
NIST Technical Note 2118 

False Alarm Testing for Radiation
 Detection Systems 

Dennis D. Leber 
Leticia Pibida 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.2118



NIST Technical Note 2118 

False Alarm Testing for Radiation
Detection Systems 

Dennis D. Leber 
Statistical Engineering Division 

Information Technology Laboratory 

Leticia Pibida 
Radiation Physics Division 

Physical Measurement Laboratory 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.2118 

October 2020 

U.S. Department of Commerce 
Wilbur L. Ross, Jr., Secretary 

National Institute of Standards and Technology 
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology 



Certain commercial entities, equipment, or materials may be identified in this 
 document in order to describe an experimental procedure or concept adequately. 

Such identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that the 
entities, materials, or equipment are necessarily the best available for the purpose. 

National Institute of Standards and Technology Technical Note 2118 
Natl. Inst. Stand. Technol. Tech. Note 2118, 25 pages (October 2020) 

CODEN: NTNOEF 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.2118



i 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2118 

Abstract 

An operator of a radiation detection system that displays a high rate of false alarms may be-
come desensitized to these alarms. This action is known as alarm fatigue and can have detri-
mental results as the operator may cease to respond to what may be valid alarms. To mitigate 
these adverse outcomes, an agency may seek to procure radiation detection systems with ade-
quately low false alarm rates. In developing a test to confirm that the system satisfies the stated 
false alarm rate threshold requirement, the number of required observations or test duration is 
often an initial question. In this chapter, we demonstrate how an experimenter can develop a 
successful false alarm test with two provided pieces of information: the false alarm rate thresh-
old requirement and a statement of acceptable risk or required confidence. Using the statistical 
hypothesis testing framework, we illustrate the meaning of risk and confidence from both the 
consumer’s and producer’s perspectives and provide guidance on selecting an informed false 
alarm rate threshold requirement and statement of acceptable risk. We consider the binomial 
and Poisson probability models that apply to testing of radiation detection systems that are 
employed with and without occupancy sensors, respectively. From these probability models 
we define the power of a test and demonstrate how an experimenter can use a power curve to 
balance the tradeoffs between test burden (costs) and producer risk (type II error) while satis-
fying the required confidence. We provide sample size and acceptance criterion tables to define 
fixed sample tests that satisfy a variety of false alarm thresholds and levels of acceptable risk 
for systems with and without occupancy sensors. 

Keywords 

False alarm; occupancy sensor; binomial random variable; Poisson random variable; hypothe-
sis test; consumer and producer risks; false alarm rate threshold; power of a test; radiation 
detection systems.      
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 Introduction 

There are several types of radiation detections systems used for homeland security applica-
tions. These systems include personal radiation detectors and spectroscopic personal radiation 
detectors (PRDs and SPRDs), hand-held systems, radioisotope identification devices (RIIDs), 
backpack-type radiation detectors (BRDs), mobile systems, radiation portal monitors and spec-
troscopic radiation portal monitors (RPMs and SRPMs) and neutron detectors. Two primary 
metrics are used in quantifying the performance of these systems: the ability of the system to 
detect a source when a source is present (probability of detection), and the system’s tendency 
to alarm in the absence of a source (probability of false alarm). 

As the consequences of alarm fatigue have gained the attention of the healthcare commu-
nity (Mitka, 2013), the impact of false alarms must also be considered in homeland security 
applications. Just as a high number of false alarms may lead a healthcare clinician to ignore a 
valid alarm, so too may be the case for a homeland security official who dons a radiation de-
tection system with a large false alarm rate. 

An experimenter may wish to confirm that a system under consideration provides a false 
alarm rate less than some predefined criterion, e.g., less than 1 false alarm in 1000 encounters. 
While the answer to this inquiry is a simple yes or no, there is a possibility of answering the 
question incorrectly because of the inherent uncertainty in the measurements used in the as-
sessment (e.g., random behavior of nuclear decay process). This chapter provides guidance on 
developing an experimental sample size and acceptance criterion to determine whether a sys-
tem satisfies a predefined false alarm performance criterion. Separately, for systems with and 
without occupancy sensors, we provide a sample size and acceptance criterion table to define 
a fixed sample test that will satisfy a variety of false alarm thresholds and levels of acceptable 
risk. Because false alarm testing entails the confirmation of a performance threshold where the 
threshold is taken as an upper bound, the concepts presented in this chapter parallel those pre-
sented by Leber, Pibida, and Enders (2019). For completeness, many of those ideas are re-
peated here.  

 Choosing a False Alarm Rate Requirement 

A defensible and successful test always begins with a testable objective. A test to determine if 
a system satisfies a false alarm criterion will consist of two components: 

1. a false alarm rate requirement, or more simply, a false alarm threshold; and  
2. a statement of acceptable risk or required confidence. 

Together, the defined false alarm threshold and statement of acceptable risk will lead directly 
to the required number of trials (or test duration) and acceptance criterion. If the number of 
trials required to support the false alarm threshold at the stated level of acceptable risk cannot 
be achieved due to budgetary or other constraints, then the value of performing a lesser test 
must be considered. Here, a lesser test is a test that maintains a higher false alarm rate or as-
sumes a higher level of risk than desired. This section presents a philosophical view on setting 
a false alarm threshold. A description of confidence and risk, and guidance on selecting an 
acceptable risk are presented in Section 4.2. 



 
 

2 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2118 

 

A defensible and successful test begins with a testable objective that in-

cludes a false alarm threshold and required level of confidence or accepta-

ble risk. The number of trials necessary and the acceptance criterion fol-

low directly from these test requirements. 

For radiation detection applications, false alarm threshold requirements may be directed by 
user needs, standard requirements, or acquisition requirements. When formulating false alarm 
threshold requirements based on user needs, one should consider the consequence of a false 
alarm. For example, a false alarm of a portal monitor during cargo inspection at a border cross-
ing may result in major, unnecessary disruption of commerce flow and inspector effort due to 
the need to perform secondary screening or dismantle a cargo container full of goods. Even 
when the immediate consequence of a false alarm is minimal, the long-term toll of a high false 
alarm rate must be considered. Alarm fatigue, the desensitization to alarms, may lead to home-
land security officials ignoring true alarms, the result of which may have detrimental impacts. 
This notion has been well studied in the medical community where patient deaths have been 
attributed to the behavior (Sendelbach & Funk, 2013). The radiation detection community may 
gain valuable insights by leveraging this knowledge base when setting false alarm threshold 
requirements.  

The drive to set minimal false alarm threshold requirements must be balanced with the 
radiation detection capability of each type of technology; there is a tradeoff between the in-
strument detection capability and false alarm rate. Often, though not universally, a radiation 
detection system’s ability to detect a source when a source is present is inversely related to its 
probability of a false alarm. That is, a system that provides a desirable false alarm rate (rarely 
alarms in the absence of a source) may also provide an undesirable true alarm rate (rarely alarm 
in the presence of a source). This tradeoff between false alarms and true alarms plays an ever-
important role in defining performance requirements for a radiation detection system.  

A thorough understanding of a user’s practical operational requirements can help facilitate 
the definition of false alarm threshold requirements. Based on the effort required to adjudicate 
an alarm, one might consider the number of false alarms a user could handle during an eight 
hour work shift, for example. This requirement may be phrased in terms of a rate relative to a 
unit of time, e.g., no more than three false alarm per eight hours, or in terms of a frequency of 
occurrences relative to total inspections, e.g., no greater than one false alarm in every 1000 
inspections. 

Several American National Standard Institute (ANSI) standards have been developed for 
radiation detectors used for homeland security applications (Table 1). Most of these standards 
have requirements for the systems’ probability of false alarms. A common requirement in these 
standards in terms of occurrences is to have a probability of false alarm no greater than one 
alarm in 1000 occupancies. In terms of a rate per unit of time, a common requirement is to 
have a false alarm rate no greater than one alarm per two hours. 
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Table 1: ANSI standards for homeland security application 

ANSI Standard Standard Title 
ANSI N42.32  Performance Criteria for Alarming Personal Radiation Detectors for Homeland 

Security 
ANSI N42.33  Portable Radiation Detection Instrumentation for Homeland Security 
ANSI N42.34  Performance Criteria for Hand-held Instruments for the Detection and Identifica-

tion for Radionuclides 
ANSI N42.35  Evaluation and Performance of Radiation Detection Portal Monitors 
ANSI N42.38  Performance Criteria for Spectroscopy-Based Portal Monitors Used for Homeland 

Security 
ANSI N42.43  Performance Criteria for Mobile and Transportable Radiation Monitors Used for 

Homeland Security 
ANSI N42.48  Performance Requirements for Spectroscopic Personal Radiation Detectors 

(SPRDs) for Homeland Security 
ANSI N42.53  Performance Criteria for Backpack-Based Radiation-Detection Systems Used for 

Homeland Security 

 Stating the Test Requirement 

Ensuring that a testable requirement has been stated is the initial, crucial step in identifying the 
sample size and acceptance criterion needed to prove that a system satisfies a false alarm 
threshold. For this purpose, a testable requirement has two key parts: 1.) a false alarm thresh-
old, and 2.) a statement of acceptable risk or required confidence. For example, the radiation 
detection system shall provide a false alarm rate no greater than 0.001 (one alarm in 1000 
occupancies) with 95 % confidence, is a testable requirement. In this example, one alarm in 
1000 occupancies is the false alarm threshold and 95 % confidence is the statement of required 
confidence. Without these two key pieces of a test requirement, a test’s necessary sample size 
and acceptance criterion cannot be determined. 

A test requirement must contain both a false alarm threshold and a 

statement of acceptable risk (or required confidence).   

We are interested in drawing a conclusion about the true value of the system’s false alarm 
rate, but all that we have available is an uncertain estimate obtained from the test results. It is 
this uncertainty that leads us to the possibility of drawing the wrong conclusion. In the follow-
ing sections, we present a rigorous approach to designing a test that allows for the probability 
of drawing an incorrect conclusion to be quantified and controlled.   

 Hypothesis Tests 

One statistical method that may be used to support the task of confirming that a system meets 
a specified false alarm threshold is the hypothesis test (Montgomery & Runger, 2014). Hy-
pothesis testing begins with a specific conjecture called the null hypothesis. Data are gathered 
that directly pertain to whether the null hypothesis is true. All possible outcomes of the data 
are considered in establishing an acceptance criterion. The collected data are examined and, in 
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conjunction with the established acceptance criterion, the null hypothesis is either rejected or 
not. The following subsections provide details on implementing a hypothesis test to prove that 
a system’s false alarm rate satisfies a specified false alarm threshold. 

4.1. The Null Hypothesis      

The true state of a system falls into one of two categories when its true false alarm rate is 
compared to a specified false alarm threshold; that is, the true false alarm rate is less than (or 
equal to) the specified false alarm threshold, or it is not. We label a system as “good” if the 
true false alarm rate is less than the specified false alarm threshold, and “bad” otherwise. There-
fore, two possible positions exist for the null hypothesis conjecture: 1) the system is good; or, 
2) the system is bad. Because the hypothesis test relies on the idea of proof by contradiction, 
we state the null hypothesis conjecture as opposite of what we would like to prove. Thus, in 
our effort to prove that the system is good, we adopt as the null hypothesis that the system is 
bad. For example, if we seek to prove that a radiation detection system satisfies the stated false 
alarm rate threshold of 0.001, then we state the null hypothesis as the radiation detection sys-
tem’s true false alarm rate is greater than 0.001. 

Because the hypothesis test relies on the idea of proof by contradiction, 

we adopt as the null hypothesis conjecture that the system is bad and seek 

data to prove that it is good. 

Based on the established acceptance criterion and the observed patterns in the collected 
data, we either reject the null hypothesis in favor of its alternative or fail to reject the null 
hypothesis. Rejecting the null hypothesis in this case leads us to the conclusion that the sys-
tem’s false alarm rate satisfies the false alarm threshold, i.e., the system is good. Failure to 
reject the null hypothesis is not evidence that the system is bad, but rather that insufficient 
evidence was found to support the conclusion that the system meets the specified false alarm 
threshold; that is, we fail to deem the system as good. 

4.2. Errors in Hypothesis Testing 

A system has a true but unknown false alarm rate. It follows that the system has a true but 
unknown state, either “good” or “bad”, as would be determined by comparing its true false 
alarm rate to the stated false alarm threshold. The statistical hypothesis test provides a frame-
work for an experimenter to deem a system as “good”, based on an estimate of the system’s 
false alarm rate. Because the estimated false alarm rate is uncertain (all measurements carry 
uncertainty), our conclusion about the true state of the system may be incorrect. The following 
subsections describe the two ways in which we may draw an incorrect conclusion and how we 
can control the rate at which these errors occur through the definition of the test. 
4.2.1. Consumer and Producer Risks 
There are two ways that we may make a mistake. The first error, a false positive, happens when 
our hypothesis test leads us to deem the system to be “good” when in fact, the system’s true 
state is “bad.” Statisticians refer to this mistake as a type I error and denote the probability of 
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its occurrence with the Greek letter α. We note here that the statistical term confidence level is 
defined as 1 – α and the statistical term significance level is defined as α. 

The second error that could be made in carrying out a hypothesis test, a false negative, 
happens when the system is truly “good,” but we fail to deem the system as “good.” Statisti-
cians refer to this as a type II error and denote the probability of its occurrence with the Greek 
letter β. These errors are illustrated in the truth table displayed in Table 2. 

Table 2: Hypothesis test truth table. 

  System’s True State 
  “Good” “Bad” 

H
yp

ot
he

si
s T

es
t 

C
on

cl
us

io
n Deem 

“Good” Correct Decision Type I 
Error 

Fail to deem 
“Good” 

Type II 
Error Correct Decision 

The severity of the consequences associated with each of the above described errors are 
often not equivalent and the sensitivity to each depends on perspective. For example, if a radi-
ation detection system is to be used to monitor cargo at a border crossing where false alarm 
events trigger a significant search effort and disruption to commerce flow, the consumer of this 
radiation detection system, e.g., the U.S. Customs and Border Protection (CBP), will seek to 
avoid purchasing and deploying a system with a false alarm rate larger than specified in the 
purchase agreement. Thus, the CBP will desire a test with a low probability of committing a 
type I error. On the other hand, it is in the best interest of the manufacturer of the radiation 
detection system under test to minimize the probability of a type II error as such an error may 
lead to a truly “good” system not being purchased. For these reasons, the risk associated with 
a type I error in this construct is termed consumer risk, and that associated with a type II error 
is termed producer risk. When referring to consumer risk in this manuscript, we simply use 
risk and when discussing producer risk, we spell out the term.  

4.2.2. Power of a Test 
Fortunately, both the consumer risk and producer risk can be controlled through the design of 
the hypothesis test and the selection of the sample size. These risks can be evaluated prior to 
conducting a test and are illustrated through a test’s power curve that displays the probability 
of deeming a system as “good” as a function of the system’s true but unknown false alarm rate. 

An ideal test would deem a system as “good” with certainty (i.e., a probability of one) 
when the system’s true false alarm rate is less than the false alarm threshold and never deem a 
system as “good” when the system’s true false alarm rate is larger than the false alarm thresh-
old. Fig. 1 provides a power curve for this ideal test when the false alarm threshold is * 0.1.p =  

Unfortunately, a test with no risk, such as the ideal test illustrated with the power profile 
displayed in Fig. 1, requires an infinite number of samples. Therefore, common practice is to 
state a maximum acceptable consumer risk (type I error probability) and construct a suitable 
acceptance criterion and sample size. The resulting power curve is examined, and the sample 
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size adjusted to satisfy the desired producer risk (type II error probability). As discussed in 
Section 3, this statement of maximum acceptable consumer risk, paired with the false alarm 
threshold provides the necessary basis for constructing the hypothesis test. 

 

Fig. 1: Power curve for an ideal test with a false alarm threshold p* = 0.1. 

An experimenter must carefully consider the consequence of committing a type I error 
before setting its maximum acceptable value. For experiments published in the medical and 
health science literature, where committing a type I error may have detrimental implications 
on human life, the maximum acceptable type I error is often selected to be very small, e.g., 
0.01 or 0.001. For experimental results found in the physical science literature, when implica-
tions on human life are typically lower, type I error rates are often selected (by default) to be 
0.05.  

For homeland security applications, the type I error probability is interpreted as the proba-
bility of purchasing and deploying a “bad” detection system. Such a system will provide more 
errant alarms, resulting in additional alarm adjudication actions for the operator. The selected 
type I error should be carefully considered and selected based on the goals and policies set 
within the Department of Homeland Security (DHS). 

A statement of acceptable risk, i.e., the type I error probability, defines the 

probability that a “bad” system will be accepted. Type I error probability 

of ≤ 1 % is common practice in the medical and health science fields, 
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where failure consequences are dire. Type I error probability of 5 % is 

common practice in the physical sciences. DHS goals and policies should 

drive their statement of acceptable risk. 

Fig. 2 illustrates power curves for the ideal test ( n = ∞ ) and tests of sample size 
50,100,250,500n = , each with a consumer risk (type I error probability) no greater than 0.05 

and a false alarm threshold, * 0.1p = . We first observe that for the limited sample tests 
when n ≠ ∞ , the power to the right of the false alarm threshold is similar. That is, for each of 
these tests, when the system under test has a true false alarm rate 0.1p > , i.e., a “bad” system, 
the probability of deeming the system as good does not exceed 0.05.  

 

Fig. 2: Power curves for several tests of varying sample sizes, n, each with a maximum con-
sumer risk (type I error probability) α = 0.05 and a false alarm threshold p* = 0.1. 

Conversely, when the system under test is “good”, i.e., true false alarm rate 0.1p ≤ , the 
probability of correctly deeming the system as good varies across the tests of different sample 
sizes. For example, consider a “good” system with true false alarm rate 0.05p = . From Fig. 
2, we observe that the probability of deeming this system as good to be 0.28 when the test has 

50n = . As the sample size of the test is increased, so too is the probability of deeming this 
system as good: 0.44 when 100n = , 0.88 when 250n = , and 1.00 when 500n = . The com-
plement of these probabilities are the producer risks (type II error probabilities) associated with 
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each of the different tests. We see that as the sample size n increases, the producer risk de-
creases. Thus, the experimenter must consider and balance the tradeoffs between increasing 
sample size (test cost) and decreasing producer risk. 

With the false alarm threshold and acceptable consumer risk defined, 

the experimenter selects the test that satisfies the tradeoffs between test 

burden (sample size) and desired producer risk. 

4.2.3. Acceptance Criterion 
Each individual trial of a test will produce a false alarm or not. If the total number of false 
alarms observed during the entire test is less than or equal to the predefined acceptance crite-
rion, then the system is deemed as “good”.  

The acceptance criterion is the largest number of false alarms allowed 

to be observed to deem the system as “good”. 

We note that most statistics references, when discussing the topic of hypothesis testing, 
refer to the rejection region: the set of realized observations that will result in a rejection of 
the null hypothesis. Because the formulation of our null hypothesis assumes that the system is 
“bad” (Section 4.1), a rejection of the null hypothesis results in an acceptance of the system. 
Thus, for simplicity, we refer to the rejection of the null hypothesis as the acceptance criterion. 
The following sections provide details on deriving an acceptance criterion for systems with 
and without occupancy sensors.  

 Systems with Occupancy Sensors 

Some radiation detection systems used for homeland security applications may be equipped 
with occupancy sensors (e.g., RPMs, SRPMs) that inform the system when a vehicle, package 
or person is within the detection zone. The way the false alarm test is designed is dependent 
on whether the system is equipped with an occupancy sensor or not. For systems with occu-
pancy sensors, the probability of a false alarm is estimated based on the binomial probability 
distribution. That is, each occupancy is viewed as an independent Bernoulli trial with some 
true false alarm rate, p , that we estimate by the ratio of the number of false alarms observed, 

x, to the total number of occupancies considered, n, i.e., ˆ xp n= .  We then use the binomial 

probability distribution to guide the quantification of our uncertainty in our estimated false 
alarm rate, p̂ . 

In this section we develop a fixed sample test for radiation detection systems equipped with 
occupancy sensors to determine if the system’s true but unknown false alarm probability, p, is 
less than some predefined, fixed false alarm threshold that we denote by p*. The total number 



 
 

9 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2118 

 

of trials and the acceptance criterion for a fixed sample test are determined prior to making any 
test observations and must remain fixed and unchanged throughout testing for the performance 
requirements of the test to be attained. We are only concerned with a one-sided test, that is, 
investigating *p p≤ . We provide guidance for determining the sample size, n, and the ac-
ceptance criterion to prove that a system satisfies the false alarm threshold. We also illustrate 
how power curves, such as those displayed in Fig. 2, are generated.  

5.1. Binomial Probability Distribution 

Experiments with two, and only two possible outcomes, such as head and tail, defective and 
non-defective, or alarm and no alarm are known as Bernoulli trials (Casella & Berger, 2002). 
The probability of one of the two outcomes (e.g., “alarm”) is denoted by p, while the probabil-
ity of the complementary outcome (“no alarm”) is given by 1 – p.  

The total number of events observed, X (e.g., alarms), in a sequence of independent and 
identical Bernoulli trials is distributed as a binomial random variable. The binomial probability 
distribution is characterized by two parameters, n and p, where n represents the number of 
trials and p represents the probability of the outcome of interest. The binominal distribution, 
as described by Casella and Berger (2002), is defined in Eq. (1). 

 ( ) ( )| , 1 0,1,2, , ; 0 1n xxn
P X x n p p p x n p

x
− 

= = − = ≤ ≤ 
 

  (1) 

When a radiation detection system is equipped with an occupancy sensor, each occupancy 
with no source present is viewed as a Bernoulli trial. The number of false alarms observed in 
a sequence of such occupancies is modeled as a binomial random variable.  

5.2. Power and Sample Size 

Provided a false alarm threshold and statement of acceptable risk (or required confidence), 
there are many statistical methods that can be leveraged to define the parameters of a hypoth-
esis test when observing binary response data. Because of its coverage properties, we chose to 
implement the approach based upon the Clopper-Pearson “exact” method (Clopper & Pearson, 
1934). The exact method directly utilizes the definition of the binomial distribution provided 
in Eq. (1). See Agresti and Coull (1998) for a presentation of the exact method and several 
additional applicable methods and their properties.  

We begin by defining the following notation, most of which has been previously defined 
in this chapter: 

 
p  system’s true but unknown false alarm rate 
p*  false alarm threshold 
α  maximum acceptable risk (type I error probability)  
n  sample size 
c  acceptance criterion  
X  total number of false alarms observed during the entire test 
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As stated in Section 3, the first step in designing a defensible and successful false alarm 
test is defining the false alarm threshold, *p , and stating the maximum acceptable risk, α . 
Because we view the false alarm threshold in this chapter as an upper bound, any system with 
a true false alarm rate, p, that is less than or equal to *p  is considered “good”; otherwise, the 
system is considered “bad”.  

We deem a system as good if the total number of false alarms observed during the test, X, 
is less than or equal to the acceptance criterion, c. From the definition of the binomial distri-
bution (Eq. (2)), we can calculate the probability of deeming a system with true false alarm 
rate p as good for any acceptance criterion, c, and sample size, n. That is, we calculate the 
probability that the number of false alarms, X, will be less than or equal to the acceptance 
criterion, c, for a binomial random variable with sample size n and true false alarm probability 
p.  

 ( ) ( ) ( )
0

deem system good | , 1
c

x n x

x

n
P P X c n p p p

x
−

=

 
= ≤ = − 

 
∑  (2) 

As an example, consider a test with false alarm threshold * 0.1p = , maximum acceptable 
risk 0.05α = , sample size 30n = , and acceptance criterion 1c = ; we calculate the probability 
of deeming a system as good with true false alarm rate 0.2p =  by: 

( ) ( ) ( )
1

30

0

30
deem system good 1| 30, 0.2 0.2 1 0.2 0.0105x x

x
P P X n p

x
−

=

 
= ≤ = = = − = 

 
∑  

Since the true state of this example system is “bad” (true false alarm rate 0.2p =  is greater 
than the false alarm threshold * 0.1p = ), we desire a low probability of deeming the system as 
good. This example calculation can be carried out for many different true false alarm values 
ranging from 0 to 1 as illustrated in Fig. 3. The results of these calculations provide the basis 
for the power curve. 
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Fig. 3: Power curves for test with parameters n = 30, c = 1, and p* = 0.1 (black points and 
curve) and n = 46, c = 1, and p* = 0.1 (blue curve). The horizontal dashed line is maximum 

acceptable risk of α = 0.05.  

Beyond illustrating the construction of the power curve, Fig. 3 highlights a problem with 
the underlying example. All systems with true false alarm rates greater than the false alarm 
threshold * 0.1p =  are defined as bad systems. We observe from Fig. 3 that the probability of 
deeming a truly bad system as good is as high as 0.184 (at 0.1p ε= + , where ε is some very 
small, negligible value); this violates the stated maximum acceptable risk of 0.05α = . To rec-
tify this issue, either the sample size or the acceptance criterion – or both – must be altered. 
Increasing the sample size to 46n =  resolves the issue in this example by providing a maxi-
mum probability of deeming a bad system as good of 0.048. 

In practice, optimization routines can be used in conjunction with Eq. (2) to identify test 
parameters n and c that satisfy the stated maximum acceptable risk. An often-used strategy is 
to first identify the minimum sample size test which occurs when no false alarms are allowed 
for acceptance of the system, i.e., 0c = . From here the sample size is increased, with appro-
priate adjustments to the acceptance criterion to allow the type I error to be as large as possible 
without exceeding the stated maximum acceptable risk. The result of the increased sample size 
is a decrease in the producer risk (type II error) as was illustrated in Fig. 2. This exercise allows 
the experimenter to identify test parameters n and c that are of practical size, satisfy the stated 
maximum acceptable risk, and provide a producer risk that is satisfactory. Table 3 provides the 
required sample size, n, and number of allowable false alarms, c , for a range of false alarm 
thresholds and acceptable risk levels. 
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Table 3: Systems with occupancy sensors: required occupancies for stated false alarm 
threshold, acceptable risk (type I error) and maximum number of false alarms allowable to 

deem system as good. 

False 
Alarm 
Threshold 

Acceptable 
Risk 

Number of Allowable False Alarms 

0 1 2 3 4 5 6 7 8 9 10 

0.001 0.01 4603 6636 8403 10042 11601 13105 14567 15996 17398 18779 20140 
0.001 0.05 2995 4742 6294 7752 9151 10511 11840 13146 14432 15702 16959 
0.001 0.10 2302 3889 5321 6679 7992 9273 10530 11769 12993 14204 15404 
0.001 0.15 1897 3372 4722 6013 7266 8493 9702 10895 12076 13247 14410 
0.001 0.20 1609 2994 4278 5514 6720 7905 9074 10231 11379 12517 13649 
0.005 0.01 919 1325 1678 2006 2318 2618 2910 3196 3476 3752 4024 
0.005 0.05 598 947 1258 1549 1829 2100 2366 2627 2884 3138 3389 
0.005 0.10 460 777 1063 1335 1597 1853 2105 2352 2597 2839 3079 
0.005 0.15 379 674 944 1202 1452 1698 1939 2178 2414 2648 2881 
0.005 0.20 322 598 855 1102 1343 1580 1814 2045 2275 2502 2729 
0.01 0.01 459 662 838 1001 1157 1307 1453 1596 1736 1874 2010 
0.01 0.05 299 473 628 773 913 1049 1182 1312 1441 1568 1693 
0.01 0.10 230 388 531 667 798 926 1051 1175 1297 1418 1538 
0.01 0.15 189 337 471 600 726 848 969 1088 1206 1323 1439 
0.01 0.20 161 299 427 551 671 790 906 1022 1137 1251 1364 
0.05 0.01 90 130 165 198 229 259 288 316 344 371 398 
0.05 0.05 59 93 124 153 181 208 234 260 286 311 336 
0.05 0.10 45 77 105 132 158 184 209 234 258 282 306 
0.05 0.15 37 67 94 119 144 169 193 216 240 263 286 
0.05 0.20 32 59 85 110 134 157 180 204 226 249 272 
0.1 0.01 44 64 81 97 113 127 142 156 170 183 197 
0.1 0.05 29 46 61 76 89 103 116 129 142 154 167 
0.1 0.10 22 38 52 65 78 91 104 116 128 140 152 
0.1 0.15 19 33 46 59 72 84 96 107 119 131 142 
0.1 0.20 16 29 42 54 66 78 90 101 113 124 135 
 

An experimenter uses Table 3 by identifying the row that corresponds to the stated false 
alarm threshold and acceptable risk. Within that row, the first column in the main body of the 
table is the number of samples required if the acceptance criterion were such that no false 
alarms were to be allowed, i.e., 0c = . As one moves across the row in the main body of the 
table, the required sample size increases as the number of allowable false alarms increases. 
This increase in sample size reduces the producer risk (type II error).  

Consider an experiment that seeks to prove that a system has a true false alarm rate no 
greater than one false alarm per 1000 occupancies, i.e., a false alarm threshold of * 0.001p =
with a maximum acceptable risk of 0.05α = . As noted in Table 1, this false alarm threshold 
is common among the ANSI standards for radiation detectors used for homeland security ap-
plications. From Table 3, we see that the experimenter could choose to perform a test with as 
few as 2995n =  trials, though the system would be deemed as good only if no false alarms 
were recorded over all 2995 trials. If the experimenter wished to increase the sample size, 
increase the number of allowable false alarms, and decrease the producer risk, he or she could 
do so by increasing the sample size to 4742n =  and allow for one false alarm, or 6294n =  
with two false alarms, or 7752n =  with three false alarms, and so on. The power curves asso-
ciated with this family of potential tests, which satisfy a stated false alarm threshold of 

* 0.001p =  and a maximum acceptable risk of 0.05α =  are displayed in Fig. 4. From such a 
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figure, the experimenter can view the benefit gained in producer risk by increasing the sample 
size.  

 

Fig. 4: Power curves for family of tests that satisfy a stated false alarm threshold of 
p* = 0.001 and maximum acceptable risk of α = 0.05. 

 Systems without Occupancy Sensors 

When a radiation detection system is equipped with an occupancy sensor, the encounter and 
observation are clearly defined. This is not the case for radiation detection systems without 
occupancy sensors where the system is constantly evaluating the surrounding environment. 
For systems without occupancy sensors, we define the system’s false alarm rate based on a 
time period. In this case, we model the number of false alarms over a given time period using 
the Poisson probability distribution with intensity parameter λ. The expected false alarm rate 
is provided by λ which we estimate by the ratio of the number of false alarms, x, to the total 
number of time periods (e.g., hours) observed, n, i.e., ˆ x

nλ = . We use properties of the Poisson 

probability distribution to guide the quantification of our uncertainty in our estimated false 
alarm rate, λ̂ , and the development of our hypothesis test. 

In this section, we develop a fixed sample false alarm test for systems without occupancy 
sensors. We provide guidance for determining the sample size, n, and the acceptance criterion 
to prove that a system satisfies the false alarm threshold.  
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6.1. Poisson Probability Distribution 

A random variable used to describe a number of occurrences of some phenomena over a fixed 
period of time or within a fixed region of space can often be modeled by the Poisson distribu-
tion (Casella & Berger, 2002).  Examples include the number of radioactive particles that strike 
a detector during a fixed period of time and the number of bomb hits in a defined area. 

The probability function for the Poisson distribution is provided in Equation (3). 

 ( )|          0,1, 2,  ; 0
!

xeP x x
x

λλλ λ
−

= = ≤   (3) 

The single positive parameter λ is the expected number of occurrences per unit time, some-
times referred to as the mean occurrence rate or the intensity parameter. In addition to the 
expected value of the Poisson distribution, λ is also the variance of the distribution. The oc-
currence rate can be estimated by ˆ x

nλ = , where x is the number of occurrences observed and 

n is the number of units of time over which the observation was made. 
When a radiation detection system does not have an occupancy sensor, we model the num-

ber of false alarms observed over a period of time using a Poisson distribution. We estimate 
the system’s false alarm rate with the Poisson distribution’s occurrence rate, λ.  

6.2. Power and Sample Size 

We proceed in developing the parameters of our hypothesis test for a system without an occu-
pancy sensor as we did in Section 5.2: we leverage the Clopper-Pearson “exact” method and 
directly utilize the definition of the Poisson distribution provided in Eq. (3). To distinguish the 
methods in this section pertaining to systems without occupancy sensors from the methods 
provided in Section 5, we provide the following, slightly altered, notation: 

 
λ  system’s true but unknown false alarm rate 
λ*  false alarm rate threshold requirement  
α  maximum acceptable risk (type I error probability)  
n  test duration in number of time units 
c  acceptance criterion  
X  total number of false alarms observed during the entire testing time 

 
Again, to develop our defensible and successful false alarm test we begin by defining the 

false alarm threshold requirement, *λ , and stating the maximum acceptable risk, α . Any 
system with a true false alarm rate, λ, that is less than or equal to *λ  is considered “good”, 
otherwise, the system is considered “bad”.  

For the purpose of this discussion we consider the time unit to be one hour and we define 
our false alarm threshold in these terms. For example, the ANSI N42.32 standard requires that 
a system present no more than two false alarms during an eight-hour period, thus, we define 

* 2 0.258λ = =  alarms per hour. We tally the number of false alarms observed, X, over the 

course of the test period that consists of n hours and deem the system as good if the number of 
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false alarms observed is less than or equal to the acceptance criterion, c. Using the definition 
of the Poisson distribution, we can calculate the probability of deeming a system with true false 
alarm rate λ as good for any acceptance criterion, c, and test duration, n. That is, we calculate 
the probability that the number of false alarms, X, will be less than or equal to the acceptance 
criterion, c, for a Poisson random variable with intensity parameter λ and test duration n (Eq. 
(4)).     

 ( ) ( )
0

deem system good | ,
!

n ix

i

e nP P X c n
i

λ λλ
−

=

= ≤ = ∑  (4) 

As an example, consider a test with a false alarm rate threshold of * 0.1λ =  alarms per hour, 
maximum acceptable risk 0.05α = , test duration 24n =  hours (one day), and acceptance cri-
terion 1c = ; we calculate the probability of deeming a system as good with a true false alarm 
rate of 0.25λ =  by: 

( ) ( )
61

0

6deem system good 1| 0.25, 24 0.0174
!

i

i

eP P X n
i

λ
−

=

= ≤ = = = =∑  

Because the true false alarm rate of this example system, 0.25λ = , is greater than the false 
alarm threshold, * 0.1λ = , (the system is “bad”) we desire to see that the test provides a low 
probability of deeming this system as good. We carry out the above calculation for many dif-
ferent true system false alarm rates ranging from 0 to 1 and provide these results as the power 
curve in Fig. 5. 
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Fig. 5: Power curves for test with duration n = 24 hours, acceptance criterion c = 1, and 
false alarm threshold λ* = 0.1 alarms per hour (black points and curve) and n = 48 hours, 

acceptance criterion c = 1, and false alarm threshold λ* = 0.1 alarms per hour (blue curve). 
The horizontal dashed line is maximum acceptable risk of α = 0.05.  

We immediately note that just beyond the false alarm threshold at 0.1λ ε= + , where ε is 
some very small, negligible value, the probability of deeming the system as good (0.308) ex-
ceeds the maximum acceptable risk 0.05α = . Thus, we must adjust either the test duration or 
the acceptance criterion – or both – to develop a test that satisfies the test requirements. In-
creasing the test duration to two days ( 48n =  hours) rather than one ( 24n =  hours) with ac-
ceptance criterion 1c =  resolves the issue in this example by providing a maximum probability 
of deeming a bad system as good of 0.048. 

As we did in Section 5.2 for systems with occupancy sensors, here we use optimization 
routines in conjunction with Eq. (4) to develop Table 4 that provides test parameters n and c 
that satisfy the false alarm rate requirement and stated maximum acceptable risk for systems 
without occupancy sensors. Again, for a required false alarm rate threshold requirement and 
acceptable risk, a user may first identify the minimum duration test which occurs when no false 
alarms are allowed for acceptance of the system, i.e., 0c = , and consider increasing the dura-
tion and acceptance criterion to decrease the producer risk (type II error). This exercise allows 
the experimenter to identify test parameters n and c that are of practical size, satisfy the stated 
maximum acceptable risk, and provide a producer risk that is satisfactory. 
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Table 4: Systems without occupancy sensors: required test duration (e.g., hours)  for stated 
false alarm rate requirement, acceptable risk (type I error) and maximum number of false 

alarms allowable to deem system as good. 

False 
Alarm Rate 
Reqirement 

Acceptable 
Risk 

Number of Allowable False Alarms 

0 1 2 3 4 5 6 7 8 9 10 

0.01 0.01 461 664 841 1005 1161 1311 1458 1600 1741 1879 2015 
0.01 0.05 300 475 630 776 916 1052 1185 1315 1444 1571 1697 
0.01 0.10 231 389 533 669 800 928 1054 1178 1300 1421 1541 
0.01 0.15 190 338 473 602 727 850 971 1090 1208 1325 1442 
0.01 0.20 161 300 428 552 673 791 908 1024 1138 1252 1366 
0.05 0.01 93 133 169 201 233 263 292 320 349 376 403 
0.05 0.05 60 95 126 156 184 211 237 263 289 315 340 
0.05 0.10 47 78 107 134 160 186 211 236 260 285 309 
0.05 0.15 38 68 95 121 146 170 195 218 242 265 289 
0.05 0.20 33 60 86 111 135 159 182 205 228 251 274 
0.1 0.01 47 67 85 101 117 132 146 160 175 188 202 
0.1 0.05 30 48 63 78 92 106 119 132 145 158 170 
0.1 0.10 24 39 54 67 80 93 106 118 130 143 155 
0.1 0.15 19 34 48 61 73 85 98 109 121 133 145 
0.1 0.20 17 30 43 56 68 80 91 103 114 126 137 
0.25 0.01 19 27 34 41 47 53 59 64 70 76 81 
0.25 0.05 12 19 26 32 37 43 48 53 58 63 68 
0.25 0.10 10 16 22 27 32 38 43 48 52 57 62 
0.25 0.15 8 14 19 25 30 34 39 44 49 53 58 
0.25 0.20 7 12 18 23 27 32 37 41 46 51 55 
0.5 0.01 10 14 17 21 24 27 30 32 35 38 41 
0.5 0.05 6 10 13 16 19 22 24 27 29 32 34 
0.5 0.10 5 8 11 14 16 19 22 24 26 29 31 
0.5 0.15 4 7 10 13 15 17 20 22 25 27 29 
0.5 0.20 4 6 9 12 14 16 19 21 23 26 28 
1 0.01 5 7 9 11 12 14 15 16 18 19 21 
1 0.05 3 5 7 8 10 11 12 14 15 16 17 
1 0.10 3 4 6 7 8 10 11 12 13 15 16 
1 0.15 2 4 5 7 8 9 10 11 13 14 15 
1 0.20 2 3 5 6 7 8 10 11 12 13 14 
 

An experimenter uses Table 4 by identifying the row that corresponds to the specified false 
alarm rate requirement and acceptable risk. Within that row, the first column in the main body 
of the table is the duration of the test required if the acceptance criterion were such that no 
false alarms were to be allowed, i.e., 0c = . The duration of the test is defined in the same time 
unit as the false alarm rate requirement. For example, if the false alarm rate requirement is no 
more than 1 alarm per ten hours ( * 0.1λ = ), then the test duration is defined in hours; if the 
false alarm rate requirement is no more than 1 alarm per ten minutes ( * 0.1λ = ), then the test 
duration is defined in minutes. As one moves across the row in the main body of the table, the 
required test duration increases as the number of allowable false alarms increases. This in-
crease in test duration reduces the producer risk (type II error). Fig. 6 illustrates the power 
curves that correspond to the family of tests that prove that a system has a false alarm rate no 
greater than one alarm false alarm during a two hour period ( * 0.5λ = ) with an acceptable risk 
of 0.05α =  (test requirement of ANSI 42.35). This family of curves illustrates the reduction 
in producer risk when the test duration is increased. 
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Fig. 6: Power curves for family of tests that satisfy a stated false alarm rate requirement of 

λ* = 0.5 and maximum acceptable risk of α = 0.05. 

 Summary 

The approach presented in this chapter to develop a false alarm test for radiation detection 
systems is similar to that used to confirm a performance threshold (Leber, Pibida, & Enders, 
2019), but here our threshold is an upper bound not to be exceeded. With a false alarm thresh-
old and acceptable level of risk specified, we’ve presented approaches to develop false alarm 
tests for both systems with and without occupancy sensors. The test for systems with occu-
pancy sensors relies on estimates and uncertainties from the binomial probability distribution. 
The test for systems without an occupancy sensor relies on estimates and uncertainties from 
the Poisson probability distribution.  

The hypothesis tests provided here are mathematically equivalent to demonstrating that a 
one-sided ( )1 %α−  upper confidence bound for the estimated false alarm rate is less than the 
false alarm threshold. Readers interested in pursuing this alternate approach can refer to Hahn 
and Meeker (1991) for guidance on one-sided upper confidence bound calculations for bino-
mial and Poisson estimates. 
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