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Abstract

Instrument performance is evaluated through performing a set of tests, and the test results
determine whether the instrument meets or fails the standard requirements. The perfor-
mance test data are analyzed and usually point estimate and confidence bounds are cal-
culated, on which a testing decision is made. This chapter provides recipes of statistical
analysis of the test data, including estimation of probability of detection or identification,
or false alarm rate, and particularly on how various confidence intervals and confidence
bounds are computed based on sound statistical principles.

Key words

Probability of detection; binomial distribution; confidence intervals; confidence bounds;
probability distribution estimation; Bayesian credible intervals.
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1. Introduction

Performance of an instrument or device is evaluated through a suite of tests. Decision on
whether an instrument meets the requirements depends on satisfying a set of performance
metrics or scoring criteria. The performance metrics typically include the probability of
identification, i.e. the chance when an underlying source such as a particular type of ra-
dionuclide is correctly identified by a detector; the probability of detection, the chance
that the presence of known source material is detected under specified distance (closeness
to the source) and time limits (such as 15 seconds in real-time) by a detecting instrument;
and the probability of false positive, the probability of giving a positive response when
the underlying source is not present. The decision scoring criteria include point estima-
tion of the performance metrics and whether the associated confidence bounds satisfy the
pre-specified requirements. This chapter provides recipes for statistical analyses of the per-
formance test data, including estimation of probability of detection or identification, and
how various confidence intervals and confidence bounds are computed based on binary
measurement data. Measurements of continuous and other performance measures have
also been strongly recommended due to the potential to employ more advanced statistical
tools including parametric models and the related statistical analysis is also reviewed.

1.1 Estimating Probability of Detection or Identification

In this section, we use the generic notation p, to denote the probability of identification
PID, or the probability of detection, PD. Estimation of p and confidence bounds or intervals
for p are briefly described when using performance test data. The estimation of false alarm
rate is treated similarly, and the difference is that while it is desirable to have an instrument
or testing procedure with a PID or PD close to 1, the sacrifice is to incur an intolerable false
alarm rate PFA, which should be minimized to an acceptable level close to 0 at the same
time.

If the test data from a given instrument performance evaluation is derived from n inde-
pendent binary trials, then denote by S or Sn, the total number of positive identifications or
detections from n tests. That is, Sn = ∑

n
i=1 xi where x1, . . . ,xn represent test results, each xi

taking on value 0 for failure and 1 for success. It should be noted that we also use s denote
the observed or realized value of S, which is reserved for treating it as a random variable.
The point estimate of p is given by

p̂ = S/n, (1)

which is simply an alternative expression of the familiar sample mean formula p̂ = x̄ =
1
n ∑

n
i=1 xi, where n is the total number of tests.
That p̂ is a reasonable estimate of p is based on the fact that it is an unbiased estimator

of p, that is, its expected value is exactly p. As an unbiased estimator, its variability or
uncertainty is usually characterized through the standard deviation,

sd(p̂) =
√

p(1− p)/n. (2)

1
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An estimate of (2), called sample standard deviation, is given by substituting p with p̂. 1

The availability of sample standard uncertainty does not guarantee making a probabilis-
tic statement on the likely values of the estimator p̂. More specifically, in order to make a
statement that some interval to be constructed, based on the performance test data, that the
interval will cover the true p will high probability, say 1−α , for some small 0<α < 1, one
needs additional information on the sampling distribution of p̂ for any given performance
data.

1.2 Confidence Intervals and Choosing Among Them

The estimation of binomial probability p is based on S, which has the binomial distribution,
and so the sampling distribution of p̂ is very close to the normal distribution with mean p
and standard deviation as given in (2) when the sample size n is large (Section 3). Based on
the latter property of asymptotic normality, one can easily derive at least three confidence
intervals, including Wald, Wilson, and Agresti-Coull intervals as discussed in Section 2.
These intervals, however, all depend on the goodness of the normal approximation to the
binomial distribution (see Section 3.2 of this Chapter) and so they belong to large sam-
ple approximate methods. For larger n, say bigger than 40, there is not much difference
among them as Wilson, Jeffreys and the Agresti-Coull intervals are all comparable, and the
Agresti-Coull interval is the simplest to present (see for example [2]. Though the standard
Wald interval is often discussed in elementary textbooks, caution should be exercised as it
may not be appropriate to use in many situations even when n is fairly large, as pointed
out by several studies, as reviewed in [6]. When n ≤ 40, there is some significant differ-
ence among the large sample methods, and the Wilson or Agresti-Coull interval may be
preferred over the standard Wald interval. Especially when the observed data very small or
very close to n, the Poisson adjustment procedure of Subsection 2.5 is also recommended.
Furthermore, for small sample size n, say less than 20 or 40, we recommend the exact and
Bayesian methods which will be discussed in Section 4, for which recommendation on the
Bayesian credible intervals is given in Section 4.6. Choosing a prior distribution on p rep-
resents both a challenge and also an added flexibility with the Bayesian approach, as for
example, with one of three noninformative prior choices, such as Jefrreys prior, uniform
(or Be(0.5, 0.5)), and Agresti prior (Table 4), the corresponding Bayesian credible intervals
approximate most of the classical confidence intervals in Section 2, and so the Bayesian
approach may be considered as a more powerful and general approach for binomial proba-
bility inference.

1Strictly speaking, the sample version of (2), has the alternative expression

√
p̂(1− p̂)/n =

√
n−2

n

∑
i=1

(xi− x̄)2 =

√
n−1

n2 D

where D =
√
(n−1)−1 ∑

n
i=1(xi− x̄)2. So, by differing a factor

√
n−1

n , it is not quite the same, but very close

to n−1/2D, the sample standard deviation for x̄, as discussed in Subsection 1.3 for non-binary data.

2
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1.3 Statistical Treatment of Quantitative Responses

Quantitative responses (actual performances) are sometimes recorded in testing, such as
the response time to detection or identification. Sometimes, the performance metrics are
not categorical decisions, such as the closeness or distance to target. The recording of the
actual performance of an instrument can lead to several advantages, first to characterize the
instrument’s actual performance (not just simply pass or fail decision), and also to have data
which can be combined or compared with experiments in another time or with a different
instrument. Indeed, the 1998 National Research Council (NRC) report [13] recommended
this continuous paradigm in order to better take advantage of modern statistical methods.
Parametric model approach can provide alternative way of probability estimation with bet-
ter precision even with a smaller sample size, if a parametric model can be found to fit the
continuous data well and is deemed adequate.

When the test data, say x1,x2, . . . ,xn are non-binary responses from n tests, one may be
interested in the mean µ and standard deviation σ or even overall shape of the distribution
for the data. Sample mean is given by

x̄ =
1
n

n

∑
i=1

xi,

The sample standard deviation is given by

D =

√
1

n−1

n

∑
i=1

(xi− x̄)2.

Because var(x̄) = 1
nσ2 when the data x1,x2, . . . ,xn are independent and have the same dis-

tribution with mean µ and variance σ2, an estimate for var(x̄) is given by: 1
nD2.

One may be interested in the estimation of cumulative distribution function (CDF),
F(x) = P(X ≤ x), where X represents the population from which the test data come from.
A parametric model approach is given by

F̂(x) = Gx̄,D(x) (3)

where Gµ,σ is the CDF of some standard probability models. For example, Gµ,σ =Φ(x−µ

σ
)

if X follows a normal distribution N(µ,σ2), and Gµ,σ = Φ( log(x)−µ

σ
) if X follows the log-

normal distribution, log(X)∼N(µ,σ2). Here Φ is the CDF of standard normal distribution
as defined in (14). This topic will be followed up in Subsection 5.2, and in the rest of
Section 5, confidence intervals for both parametric methods and nonparametric approaches
using quantiles and order statistics will be discussed as well.

We should point out that even though this chapter’s focus is on characterizing the per-
formance of a single instrument, there are clear parallel approaches for comparing two or
more instruments, using the related confidence intervals or testing procedures, see [17]
where comparing instruments for both binary and continuous data are given.

3
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1.4 Use of Confidence Intervals in Decision Making

In practice, even when the main interest is to test hypotheses about a parameter µ such as
when a probability µ(= p) = µ0 for some pre-specified threshold µ0 is of interest, confi-
dence intervals provide not only a way of summarizing data evaluation but also a tool for
decision making as well. Given data vector X = (x1, . . . ,xn) and a confidence interval C(X)
based on it, one can test the null hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0

for every µ0 without any recalculation, by rejecting H0 if and only if µ0 /∈C(X), that is µ0
does not belong to C(X). Furthermore, given a (1−α)100% confidence interval for µ , the
test based on the confidence interval has significance level at most α .

The reason for reporting confidence intervals, perhaps more important in practice, is
that a confidence interval can differentiate between statistical significance and practical
significance. One can construct examples when µ is practically the same as µ0 and yet
H0 is rejected, simply because the sample size is large. Confidence intervals are proposed
as a representative approach for testing equivalence [11]. The equivalence test is widely
used in pharmaceutical problems and the confidence interval representation to equivalence
testing is useful in comparing a new instrument against a standard or reference instrument
or comparing multiple instruments [17].

In constructing confidence intervals, one not only requires that the stated nominal con-
fidence level is as close to the true coverage as possible, one would also like the confidence
interval to be as precise and as short as possible. The essential decision problem in product
performance testing is the following: deciding on the careful balance between accepting
a product which meets the performance target versus rejecting an inferior product with
adequate frequency. The way around this issue is by finding a decision rule using either
a lower confidence interval, say 80% confidence level for compliance, which will lead to
shorter interval so a more stringent criterion of acceptance. Also increase of sample size is
another way of improving the testing performance as the confidence intervals will be more
precise and less vague, and thus a more powerful test. The precision of confidence interval
is closely related to evaluation of the power of test, as discussed in [10].

4
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2. Confidence Intervals When Sample Size Is Large For Binary Responses

In this section, we discuss several commonly used confidence intervals or bounds for prob-
ability estimation based on binary performance data. They are all fairly easy to compute
and use, and have been recommended or used in different contexts in applications.

2.1 The Wald Interval and Bounds

The standard Wald confidence interval for p is defined as

p̂± z1−α/2
√

p̂(1− p̂)/n. (4)

where z1−c denotes the coverage factor, given by the 100(1− c)% upper quantile of the
standard normal distribution. Some commonly used values for z include

z.90 = 1.281552,z.95 = 1.644854,z.975 = 1.959964

which correspond to the 80%, 90% and 95% confidence intervals, respectively.
Sometimes, the continuity-corrected Wald interval is used, given by:

p̂− z1−α/2
√

p̂(1− p̂)/n− 1
2n
≤ p≤ p̂+ z1−α/2

√
p̂(1− p̂)/n+

1
2n

. (5)

However, the interval given by (5) is wider and thus more conservative than (4).

Example 1 Wald Intervals.
Suppose in a detection experiments we have n = 20,s = 17. p̂ = 18/20 = 0.85. The sam-
ple standard deviation for p̂ is

√
0.85× (1−0.85)/20 = 0.079. The standard 90% Wald

confidence interval is given by [0.85±1.645× .079]≈ [0.72,0.98]. Adding the continuity
correction factor 1/(2× 20) = 0.025 to the lower endpoint and subtracting it to the upper
endpoint, we obtain the corrected Wald interval: [.72− .025, .98+0.025]≈ [0.695,1.005].

Both (4) and (5) give the 100(1−α)% confidence interval for p and (5) is a signifi-
cant improvement over (4) when sample size n is moderate, but the continuity corrected
confidence interval is wider and more conservative. The Wald interval theory is based on
estimating the standard uncertainty (2) by substituting p̂ for p and approximate normality
of p̂ when n is large in Section 3.2. The Wald interval (4) is widely used because it is
easy to use: intervals with a different confidence level 1−α simply involves multiplying
a different coverage factor, i.e. z1−α/2, with the same estimated standard uncertainty, an
approach widely adopted in standard metrology practice such as ISO GUM.

Wald confidence bounds: The Wald 100(1−α)% upper confidence bound with con-
tinuity correction is given by

p : p≤ p̂+ z1−α

√
p̂(1− p̂)/n+1/(2n).

5
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The 100(1−α)% lower confidence bound with continuity correction is

p : p≥ p̂− z1−α

√
p̂(1− p̂)/n−1/(2n).

The standard Wald confidence bounds are defined without the continuity correction factor
1/(2n). Note that the critical factor z1−α is about 1.645 for α = 0.05 and 1.28 for α =
0.10. The lower and upper bounds form the bounds for the two-sided 100(1−2α)% Wald
confidence interval.

Example 2 Wald Confidence Bounds
Suppose in a detection experiment, we obtain n = 20,s = 17. We already have p̂ = 0.85,
and sample deviation for p̂ is 0.079 from Example 1. Since z0.90 = 1.28, we calculate
the 90% lower bound: p > 0.85−1.28×0.079≈ 0.749, and with continuity correction of
1/(2×20) = 0.025, the lower bound is 0.749−0.025 = 0.724. The 90% upper bound is:
p < 0.85+1.28×0.079≈ 0.951, and with continuity correction p < 0.85+1.28×0.079+
0.025≈ 0.976.

2.2 Sample Size Design

The requirements for confidence intervals are two-folds: not only that they should have
good probability coverage over many different experiments and applications, but also they
should be as accurate as possible. That is, too wide an interval estimate may be useless.
One way to achieve an interval estimate to acceptable level of accuracy is to increase the
sample size at the design of experiments stage (prior to data collection). One can also
do sequential experiments but they will not be discussed here. Discussion of sample size
impacts other confidence intervals as well but for simplicity we just focus on the Wald
intervals, and the sample size consideration impacts other interval estimates comparably.

Example 3 Sample Size Requirements.
If we know that p∗ = 0.1 and we need a precision δ < 0.1 for the 95% CI, the sample size
required is n > 1.962× .1× .9/0.12 = 35. On the other hand, if we set α = 0.1, the sample
size required is n ≥ 1.652× .1× .9/0.12 = 25. If p∗ = 0.85, the required sample size for
the 95% CI to be within p±δ is given by n≥ 1.962× .85× .15/0.12 = 49, while if we set
α = 0.1, the sample size required is: n≥ 1.652× .85× .15/0.12 = 35.

Since the uncertainty in (2) scales as 1/
√

n, in the experimental design stage it may
be proposed, if budget allows, to increase the sample size in order to achieve a desired
precision. Based on (4), to achieve a certain accuracy in the interval estimates, say we want
our (100(1−α)% confidence interval estimates of p to be within a limit δ , we just need to
require that

z1−α/2
√

p∗(1− p∗)/n≤ δ ,

6
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and this results in the formula for sample size

n≥ z2
1−α/2 p∗(1− p∗)/δ

2, (6)

where p∗ is an estimate or best guess of p.

2.3 The Wilson Interval and Bounds

Wilson interval. The Wilson interval (first discussed by Wilson 1927 [16]), has the form

p̃±
z1−α/2√

n

√
p̂(1− p̂)+ t2/4

1+ t
, (7)

where p̃ = (p̂+ t/2)/(1+ t), and t = z2
1−α/2/n.

In (7), p̃ can be considered a ”shrinkage” form of p̂, i.e. a weighted average between
p̂ and 1/2, and its standard deviation

√
p̂(1− p̂)+ t2/4/(1+ t) is a weighted and ”stabi-

lized” average form between p̂(1− p̂), and (1/2)∗(1/2) for Bin(1,1/2). where Bin(n,0.5)
denotes the Binomial model to be defined in Section 3.1. Instead of approximating (2) by
substituting the p with p̂ as in Wald intervals, the Wilson interval uses the theoretical stan-
dard deviation (2) and solves the endpoints: p0 as solutions to the quadratic equation

(p̂− p0)
2 = p0(1− p0)z2

1−α/2/n,

so Wilson intervals may improve Wald intervals in some situations and are sometimes
preferred.

Example 4 Wilson Intervals and Bounds.
Suppose in two experiments when have data n = 20,s = 2 and n = 20,s = 17, and p̂ =
2/20 = 0.1 and p̂ = 17/20 = .85. Note that z1−0.05/2 ≈ 1.96, and t = 1.962/20≈ 0.19, so
the Wilson point estimate p̃ = (0.1+ .19/2)/(1+ .19) = 0.16 and p̃ = (0.85+ .19/2)/(1+

.19) = 0.79. The 95% Wilson confidence intervals are: 0.16± 1.96√
20

√
0.1×(1−0.1)+.192/4

1+0.19 ≈

[0.04,0.28] and 0.79± 1.96√
20

√
0.85×(1−0.85)+.192/4

1+0.19 ≈ [0.66,0.93].
To obtain the 95% confidence lower bound and upper bound for p after observing s = 17,
we have t = 1.6452/20 = 0.1353, so p̃ = (0.85+ .135/2)/(1+ .135) = 0.808, the 90%
confidence interval:

0.808± 1.645√
20

√
0.85× (1−0.85)+ .1352/4

1+0.135
≈ [0.67,0.91],

which gives the lower bound 0.67 and upper bound 0.91.

Wilson Upper and Lower Bounds. The 100(1−α)% Wilson upper bound is:

p≤ p̃+
z1−α√

n

√
p̂(1− p̂)+ t2/4

1+ t

7
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and the 100(1−α)% Wilson lower bound is:

p≥ p̃− z1−α√
n

√
p̂(1− p̂)+ t2/4

1+ t
.

Again, note that the 100(1−α)% lower bound and upper bound correspond to the limits
of the 100(1−2α)% confidence interval.

Note that, one should be careful in calculating the Wilson interval or bound, as every
time α is changed, t = z2

1−α
/n should be updated as well as p̃ which depends on t.

2.4 Agresti-Coull Interval and Bounds

A simple alternative to the Wilson interval which is as easy to calculate as the Wald in-
terval is the Agresti-Coull interval: We simply replace in Wald interval (4) p̂ by P̃ =
(s+ z2

1−α/2/2)/(n+ z2
1−α/2), and since z.975 = 1.96 ≈ 2, and this is defined as p̃ = (s+

2)/(n+4). The recommended interval

p̃± z1−α/2
√

p̃(1− p̃)/ñ, (8)

where ñ = n+ z2
α or n+4, is called Agresti and Coull interval ([1], [2]).

The 100(1−α)% upper bound is:

p≤ p̃+ z1−α

√
p̃(1− p̃)/ñ,

and the 100(1−α)% lower bound is:

p≤ p̃− z1−α

√
p̃(1− p̃)/ñ.

Example 5 Agresti-Coull intervals.
Continue the two experiments when have data n = 20,s = 2 and n = 20,s = 17. We have,
at α = 0.05,zα/2 = 1.96 ≈ 2, point estimate p̃ = (2+ 2)/(20+ 4) = 0.17 and p̃ = (17+
2)/(20+4) = 0.79. The 95% Agresti-Coull confidence intervals for the two examples are
calculated as 0.17±

√
.17× .83/(20+4)≈ [0.02,0.32] and 0.79±

√
.79× .21/(20+4)≈

[0.63,0.95].

2.5 Poisson Adjustment For Rare Events

The Poisson model Pois(np) is a good approximation when the observed number of suc-
cesses S = k is very small relative to sample size n, see Section 3.3. When the observed
value S = k is very small, the Poisson adjustment procedure for 100(1−α)% confidence
interval for p is given by

1
2n

χ
2(α;2k)≤ p≤ 1

2n
χ

2(1−α/2;2k+2) (9)

8
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where χ2(α;m) is the upper quantile function of the chi-squared distribution with m degree
of freedom. Note that χ2(α;m) can easily be found through standard software packages or
existing statistics tables, such as qchisq function in R [14]. Table 1 lists select values for
the 5% and 95% quantiles for k = 1,2,3,4,5. The use of χ2 quantiles in (9) for Poisson
parameter is purely for computational convenience and is based on a relation (16).

k χ2(α/2;2k) χ2(1−α/2;2k+2)
1 0.1025866 9.487729
2 0.7107230 12.591587
3 1.6353829 15.507313
4 2.7326368 18.307038
5 3.9402991 21.026070

Table 1: Tables of Select Quantiles of χ2 Distribution For α = 0.1
.

Furthermore, when observed number of successes s is close to n, similar Poisson ad-
justment is recommended. One can apply the same adjustment by using n− s being small
relative to n and constructing an interval or bounds for 1− p and then reverting to get an
interval or bounds for p, as shown in the following example.

Example 6 Poisson Adjustment For Rare Events.
When we have data n = 20 and s = 2, the 90% confidence interval for p based on (9) and
Table 1 is given by

(0.7107230,12.591587)/(2×20)≈ (0.02,0.31).

For n = 20,s = 17, one can apply similar adjustment by working with n− s = 20−17 = 3,
which is our k value, and the confidence interval for (1− p) is given by

(1.6353829,15.507313)/40≈ (0.04,0.39)

and so the 90% confidence interval for p is given by (1− .3876,1−0.0409) = (0.61,0.96).
Since the 90% confidence lower and upper limits correspond to the 95% confidence lower
bounds and upper bounds, the latter are 0.61,0.96 respectively.

9
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3. Probabilistic Bases and Interpretations of Interval Estimation

In this section, we describe the probabilistic mechanisms that underpin the probabilistic
statements for confidence intervals and confidence bounds that are covered in Section 2.
The underlying data models such as binomial model and its normal or Poisson approxima-
tions when the sample size is large are discussed. The coverage probability of interval or
bound estimates should be evaluated together with the need for precision and accuracy in
order to provide a good basis for testing and decision making. In practice, considerations
of specific situations and some prior knowledge of the testing problem other than interval
estimation from testing data alone may also be important.

3.1 Binomial Model

Under most experimental testing conditions, the correct number of detection or identifi-
cation Sn out of n tests can be considered to follow the binomial model, Bin(n, p), with
probability given by

P(Sn = k|p) =
(

n
k

)
pk(1− p)n−k, (10)

where k takes any of the possible values from {0,1,2, . . . ,n} and p is the probability of
detection or identification (for use of binomial model in non repeated trials, see [9]). Based
on (10), the probability of Sn in an interval [a,b] where a,b are integers 0 ≤ a ≤ b ≤ n is
given by the sum

P(a≤ Sn ≤ b) =
b

∑
k=a

(
n
k

)
pk(1− p)n−k. (11)

A special case of the interval probability (11) is the cumulative distribution function
(CDF) F(L) defined by the probabilities with a = 0 and b = s varies from 0,1,2 through n,
as in

F(s) = P(Sn ≤ s) =
s

∑
k=0

(
n
k

)
pk(1− p)n−k. (12)

The binomial model has mean µ = np and standard deviation (std) σ =
√

np(1− p).

s 14 15 16 17 18 19 20
P(Sn = s) 0.000 0.002 0.013 0.060 0.189 0.377 0.358

F(s) = P(Sn ≤ s) 0.000 0.003 0.016 0.075 0.264 0.642 1.000

Table 2: Probability table of CDF Bin(20,0.95)
.

As an example, Table 2 shows probabilities of Bin(20,0.95) for select values L = 14
through 20. One can see the probability of this binomial distribution is concentrated around
20×0.95 = 19 and the spread is σ =

√
20× .95× (1− .95) = 0.9747≈ 1.

10
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Lineplot: Prob. of Bin(20, .1)

Approx: N(2, 1.34^2)
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Lineplot: Prob. of Bin(20, .8)
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Figure 1: Display of Binomial Probabilities and Normal Approximations.

For Bin(n, p) when n = 20 and two scenarios p = 0.1 (black line plot) and p = 0.8 (red line plot).
The dashed curves are approximating normal density curves and the dotted vertical lines represent

the normal probability approximations to the binomial probabilities.

3.2 Normal Approximation

The binomial distribution of S is approximated by the normal distribution N(µ,σ2) with
mean µ = np and standard deviation σ =

√
np(1− p), when n is large, and p is not too

close to 0 or 1, based on the Central Limit Theorem (Appendix A). That is, the interval

11
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probability (11) from the binomial distribution is approximated by:

P(a≤ Sn ≤ b)≈Φ(
b+0.5−µ

σ
)−Φ(

a−0.5−µ

σ
), (13)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal N(0,1),
and

Φ(y) =
∫ y

−∞

1√
2π

exp(−x2

2
)dx. (14)

Here 0.5 in (13) is introduced to correct for continuity as both a,b are integers and the left
side of (13) is defined as in (11) while the right hand side is defined in integral form as in
(14).

The normal approximation (13) says that as n is large, we can approximate a sum from
a discrete probability distribution (11) by the familiar normal distribution, which is much
simpler to handle.

Figure 1 illustrates the normal approximation and continuity correction for two mod-
els Bin(20,0.1) and Bin(20,0.8) where the line plots (vertical solid lines) denote the dis-
crete binomial probabilities at given s = 0,2, . . . ,20 and the dashed lines denote the ap-
proximating density curves of N(2,1.342),N(16,1.792) (where µ1 = 20× 0.1 = 2,σ1 =√

20×0.1× (1−0.1)≈ 1.34 and µ2 = 20×0.8= 16,σ2 =
√

20×0.8× (1−0.8)= 1.79).
The normal approximate probabilities at each point s using (13) are shown for both cases
(they are denoted by the dotted vertical lines, shifted slightly to right in order to highlight
the difference). It is seen that the accuracy of normal approximation is not as good when
p is close to the edge (0 or 1) as the binomial distribution is more skewed while when the
binomial distribution is more symmetric as p is away from 0 or 1 and the normal approxi-
mation improves.

3.3 Poisson Approximation

When p is close to 0 or 1, the normal approximation to the Binomial distribution is not very
accurate. Instead, the Poisson distribution Pois(µ) is a more accurate model where µ = np,
and n is the sample size. That is, when Sn follows Bin(n, p), the following approximation
holds

P(Sn = k)≈ µk

k!
e−µ , where µ = np, for k = 0,1, . . . ,n, (15)

where n is large and µ = np is assumed to be some fixed number.
The Poisson approximation Pois(µ) has mean expectation µ = np and variance µ = np.

So it is only close to the Bin(n, p) in its first two moments (which has mean µ = np and
variance np(1− p)) when p is close to 0. When p is very close to 1, one can consider
Poisson approximation to n− Sn, the total number of failures, in order to have a more
accurate model for Sn.

The CDF of Pois(µ) has the curious but convenient relation

P(Y ≤ k) = P(χ2
2k+2 ≥ 2µ), (16)

12
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s Binom Normal Poisson
0 0.12 0.13 0.14
1 0.39 0.35 0.41
2 0.68 0.64 0.68
3 0.87 0.87 0.86
4 0.96 0.97 0.95
5 0.99 0.99 0.98
6 1.00 1.00 0.99

Table 3: Approximation of CDF Bin(20,0.1) by N(µ−0.5,σ2) and Pois(λ ), Where µ =
λ = 20×0.1 = 2,σ2 = 20× .1× .9 = 1.8

.

where Y follows Pois(µ) and χ2
m is the standard χ2

m distribution with m degree of freedom.
(16) is used in constructing a confidence interval in Subsection 2.5.

As an example, Table 3 shows the comparison in CDFs of Bin(n, p) by normal approx-
imation N(µ,σ2) and the Poisson distribution Pois(µ) where µ = np,σ2 = np(1− p) and
n = 20, p = 0.1.

3.4 Asymptotic Coverage and Relation to Testing

Interval construction for p may be defined based on either using the exact probability (11),
see Section 4, or large sample approximation such as (13). The normality approximation
gives rise to a simple and easy to compute approximate procedure for confidence intervals.

If we choose a,b so that the right side of (13) is of probability (1−α) for some 0 <
α < 1, for example,

(b+0.5−µ)/σ = z1−α/2,(a−0.5−µ)/σ = zα/2,

where zc denotes the quantile function of standard normal such that∫ zc

−∞

1√
2π

exp(−x2

2
)dx = c, for 0 < c < 1,

and by symmetry of normal distribution, zc =−z1−c. Then, we can say that

P(np−0.5− z1−α/2
√

np(1− p)≤ Sn ≤ np+0.5+ z1−α/2
√

np(1− p))→ 1−α. (17)

Interval estimation for p can be defined based on (17), leading to Wald interval and Wilson
interval, previously presented in subsection 2.1 and subsection 2.3.

From Equation (17), a procedure for testing hypothesis H0 : p = p0 against the alter-
native Ha : p 6= p0 when the testing procedure based on S is: reject H0 when p0 does not
belong to the confidence intervals based on S. The test has significance level α , when the
(1−α) confidence interval is used as a testing procedure.

13
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A testing procedure for one-sided test of H0 : p≤ p0 vs Ha : p > p0 based on observed
data S is given by: reject H0 if p0 is less than the confidence lower bound of p. For testing
H0 : p≥ p0 vs Ha : p < p0, reject H0 if p0 is bigger than the confidence upper bound.

As an example, suppose we want to evaluate whether a testing system has 95% or
above probability of detection rate. This can be formulated as a hypothesis testing problem
H0 : p≥ 0.95 vs Ha : p< 0.95. That is, our goal is to establish and reject an inferior product
(to accept Ha : p < 0.95) if there is sufficient evidence to warrant it. We should expect to
observe an S which is closer to n and so in order to apply the Poisson adjustment procedure
(9), we consider data k = n− s which should follow Bin(n,1− p). the Poisson adjusted
interval for 1− p is given by

1
2n

χ
2(α;2k)≤ 1− p≤ 1

2n
χ

2(1−α/2;2k+2). (18)

Set α = 0.1, a test of H0 : p ≥ 0.95( or 1− p≤ 0.05) is given by: rejecting H0 if (1− p0)
if outside of the bound provided by (18), that is, if 1− p0 is less than the lower limit, or

χ
2(α;2k)> 2n(1− p0). (19)

Example 7 Relating Confidence Bound to Testing Decision.
For a testing experiment with n= 20, p0 = 0.95, we need χ2(α;2k)> 2×n×(1−0.95)= 2
from (19). From Table 1, k is required to be bigger or equal to 4 k = n− s ≥ 4, and so
s≤ 20−4 = 16 is the criterion for this experiment to reject H0 : p≥ 0.95 at the significance
level α = 0.05. That is, in other words, if we obtain s≥ 17 out of n = 20 tests, we cannot
reject p≥ (p0 = 0.95) while if s≤ 16, we conclude that p < p0(= 0.95).

From Example 7, the decision point of s = 17 out of n = 20 appears to be an interesting
decision point, as from Table 2, if p = 0.95 is true, there is only 0.016 chance that S ≤ 16
is observed! On the other hand, if one adopts this decision criterion, one also lives with
the consequence that whether we accept too many instruments which may not have met the
performance target. Indeed. if we calculate F(16) of Bin(20, p) as in Table 2 for other p
values, say p = 0.7,0.8, .9, we obtain F(16)≈ 0.89,0.59,0.13 so that we have probability
1−F(16): 0.11,0.41,0.87 of accepting p = 0.7,0.8,0.9 of meeting the performance target
of p≥ 0.95.
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4. Exact Interval and Bayesian Intervals

Confidence intervals and bounds as discussed in Section 2 are widely used and since they
are so easy to calculate and use, we recommend their use, except when the sample size
n is small. When the sample size n is small, these methods tend to give unreasonable
results. A wide class of methods based on the exact Binomial model of Subsection 3.1,
which can be put in the general Bayesian framework will be discussed in this section,
give more natural results and appealing alternatives. First is the classic Clopper-Pearson
interval or exact methods, which is discussed in Section 4.1. The rest of this Section deal
with the general Bayesian formulation which represents another class of inference tools
which, not only allow us to address estimation or inference of probability Pd or PID directly
(instead of being based on sampling theory of estimators), but also allow incorporation of
prior information and different sources of information on the parameter of interest into the
current testing problem.

4.1 Clopper-Pearson Interval

When the sample size n is small to moderate, the Binomial model Bin(n, p) plays a more
prominent role in relating data to unknown parameter, both as a forward model for data S
and as a basis for inference on the parameter p.

Clopper-Pearson ”Exact” Interval. The Clopper-Pearson [7] ”exact” confidence in-
terval for p, based on inverting equal-tailed binomial test of H0 : p = p0 based on the
Binomial model Bin(n, p) for data S.

The exact interval [p1(S), p2(S)] have endpoints that are the solutions in p0 to the equa-
tions

n

∑
k=s

(
n
k

)
pk

0(1− p0)
n−k = α/2

and
s

∑
k=0

(
n
k

)
pk

0(1− p0)
n−k = α/2

except that the lower bound is 0 when S = 0 and the upper bound is 1 when S = n, where s
is the observed value of S. Note that the interval so constructed satisfies

P(p1(S)≤ p≤ p2(S)) = 1−α (20)

for every p : 0 < p < 1, where the above coverage probability is evaluated under the model
S∼ Bin(n, p).

From Subsection 5.3, the lower endpoint p1(s) is the α/2 quantile of a Beta distribution
with parameters s and n− s+ 1, or gα/2,s,n−s+1 in notation defined in (32), and the upper
endpoint P2(s) is the (1−α/2) quantile of a Beta distribution with parameters s+ 1 and
n− s, or g1−α/2,s,n−s+1.

In words, the confidence statement of (20) says that if the same experiments (with
same sample size n) were repeated many times, resulting in different s’s, from which the
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confidence limits are computed each time, the fraction of times that the confidence interval
contains the true p is exactly (1−α), or bigger.

Example 8 Clopper-Pearson Exact Interval.
Suppose we have in two instances of observed data: n = 20,s = 2 and n =
20,s = 17. The 95% ”exact” Clopper-Pearson interval in the first case, is given by
q0.025,2,20−2+1 ≈ 0.012 and q0.975,2+1,20−2 ≈ 0.317 and so is [0.012,0.317]. And in the
second case, endpoints are given by q0.025,17,20−17+1 ≈ 0.621 and q0.975,17+1,20−17 ≈
0.968, and so is [0.621,0.968]. Similarly, the 90% confidence interval is given by
[q0.05,17+1,20−17,q0.95,17+1,20−17)≈ [0.656,0.929], and the 80% confidence interval is given
by [q0.10,17+1,20−17,q0.90,17+1,20−17) ≈ [0.696,0.910]. Note that the 95% lower and upper
bounds correspond to the limits of the 90% confidence interval, that is, 0.656, 0.929. And
the 90% lower and upper bounds correspond to the limits of the 80% confidence interval,
that is, 0.696, 0.910.

4.2 Bayesian Inference

Bayesian inference provides a direct approach to estimation and inference of probability of
detection, which embodies uncertainty as well as prior information in the form of posterior
distribution, on which testing and decision based on heterogeneous sources of information
can be made in a straightforward way. The only obstacle, in addition to some calcula-
tions involved, is the specification of prior information on the probability of interest. The
prior information may be based on historical and earlier experiences, subjective opinion, or
some ”uninformative” priors as the last resort. A simple recipe for implementing these pro-
cedures is provided through the Beta prior family and calculations as well as comparison
to earlier approaches are given in this section.

Data model: With limited resources, the n test should be distributed over many possible
scenarios and so the test results X1, . . . Xn can have different probabilities of detection, that
is, P(Xi = 1) = pi,P(Xi = 0) = 1− pi, and if one can assume that (X1, p1), . . . ,(Xn, pn) are
independent and exchangeable, and pi’s are from some distribution π(p),0 < p < 1, then
the sum S = ∑

n
i=1, the total number of successes in n tests, obeys the model:

P(S = s) =
(

n
s

)∫ 1

0
ps(1− p)n−s

π(p)d p,s = 0,1, . . . ,n (21)

where π(·) is some probability density function on the interval [0,1], and is called the prior
distribution.

Bayesian inference: For now, what can be said about p based on observed data S = s
which comes from the model (21). It turns out that by a simple application of the Bayes
Theorem in probability theory [4], the distribution of p after observing data S = s can be
given explicitly:

P(p|s) = ps(1− p)n−sπ(p)∫ 1
0 ps(1− p)n−sπ(p)d p

,0 < p < 1 (22)
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which is called the posterior distribution, containing all inferential information on p.
Likelihood function: After observing data S = s, all information about the data (n,s)

is contained in the likelihood function

L(p|s) =
(

n
s

)
ps(1− p)n−s

∝ ps(1− p)n−s,0 < p < 1, (23)

that is, the same binomial probability is treated as a function of p as the probability p varies
from 0 to 1 continuously.

So the posterior distribution (22) has the verbal form:

Posterior =
Likelihood×Prior

P(data)

where P(data) is integration or sum of
∫ 1

0 Likelihood× Prior d p as it is simply the nor-
malizing constant that makes the numerator integrate to 1, so any constant in front of the
likelihood or the prior will be canceled out anyway and does not need to be specified ex-
actly.

Beta prior family: A particular class of model for π(p) is the conjugate prior: the
Beta distribution Be(γ,β ) with density

b(p;γ,β ) ∝ pγ−1(1− p)β−1,0 < p < 1,γ > 0,β > 0.

b(p;γ,β ) =
pγ−1(1− p)β−1

B(γ,β )
,0 < p < 1,

where B(γ,β ) =
∫ 1

0 pγ−1(1− p)β−1d p = Γ(γ)Γ(β )/Γ(γ + β ). Beta prior models have a
rich shape and can be used to model most prior information and subjective opinion, see [4]
for a very clear and intuitive discussion.

It is both important and convenient because it leads to a very convenient posterior dis-
tribution for p, given by Be(s+ γ,n− s+β ), which has density:

b(p;γ + s,n− s+β ) =
pγ+s−1(1− p)n−s+β−1

B(γ + s,n− s+β )
,0 < p < 1 (24)

where
B(γ + s,n− s+β ) = Γ(γ + s)Γ(n− s+β )/Γ(n+ γ +β ).

4.3 Bayesian Posterior Summaries

Bayesian inference says that everything we need to know about p is contained in the pos-
terior distribution (22). The Bayesian principle is very similar to the likelihood principle,
especially when the prior distribution is very vague or non-informative. In practice, we can
in principle reporting the whole posterior distribution whenever possible; though, there may
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be occasions when one may be also interested in some simple summaries of the posterior
distribution, even just for comparison with the classical approaches.

The Beta posterior distribution (24) has mean

E[p|s] = s+ γ

n+ γ +β
= p̃b,

and variance

var[p|s] = (s+ γ)(n− s+β )

(n+ γ +β )2(n+ γ +β +1)
=

1
n+ γ +β +1

p̃b(1− p̃b).

The posterior mode is given by:

mode[p|s] = s+ γ−1
n+ γ +β −2

.

One can also calculate the posterior median, which is given by the 50% quantile of the
Beta distribution Be(s+γ,n−s+β ), or g0.5;s+γ,n−s+β (refer to (32)). These estimators can
be compared to the other estimators of p discussed in Section 2.

4.4 Prior Choice and Incorporating External Information

Specification of π(p) is a crucial issue in Bayesian analysis. Not only one needs to specify
a proper prior π(p) so that the posterior distribution is proper, one would like to incorporate
any other information into the prior information as much as possible, while also one does
not want the prior information to overwhelm the test data, so we will focus on a few obvious
choices which have least impact on the likelihood.

One such prior is the uniform distribution on [0,1], which corresponds to the Beta
distribution with γ = β = 1, i.e. Be(1,1). The resulting posterior distribution of p is the
Beta distribution Be(s+1,n− s+1), which has the same form as the likelihood function,

P(p|s) ∝ ps(1− p)n−s

and so we also call the approach with uniform prior the Bayesian likelihood method. This
will be our default method we will use in the rest of this section as it gives exactly the result
based on what data alone can provide, and all other choices of prior will modify or enhance
this likelihood information.

Another often recommended noninformative prior choice is the Jeffreys’ prior, corre-
sponding to Be(1

2 ,
1
2), or

π(p) ∝ 1/
√

p(1− p),

which puts more weight toward the endpoints at p = 0 and p = 1.
To have a posterior mean that approximates the Agresti-Coull estimator p̃=(s+z2

1−α/2)/(n+
z2

1−α/2), which is approximately (s+2)/(n+4) for α = 0.05, the corresponding prior dis-
tribution is Be(2,2), that is,

π(p) ∝ p(1− p)

18
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for which, for lack of name, we call it the Agresti prior. Note that the corresponding
posterior distribution has mode is (s+1)/(n+2) = n

n+2
s
n +

2
n+2

1
2 , which is a shrinkage of

MLE s
n and 1

2 .
The three priors, Be(1,1),Be(2,2),Be(1

2 ,
1
2) represent the three types of symmetric prior

information on p: putting uniform weight across the whole range of [0,1], putting more
weight at the center p = 0.5, and putting more weight equally toward the end at p = 0 and
p = 1, see Figure 2. After observing binomial data n,s, the corresponding posteriors for
using any of the three priors are Be(s+1,n− s+1),Be(s+2,n− s+2),Be(s+0.5,n− s+
0.5) respectively, based on (24). A summary of formulas for Bayesian inference under the
three priors is given in Table 4.

Prior choice Data Likelihood Posterior (up to a constant)
Uniform: π(p) = 1 n,s ps(1− p)n−s ps(1− p)n−s

Jeffreys: 1/
√

p(1− p) n,s ps(1− p)n−s ps−0.5(1− p)n−s−0.5

Agresti: p(1− p) n,s ps(1− p)n−s ps+1(1− p)n−s+1

Table 4: Bayesian Inference of Binomial Data Under Select Prior Choices

Predictive model and model assessment: Under the uniform prior, the corresponding
data model (21) is simply the uniform distribution on {0,1,2, . . . ,n}, that is s takes on any
of the n+ 1 possible values with probability 1/(n+ 1) (a fact apparently recognized by
Thomas Bayes himself in his original 1764 paper [15]. In general, under prior Be(γ,β ),
the data model (21) is

P(S = s) =
(

n
s

)
B(γ,β )−1B(γ + s,β +n− s) (25)

which is known as the Beta-Binomial distribution. One may use (25) to assess the choice
of prior parameters γ,β for given data s. In particular, choosing the three priors implies,
in addition to that the uniform prior implies equal prior chance of observing s among the
possible values {0,1,2, . . . ,n}, the Agresti prior implies that there is a higher chance of
observing s in the middle, say n/2 or (n+1)/2 than of values at the end near 0 or n, while
the Jeffreys prior implies that there is a much higher prior chance of obtaining s in the edge
near 0 or 1 than in the middle.

Since interest in estimation of probability of detection (or identification) is focused
near the high end, between (0.5,1] while the probability of false alarms is focused in the
lower end [0,0.3), we think the Jeffreys prior gives undue weight near the two edges, and
so among the three priors, we favor the uniform prior first, the Agresti prior next and the
Jeffreys prior the least. In the following subsections, we will focus on using the uniform
prior as our default choice to illustrate the Bayesian methodology, but we still use the
Jeffreys and Agresti priors for purpose of comparison and for sensitivity analysis of prior
choice in Bayesian analysis.

We should point out that none of the mentioned prior choices should be the automatic
choice for a given problem, except maybe the likelihood method when it results in a proper
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Figure 2: Display of Three Beta Distributions.

Uniform Prior (Be(1,1)) (black, solid line), Agresti Prior: Be(2,2) (red, dashed line), Jeffreys Prior
Be(0.5,0.5) (green, dotted line).

posterior distribution. Several broad approaches to specifying prior information are sug-
gested by Berger ([3], Chapter 3) and we concur with his recommendation for active use
of subjective specification of prior base on substantial knowledge or experience, whenever
possible, and encourage use of empirical, semi-empirical (maximum entropy) methods to
utilize partial information from historical or other sources of information. The use of non-
informative priors should be a last resort, but choosing a particular noninformative prior
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does provide a Bayesian alternative tool for providing comparison or support to interval
estimation results from any of the classical approaches such as those from Section 2.

4.5 Bayesian Credible Intervals

Since the Bayesian posterior distribution contains all the information about p, there is no
need for a separate theory for constructing Bayesian intervals or Bayesian testing theory.
However, there are various summaries of Bayesian posterior distribution which mimic and
can be compared with the classical interval procedures. One example is the equal-tailed
Bayesian credible interval, which is provided by

[gα/2;s+γ,n−s+β ,g1−α/2;s+γ,n−s+β ]

where gα/2;s+γ,n−s+β ,g1−α/2;s+γ,n−s+β are the 100(α/2)% and 100(1−α/2)% quantile
of the posterior Beta distribution Be(s + γ,n− s + β ). This interval has the intuitively
more understandable interpretation that p is contained in the given interval with probability
(1−α) for any given data n,s. To distinguish it from the previous classical confidence
intervals, this Bayesian interval is called credible interval. Note that for credible interval,
the probability is defined on the space of p while previously with the classical confidence
intervals the (coverage) probability is on the observed data space!

In addition to the two-sided equal-tailed Bayesian credible intervals, there are, of course,
other means of defining a credible interval for p that has, under the posterior distribution,
probability (1−α). For example, any such asymmetric tailed interval

[gα/c;s+γ,n−s+β ,g1−α∗(c−1)/c;s+γ,n−s+β ]

for any c > 1 defines an 100(1−α)% credible interval. One can search over different
c’s to find the shortest interval, and this gives rise to an easy approximation to the highest
posterior density (HPD) interval, which is, the most precise and powerful interval from
Bayesian analysis.

In particular, it is easy to define and compute one-sided 100(1−α)% Bayesian inter-
vals, or lower Bayesian Bound (LB), upper Bayesian bound (UB). It is given by

LBα(n,s) = gα,s+γ,n−s+β ,

and
UBα(n,s) = g1−α,s+γ,n−s+β .

Note that [LB, UB] is the same as the two-sided equal-tailed 100(1− 2α)% Bayesian
interval. For example, the 95% lower and upper Bayesian bounds are given by the 90%
limits of the two-sided equal-tailed Bayesian interval.

A few comments are in order: as seen from Example 9: clearly, the Jeffreys prior
Be(0.5,0.5) pulls both point estimate and the interval estimate toward either of the two
ends (either p = 0 or p = 1 depending on which side s is), while the Agresti prior Be(2,2)
pulls estimates toward to the middle (p = 0.5). The uniform prior Be(1,1) gives interval
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Data: n=20, s=2
Posterior 1: likelihood (data)
Posterior 2: with Agresti prior
Posterior 3: with Jefferys prior

Figure 3: Illustration of Bayesian Inference: Data n = 20,s = 2 and Uses of Agresti and
Jeffreys priors Are Compared to the Likelihood.

and point estimates between these two, and may be considered the least unbiased by use
of prior information, even though the median estimates from the Jeffrey prior are closest to
the classical unbiased estimates in Example 2.
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Data: n=20, s=17
Posterior 1: likelihood (data)
Posterior 2: with Agresti prior
Posterior 3: with Jeffreys prior

Figure 4: Illustration of Bayesian Inference: Data n = 20,s = 17 and Uses of Agresti and
Jeffreys priors Are Compared to the Likelihood.

4.6 Comparison Among the Exact and Bayesian Intervals

The Clopper-Pearson confidence interval can be written as

CICP = [gα/2;s,n−s+1,g1−α/2;s+1,n−s],
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Example 9 Bayesian and Likelihood Intervals.
Assume that we obtained binomial data in two instances, n = 20,s = 2 and n = 20,s = 17.
Using each of the Beta prior distribution, Be(1,1),Be(2,2),Be(0.5,0.5), we can report the
the corresponding posteriors Be(2+ 1,20− 2+ 1),Be(2+ 2,20− 2+ 2),Be(2+ 0.5,20−
2+ 0.5) for the first case, shown in Figure 3 and Be(17+ 1,20− 17+ 1),Be(17+ 2,20−
17+ 2),Be(17+ 0.5,20− 17+ 0.5) in the second case, shown in Figure 4. Evaluation of
Bayesian posterior distribution under different prior choices, or sensitivity analysis, allows
us to see the impact of prior choice on the Bayesian inference. The 95% Bayesian credible
intervals (with posterior median) for both cases are given in Table 5, where the left three
columns with lower limit (LL), median (Med), upper limit (UL) are for the first case n =
20,s = 2 and the next three columns are for n = 20,s = 17. The three rows correspond to
the choice of three priors.

n = 20 s=2 n=20 s=17
Prior Posterior Posterior

LL Med UL LL Med UL
Be(1,1) Be(3, 19) 0.030 0.125 0.304 Be(18, 4) 0.637 0.828 0.946
Be(2,2) Be(4, 20) 0.050 0.157 0.336 Be(19, 5) 0.612 0.800 0.925
Be(.5, .5) Be(2.5, 18.5) 0.021 0.107 0.284 Be(17.5, 3.5) 0.651 0.844 0.956

Table 5: 95% Bayesian Credible Intervals [LL,UL] (with median value Med) Under Three
Prior Choices for Observed Data n = 20,s = 2 (columns 2,3,4) and n = 20,s = 17 (columns
5,6,7)

where gc,γ,β is the 100c% quantile of the Beta distribution Be(γ,β ) for any 0 < c < 1 (See
(32)). This is very close to the Bayesian credible interval with the Jeffreys prior

CIJ = [gα/2;s+0.5,n−s+0.5,g1−α/2;s+0.5,n−s+0.5].

It follows that CICP always contain CIJ , and CICP is considered too conservative and CIJ
corrects it to some extent, a so-called Mid-P Clopper-Pearson is also proposed to replace
CICP by Brown, Cai, DasGupta ([6], p.115). Figure 5 illustrates the comparison of interval
estimates based on the Clopper-Pearson, Jeffreys, and likelihood methods for all possible
data s = 0,1,2, . . . ,20 when n = 20.

Among the Bayesian interval estimates, in addition to the Jeffreys interval, the interval
based on the Agresti prior Be(2,2), given by

CIA = [gα/2;s+2,n−s+2,g1−α/2;s+2,n−s+2]

pulls estimates toward the middle p = 0.5, which may be too much. The Bayesian interval
based on the uniform prior Be(1,1), which we may call the Bayesian likelihood interval, as
it is exactly the same as that given by the Binomial likelihood,

CIA = [gα/2;s+1,n−s+1,g1−α/2;s+1,n−s+1].

24

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2119



J J J J
J

J
J

J
J

J
J

J
J

J
J

J
J

J

J

J

J

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

p

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m

J

J

J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J J J J

c c c c c c
c

c
c

c
c

c
c

c
c

c
c

c
c

c

c

c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c c c c c c

L L L L L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L

L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L L L L L

J
c
L
m

Jeffreys CI
Clopper−Pearson CI
Likelihood CI
Median estimate

Figure 5: Comparison of Interval Estimates Using Clopper-Pearson Exact Method, Jeffreys
Credible Intervals and Bayesian Likelihood Intervals.

Including median estimate from the Jeffrey prior, with n = 20 given at every potential data value
s = 0,1,2,3, . . . ,20 labeled in x-axis.

Figure 5 illustrates the comparison of Bayesian credible intervals for Jeffreys, uniform, and
Agresti priors for all possible data s = 0,1,2,3, . . . ,40 when n = 40.

It is observed that in general, when data s is in the middle range further away from 0
or n, all intervals are very close to each other. Jeffreys prior pulls interval estimates too
aggressively toward the edge p = 0 or 1 when s is close to 0 or n, and it is recommended
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Figure 6: Comparison of Bayesian Credible Intervals: with Jeffreys, Uniform, and Agresti
Priors

With n = 40, given at every potential data s = 0,1,2, . . . ,40 labeled in x-axis. The median estimate
is computed based on the posterior using the Jeffreys prior.

that some adjustment on Jeffreys interval needed when p is very close to 0 and 1 (Section
4.1 of Brown, Cai, DasGupta[6]). On the other hand, the Agresti prior pulls estimates more
to p = 0.5 when s is close to either end of 0 or n and so it is too biased toward p = 0.5.
Thus, we recommend the use of the Bayesian credible interval with uniform prior, or what
we call the Bayesian likelihood interval as our first choice, as it gives the most unbiased
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results in the sense of least influence from the use of a prior distribution.
Based on the calculation method from Subsection 5.3, Table 6, Table 7, Table 8 list the

95% limits of the Bayesian likelihood intervals for select sample size n = 7 up to 30. We
note that Brown, Cai and DasGupta [6] already provided two useful tables for 95% limits
of the Jeffreys intervals for sample size n from 7 through 30.

27

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2119



5. Statistical Analysis of Quantitative Data

When collection of actual performance data is feasible and is planned ahead in a testing
experiments, more statistical tools become available for estimation of probability of de-
tection or identification, in addition to other useful purposes. Both parametric model and
nonparametric approaches will be discussed in this section. For the purpose of probability
estimation, the nonparametric approach is comparable to the binary data analysis discussed
in previous sections, in terms of sample size requirements and accuracy of confidence in-
tervals, the parametric approach is new and is based on the assumption that a parametric
model can be found and be fitted to the quantitative performance data. The parametric prob-
ability estimation approach is known to be more accurate and requires less data provided
that the underlying parametric model is adequate.

5.1 Confidence Intervals for Parameters

Confidence Intervals For the Mean.
Given test data x1,x2, . . . .xn as we discussed in Subsection 1.3, the sample mean x̄ provides
a reasonable estimate for the true mean because of the ”central limit theorem” (Subsec-
tion 5.3) when the sample size n is large enough. Thus, a 100(1−α)% confidence interval
for µ is given by

µ ∈ [x̄± z1−α/2
D√

n
]. (26)

This interval is valid in the sense of having the right coverage probability of 1−α only for
large n. The 95% confidence lower bound (LB) and upper bound (UB) are given by

µ ≥ x̄− z1−α

D√
n
,

and
µ ≤ x̄+ z1−α

D√
n
.

Note the difference in the critical factor z1−α/2 from the two-sided confidence interval to
z1−α for the one-sided bounds. So the lower bound and upper bound [LB,UB] are the same
as the 100(1−2α)% limits of the two-sided confidence interval.

Confidence Interval for the Mean: Unknown Variance.
Since D is only an estimate of the true σ , the standard deviation of the population, the
interval estimation (26) can be improved to take into account this additional uncertainty.
When the normal distribution can be assumed, that is, the underlying data x1,x2, . . . ,xn can
be considered as coming from a normal distribution N(µ,σ2), an exact two-sided 100(1−
α)% confidence interval for the mean µ can be defined, it is given by:

µ ∈ [x̄± t1−α/2,n−1
D√

n
]. (27)
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where t1−α/2,n denotes the upper (1−α/2)th quantile of the Student t− distribution with
n− 1 degree of freedom. The 100(1−α)% one-sided lower confidence bound (LB) and
upper confidence bound (UB) for µ are given by:

µ ≥ x̄− t1−α,n−1
D√

n
,

and
µ ≤ x̄+ t1−α,n−1

D√
n
.

Confidence Interval for Standard Deviation.
The sample standard deviation D has a simple distribution if the underlying data come from
the normal population N(µ,σ2). One can show that (n− 1)D2 follows σ2χ2

n−1, where
χ2

n−1 is the Chi-squared distribution with (n−1) degree of freedom. So the 100(1−α)%
confidence interval for σ2 is given by

(n−1)D2

χ2(1−α/2,n−1)
≤ σ

2 ≤ (n−1)D2

χ2(α/2,n−1)
,

and the 100(1−α)% confidence interval for σ is given by√
(n−1)D2

χ2(1−α/2,n−1)
≤ σ ≤

√
(n−1)D2

χ2(α/2,n−1)
,

where χ2(c;n−1) is the c upper quantile function of the chi-squared distribution with n−1
degree of freedom.

Example 10 Confidence Intervals For Parameters.
Suppose we have an experiment with test results of 15 measurements of the time to de-
tection which was measured in seconds: 91, 95, 107, 105, 102, 85, 88, 92, 101, 99, 102,
85, 114, 91, 95. This gives n = 15, x̄ = 96.8(s),D = 8.44. With t.95,14 = 1.761, the 90%
confidence interval for the mean based on (27) is given by

96.8±1.761× 8.44√
15

= [92.96,100.64].

Note that t.95,14 is only slightly larger than z0.95 = 1.645 so the t−based interval is slightly
wider than the normal based interval (26). Find χ2(.05,14) = 6.57,χ2(.95,14) = 23.65,
the 90% confidence interval for σ is given by

[

√
14×8.442

23.65
,

√
14×8.442

6.57
] = [6.49,12.32].
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5.2 Parametric Approach to Probability Estimation

Given continuous data x1,x2, . . . ,xn, in addition to sample mean x̄ and sample standard
deviation D, one may also be interested in characterizing the distributional properties in-
cluding the probability of detection. Say, if the measured data is the time to detect, and
there is a certain time limit, say x0 so that only test data that fall below x0 is declared a
success, then the goal is the estimation of the probability P(X ≤ x) or the cumulative distri-
bution function (CDF) at x = x0, i.e. F(x), as defined in Subsection 1.3. So if X is a normal
population N(µ,σ2), then

F(x) = Φ(
x−µ

σ
)

where Φ is the CDF of the standard normal. A sample estimate of F(x0) is then given by

F̂(x0) = Φ(
x0− x̄

D
). (28)

Of course, Φ should be replaced by some other function if it is deemed that the underlying
data may fit some other parametric probability models. For example, if log-normal model
is considered, log(X)∼ N(µ,σ2), then

F̂(x0) = Φ(
log(x0)− x̄L

DL
),

where x̄L and DL are the sample mean and sample standard deviation on the log-transformed
data (log(x1), . . . , log(xn)).

Example 11 Parametric Probability Estimation.
Going back to data in Example 10, Figure 7 shows the parametric fit (red, smooth line)
of CDF using (28) with x̄ = 96.8(s),D = 8.44(s) for data in Example 10 and it can be
compared to the empirical CDF (29) (the black, stair lines). To illustrate how uncertainty
can be assigned to the parametric probability estimate, consider a particular scenario when
one is only interested in test results where the time to detect is less than 90 seconds, that
is, x0 = 90(s). Then an estimate of the probability of detection F(x0) is given by Φ((90−
96.8)/8.44) = 0.21. The 90% confidence interval using the parametric bootstrap method
with sample size 1000 is given by [0.089,0.358] from one simulation exercise. Note that
since there are exactly three data points below 90, so if we use methods from Section 2
or Section 4.5, with n = 15,s = 3, we can obtain similar point and interval estimates. For
example, from Table 9, the credible interval is [0.090,0.417].
Figure 7 also shows the 90% confidence interval limits at every potential point of interest
(green, upper and lower dotted lines) using the same Monte Carlo samples on x̄ and D. The
median value from the Bootstrap samples is also plotted (green, dotted middle line) and is
seen to be close to the parametric fitted line (red, solid smooth line).
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Figure 7: Display of Empirical CDF of Test Data in Example 10 and the Normal Probability
Model-based Fit.

Empirical CDF is denoted by the stair-like (broken) lines (in black), and the normal probability fit
is denoted by solid smooth line (in red), along with the 90% confidence interval limits from one
Monte Carlo simulation run (green, dotted lower and upper lines). The middle dotted green line

denotes the median value from the Monte Carlo samples.

This parametric fit can be compared with the empirical CDF function

Fn(x) =
1
n

n

∑
i=1

1{xi≤x}, (29)
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which is simply the fraction of number of observed successes #{xi ≤ x}/n. Note that the
parametric fit (28) is a smooth function of x while Fn(x) is a step function with discontinuity
at discrete data points.

To obtain uncertainty estimation for F̂(x) of (28), one can just need to propagate the
uncertainty of x̄ and D through the function Φ in some way. For example, one approach
is through the parametric bootstrap method, or the Monte Carlo method, in which one can

generate many realizations of x̄ and D through x̄+D×N(0,1)/
√

n) and
√
(n−1)D2/χ2

n−1

where N(0,1) and χ2
n−1 are the standard normal and χ2 random variable with (n−1) degree

of freedom, and plug in F̂(x) of (28) to obtain many realizations of it, or Monte Carlo
samples. An 100(1−α)% confidence interval for F(x0) is given the 100α/2% and 100(1−
α/2)% sample quantiles of the Monte Carlo F̂(x0) samples.

5.3 Sample Quantiles and Related Confidence Intervals

Given n measured data X1,X2, . . . ,Xn which are independent and have the same distribution
(cdf) F(x). If X1 is continuous or F(x) is strictly increasing, the equation

F(x) = p,0 < p < 1,

has a unique solution, say x = ξp, which we call the (population, or theoretical) 100p%th
quantile. Thus, ξ 1

2
is the median of the distribution.

When X1 is discrete, ξp is defined by

P(X < ξp)≤ p≤ P(X ≤ ξp).

This may define ξp uniquely or ξp lies in an interval. In general, one denote ξp = F−1(x),
where

F−1(x) = inf{x : F(x)> p}.

One can define the rth order statistics X(r) as the rth smallest value, or that the or-
der statistics X(1),X(2), . . . ,X(n) are the sorted values, increasing from smallest to largest
among the n measurements X1,X2, . . . ,Xn. Note that when F is continuous, F(ξp) = p and
F(X(1)),F(X(2)), . . . ,F(X(n)) have the same distribution as ordered statistics from the uni-
form distribution U(0,1), so it follows that the random interval [X(r),X(t)] for r < t covers
ξp with a probability which depends or r, t,n, and p, but not on F(x), thus allowing the
construction of distribution-free confidence intervals for ξp. It can be shown that

P(X(r) ≤ ξp ≤ X(t)) = Ip(r,n− r+1)− Ip(t,n− t +1)

=
t−1

∑
k=r

(
n
k

)
pk(1− p)n−k,

(30)

Where Ip(γ,β ) is the incomplete Beta function (32), while (30) is simply the Binomial
interval probability (11) of Section 3.1. The probability (30) is also known to be still valid
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as an lower bound for P(X(r) ≤ ξp ≤ X(t)) and upper bound for P(X(r) < ξp < X(t))even
when F is discrete.

So if we choose r, and t from the Binomial probability distribution S∼ Bin(n, p) so that
(30) is equal to or bigger than (1−α), for example,

P(S < r)< α/2,P(S≥ t) = 1−P(S≤ t−1)< α/2, (31)

we obtain a confidence interval for ξp, given by [X(r),X(t)], which covers ξp with a proba-
bility at least (1−α).

Alternatively, if we choose to approximate (30) by normal approximation as in (13), we
can choose

(r−0.5−np)
σ

= zα/2,
(t−1+0.5−np)

σ
= z1−α/2,

where σ =
√

np(1− p), we get

r = np+0.5− z1−α/2σ ,

if it is an integer or the integer part of the obtained value, and

t = np+0.5+ z1−α/2σ ,

if it is integer, or the smallest integer that exceeds the obtained.
A special case of quantile is ξ 1

2
, the median. So (30) provides a way to compute confi-

dence intervals for median with p = 1
2 . The quarter quantiles ξ 1

4
and ξ 3

4
are also of interest

as together they define the interquartile range ξ 3
4
−ξ 1

4
, an alternative measure of the spread

of a distribution.
Point estimation of median from a sample of data X1,X2, . . . ,Xn is given by the order

statistics X((n−1)/2+1) if n is an odd number, or (X(n/2)+X(n/2+1))/2 if n is an even number.
The estimate of ξp in general is defined by the order statistics X([np]) where [np] denotes the
integer or the integer part of np.
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Example 12 Confidence Intervals For Quantiles
Using the setup of Example 10, we have n = 15 and the ordered data are:

85(1),85(2),88(3),91(4),91(5),92(6),95(7),95(8),99(9),101(10),102(11),

102(12),105(13),107(14),114(15).

and the sample median is given by X(8) which is 95. To find the 1−α confidence interval
with α = 0.10 for median ξ 1

2
, note that

p =
1
2
,σ =

√
15× 1

2
(1− 1

2
) = 1.94,np = 15× 1

2
= 7.5.

So the normal approximation gives 7.5+ 0.5± 1.645× 1.93 = 8± 3.17, which gives an
interval [X(4),X(12)], that is, [91,102].

Appendix A: Technical Notes and Calculation Details

A Note on Beta Distribution and Calculation

The Beta distribution with parameters γ > 0 and β > 0, denoted by Be(γ,β ) has density
function

b(p;γ,β ) =
pγ−1(1− p)β−1

B(γ,β )
,0 < p < 1

where

B(γ,β ) =
∫ 1

0
pγ−1(1− p)β−1d p = Γ(γ)Γ(β )/Γ(γ +β ).

The 100(1−α)% quantile gα;γ,β of a Beta distribution is defined through the incomplete
Beta function:

Ig(γ,β ) =
∫ g

0

pγ−1(1− p)β−1

B(γ,β )
d p = 1−α (32)

and is available from most standard software packages. For example, in the open source
statistics package R [14], which contains a set of functions related to the Beta distribution,
including one qbeta for computing the quantile of Beta distribution, with inputs including
the α for probability, and shape parameters γ,β , all of which can be specified as vectors to
make the computation fast when many applications are called for in practice.

There is also an interesting connection between incomplete Beta function and the cu-
mulative distribution function of the binomial distribution [8],

n

∑
s

(
n
k

)
pk(1− p)n−k = Ip(s,n− s+1), (33)
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which can be proved by integration by parts and thus
s

∑
0

(
n
k

)
pk(1− p)n−k = 1− Ip(s+1,n− s). (34)

This justifies the calculation of Clopper-Pearson endpoints in Equation (20).

A Note on the Central Limit Theorem

A simple version of the famous Central Limit Theorem is the following. Let X1,X2, . . . ,Xn
be random variables which are independent and identically distributed with mean µ = EX1
and σ2 = var(X1) = E(X1−µ)2. Then,

√
n(

1
n

n

∑
i=1

Xi−µ)
d−→ N(0,σ2), (35)

where the limit d−→ denotes convergence in distribution. That is, the cumulative distribution
function (CDF) of X̄ = 1

n ∑
n
i=1 Xi converges to the CDF of N(µ, σ2

n ) at every point,

P(
√

n(X̄−µ)/σ ≤ z)→
∫ z

−∞

1√
2π

e−
x2
2 dx,

for every real number −∞ < z < ∞.

Appendix B: Bayesian Intervals Computation and Tables

Computing Bayesian Intervals for Binomial Data

Computing Bayesian interval for binomial proportion involves simply plugging in the num-
bers for the probability credible level, α , and the shape parameters γ + s,β +n− s into the
quantile function, with the 100(1−α)% lower limit and upper limit being given by

[LL,UL] = [qbeta(α/2,γ + s,β +n− s),qbeta(1−α/2,γ + s,β +n− s)

where γ,β are the parameters in the Beta prior, and n,s are the observed data.

Tables for Bayesian Credible Intervals

For illustration and convenience of practical workers, we provide three tables, Table 6, Ta-
ble 7, Table 8 which give the 95% limits of the Bayesian likelihood intervals (corresponding
to Beta prior γ = 1,β = 1 or the uniform prior) for binomial data with sample size from
n = 7 through 30.

In addition, we also provide the 90% limits of the Bayesian likelihood intervals (corre-
sponding to uniform prior) for binomial data with sample size from n = 7 through 30, in
Table 9, Table 10, Table 11, and the 80% limits of the Bayesian likelihood intervals with
sample size from n = 7 through 30 in Table 12, Table 13, Table 14.
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s n= 7 n= 8 n= 9 n= 10 n= 11 n= 12
LL UL LL UL LL UL LL UL LL UL LL UL

0 0.003 0.369 0.003 0.336 0.003 0.308 0.002 0.285 0.002 0.265 0.002 0.247
1 0.032 0.527 0.028 0.482 0.025 0.445 0.023 0.413 0.021 0.385 0.019 0.360
2 0.085 0.651 0.075 0.600 0.067 0.556 0.060 0.518 0.055 0.484 0.050 0.454
3 0.157 0.755 0.137 0.701 0.122 0.652 0.109 0.610 0.099 0.572 0.091 0.538
4 0.245 0.843 0.212 0.788 0.187 0.738 0.167 0.692 0.152 0.651 0.139 0.614
5 0.349 0.915 0.299 0.863 0.262 0.813 0.234 0.766 0.211 0.723 0.192 0.684
6 0.473 0.968 0.400 0.925 0.348 0.878 0.308 0.833 0.277 0.789 0.251 0.749
7 0.631 0.997 0.518 0.972 0.444 0.933 0.390 0.891 0.349 0.848 0.316 0.808
8 0.664 0.997 0.555 0.975 0.482 0.940 0.428 0.901 0.386 0.861
9 0.692 0.997 0.587 0.977 0.516 0.945 0.462 0.909
10 0.715 0.998 0.615 0.979 0.546 0.950
11 0.735 0.998 0.640 0.981
12 0.753 0.998
s n= 13 n= 14 n= 15 n= 16 n= 17 n= 18

LL UL LL UL LL UL LL UL LL UL LL UL
0 0.002 0.232 0.002 0.218 0.002 0.206 0.001 0.195 0.001 0.185 0.001 0.176
1 0.018 0.339 0.017 0.319 0.016 0.302 0.015 0.287 0.014 0.273 0.013 0.260
2 0.047 0.428 0.043 0.405 0.040 0.383 0.038 0.364 0.036 0.347 0.034 0.331
3 0.084 0.508 0.078 0.481 0.073 0.456 0.068 0.434 0.064 0.414 0.061 0.396
4 0.128 0.581 0.118 0.551 0.110 0.524 0.103 0.499 0.097 0.476 0.091 0.456
5 0.177 0.649 0.163 0.616 0.152 0.587 0.142 0.560 0.133 0.535 0.126 0.512
6 0.230 0.711 0.213 0.677 0.198 0.646 0.184 0.617 0.173 0.590 0.163 0.566
7 0.289 0.770 0.266 0.734 0.247 0.701 0.230 0.671 0.215 0.643 0.203 0.616
8 0.351 0.823 0.323 0.787 0.299 0.753 0.278 0.722 0.260 0.692 0.244 0.665
9 0.419 0.872 0.384 0.837 0.354 0.802 0.329 0.770 0.308 0.740 0.289 0.711
10 0.492 0.916 0.449 0.882 0.413 0.848 0.383 0.816 0.357 0.785 0.335 0.756
11 0.572 0.953 0.519 0.922 0.476 0.890 0.440 0.858 0.410 0.827 0.384 0.797
12 0.661 0.982 0.595 0.957 0.544 0.927 0.501 0.897 0.465 0.867 0.434 0.837
13 0.768 0.998 0.681 0.983 0.617 0.960 0.566 0.932 0.524 0.903 0.488 0.874
14 0.782 0.998 0.698 0.984 0.636 0.962 0.586 0.936 0.544 0.909
15 0.794 0.998 0.713 0.985 0.653 0.964 0.604 0.939
16 0.805 0.999 0.727 0.986 0.669 0.966
17 0.815 0.999 0.740 0.987
18 0.824 0.999

Table 6: 95% Limits [LL,UL] for Bayesian Intervals for Binomial Data with Sample Size
n = 7 Through 18

.
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s n= 19 n= 20 n= 21 n= 22 n= 23 n= 24
LL UL LL UL LL UL LL UL LL UL LL UL

0 0.001 0.168 0.001 0.161 0.001 0.154 0.001 0.148 0.001 0.142 0.001 0.137
1 0.012 0.249 0.012 0.238 0.011 0.228 0.011 0.219 0.010 0.211 0.010 0.204
2 0.032 0.317 0.030 0.304 0.029 0.292 0.028 0.280 0.027 0.270 0.025 0.260
3 0.057 0.379 0.054 0.363 0.052 0.349 0.050 0.336 0.047 0.324 0.045 0.312
4 0.087 0.437 0.082 0.419 0.078 0.403 0.075 0.388 0.071 0.374 0.068 0.361
5 0.119 0.491 0.113 0.472 0.107 0.454 0.102 0.437 0.098 0.422 0.094 0.407
6 0.154 0.543 0.146 0.522 0.139 0.502 0.132 0.484 0.126 0.467 0.121 0.451
7 0.191 0.592 0.181 0.570 0.172 0.549 0.164 0.529 0.156 0.511 0.149 0.494
8 0.231 0.639 0.218 0.616 0.207 0.593 0.197 0.573 0.188 0.553 0.180 0.535
9 0.272 0.685 0.257 0.660 0.244 0.636 0.232 0.615 0.221 0.594 0.211 0.575
10 0.315 0.728 0.298 0.702 0.282 0.678 0.268 0.655 0.256 0.634 0.244 0.613
11 0.361 0.769 0.340 0.743 0.322 0.718 0.306 0.694 0.291 0.672 0.278 0.651
12 0.408 0.809 0.384 0.782 0.364 0.756 0.345 0.732 0.328 0.709 0.313 0.687
13 0.457 0.846 0.430 0.819 0.407 0.793 0.385 0.768 0.366 0.744 0.349 0.722
14 0.509 0.881 0.478 0.854 0.451 0.828 0.427 0.803 0.406 0.779 0.387 0.756
15 0.563 0.913 0.528 0.887 0.498 0.861 0.471 0.836 0.447 0.812 0.425 0.789
16 0.621 0.943 0.581 0.918 0.546 0.893 0.516 0.868 0.489 0.844 0.465 0.820
17 0.683 0.968 0.637 0.946 0.597 0.922 0.563 0.898 0.533 0.874 0.506 0.851
18 0.751 0.988 0.696 0.970 0.651 0.948 0.612 0.925 0.578 0.902 0.549 0.879
19 0.832 0.999 0.762 0.988 0.708 0.971 0.664 0.950 0.626 0.929 0.593 0.906
20 0.839 0.999 0.772 0.989 0.720 0.972 0.676 0.953 0.639 0.932
21 0.846 0.999 0.781 0.989 0.730 0.973 0.688 0.955
22 0.852 0.999 0.789 0.990 0.740 0.975
23 0.858 0.999 0.796 0.990
24 0.863 0.999

Table 7: 95% Limits [LL,UL] for Bayesian Intervals for Binomial Data with Sample Size
n = 19 Through 24

.
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s n= 25 n= 26 n= 27 n= 28 n= 29 n= 30
LL UL LL UL LL UL LL UL LL UL LL UL

0 0.001 0.132 0.001 0.128 0.001 0.123 0.001 0.119 0.001 0.116 0.001 0.112
1 0.009 0.196 0.009 0.190 0.009 0.183 0.008 0.178 0.008 0.172 0.008 0.167
2 0.024 0.251 0.024 0.243 0.023 0.235 0.022 0.228 0.021 0.221 0.020 0.214
3 0.044 0.302 0.042 0.292 0.040 0.282 0.039 0.274 0.038 0.265 0.036 0.258
4 0.066 0.349 0.063 0.337 0.061 0.327 0.058 0.317 0.056 0.307 0.055 0.298
5 0.090 0.394 0.086 0.381 0.083 0.369 0.080 0.358 0.077 0.347 0.075 0.337
6 0.116 0.436 0.111 0.423 0.107 0.410 0.103 0.397 0.099 0.386 0.096 0.375
7 0.143 0.478 0.138 0.463 0.132 0.449 0.127 0.435 0.123 0.423 0.119 0.411
8 0.172 0.518 0.165 0.502 0.159 0.487 0.153 0.472 0.147 0.459 0.142 0.446
9 0.202 0.557 0.194 0.540 0.186 0.524 0.179 0.508 0.173 0.494 0.167 0.480
10 0.234 0.594 0.224 0.576 0.215 0.559 0.207 0.543 0.199 0.528 0.192 0.514
11 0.266 0.631 0.255 0.612 0.245 0.594 0.235 0.577 0.227 0.561 0.218 0.546
12 0.299 0.666 0.287 0.647 0.275 0.628 0.264 0.611 0.255 0.594 0.245 0.578
13 0.334 0.701 0.319 0.681 0.306 0.661 0.294 0.643 0.283 0.626 0.273 0.609
14 0.369 0.734 0.353 0.713 0.339 0.694 0.325 0.675 0.313 0.657 0.302 0.640
15 0.406 0.766 0.388 0.745 0.372 0.725 0.357 0.706 0.343 0.687 0.331 0.669
16 0.443 0.798 0.424 0.776 0.406 0.755 0.389 0.736 0.374 0.717 0.360 0.698
17 0.482 0.828 0.460 0.806 0.441 0.785 0.423 0.765 0.406 0.745 0.391 0.727
18 0.522 0.857 0.498 0.835 0.476 0.814 0.457 0.793 0.439 0.773 0.422 0.755
19 0.564 0.884 0.537 0.862 0.513 0.841 0.492 0.821 0.472 0.801 0.454 0.782
20 0.606 0.910 0.577 0.889 0.551 0.868 0.528 0.847 0.506 0.827 0.486 0.808
21 0.651 0.934 0.619 0.914 0.590 0.893 0.565 0.873 0.541 0.853 0.520 0.833
22 0.698 0.956 0.663 0.937 0.631 0.917 0.603 0.897 0.577 0.877 0.554 0.858
23 0.749 0.976 0.708 0.958 0.673 0.939 0.642 0.920 0.614 0.901 0.589 0.881
24 0.804 0.991 0.757 0.976 0.718 0.960 0.683 0.942 0.653 0.923 0.625 0.904
25 0.868 0.999 0.810 0.991 0.765 0.977 0.726 0.961 0.693 0.944 0.663 0.925
26 0.872 0.999 0.817 0.991 0.772 0.978 0.735 0.962 0.702 0.945
27 0.877 0.999 0.822 0.992 0.779 0.979 0.742 0.964
28 0.881 0.999 0.828 0.992 0.786 0.980
29 0.884 0.999 0.833 0.992
30 0.888 0.999

Table 8: 95% Limits [LL,UL] for Bayesian Intervals for Binomial Data with Sample Size
n = 25 Through 30

.

40

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2119



s n= 7 n= 8 n= 9 n= 10 n= 11 n= 12
0 0.006 0.312 0.006 0.283 0.005 0.259 0.005 0.238 0.004 0.221 0.004 0.206
1 0.046 0.471 0.041 0.429 0.037 0.394 0.033 0.364 0.030 0.339 0.028 0.316
2 0.111 0.600 0.098 0.550 0.087 0.507 0.079 0.470 0.072 0.438 0.066 0.410
3 0.193 0.711 0.169 0.655 0.150 0.607 0.135 0.564 0.123 0.527 0.113 0.495
4 0.289 0.807 0.251 0.749 0.222 0.696 0.200 0.650 0.181 0.609 0.166 0.573
5 0.400 0.889 0.345 0.831 0.304 0.778 0.271 0.729 0.245 0.685 0.224 0.645
6 0.529 0.954 0.450 0.902 0.393 0.850 0.350 0.800 0.315 0.755 0.287 0.713
7 0.688 0.994 0.571 0.959 0.493 0.913 0.436 0.865 0.391 0.819 0.355 0.776
8 0.717 0.994 0.606 0.963 0.530 0.921 0.473 0.877 0.427 0.834
9 0.741 0.995 0.636 0.967 0.562 0.928 0.505 0.887

10 0.762 0.995 0.661 0.970 0.590 0.934
11 0.779 0.996 0.684 0.972
12 0.794 0.996

s n= 13 n= 14 n= 15 n= 16 n= 17 n= 18
0 0.004 0.193 0.003 0.181 0.003 0.171 0.003 0.162 0.003 0.153 0.003 0.146
1 0.026 0.297 0.024 0.279 0.023 0.264 0.021 0.250 0.020 0.238 0.019 0.226
2 0.061 0.385 0.057 0.363 0.053 0.344 0.050 0.326 0.047 0.310 0.044 0.296
3 0.104 0.466 0.097 0.440 0.090 0.417 0.085 0.396 0.080 0.377 0.075 0.359
4 0.153 0.540 0.142 0.511 0.132 0.484 0.124 0.461 0.116 0.439 0.110 0.419
5 0.206 0.610 0.191 0.577 0.178 0.548 0.166 0.522 0.156 0.498 0.147 0.476
6 0.264 0.675 0.244 0.640 0.227 0.609 0.212 0.580 0.199 0.554 0.188 0.530
7 0.325 0.736 0.300 0.700 0.279 0.667 0.260 0.636 0.244 0.608 0.230 0.582
8 0.390 0.794 0.360 0.756 0.333 0.721 0.311 0.689 0.291 0.659 0.274 0.632
9 0.460 0.847 0.423 0.809 0.391 0.773 0.364 0.740 0.341 0.709 0.320 0.680

10 0.534 0.896 0.489 0.858 0.452 0.822 0.420 0.788 0.392 0.756 0.368 0.726
11 0.615 0.939 0.560 0.903 0.516 0.868 0.478 0.834 0.446 0.801 0.418 0.770
12 0.703 0.974 0.637 0.943 0.583 0.910 0.539 0.876 0.502 0.844 0.470 0.812
13 0.807 0.996 0.721 0.976 0.656 0.947 0.604 0.915 0.561 0.884 0.524 0.853
14 0.819 0.997 0.736 0.977 0.674 0.950 0.623 0.920 0.581 0.890
15 0.829 0.997 0.750 0.979 0.690 0.953 0.641 0.925
16 0.838 0.997 0.762 0.980 0.704 0.956
17 0.847 0.997 0.774 0.981
18 0.854 0.997

Table 9: 90% Limits [LL,UL] for Bayesian Intervals with Sample Size n=7 Through 18.
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s n= 19 n= 20 n= 21 n= 22 n= 23 n= 24
0 0.003 0.139 0.002 0.133 0.002 0.127 0.002 0.122 0.002 0.117 0.002 0.113
1 0.018 0.216 0.017 0.207 0.016 0.198 0.016 0.190 0.015 0.183 0.014 0.176
2 0.042 0.283 0.040 0.271 0.038 0.259 0.037 0.249 0.035 0.240 0.034 0.231
3 0.071 0.344 0.068 0.329 0.065 0.316 0.062 0.304 0.059 0.292 0.057 0.282
4 0.104 0.401 0.099 0.384 0.094 0.369 0.090 0.355 0.086 0.342 0.082 0.330
5 0.140 0.456 0.132 0.437 0.126 0.420 0.120 0.404 0.115 0.389 0.110 0.375
6 0.177 0.508 0.168 0.487 0.160 0.468 0.152 0.451 0.146 0.435 0.139 0.420
7 0.217 0.558 0.206 0.536 0.196 0.515 0.186 0.496 0.178 0.479 0.170 0.462
8 0.259 0.606 0.245 0.583 0.233 0.561 0.222 0.540 0.212 0.521 0.202 0.504
9 0.302 0.653 0.286 0.628 0.271 0.605 0.258 0.583 0.246 0.563 0.236 0.544

10 0.347 0.698 0.328 0.672 0.311 0.647 0.296 0.625 0.282 0.603 0.270 0.583
11 0.394 0.741 0.372 0.714 0.353 0.689 0.335 0.665 0.319 0.642 0.305 0.621
12 0.442 0.783 0.417 0.755 0.395 0.729 0.375 0.704 0.358 0.681 0.341 0.659
13 0.492 0.823 0.464 0.794 0.439 0.767 0.417 0.742 0.397 0.718 0.379 0.695
14 0.544 0.860 0.513 0.832 0.485 0.804 0.460 0.778 0.437 0.754 0.417 0.730
15 0.599 0.896 0.563 0.868 0.532 0.840 0.504 0.814 0.479 0.788 0.456 0.764
16 0.656 0.929 0.616 0.901 0.580 0.874 0.549 0.848 0.521 0.822 0.496 0.798
17 0.717 0.958 0.671 0.932 0.631 0.906 0.596 0.880 0.565 0.854 0.538 0.830
18 0.784 0.982 0.729 0.960 0.684 0.935 0.645 0.910 0.611 0.885 0.580 0.861
19 0.861 0.997 0.793 0.983 0.741 0.962 0.696 0.938 0.658 0.914 0.625 0.890
20 0.867 0.998 0.802 0.984 0.751 0.963 0.708 0.941 0.670 0.918
21 0.873 0.998 0.810 0.984 0.760 0.965 0.718 0.943
22 0.878 0.998 0.817 0.985 0.769 0.966
23 0.883 0.998 0.824 0.986
24 0.887 0.998

Table 10: 90% Limits [LL,UL] for Bayesian Intervals with Sample Size n=19 Through 24.
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s n= 25 n= 26 n= 27 n= 28 n= 29 n= 30
0 0.002 0.109 0.002 0.105 0.002 0.101 0.002 0.098 0.002 0.095 0.002 0.092
1 0.014 0.170 0.013 0.164 0.013 0.159 0.012 0.153 0.012 0.149 0.012 0.144
2 0.032 0.223 0.031 0.215 0.030 0.208 0.029 0.202 0.028 0.195 0.027 0.189
3 0.054 0.272 0.052 0.263 0.050 0.254 0.049 0.246 0.047 0.239 0.045 0.232
4 0.079 0.318 0.076 0.308 0.073 0.298 0.070 0.288 0.068 0.280 0.066 0.271
5 0.106 0.363 0.101 0.351 0.098 0.339 0.094 0.329 0.091 0.319 0.088 0.310
6 0.134 0.405 0.129 0.392 0.124 0.380 0.119 0.368 0.115 0.357 0.111 0.347
7 0.163 0.447 0.157 0.432 0.151 0.419 0.145 0.406 0.140 0.394 0.135 0.383
8 0.194 0.487 0.186 0.471 0.179 0.457 0.172 0.443 0.166 0.430 0.161 0.418
9 0.226 0.526 0.217 0.509 0.208 0.494 0.200 0.479 0.193 0.465 0.187 0.452

10 0.258 0.564 0.248 0.547 0.238 0.530 0.229 0.514 0.221 0.499 0.213 0.485
11 0.292 0.602 0.280 0.583 0.269 0.565 0.259 0.549 0.250 0.533 0.241 0.518
12 0.327 0.638 0.313 0.618 0.301 0.600 0.289 0.583 0.279 0.566 0.269 0.550
13 0.362 0.673 0.347 0.653 0.333 0.634 0.320 0.616 0.308 0.598 0.297 0.582
14 0.398 0.708 0.382 0.687 0.366 0.667 0.352 0.648 0.339 0.630 0.327 0.613
15 0.436 0.742 0.417 0.720 0.400 0.699 0.384 0.680 0.370 0.661 0.357 0.643
16 0.474 0.774 0.453 0.752 0.435 0.731 0.417 0.711 0.402 0.692 0.387 0.673
17 0.513 0.806 0.491 0.783 0.470 0.762 0.451 0.741 0.434 0.721 0.418 0.703
18 0.553 0.837 0.529 0.814 0.506 0.792 0.486 0.771 0.467 0.750 0.450 0.731
19 0.595 0.866 0.568 0.843 0.543 0.821 0.521 0.800 0.501 0.779 0.482 0.759
20 0.637 0.894 0.608 0.871 0.581 0.849 0.557 0.828 0.535 0.807 0.515 0.787
21 0.682 0.921 0.649 0.899 0.620 0.876 0.594 0.855 0.570 0.834 0.548 0.813
22 0.728 0.946 0.692 0.924 0.661 0.902 0.632 0.881 0.606 0.860 0.582 0.839
23 0.777 0.968 0.737 0.948 0.702 0.927 0.671 0.906 0.643 0.885 0.617 0.865
24 0.830 0.986 0.785 0.969 0.746 0.950 0.712 0.930 0.681 0.909 0.653 0.889
25 0.891 0.998 0.836 0.987 0.792 0.970 0.754 0.951 0.720 0.932 0.690 0.912
26 0.895 0.998 0.841 0.987 0.798 0.971 0.761 0.953 0.729 0.934
27 0.899 0.998 0.847 0.988 0.805 0.972 0.768 0.955
28 0.902 0.998 0.851 0.988 0.811 0.973
29 0.905 0.998 0.856 0.988
30 0.908 0.998

Table 11: 90% Limits [LL,UL] for Bayesian Intervals with Sample Size n=25 Through 30.
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s n= 7 n= 8 n= 9 n= 10 n= 11 n= 12
0 0.013 0.250 0.012 0.226 0.010 0.206 0.010 0.189 0.009 0.175 0.008 0.162
1 0.069 0.406 0.061 0.368 0.055 0.337 0.049 0.310 0.045 0.287 0.042 0.268
2 0.147 0.538 0.129 0.490 0.116 0.450 0.105 0.415 0.096 0.386 0.088 0.360
3 0.240 0.655 0.210 0.599 0.188 0.552 0.169 0.511 0.154 0.475 0.142 0.444
4 0.345 0.760 0.301 0.699 0.267 0.646 0.241 0.599 0.219 0.559 0.201 0.523
5 0.462 0.853 0.401 0.790 0.354 0.733 0.318 0.682 0.288 0.638 0.264 0.598
6 0.594 0.931 0.510 0.871 0.448 0.812 0.401 0.759 0.362 0.712 0.331 0.669
7 0.750 0.987 0.632 0.939 0.550 0.884 0.489 0.831 0.441 0.781 0.402 0.736
8 0.774 0.988 0.663 0.945 0.585 0.895 0.525 0.846 0.477 0.799
9 0.794 0.990 0.690 0.951 0.614 0.904 0.556 0.858

10 0.811 0.990 0.713 0.955 0.640 0.912
11 0.825 0.991 0.732 0.958
12 0.838 0.992

s n= 13 n= 14 n= 15 n= 16 n= 17 n= 18
0 0.007 0.152 0.007 0.142 0.007 0.134 0.006 0.127 0.006 0.120 0.006 0.114
1 0.039 0.251 0.036 0.236 0.034 0.222 0.032 0.210 0.030 0.199 0.028 0.190
2 0.081 0.337 0.076 0.317 0.071 0.300 0.067 0.284 0.063 0.269 0.059 0.257
3 0.131 0.417 0.122 0.393 0.114 0.371 0.107 0.352 0.101 0.334 0.095 0.319
4 0.185 0.492 0.172 0.464 0.161 0.439 0.151 0.416 0.142 0.396 0.134 0.378
5 0.243 0.563 0.226 0.532 0.210 0.504 0.197 0.478 0.185 0.455 0.175 0.434
6 0.305 0.631 0.282 0.596 0.263 0.565 0.246 0.537 0.231 0.512 0.218 0.489
7 0.369 0.695 0.342 0.658 0.318 0.625 0.297 0.594 0.279 0.567 0.263 0.541
8 0.437 0.757 0.404 0.718 0.375 0.682 0.350 0.650 0.329 0.620 0.310 0.592
9 0.508 0.815 0.468 0.774 0.435 0.737 0.406 0.703 0.380 0.671 0.358 0.642

10 0.583 0.869 0.536 0.828 0.496 0.790 0.463 0.754 0.433 0.721 0.408 0.690
11 0.663 0.919 0.607 0.878 0.561 0.839 0.522 0.803 0.488 0.769 0.459 0.737
12 0.749 0.961 0.683 0.924 0.629 0.886 0.584 0.849 0.545 0.815 0.511 0.782
13 0.848 0.993 0.764 0.964 0.700 0.929 0.648 0.893 0.604 0.858 0.566 0.825
14 0.858 0.993 0.778 0.966 0.716 0.933 0.666 0.899 0.622 0.866
15 0.866 0.993 0.790 0.968 0.731 0.937 0.681 0.905
16 0.873 0.994 0.801 0.970 0.743 0.941
17 0.880 0.994 0.810 0.972
18 0.886 0.994

Table 12: 80% Equal-tailed Bayesian Intervals For n = 7 Through 18
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s n= 19 n= 20 n= 21 n= 22 n= 23 n= 24
0 0.005 0.109 0.005 0.104 0.005 0.099 0.005 0.095 0.004 0.091 0.004 0.088
1 0.027 0.181 0.026 0.173 0.024 0.166 0.023 0.159 0.022 0.153 0.021 0.147
2 0.056 0.245 0.054 0.234 0.051 0.224 0.049 0.215 0.047 0.207 0.045 0.199
3 0.090 0.304 0.086 0.291 0.082 0.279 0.078 0.268 0.075 0.258 0.072 0.248
4 0.127 0.361 0.121 0.345 0.115 0.331 0.110 0.318 0.105 0.306 0.101 0.295
5 0.166 0.415 0.158 0.397 0.150 0.381 0.143 0.366 0.137 0.352 0.131 0.340
6 0.207 0.467 0.196 0.448 0.187 0.430 0.178 0.413 0.170 0.398 0.163 0.383
7 0.249 0.518 0.236 0.497 0.225 0.477 0.214 0.459 0.205 0.442 0.196 0.426
8 0.293 0.567 0.278 0.544 0.264 0.523 0.252 0.503 0.241 0.484 0.230 0.467
9 0.338 0.615 0.321 0.590 0.305 0.568 0.290 0.546 0.277 0.526 0.265 0.508

10 0.385 0.662 0.364 0.636 0.346 0.611 0.330 0.589 0.315 0.567 0.301 0.548
11 0.433 0.707 0.410 0.679 0.389 0.654 0.370 0.630 0.353 0.608 0.338 0.587
12 0.482 0.751 0.456 0.722 0.432 0.695 0.411 0.670 0.392 0.647 0.375 0.625
13 0.533 0.793 0.503 0.764 0.477 0.736 0.454 0.710 0.433 0.685 0.413 0.662
14 0.585 0.834 0.552 0.804 0.523 0.775 0.497 0.748 0.474 0.723 0.452 0.699
15 0.639 0.873 0.603 0.842 0.570 0.813 0.541 0.786 0.516 0.759 0.492 0.735
16 0.696 0.910 0.655 0.879 0.619 0.850 0.587 0.822 0.558 0.795 0.533 0.770
17 0.755 0.944 0.709 0.914 0.669 0.885 0.634 0.857 0.602 0.830 0.574 0.804
18 0.819 0.973 0.766 0.946 0.721 0.918 0.682 0.890 0.648 0.863 0.617 0.837
19 0.891 0.995 0.827 0.974 0.776 0.949 0.732 0.922 0.694 0.895 0.660 0.869
20 0.896 0.995 0.834 0.976 0.785 0.951 0.742 0.925 0.705 0.899
21 0.901 0.995 0.841 0.977 0.793 0.953 0.752 0.928
22 0.905 0.995 0.847 0.978 0.801 0.955
23 0.909 0.996 0.853 0.979
24 0.912 0.996

Table 13: 80% Equal-tailed Bayesian Intervals For n = 19 Through 24
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s n= 25 n= 26 n= 27 n= 28 n= 29 n= 30
0 0.004 0.085 0.004 0.082 0.004 0.079 0.004 0.076 0.004 0.074 0.003 0.072
1 0.021 0.142 0.020 0.137 0.019 0.132 0.018 0.128 0.018 0.124 0.017 0.120
2 0.043 0.192 0.042 0.185 0.040 0.179 0.039 0.173 0.037 0.168 0.036 0.163
3 0.069 0.239 0.066 0.231 0.064 0.223 0.062 0.216 0.059 0.209 0.057 0.203
4 0.097 0.284 0.093 0.275 0.089 0.265 0.086 0.257 0.083 0.249 0.081 0.241
5 0.126 0.328 0.121 0.317 0.117 0.306 0.112 0.297 0.109 0.287 0.105 0.279
6 0.157 0.370 0.151 0.358 0.145 0.346 0.140 0.335 0.135 0.325 0.130 0.315
7 0.188 0.411 0.181 0.397 0.174 0.385 0.168 0.372 0.162 0.361 0.157 0.350
8 0.221 0.451 0.212 0.436 0.204 0.422 0.197 0.409 0.190 0.397 0.183 0.385
9 0.254 0.491 0.244 0.475 0.235 0.459 0.226 0.445 0.218 0.432 0.211 0.419

10 0.289 0.529 0.277 0.512 0.267 0.496 0.257 0.481 0.248 0.466 0.239 0.453
11 0.324 0.567 0.311 0.549 0.299 0.532 0.288 0.515 0.277 0.500 0.268 0.486
12 0.359 0.604 0.345 0.585 0.331 0.567 0.319 0.550 0.308 0.533 0.297 0.518
13 0.396 0.641 0.380 0.620 0.365 0.601 0.351 0.583 0.338 0.566 0.327 0.550
14 0.433 0.676 0.415 0.655 0.399 0.635 0.384 0.616 0.370 0.599 0.357 0.582
15 0.471 0.711 0.451 0.689 0.433 0.669 0.417 0.649 0.401 0.630 0.387 0.613
16 0.509 0.746 0.488 0.723 0.468 0.701 0.450 0.681 0.434 0.662 0.418 0.643
17 0.549 0.779 0.525 0.756 0.504 0.733 0.485 0.712 0.467 0.692 0.450 0.673
18 0.589 0.812 0.564 0.788 0.541 0.765 0.519 0.743 0.500 0.723 0.482 0.703
19 0.630 0.843 0.603 0.819 0.578 0.796 0.555 0.774 0.534 0.752 0.514 0.732
20 0.672 0.874 0.642 0.849 0.615 0.826 0.591 0.803 0.568 0.782 0.547 0.761
21 0.716 0.903 0.683 0.879 0.654 0.855 0.628 0.832 0.603 0.810 0.581 0.789
22 0.761 0.931 0.725 0.907 0.694 0.883 0.665 0.860 0.639 0.838 0.615 0.817
23 0.808 0.957 0.769 0.934 0.735 0.911 0.703 0.888 0.675 0.865 0.650 0.843
24 0.858 0.979 0.815 0.958 0.777 0.936 0.743 0.914 0.713 0.891 0.685 0.870
25 0.915 0.996 0.863 0.980 0.821 0.960 0.784 0.938 0.751 0.917 0.721 0.895
26 0.918 0.996 0.868 0.981 0.827 0.961 0.791 0.941 0.759 0.919
27 0.921 0.996 0.872 0.982 0.832 0.963 0.797 0.943
28 0.924 0.996 0.876 0.982 0.837 0.964
29 0.926 0.996 0.880 0.983
30 0.928 0.997

Table 14: 80% Equal-tailed Bayesian Intervals For n = 25 Through 30

46

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2119


	Introduction
	Estimating Probability of Detection or Identification
	Confidence Intervals and Choosing Among Them
	Statistical Treatment of Quantitative Responses
	Use of Confidence Intervals in Decision Making

	Confidence Intervals When Sample Size Is Large For Binary Responses
	The Wald Interval and Bounds
	Sample Size Design
	The Wilson Interval and Bounds
	Agresti-Coull Interval and Bounds
	Poisson Adjustment For Rare Events

	Probabilistic Bases and Interpretations of Interval Estimation
	Binomial Model
	Normal Approximation
	Poisson Approximation
	Asymptotic Coverage and Relation to Testing

	Exact Interval and Bayesian Intervals
	Clopper-Pearson Interval
	Bayesian Inference
	Bayesian Posterior Summaries
	Prior Choice and Incorporating External Information
	Bayesian Credible Intervals
	Comparison Among the Exact and Bayesian Intervals

	Statistical Analysis of Quantitative Data
	Confidence Intervals for Parameters
	Parametric Approach to Probability Estimation
	Sample Quantiles and Related Confidence Intervals

	Appendix A: Technical Notes and Calculation Details
	Appendix B: Bayesian Intervals Computation and Tables
	References



