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Abstract

Probability distribution fitting of an unknown stochastic process is an important prelim-
inary step for any further analysis in science or engineering. However, it requires some
background in statistics, prior considerations of the process or phenomenon under study
and familiarity with several distributions. As such, this paper presents an alternative ap-
proach which doesn’t require prior knowledge of statistical methods nor previous assump-
tion on the available data. Instead, using Deep Learning, the best candidate distribution is
extracted from the output of a neural network that was previously trained on a large suitable
database in order to classify an array of observations into a matching distributional model.
We find that our classifier can perform this task comparably to using maximum likelihood
estimation with an Anderson-Darling goodness of fit test.
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Deep Learning; neural networks; distribution fitting; data normalization.
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1. Introduction

Many problems in both science and engineering require fitting a distributional model to a
uni-variate dataset. That is, data consisting of a set of N empirical observations obtained
by measuring a certain system, provided that the measurements are independent and come
from the same distribution.

Distributional modeling can be used in several contexts. Statistical tests typically de-
pend on certain assumptions with regards to the underlying distribution (e.g., many tests
are based on the assumption of normality). Appropriate distributional models are also used
to more accurately assess uncertainty and, in particular, to assess the uncertainty over the
full range of the data. Although a poorly chosen distributional model may suffice for mea-
suring and assessing the uncertainty of averages, this will not be the case for tails of the
distribution. In many applications (e.g., reliability), accurate assessment of the tail behavior
is more critical than the average. Obtaining an appropriate distributional model can be an
exhaustive process that takes time, patience and requires previous knowledge of statistics
and is, therefore, a difficult task for some analysts.

Fig. 1. Traditional approach of conducting distribution fitting

Figure 1 presents the traditional approach to obtaining an appropriate distributional
model. This approach consists of four steps: The first step is to assess whether the data is
in fact independent. This can be done via standard statistical tests for randomness or auto-
correlation (e.g., runs test, Ljung-Box test). It can also be assessed graphically (e.g., a lag
plot or an auto-correlation plot). The second step is to identify potential distributional mod-
els. Typically, histograms or kernel density plots are used to help identify the basic shape
of the underlying distribution as well as certain properties such as the skewness and the
presence of multiple modes in the data. Identifying good potential models from these plots
typically requires some degree of statistical knowledge, experience and familiarity with
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several distributions. The third step is to estimate the parameters of the chosen distribution
via methods like maximum likelihood. The fourth and final step is to assess the goodness
of fit of the proposed distributional model via one of the many goodness of fit tests such
as the Anderson-Darling test, the Kolmogorov-Smirnov test, the Cramer-Von Mises test or
information criteria such as AIC and BIC.

This research focuses on the use of Deep Learning (DL) to assist in identifying the
best distributional model among a fixed set of candidate models (step 2) in order to help
analysts who are not equipped with sufficient statistical background easily map a set of
empirical observations obtained from an experiment to an appropriate distributional model.
DL is a sub-field of machine learning that applies neural network architectures to learn
features of the object to be classified. It has become more popular in recent years due
to its high accuracy, its capacity to deal with massive data and larger neural networks as
well as its capability to deduce data features automatically. Although DL neural networks
take a longer duration to train and usually require high performance servers with graphic
processing units (GPU) which are expensive, it is still considered an efficient and effective
approach for object classification.

The approach proposed here exploits the strengths of Deep Learning for classification
of distributional models. We restrict ourselves to the case of continuous measurements
where the data is not binned, censored or truncated. Moreover, we do not consider patho-
logical distributions (e.g. Cauchy distribution). In this paper, we train a feed forward neural
network to recognize patterns in an input dataset then predict the ”best” candidate model
from nine commonly used distributions that are widely encountered. The distributions con-
sidered in this study are: uniform, normal, logistic, exponential, half normal, half logistic,
gumbel max, gumbel min and double exponential. Note that once the DL has identified
the ”best” distributional model (step 2 according to Figure 1), the parameter estimation and
the goodness of fit assessment still need to be applied using traditional statistics. Although,
in this study a limited list of distributions is examined, it is covering the most encoun-
tered models. Moreover, this paper is intended to serve as a proof of concept to prove the
viability of our method then increase the number of the distributions later on.

In this paper, we present similar related works in section 2. We explain our methodol-
ogy and evaluation metrics in section 3. The results of our analysis are shown in section 5.
We also discuss the limitations of this work in section 6 and finally preview our ongoing
and future research in Section 7.

2. Related work

There have been several attempts to automate the distributional modeling process by cre-
ating software and packages that let the user know the “best” candidate distribution that
matches their inputs. Generally, most of them use traditional statistical techniques to pre-
process data and run some goodness of fit tests in order to rank and identify a good repre-
sentation of the data. Similar tools and packages include [1], [2] and [3], etc. All of them
have the same goal which is to guide and help analysts regardless of their knowledge of
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statistics, pin down the best candidate distribution matching their data and avoid using the
wrong distribution while saving them time.

Other researchers in the literature investigated the use of neural network for conducting
parameter estimation of probability density functions which corresponds to step 3 from
Figure 1. Similar papers include [4], [5] and [6]. Others have discussed conditional density
estimation using artificial intelligence such as [7] and [8]. Additionally, [9] presented the
best practices for conditional density estimation for finance applications, specifically, and
using neural networks. Finally, [10] used an ensemble of mixture density networks to
predict the probability density function of the surf height in order to know if it will fall
within a given ‘surfable’ range. However, at the time of this writing, there has been no
work involving the use of neural network to tackle step 2 of Figure 1 and create a classifier
for distributional models based on a set of independent empirical observations. In fact, this
task is the most important since one it is completed and the exact distribution model has
been identified, it becomes extremely easy to estimate the parameters of the distribution
and formulate the probability density function (PDF).

3. Methodology

3.1 Data collection

In this paper, we collected data in two stages. The first stage was to create the datasets for
training and validating the neural networks.

Probability distributions are characterized by three types of parameters: a location,
a scale and one or more shape parameters. The standard form of the distribution is the
case where the location parameter is zero and the scale parameter is one. Given a graph
of the standard form of the probability density function, the effect of a non-zero location
parameter is to shift the graph left (for negative location values) or right (for positive lo-
cation values) on the horizontal axis. The effect of a scale parameter is to either stretch
the graph on the horizontal axis (for scale parameters greater than one) or to compress the
graph on the horizontal axis (for scale parameters less than one). Chapter one from the
NIST/SEMATECH e-Handbook [11] shows examples of this for the normal distribution.
The relationship of the probability density function of a general form of the distribution
(i.e., location and scale not equal to zero and one) is:

f (x;a,b) =
f ( (x−a)

b ;0,1)
b

(1)

where a and b are the location and scale parameters, respectively. Any parameter that is
not either a location or scale (or a parameter that is a function of the location and scale
parameters only) is considered a shape factor. Shape parameters allow a distribution to
take a variety of different shapes. By shape, we mean properties such as skewness and
kurtosis (peakedness). Location and scale parameters have no effect on these properties.
For this study, we only considered distributions without shape parameters and keep the ones
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with the location and scale factors. Since the shape of the distribution does not depend on
the location and scale parameters, the training data only utilized the standard form of the
distributions (location = 0, and scale = 1).

For each of the nine distributions considered in this study, 10,000 datasets were gener-
ated for the standard form of the distributions at different sample sizes (30, 50, 100, 250,
500, 750, 1,000 and 10,000). The random numbers were generated with the Dataplot soft-
ware [12]. And a congruential-Fibonnaci [13] generator was used with a different seed
for each distribution/sample size configuration. For each set of random numbers, a kernel
density plot was generated with Dataplot using the Silverman algorithm [14]. The kernel
density plot is a graphical estimate of the underlying probability density function and is
considered a typical technique by statisticians to conduct exploratory analysis of data in or-
der to identify the shape of the underlying distributional model. Furthermore, the intuition
behind the choices of the sample sizes is based on the fact that the smoothness of the kernel
density plot increases with the increase of the number of available data points. In this study,
several experiments were conducted to assess and select the correct sample sizes prior to
training the neural networks that will eventually determine if the underlying distribution
can be recognized from the kernel density plot.

The kernel density estimate, fn(x), of a set of n points from a density f is defined as:

fn(x) =
∑

n
j=1 K{ (x−X j)

h }
nh

(2)

where K is the kernel function and h is the smoothing parameter or window width. The
Silverman algorithm uses a Gaussian kernel function. This down weights points smoothly
as the distance from x increases. We used Silverman’s default recommendation for the h
parameter:

0.9min(s, IQ/1.34)n−1/5 (3)

with s, IQ, and n denoting the sample standard deviation, the sample interquartile range
and the sample size, respectively. The kernel density plot was generated at 256 points.
The input for the neural networks is the y-axis coordinates of the kernel density plot. The
implicit x-axis coordinates are 1, 2, ..., 256.

The second stage was to create datasets for testing. Typically, real world data will
have location and scale values, so we generated random numbers for each distribution with
several different location and scale parameters. Specifically, datasets were generated with
sample sizes of 50, 100, 250, 500, 750, 1,000 and 10,000. For each sample size, datasets
were generated with location values: 20, 60 and 100 and scale values: 10, 30 and 50. This
adds up to a total of nine different combinations of location and scale parameters. Then,
we generated 1,000 datasets for each distribution/sample size/location/scale combination.

As with the training data, kernel density plots were generated for each dataset. And the
algorithm used for creating the kernel density plots in the training data, was also used for
this set.
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One question of interest is whether an appropriate normalization can address the issues
introduced by the location and scale parameters. The training and the validation data was
generated for standard forms of the distributions (location parameter = 0, scale parameter =
1) while the testing data was generated with non-standard values of the location and scale
parameters. The y-coordinate (height) of the kernel density plots is used for the input to the
neural networks (NN) which gives an implicit x-coordinate scale of 1 to 256. The location
parameter does not change the height of the kernel density. However, the scale parameter
does change the height of the kernel density plot.

Using an implicit x-axis scale of 1 to 256 for both the training and testing data should
minimize the effects of the location parameter. However, since the scale parameter changes
the height of the kernel density plot, there is a need to transform the kernel density heights
so that the testing data can be more effectively compared to the training and validation data.

In this study, we experimented with several transformation algorithms on both the train-
ing/validation and the testing data. But, only two yielded promising results:

1. The U-score, also referred to as the Min-Max normalization. The u-score algorithm
transforms the kernel density heights to a (0,1) scale according to the following math-
ematical formulation:

u score =
x−min(x)

max(x))−min(x)
(4)

where x is the original value, u score is the normalized value, min(x) and max(x) are
respectively the minimum and maximum values of each dataset x.

2. The kernel density normalization transforms the kernel density heights to integrate
to 1 on the 1 to 256 x-coordinate scale:

k score =
x

∑
256
i=1 xi

(5)

where x is the original value and k score is the normalized value.

3.2 Neural networks

An initial attempt at producing a single solid neural network model to classify an arbitrary
number of data points (N) to a matching probability density function (PDF) has not yielded
promising results especially when N is small. The intuition behind the misclassification
could be interpreted as follows: our approach relies on building a kernel density estimator
(KDE) from a set of independent empirical observations. This KDE tends to be noisy
for small N and becomes increasingly smooth as N gets larger. Thus, models trained on
the larger sample sizes perform poorly on the smaller sample sizes and models trained on
smaller sample sizes perform poorly for larger sample sizes.

To improve performance, we consider 20+ models. The data collected is generated
using eight sample sizes: N=30, N=50, N=100, N=250, N=500, N=750, N=1,000 and
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N=10,000 and each model is trained on a specific sample size range. The idea is to eval-
uate the models individually and collectively to deduce which ones work best for small,
moderate and large sample sizes. Examples of the considered models include: Model 1
(N ∈ [30,100]), Model 2 (N ∈ [100,750]), Model 3 (N ∈ [750,10000]), etc.

All the models have the same input and output layers. However, their hidden layers
differ in size and width. The input layer has 256 unit representing the Y-Axis coordinates
for a kernel density plot whereas the output layer has 9 points which refer to the one hot
encoding of the 9 distributional models considered in this paper. For each interval, we
started with a very simple Feed Forward Neural Network (FNN) that overfits. We then
proceeded to handle the overfiting by tuning FNN parameters to achieve the lowest loss
and highest accuracy. We found that the following work best:

1. 20% of the training data was allocated for the validation;

2. All models use Softmax as the activation function for the output layer and Relu for
the hidden layers;

3. The choice of the loss function was Categorical cross-entropy (CAT) for larger inter-
vals and Mean squared error (MSE) for smaller intervals;

4. The ADAM optimizer was used when the loss function was set to CAT and RMSprop
for MSE;

5. The learning rate is set to 1e-6 or 1e-5 in most cases;

6. The batch size is set to 200 for most models;

7. Each model was run for an average epoch of 500;

8. The weights were initialized using the ’He uniform’ distribution;

9. The bias was enabled in the hidden layers and disabled in the output layer;

10. The depth of each NN model was 40, while the width was either 512 or 1024 nodes
per layer;

11. Early stopping was deployed;

12. Regularized and dropout were used.

The models were all implemented using Python and Keras with Tensorflow as a back-
end and the experiment was run on our testbed with with 1 GPU and 40 CPU cores.
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3.3 Evaluation

After the training and validation steps of the neural networks were complete, additional
datasets were used to test the models (stage 2 from section 3.1). Furthermore, to deter-
mining the viability and effectiveness our approach, the models’ accuracy results were
compared against the results of a conventional statistical approach as follows:

• The data is fit to each distribution using maximum likelihood (MLE). The one ex-
ception is that the half-logistic distribution is fit using the method of moments.

• After estimating the parameters with maximum likelihood, the distributions are ranked
based on the Anderson-Darling (AD) goodness of fit statistic [15]. The AD test is
a refinement of the Kolmogorov-Smirnov (KS) statistic that puts more weight in the
tails of the distribution. The AD test is generally considered to have more power than
the the KS test.

Given an ordered set of data Yi and a cumulative distribution function F , the Anderson-
Darling test statistic is defined as

A2 =−N−
N

∑
i=1

(2i−1)
N

[lnF(Yi)+ ln(1−F(YN+1−i))] (6)

There are a variety of estimation methods and goodness of fit statistics that could be
used for this approach. However, the combination of MLE estimation and ranking by
the AD goodness of fit test provides a reasonable benchmark for assessing the results of
the neural networks. Moreover, it is important to mention that both approaches (neural
networks and MLE-AD) were compared based on the same data.

4. Results

Our primary metric of success was the percentage of times that the correct distribution
was accurately identified. For the mis-classified cases, we also identify which distributions
were chosen instead. The following factors are examined while analyzing the results:

• There are two different normalization algorithms considered. These are referred to
as the u-score and the kernel density normalization, respectively (section 3.1);

• There were eight different sample sizes used for the testing datasets. We grouped
these into three categories: ”small”, that is datasets with 30 or 50 or 100 observations;
”moderate”, that is datasets with 100, 250, 500 or 750 observations; and ”large”, that
is datasets with 750, 1,000 or 10,000 observations. Note that these categories contain
overlaps in order to create three intervals: small [30,100], moderate [100,750] and
large [750,10000]. These intervals are useful because real world data is not confined
to these particular eight sizes;
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• This study considered nine distinct distributions. These distributions allow for loca-
tion and scale parameters, but none of them have shape parameters;

• There were 20+ training models considered;

• There were nine combinations of location/scale parameters for each distribution/sample
size cell.

As a first step, we generated Design of Experiments (DEX) mean plots [16] as shown
in Figures 2, 3 and 4. DEX mean plots are useful for showing the most important factors.
We generated separate DEX plots for the small, moderate and large sample sizes. Initial
DEX plots included all of the training models. However, due to space limitations, we only
show plots with the most effective training models for each sample category. Some initial
conclusions from these DEX mean plots are:

• When we look at the location/scale factors for the plots that only include the best
performing training models, the effect is negligible. For this reason, in subsequent
analysis, the data for all nine location/scale combinations are aggregated into a single
value.

• The u-score and kernel density normalization methods have similar performance.

• For each sample size category, there is significant variability in the performance of
the different training models. The best training models are different for the three
sample size categories, but for a given sample size category there are several training
models that have similar performance. According to Figures 2, 3 and 4, we highlight
the following best three models: 1:

1. For a small sample size, we choose the training model ’30-50-100’ and the
u-score normalization. Table 3 shows the confusion matrix for this model com-
pared against MLE-AD (rounded to two decimal places);

2. For moderate and large sample sizes, we choose the training model ’100-250-
500-750-1000-10000’ and the kernel normalization. Tables 2 and 1, respec-
tively show the confusion matrix for this model compared against MLE-AD for
the moderate and the large categories (rounded to two decimal places);

• There are performance differences between the distributions. Specifically, the half-
logistic and and the logistic have significantly poorer performance than the other
distributions. This is not surprising as these have similar shapes to the half-normal
and normal distributions, respectively.

1uniform, 2: normal, 3: logistic, 4: exponential, 5: double-exponential, 6: half-normal, 7: half-logistic, 8:
gumbel-min, 9: gumbel-max
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• As expected, performance improves as the sample size increases. According to the
DEX mean plots, for the small category, the overall performance was approximately
70%, for the moderate category the overall performance was close to 85%, and for
the large category the overall performance was about 98%. The latter means that
with a large number of observations, our NN can identify ”the correct” distribution.
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Table 1. Confusion matrix for the large category: NN vs maximum likelihood/Anderson-Darling
(MLE-AD)

Selected distribution
True

Distribution Approach 1 2 3 4 5 6 7 8 9

NN 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Uniform MLE-AD 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NN 0.00 96.77 3.20 0.00 0.00 0.00 0.00 0.01 0.02
Normal MLE-AD 0.00 96.38 3.62 0.00 0.00 0.00 0.00 0.00 0.00

NN 0.00 1.87 96.94 0.00 1.13 0.00 0.00 0.03 0.03
Logistic MLE-AD 0.00 0.79 99.08 0.00 0.12 0.00 0.00 0.00 0.01

NN 0.00 0.00 0.00 98.93 0.00 0.00 1.07 0.00 0.00
Exponential MLE-AD 0.00 0.00 0.00 99.93 0.00 0.00 0.06 0.01 0.00

NN 0.00 0.00 0.30 0.00 99.70 0.00 0.00 0.00 0.00
Double Exponential MLE-AD 0.00 0.00 0.34 0.00 99.64 0.00 0.00 0.01 0.00

NN 0.00 0.00 0.00 0.00 0.00 96.45 3.55 0.00 0.00
Half Normal MLE-AD 0.00 0.00 0.00 0.00 0.00 99.57 0.34 0.00 0.09

NN 0.00 0.00 0.00 2.32 0.00 2.47 95.21 0.00 0.00
Half Logistic MLE-AD 0.00 0.00 0.00 0.81 0.00 5.70 93.48 0.00 0.01

NN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
Gumbel Min MLE-AD 0.00 0.00 0.00 0.00 0.01 0.00 0.00 99.99 0.00

NN 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 99.98
Gumbel Max MLE-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 99.99

For evaluation purposes, we also provide confusion matrices for MLE-AD in the same
tables as the output of the Neural Networks (NN) (tables 1, 2 and 3). Theses tables indicates
that neural networks perform comparably to MLE-AD and give better performance in a
majority, but not all, of the cases, than the MLE-AD method. In fact:

• For the small category, DL outperforms MLE-AD for 6 out of 9 distributions and
they perform essentially the same for the half-logistic distribution;

• For the moderate category, DL outperforms MLE-AD for 6 out of the 9 distributions
and they perform essentially the same for the Gumbel max distribution;

• For the large category, ML-AD performs slightly better for 3 distributions, DL per-
forms slightly better for one distribution and for the remaining 5 distributions they
perform essentially the same.

5. Conclusion

In this empirical study, we investigated the use of neural networks for distributional mod-
els classification. Given a set of independent empirical observations obtained from an
unknown process or phenomenon, we show that a neural network classifier is capable of
identifying which distributional model is best fitted for the input data.
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Table 2. Confusion matrix for the moderate category: NN vs maximum
likelihood/Anderson-Darling (MLE-AD)

Selected distribution
True

Distribution Approach 1 2 3 4 5 6 7 8 9

NN 99.95 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.01
Uniform MLE-AD 73.78 15.48 0.07 0.00 0.00 0.94 0.00 5.30 4.43

NN 0.10 91.01 7.08 0.00 0.34 0.00 0.00 0.74 0.72
Normal MLE-AD 0.00 79.27 18.55 0.00 0.38 0.00 0.00 0.93 0.86

NN 0.01 16.42 77.15 0.00 4.44 0.00 0.00 0.96 1.03
Logistic MLE-AD 0.00 8.71 85.67 0.00 4.52 0.00 0.00 0.54 0.55

NN 0.00 0.00 0.00 86.62 0.00 1.30 12.07 0.00 0.00
Exponential MLE-AD 0.00 0.00 0.00 87.98 0.00 0.43 10.89 0.00 0.70

NN 0.00 0.53 10.19 0.00 88.66 0.00 0.00 0.32 0.31
Double Exponential MLE-AD 0.00 0.09 10.57 0.00 89.04 0.00 0.00 0.13 0.17

NN 0.03 0.00 0.00 0.29 0.00 88.85 9.24 0.00 1.58
Half Normal MLE-AD 0.00 0.24 0.10 0.00 0.00 87.50 3.00 0.00 9.15

NN 0.00 0.00 0.00 8.55 0.00 15.93 74.96 0.00 0.57
Half Logistic MLE-AD 0.00 0.01 0.01 5.18 0.00 20.69 68.84 0.00 5.27

NN 0.03 1.02 0.39 0.00 0.07 0.00 0.00 98.49 0.00
Gumbel Min MLE-AD 0.00 0.59 1.60 0.00 0.20 0.00 0.00 97.62 0.00

NN 0.02 0.85 0.27 0.03 0.06 0.57 0.26 0.00 97.94
Gumbel Max MLE-AD 0.00 0.54 1.46 0.00 0.20 0.13 0.01 0.00 97.66

Table 3. Confusion matrix for the small category: NN vs maximum likelihood/Anderson-Darling
(MLE-AD)

Selected distribution
True

Distribution Approach 1 2 3 4 5 6 7 8 9

NN 97.44 0.89 0.00 0.01 0.00 0.73 0.02 0.58 0.33
Uniform MLE-AD 3.72 52.00 0.64 0.00 0.00 2.68 0.01 21.72 19.24

NN 1.99 64.13 17.94 0.00 4.04 0.46 0.00 5.89 5.54
Normal MLE-AD 0.00 51.72 31.96 0.00 3.07 0.00 0.00 6.81 6.44

NN 0.37 28.42 38.84 0.00 19.99 0.20 0.00 6.14 6.03
Logistic MLE-AD 0.00 19.74 57.32 0.00 13.28 0.00 0.00 4.81 4.86

NN 0.02 0.00 0.00 79.29 0.00 5.96 14.58 0.00 0.16
Exponential MLE-AD 0.00 0.11 0.09 30.44 0.00 1.58 51.80 0.00 15.98

NN 0.03 4.41 14.17 0.01 75.39 0.03 0.01 2.96 2.98
Double Exponential MLE-AD 0.00 1.51 30.37 0.00 63.49 0.00 0.00 2.18 2.45

NN 1.04 0.22 0.01 4.67 0.01 69.24 19.06 0.00 5.76
Half Normal MLE-AD 0.00 2.80 1.22 0.00 0.08 36.36 13.61 0.02 45.91

NN 0.13 0.01 0.01 24.99 0.00 29.99 41.84 0.00 3.03
Half Logistic MLE-AD 0.00 0.49 0.39 3.79 0.03 19.34 41.84 0.01 34.10

NN 0.70 4.82 1.65 0.00 1.43 0.00 0.00 91.39 0.01
Gumbel Min MLE-AD 0.00 4.29 6.81 0.00 1.67 0.00 0.00 87.21 0.03

NN 0.68 4.57 1.58 0.21 1.40 6.55 3.14 0.02 81.84
Gumbel Max MLE-AD 0.00 4.07 6.44 0.00 1.74 0.69 0.46 0.05 86.54
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We chose two neural networks models depending on the number of available data points
(small, moderate and large) and apply a suitable normalization technique (kernel density
normalization or u-score normalization) then run the points through the neural networks to
predict the ”best fitted” distributional model.

We validated the results by comparing them to a traditional statistical approach: pa-
rameter estimation by maximum likelihood with subsequent goodness of fit ranking by
Anderson-Darling (MLE-AD) and showed that this approach outperforms MLE-AD in a
majority of cases.

6. Limitations

In this study we proposed the use of deep learning to build a classifier for distributional
modeling. This classifier takes as input a set of data points and provides a distribution label
that matches one of nine most common distributions.

This approach is not a complete replacement of the traditional statistical methodol-
ogy that statisticians have been following to analyze and fit the data. However, it is an
alternative to step 2 from Figure 1 (Exploratory analysis) which usually requires a good
background of statistical knowledge as well as a familiarity with several distributions to be
able to recognize a good potential distribution from a set of empirical observations. This
is typically done via histograms or kernel density plots to help pin down the basic shape
of the underlying distribution and find properties such as the skewness and the presence of
multiple modes in the data.

Moreover, this paper considers uni-variate non-censored and non-truncated data and
doesn not consider families of distributions with the shape parameters or noisy data which
is generally a mixture distributions. In this research, We consider a limited number of dis-
tributions that correspond to the most commonly used models that are widely encountered.
The reason behind our decision is that we hope to provide an initial working prototype that
can prove the viability and applicability of our methodology.

7. Future work

In future work, we will extend the training set beyond the nine currently supported distri-
butions. In particular, this will include commonly used families of distributions such as
the Weibull, lognormal and gamma distributions. These families can generate a variety of
shapes based on the value of their shape parameter. For this reason, we plan to incorporate
the ability to make more specific classifications (e.g., distinguish between a Weibull or a
lognormal distribution) and compare this to approaches such as the likelihood ratio test
[17], [18].

Furthermore, we are currently building a tool that automates the distributional fitting
process for uncensored and unbinned uni-variate data that deploys our trained neural net-
works to identify the best candidate model from the distributions presented in this study.
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This tool takes empirical observation of any size and computes the kernel density estima-
tion on behalf of the user, then runs the classifier to predict the best fit distribution.

In addition to that, we are also deploying traditional statistical techniques to estimate
the parameters of the fitted distribution and assess it’s goodness of fit by comparing the
predictions to Anderson Darling, Kolmogorov-Smirnov and the probability plot correlation
coefficient tests as well as information criteria (AIC, BIC).

Moreover, we include in the tool an interactive module to clean and pre-process the data
before starting the NN classifier. This module will contain a step by step guide to help users
identify and eventually remove outliers prior to running the neural network classification.
It is very important because outlier identification is for the purpose of identifying bad data
in the sense of being erroneous (e.g., data is mis-coded or there is an assignable cause for
why the observation is in error). Furthermore, statistical classification of an observation
as an outlier is dependent on the underlying distribution of the data, which is what we are
trying to determine, so simply being an ”extreme” observation is not sufficient justification
for removing it.
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