NIST Technical Note 2123

Formal Verification of Bootstrapping
Remote Secure Key Infrastructures
(BRSKI) Protocol Using AVISPA

Monika Singh
Mudumbai Ranganathan

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2123

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

NIST Technical Note 2123

Formal Verification of Bootstrapping
Remote Secure Key Infrastructures
(BRSKI) Protocol Using AVISPA

Monika Singh

Mudumbai Ranganathan

Advanced Network Technologies Division
Information Technology Laboratory

National Institute of Standards and Technology

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2123

October 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2123
Natl. Inst. Stand. Technol. Tech. Note 2123, 24 pages (October 2020)
CODEN: NTNOEF

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2123

€ZLZ'NL 1SIN/8209 0L /BJo"10p//:sdiy :wioly 8bieyd Jo 8s84) s|qe|ieAe si uoneolignd siy |

Abstract

The last decade has seen significant growth in the number of IoT devices. These devices
can onboard the network and connect to each other. The process through which a new IoT
device connects to the network and subsequently enables its services is called bootstrap-
ping. A single entity connecting large numbers of new IoT devices to networks makes
manual bootstrapping infeasible. It requires an automated system to enable a new device
to be located and securely onboard the network. The Bootstrapping Remote Secure Key
Infrastructure (BRSKI) protocol is one of the well-known protocols that provides a way for
secure device onboarding. In this work, we present the first formal security analysis of the
BRSKI protocol using a verification tool called AVISPA (Automated Validation of Internet
Security Protocols and Applications). AVISPA provides a formal security validation of any
network protocol by building and analyzing the formal security models of that protocol’s
operations.

Key words

Authentication, AVISPA, Bootstrapping, HLPSL, SPAN, Verification, X.509 certificates.

€ZLZ'NL 1SIN/8209 0L /BJo"10p//:sdiy :wioly 8bieyd Jo 8s84) s|qe|ieAe si uoneolignd siy |

Table of Contents

1 Introduction

2 Bootstrapping Remote Secure Key Infrastructures (BRSKI)
2.1 Notation and Definitions
2.2 Protocol Design

3 BRSKI Validation with AVISPA and SPAN
3.1 BRSKI specification in HLPSL
3.2 HLPSL correctness verification
3.2.1 Debugging of Syntax error
3.2.2 Debugging of Semantic
3.3 BRSKI security validation

4 Conclusion and Future Work
References
Appendix A: HLPSL specification of BRSKI

List of Tables

Table 1 Attack scenarios
Table 2 Validation results with OFMC and CL-AtSe

List of Figures

Fig. 1 BRSKI overview
Fig. 2 Tool architecture
Fig. 3 BRSKI protocol simulation on SPAN

DN OB BB W N e -

—
[\ IR]

(W)

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

1. Introduction

The continued rapid growth in the number of IoT devices requires an automatic and secure
technique that enables the devices to securely bootstrap trust between other devices and
the networks on which they connect and communicate. Several newly emerging protocols
are addressing this issue. Bootstrapping Remote Secure Key Infrastructures (BRSKI) [1]
is one of such protocol that provides a solution to bootstrap 10T devices in the context
of the Autonomic Networking Integrated Model and Approach (ANIMA) [2]. BRSKI
facilitates the authentication of the device to the network operator and vice-versa with the
help of the device manufacturer using the IEEE standard 802.1AR secure device identity
[3]. The protocol is built on top of HTTP and transport layer security (TLS). The new
device requires only link-local connectivity and does not have a network routable address
until authenticated.

The BRSKI protocol uses cryptographic primitives to ensure the security of the pro-
tocol. The major issue is that it is very difficult to analyze the security properties of a
protocol no matter its size. A classic example could be the Needham-Schroeder Public-
Key Protocol which had been proven secure by Burrows et.al. [4] until several years later
when Gavin Lowe [5][6] showed a triangular attack on the protocol using an automated
tool FDR/Casper [7] [8]. This example explains the extent of the complexity of protocol
analysis and the importance of automatic analysis to prove the security of the protocol and
gain wider acceptance. Over the decades various automated protocol analysis tools based
on formal analysis has been presented such as AVISPA [9], proverif [10], casper/FDR [8],
Scyther [11], tamarin [12], etc.

In this work, we use the Automated Validation of Internet Security Protocols and Ap-
plications (AVISPA) tool to formally verify the security property of BRSKI. AVISPA is
a push-button verification tool developed as a collaboration between the Artificial Intel-
ligence Laboratory at DIST (University of Genova, Genova, Italy), the CASSIS group
at INRIA Lorraine (LORIA, Nancy, France), the Information Security group at ETHZ
(Ziirich, Switzerland), and Siemens AG (Munich, Germany). AVISPA comprises four dis-
tinct formal verification approaches that can formally validate the security property of a
protocol (i.e. On-the-fly Model-Checker, Constraint-Logic-based Attack Searcher, SAT-
based Model-Checker and Tree Automata-based Protocol Analyser). It uses the High-
LevelProtocol Specification Language (HLPSL) to specify the protocol and its security
properties in order to use all four analysis techniques.

The rest of the paper is structured as follows: the notation, definition, and BRSKI
protocol design are described in section 2. The section 3 presents the modeling, formal
verification, and validation results. We conclude the paper in section 4.

2. Bootstrapping Remote Secure Key Infrastructures (BRSKI)

2.1 Notation and Definitions

* Sn : denotes the pledge’s iDevID serial-number

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

* Assr : represents the assertion
* Crdate : Date and time the voucher request was created on
* N, : Nonce generated by the pledge

* proximity-registrar-cert : contains the registrar’s TLS certificate shared during the
TLS session

* Issuer : denotes the issuer of the pledge’s iDevID certificate
* prior-signed-voucher-request : contains the pledges voucher request
» pinned-domain-cert : represents the join domain’s CA certificate

* sln indicates the subjectAltName of iDevID

2.2 Protocol Design

The Bootstrapping Remote Secure Key Infrastructures (BRSKI) protocol provides a solu-
tion for a resource-constrained new device to automatically onboard the correct network in
a secure manner. BRSKI specification refers to the new device as the pledge. The protocol
aims to establish a trusted relationship between the pledge and the network operator/owner
referred as the registrar in such a way so that the registrar and pledge can assure and authen-
ticate each other’s identity. This is done using a 802.1AR iDevID [3] cert which installed
into the device by the manufacturer during the manufacturing process. The iDevID cert
indicates the manufacturer, type and serial number of the given device. The manufacturer
also installs the trust anchor for the manufacturer’s authorized signing authority (known as
the MASA) at compile time which the device uses to authenticate the MASA.

To initiate the bootstrapping process, the pledge sends the iDevID as part of TLS ses-
sion and establish a provisional TLS connection through a join proxy. Once the provi-
sional TLS connection is established the pledge sends a signed voucher-request [13] to the
registrar which includes information about the pledge such as the assertion (Assr), nonce
(Np),1 serial-number (Sn), created-on (Crdate), and the proximity-registrar-cert (which is
the registrar’s TLS certificate shared during the TLS session). While receiving the pledge
voucher-request, the registrar determines if it is expecting such device and if yes then the
registrar locates the device’s MASA and sends that MASA a signed registrar voucher-
request that contains the entire pledge voucher-request. The registrar’s voucher-request
includes the following information: Assr, N, Sn, Crdate from the pledge voucher-request,
and idevid-issuer (Issuer) from the iDevID certificate and the entire pledge voucher-request
in prior-signed-voucher-request field. Then MASA checks its internal device database with
respect to the provided device serial number in the voucher-request. If the voucher-request

'In this analysis, we have analyzed voucher-request with the nonce.

2

€212'NL LSIN/8209 01 /610°10p//:sdny :woly a61eys Jo 931y sjgejieAe s uonesijgnd siy |

is accepted, a voucher is issued. The voucher contains assertion (Assr), nonce (N), serial-
number (Sn) and pinned-domain-cert (domain’s CA certificate). The registrar redeems the
voucher by passing it along to the pledge. The pledge validates the signed voucher us-
ing the pre-installed MASA’s trust anchor. The pledge also verifies the registrar using the
pinned-domain cert and completes the authentication of the provisional TLS connection.
The pledge returns the voucher telemetry status indicating the voucher acceptance status.
A successful voucher validation indicates an established, trusted relationship between the
pledge and the registrar. Figure 1 represents the overview of the BRSKI protocol. The
detailed protocol simulation is shown in figure 3.

1DeviD

. :
PIEdge (5n, Issuer, Sln, Ver, Aki, K] e~ RegISt rar
Pledge VYoucher Request = .
Pledge |Assr, Np, 5n, Issuer, Crdate, proximity-registrar-cert) o RegISt rar
= Registrar Voucher Request
RegIStrar {Assr, Np, 5n, Issuer, Crdate, prior-signed-voucher-request) > MASA
Voucher "
L
MASA {Np, 5n, pinned-domain-cert) g RegISt yar
» Voucher iy
REgIStra r [Np, 5n, pinned-domain-cert) = PIEdge
Pledge bl > Registrar

Status (true/false)

Fig. 1. BRSKI overview

3. BRSKI Validation with AVISPA and SPAN

The Automated Validation of Internet Security Protocols and Applications (AVISPA) is a
formal protocol verification tool that can be used to build, analyze, and validate security
properties of network security protocols. AVISPA integrates four different verification
back-end tools to implement a variety of approaches to analyze the protocols.

* OFMC (On-the-fly Model-Checker) uses number of symbolic techniques to represent
the state-space to perform protocol falsification and verification for the boundless
number of sessions in a demand-driven fashion.

* CL-AtSe (Constraint-Logic-based Attack Searcher) is a constraint based approach.
It uses some simplification and redundancy elimination techniques to integrate a new
specification for cryptographic functions.

* SATMC (SAT-based Model-Checker) use SAT solver to generate security property
violation and attacks.

* TA4SP (Tree Automata-based Protocol Analyser) validates the security properties by
estimating the intruder’s knowledge using regular tree languages for the unbounded
number of sessions.

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

Each back-end tool uses different techniques to perform verification for a finite and infi-
nite number of sessions. In order to analyze any protocol in AVISPA and SPAN, it must
be modeled in a modular and formal language called High-Level Protocol Specification
Language (HLPSL). SPAN is another tool that has been used to test the correctness of the
protocol simulation explained in section 3.2.

3.1 BRSKI specification in HLPSL

BRSKI HLPSL specification is presented in appendix 4. The specification has three agents:
the pledge (P), the registrar (R) and the Manufacturer Authorized Signing Authority also
known as MASA (M). HLPSL is a role-based language so we have specified roles of each
agent in the protocol using a set of variables, constant, and transitions (called basic roles).
Where transitions define the message exchanges between two agents. Then two composite
roles are defined known as session and environment. The Composite roles instantiate basic
roles to model the entire protocol. A session integrates all roles together to run a valid ses-
sion of a protocol. Each run of the protocol is a session. For example, a session of BRSKI
in our specification is defined as follows:

session(p,r,m,kp,kr,km, kca,keygen, prf,sn,

issuer,aki, sln)

The session is parameterized by all variables necessary for one session, which is all agents
(p-pledge, r-registrar, m-MASA) public keys (kp, kr, km), functions (keygen, prf-used dur-
ing TLS session to generate session keys), and iDevIDcert values (sn-serial number, issuer-
idevid issuer, aki-authority key identifier, sln-subjectAlternateName). Each session runs in
the environment role including initial intruder knowledge. Once all roles are defined the
list of security properties, which are to be verified, are declared in the goal section. Us-
ing AVISPA we can only test for Confidentiality, Authentication, Freshness (Anti-replay).
Hence, in this paper, we test BRSKI for these three properties.

3.2 HLPSL correctness verification

The semantic and syntactic correctness of HLPSL modeling can be validated using the
SPAN (Security Protocol ANimator) tool. SPAN provides a graphical interface that helps to
debug the HLPSL specification. The syntactic and semantic error of HLPSL specification
can be identified and rectified in the following two ways:

3.2.1 Debugging of Syntax error

In order to execute the HLPSL specification, SPAN translates it into the Intermediate For-
mat (IF) using tool HLPSL2IF as shown in figure 2. This process results in either the

€ZLZ'NL 1SIN/8209 0L /BJo"10p//:sdiy :wioly 8bieyd Jo 8s84) s|qe|ieAe si uoneolignd siy |

syntax errors in the HLPSL file or a ‘.IF’ file which is later used in the execution of the
specification. Our implementation has been successfully verified using tool HLPSL2IF.

{ High—Level Protocol Specification Language (HLPSL) J

]
Y

Translator
HLPSL2IF

]

(Intermediate Format (IF)]

A
Tree Automata—based
Protocol Analyser
TA4SP

Model-Checker Attack Searcher Model-Checker

] Y L]
On-the—fly ‘ CL-based ‘ ‘ SAT-based
OFMC AtSe SATMC

Output Format (OF)

Fig. 2. Tool architecture

3.2.2 Debugging of Semantic

The semantic of the protocol is verified using the ‘Protocol simulation’ option of the SPAN,
which allows to visualize the step by step message exchange of the protocol. This option
is very useful to fix the semantic errors in the HLPSL specification. Figure 3 shows the
BRSKI protocol simulation obtained from SPAN. The visualization of the complete proto-
col message exchange implies no semantic error in the HLPSL specification.

In figure 3 steps 1 to 4 represents the TLS handshake and generation of the TLS shared
secret key, which will be used for further communication between the pledge and the reg-
istrar. Step 5 shows the pledge voucher-request. Step 6 to 9 represents the TLS handshake
between the registrar and MASA and step 10 shows the registrar voucher-request to MASA.
Step 10 and 11 present the voucher exchange between the MASA to the registrar and the
registrar to the pledge. After successful debug, we tested our BRSKI HLPSL implementa-
tion on all four verification back-end tools. We present the results obtained by each tool in
the next section.

3.3 BRSKI security validation
Using AVISPA and SPAN we analyze the following security properties of BRSKI.

» Authentication Authentication is the process by which both participants in a com-
munication session ensure that they are communicating with the desired party. Three
parties are involved in this protocol Pledge, Registrar and MASA. Mutual authenti-
cation is established in the protocol in the following way. The pledge is authenticated

5

€212'NL LSIN/8209 01 /610°10p//:sdny :wioly a61eyo Jo 931y sjgejieAe s uonesijgnd siy L

Pt

5

pledge registrar masa
pi=3 r= 4 m-35
Stepl
P.Na.5id.Pe
Step2.
Nb.S:d.Pa. {R.Kr}_inv {Kca)
Step3.
}_Kr.{Sn.Issuer.51n.Axi.Kp}_inv(Xg . (PRF (PRF (Pms.Na.Nb) .P.R.Na.Fj.51id) }_KeyGen (P.Na.Nb.PRF (PmsfNa.Nb))
Stepd.
{PRF(PRF(Pms.Na.N1).P.R.Na.Pa.Sid)},KeyGen(R.Na. b.PRF (Pms.Na.Nb}))
Step5.
{{Assr.Np.Sn.Crcafle. {R.Kr}_inv(Kca) }_inv (Kp) }_KfyGen (P.Pms.Na.Nb)
Stepb.
R.N¢.Sidm.Pam
Step7.

P

{{Assr.Np.Sn.

{{Assr.Np.Sn.

sm}_Km. {R.Kr}_inv{Kca) .{PRF (P

Nd.Sicm.Pam. {M.Km}_inv (Kza)

(Pmsm.Nc.Nd) .R.M.Ne.Pam. 5idm)

{PRF (PRF (Pmsm.Nc.Nd

crdate.Issuer. {Assr.Np.Sn.Crd:

.R.M.Nc.Pam.Sidm) }_KeyGen{M.Nq

e.{R.Kr}_inv(Xca)}_inv(Kp) a\

{{Assz.Np.S5n.{

R.Kz}_inv(Kca)} _inv{(Km) }_KeyGH

JKr}_inv(Kca)}_Znv(Xm)}_ KevGe

(R.Pms.Na.Nb)

Fig. 3. BRSKI protocol simulation on SPAN

Step8.
KeyGen (R.Nc.Nd.PRF (Pmsm.Nc.Nd) }

Step9.
Nd.PRF (Pmsm.Nc.Nd))

Stepl0.
v (Kz) . {R.Kr)_inv(Kca) }_KeyGen (R.Pmsm,Nc . Nd)

Stepll.

(M.Pmsm.Ne . Nd)

Stepl2.

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

via its iDevID certificate and the pledge provisionally authenticates the registrar dur-
ing the TLS handshake with the registrar’s unauthenticated server certificate. Later,
after receiving the voucher, the pledge completes the registrar’s certificate authenti-
cation using the pinned-domain-cert field of the voucher. The pledge validates each
message received until a voucher is verified. The registrar and the MASA authenti-
cate each other during a normal TLS handshake. The MASA authenticates the regis-
trar’s voucher-request by verifying the registrar’s signature over the voucher-request
message. The MASA authenticates the pledge using the contents of the attached
iDevID certificate (e.g. the serial number, etc.) in the voucher-request. The pledge
verifies the voucher signature using the MASA’s pre-installed trust anchor and veri-
fies the Sn and Np.

In the HLPSL specification, the authentication property of a protocol can be tested
using request and witness clause, which allows the participating agents to assert that
they want to be the peer of another agent and will agree on a value (variable) for
authentication.

Here we show an example of the request-witness pair of the pledge authenticating
a voucher using the nounce and the serial number, which is later declared as the
authentication goal in the goal section of HLPSL.

M :
witness(M, P,auth-np, Np')
witness(M, P,auth_sn,Sn)

Which indicates that the MASA hopes the Pledge can authenticate it on Np and Sn.
‘auth_np’ and ‘auth_sn’ represent the protocol_id later used to set the goal.

P:
request(P,M,auth_np,Np)
request(P,M ,auth_sn,Sn)
Which refers that the Pledge requests the MASA to authenticate itself on Np and Sn.

authentication_onauth_np

authentication_onauth_sn

Similarly, we have validated the authentication of each entity and message in our
specification shown in appendix 4.

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

* Confidentiality / Secrecy

This property implies that the secret information is not revealed to an unauthorized
party during the message exchange in the protocol. BRSKI retains confidenciality
by having the message exchange over a TSL-encrypted channel. The pledge and the
registrar perform their message exchange over a provisional TLS channel and the
registrar and the MASA communicate over a secure TSL-channel. In AVISPA the
confidentiality of the secret values can be validated by declaring the secrecy clause
in the role where secret information is generated and adding the secrecy goal to the
goal of HLPSL specification. For example, we tested the confidentiality of Np by
adding the following clause to the Pledge role.

secret(Np,sec_np_pr,P,R)

Where the first argument represents the secret value, the second argument specifies
the secrecy goallD and the last parameter represents the agents between whom the
secret value is shared. Here we test the confidentiality of Np between the pledge and
the registrar by setting following goal

secrecy_of sec_np_pr

Similarly, we have tested confidentiality of shared keys and other secret values in
BRSKI.

* Replay Attack A replay attack occurs when an unauthorized agent or intruder cap-
tures the network traffic and maliciously delays or repeats it while impersonating
the legitimate agent. Replay attacks can be prevented by adding some element of
freshness to the messages which can be the sessionID, nonce or timestamp. BRSKI
prevents this attack by including a nonce in the voucher-request and the sessionld &
nonce during TLS handshake.

In order to test against a replay attack, we have considered the following four protocol
sessions.

1. session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln): This session runs the
protocol considering all participating agents in the session are legitimate agents.

2. session(i,r,m,ki,kr,km,kca,keygen,prf,sn,issuer,aki,sln): This session runs a sce-
nario where an intruder plays the role of the agent pledge.

3. session(p,i,m,kp,ki,km kca,keygen,prf,sn,issuer,aki,sln): This session represents
the protocol run for the scenario where an intruder impersonates the legitimate
agent registrar.

4. session(p,r,1,kp,krki,kca,keygen,prf,sn,issuer,aki,sln): This session runs the pro-
tocol with an intruder impersonating the legitimate agent MASA.

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

The AVISPA tool only supports the Dolev-Yao model. In the Dolev-Yao intruder
model, the intruder has full control over the network, i.e. all messages sent by agents
go to the intruder. The intruder may intercept, analyze, and/or modify the message
and send any message to an agent pretending to be any other agent but the impostor
cannot encrypt or decrypt without the knowledge of the key.

Verification results: The results obtained from validating BRSKI with OFMC and
CL-AtSe backends are shown in the next Tables 2. In the case of SATMC, the result
was always “Inconclusive”. The protocol can not be tested with TA4SP because of
some ‘technical issues about non-left-linearity in term rewriting with tree automa-
tion’. Hence, SATMC and TA4SP were not used in any further analysis. Table 1
below shows the scenarios that have been analyzed to find possible security goal
violations.

Table 1. Attack scenarios

Scenario Session Configuration
cfgl session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
cfg2 session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
cfg3 session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
session(i,r,m ki, kr,km,kca,keygen,prf,sn,issuer,aki,sln)
cfgd session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
session(p,i,m,kp,ki,km kca,keygen,prf,sn,issuer,aki,sln)
cfg5 session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
session(p,r,1,kp,kr.ki,kca,keygen,prf,sn,issuer,aki,sln)
cfgb session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
session(i,r,m,ki,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
session(p,i,m,kp,ki,km kca,keygen,prf,sn,issuer,aki,sln)
session(p,r,i,kp,kr.ki,kca,keygen,prf,sn,issuer,aki,sln)

Configuration cfgl aims to find attack in a normal session where all agents are legiti-
mate. The rest of the configuration aims to identify a reply attack. In order to test the
replay attack, we run two or more coherent parallel sessions of the protocol. Config-
uration cnf2 runs two sessions with all legitimate/legit participants. Configuration
cnf3, cnf4, cnfS runs two coherent parallel sessions where one session is a normal
session with all legitimate agents and the other session with an intruder impersonat-
ing one of the legitimate participants. The aim is to find possible attacks in a session
when carried out from an intruder running in another different session. Configuration
cfg5 runs four parallel sessions where one session is with all legit participants and
the rest have an intruder impersonating as a legitimate agent pledge, registrar, and

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

MASA respectively. Note that based on the role imitated by the intruder its knowl-
edge varies in each configuration.

Table 2 presents the obtained results. AVISPA summarizes the result using one of
the following:

— Safe indicates that the protocol does not violate any security goal specified in
the HLPSL specification.

— Unsafe indicates that there is a security flaw in the protocol for which an attack
trace has been found.

— Inconclusive refers that due to some underlying issues (i.e. TIME_OUT, MEM-
ORY _OUT, NOT_SUPPORTED, etc.) AVISPA can not analyze the protocol.

As table 2 shows that for cfgl AVISPA results that protocol is safe using both the
OFMC and CL-AtSe backends. It indicates that there are no authentication and
secrecy attack on BRSKI. Similarly, cfg2-cfg6 presents that protocol is protected
against a replay in multiple parallel sessions with impersonating intruder. We tested
cfg2, cfg3,cfgd, cfg5, and cfgb with the OFMC & CL-AtSe backend and found that
the BRSKI protocol is safe in all scenarios.

4. Conclusion and Future Work

This work examines the security properties of one of the prominent and well know device
bootstrapping protocols, Bootstrapping Remote Secure Key Infrastructures (BRSKI) using
automated security verification tools AVISPA (Automated Validation of Internet Security
Protocols and Applications) and SPAN (Security Protocol ANimator for AVISPA). From the
formal verification, we conclude that the protocol satisfies the specified security properties
(secrecy, authentication, and freshness) and it is secure against active and passive attacks.
This Paper also presents the HLPSL specification of BRSKI that can be used to further
simulate, analyze, and validate the protocol using SPAN and AVISPA. In future we would
like to validate another prominent device onboarding protocol such as DPP (Device Provi-
sioning Protocol) [14] using AVISPA. We also intend to explore the verification of device
bootstrapping protocols using other existing verification tools such as proverif, Scyther, etc.

References

[1] Pritikin M, Richardson M, Behringer M, Bjarnason S, Watsen K (2019) Boot-
strapping remote secure key infrastructures (brski). Internet-Draft draft-ietf-anima-
bootstrapping-keyinfra-18, IETF .

10

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

Table 2. Validation results with OFMC and CL-AtSe

Analysis scenario Tool

Description

Result

cfgl

OFMC

VisitedNodes:9 nodes
Depth: 4 plies
Search Time: 0.03s

Safe

CL-AtSe

Analysed : 18 states
Reachable : 5 states
Translation: 0.07 seconds
Computation: 0.00 seconds

Safe

cfg?

OFMC

Visited Nodes: 1016 nodes
depth: 8 plies
Search Time: 3.76s

Safe

CL-AtSe

Analysed : 3918 states
Reachable : 652 states
Translation: 0.21 seconds
Computation: 0.11 seconds

Safe

cfg3

OFMC

visitedNodes: 150 nodes
depth: 6 plies
searchTime: 0.44s

Safe

CL-AtSe

Analysed : 655 states
Reachable : 130 states
Translation: 0.16 seconds
Computation: 0.02 seconds

Safe

cfgd

OFMC

visitedNodes: 233 nodes
depth: 7 plies
searchTime: 0.70s

Safe

CL-AtSe

Analysed : 560 states
Reachable : 111 states
Translation: 0.13 seconds
Computation: 0.01 seconds

Safe

cfg5

OFMC

visitedNodes: 272 nodes
depth: 7 plies
searchTime: 0.92s

Safe

CL-AtSe

Analysed : 655 states
Reachable : 130 states
Translation: 0.18 seconds
Computation: 0.02 seconds

Safe

cfgb

OFMC

visitedNodes: 0 nodes
depth: 1000000 plies
searchTime: 9.95s

Safe

CL-AtSe

Analysed : 3804750 states

Reachable : 422749 states

Translation: 0.42 seconds
Computation: 115.38 seconds

Safe

11

€Z1Z'NL 1SIN/8209°01/610°10p//:sd)y :wouy 8bieyd jo sau) s|gejieAe si uoneolignd siy|

[2] Infrastructure SAN (2018) Autonomic networking integrated model and approach
(anima). Emerging Automation Techniques for the Future Internet :90.

[3] (2009) Ieee 802.1ar secure device identifier. Available at https://standards.ieee.org/
standard/802_1AR-2009.html.

[4] Burrows M, Abadi M, Needham RM (1989) A logic of authentication. Proceedings of
the Royal Society of London A Mathematical and Physical Sciences 426(1871):233—
271.

[5S] Lowe G (1996) Breaking and fixing the needham-schroeder public-key protocol us-
ing fdr. International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (Springer), , pp 147-166.

[6] Lowe G (1995) An attack on the needham- schroeder public- key authentication pro-
tocol. Information processing letters 56(3).

[7] Roscoe B (1994) A classical mind: essays in honour of CAR Hoare, .

[8] Lowe G (1998) Casper: A compiler for the analysis of security protocols. Journal of
computer security 6(1-2):53—-84.

[9] Armando A, Basin D, Boichut Y, Chevalier Y, Compagna L, Cuéllar J, Drielsma PH,
Héam PC, Kouchnarenko O, Mantovani J, et al. (2005) The avispa tool for the auto-
mated validation of internet security protocols and applications. International confer-
ence on computer aided verification (Springer), , pp 281-285.

[10] Blanchet B (2009) Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4):363—-434.

[11] Cremers CJ (2008) The scyther tool: Verification, falsification, and analysis of secu-
rity protocols. International conference on computer aided verification (Springer), ,
pp 414-418.

[12] Meier S, Schmidt B, Cremers C, Basin D (2013) The tamarin prover for the symbolic
analysis of security protocols. International Conference on Computer Aided Verifica-
tion (Springer), , pp 696-701.

[13] Watsen K, Richardson M, Pritikin M T. eckert,” a voucher artifact for bootstrapping
protocols (RFC 8366, DOI 10.17487/RFC8366, May 2018,; https://www. rfc-editor.
org/info ...),

[14] Alliance WF (2018) Device provisioning protocol specification version 1.0. Tech.
Rep. (Wi-Fi Alliance), , .

Appendix A: HLPSL specification of BRSKI?

%% HLPSL:

role pledge (P, R, M : agent,
Kr, Km, Kca : public_key,
KeyGen, PRF : hash_func,

Zhttps://github.com/usnistgov/BRSKI-HLPSL

12

https://standards.ieee.org/standard/802_1AR-2009.html
https://standards.ieee.org/standard/802_1AR-2009.html

€ZLZ'NL 1SIN/8209 0L /BJo"10p//:sdiy :wioly 8bieyd Jo 8s84) s|qe|ieAe si uoneolignd siy |

Sn . text,
Issuer . text,
Aki . text,
Sln . text,

SND_R, RCV_R, SND_M, RCV_M
played_by P def=

local Np, Na, Nb, Assr, Pms,

%devID serial Number

%devID issuer

%devID authorityKeyIdentifier
%devID subjectAltName

: channel (dy))

Sid, Pa : text,

Crdate . text,

State . nat,

Kp : public_key,

Finishedp : hash(hash(text.text.text) .agent.agent.text.text.text),
ClientKp, ServerKp : hash(agent.text.text.hash(text.text.text)),

Mp : hash(text.text.text)

const sec_np_pr, auth_np, auth_sn, auth_na_nb, auth_reg_cert, auth_na_nb2,
auth_idev, auth_reg_certchain, tls_pledgek, tls_registrark : protocol_idj,

init State := 0

transition

0. State = 0 /\ RCV_R(start) =|>

State’:= 2

/\ Na’ := new()

/\ Pa’ := new()

/\ 8id’ := new()

/\ SND_R(P.Na’.Sid’.Pa’)

2. State = 2 /\ RCV_R(Nb’.Sid.Pa.{R.Kr’}_inv(Kca))
State’:= 4 /\ Pms’ := new()

/\ Mp’ := PRF(Pms’.Na.Nb’)

/\ Finishedp’ := PRF(Mp’.P.R.Na.Pa.Sid)

/\ ClientKp’ := KeyGen(P.Na.Nb’.Mp’)

/\ ServerKp’ := KeyGen(R.Na.Nb’.Mp’)

/\ SND_R({Pms’}_(Kr).{Sn.Issuer.Sln.Aki.Kp}_inv(Km) .
/\ secret(ClientKp,tls_pledgek,{P,R})

/\ secret(ServerKp,tls_registrark,{P,R})

/\ witness(P,R,auth_na_nb,Na.Nb’)

/\ witness(P,M,auth_idev,Sn) %Masa can authenticate

13

I
\4

{Finishedp’}_ClientKp’)

pledge on serialNumber

€ZLZ'NL 1SIN/8209 0L /BJo"10p//:sdiy :wioly 8bieyd Jo 8s84) s|qe|ieAe si uoneolignd siy |

4. State = 4 /\ RCV_R({PRF(PRF(Pms.Na.Nb).P.R.Na.Pa.Sid)}
_KeyGen(R.Na.Nb’ .PRF(Pms.Na.Nb))) =[>

State’:= 6 /\ Np’ := new()
/\ Assr’ := new()
/\ Crdate’ := new()

/\ SND_R({{Assr’.Np’.Sn.Crdate’.{R.Kr}_inv(Kca)}_(inv(Kp))}
_(KeyGen(P.Pms.Na.Nb’)))

/\ secret(Np,sec_np_pr,{P,R})

/\ request(P,R,auth_na_nb2,Na.Nb)

/\ witness(P,R,auth_reg_cert,{R.Kr}_inv(Kca))

6. State = 6 /\ RCV_R({{Assr’.Np.Sn.{R.Kr’}_inv(Kca)}_(inv(Km))}
_(KeyGen(R.Pms’.Na.Nb’))) =[>

State’:= 8 /\ request(P,R,auth_reg_certchain,{R.Kr’}_inv(Kca))

/\ request(P,M,auth_np,Np)

/\ request(P,M,auth_sn,Sn)

end role

role registrar (P, R, M : agent,

Kr, Km, Kca : public_key,
KeyGen, PRF : hash_func,

SND_P, RCV_P, SND_M, RCV_M : channel (dy))
played_by R def=

local Assr, Np, Na, Nb, Nc, Nd, Pms, Pmsm, Sid, Pa, Sidm, Pam : text,
Sn, Crdate, Rcrdate . text,

State : nat,

Kp : public_key,

Issuer : text,

Aki : text, YauthorityKeyIdentifier
Sln : text, YsubjectAltName

Finishedp, Finishedm : hash(hash(text.text.text).agent.agent.
text.text.text),
ClientKp, ServerKp, ClientKm, ServerKm: hash(agent.text.text.
hash(text.text.text)),
Mm : hash(text.text.text)

const sec_np_rm, auth_na_nb, auth_na_nb2, auth_reg_cert, auth_np, auth_npl,

14

€212'NL LSIN/8209 01 /610°10p//:sdny :woly a61eys Jo 931y sjgejieAe s uonesijgnd siy |

auth_nc_nd, auth_reg_certchain, auth_nc_nd2, tls_registrarrmk, tls_masarmk:

protocol_id%,
init State := 1
transition

1. State =1 /\ RCV_P(P.Na’.Sid’.Pa’) =|>
State’:= 3 /\ Nb’ := new()

/\ SND_P(Nb’.Sid’.Pa’.{R.Kr}_inv(Kca))

/\ witness(R,P,auth_na_nb2,Na’.Nb’)

3. State =3

/\ RCV_P({Pms’}_Kr.{Sn’.Issuer’.S1ln’.Aki’.Kp’}_(inv(Km)) .
{Finishedp’}_ClientKp’)

/\ Finishedp = PRF(PRF(Pms’.Na.Nb’).P.R.Na.Pa.Sid)

/\ ClientKp = KeyGen(P.Na.Nb’.PRF(Pms’.Na.Nb’))=|>

State’:= 9

/\ ServerKp’ := KeyGen(R.Na.Nb’.PRF(Pms’.Na.Nb’))

/\ SND_P({PRF(PRF(Pms’.Na.Nb’).P.R.Na.Pa.Sid)}
_KeyGen(R.Na.Nb’ .PRF(Pms’.Na.Nb’)))

/\ request(R,P,auth_na_nb,Na.Nb)

9. State =9
/\ RCV_P({{Assr’.Np’.Sn.Crdate’ .{R.Kr’}_inv(Kca)}_(inv(Kp))}
_(KeyGen(P.Pms’.Na.Nb’))) =|>

State’:= 11

/\ Nc’ := new()
/\ Pam’ := new()
/\ Sidm’ := new()

/\ SND_M(R.Nc’.Sidm’.Pam’)

11. State = 11
/\ RCV_M(Nd’.Sidm’.Pam’.{M.Km}_inv(Kca)) =|>

State’:= 13

/\ Pmsm’ := new()

/\ Mm’ := PRF(Pmsm’.Nc.Nd’)

/\ Finishedm’ := PRF(Mm’.R.M.Nc.Pam.Sidm)
/\ ClientKm’ := KeyGen(R.Nc.Nd’.Mm’)

/\ ServerKm’ := KeyGen(M.Nc.Nd’.Mm’)

15

€212'NL LSIN/8209 01 /610°10p//:sdny :woly a61eys Jo 931y sjgejieAe s uonesijgnd siy |

/\ SND_M({Pmsm’}_(Km).{R.Kr}_inv(Kca).{Finishedm’}_ClientKm’)
/\ witness(R,M,auth_nc_nd2,Nc.Nd’)

/\ secret(ClientKm,tls_registrarrmk,{R,M})

/\ secret(ServerKm,tls_masarmk,{R,M})

13. State = 13

/\ RCV_M({PRF (PRF (Pmsm’.Nc’.Nd’) .R.M.Nc’.Pam.Sidm)}
_KeyGen(M.Nc’ .Nd’ .PRF(Pmsm’ .Nc’.Nd’))) =[>

State’:= 15

/\ Rcrdate’:= new()

/\ SND_M({{Assr.Np.Sn.Rcrdate’.Issuer.({Assr.Np.Sn.Crdate.{R.Kr}
inv(Kca)}(inv(Kp)))}_(inv(Kr)) .{R.Kr}_inv(Kca)}
_KeyGen(R.Pmsm’ .Nc.Nd’))

/\ secret(Np,sec_np_rm,{R,M})

/\ request(M,R,auth_nc_nd,Nc.Nd)

/\ request(R,P,auth_reg_cert,{R.Kr}_inv(Kca))

15. State = 15
/\ RCV_M({{Assr’.Np’.Sn’.{R.Kr’}_inv(Kca)}_(inv(Km))}
_KeyGen(M.Pmsm’ .Nc.Nd’)) =[>
State’:= 17 /\ SND_P({{Assr’.Np’.Sn’.{R.Kr’}_inv(Kca)}
(inv(Km))}(KeyGen(R.Pms.Na.Nb)))
/\ witness(R,P,auth_reg_certchain,{R.Kr’}_inv(Kca))

end role

role masa (P, R, M : agent,

Km, Kp, Kca : public_key,

KeyGen, PRF : hash_func,

Sn : text, %serial Number

Issuer : text,

Aki : text, YauthorityKeyIdentifier
Sln : text, YsubjectAltName

SND_R, RCV_R, SND_P, RCV_P : channel (dy))

played_by M def=

local SeID, Assr , Np, Nc, Nd, Pmsm, Sidm, Pam : text,
Crdate, Rcrdate . text,

State . nat,

Kr : public_key,

16

€212'NL LSIN/8209 01 /610°10p//:sdny :woly a61eys Jo 931y sjgejieAe s uonesijgnd siy |

Finishedm: hash(hash(text.text.text).agent.agent.text.text.text),
ClientKm, ServerKm: hash(agent.text.text.hash(text.text.text))

const auth_sn, auth_np, auth_npl, auth_idev, auth_reg_certchain,
auth_reg_certl,auth_nc_nd, auth_nc_nd2 : protocol_id%,

init State := 5
transition

1. State =5

/\ RCV_R(R.Nc’.Sidm’.Pam’) =|>

State’:= 7

/\ Nd’ := new()

/\ SND_R(Nd’.Sidm’.Pam’.{M.Km}_inv(Kca))
/\ witness(M,R,auth_nc_nd,Nc’.Nd’)

2. State =7

/\ RCV_R({Pmsm’}_(Km’) .{R.Kr’}_inv(Kca) .{Finishedm’}_ClientKm’)

/\ Finishedm = PRF(PRF(Pmsm’.Nc.Nd’).R.M.Nc.Pam.Sidm)

/\ ClientKm = KeyGen(R.Nc.Nd’.PRF(Pmsm’.Nc.Nd’))=|>

State’:= 19

/\ ServerKm’ := KeyGen(M.Nc.Nd’.PRF(Pmsm’.Nc.Nd’))

/\ SND_R({PRF(PRF(Pmsm’.Nc.Nd’).R.M.Nc.Pam.Sidm)}
_KeyGen(M.Nc.Nd’ .PRF(Pmsm’ .Nc.Nd’)))

/\ request(M,R,auth_nc_nd2,Nc.Nd)

3. State = 19

/\ RCV_R({{Assr’.Np’.Sn.Rcrdate’.Issuer’.({Assr’.Np’.Sn.Crdate’.
{R.Kr’}_inv(Kca)}_(inv(Kp’)))}_(inv(Kr’)).
{R.Kr’}_inv(Kca)}_KeyGen(R.Pmsm’ .Nc.Nd’)) =|>

State’:= 21

/\ SND_R({{Assr’.Np’.Sn.{R.Kr’}_inv(Kca)}_(inv(Km))}

_KeyGen (M.Pmsm’ .Nc.Nd’))

/\ witness(M,P,auth_np,Np’)

/\ witness(M,P,auth_sn,Sn)

/\ request(M,P,auth_idev,Sn)

end role

17

€212'NL LSIN/8209 01 /610°10p//:sdny :woly a61eys Jo 931y sjgejieAe s uonesijgnd siy |

role session(P, S, M : agent,
Kp, Kr, Km, Kca : public_key,

KeyGen, PRF : hash_func,

Sn : text, Y%serial Number

Issuer : text,

Aki : text, YauthorityKeyIdentifier
Sln : text YsubjectAltName

)

def=

local SP, SR, SM, RP, RR, RM : channel (dy)

composition

pledge(P,S,M,Kp,Km,Kca,KeyGen,PRF,Sn, Issuer,Aki,S1ln,SP,RP,SM,RM)
/\ registrar(P,S,M,Kr,Km,Kca,KeyGen,PRF,SR,RR,SM,RM)

/\ masa(P,S,M,Km,Kp,Kca,KeyGen,PRF,Sn, Issuer,Aki,S1ln,SM,RM,SP,RP)

end role

role environment ()

def=

const p,r,m . agent,

kp, kr, km, kca, ki : public_key,

keygen, prf : hash_func,

sn : text, Y%serial Number

issuer . text,

aki : text, Y%authorityKeyIdentifier
sln : text YsubjectAltName

intruder_knowledge = {p,r,m,kp,kr,m,kca,ki,inv(ki)

,1i.ki}_inv(kca) %%% 2nd session
% ,{i.ki}_inv(kca) %%% 3rd session
}

composition
session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)

% /\ session(p,r,m,kp,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
% /\ session(p,i,m,kp,ki,km,kca,keygen,prf,sn,issuer,aki,sln)
% /\ session(i,r,m,ki,kr,km,kca,keygen,prf,sn,issuer,aki,sln)
% /\ session(p,r,i,kp,kr,ki,kca,keygen,prf,sn,issuer,aki,sln)

18

€212'NL LSIN/8209 01 /610°10p//:sdny :woly a61eys Jo 931y sjgejieAe s uonesijgnd siy |

end role

goal

secrecy_of sec_np_pr,sec_np_rm %confidentiality of Np

secrecy_of tls_pledgek,tls_registrark,tls_registrarrmk,tls_masarmk
authentication_on auth_sn

authentication_on auth_na_nb

authentication_on auth_na_nb2

authentication_on auth_reg_cert

authentication_on auth_nc_nd

authentication_on auth_nc_nd2

authentication_on auth_idev JMasa can authenticate pledge on serialNumber
authentication_on auth_reg_certchain

authentication_on auth_np YRegistrar authenticates voucher by checking
nonce Np.

authentication_on auth_npl Plegde authenticates voucher by checking nonce

Np.

end goal

19

	Introduction
	Bootstrapping Remote Secure Key Infrastructures (BRSKI)
	Notation and Definitions
	Protocol Design

	BRSKI Validation with AVISPA and SPAN
	BRSKI specification in HLPSL
	HLPSL correctness verification
	Debugging of Syntax error
	Debugging of Semantic

	BRSKI security validation

	Conclusion and Future Work
	References
	Appendix A: HLPSL specification of BRSKI

