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Abstract

The software, used to process raw data coming from a residential air-conditioner or heat pump
that is operating in the cooling mode, is described. The code was written in LabView 2015
with five main code modules grouped together in a project file. This technical note describes
the use of each code module and is meant to accompany a copy of the project code with
example files illustrating how each module is used. All the project files and example files are
being made available to the public in a ZIP type archive. This software package was
developed by the National Institute of Standards and Technology (NIST), is not subject to
copyright protection, and is in the public domain.
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1. Introduction

Fault detection and diagnosis for residential systems has received much attention over the last
20 years (Rogers, Guo, and Rasmussen 2019) (Katipamula and Brambley 2005). Many of the
early notable works on fault detection and diagnosis were produced by university researchers
(Rossi and Braun 1997) (J. Braun 2001) (J. E. Braun 2003) (Yuill and Braun 2013). There has
been an almost exponential growth in the number of publications dealing with fault detection
and diagnosis, especially with new tools that use machine learning techniques to analyze data
sets with and without faults (Zogg, Shafai, and Geering 2001) (Han et al. 2010) (Isermann
2005) (Esen et al. 2008) (Du et al. 2014; Han et al. 2020). These new techniques have all
shown the need for more operational data on installed systems to serve as training data for
advanced neural networks and other algorithms.

Work on the problem of residential systems’ fault detection and diagnosis began in the mid
2000’s (Kim et al. 2006) (Kim et al. 2008). NIST’s efforts focused on collecting data on typical
residential heat pump systems operating in the cooling and heating modes with and without
faults (Kim et al. 2009) (Yoon, Payne, and Domanski 2011). FDD techniques from the
literature were applied to determine those techniques that would be suitable for deployment on
low cost micro controllers and processors; this led to the adoption of a simple rule-based chart
method of FDD originally proposed by Rossi (Rossi and Braun 1997). NIST continued with
this work and sponsored a Small Business Innovative Research (SBIR) project to develop a
low cost, easily programmable data logger that could be installed on residential AC and HP
systems (Blemel, Kenneth (Management Sciences) 2014). Throughout this work, NIST
researchers have developed computer codes to manipulate, correlate, and further analyze data
from their experimental efforts; this report is a first attempt at documenting some of these
codes and putting them into a form that would be useful for other FDD researchers, the HVAC
industry, and software developers.

This report lists and explains the use of the NIST developed software for performing Fault
Detection and Diagnostics (FDD) on vapor compression refrigeration equipment as applied to
residential air-conditioners (ACs) and heat pumps (HPs) operating in the cooling mode. Figure
1 shows the LabView 2015 Project Explorer, which list the programs in the order as they will
be presented in this manual. However, the programs are stand-alone and independent as
written, and may be used in any sequence.
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Figure 1: Project file listing as shown in LabView 2015

The first five (5) files with names of FDD*.vi are explained in the following sections; the other
files are called by these first five programs.

2. INSTALLATION

2.1.

2.2

System Requirements

Personal computer capable of running Microsoft Windows 7, 8, 10, or XP with
Service Pack 3

National Instruments LabView 2015 Professional Development System (National
Instruments 2015)

Hard disk with 25 megabytes of available space

Screen resolution should be set to 800 x 600 or higher to view images in their
entirety.

Installation Procedure

Place the ZIP file on any computer directory and unzip the archive. All the code and example
files will be present in that directory. Initiate a LabView session and load the project file.
Selectively run the codes in the order as they are being presented below to fully understand an
example implementation.



3. FDD COOLING SS Detector Self TRAINING Ver03.vi

This program implements a data filter and Steady-State Detector (SSD) to keep only “steady”
data in the raw data file. The raw datafile is a tab delimited text file. For clarity, an input file
is included in the archive to provide an example of format and style. The raw tab delimited
text file is a time sequence of scans that is arranged in columns with a header label at the top
of each column. One of the columns includes the time in seconds. The size of the datafile is
limited by the available computer memory. The software has been successfully tested with
files as large as 20 MB. Larger files may be parsed into sub-files to prevent an out of memory
error. The raw data should be collected at a rate suitable for the system being diagnosed. See
NIST Technical Note 1087 (Kim et. al 2008) for a complete description of determining a
sampling size. The Nyquist theorem (Wikipedia 2020b) still applies even for the sampling rate
in FDD; sample at twice the frequency of the variation in the variable you are trying to measure.
For most purposes, a sampling rate of between 10 sand 1 minute will allow detection and
diagnosis in residential systems.

3.1. TAB: Datafile & Setup

Figure 2 shows the first tab page of the SSD. The Input File (red capital letter A in Fig. 2) is
the raw data file. The Output File (B) contains only the column numbers selected in
Independent Variables X-Values Indices (C) and Dependent Variables Y-Values Indices (D).
The data that will be filtered and run through the SSD are shown in the X&Y Variables Selected
String Array (E). The output file is the same format as the raw data file, but it only has the
selected X and Y columns of data with all the non-steady rows of data removed once the raw
file has been processed (the program executes). The independent variables can be selected
from any variable being measured or calculated. For heat pump operations, the independent
variables are the indoor and outdoor conditions which are best described by the indoor dry-
bulb temperature, indoor dewpoint temperature, and outdoor dry-bulb temperature; therefore,
these are the independent variables that drive the system and produce responses seen through
the dependent variables.

Once the user has decided on a file to process, they select Extract X&Y Data, button (J). If
they want to save the filtered and steady-state data to the output file, they select the SAVE the
Conditional and SSD Filtered Data, button (H). The PAUSE? button (I) is used if the user had
selected the input file as a list of different files by pressing the READ LIST to PROCESS button
and wants to pause between the processing of different files to examine output for each file in
the list. An example file list is included in the archive. This allows the user to process a single
file or an entire list of files. If a list of files is selected, all of the steady data will be saved in
the same output file.

3.2. TAB: Setup Data Filter

Figure 3 shows a snapshot of the setup data filter tab. This page contains an array of user
defined conditional filters (A) that may be imposed on any data column; each column is defined
by its index as seen in the array of header labels (D) that were selected in the previous tab. The
program needs the raw data without the header row, so the delete header row button (B) is set
to true by default. The conditional filters are executed on all the data columns selected and the
resultant data can be seen in the X&Y Values Conditional Filtered Data, array (C).



3.3. TAB: VIEW Data Filters

Figure 4 shows a snapshot of the conditional filters that were defined in the previous tab. This
allows the user to review the filters and to ensure that the appropriate data column is assigned
to the intended conditional filter. No user input is required on this TAB.

3.4. TABs: Plots of Selected Data 1, 2, and 3

Figure 5 shows the Plots of Selected Data 1 tab which is very similar to the Plots of Selected
Data 2 and Plots of Selected Data 3 tabs. These three tabs show plots of selected data with
indices that correspond to the data columns in the Selected Data Header Labels (E). The XY
Graphl X-Variable 2 (A) is the x-axis variable and the XY Graphl Y-Variable 2 (B) is the y-
axis variable. The mean and standard deviation are calculated for the y-variable and displayed
at (C). The y-variable header label is also displayed above each graph similar to (D). The user
familiar with LabView coding may customize the plots in any way they want to see the output.

3.5. TAB: Setup and Apply SS Detector

Figure 6 shows the setup of the moving window steady-state detector. The number of data
points in the moving window is set at (A). Several different columns of data that were selected
from the raw data and shown in the Selected Data Header Labels (D), may be included in the
array of Steady-State Monitoring Variables (B). In the example data being processed and
shown in Figure 6, the Selected Data Header Labels (D) index 9 is used as the X-Value for
MW (Moving Window) and index 63 is the Y-Value for MW, the Steady-State Monitoring
Variables (B) may include any number of elements from (D) as one of the variables monitored
for steady-state determination. In Figure 6, nine variables are selected for monitoring as shown
in the Display all the SS Monitoring Variables on ONE SCREEN (C) array. The standard
deviation and slope of the values in the moving window are used to determine steady-state; the
user specifies a maximum value of standard deviation and slope within the moving window.
A detailed analysis of the moving window steady-state detector may be found in Kim et al.
(2008).

3.6. TABs: SS Detector 2, 3, and 4

Figure 7 shows an example of the remaining three tabs in the SSD module; these last three tabs
consist of plots of the steady-state data filtered per the restrictions specified in the previous tab.
The x- and y-axes are specified in (A) and (B), respectively. The indices are selected per the
list of header labels in (C). The Y-Variable name for each plot is also shown at (D).
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Figure 2: FDD SSD datafile and setup page
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4. FDD Self TRAINING Parse Datafiles into BINS Ver06.vi

This program module applies a data clustering algorithm to the steady-state data to further
reduce the number of data points required to perform a fault-free feature correlation. The
details of this technique may be found in (Payne, Heo, and Domanski 2018). This program
groups the data in temperature bins formed by the indoor air dry-bulb temperature, the indoor
air dew-point temperature, and the outdoor air dry-bulb temperature. This program assumes
that the data being binned has been through the steady-state detector, but it is not necessary to
give this program steady data; it will perform the binning on any three variables that the user
specifies.

4.1. TAB: Input Data #1

Figure 8 shows the screenshot of the /nput Data #1 tab. This tab allows the user to input the
datafile name (A) for the steady-state data that was gleaned from running the SSD program
described in Sec. 2 and define the bins that will be used to cluster (filter) the steady-state data.
Referring to label (D) in Fig. 8, the user must select the three independent variables that will
be used to correlate all the other variables (other FDD parameters). For example, the SS-
Example RAW Datafile.txt contains three data columns which are used as the independent
variables; each column of the independent variables is filtered by a simple Euclidian distance
technique that determines the distance from the current data point to the center of an XYZ data
bin and keeps the five closet points (B) for each bin that is defined in the Data BINS Defined
— Array (D). Array (D) describes Independent Variables #0, #1, and #2; in this example, #0 is
Datafile Column 182, Inlet TC Grid Avg. Temp (F), #1 is Datafile Column 83, KahnDew
TempF, and #2 is Datafile Column 195, OD Air Avg. DB (F). These three variables are indoor
air dry-bulb temperature, indoor air dewpoint temperature, and outdoor air dry-bulb
temperature. The BINS for Independent Variables have a Start Center Value, End Center
Value, and Bin Width. The Bin Width determines the maximum distance a datapoint may be
from the center of a bin to be included in that bin. Once the program executes, the user can
see the selected independent variables in the Datafile Array — String (C).

4.2. TAB: Parse Into BINS #2

Figure 9 shows the Parse Into BINS #2 tab. The Raw Data COLS Array (A) shows the three
parameters being binned; in this example it is indoor air dry-bulb temperature, indoor air
dewpoint temperature, and outdoor air dry-bulb temperature. The Raw Independent Variables
STATISTICS — Array (B) gives a summary of the data being binned; it lists the mean, standard
deviation, maximum, minimum and range for the three columns of data that are being binned.
The BIN RANGES (C) shows the variation of the temperature bins that were defined on the
previous tab. ALL BINS (D) shows all the combinations of the columns in (C) to form the bins;
each row of the array (D) represents a possible bin. Figure 9E shows how each point in the
raw data array (A) was assigned to a bin; it lists the calculated distance, bin number (as defined
in (D)), and point number (row number minus 1 shown in (A)).

4.3. TAB: Parse Into BINS #3

Figure 10 shows the next tab, Parse Into BINS #3. The ALL BINS array (A) lists the bin
assigned to each point; in this example each bin could have up to 5 points. In the FILTERED
by Dmax array (B), the points in (A) which are greater than Dmax distance from their closest
bin’s center are removed. The final result is the list of points and their distance to the best
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bin shown in (C). Figure 10D is just for reference and repeats the raw data array seen in
previous tabs.

4.4. TAB: Parse Into BINS #4

Figure 11A shows the data points (rows of data in the raw datafile) for the points selected by
the binning scheme. The BINNED Data Statistics — Array (B) provides a summary of all of
the data columns in the raw datafile that were selected; the summary lists the mean, standard
deviation, maximum, minimum and range for each column of the raw data that has been
selected in the binning process.

4.5. TAB: SAVE Parsed BINS #5

Figure 12 shows the last tab in the program, SAVE Parsed BINS #5 tab. The binned data is
stored in the file indicated by the SAVED Data BINS File Path Control (A). The user should
select the SAVE File button and Create Report button to write the binned data to a file and then
create a snapshot of each tab saved in an archive file (B). The archive file, or report file, is a
ZIP file saved in the indicated location.
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Figure 9: Parse into bins #2 tab
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Figure 10: Parse into bins #3 tab
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Figure 11: Parse into bins #4 tab
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S. FDD Self Training POLYNOMIAL FIT Ver07.vi

This program will take any raw, tab delimited text file arranged in columns and fit selected
columns (dependent data) to three columns designated as the independent data. The program
will generate a 1% order, 2" order, or 3™ order polynomial fit, perform outlier removal, and
perform a backward elimination F-Test to reduce the number of coefficients. The resulting
polynomial fit coefficients and some fit statistics are saved in a tab delimited text output file.

5.1. TAB: Select COL Data File #1

Figure 13 shows the first tab for the polynomial fit program. The Input File (B) is a tab
delimited text file of columnar data. The Saved Coefficient File (C) is another tab delimited
text file for the output of the fit coefficients; the order of the fit is selected on the left at (A); a
1*order, 2" order, or 3™ order polynomial fit may be performed. The form of the polynomial
fit is also indicated at (A). In this example, the binned datafile of fault free data is used; this
file contains the three independent variables: 1) x1-indoor air dry-bulb temperature, 2) x2-
indoor air dewpoint temperature, and 3) x3-outdoor air dry-bulb temperature. All of the other
columns of data in the file will be fit as dependent variables.

5.2. TAB: RAW DATA & CALCS #2

Figure 14 shows the RAW DATA & CALCS #2 tab; here the raw datafile is read into a string
array for the user to inspect. The user also selects whether or not the file contains a header
label row at (B). This tab is intended to allow the user to abort the running of the program if
the data array (A) does not look as expected.

5.3. TAB: RAW DATA & CALCS #3

Figure 15 shows a snapshot of the next tab that allows the user to perform some calculations
to create a new dependent variable from a mathematical combination of the existing variables
in the datafile. The array at (A) shows the header labels associated with each column of data.
An array of calculated variables is created at (B). In the Array of Calculated Variables (B),
the two (or more) columns indicated by the DATA COLUMNS array may have any of the
operations performed as indicated in the selection list; the user selects the two data columns
for the mathematical operation from the numeric index of header labels at (A) and selects an
operation from the list. The user may also enter a NEW HEADER LABEL for the newly defined
variable. Multiple, new variables may be defined in this way. The newly defined variables
may also be used to define another new variable if the entry of the mathematical operation
defining the first new dependent variable is performed before the subsequent dependent
variable uses it in its definition. Newly created dependent variables are appended to the
columnar input datafile and their numeric index will equal the last index indicated at (A) plus
their position in the definition sequence indicated at (B). For example, if there were 20
columns (0 to 19) indicated at (A), then any newly defined dependent variable created in the
(B) array would be appended starting at index 20 (or column 21). This newly defined
dependent variable could then be referenced in array (B) by the number 20 in subsequent
definitions in array (B).

54. TAB: Select Parameters #4

Figure 16 shows the Select Parameters #4 tab. Here the user can see the original datafile with
the newly defined, and appended, columns at (B). With the raw data input in tab #1, reviewed
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in tab #2, and new dependent variables defined in tab #3, the user now selects the three
independent variables and dependent variables from the data in RAW & CALCULATED Data
Array — String, array (B). The array (C) holds the independent variables’ column indices that
are selected from the columns in array (B). Array (D) holds the column indices of all of the
dependent variables selected from array (B). The column indices input into arrays (C) and (D)
are also found in array (E); array (E) is just a copy of all of the column header labels from array
(B). Once all of the variables have been specified for the fits, the user may proceed to perform
the fits by running the program.

5.5. TAB: FIT and STATS #5

Figure 17 shows the FIT and STATS #5 tab. This snapshot shows Independent VARIABLES,
x1, x2, x3 — Numeric Data Array, array (A); the independent variables that come from the raw
data array with appended variables in the previous tab. Array (B), Dependent VARIABLE(S)
Numeric Data Array, is the dependent variables from the same aforementioned array on the
previous tab. Array (C) is the statistical fit H-Matrix which lists y0 through y19 as calculated
from the dependent variables in array (A). Each row in array (D) represents the fit coefficients
(a0 to al9) beginning with row index 0 to 19 for each dependent variable column shown in
array (B). The Mean Squared Error of the fit for each of the dependent variables is appended
as the last column for all of the dependent variables of array(B).

5.6. TAB: Remove Outliers #6

Figure 18 shows a snapshot of the tab used to setup the outlying data removal. The array
indices with the same color background are associated with the same dependent variable. This
tab shows the fit residual (value minus fit-value) for each dependent variable shown in Figure
17, array (B). Array (B), STATS Columns for each Dependent Variable’s Residuals, shows
the statistics for the residuals listed in array (A); each column of array (B) summarizes the fit
statistics, listed to the right of array(B), for each column of dependent variables (array (B) of
Figure 17). The constant value shown at (C) is the interquartile range multiplier (k) (Wikipedia
2020a); the interquartile range for each dependent variable is listed in row index 5 of array (B).
Any residual that lies outside of the range of the Lower Bound and Upper Bound (in this
example 2.2 times the interquartile range) will be flagged as an outlier. A value is flagged as
an outlier if it is k times below or k times above the 25" or 75™ percentile, respectively. All
this assumes a normal distribution of dependent variable residuals.

5.7. TAB: Remove Outliers #7

Figure 19 shows the Remove OUTLIERS #7 tab. Here the user can get a color-coded visual
indication of the dependent data that were identified as outliers. Array indices with the same
background color represent the same or related variables. The red LED in array (A) indicates
that a dependent variable point was removed as an outlier because its fit residual was more
than £ times the interquartile range. Array (B) indicates the line number of the raw data with
appended variables that had an outlier, while array (C) shows you the column numbers and
header labels of any dependent variable with outliers. Arrays (B) and (C) indicate if any row
(line) or column in Array (A) had a red LED; if any LED was red in the line (B) or column (C)
they will show it. Constant (D) allows you to select a particular dependent variable’s residual
histogram plot (which should be normally distributed about zero). The skewness and kurtosis
are calculated to the right of the histogram, and a plot of the residual is shown at (E). The plot
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at (E) allows the user to see the distribution of residuals and verify the line numbers that had
outliers.

5.8. TAB: FIT and STATS #8

Figure 20 shows three arrays that hold summary statistics for all of the dependent variables
with the outliers removed. The mean, standard deviation, maximum, minimum, and range are
show for all the dependent variables.

5.9. TAB: BACKWARD Elimination #9

Figure 21 shows the tab page that does the setup for a backward elimination technique to reduce
the number of coefficients used in the dependent variable fits. If the user wishes to perform a
backward elimination, the button at (E) is selected. This will run the code associated with
removing those coefficients from the full-fit that, when removed, cause less than a certain
percentage increase (A) in the sum of squared errors, SSE. In this example 17 % is selected
as the threshold for removing a coefficient from the full model. The sum of squared error ratio
equals the SSE of the reduced model divided by the SSE of the full model. Array (B) shows
the SSE ratio for each removal of a coefficient; the row index (44 in this example) is the number
of the fit equation, and the column index indicates the coefficient that was removed (0-3 in
case of a 1% order fit). Array (B) in this example, looking at row index 44, column index 3,
the value of the SSE ratio was 1.167; this means that the SSE of the reduced model was that
many times greater than the SSE of the full model with coefficient zero (a3 removed).
Coefficient (a3) should be removed because its SSE ratio was less than 1.17 set at (A). Array
(C) is a visual indicator of those coefficients that could be removed; green means they stay,
red means they can be removed. In this example, if removal of the coefficient causes less than
a 17 % increase in the SSE, it is thrown out. All the array index indicators with the same color
background (yellow here) are associated with the same dependent variable; see (F), (B), and

(©).
5.10. TAB: Debug Page Coefficient MODELS #10

Figure 22 is a snapshot of a tab used to debug and step through the program while the backward
elimination and correlation fits are done.

5.11. TAB: Reduced Coefficient MODELS #11

Figure 23 shows the final polynomial fits for each of the dependent variables that were selected.
The array also includes the mean squared error (MSE), the fit degrees of freedom (DOF), the
Student T-Value, and the 95 % confidence interval on a mean value calculated using the fit.
The saved datafile input on the Select COL Data File #1I tab includes this exact information in
the form of a tab delimited text file.
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Figure 14: Raw data and calculations #2 tab
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Figure 16: Select parameters #4 tab
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Figure 17: Fit and stats #5 tab
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Figure 18: Remove outliers #6 tab
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Fit and stats #8 tab

Figure 20
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Figure 21: Backward elimination #9 tab
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Debug page coefficient models #10 tab

Figure 22:
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Figure 23: Reduced coefficient models #11 tab
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6. FDD Self TRAINING Polynomial APPLY FIT Ver02.vi

This program shown in Figure 24 applies the fit generated by the previous LabView program
FDD Self Training POLYNOMIAL FIT Ver(7.vi. This program is meant to be called as a sub-
VI from other LabView programs. This program consists of one page that requires an input
filename (A), the three independent variables in an array (B), the row index for the dependent
variable’s polynomial fit coefficients (C), and the order of the polynomial fit (D). The output
of the program is the predicted dependent variable’s (E) numeric value, the dependent
variable’s name string (E), and the dependent variable’s fit coefficients (G) floating point
values array.

For the example shown in Figure 24, the independent variables input at (B) are 29 °C (85 °F)
indoor dry-bulb temperature, 21 °C (70 °F) indoor dewpoint temperature, and 44 °C (112 °F)
outdoor dry-bulb temperature. The file with the appropriate coefficients is selected at (A), and
the order of the polynomial fit is selected at (D). For this example, the predicted sensible
capacity needs to be determined, so row 35 (C) is selected, which corresponds to row 35 in the
file shown at (F). Because this is a first order polynomial fit, four coefficients are shown at
(G), in LabView’s SI format, along with the dependent variable’s name taken from the first
column of the input file.

7. FDD Algorithm Cooling OFFLINE LV2015 Ver004.vi

The previous 6 sections describe the collection of raw data from the HP under test all the way
through the development of the fault-free feature polynomial fits. Now these fits will be used
with subsequent raw data to perform a rule-based chart type of fault detection and diagnosis.
Figure 25 shows the first tab page of the implementation of a Rule-Based Chart FDD algorithm.
The details of the algorithm may be found in NIST Technical Note 1087 (Kim et. al 2008).
This code uses the previously developed fault-free polynomial fits to determine the predicted
feature values for the current temperature conditions, then it calculates residuals which are the
predicted minus the actual values. The rule-based chart method of fault detection and diagnosis
requires knowledge of the variation of system features at steady-state, so a steady-state detector
is implemented within the code. More details will be provided below for each tab of the
program.

7.1. TAB: Input Datafile

Figure 25 shows the Input Datafile tab of the FDD algorithm program. The Datafile Name
(A) is a time series file of the measurements being collected from the heat pump (or air-
conditioner) under test. One column in the input file should contain the time in seconds past
midnight; each day runs from 0 s to 86399 s. If the input file is a collection of different data
files taken at random times, then the user should include a column of pseudo-time values, in
seconds, with the appropriate time interval for the scans.

The user must input the location of the coefficient file for the fault-free polynomial fits of the
important system features at (B) and input the polynomial order at (C). The fault-free
polynomial fits are used by other parts of the program. The program processes one row at a
time, in sequential order, so to prevent the program from executing so quickly that inputs and
outputs cannot be observed, the scan pause time at (D) slows the input process down. The user
may input the time column index and two other column indices at (F); in the example file, the
time index, the outdoor dry-bulb, and the indoor dry-bulb are shown in the plot; as the program
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steps through the data input at the selected pause time (D), the yellow bar in the plot at (F) will
move from left to right to give the user some indication of how far the program has executed
through the current input raw data file. Data header labels (H) and the polynomial fits
coefficient header labels (I) are always shown to aid the user in selecting the appropriate
indices as required for inputs on this tab and other tabs. The button at (G), if not pressed (OFF),
allows the user to read-in the raw data file and select appropriate indices before executing the
FDD program,; this is helpful when setting up the initial run of the program.

7.2. TAB: Assign Features, SS Detector

The next tab defines the important system features (independent and dependent variables) and
sets the number of scans in the steady-state detector’s moving window averaging and standard
deviation calculations (Figure 26). The users must input the appropriate raw data file column
indices at (A) and (C) to define the independent variables and FDD features, respectively. In
this example shown in Figure 26, the independent variables are the indoor dry-bulb
temperature, index 341 in the raw data file; indoor dewpoint temperature, index 242; outdoor
air dry-bulb temperature, index 354; and outdoor dewpoint temperature, index 244. The
important system features that must be defined are listed at (E). The indices to define these
features are input at (C), and some calculated features are shown at (D).

The indices listed at (C) are those features that would be measured on the vapor compression
system being monitored; only the first nine temperatures are necessary. The remaining three
features, corrected refrigerant-side capacity (Cor Ref. Capacity), outdoor unit total power (OD
Unit Power), and indoor unit (or air handler) total power (ID Unit Power) are not required to
perform the FDD. All the indices with the same background color are related; for instance, the
yellow background indices are all selected from the raw Data HEADER Labels array in the far
upper left. The blue backgrounds are all values related to the moving window features.

The moving window features are all listed at (E) with their associated maximum standard
deviations for steady-state at (F). The steady-state, maximum standard deviations are
determined for each system installation by measurements taken while the system is operating
over a “long” time interval. Continuous operation of the unit over a long time interval will
give a good sample of the calculated features which will allow for determination of steady-
state standard deviations. The maximum standard deviations shown in Figure 26 at (F) were
determined from laboratory system measurements using carefully instrumented air-
conditioners and heat pumps. Field measurements, with lower cost data acquisition equipment,
may have larger values of the maximum standard deviations. All seven of the moving window
feature value’s standard deviations must be less than the maximum before the FDD rule-based
chart method can be applied. A more thorough description of the steady-state detector and an
analysis of selecting appropriate moving window size may be found in NIST Technical Note
1087 (Kim et. al 2008). The features defined at (C) and (D) are described in Table 1.
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Table 1: Parameters used to determine moving window features and values

Name as shown at

(C) and (D) in Description NOTE
Figure 26
Indoor evaporator Measured on refrigerant tube surface of the
Cooling Tsat ID two-phase refrigerant  expansion valve distributor or an evaporator
temperature tube return bend
Cooling Tsat OD  Outdoor Measured on a return bend of the condenser
coil/condenser coil; verify that two-phase is occurring using
refrigerant saturation  a pyrometer or other temperature measuring
temperature device
TID, vapor Indoor Measured on the vapor line/suction line near
coil/evaporator exit the indoor air handler by a surface mounted
refrigerant vapor sensor
temperature
TOD, vapor Outdoor Measured on the surface of the refrigerant
coil/condenser vapor line near the inlet of the condenser

cooling mode hot
refrigerant gas
temperature entering
the coil

(could be the same as the compressor
discharge temperature for an AC)

TIDair, exit

Indoor air handler
supply air dry-bulb
temperature (cold air
temperature exiting

Preferably measured in the airstream at the
center of the ductwork about 2 duct diameters
after the air handler (a single sensor)

the AC)
TODair, exit Outdoor Measured at the exit of the condenser, after
coil/condenser air the fan
exit dry-bulb
temperature
Tdisch Compressor exit/ Measured on the surface of the compressor
discharge refrigerant  refrigerant discharge line
temperature
TOD, liq Outdoor Measured on the surface of the refrigerant
coil/condenser liquid line near the service valve
refrigerant liquid
temperature
TID, liq Indoor Measured on the surface of the refrigerant
coil/evaporator liquid line near the indoor coil/evaporator
refrigerant liquid before the expansion valve
temperature

Cor Ref. Capacity

Corrected refrigerant-
side cooling capacity

The user may have to modify the program to
calculate the corrected refrigerant-side
capacity from the measurements being made
and a compressor map mass flowrate. In this
example, the value was found from actual
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mass flow measurements with temperatures
and pressures at the inlet and exit to the
evaporator. The corrected refrigerant-side
capacity has the indoor blower estimated, or
measured, power demand subtracted to reflect
the actual air-side capacity.

OD Unit Power  Outdoor/Condensing  Calculated from a current transducer installed
unit total power on the input power wire (AC Amps) and
previously measured input voltage (VAC) and
an assumed/measured power factor. The
voltage and power factor are assumed to be
stable P = V*I*PF
ID Unit Power  Indoor/Evaporator air  Calculated the same as the outdoor total
handler total power power using a current transducer installed on
the input power wire
dTODair Outdoor Calculated from the outdoor air dry-bulb
coil/condenser air (TODair,Dry at (A) in Figure 26) and
dry-bulb temperature  condenser exit air dry-bulb temperature
change difference
dTIDair Indoor Calculated from the indoor return air dry-bulb
coil/evaporator air (TIDair,Dry at (A) in Figure 26)and supply
dry-bulb temperature  air dry-bulb temperature difference
change
Cool dTsh Indoor Calculated as the difference in TID,vapor and
coil/evaporator Cooling Tsat ID
refrigerant exit vapor
superheat
Cool dTsc Outdoor/condenser Calculated as the difference in TOD,liq and
refrigerant liquid line  Cooling Tsat OD
subcooling
dTdisch,sh Compressor Calculated as the difference in TOD, vapor
discharge refrigerant  and Cooling Tsat OD
superheat
Meas. COP Measured Coefficient Calculated from the Cor Ref. Capacity and
of Performance sum of OD Unit Power and ID Unit Power
(COP)

The moving window feature values, maximum standard deviations, and actual standard
deviations are shown at (E) and (F) of Fig. 26. Compressor discharge superheat and measured
COP are also placed in the moving window calculation at (H). The refrigerant-side capacity
is shown at (G) with a user adjustable additive correction input location. The correction is
added to the refrigerant-side capacity being calculated and then displayed at (C).

7.3.  TAB: Cooling FDD Rule-based Chart

The tab shown at Figure 27 is where the rule-based chart is defined, and the appropriate
coefficient file indices are selected for calculating the fault-free values of the important system
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features. The temperature and dewpoint value indices were already input on the previous tab,
but are shown again here at (A). The fault-free feature values are listed at (C) and the
appropriate indices are input at (B) from the header labels array at (F). The calculated COP
serves as a warning value to indicate something is causing the system to deviate from its fault-
free performance; a maximum percent degradation is input at the bottom of the array at (C).
In this example, when the measured/calculated COP drops by 10 % or more, the Steady and
Degraded? indicator light near (H) will turn red and the background color of the most likely
fault, in the list numbered 0 to 6 at (H), will also turn red. The background color of the bar
chart at (I) will also turn red as the chart shows the probabilities of the 7 possible fault
conditions listed at (H).

The Cooling Rule-Based Chart Array is defined at (D) and consists of values of 0, +1, or -1.
Each column of the chart is associated with a particular system feature; 7e — evaporator
refrigerant saturation temperature, 7sh — evaporator exit refrigerant vapor superheat, TD —
compressor refrigerant discharge temperature, 7C — condenser refrigerant saturation
temperature, 7sc — condenser liquid refrigerant subcooling, d7CA — condenser inlet and exit
air temperature change, and dTEA — evaporator air temperature change. The fault-free values
of all these system features are calculated from the polynomial fits selected at (B) from the file
at (F). The rows of (D), from top to bottom, are CMF (compressor valve leakage or hot gas
bypassing the compressor and going directly to the suction side), ODFoul (condenser air flow
area blockage), IDFoul (evaporator air flow change), LL (refrigerant liquid line restriction
causing excessive pressure drop), UC (refrigerant under charge or loss of refrigerant), OC
(refrigerant over charge or excessive mass of refrigerant in the system), and NF (no-fault or
fault-free operation). The intersection of a row and column indicates the tendency of the
feature residual (measured value minus predicted value) to be neutral or fault-free (0), higher
or larger than expected (positive one, +1), or lower than expected (negative one, -1). The
neutral case (or no-fault case) is defined by the variation of the moving window average value
from its predicted value; the acceptable variation of a feature’s value while still remaining
fault-free is described by the Feature Thresholds (E). Defining the feature thresholds at a
particular statistical confidence level is described in NIST Technical Note 1087 (Kim et. al
2008).

The Individual Probabilities (%) as Described by the RULE-BASED CHART ARRAY indicates
the individual probability that a particular feature has a neutral, positive, or negative residual
(a0, +1, or -1). For example, refer to Figure 27 at (D), the Cooling Rule-based Chart Array,
and observe that row 0 column 0 (7e with a CMF fault at index (0,0)) equals positive one (+1).
This means that the evaporator saturation temperature will be higher than normal for a
compressor valve leakage fault; the individual probabilities array at row 0 column 0,
index(0,0), shows 15.88 % as this probability (0 % to 100 %). For this example file, the value
of 15.88 % is the probability of the evaporator saturation being higher than the neutral case (as
defined by the Feature Thresholds at (E) for a 95 % confidence level). Referencing the rule-
based chart at (D) at row 2 column 0, index(2,0), Te has a rule of negative one (-1) for an
IDFoul fault at an individual probability of 15.85 % in the probability chart at (G) also at
index(2,0). The Te is neutral, value 0, in the rule-based chart at (D), index(4,0), for an under
charged refrigerant fault (UC fault). The corresponding individual probability of the neutral
case is found at (G), index(4,0), as 68.27 %. The sum of the individual probabilities for being
neutral, positive, or negative is always one (100 %). For example, the sum of the individual
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probabilities for Te (being neutral -index(4,0), positive -index(0,0), or negative -index(2,0)) is
100 % (60.87 %+15.88 %+15.85 %=100 %). If you multiply all the probabilities across a row
of the array at (G), that equals the combined probability that a given fault is occurring; in this
example the multiplication of all the elements in the last row of the array at (G) equals the
value shown in the last row of the array at (H) (Cooling Fault Probability) which corresponds
to the no-fault case (fault-free case). Fault-free or no-fault is also the largest bar on the chart
at ().

7.4. TAB: Rule-based Chart PLOTS

Figure 28 shows some bar charts that are meant to help the user to visualize how the overall
probability of the different faults develop as the raw data file is processed. The individual
probabilities chart at (A) and the most likely fault indicator at (B) is copied here from the
previous tab just for the user’s reference. The bar charts at (C) and (D) are meant to graphically
show the individual probabilities for all the important system features listed across the top of
the array at (A). The bar chart at (C) defaults to showing the individual probabilities for the
fault-free row of the array at (A); row 6 is the fault-free (neutral probability) for all of the
important system features. The bar chart at (D) defaults to show the individual probabilities
for the fault on row 4; the liquid line restriction fault. Using these two bar charts at (C) and
(D), the user may compare different rows of the array at (A).

7.5. TAB: NOTES

Figure 29 contains a text indicator box that may be used by the user to save information that
is a useful reference from run-to-run of the main program. The example shown in Figure 29
explains some of the considerations that were implemented for calculating the overall values
of the neutral or no-fault (fault-free) thresholds. If the user wishes to edit and save changes
to the text box, they would select the box in the edit mode (Ctrl-M toggles the edit mode) and
then save the entire VL.
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Figure 26: Assign features and steady-state detector tab
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Figure 27:

Cooling FDD rule-based chart tab
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FDD COOLING MODE

Figure 28: Rule-based chart plots tab
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8. SUMMARY

The codes presented in this report can be found here:
https://github.com/FDeeDee/NIST-FDD-for-Residential-Air-Conditioners-and-Heat-Pumps

These codes allow a user to 1) process a continuous stream of incoming data and save those
points which are at steady-state, 2) keep a portion of the steady-state data that covers the
widest possible landscape described by the independent variables, 3) produce polynomial
correlations of fault-free system parameters, 4) use the polynomial fits to determine system
parameters given the current independent variables, and 5) use the fault-free fits in a rule-
based chart method to detect and diagnose faults in the cooling mode.
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