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Executive Summary 

Datasets available to researchers and the public have proliferated in the past 10 years. These 

datasets have been analyzed using various statistical and machine learning methods, resulting in 

many useful insights, which have in turn helped to shape public policy and impacted other large-

scale decision-making processes.  However, certain risks have been associated with the release 

of many of these datasets as they may contain potentially sensitive information about individuals. 

The National Institute of Standards and Technology (NIST) Technical Note 1917 Public Safety 

Analytics Research and Development (R&D) Roadmap specifically notes that “monitoring 

proprietary or individual citizen data may raise privacy concerns” and recognizes that the 

assurance of data privacy is a critical condition in the development of public safety analytic 

capabilities. [1] 

The public safety community’s move to provide transparency through open data initiatives and 

the rise of advanced analytics warrants consideration for the processing procedures and 

techniques that de-identify data; and necessitate the use of tested, validated, high-speed 

algorithms that ensure the protection of both public safety personnel and the communities they 

serve. 

De-identification which is also referred to as anonymization in Europe, is a set of approaches that 

strips personal information from a dataset.  This term encompasses a broad and diverse range of 

techniques for mitigating the risk of linkage attacks and other misuses of datasets that contain 

personally identifiable information (PII).  However, there is a utility vs. privacy tradeoff, in that 

a greater level of difficulty for carrying out a linkage attack will most likely imply a reduced 

utility for analysis and research purposes when it comes to de-identified datasets. Popular de-

identification techniques, such as field suppression (and other field-specific perturbations) and 

guaranteeing k-anonymity, which preserve the privacy of the dataset, often must sacrifice too 

great a level of utility in order to prevent linkage attacks and other potentially damaging uses of 

the datasets. In addition, it is difficult or most often impossible to quantify the amount of privacy 

that is lost with these techniques.  

A growing body of academic research in the field of differential privacy claims strict 

mathematical guarantees of data privacy, but with a potentially greater loss of dataset utility.  

Introduced by Cynthia Dwork in 2006, differential privacy (DP) is a mathematical theory and set 

of computational techniques that provide a method of de-identifying datasets—under the 

restriction of a quantifiable level of privacy loss. [2]  Algorithms that satisfy the DP guarantee 

provide privacy protection that is robust against re-identification attacks, independent of an 

attacker’s background knowledge.  They use randomized mechanisms and provide a tunable 

trade-off between utility and privacy.  

Informally, DP is a technique that serves to protects privacy no matter what third-party data is 

available; it strictly limits what is possible to learn about any one individual in the dataset.  More 

formally, epsilon or ε-differential privacy considers the output probability distribution of a 

randomized data privatization process and bounds the amount that probability distribution can 

shift when one individual’s data is added or removed.   
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To address the growing need for privacy techniques that can support high risk and demographic-

rich data, like that found in the public safety sector, Applied Analytics Portfolio of the National 

Institute of Standards and Technology (NIST) Public Safety Communications Research (PSCR) 

Division partnered with the Information Technology Laboratory Information Access Division to 

establish a project to test, evaluate and strengthen research in DP. This effort lead to the creation 

of a series of prize challenges, or head-to-head competitions, and making the open source 

algorithms available for public safety use.  This publication describes these efforts, focusing 

primarily on the design and results of PSCR’s multi-phased innovation challenge which awarded 

a cumulative of $190K in cash prizes and makes recommendations for conducting future 

challenges in DP. 

Beginning in 2017, PSCR’s Open Innovation Office leveraged a contracted subject matter expert 

in DP, Knexus Research Corporation, and contracted challenge implementers, HeroX and 

Topcoder, through the National Aeronautics and Space Administration (NASA) Center of 

Excellence for Collaborative Innovation (CoECI) contract vehicle to aid in the design and to 

implement the 2018 Differential Privacy Challenges.  A team of 10 experts drawn from 

academia, industry, and government were recruited to validate challenge design, review 

submissions for adherence to DP, and make recommendations to the PSCR judge panel to the 

Division Chief of PSCR who served as the NIST appointed judge and made final decisions on 

prize awards. 

The challenge was split into two distinct phases.  The first, a conceptual phase, titled 2017 

Unlinkable Data Challenge, elicited new ideas on DP methods through a white paper contest and 

leveraged a two-fold approach for evaluation and awards: a manual technical review by experts, 

and a “People’s Choice” award.   

Figure 1 – 2017 Unlinkable Data Challenge Concept Paper Winners 

The second phase of the challenge, titled 2018 Differential Privacy Synthetic Data Challenge,  

took an empirical approach to aggressively advance concepts for generating differentially private 

synthetic data via a series of three coding competitions or matches.  These competitions 

introduced increasingly complex metrics to score Docker container solutions at three levels of ε 
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via a leaderboard during a provision phase, and final submissions against withheld data at three 

or more levels of ε during a sequestered phase. The stochastic nature of DP was addressed by a 

manual validation of DP, one voluntary offered in the provisional phase in exchange for a score 

boost for the contestants; and one mandatory during the sequestered stage.  Additional details on 

challenge design including marketing, data, metrics, and scoring are detailed in the document. 

The five final winning solutions of the Synthetic Data Challenge fell into three basic categories 

of approaches:  

● Marginals - determined the probability distribution of the variables contained in the ground

truth data by using the marginal distribution of subsets of the random variables.

● Probabilistic Graphical Models (PGM) - constructed of interpretable models that use a graph

structure to record patterns of variable correlations; these graphs are learned automatically

from data and then manipulated by reasoning algorithms to generate synthetic data.

● Generalized Adversarial Networks (GAN) - utilized a generator and a discriminator which are

trained under adversarial learning approach to estimate the potential distribution of original

data samples and generate new synthetic data samples from that distribution.

Challenge results are expanded in the document and include descriptions on the effectiveness of 

outreach and the focus, participation, and scoring methodology for each match.   

Figure 2 - Winners of the Synthetic Data Challenge by Match 

Prize Team Name Points Prize Team Name Points Prize Team Name Points

1st Place 

$10,000 + 

Progressive 

Prize $1,000

jonathanps 

(Marginal)
  781,953 

1st Place 

$15,000 + 

Progressive 

Prize $1,000

jonathanps 

(Marginal)
  748,427 

1st Place 

$25,000 + 

Progressive 

Prize $1,000

rmckenna 

(PGM)
        902,307 

2nd Place 

$7,000 

ninghui 

(Marginal)
  736,780 

2nd Place 

$10,000 + 

Progressive 

Prize $1,000

ninghui 

(Marginal)
  705,843 

2nd Place 

$15,000 + 

Progressive 

Prize $1,000

ninghui 

(Marginal)
        870,097 

3rd Place 

$5,000 + 

Progressive 

Prize $1,000

rmckenna 

(PGM)
  664,623 

3rd Place 

$5,000

privbayes 

(PGM)
  641,671 

3rd Place 

$10,000 + 

Progressive 

Prize $1,000

privbayes 

(PGM)
        823,513 

4th Place 

$2,000

manisrivatava 

(GAN)
       93,955 

4th Place 

$3,000  + 

Progressive 

Prize $1,000

rmckenna 

(PGM)
  639,887 

4th Place 

$5,000  + 

Progressive 

Prize $1,000

gardn999 

(Marginal)
        768,802 

5th Place 

$1,000

privbayes 

(PGM)
       82,414 

5th Place 

$2,000  + 

Progressive 

Prize $1,000

gardn999 

(Marginal)
  604,066 

5th Place 

$3,000

manisrivatava 

(GAN)
        541,494 

Progressive 

Prize $1,000
brettbj

Progressive 

Prize $1,001
eceva

Match 1 Match 2 Match 3
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Overall the strategy used for this challenge, which led contestants to evaluate, improve, and 

document their solutions from a conceptual phase through an increasingly difficult sequence of 

empirical matches, was well-suited to the problem and was a generally successful approach for 

moving solutions from theory to practice.  Scores improved over the course of the challenge, and 

the top-ranked, final-winning solutions produced high-quality results in a difficult, real-world 

use case.  Unanticipated technical outcomes included the higher performance of simpler 

marginal based approaches against more recent GAN models, high performance despite 

unspecified workload, and good performance at lower levels of ε.   

The challenge garnered global interest and U.S.-led teams comprised of international partners. 

However, due to the limited maturity of DP technologies and few production implementations, 

challenge implementors overestimated the number of potential challenge participants.  This 

challenge relied heavily on a limited number of NIST-externally recruited subject matter experts 

and revealed critical lessons learned in regard to recruitment, scheduling, and collaboration, as 

well as, data selection and test harness design.  These are further detailed in the document. 

The NIST PSCR Differential Privacy Synthetic Data challenge results convincingly established 

that DP theory can be applied with current technology, and that the high ranked final solutions 

provide very meaningful insight as to how it can be done.  The set of successful techniques far 

exceeded the success anticipated by the DP academic community at the outset of the challenge.  

The challenge effectively garnered global participation and support from the small circle of 

researchers accelerating advancement in the field, as well as, expanding the acumen of DP to 

public safety data owners and technologists.  

The challenge’s winning solutions not only sparked interest in privacy and statistics circles 

which resulted in invited talks at conferences, but they also caught the attention of Fortune 500 

companies looking to leverage demographic-rich data in an era of growing privacy restrictions.  

While further work and investment will be required in the areas of automated algorithm tuning, 

software and computer engineering, and user-interface development to create a commercial 

application that can be used to produce synthetic data, the PSCR challenge served as a necessary 

bridge over the wide development gap.  

Future research by the competing teams, as well as new researchers, and collaborations with the 

public safety and commercial sector can continue to build and improve further on these 

solutions.  New techniques may also use these challenge results as a benchmarking tool.  DP 

technology solutions are improving rapidly and have promise to provide levels of privitization 

that would allow broader use of data by public safety, government, academia and industry. 

Purpose 

The purpose of this publication is to document the use of a prize challenge as a means for driving 

innovation in the developing field of differential privacy and to describe the process, 

considerations, outcomes, and lessons learned. 
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Abstract 

The push for open data has made a multitude of datasets available, enabling researchers to 

analyze publicly available information using various statistical and machine learning methods in 

support of policy development.  An area of increasing interest that is being made available is 

public safety data, which can include both sensitive information and personally identifiable 

information (PII).  Release of sensitive data and PII can lead to individual and organizational 

harm.  However, the removal of PII alone is an insufficient approach to preventing linkage 

attacks -- the process of combining unrelated data to identify individuals and entities. A growing 

body of academic research in the field of differential privacy exists which claims strict 

mathematical guarantees of data privacy, but with a potentially greater loss of dataset utility.  In 

2017 National Institute of Standards and Technology (NIST) Public Safety Communications 

Research (PSCR) Division initiated efforts to test, evaluate and strengthen research in 

differential privacy and add to its growing body of knowledge by making available open source 

algorithms for public safety use. This publication describes the efforts focusing primarily on the 

design and results of PSCR’s multi-phased innovation prize challenge and makes 

recommendations for conducting future challenges in differential privacy. 

Key words 

Challenge; Innovation Challenge; Deidentification; Differential Privacy; Synthetic Data; Data 

Privacy; Privacy; Public Safety; Public Safety Communications Research. 
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1.1 Introduction 

A rapid proliferation of datasets has been made available to researchers and the public within the 

last 10 years. These datasets have been analyzed using various statistical and machine learning 

methods, resulting in many useful insights, which have in turn helped to shape public policy and 

impacted other large-scale decision-making processes.  However, certain risks have been 

associated with the release of many of these datasets as they may contain potentially sensitive 

information about individuals.  National Institute of Standards and Technology (NIST) Technical 

Note 1917 Public Safety Analytics (PSA) Research and Development (R&D) Roadmap 

specifically notes that “monitoring proprietary or individual citizen data may raise privacy 

concerns” and recognizes that the assurance of data privacy is a critical condition in the 

development of public safety analytic capabilities. [1] 

 

Nonetheless, some public safety datasets, for example, the Dallas Police’s RMS Incidents within 

the City of Dallas Open Data Repository contains 602,097 entries of up to 100 fields and 

includes the personally identifiable information (PII) of officers, victims, and suspects. [3] 

Datasets such as this contain valuable information with potentially important research 

implications, including location data collected from mobile devices, which can be used for 

contingency planning for disaster scenarios; travel data, which can be used to identify safety 

risks within the industry; hospital and medical record data, which can assist researchers in 

tracking contagious diseases, such as virus outbreaks, the epidemiology of drug abuse, and other 

health epidemics; and patterns of violence in local communities.  However, in most cases within 

the public safety sector, privacy concerns surrounding PII limit both the use of this data and the 

ability to share this data freely.  

 

The availability of this type of public data is expected to rise in the near future. Due to the 

sensitive nature of information contained in these types of datasets, steps can be taken to remove 

PII prior to the datasets being made publicly available to analysts and researchers.  However, 

achieving privacy is not as simple as redacting identifiers. Simply removing PII from these 

datasets is an insufficient approach because contextual information, particularly when combined 

with external databases, can allow for re-identification.  It is well-known that auxiliary datasets 

can be used in combination with records in a redacted dataset to identify an individual. The 

process of combining auxiliary information with released data to identify individuals and entities 

is known as a linkage attack. [2] 

 

Examples of linkage attacks utilizing released public safety data can be traced in literature back 

as early as 2001 when Ochoa, et al. were able to positively identify a significant percentage 

(35%) of the homicide victims contained in the Illinois Criminal Justice Information Authority 

database by linking to the social security death index. [4] 

 

Public safety’s move to provide transparency through open data initiatives and the rise of 

advanced analytics warrants consideration for the processing procedures and techniques that de-

identify data; and necessitate the use of tested, validated, high-speed algorithms that ensure the 

protection of both public safety personnel and the communities they serve. 
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1.1. De-Identification and Differential Privacy 

De-identification, which is also referred to as anonymization in Europe, is an approach that strips 

personal information from a dataset.  This term encompasses a broad and diverse range of 

techniques for mitigating the risk of linkage attacks and other misuses of datasets that contain 

PII.  However, there is a utility vs. privacy tradeoff, in that a greater level of difficulty for 

carrying out a linkage attack will most likely imply a reduced utility for analysis and research 

purposes when it comes to de-identified datasets. Popular de-identification techniques, such as 

field suppression (and other field-specific perturbations) and guaranteeing k-anonymity, which 

preserve the privacy of the dataset, often must sacrifice too great a level of utility in order to 

limit linkage attacks and other potentially damaging uses of the datasets. In addition, it is 

difficult or most often impossible to quantify the amount of privacy that is lost with these 

techniques.  

 

A growing body of academic research in the field of differential privacy claims strict 

mathematical guarantees of data privacy, but with a potentially greater loss of dataset utility.  

Introduced by Cynthia Dwork in 2006, differential privacy (DP) is a mathematical theory, and 

set of computational techniques, that provide a method of de-identifying datasets—under the 

restriction of a quantifiable level of privacy loss. [2] DP analysis also known as mechanisms 

(ℳ) provide privacy protection that’s robust against re-identification attacks, independent of an 

attacker’s background knowledge.   

The process of publicly releasing datasets while guaranteeing privacy through DP consists of 

three parts: a generative model is built which captures the distribution of the original sensitive 

data, perturbation steps are applied at various points to ensure the model satisfies DP, and then 

the privatized model is used to synthesize a new dataset consisting of synthetic individuals. 

Because the synthetic data satisfies DP, the synthetic data provably contains no real individuals, 

and thus, individuals cannot be re-identified.  Informally, differential privacy is satisfied if given 

two databases (D1, D2) which differ by the data of a single individual, synthetic data output (O) 

reveals no distinguishable information about the individual from either database.  

 

The strength and probability of this privacy guarantee is controlled by tuning the privacy loss 

budget, or privacy parameter ε.  Lower levels of ε provide more indistinguishable results, thereby 

increasing each individual’s privacy.  [2] 

 

 
Figure 3 - Formal Definition of Differential Privacy [5] 

This constraint ensures that re-identification attacks will not be feasible on the privatized results, 

which we can demonstrate with a contradiction argument.  If a specific unique person is 

recognizable with certainty in the published results, then the probability is unbounded, and this 

violates the constraint of DP.  
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The bound 𝐴 provides a formal measure of individual privacy—the larger 𝐴 is the more distance 

that is permitted between probabilities 𝑃1 and 𝑃2, resulting in less overlap between possible 

realities and a weaker privacy guarantee. The definition of DP sets 𝐴 = 𝑒𝜖 where the parameter 𝜖 

is used to tune the privacy/utility trade-off or privacy budget, with small values of 𝜖 providing 

better privacy and requiring larger amounts of added noise.  Very large values of  𝜖  weaken the 

constraint until it no longer ensures protection against re-identification; very small values of 𝜖 

can require the probability distribution to be so wide (and the added random noise to be 

sufficiently large) that the published results no longer bear any resemblance to the true data and 

provide no utility for analysis. 

 

 
Figure 4 – Differential privacy definition illustration, showing overlap of output probability 

distributions from neighboring datasets D1, D2 and a specific sampled result S 

Well-designed differentially private algorithms capture the desired information in the data while 

using techniques that are robust to small changes, producing results that naturally shift relatively 

little when single individual’s records are added or removed, requiring relatively little 

randomization to privatize. This problem becomes more challenging as the complexity of the 

data, the size of the data space, and the number of features in the desired output increase. The 

problem of differentially private synthetic data, which requires retaining all information of 

potential interest in a possibly large and complex dataspace, however, has remained a 

notoriously difficult problem.  

 

DP techniques may hold great promise in the field of data de-identification and provide a 

pathway for publicly releasing public safety datasets, but only if the utility of the de-identified 

datasets that they produce can be substantially improved.  

 

1.2. Research Approach  

Increasing demands for public safety data necessitate the ability to properly de-identify datasets 

with tested, validated, high-speed algorithms that ensure the protection of PII for both public 

safety personnel and the community.  However, proving these techniques and refining the 

algorithms to the point where they can be applied in privacy-preserving data release pipelines 

requires accelerated innovation to make de-identification of privacy-sensitive datasets practical 

in time to meet the demand.  
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To address this need, in 2017 the Applied Analytics Portfolio of the National Institute of 

Standards and Technology (NIST) Public Safety Communications Research (PSCR) Division 

partnered with the Information Technology Laboratory Information Access Division to establish 

a project to test, evaluate and strengthen research in DP and add to its growing body of 

knowledge by exposing research by way of prize challenges, or head-to-head competitions, and 

making the open source algorithms available for public safety use.   

Additionally, following the challenge, NIST worked with representatives from Los Alamos 

National Laboratory and RAND Corporation to evaluate the utility metrics used in the challenge 

for determining the accuracy of synthetic data, as well as other applicable metrics.  Detailed 

information on the evaluation of techniques for differentially private synthetic data is covered by 

Bowen and Snoke. [6] 

This publication describes the consideration and design of the NIST de-identification contest and 

the 2018 NIST Differential Privacy Synthetic Data Challenge, a two-phase innovation prize 

competition.  It also identifies lessons learned and considerations for conducting future 

challenges in DP.  The information is presented in the following manner: 

● First, we outline the rationale for utilizing the prize challenge approach, and cover 

considerations taken into account in preparation for the challenge.  

● Second, we describe our design, data preparation, and scoring methodologies for the 

conceptual and empirical contests and follow with the results of each respectively.   

● Third, we provide details on participant approaches.   

● Fourth, we highlight technical observations from the challenge. 

● Fifth, we conclude with lessons learned, and future research directions in the public 

safety and DP space. 

We acknowledge the distinction between registered participants and contestants, although we 

utilize the terms synonymously throughout the document.  We note the difference in the results 

discussion as registered participants or registrants who completed online registration on the 

challenge platform but did not submit entries to the challenge contests; and contestants as those 

who provided submissions and actively participated in one or more phases of the challenge. 

 

2. Prize Competition Approach and Challenge Management 

The America COMPETES Reauthorization Act of 2010 (Pub. Law 111-358, title I, § 105(a), Jan. 

4, 2011) authorizes the use of point solution, exposition, and participation prize competitions, or 

more commonly referred to as prize challenges, to rejuvenate investment focus on science, 

technology, engineering, and mathematics. [7] Since that time, prize challenges have offered 

many advantages for rapidly advancing innovation at NIST.  A major benefit of prize challenges 

is the ability to expand the pool of problem solvers beyond the traditional candidates.  Prize 

challenges generally extend the typical pool of stakeholders, or interested parties, to attract 

diverse talent from multiple disciplines, who come together to solve the problem. Other benefits 

include: 

● The acceleration of the timeline; while traditional grants and contracting mechanisms 

may address the problem statement, prize challenges can be designed to reach a specific 

goal within a strict timeline.  
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● The number of participants is limitless and the outreach global; prize challenges 

encourage diverse groups to participate, resulting in many different solutions and more of 

them. 

● Cost effectiveness and development of many solutions.  

● Coalition and stimulation of the DP marketplace and focused research.    

● Cultivation of a collaborative community interested in solving and progressing DP 

applications. 

 

Over the last decade, NIST has explored the use of prize challenges to foster innovation and 

drive standards.  For example, to encourage Internet of Things (IOT) stakeholders to collaborate 

with municipal leaders and develop smart cities, in 2014, NIST launched the Global City Teams 

Challenge (GCTC), an exposition prize challenge which fostered innovation acting as a 

matchmaker and incubator to form public-private partnerships creating opportunities for 

engagement and collaboration.  The process and results informed foundation publications 

including IOT-Enabled Smart Cities Framework and Municipal Internet of Things Blueprint to 

assist city leader's decision-making. [8] Utilization of prize challenges within the NIST 

Information Technology Laboratory had been limited to the Intelligence Advanced Research 

Projects Activity (IARPA) sponsored Open Cross-Lingual Information Retrieval prize challenge 

which sought to develop “a cross-lingual information retrieval (CLIR) system to assist English 

speaking experts with data triaging.” [9] However, the Public Safety Communications Research 

division of the Communications Technology Laboratory has taken a forward leaning approach, 

establishing a dedicated Open Innovation Office to drive rapid advancement for public safety 

communications and relevant supporting analytic needs.   

 

PSCR’s Open Innovation Office leveraged a 

contracted subject matter expert in DP, Knexus 

Research Corporation, and contracted challenge 

implementers, HeroX and TopCoder, through 

the National Aeronautics and Space 

Administration (NASA) Center of Excellence 

for Collaborative Innovation (CoECI) contract 

vehicle to aid in the design and to conduct the 

Differential Privacy Synthetic Data Challenge.     

 

A team of 10 experts drawn from academia, 

industry, and government were recruited to 

validate challenge design, review submissions 

for adherence to DP, and make recommendations to the PSCR judge panel for awards to PSCR.  

The Division Chief of PSCR served as the NIST appointed judge and made final decisions on 

prize awards. 

 

2.1     Challenge Considerations and Assumptions 

For the first national level contest in DP to be successful, we understood that the challenge 

would need to provide the necessary benchmarking tools, data, and metrics, along with the 

motivation, leaderboards, and incentive prizes to spur the research community to determine 

“Ultimately, the ability of prizes to 

mobilize participants and capital, 

spread the burden of risk, and set a 
problem-solving agenda makes them 

a powerful instrument of change.  
They offer a valuable form of 

leverage to sponsors that use them 
as part of a well-designed strategy.” 
 

Mckinsey & Company - 2009 [24] 
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whether effective practical solutions can be developed for the differentially private synthetic data 

problem.  Considerations and assumptions that drove the challenge design included:  

 

● Concept maturity - We understood that DP methods were nascent and experts in the field had 

limited access to outside training datasets or real world application platforms.  The challenge 

would require a multi-phased approach, almost a bootcamp style, which would drive and 

motivate teams to repeatedly evaluate their algorithms on real world problems, use results to 

improve their algorithms, and then evaluate and improve again.   

 

● Data – The data to be de-identified needed to be relevant to public safety needs.  Per NIST 

Institutional Review Board guidelines, data could not contain PII or be obtained without 

consent. Sample data would need to be provided for development but must be independent of 

the final evaluation data.  Therefore, the challenge required at least three datasets: 1) sample 

data for download and development, 2) provisional data for participant testing, and 3) 

sequestered data for final evaluation.  Data should increase in difficulty as the phases of the 

contest progressed.  

 

● Benchmarking tools and metrics - We recognized that not all algorithms are created equal.  

Sanitizing data using algorithms that satisfy DP will prevent re-identification, but poorly 

designed algorithms may add too much randomized "noise" to protect the data and become 

useless for analysis.  Therefore, the contest would need to evaluate algorithm design as well 

as measurably determine the techniques that work well at preserving utility while protecting 

privacy.  To ensure fairness and efficiency, and to promote the development of data-agnostic 

algorithms, multiple non-redundant metrics would be required for the challenge.  Two 

specific concerns drove metrics selection: 

o Coverage - to address a breadth of use cases for the data 

o Discrimination – to distinguish between real and synthetic data 

● Motivation – We understood that the contestants would consist of data science teams 

composed of students, academics, and industry professionals with already busy schedules.  In 

order to ensure that the challenge was more exciting than stressful, and to help contestants 

stay actively engaged and striving to produce their best work throughout, it was important to 

have a well-designed set of incentives and milestones. 

3. Challenge Design 

In order to address the considerations and assumptions, the challenge was split into two distinct 

phases.  The first, a conceptual phase, elicited new ideas on DP methods through a white paper.  

The second, an empirical phase, aggressively advanced the concepts into applied research via a 

coding competition.  In this section, we discuss the challenge design for both phases, covering 

overarching issues applicable to both, then address details for each phase.  

 

3.1 Team Eligibility  

To be eligible for the cash prizes, each contestant or team of contestants were required to include 

an Official Representative who was age 18 or older at the time of entry and a U.S. citizen or 

permanent resident of the United States or its territories.  
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3.2 Milestones and Incentives 

The conceptual phase contest known as the 2018 NIST “The Unlinkable Data Challenge: 

Advancing Methods in Differential Privacy” occurred over three months in the summer of 2018. 

This was followed by the empirical phase contest, known as the 2018 NIST “Differential Privacy 

Synthetic Data Challenge” which consisted of a sequence of three consecutive marathon matches 

that took place over eight months from October 2018 through May 2019.  These milestones were 

designed to break down what may have seemed like an insurmountable problem into 

comprehensible and conquerable stages.  Financial incentives were provided early and frequently 

to maintain momentum and participation.  

3.3 Experts and Judges 

NIST identified 10 DP subject matter experts to assist with the challenge.  The selected experts 

were academic, government, and industry professionals with extensive backgrounds in statistics 

and mathematics, as well as experience in developing DP-based solutions.  The subject matter 

experts participated in ad hoc design meetings and served as reviewers for contestant 

submissions.  Judges were appointed by NIST and consisted of PSCR senior staff.  

 

3.4 Outreach 

Ongoing outreach, accessibility, and engagement throughout the challenge was critical to rapid 

advancement of the discipline within the allotted time frame of the project.  We leveraged a 

variety of outreach approaches to recruit, educate, and provide feedback to participants.   

 

3.4.1 Marketing Strategy 

Official details about the challenge were posted to the Challenge.gov website, in addition to the 

NIST PSCR and specific challenge websites. A NIST press release1 and NIST Tech Beat2 

articles were issued to increase visibility to DP while inviting interested parties to participate.  

Due to the complexity of the problem, the marketing strategy for the 2018 NIST Differential 

Privacy Synthetic Data Challenge specifically targeted solvers with experience in DP, in addition 

 
1 https://www.nist.gov/blogs/taking-measure/differential-privacy-qa-nists-mary-theofanos 
2 https://www.nist.gov/news-events/news/2018/05/help-keep-big-data-safe-entering-nists-unlinkable-data-challenge  

 

Figure  SEQ Figure \* ARABIC 2 - The awards and prize amounts 
distributed at each stage in the challenge. 

Figure 5 - Challenge Milestones and Incentives 

https://www.nist.gov/blogs/taking-measure/differential-privacy-qa-nists-mary-theofanos
https://www.nist.gov/news-events/news/2018/05/help-keep-big-data-safe-entering-nists-unlinkable-data-challenge
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to reaching out to the general data science challenge community.  A two-prong approach for 

recruitment was applied:   

● Social Media - HeroX developed and ran social media ad campaigns targeted to the DP 

community on Facebook and Twitter.  Metrics from each ad set were continually tracked 

and revised throughout the duration of the campaign in order to maximize success.  

● Targeted Emails - HeroX, NIST PSCR staff, and the challenge subject matter expert 

panel worked together to develop a targeted outreach list, focusing on experts in DP and 

academic leadership for relevant departments in prominent universities.  As the marathon 

matches progressed, reminder emails were sent only to those that had opened a prior 

communication, and the frequency of emails decreased as interested users registered on 

the HeroX platform. 

3.4.2 Registration  

Registration was conducted through the HeroX platform for the conceptual phase and the 

TopCoder platform for the empirical phase.  To provide schedule flexibility for participants, 

registration was intentionally fluid.  For the conceptual phase, registration was open for three 

solid months from February 1, 2018 to contest launch on May 1, 2018.  In the empirical phase, 

participants could join any of the three matches up to one week prior to the final scoring stages, 

to allow time to submit their entry to the public leaderboard and pre-screening.  Additionally, 

contestants were not required to participate in all matches and could join, leave, and rejoin the 

challenge, as their schedules allowed. 

 

3.4.3 Webinars 

For the conceptual phase, and after the rules and guidelines were made publicly available, the 

Topcoder, HeroX, and NIST teams requested and collected questions from prospective 

contestants about the challenge. The NIST principal investigator responded to each question in a 

pre-recorded video which was made available on the HeroX competitor forum as a way to open 

the conversation amongst participants and clarify complex questions. For the empirical phase, 

the challenge team conducted an educational webinar for each marathon match. The goal of the 

webinar was to increase engagement and educate solvers who were not already familiar with the 

field of DP. 

1. NIST DP #1 Webinar [10]  

2. NIST DP #2 Webinar [11]  

3. NIST DP #3 Webinar [12] 

3.5 Conceptual Phase 

The conceptual phase was designed to identify 

unique solvers in DP, expose the ideas that may 

have been evolving, but had yet to be documented, 

and encourage new community involvement.  It also 

served to check current, relevant thoughts in the 

area of DP and set expectations for the challenge 

team on which techniques could be applied in the 

empirical phase. [13] 

 

Conceptual Phase Goals 

 

1. Describe public safety problem 

2. Increase visibility on differential privacy 

3. Invigorate data science community 

4. Gather new techniques 
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Challenge rules, registration page, submission page, notifications, and an open online discussion 

forum were made available through both the HeroX and TopCoder platforms.  The challenge 

page and accompanying marketing strategy invited individuals with an interest in DP to submit 

white papers proposing algorithms and solution features against the following problem 

statement. [14] 

 

3.5.1  Problem Statement  

Dedicated web pages for the challenge also offered a problem statement to spark contestants’ 

interest. “The Unlinkable Data Challenge: Advancing Methods in Differential Privacy seeks a 

mechanism to enable the protection of PII while maintaining a dataset’s utility for analysis.” 

 

3.5.2 Milestones 

● Pre-Registration: February 1, 2018 – May 1, 2018 

● Submission Period: May 1, 2018 – August 2, 2018 

● HeroX Eligibility Screening:  August 3, 2018 – August 6, 2018 

● NIST Evaluation and Judging: August 7, 2018 – September 10, 2018 

● People’s Choice Award Voting:  August 14, 2018 – August 28, 2018 

● Winner Announcement:  September 12, 2018 

 

3.5.3 Judging Procedures 

A two-fold approach was utilized for evaluation and awards: a manual technical review by 

experts, and a peer review, public choice award. 

  

The manual technical review process consisted of three levels.  First, submissions were reviewed 

by the HeroX internal panel to ensure eligibility requirements were met. Next, the NIST selected 

panel of subject matter experts (SMEs) evaluated submissions for adherence to DP theory and 

provided comments and finalist recommendations.  Comments and recommendations were then 

passed to the NIST appointed official judge for final ranking and award.   

  

Voting for the People's Choice Awards was held on the HeroX platform. The four finalist 

submissions were posted on the challenge webpage for a period of two weeks. Visitors to the 

page were able to review the finalist entries and register to vote for their favorite submission.  

Votes were tallied and exposed in real time.  Additionally, registered voters were designated as 

followers of the challenge and sent updates on results and future events.  

 

3.5.4 Results 

In this section we summarize the results of the marketing strategy and participation in the 

conceptual phase and highlight the winning team submissions. 
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3.5.4.1 Response and Participation 

The Unlinkable Data Challenge garnered wide attention drawing 32 registered teams and a total 

of 144 registered competitors from 

104 countries.  The challenge 

community reached 610 

participants which included 

individuals who voted in the 

People’s Choice effort.  Page views 

indicated a broader interest in the 

contest reaching 103 countries with 

spikes in views occurring pre-

contest launch and during the 

People’s Choice voting period.  The 

targeted outreach effort recruited  

the most registrants (48), including 

the Honorable Mention award 

winner and was followed by 

Facebook advertising (10) and 

Twitter (2).   

3.5.4.2  Awards 

Less than half of the teams who registered submitted papers for the challenge.  Only four of the 

11 papers submitted for the conceptual contest met the minimum eligibility requirements for 

advancement.  Eligibility requirements may have restricted registrations and submissions, 

however, the complexity of the problem and limited understanding of DP theory were deemed 

leading factors by the HeroX team.  

Figure  SEQ Figure \* ARABIC 4 - 
Registered Competitor Nationality 

Figure 6 - Unlinkable Data Challenge Registered 

Competitors  

Figure 7 - Unlinkable Data Challenge Global Following 
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3.6 Empirical Phase  

The empirical phase was designed to allow participants to apply and test the new techniques 

described in the conceptual phase, and for the NIST challenge team to develop and provide a 

means to evaluate and measure the techniques.  Benchmarks and feedback were incorporated 

into the series of matches to rapidly drive iterative improvement of the techniques. The challenge 

approach was intended to provide the motivation and tools necessary for teams to steadily refine 

their solutions through repeated evaluation of their algorithms on real-world datasets.  

Figure 9 - Unlinkable Data Challenge People's Choice Award Winners 

Figure 8 - Unlinkable Data Challenge Winners 
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3.6.1 Challenge Overview 

The design of the empirical phase, or the 2018 NIST Differential Privacy Synthetic Data 

Challenge, consisted of three marathon matches, hosted on the TopCoder platform, lasting eight 

weeks each.  Challenge participants were invited to develop an ε and δ DP algorithm at varying 

levels of ε for each match.  The marathon matches were run as two-stage, head-to-head algorithm 

competitions. The initial five weeks consisted of a provisional stage, where contestants focused 

on submitting the synthetic data output by their algorithms for provisional scoring on a public 

leaderboard. This was followed by an invite-only, three weeklong sequestered stage, where 

teams submitted executable solutions, source code, and full documentation for review and final 

scoring.  

Each of the three matches began with a 

requirement for teams to submit 

correctly formatted synthetic datasets in 

order to earn a provisional leaderboard 

score. Scores could be boosted by 

submitting code and documentation for a 

pre-screening review by the SME panel 

mid-way through the provisional stage. 

At the end of the five-week provisional 

stage, all teams with a pre-screened score 

on the leaderboard were invited to the 

sequestered round of the match.  The 

sequestered stage required more 

complete, stable solutions. Teams that advanced were required to submit code that accepted 

standardized δ and ε input with no hardcoded data schemas (schema given as input), and 

thorough code documentation aligned with the algorithm documentation. Each solution would 

then undergo a source code review by multiple 

DP SMEs, and their Docker containers would 

run on the Topcoder platform using the 

sequestered data to generate final scores.  If the 

solution encountered problems in this process, 

the teams would be informed via a TopCoder 

forum post and allowed to fix and resubmit 

their code.  

In each match, teams received cash prize 

awards designed to encourage continued 

participation in the following match which 

would challenge teams with increasing 

difficulty. In the final match, the final five (5) 

winners had the option to receive a bonus cash 

prize award for posting their full source code 

to a publicly available website [15], [16]. Sharing of source code was intended to expand the 

knowledge base, spark collaborations, and accelerate development of production-level solutions 

that could be adopted by public safety.  

 

Figure  SEQ Figure \* ARABIC 7 - An 
excerpt of the leaderboard that 
appeared on the TopCoder 
challenge website and was 
continually updated during the 
provisional part of each match. 

Figure 10 -Synthetic Data Challenge Match Stages 

Figure 11 - Synthetic Data Challenge 

Leaderboard Snapshot from Match 3 
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Throughout the empirical phase, challenge rules, registration page, notifications, and an open 

online discussion forum was made available on the Topcoder platform, along with a 

downloadable competitor pack which included detailed information and instructions, data 

dictionaries, sample data, and scripts for registered participants.   

 

3.6.1.1 Challenge Rules 

In addition to NIST official rules posted on Challenge.gov, NIST also reserved the right to adjust 

provisional and final scoring methodologies during the contest, in a manner fair for all 

competitors. [17] This statement in the rules enabled adjustment for flaws in the original protocol 

or methodologies.  

 

3.6.1.2 Milestones 

● Pre-registration: October 1, 2018 – October 30, 2018 

● Match 1  

o Development Period: October 31, 2018 – November 29, 2018 

o Progressive Prize Award:  November 15, 2018 

o NIST Evaluation and Judging: November 30, 2018 – December 31, 2018 

o Awards: January 2, 2019 

● Match 2 

o Development Period: January 11, 2019 – February 9, 2019 

o Progressive Prize Award: January 26, 2019 

o NIST Evaluation and Judging: February 10, 2019 – March 6, 2019 

o Awards: March 7, 2019 

● Match 3 

o Development Period: March 10, 2019  April 23, 2019 

o Progressive Prize Award: April 8, 2019 

o NIST Evaluation and Judging: April 22, 2019 – May 20, 2019 

o Awards: May 23, 2019 

 

3.6.2 Differential Privacy Definition Relaxed 

For the empirical phase, a common relaxation of the DP definition was chosen, 𝜖, 𝛿 -differential 

privacy. When 𝛿 is bounded to a small amount ( > 1 𝑛2⁄  ) a strong practical privacy guarantee 

can be retained, allowing the use of several techniques and improving accuracy by reducing the 

need for long-tailed noise distributions, which may sporadically result in large added-noise 

values. Given two neighboring datasets 𝐷1, 𝐷2 that differ in the data of a single individual, a 

data publication scheme satisfies 𝜖, 𝛿 -differential privacy if its published result 𝑅 satisfies the 

following constraint.   

   

Pr [𝑅(𝐷0) ∈  𝑆]  ≤  𝑒𝜀 · Pr [𝑅(𝐷1) ∈  𝑆]  + 𝛿 

Adapted Definition of Epsilon Delta (ε/δ) Differential Privacy [18] 

 

 

3.6.3 Data and Data Preparation 

The challenge was designed with the objective of spurring fast-paced research and development 

of practical solutions to release a privatized synthetic dataset to the public. The challenge’s data 
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collection/publication paradigm assumed a central data owner’s collection of a complete dataset 

of tabular (event or survey) data and an essentially arbitrary amount of time and computing 

power to process the data for release.  Data considerations identified in Section 2.1 and challenge 

preparation timelines drove data selection.  Data was broken into two parts: A testing dataset that 

was considered to be publicly released data for the purposes of algorithm development, and a 

sequestered dataset that was considered sensitive, private data to be used for final scoring. Often, 

two datasets were used in final scoring; one whose distribution resembled the public testing data 

and one with a significantly different distribution, to check an algorithms’ generalizability. 

 

The first and second marathon matches leveraged open source data downloaded from the City 

and County of San Francisco's Open Data Portal and the third match utilized United States 

Census Bureau Public Use Microdata Sample (PUMS) of the 1940 U.S. Census Data, fetched 

from the IPUMS USA website3.  PUMS data was selected to increase complexity while still 

providing public safety planning relevance for the third challenge.  Additional details on data 

size, number of columns, and variables are included in the Fig.s in Section 3.6.6.1.  

 

The zip file ‘Competitor Pack’ for each match included the provisional training datasets, 

provided in .csv format, along with their corresponding data dictionaries, as JSON files, which 

described all of the columns to be privatized, and additional details in a readme file. Provisional 

training datasets were accompanied by a training ground truth dataset.  The U.S. Census PUMS 

data codebook was also provided to competitors for the third match.   
  

● Field types for each column for all matches included:   

o `enum` - categorical data. The count field provided the number of possible values 

in each of such columns; and the possible values were from 0 (inclusive) to N 

(exclusive). 

o `integer` and `float` types denote columns with integer and float values. In both 

cases, the dictionary provided their minimum and maximum values (both 

inclusive); along with optional Boolean field, which told whether the value was 

optional (may be empty). For the columns with optional equal `false`, each record 

in the dataset required a numeric value; while for the columns with an optional 

field equal to `true` the record may have had either numeric value, or be empty. 
 

● Data Preparation for Matches 1 & 2:  For the sake of simplicity all original data values 

were converted to numeric formats as follows: 

o Categorical values (string literals) were replaced by consecutive integer numbers 

from 0 (inclusive) to N (exclusive), where N was the total number of possible 

values.  

o Date/time values were parsed and converted into integer Unix timestamps 

(number of seconds from 00:00:00 UTC, January 1, 1970).  

o Geographical coordinates were split into two separate columns containing real 

numbers for latitude and longitude.  

o Data columns were sorted so that sizes of value domains for each column 

increases from the first to the last column; i.e. the first and second columns 

contain categorical data with two possible values; the 3rd column contains 

 
3 https://usa.ipums.org/usa/ 
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categorical data with five possible values; etc. Numerical (both integer and float) 

columns were placed along with the categorical data columns containing 100 

possible values. Count values were provided for each column.  
 

● Data Preparation for Match 3:  The original dataset was converted from its fixed column 

width format to .csv for ease of use and to correspond to the data formats used in the first 

two matches.  Not all of the columns mentioned in the US Census codebook were 

included in the dataset.   

o Leading zeros were removed from all codes in the dataset.  

o For numerical columns the values like '99998' corresponded to the 'N/A' value.  

The 'N/A' value in a certain column has as many '9' digits as necessary for the 

value to fill the full width of the original column. 

o For scoring purposes, the third match considered all columns categoric and unlike 

in the previous matches, the values of categorical columns were not restricted to 

continuous ranges from '0' to 'count-1', where 'count' values were given.  For this 

data set, competitors were permitted to use the input data to determine the set of 

possible values for each columns.   

o The provided count values specified the total number of distinct values found in 

each column of the dataset; and 'maxval' specified the maximum value found in 

each column. 

 

Final scoring occurred on a sequestered dataset in the same schema as the original data. Both the 

provisional and sequestered datasets were small partitions (selected by state or year) of the same 

large, publicly available dataset. The particular choice of subset that would be used for final 

evaluation was not disclosed. Sequestered datasets were tightly retained, and password protected 

throughout the challenge and restricted access was provided only to selected NIST, Knexus, and 

Topcoder staff directly involved in data development or execution of the final scoring stage of 

the matches.  

 

3.6.4 Python Scripts 

Python scripts and instructions for each match were also contained in the Competitor Pack to 

enhance understanding of DP, enable iterative development, and facilitate submission and 

scoring.  These included: 

● a sample naive implementation of a simple ε-differential data privacy algorithm. 

● an auxiliary script for preparing the Topcoder submission for the competitor’s DP 

algorithm.  This script ran the algorithm on the specified number of columns for the 

match and generated a .csv file for each of the three levels of ε identified in the challenge 

rules, checked that the .csv files satisfied limit requirements, then packed output files 

with the specified name.   

● stochastic ground truth generators for each scoring method used by the match.  These 

produced randomized sets of scoring tests used for provisional scoring. 

● a test scoring script which detected the number of columns and returned a score in the 

range 0 to 1,000,000 for each dataset at the generated level of ε, then averaged the three 

score results.   

 



 

 

16 

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.T
N

.2
1

5
1
 

 

3.6.5 Measurement and Validation Techniques 

In this section, we delve further into the scoring measurement and DP validation techniques 

applied during the empirical phase of the challenge. 

 

3.6.5.1 Synthetic Data Quality Metrics 

NIST utilized three bespoke metrics to measure accuracy of synthetic data generated by the 

contestant algorithms.  A new scoring metric was introduced in each match and applied in 

addition to the previous metrics to 

progressively increase difficulty for each 

match.  The first two were developed by 

Topcoder, in conjunction with the NIST 

technical lead, and the third was derived 

from suggestions and interviews with data 

users and subject matter experts. The 

Competitor Packs for each match included 

the code for generation of tests, and 

subsequent scoring of the synthetic datasets, 

along with instructions on how to use them 

for local scoring.  

 

The scoring metrics used for this challenge 

were designed to provide both good 

coverage and good discriminative power, while being efficiently computable and generally 

applicable to any tabular data schema. Only the original dataset could achieve a perfect score 

against any metric.  Each metric benchmarked competitor solutions against the original dataset.   

 

3.6.5.2 k-Marginal  

The k-Marginal evaluation metric is a randomized heuristic that measures similarity between two 

high dimensional datasets, by considering all correlations of k or fewer variables.  The Synthetic 

Data challenge’s first metric captured correlations that existed between three or fewer features.  

 

Figure  SEQ Figure \* ARABIC 
9 - Progressive and Layered 

Metrics 

Figure 12 – New scoring metrics were 

introduced in each match 

How k-Marginals work: 

1. Numerical features are grouped into range bins. 

2. A set set of k-marginals, e.g. variables from the available columns in the dataset, 

are selected in accordance with the specified strategy (for example – choose 

marginals uniformly random at a sampling rate of 0.1). 

3. Count and density for each bin is determined for the selected k-marginals from 

both the real and synthetic datasets. 

4. For each selected k-marginal, the difference between the real and synthetic data 

densities are calucated and converted to an absolute value.  

5. The sum of the absolute values of each bin provides the score.  The total score is 

derived by averaging all test scores  and then converted to a human readable score. 
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3.6.5.2.1      3-Marginal Scoring Methodology 

A single test worked on three marginals, picked randomly. The domain of possible values in the 

random columns was split into bins. For example, the algorithm selected two categorical 

columns with 50 and 200 possible values, and a third numeric column  

with integer values between a and b, and empty values. The scoring algorithm then divided the 

domain of the numerical column into 100 equal ranges, of size (a – b)/100 each. As the column 

allowed empty values, it added “virtual range” for its empty values. After, it created 50 ⨉ 101 ⨉ 

200 buckets, plus one special bin for records 

outside of the valid value range.  Then for both the 

original and submitted datasets it counted the 

number of records falling into each bin.  Resulting 

counts were divided by the total number of records 

in each dataset to get the density distribution of 

records. Then, the scoring algorithm calculated the 

absolute difference of density distributions for the 

original and submitted datasets by taking the sum 

of absolute differences of density values in 

corresponding pairs of buckets. Due to 

normalization of density distributions to 1.0, the 

resulting difference was a number s, belonging to 

the range between 0.0 (perfect match of density 

distributions) and 2.0 (density distributions for the 

original and synthetic dataset do not overlap at all). The resulting single test score was defined 

as:  

𝑆 = 𝑥 106  (1 −
𝑠

2
) 

 

To calculate the score shown in the provisional leaderboard, we created a set of 100 tests, 

described above, with randomly picked columns for each test. The scores from separate tests 

were averaged; and if the submitter had been approved in the pre-screening procedure, the score 

was multiplied by 1000.  

Figure 14 - Illustration of a 3-marginal 

distribution 

SCORE 

Figure 13 - Overview of k-marginal scoring 
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3.6.5.2.2 Higher Order Conjunctions (HOC)  

For the higher order conjunction metric, target rows were randomly selected from the real data 

and synthetic data to create a pool of “similar” rows, and the relative size of the two pools were 

compared. This process used a randomly generated similarity function for each feature, and the 

solution was scored across the many, randomly selected target rows. The results were averaged 

to create the final score.  

3.6.5.2.2.1 Higher Order Conjunction Scoring Methodology 

A single test consisted of a set of rules for different columns. Each column had a 33% chance to 

be included into a set, thus, on average, a single test rule was ~11 columns.  For categorical 

columns, the rule was a randomly selected subset of its possible values (from 1 to a maximum 

number of values); for numeric columns, the rule was a randomly selected range of values. A 

dataset record satisfied the set of test rules if all categorical columns included in the test, 

included values corresponding to the rule’s subsets; and if all numeric columns included in the 

test had values within the selected ranges. Tests were generated to guarantee that in the original 

dataset there was at least a single record matching the test rules.  

 

The i-th test calculated the fraction of records satisfying the test rules in the original (𝑓𝑜,𝑖) and in 

the synthetically privatized (𝑓𝑝,𝑖 ) datasets. Their mismatch was then quantified using the 

following formulas:  

 

𝑑𝑖 = ln(max(𝑓𝑝,𝑖;  10−6))  −  ln(𝑓𝑜,𝑖)  

 

∆ =  √
1

𝑁
 ∑ (𝑁

𝑖=𝑙 𝑑𝑖)2,  where N = 300 is the total number of tests  

𝑆𝐶𝑂𝑅𝐸 =  max(0,  103 (1 +  
∆

ln(10−3)
) 

 

Submissions that had been submitted for pre-screening and approved were multiplied by 1000.  

3.6.5.2.3 Applied Analytic Use Case  

The third measurement approach pushed beyond enabling comparison of synthetic data in 

columns or rows to provide a heuristic for validating data extracted from a dataset. 

3.6.5.2.3.1 Applied Analytic Use Case Scoring Methodology 

A single test for each level of ε of the applied analytic use case heuristic utilized two component 

scores derived from the SEX, INCWAGE, and CITY columns of the synthetic and original 

datasets.   

Figure  SEQ Figure \* ARABIC 11 - An illustration of the Higher Order 
Conjunction (HOC) or "Row Pool" metric. 

Figure 15 - Illustration of a Higher Order Conjunction 
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● Score 1 - The measure of income distribution across each city, or Gini Index4, was 

calculated for the synthetically privatized dataset and original dataset.  The mean-square 

deviation between the two datasets was calculated, then averaged by the number of cities 

present in the CITY column to provide the Score 1 result.  

 

● Score 2 - The gender pay gaps of the synthetic generated dataset and original dataset 

were ranked by city, and the calculation of the 

mean-square deviation of the two datasets was 

utilized for the second score. 

 

The two score components were averaged to produce 

an overall score for each level of ε.  The resulting 

three scores for the various levels of ε were then 

averaged together to provide the third measurement 

technique input for the Provisional Leaderboard 

Scores.  
 

Sequestered scores for the Analytic Use Case 

heuristic were done with repeated trials and 

additional values of ε as needed, and the final score 

was computed as a privacy/accuracy AUC (Area 

Under Curve). 

3.6.5.3 Privacy Budgets 

As indicated in Section 1.1, a very small privacy budget can require the probability distribution 

to be so wide (and the added random noise to be sufficiently large) that the published results no 

longer bear any resemblance to the true data and provide no utility for analysis.  Balancing 

privacy and utility with reasonable error depends on the size and distribution of the data and 

number of properties to be estimated.  For the first match, NIST set the three values of epsilon to 

(10.0, 1.0, 0.1).  This included a generously large privacy budget of 10 which along with the 

large data size and smaller number of features, reduced the problem complexity in order to 

encourage contestants. However, the second match sought to distinguish between solutions and 

dramatically reduced the privacy budgets to better enable prize ranking (1.0, 0.1, 0.01).  The 

third match aimed to move contestants and solutions towards currently applied practical levels of 

ε similar to those used in applications such as On the Map or being tested by the U.S. Census.5  

After consulting with additional advisors with federal and commercial experience, provisional 

testing ε levels for Match 3 were held at 8, 1.0, and 0.3, the same as for the Match 2 sequestered 

testing.   

 

3.6.5.4 Test Harness  

The Topcoder python test script powered the live leaderboard once contestant synthetic data was 

uploaded to Topcoder in a Docker container environment and ran against a small pre-generated 

set of tests, not known to the competitors.  

 

 
4 https://www.census.gov/topics/income-poverty/income-inequality/about/metrics/gini-index.html 
5 https://onthemap.ces.census.gov/ 

Figure 16 - Illustration of a Lorenz 

Curve used for determining Area 

Under Curve  
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Topcoder chose to run final scoring on a standalone laptop.  Most competitor solutions were 

reasonably fast even generating a single privatized dataset in approximately 30 minutes, using 1 

processor core.  GAN submissions, which required more resources and more runs, were also run 

in the Topcoder AWS cloud. Scoring of a test case set at each level of ε, with selected 

parameters, took between a few to ten minutes to run.  Results were generated running four jobs 

in parallel overnight for approximately seven hours.  The second match reduced the number of ε 

levels for the sequestered stage, decreasing the testing load. The Topcoder staff ran as many test 

cases as necessary to be sure that the score accuracy variance is smaller than the score difference 

between placements.  Average scores and standard deviations were checked until the results were 

accurate enough for fair ranking of competitor solutions.  

 

The batches of the resulting calculations and scores were accumulated into a table and passed to 

the SME panel for human review.  Overall, the scoring process for each match took between 

seven and fourteen days.  

 

3.6.5.5 Differential Privacy Verification 

Two checkpoints in the matches were introduced to prevent intentional or accidental violations 

of DP.  Violations, which could be variations of anonymization that were not DP or solutions 

that were hardcoded for the targeted datasets, could result in high scores and change leaderboard 

results during the provisional stage, thus incorrectly awarding prizes in the sequestered stage.  A 

manual SME review approach was selected for validation of both its DP affordability and ease of 

implementation.  In addition to averting violations, the verification process provided feedback to 

the teams to advance learning and development.  General feedback about common problems was 

posted on the forum, enabling newcomers of DP to avoid obvious pitfalls.  Specific detailed 

feedback, and requests for more information, were directly emailed to contestants to protect 

intellectual property. 

3.6.5.5.1 Provisional Stage Pre-screening  

To earn a 1000× score boost, contestants were required to submit clear, complete algorithm 

specifications and privacy proofs to pass a DP Pre-screen.  The pre-screen was conducted by a 

minimum of three members of the SME panel during a weekly one-half hour-long SME review 

teleconference.  The pre-screen served as a quick check to ensure that the contestant made a 

good faith effort to satisfy DP and to identify obvious errors.  

3.6.5.5.2 Sequestered Stage DP Validation  

SMEs confirmed that algorithms satisfied DP and that the code was an earnest best-effort 

implementation of that algorithm, without significant errors. Contestants invited to the 

sequestered stage were required to submit source code, code guide/documentation, updated 

algorithm specification, and privacy proof for a thorough final pass/fail DP Validation by the 

SME review panel.  Two reviewers were assigned to each submission.  Submission concerns 

were introduced by the assigned reviewers and discussed during ad hoc and weekly 

teleconferences amongst all panel members until a pass/fail decision was derived. Solutions 

failing validation were eliminated from prize eligibility for that match.  Detailed feedback was 

provided by email.  Contestants could fix or change strategies for the next match.  
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3.6.5.6 Judging Process 

Similar to the conceptual phase, a manual technical review by experts proved critical to the final 

judging of each match. At the end of each match, the Topcoder and SME review panel verified 

the scores, source code, and documentation from the sequestered stage and provided their 

findings for review by the judge panel. The NIST team consolidated SME comments and finalist 

recommendations for the judge determination meeting. In this meeting, the judge panel was 

presented with the challenge data, contestant solutions and SME comments for evaluation. The 

NIST-appointed judge reviewed solutions for adherence to the challenge rules and made the final 

decision on final rankings and awards. This process was followed for each of the three matches.  

 

3.6.6 Marathon Match Results 

In this section, we describe the outcomes of the empirical phase in this challenge.  We 

summarize the overall response; detail the focus, participation, scoring approach, and highlight 

issues faced by solutions during each marathon match and end with a brief description of each 

solution.  

 

3.6.6.1 Response and Participation 

The Differential Privacy Synthetic Data contest drew many participants and teams from the 

previous conceptual phase, and like the conceptual phase, participants’ initial interest far 

exceeded the number of actual competitors.  

 

 

Figure 17 - Empirical Phase Participation 

Tracking of contest submission numbers proved difficult in the empirical phase, skewing well 

over the number of active participants, since the challenge rules allowed contestants to upload 

datasets every four hours to test and spur further development. Sixty-one submissions were 

recorded for the first match, 93 for Match 2, and 61 for Match 3.  HeroX and Topcoder’s final 

report cited only the total number of data uploads. These numbers were attributed only to the 

number of data uploads in the HeroX and Topcoder’s final report, preventing further analysis on 

the contestant development process.    
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The data from the challenge implementer report regarding global reach and interest in the 2018 

NIST Differential Privacy Synthetic Data Challenge was limited to summary information on the 

nationality of contestants. The first match drew competitors from six countries and reduced to 

four in the second and third match.   

 

Additional information on the effectiveness of the marketing strategy, specifically the number of 

hits and top sources of views of the webpages associated with the Differential Privacy Challenge 

may be found in Appendix A. 
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3.6.6.2 Match 1 

 

Focus: The first match was designed to support 

research prototypes and then increase software 

requirements over the course of the final two 

matches. This match focused on conserving the 

clustering characteristics in the synthetic data.   

 

Participation: Out of all the submissions, there 

were nine teams who passed the DP pre-

screenings during the match. These nine teams 

achieved the highest provisional scores and 

were invited to participate in the sequestered 

stage. Only seven chose to submit code and 

documentation for the final round and, of those 

five, all passed the DP validation review and 

moved on for sequestered scoring. 

 

Scoring: The sequestered scoring measured the 

synthetic dataset performance against columns 

in the 2017 San Francisco Fire dataset for 273 

test cases, generated with a uniform chance of 

each column being selected.  Sequestered 

scoring was repeated 100 times for the five 

different values of ε identified in Fig. 13 below.  

The average score of five separate runs 

produced the final sequestered score.  

 

 
Figure 19 - Summary of Match 1 Methodology 

Match 1 

Prize  Team Name Points 

1st Place 
$10,000 + 

Progressive 
Prize $1,000 

jonathanps 

(Marginal) 

     

781,953  

2nd Place 
$7,000  

ninghui 
(Marginal) 

     
736,780  

3rd Place 
$5,000 + 

Progressive 
Prize $1,000 

rmckenna 

(Marginal) 

     

664,623  

4th Place 
$2,000 

manisrivatava 
(GAN) 

       
93,955  

5th Place 
$1,000 

privbayes 
(PGM) 

       
82,414  

Progressive 
Prize $1,000 

brettbj 
  

Progressive 

Prize $1,000 
eceva 

  

Figure 18 - Match 1 Results 
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The challenge implementer underestimated the learning curve for competitors and complexity of 

the challenge, initially setting the minimum prize eligibility score at 250,000 points, a target 

level which only three of five teams met.  Topcoder’s scoring official, NIST SME panel, and 

judges chose to throw out this requirement in the first match to maintain participation and 

maximize awards.   

 

Solution Progression:  In the first match, three solutions required multiple passes to generate 

each of the five required runs.  The number of attempts varied for each solution, eliminating at 

least one team in the sequestered stage after 100 attempts, and failing to have their algorithm 

load.  Two solutions in the sequestered stage required multiple passes ranging in number 

between three and 15 attempts for each level of ε. The first match also identified bugs in two 

solutions resulting in null or insufficient output for scoring.   

 

3.6.6.3 Match 2 

 

Focus: The second match sought to capture a data 

distribution across multiple features of the dataset.   

The approach measured the synthetic dataset 

performance across rows of the original dataset.   

 

Participation: In the second match, seven out of 

nine teams that submitted documentation for pre-

screening received favorable feedback from the 

reviewers.  All nine teams advanced to the 

sequestered stage but only six passed the DP 

validation review.  The second match was the first 

time the validation process required further input 

from SMEs to reach consensus.  Four of the six 

submissions passed after a full panel discussion.  

These six teams advanced for sequestered scoring 

and competed for prizes.  

 

Scoring: Sequestered scoring was conducted 

against the two datasets at the three levels of ε 

identified in Fig. 14.  The test set size was set at 

300 for the 3-Marginal method, and at 1000 for the 

Higher Order Conjunction method.   

 

Topcoder conducted three runs of each level of ε for each dataset and calculated their average 

scores, standard deviation, and percent standard deviation. A weighted mean average was 

applied with a double weight assigned to the ε  = 0.1 condition which created an overall score for 

each dataset. Aggregated final scores were the average of the two overall scores.   

 

Teams were allowed to process and submit subsets of the dataset consisting of the first N < 34 

consecutive columns.  Teams selecting this strategy received a zero score for any 3-Marginal test 

that relied upon columns outside of the submitted subset.  Columns not present were assumed to 

Match 2 

Prize  
Team 
Name 

Points 

1st Place 

$15,000 + 
Progressive 

Prize 
$1,000 

jonathanps 

(Marginal) 
748,427 

2nd Place 

$10,000 + 
Progressive 

Prize 

$1,000 

ninghui 

(Marginal) 
705,843 

3rd Place 
$5,000 

privbayes 
(PGM) 

641,671 

4th Place 
$3,000 + 

Progressive 
Prize 

$1,000 

rmckenna 

(Marginal) 
639,887 

5th Place 
$2,000 + 

Progressive 
Prize 

$1,000 

gardn999 
(Marginal) 

604,066 

Figure 20 - Match 2 Results 
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satisfy rule criteria for Higher Order Conjunctions (HOC).  On average, contestants could not 

expect a favorable bias by eliminating columns because, if all columns beyond the ones in the 

submitted dataset were included in the test, then the test would include all of the records in the 

submitted data.  This would skew the count and result in a poor score.  

 

Minimum score requirements for prize eligibility were significantly reduced from the 250,000 

requirement in the first match to a nominal 10,000 points for Match 2.  

 

 
Figure 21 - Summary of Match 2 Methodology 

Solution Progression: Solution improvements made during the second match reduced the scoring 

complications experienced in Match 1, eliminating bugs resulting in null or incomplete data 

output. Teams that experienced difficulties with messy code in the first match did not submit in 

the second match.  The Match 2 methodology utilized two datasets, however, it highlighted new 

bugs that resulted in very slight variances in scores between years, values of ε, and runs; as well 

as; one solution’s failure on all runs and all levels of the 2006 dataset.  Those solutions that 

appeared to produce deterministic scoring results also failed DP validation upon review by the 

SME panel. 

  



 

 

26 

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.T
N

.2
1

5
1
 

 

3.6.6.4 Match 3 

 

Focus: The methodology for the third match 

mimicked a sample economic use case, exploring 

pay and gender differences, to evaluate the ability 

of submitted solutions to conserve some amount of 

derived dataset characteristics.  The sequestered 

‘area under curve’ accuracy scoring was done 

using the same year in the U.S. Census dataset, but 

for two different states.  This allowed for data 

from a different set of individuals and ensured that 

the algorithm refinement process, from the data 

made available during the provisional stage, did 

not violate DP guarantees.   

Participation: Nine teams provided documentation 

for pre-screening, however, only six of them 

provided it by the deadline for the progressive 

prize awards.  All were invited to the sequestered 

stage, but only seven of the nine teams submitted 

documentation and source code for DP validation, 

and underwent sequestered scoring. 

Scoring:  The match used a combination of three 

scoring methods, identified in Section 3.6.4.1.  

Each scoring method was run five times for each 

state at each level of ε noted in Fig. 16 below.  

Average scores of the three methods were 

calculated for each run, and an overall average score was calculated at each level of ε. Then, the 

final score was generated by averaging the three levels of ε.  

 

Figure 19 – Summary of Match 3 Methodology 

Match 3 

Prize  Team Name Points 

1st Place 
$25,000 + 

Progressiv

e Prize 
$1,000 

rmckenna 
(Marginal) 

     
902,307  

2nd Place 

$15,000 + 
Progressiv

e Prize 
$1,000 

ninghui 
(Marginal) 

     
870,097  

3rd Place 

$10,000 + 
Progressiv

e Prize 
$1,000 

privbayes 
(PGM) 

     
823,513  

4th Place 

$5,000 + 
Progressiv

e Prize 
$1,000 

gardn999 

(Marginal) 

     

768,802  

5th Place 
$3,000 

manisrivatava 
(GAN) 

     
541,494  

Figure 22 - Match 3 Results 
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Solution Progression: Software improvements naturally progressed throughout the matches as 

teams identified new requirements that could enhance performance.  By the third match, the test 

harness revealed only one bug which had hardcoded the dataset size to small values.  The 

associated team was informed of the error and was able to provide an updated solution in time 

for sequestered scoring. 

3.6.7 Solutions 

This section categorizes and very briefly describes promising solutions that performed well 

during the challenge.  Insight on the approaches is drawn from both the contest scoring and the 

documentation submitted by the contestant teams. 

The five final winning solutions fell into three basic categories of approaches: Marginals, 

Probabilistic Graphical Models, and Generalized Adversarial Networks. This category list is not 

exhaustive for the problem of differentially private synthetic data, and over the course of the 

competition, there was additional participation both within and outside of these categories; 

however, during this challenge, these were the approach categories that produced the best 

solutions.  Alternative categorization approaches and more detailed descriptions on methodology 

are offered by Bowen and Snoke. [6] 

 

Figure 23 - Categorization of Winning Solutions 

3.6.7.1 Marginal-Based Approaches 

For the purposes of this analysis the term marginal-based approach is used to describe those 

solutions which determined the probability distribution of the variables contained in the ground 

truth data by using the marginal distribution of a subset of a collection of the random variables. 

These solutions give the probabilities of various values of the variables in the subset without 

reference to the values of the other variables. 
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3.6.7.1.1 Ninghui - DPSyn 

DPSyn, submitted by Ninghui Li (Purdue University), Zhikun Zhang (Zhejiang University), 

Tianhao Wang (Purdue University) built upon the team’s previous work, outside of the NIST 

challenge, on PriView. 

 

 
Figure 24 - Summary of DPSyn solution 
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3.6.7.1.2 Gardn999 - DPField Groups 

The Gardn999 team DPField Groups algorithm submission from John Gardner, an unaffiliated 

recruit from the Topcoder community, produced exact repeated scores for each run in its Match 2 

debut.  While this raised eyebrows amongst scoring officials, the algorithm passed DP Validation 

after full SME panel review and consensus.   

 

 
Figure 25 - Summary of Gardn999 approach 
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3.6.7.2 Probabilistic Graphical Models  

Probabilistic Graphical Models (PGMs) rely on both statistical probability and computer science 

decision theory techniques and the dependencies between the different variables in a domain are 

considered using a graphical representation.  The approach allows construction of interpretable 

models that can be learned automatically from data which are then manipulated by reasoning 

algorithms. [19]  Bayesian networks are a common implementation of PGMs which depict the 

joint probability distribution from a directed acyclic graph in which random variables represent 

the nodes and probabilistic relationship between variables as edges, and a set of conditional 

probability densities for each variable. [20]   

3.6.7.2.1 RMcKenna 

The first-place winning solution submitted by Ryan McKenna from University of Massachusetts 

at Amherst, Employed an elegant mixed approach of marginal technique with PGM that was 

refined through the course of the three matches. 

 

 
Figure 26 - Summary of Rmckenna Solution 
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3.6.7.2.2 PrivBayes 

The PrivBayes solution created by Boling Ding, Xiaokui Xiao, Jun Zhao, Ergute Bao and 

Xuejun Zhao had the most dramatic score improvement over the challenge.    

 

 
Figure 27 - Summary of PrivBayes approach 

3.6.7.3 Generalized Adversarial Networks (GANs) 

GANs utilize a generator and a discriminator which are trained under adversarial learning 

approach to estimate the potential distribution of original data samples and generate new 

synthetic data samples from that distribution. [21]  GANs hold great potential for a variety of 

public safety use cases and have been applied with increasing success computer vision and image 

analysis problems. [22]  However, applied to DP in this challenge, this novel approach suffered 

from the significant computational burden which resulted in clipping and algorithm termination 

as the privacy budget expended. [6] 
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3.6.7.3.1 Srivastava - UCLANESL 

The UCLANESL team of Mani Srivastava (UCLA), Moustafa Alzantot (UCLA), Supriyo 

Chakraborty (IBM Research) and Nathaniel Snyder (UCLA) did not participate in the second 

match but made marked improvement in the third match after significant model training. 

   

 
Figure 28 - Summary of UCLANESL approach 

4. Technical Observations 

Continually improving solutions requires participants to improve their understanding of the 

problem space, and detailed exploration of a problem space often produces new insights. In this 

section, we provide a short, informal list of unexpected technical observations drawn from the 

results of the challenge, which we believe may be worthy of more formal investigation in 

downstream research. 

4.1 High Performance Despite Unspecified Workload 

The synthetic data quality metrics used for scoring in the challenge were intentionally designed 

to have good coverage, as described in Section 2.1, rather than giving preference to any specific 

workload of data queries. The k-marginal and HOC scoring metrics are randomized heuristics, 

making it impossible for competitors to improve performance by biasing their algorithms to 

maximize accuracy on specific features or combinations of features. Although the data space was 

relatively large for both datasets (98 features in Match 3), and the scoring metrics forced 



 

 

33 

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.T
N

.2
1

5
1
 

 

competitors to address the full space equally, they were nonetheless able to develop solutions 

that produced very high-quality results. It is possible that the properties of the underlying data 

may explain this; high scoring solutions took advantage of the strong correlations between 

features that often occur in human data. [23] 

4.2 High Performance Despite Small Epsilon (ε) 

 
Figure 21 - Algorithm performance with respect to ε during Match 2. 

The second match required competitors to use only very small values of ε: [1.0, 0.1, 0.01]. 

Ensuring a very strong privacy guarantee requires 

significant amounts of added noise, and small values 

of ε can cause differentially private algorithms to 

generate output that no longer resembles the original 

data. Smaller values of ε like those applied in Match 

2 revealed a degradation in solution performance. 

However, as shown in Fig. 21, the degradation effect 

was smooth rather than catastrophic, and relative 

performance between solutions was generally 

maintained.  Most competitors identified strategies to improve their solutions on the small ε 

values during the provisional part of the second match, and these solutions performed very well 

on the larger and more complex data space in the third match. Understanding and improving 

algorithm performance on small values of ε may have value for improving algorithm design 

overall. 

4.3 High Performance of Marginal-Based Approaches   

The challenge saw a variety of approaches applied 

to the problem of differentially private synthetic 

data. However, marginal-based approaches, which 

rely on histograms of counts across small sets of 

features, performed with notable success 

throughout the challenge. It is possible that these 

techniques are well-suited to the patterns of feature 

correlations that occur in tabular data, while neural 

network approaches are better suited to the patterns 

of feature correlations that occur in image or sound 

Understanding and improving 

algorithm performance on small 

values of epsilon may have value 

for improving algorithm design 

overall. 

Evaluation of differential privacy 

approaches against non-tabular 

types and representations of human-

generated data may have value for 

improving performance and 

extending privacy protections. 



 

 

34 

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.T
N

.2
1

5
1
 

 

data. A better understanding of the properties of specific types and representations of human-

generated data might produce more significant insights for improving the performance of 

differentially private algorithms.  

5. Lessons Learned and Considerations for Future DP Challenges 

DP verification is an unavoidably complex part of any prize challenge in DP.  The two-prong 

approach with pre-screening and final validation offered some benefits.  It was not overly 

burdensome on SME schedules, it helped prevent clearly non-private solutions from interfering 

with the leaderboard rankings during the provisional stage of each match, and it was effective in 

catching a variety of subtle mistakes during final validation.  However, it posed difficulties as 

well. In one case, a misleading function name led to a source code being misidentified as 

containing a DP violation. In other cases, violations were easily and correctly identified, but 

complex codebases made it difficult to confidently find and clearly explain all issues, resulting in 

delayed or incomplete feedback to contestants. Misconceptions about the definition of DP also 

led to a few tense interactions on the challenge forum; these required a combination of careful, 

clear explanations (provided by the NIST technical lead) and good forum moderation skills 

(provided by the Topcoder technical lead) to resolve.   

However, the overall ‘bootcamp’ strategy used for this challenge, which led contestants to 

evaluate, improve, and document their solutions from a conceptual phase through an increasingly 

difficult sequence of empirical matches, was well-suited to the problem and was a generally 

successful approach for moving solutions from theory to practice. As shown in Section 4, scores 

improved over the course of the challenge, and the top-ranked, final winning solutions produced 

high-quality results in a difficult, real-world use case. The challenge design was also helpful for 

addressing skepticism, both within the privacy research community and the data user 

community, about the feasibility of the problem. By publicly putting the solutions to the test on 

real-world data and applications, and enabling sharing of the solutions through an open-source 

privacy forum after the challenge, progress was made towards answering many unanswered 

questions and points of concern about the problem of differentially private synthetic data. The 

very nature of the challenge problem, showing that synthetic datasets are practically solvable, 

provides valuable information to the DP research community that this problem is practically 

solvable. 

 

In this section we revisit our initial considerations and assumptions, as well as, detail some 

observations that may serve future prize challenges or efforts in the DP field.  

● Concept maturity – Although the concepts of DP date back to 2006, the practical 

implementations of them were few and these remained experimental at the time of the 

contest.  Rather than developing and refining specific public safety customer-driven solutions 

to a problem, this challenge addressed a gap between basic and applied research to prove 

whether the problem could be solved with current technology.  The amount of limited 

practical expertise in the subject required heavy reliance on DP SME expertise. For even a 

highly experienced, organized challenge implementation team the challenge was atypical.  

 

The challenge implementers underestimated the difficulty of the problem set and number of 

potential problem solvers in the DP field.  Though interest was high, the contest registration 

and number of actual competitors fell below implementer goals. Typical data science 
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marathon matches average 400 solution submissions from 50 data scientists. [23] The 

conceptual phase proved beneficial in raising awareness in the field, but it also revealed a 

high-level of confusion between anonymization and DP techniques.  We sought to overcome 

these through the addition of public webinars and outreach efforts to better define the 

problem set.  Additional measures that could ease challenge recruitment and implementation 

include:   

o In order to attract a good diversity and quality of candidate solution strategies, effective 

outreach is vital. Traditional social media outreach strategies can help generate public 

interest in the challenge and recruit participants from outside the field but may not 

effectively reach the DP research community.   

o Direct SME involvement in outreach for problems that are covered by a relatively 

small research community. SME assistance can be invaluable for assembling targeted 

email lists and drafting outreach emails that will be meaningful for other researchers 

in the field. 

o Attending or hosting workshops that allow challenge organizers to directly interact 

with members of the privacy research and data-user communities is helpful.  Being 

available at an in-person event allows the organizers to ask and answer questions and 

provide more detailed explanation of the challenge. 

 

● Data – Datasets for the second and third matches were selected and prepared during the 

course of preceding matches.  This allowed limited time for identifying datasets with more 

robust features and continuous Internal Review Board updates.   

o To fully understand the contents of the data, even publicly available data from online 

repositories, it is necessary to download it and use appropriate software to review it. The 

data must be fully vetted, a schema (such as .json format) must be created such that 

contestants’ solutions can be taken as input, and a human-readable data dictionary would 

need to be produced to explain in detail the variables in the dataset. If only a particular 

partition of the data is used (such as a particular state or a particular time period), the 

schema should reflect that constraint so that algorithms are not forced to privatize a 

much larger data space than the data actually occupies. These tasks are best performed 

with both technical and SME expertise.  

o It was useful to have at least two sequestered datasets during the final scoring stage and 

create the final score by averaging the results. We chose one dataset that resembled the 

provisional data and one that differed, in order to evaluate the ability of solutions to 

generalize across realistic differences in data distribution under the given schema. In the 

third match, we provided the Colorado Census data for the provisional stage and then 

completed final scoring using a state with a similar data distribution, Arizona, and one 

with a very different distribution, Vermont. Generalizability is an important solution 

quality, and it can be a good distinguisher between algorithms with otherwise similar 

performance. 

o Focusing on real-world applications over real-world data has a variety of advantages. It 

is generally valuable for benchmarking progress towards the development of practically 

usable solutions and, as such, the value of the challenge results is easy for the public to 

understand and evaluate. Working with data users to understand their needs, both in data 

use cases and quality metrics, can help significantly with this. In addition, specifically in 

the context of DP, real data may be a significantly more valuable test case than randomly 
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generated data because the patterns of correlations presented in human-generated data 

can result in lower entropy datasets that, once understood and leveraged, may produce 

significant performance benefits. 

 

● Benchmarking tools and metrics – One of the most difficult issues in the challenge was the 

driving need for iterative development to advance the application of DP theory within the 

scheduled timeframe and resources.  The need to verify formal differential privacy 

guarantees were satisfied required an approach which balanced a typical scoring evaluation 

with one to two manual DP validations.   

o On a high level the scoring metrics compared distribution of values between original and 

privatized datasets.  Our metrics constructed random divisions of histograms in two or 

three dimensions, for data from a few randomly selected columns or rows from the test 

and synthetic datasets.  The multiple dimensions took care of verification that cross-

correlations between different columns and rows are conserved during the privatization. 

Having just two or three dimensions kept it computationally feasible, and well-defined 

for the size of datasets used in the contest. Since resulting average score are better 

defined as the number of generated tests and scores increase, we chose three phases for 

scoring for each match – contestant self-scoring during early development, provisional 

leaderboard scoring to refine solutions, and final scoring. 

o During the final validation code review, we still encountered points of uncertainty (such 

as misleading function names, or variable definitions that differed from the algorithm 

write-ups) that would have been much simpler to resolve with an explicitly interactive 

process that permitted direct requests for clarification from the contestants.  In many 

academic science conferences, once editorial acceptance is approved the peer review 

process consists of three steps: initial reviews are given to the authors, the authors are 

given a short period to respond to reviewers’ questions and comments, and then a final 

decision is made.  Adopting a peer review process during validation would be helpful.  

Additionally, during the response period, contestants could be given the opportunity to 

fix small implementation bugs that could affect their privacy guarantee and then have 

their solution’s accuracy score recomputed.   

o In addition to the SME review process, an automated black-box validation of DP 

guarantees would help as a second source of verification, to catch the mistakes that the 

SMEs might have either missed or wrongly identified.  However, there are a few hurdles 

that need to be overcome for automated validation to be effective in this context. 

Research prototype code is often not robustly engineered; if there exists any input which 

causes the program to crash, that is, a technical violation of DP that can be identified by 

an automated validation process, it is generally not the type of flaw that a challenge is 

concerned with. If used, an automated validation would be necessary during final 

scoring, and the total computational time and resources would need to be viable within 

the scheduling constraints of the challenge.  

 

● Motivation – Progressive prizes were an effective way to push the contestants to develop 

their first iteration of code quickly.  With a deadline built into the schedule roughly two 

weeks after the start of the match, teams were forced to start early with the best version of 

their solution using their preferred DP technique.  Progressive prizes were only awarded to 
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teams if the solution satisfied DP.  It also gave the SME panel an early view of the solutions 

and prepared them for the final reviews. 

 

● Scheduling – The pace of the empirical phase proved arduous for challenge staff, challenge 

implementers, and competitors.  This was compounded by a 60+ day government shutdown 

in 2019.  Uncertainty leading up the shutdown led to loss of a key staff member and also 

slowed award processing.  Contracted staff were relied upon to maintain momentum 

throughout.  A general recommendation would be to account for budget uncertainties as a 

schedule risk in the project plan and balance the staff mix as a mitigation strategy.  

o The approach of five weeks per match did not allow enough time for data development 

and algorithm development; and three weeks created a lot of pressure on the SME panel 

to comfortably evaluate both the inevitable complexities of final scoring and the design 

tasks necessary to launch the next match.  For future challenges, extending the schedule 

for each match to three months may produce better results for everyone involved.  

o Due to the number of challenge participants from academia, the contest schedule should 

be aligned with the academic school year, including holidays, midterms and final exams. 

Launching the challenge in early September, when students and faculty are deciding on 

their obligations for the year, can make it easier for participants to integrate the 

challenge into their schedules.  Collecting the final submissions for the last match in late 

spring, either before or after ‘finals’, ensures that students can complete the work on 

their challenge solutions before beginning their summer internships. 

 

● Test Harness Considerations - Although the bespoke test algorithms and platform provided 

the insight necessary to accomplish the challenge, the following lessons learned, and 

alternative courses of action could improve future challenges or evaluations. 

o During the provisional stage, contestants only submitted their output datasets for scoring 

on the leaderboard. Final scoring required the various contestant source codes to be run 

from Topcoder’s Docker containers and the laptop to confirm its performance.  Running 

prototype code on any new system involves confronting a variety of hurdles, from 

crashes due to hardcoded file paths to solutions that assume more or differently 

configured computational resources than what is available. These issues can cause 

significant difficulties for scoring in an effective and efficient manner.   

o Consider developing the test harness in a containerized cloud environment and allow 

contestants the opportunity to run and test their code in the final judging environment 

before the final evaluation stage begins.   

o Specify the available configurations and computing power of the instance that will be 

used for final judging.  

o Set reasonable restrictions for a solution run time on the specified environment (scoring 

should complete within a given k hours). 

o Finally, DP, or other newly maturing technology challenges, can require careful 

adaptations to the traditional coding contest process, and a combined expertise is 

required to make decisions on everything from data vetting and cleaning to automated 

scoring code.  Blended challenge teams, such as the one comprised of DP SME advisors 

and multiple contractors and government staff for this contest, need open, close, and 

continuing engagement to readily exchange ideas and develop evaluation techniques and 

systems while still ensuring effective oversight of contractors.  Future efforts may 
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benefit from Agile development practices such as daily standup meetings, sprint cycles, 

and joint scrum meetings.  Partnership in development and external SME support roles 

should be highlighted in all contracts and agreements. 

● Challenge Monitoring & Analysis -  

o Variance between the HeroX and Topcoder’s metrics led to dissimilar data, making it 

difficult to track global interest and participation across both phases of the challenge.  

Also, their final report cited only the total number of data uploads during the matches 

rather than the number of uploads per team, preventing further analysis on the contestant 

development process.  We recommend additional forethought and planning on post 

challenge analysis measures including evaluation of participant feedback and impacts. 

 

6. Open Questions 

In this section, we describe a few of the remaining open questions and problems in privacy-

preserving synthetic data that were not addressed within the scope of this challenge. 

6.1. Future Research Directions  

A challenge provides structure, benchmarking tools, and motivation to make rapid progress on 

addressing a defined problem, and periods of rapid advancement often leave many loose threads 

worthy of more in-depth investigation at a more deliberate pace after the sprint towards the final 

stage is completed. A few potential research directions directly related to this challenge that we 

hope will continue into the future:  

● Continue to improve the synthetic data solutions that were used in the challenge. 

● Evaluate other approaches to privatizing tabular (synthetic and event) data that were not 

represented in this challenge. These can be benchmarked against challenge solutions 

using code, data, and tools available on the NIST Privacy Engineering Collaboration 

Space. 

● Analyze other approaches regarding data quality metrics for synthetic data, and further 

formal research on the metrics used during the challenge. 

● Create a better formal understanding of the tuning process, including work on automated 

tuning over publicly available data and further exploration of the technical observations 

described in Section 4.  

6.2. Unexplored Data Paradigms and Modalities 

The scenario used for this challenge is common in public safety and government, but other use 

cases, paradigms, and data modalities pose privacy issues worthy of exploration. These are a few 

examples of data privatization, and use cases relevant to public safety communications 

applications, that have yet to be addressed:  

● Time Series Sequence Data - a sequence of data points belonging to the same individual, 

rather than each individual contributing only to a single event or record. 

● Data that is privatized and shared in real time, to support immediate analysis and 

response, rather than data that is published only after it is centrally collected and 

processed.  



 

 

39 

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.T
N

.2
1

5
1
 

 

● Data that is privatized at the point of collection on an individual device or sensor, so that 

no central trusted data owner is needed (local DP). 

● Measure DP solutions against additional richer data types such as image, video, sound, 

and unstructured data.  Solutions that performed well in this challenge addressed tabular 

(event and survey) data, however solutions performance could vary on datasets with 

significantly different properties. 

7. Conclusions 

The NIST PSCR Differential Privacy Synthetic Data challenge results convincingly established 

that the DP theory can be successfully implemented with current technology, and that the high 

ranked final solutions provide very meaningful insight as to how it can be done.  Both, the 

feasibility of the problem and the set of successful techniques, were far from expected results 

anticipated by the DP academic community at the outset of the challenge.  The challenge 

effectively garnered global participation and support from the small circle of researchers 

accelerating advancement in the field, as well as, expanding the knowledge of DP techniques to 

public safety data owners and technologists.  

 

The end results of any early tier TRL research and development effort like this are early 

prototype solutions rather than production-ready applications.  Despite their early readiness 

levels, the challenge’s winning solutions not only sparked interest in the privacy and statistics 

circles which resulted in invited talks at conferences, but they also caught the attention of 

Fortune 500 companies looking to leverage demographic rich data in an era of growing privacy 

restrictions.  While further work and investment will required in the areas of automated 

algorithm tuning, software and computer engineering, and user-interface development to create a 

commercial application that can be used to produce synthetic data, the PSCR challenge served as 

a necessary bridge over the wide development gap.  

 

Future research by the competing teams, as well as new researchers, and collaborations with the 

public safety and commercial sector can continue to build and improve further on these 

solutions.  New techniques may also use these challenge results as a benchmarking tool.  The 

challenge brings with it a new dawn where privacy and data access are not bianary.  DP solutions 

can offer a measurable level of confidence for the privacy of individuals and vastly expand 

access to public safety, government, and other industrial sector information. 
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Appendix A – Webpage Views 

Appendix A provides a high-level overview of views of the webpages associated with the 

Differential Privacy Challenge.  These are derived from the final HeroX report.  Metrics are 

broken down into four sections: 

1. Topcoder Minisite Page Views 

2. NIST DP #1 Page Views 

3. NIST DP #2 Page Views 

4. NIST DP #3 Page Views 

 
Figure 29 - Topcoder Minisite Page Views - Date Range: October 7, 2018 (pre-registration page 

launch) through June 1, 2019 (one week post-winner-announcement) 

 

Table 1 - Top web traffic sources for NIST Challenge 

Source Pageviews Users New Users Bounce Rate 

Herox      18,429        4,136           3,908  16% 

(direct)        4,105           704              621  8% 

Google        2,635           554              326  8% 

NIST        2,221           269              217  2% 

Challenge.gov        1,698           259              160  20% 

nist.gov        2,190           248              171  5% 

community-app-main        1,051           186                 -    0% 

Topcoder Members        1,553           104                31  4% 

mail.google.com           192             36                16  0% 

https://www.topcoder.com/community/data-science/Differential-Privacy-Synthetic-Data-Challenge#Learn
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17319&pm=15124
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17389&pm=15266
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17421&compid=81911
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Figure 30 - Match 1 Page Views - Date Range: October 31, 2018 (Match 1 Start) through 

November 30, 2018 (Match 1 End) 

 

 

 

Table 2 - Top sources of traffic for Match 1 

Source  Pageviews   Users   New Users  

(direct) 595 228 36 

Google 466 202 - 

Herox 544 135 - 

community-app-main 305 114 - 

Challenge.gov 311 62 - 

wipro 31 26 - 

nist.gov 62 26 - 

m.facebook.com 47 21 10 

NIST 269 21 - 

t.co 21 21 5 
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Figure 31 - Match 2 Page Views - Date Range: January 6, 2019 (Match 2 Start) through March 6, 

2019 (Match 2 End) 

 

 

 

Table 3 - Top sources of traffic for Match 2 

Source Pageviews Users New Users 

(direct) 595 228 36 

Google 466 202 - 

Herox 544 135 - 

community-app-main 305 114 - 

Challenge.gov 311 62 - 

wipro 31 26 - 

nist.gov 62 26 - 

m.facebook.com 47 21 10 

nist.gov 269 21 - 

t.co 21 21 5 
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Figure 32 - Match 3 Page Views - Date Range: March 10, 2019 (Match 3 Start) through May 20, 

2019 (Match 2 End) 

 

 

Table 4 - Top sources of traffic for Match 3 

Source Pageviews Users New Users 

Google 21 21 0 

nist.gov 16 10 0 

community-app-main 16 5 0 

Topcoder Members 57 5 0 

Challenge.gov 5 5 0 

(direct) 5 5 0 
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