids for the purpose of
illustrating, if the curves under consideration are closed, the improvement in execution time
that is achieved through the execution of our software package when it involves the FFT
(mostly the execution of Procedure 3 in Section 5) as this has the effect of speeding up the
successive computations appearing in Procedure 2 in Section 4 of optimal rotation matrices
for all starting points of one of the curves. We also use spherical ellipsoids to illustrate what
occurs if the curves under consideration are not defined in the proper directions.

A plot depicting two spherical ellipsoids of essentially the same shape is shown in
Figure 6. The ellipsoid with the positive z−axis as its axis of rotation was considered to be
the first curve or ellipsoid in the plot. It was obtained by setting r = 2.0, a = 1.3, b = 1.0 in
the definition of a spherical ellipsoid above. The other ellipsoid in the plot has the positive
x−axis as its axis of rotation and was considered to be the second curve or ellipsoid in the
plot. It was obtained by setting r = 2.0, a = 1.0, b = 1.3 in the definition of a spherical
ellipsoid above, the definition modified in the obvious manner so the the ellipsoid has the
positive x−axis as its axis of rotation. The two ellipsoids in the plot were then discretized
as described below, and taking into account that both are closed, the elastic registration
of the two ellipsoids and the elastic shape distance (essentially zero) between them were
then successfully computed through the execution of our software package, first without
involving the FFT thus executing mostly Procedure 2 in Section 4, and then involving the
FFT thus executing mostly Procedure 3 in Section 5. Note that for both procedures the
input variable itop was set to 1 as suggested in Section 4 for spherical ellipsoids.
First we discretized the first ellipsoid by a nonuniform partition of [0,2π] of size 1001
and the second ellipsoid by a uniform partition of [0,2π] of size 901. As described above
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for the case in which at least one curve is closed, the program then, after scaling each
ellipsoid to have approximate length 1 and scaling the partition discretizing each curve to
be a partition of [0,1], created a common partition of [0,1] for the two ellipsoids, a uniform
partition of size 1001, and discretized each curve by this common partition using cubic
splines. The program then selected the discretization of the first ellipsoid by the uniform
partition as the set of starting points of this ellipsoid. Without involving the FFT, the repeat
loop in Procedure 2 was executed two times, i.e., there was a total of two iterations for
this loop. The same for the repeat loop in Procedure 3 when involving the FFT. Without
the FFT, the executions of the KU algorithm for computing successively optimal rotation
matrices for all starting points of the first ellipsoid, took about 0.12 seconds per iteration
of the repeat loop, while the execution of the DP algorithm took about 6.5 seconds. With
the FFT, the execution of the KU2 algorithm, again for computing successively optimal
rotation matrices for all starting points of the first ellipsoid, took about 0.06 seconds per
iteration, while the DP algorithm took about 6.5 seconds.
Replacing above 1001 by 46001 and 901 by 45001, and repeating exactly what was done as
described above, we then obtained that without the FFT, the executions of the KU algorithm
took about 87 seconds per iteration of the repeat loop in Procedure 2 (two iterations), while
the execution of the DP algorithm took about 291 seconds, and with the FFT, the execution
of the KU2 algorithm took about 2 seconds per iteration of the repeat loop in Procedure 3
(two iterations), while the DP algorithm took about 291 seconds.

From the two examples above it is clear that computing successively optimal rotation
matrices for all starting points of the first ellipsoid with the FFT is a lot faster than without
it. The two examples illustrate as well the linearity of the DP algorithm and that its execu-
tion time appears to be significantly larger than the time required to compute successively
in either Procedure 2 or Procedure 3, optimal rotation matrices for all starting points of the
first ellipsoid. Although the latter may be true when the FFT is used, it is not exactly true
otherwise. Actually as the size of the discretizations of the curves increases, if the FFT is
used, this time becomes insignificant relative to the execution time of the DP algorithm, but
the opposite occurs if it is not.

Finally we reversed the direction of the first ellipsoid in the last example above and
as expected obtained an elastic shape distance between the two ellipsoids different from
zero, a distance of 0.195. Using the option in the program to do the computations in both
directions of one of the curves, we then obtained the correct distance (essentially zero). Of
course the execution time of the program doubled.
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7. Summary

Inspired by Srivastava et al.’s work for computing the elastic registration of two simple
curves in d−dimensional Euclidean space, d a positive integer, and thus the associated elas-
tic shape distance between them, in this paper we have enhanced Srivastava et al.’s work in
various ways. First we have presented a Dynamic Programming algorithm that is linear for
computing an optimal diffeomorphism for the elastic registration of two simple curves in
d−dimensional space, the computation of the registration based only on reparametrizations
(with diffeomorphisms of the unit interval) of one of the curves (no rotations), the curves
given on input as discrete sets of nodes in the curves, the numbers of nodes in the curves not
necessarily equal, the partitions of the unit interval discretizing the curves not necessarily
uniform. Next we have presented a purely algebraic justification of the usual algorithm, the
Kabsch-Umeyama algorithm, for computing an optimal rotation matrix for the rigid align-
ment of two simple curves in d−dimensional space, the curves given on input as discrete
sets of nodes in the curves, the same number of nodes in each curve, the two curves dis-
cretized by the same partition of the unit interval, the partition discretizing the curves not
necessarily uniform. Lastly, with the convention that if one of the curves is closed, the first
curve is closed, we have redefined the L2 type distance that is minimized in Srivastava et
al.’s work to allow for the second curve to be reparametrized while the first one is rotated,
the curves again given on input as discrete sets of nodes in the curves, the same number of
nodes in each curve, both curves now discretized by the same partition of the unit interval
(a uniform partition if the first curve is closed). A finite subset of the nodes in the first
curve (possibly all of them, possibly one if neither curve is closed) is then selected which
we interpret to be the set of so-called starting points of the curve, and the redefined L2

type distance is then minimized with an iterative procedure that alternates computations of
optimal diffeomorphisms (a constant number of them per iteration for reparametrizing the
second curve) with successive computations of optimal rotation matrices (for rotating the
first curve) for all starting points of the first curve. Carrying out computations this way is
not only more efficient all by itself, but, if both curves are closed, allows applications of the
Fast Fourier Transform (FFT) for computing successively in an even more efficient man-
ner, optimal rotation matrices for all starting points of the first curve. We note, results from
computations with the implementation of our methods applied on 3−dimensional curves
of the helix and spherical ellipsoid kind, have been presented in this paper as well.
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