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Abstract 

Solar photovoltaics (PV) continues to increase in market share. Policy decisions and the 

nature of solar markets continue to shift; however, it is likely that the price of solar will 

continue to decrease in the near term. Given the increasing market and more competition in 

installations, it is beneficial to have a greater understanding in the driving factors in solar PV 

pricing, as well as models to help perspective buyers and sellers to obtain estimates for the 

cost of installations. Currently, most estimates rely on a marginal cost that is equivalent to 

the total cost divided by the system size. This study uses data from EnergySage and the 

National Renewable Energy Laboratory’s Tracking the Sun data set for California, 

specifically Fresno, San Francisco, Los Angeles, San Diego, and San Jose, to accomplish 

three goals: to determine if there are significant predictors for solar PV pricing outside of the 

current method of relying on system size only, to determine what model would make sense 

for predictive purpose in preparation for the development of a tool to predict the total life 

cycle cost of solar PV, and to determine if smaller geographical resolutions are warranted 

when looking at price by location. This paper finds that there are several more significant 

predictors of Solar PV pricing by including more PV system specifications, such as panel 

efficiency, inverter type, and system quality. Results also indicate that the installer of the PV 

system may proxy for the specification variables when it is included in the model. While the 

installer-based models show significant difference from many of the other models, including 

the specification-based models, they fail to increase the predictive capability for the 

EnergySage data, however, show promise for better predictions using the Tracking the Sun 

data. This difference is driven by the EnergySage data being far more dependent on system 

size to the point that it can serve reliably as a quote predictor on its own. By breaking the 

data down to models by city and city-installer groups regional differences can be clearly 

seem, indicating a more refined geographic approach is necessary for PV price estimation. 

Key words 

Cost Estimation; Economics; Regression Analysis; Solar Photovoltaics. 
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 Introduction 

Solar photovoltaic (PV) system installations for residential homes have expanded 

significantly since 2010. Analysis from the National Renewable Energy Laboratory (NREL) 

finds that total installations per year in the United States increased from less than 50 000 in 

2010 to over 350 000 in 2016 [1]. The data indicates a dip in 2017, but still over 300 000 new 

systems were installed in both 2017 and 2018. Given the increasing prevalence of solar PV, 

economic analysis (both current and projections) of solar PV systems is becoming 

increasingly important to understand the nature of the market. 

A key driver of the growing deployment of residential solar PV systems has been the 

decrease in the installed cost to a homeowner. The reported national median installed cost of 

residential solar PV systems has decreased from nearly $10/W in 2008 to ~$3.70/W in 2019 

[1]. The average cost has decreased due to reductions in costs for all cost categories (PV 

panels, inverters, balance of systems (BoS), and “soft costs” such as customer acquisition and 

margins) as well as economies of scale from larger median array installations (grown from 

~4.2 kWDC in 2008 to 6.4 kWDC in 2018) and improved technology such as higher median 

efficiency panels (grown from 14 % in 2008 to over 18 % in 2018). EnergySage data shows 

that the downward trend in prices and increasing size of residential solar PV arrays appears 

to have continued in 2018 and 2019 as the quoted average installed costs of $3.05/W with 

average system size of 9.6 kW in the second half of 2018 and a further reduction in cost in 

2019 thus far at $2.96/W [2]. It’s important to keep in mind that quoted prices do not 

necessarily translate into the installed price since the installed price may be impacted by 

unexpected costs or delays in the design, installation and permitting process. 

The quoted prices have been consistently lower than the reported realized installed costs for a 

given year by $0.36/W to $0.54/W (9 % to 14 %), which could be driven by numerous 

factors. We will highlight two here. First, the two prices may be capturing different types of 

customers and markets. Second, the quoted prices represent potential future system 

installations that may not be reported for one or two years. When comparing the reported 

median installed costs to the average quoted cost, the quoted estimates appear to be a 

relatively good projection for future reported installation costs using a 2-year lag as shown in 

Figure 1.  

Based on technical modeling, NREL has estimated the engineering-based benchmark 

(technically feasible) price to be $2.70/W [3]. The modeled benchmark installed costs has 

been consistently below the reported installed cost ($0.73/W to $0.98/W) since 2013. Their 

benchmark cost has been decreasing at a slower rate year-over-year ($0.14/W in 2018) as the 

installed prices get closer to the technically feasible cost estimates. Assuming a 3-year lag on 

the benchmark to align it with the installed and quoted costs can be used for a projection of 

future average installed costs (Figure 1). 
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Figure 1. Installed Cost versus Quoted Cost (2-Year Lag) versus Modeled (3-year Lag) 

Although this national trend is important, the decision to install a solar PV system is specific 

to factors related to a homeowner’s location. Barbose et al. [1] shows that the median 

installed cost across 20 states in 2018 ranges from $2.80/W to $4.40/W. Similarly, 

EnergySage [2] shows the average quoted price for 36 states ranging from $2.66/W to 

$3.29/W through 2019. There is a potential for even greater market variation across 

administrative and jurisdictional lines (county, city, or neighborhood level). These 

differences are a result of numerous factors, including customer demand/awareness, market 

development stage, state and local labor rules, laws, and regulations, and other regional 

effects. 

To date, cost data has typically been reported on an average cost per watt basis. This 

approach makes sense when most of the costs are associated with each installed watt (solar 

panels and inverters). However, as these costs have become smaller, there is potential for 

costs not directly associated with the size of the system (fixed costs, costs associated with the 

complexity of the system, differences in system quality) to account for a greater share of 

overall costs.  For example, the median reported installed price for a system with 18 % to 

19 % efficiency panels is $3.60/W versus $4.00/W for 20 % to 21 % efficiency panels [1]. 

Fixed costs (e.g. customer acquisition costs, permitting and commissioning) may vary based 

on the state or county system approval processes and the awareness of customers. Markets 

that are well developed with multiple installers realize lower margins, and therefore lower 

installed costs to homeowners [4]. 

Differences in the market may also play a role. Barbose et al. [1] accounts for this at the state 

level, however finer gradations may be more appropriate as county and local level ordinances 

and permitting may alter the costs of installation. Other potential factors affecting price 

include the specific installer and the specifications of the system itself. Tracking the Sun does 

not examine the former; however, it does attempt to account for the latter by using a quality 
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variable. This variable is determined through a combination of factors including system 

efficiency, warranty, and reliability. 

This study uses two data sets to examine the possibility of fixed cost impacts on pricing, 

more refined localities, installer effects, and specifications. The first is the publicly available 

Tracking the Sun (TTS) data set used by NREL. This provides all of the data used in the 

development of Barbose et al. [1]. The second is a privately-owned collected data set from 

EnergySage, an online marketplace supported by the U.S. Department of Energy where 

homeowners and businesses can comparison shop custom solar quotes from pre-screened 

solar contractors. 

Given the large data sets involved and the numerous variables in each an ordinary least 

squares (OLS) regression is used as an initial probe of the data set. There is a high degree of 

linearity in the data sets, though accompanied by extensive heteroskedasticity, making OLS 

useful as an initial foray into the data. The goal is to determine the key regressors in the OLS 

context and use that to inform future, more complex models, and to determine areas where 

expanded datasets may be appropriate. This study builds on previous work focusing on the 

DC-Maryland-Virginia region which can be found in Webb et al. [5]. 

 Literature Review 

Several organizations provide installed cost data for residential solar PV systems, most 

notably the Lawrence Berkeley National Laboratory (LBL), the National Renewable Energy 

Laboratory (NREL), and EnergySage. NREL provides the annual Tracking the Sun report [1] 

and have published numerous reports and journal articles evaluating solar PV market 

structure (O'Shaughnessy (6), O'Shaughnessy (7)).   NREL reports contain trends analysis in 

technology installation including recent historical data (1 to 2 years old) and modeled 

engineering-based (technically feasible) cost estimates. EnergySage provides bi-annual 

summaries of installer quotes provided in its online customer platform. The key specifics of 

included data are found in the Methodology section, but they include varying technology 

options, locations of the system, size of the system, among various other energy, engineering, 

location, and financial information. Quotes are more representative of current and near-term 

future installed costs because they are estimates for systems not yet installed. Using this data 

provides a reasonable expected installed cost for the next year, providing current or 

forward-looking analysis as opposed to backward looking (historical) analysis. 

These resources are insightful into the general trends of the installed cost of residential 

markets for solar PV in the United States but are generalized over large markets in most 

cases and focus only on installation costs. The monetary benefits of solar PV are dispersed 

over the life of the system and some costs do not accrue immediately (maintenance, 

replacement, grid access fees and tariffs). Economic analysis can properly account for these 

future costs and many prior studies have evaluated the net present value (NPV) and internal 

rate of return (IRR) of residential solar PV. 

An older case study in Denmark found that investments in energy efficiency were more 

effective than in renewable technologies [8]. Solar PV with a heat pump was cost-optimal for 

a Net-Zero structure in a dense city area while solar PV with district heating is the highest 

lifecycle cost (LCC) due to high operation and maintenance costs. In terms of energy 

efficiency, the best performing system was a solar PV system coupled with a solar thermal 
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system and solar heat pump, although it was not optimal in terms of LCC. Another study in 

Canada found that solar PV could not achieve payback in 60 years unless the initial price of 

electricity increased by greater than 5 % per year using a 4 % discount rate [9]. This 

increases to 78 years with a higher discount rate equal to the inflation rate. A study with a 

focus on Singapore reached similar conclusions, finding residential PV to have a higher LCC 

than utilizing grid-based electricity [10].  

More recent studies have found solar PV to be more economically viable. Swift (11) 

examined the economics of solar PV by looking at locations across the United States, 

including specific incentives, electricity rates, and solar insolation. The IRR ranged from 

31.6 % in Honolulu to 8.3 % in Minneapolis. By varying the installed cost of solar PV, the 

authors also estimated the required installed cost to make solar PV economically attractive 

based on IRR. Parity with grid produced electricity with and without incentives was found to 

be location specific. A study published in 2015 found that PV was an attractive investment in 

many countries even in the absence of incentives [12], once again showing highly location 

specific variability. Farias-Rocha, Hassan, Malimata, Sánchez-Cubedo and Rojas-Solórzano 

(13) examined the economic feasibility of solar PV in the Philippines by focusing on the 

minimum feed-in tariff, the viability of net metering, and any additional support mechanisms 

that would be useful for supporting solar PV. The authors found that a 100 kW feed-in tariff 

would be profitable for a solar investor if the tariff does not drop below 4.20 PHP/kWh. A 

1.89 kW system was found to be financially attractive using net metering alone. A recent 

Canadian study examining urban deployment of rooftop solar PV found 96 % of identified 

suitable rooftops would be profitable using NPV [14]. Recent studies in India have found 

solar PV to be financially viable for residential systems [15] and rural areas [16] while a 

study in Spain found utilizing grid electricity and natural gas for heating to be more 

economical than solar PV coupled with solar thermal and a micro-CHP system [17]. A more 

recent study for the United States by Lee, Hong, Koo and Kim (18) found that 18 states 

realized a payback period to at least break even while the other 32 states not being able to 

reach a breakeven point. Depending on the state and incentive, the payback period for those 

that at least broke even ranges from as high as 25 years (Nevada and Wisconsin) to as few as 

5 years (Hawaii). Maryland and Washington DC had payback periods of 18 and 10 years, 

respectively. The focus of this study is California, which did not reach breakeven over the 

lifetime of the solar PV system. These differing results indicate both the improving 

economics of residential solar PV systems and the impact of state and regional differences 

when examining the LCC of solar PV systems. 

Several studies also examine the impact of various incentives on the economics of solar PV. 

A study for the European Union examined the impact of various incentives, such as feed-in 

tariffs, net metering, capital subsidies, grants and rebates, and green tags [19]. The study 

examined multiple countries for both wind and solar PV, finding that depending on what 

incentives were available and how they were implemented, incentives can vary from 

beneficial to inconvenient for renewable energy sources. A partial rework by the authors 

expanded the number of countries considered and focused solely on feed-in tariffs finding the 

same basic results [20]. This finding is echoed in Dusonchet and Telaretti (21). Sow, 

Mehrtash, Rousse and Haillot (22) found that, for Canada, incentives allowed projects to 

remain feasible (based on 2016 data) with the only exception being projects in Montreal. 
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United States based studies also include the examination of Solar Renewable Energy Credits 

(SRECs). Burns and Kang (23) examined the early state of many SREC markets, finding 

them to be potentially strong, though the uncertainty associated with them proved to be a 

major drawback. Specifically, the SREC market had a higher present value than any other 

incentive examined (ITC, net metering, state tax credits), but the fluctuation in prices meant 

any benefit was highly uncertain. At the time of the study (2012) these benefits had a 

variable effect based on energy price, with less incentive required when net metering was 

available, while solar PV in Ohio was still not economically competitive due to the state’s 

lower energy prices. An analysis examining uncertainty in the cost-effectiveness of 

residential solar PV found that incentives that reduce the uncertainty in solar PV returns were 

generally the most effective [24]. The study, focused on Massachusetts, found uncertainties 

that lead to delays in investment timing and the discounted benefits of solar PV needed to 

exceed investment cost by 60 % to trigger investment. A study focusing on the United States 

as a whole found that the impact of incentives lead to a highly variable profitability index by 

state [18].  

Work done in Webb et al. [5] found that the inclusion of a regression constant to account for 

fixed costs produced statistically significant differences in the mean of the regression for 

smaller and larger systems. Specifically, systems much smaller than the mean sized system 

tended to be underestimated in terms of cost when using the marginal only model and 

systems much larger than the mean sized system tended to be overestimated. The constant 

was found to be significant in the regression and given the large amount of data near the 

origin indicated that the fixed cost component warrants inclusion. Webb et al. [5] also 

applied the regression results to a lifecycle cost analysis, finding minor differences in total 

LCC when examining different counties in the Washington D.C.-Maryland-Virginia region 

of the United States. 

This study has three goals: to determine if there are significant predictors for solar PV pricing 

outside of the current method of relying on system size only, to determine what model would 

make sense for predictive purpose in preparation for the development of a tool to predict the 

total life cycle cost of solar PV, and to determine if smaller geographical resolutions are 

warranted when looking at price by location.  

 Data and Methodology 

3.1. EnergySage Dataset 

The analysis uses a unique dataset provided by EnergySage [25]. EnergySage aggregates 

quotes for solar installations from multiple solar PV installers provided to homeowners on its 

online platform for January 2013 to present, although the data for this analysis is limited to 

California 2018. Versions of this dataset have been used before [26], but the current analysis 

is fundamentally different because it focuses on sub-state analysis, the value of models for 

predictive purposes, and looks at more variables in the regression.  

The dataset includes several variables (variable name used in this paper in italics) for each 

quote, the most pertinent to the current analysis being: 

• Quote Date (Year) 

• System Size in Watts (Size) – Direct Current in Watts (WDC) 
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• Quote for Purchase Price (Quote) in USD1 

• System Quality in Six Qualitative Tiers: economy, economy plus, standard, standard 

plus, premium, premium plus (Tier) 

• City (City) 

• ZIP Code (ZIP) 

• Installer (Inst) 

• Inverter Type (Inv) 

The data was anonymized in terms of physical address of the property and the name of solar 

installer for the purposes of this report. 

There were issues with the data due to the voluntary nature of the input. 

1. System Quality (Tier) is not consistently reported for all years and occasionally within 

tiers 

2. Tiers do not always have a sufficient number of data points to allow analysis 

3. Some quotes do not contain a quote price 

To address the first issue a separate category for any non-tier list system is created and 

labeled Tier 0. This leads to the possibility of a mixture of systems in the Tier 0 category, and 

therefore the Tier 0 system quotes are excluded from any analysis that includes the tier 

variables. The second issue is resolved by aggregating the provided tiers (non-Tier 0 labeled 

quotes) into a three-tier classification of economy with economy plus (labeled Economy from 

this point on), standard with standard plus (labeled Standard from this point on), and 

premium with premium plus (labeled Premium from this point on). Given the prevalence of 

standard and premium systems, there were not enough economy system quotes to include in 

the analysis, and therefore, are excluded.2 Issue three required dropping the no value quotes 

from the analysis as there was no way to determine the true value of the quoted system. 

Data was provided for all EnergySage quotes for California in 2018. The analysis focuses on 

rooftop residential solar PV and excludes non-residential systems or those whose mounting 

system was not “penetrating rooftop” from the analysis. 

Three types of inverters appear in the data set after filtering: Micro, String, and Optimizer. 

Most systems quoted in 2018 have either a microinverter or optimizer as part of a string 

inverter. Additionally, systems with optimizers and microinverters have similar overall 

installed costs [1]. Therefore, this restriction should be a reasonable representation of the 

market systems and costs. A further filter was applied to remove those systems over 30 000 

WDC to account for overly influential points in sparse data regions as well as erroneous data 

entries relative to the defined filters. 30 000 WDC is also the largest a system can be in 

California before a special exemption is required to have the system treated as a residential 

system. 

Based on the literature, there are several variables that have a clear expected impact on 

installed costs. Larger system size and higher quality systems are expected to increase 

installed costs. Systems with string inverters without optimizers are expected to be cheaper 

 
1 Quotes are used because reported installed prices are not available; a quote does not always end in a purchase. 
2 Typical solar PV panel efficiencies and production quality have been consistently increasing year-over-year and the trend is expected to 

continue, leading to minimal installations of “economy” or low efficiency panels. 
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than systems with microinverters or optimizers. However, there is less clarity on whether 

these variables will influence the marginal cost, fixed cost, or both. 

3.2. Tracking the Sun Dataset 

Tracking the Sun is a yearly publication produced by NREL that examines trends in solar PV 

pricing. It leverages installed prices across participating agencies throughout the United 

States representing a roughly 80 % of the domestic solar PV market [1]. The TTS data set is 

publicly available and therefore locator information is limited to state, city, and ZIP code. 

Furthermore, since the data set is an aggregation of multiple state and local entity reports, 

some based on self-assessment by system owners, certain fields are not consistently reported. 

Key variables (and expected impacts) in the data set remain principally the same as for the 

EnergySage data, with a few alterations. The price reported in the TTS data is the installed 

price and not a quote, thus TTS regressions use the Price variable. Inverter type is not 

reported directly so it must be synthesized using other variables related to the inverters. 

There is no system quality variable in the TTS data and no reference to the formula used to 

generate a quality metric comparable to EnergySage, however the module efficiency (Eff) is 

available. Eff does not capture all the characteristics captured by the quality variable, which 

combines multiple factors (efficiency, warranty, and performance) into a single qualitative 

metric. Therefore, Eff may influence installed costs in a different manner than quality 

influences the quoted costs. As with EnergySage, installer name is anonymized in this 

analysis, though the public nature of the data set makes it unnecessary. Due to a lack of 

overlap in installers between the EnergySage and Tracking the Sun datasets as well as the 

large number of installers represented in each, there is no way to infer the installers 

represented in EnergySage from the TTS data. 

The TTS data was also filtered to ensure both data sets were examining the same system 

types. Systems installed in years other than 2018, ground mounted systems, systems with 

battery backups, non-residential systems, tracking systems, systems over 30 kWDC, and 

systems with the appraised value flag were all filtered. The last of these filters is done at the 

express recommendation of the guidance on using the TTS data. Furthermore, module types 

that had too few instances in the data to provide statistical results were also filtered. 

Attempts to link the EnergySage systems with the TTS systems datasets were unsuccessful 

due to the lag between 2018 quotes showing up in the installation data for TTS, assuming 

those quotes show up at all. As such a comparison of the two is infeasible given the currently 

available data. If more data were available it may be possible to analyze the two data sets 

together and model how quoted prices translate to installed prices, the rate at which quotes 

are accepted, and whether there are any systematic differences between prices obtained 

through a clearing house versus those that from direct sales. 

3.3. Statistical Analysis 

The study focuses on only five locations in California: San Jose, San Diego, San Francisco, 

Los Angeles, and Fresno. These cities were chosen because they had enough installations to 

provide statistically significant results for every model developed in this report. Indicator 

variables are used where appropriate to analyze differences between groups. 

The analysis relies on a series of OLS regressions with robust standard errors to assess the 

impacts of the variables in each model. Each model is then compared along multiple criteria. 
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The first is significance of predictors, or in the case of indicator variables, the significance of 

differences in predictors for indicator groups. Predictor significance informs whether the 

variable in the model has some statistical relationship with the predicted variable. Second is 

the adjusted R2 of the model. The adjusted R2 measures how much of the variation in the data 

is explained by the model and is an important measure if interested in the predictive power of 

the model. However, it is generally not a useful indicator of a model’s appropriateness on its 

own and needs to be supplemented with other tests, for instance cross validation, prediction 

intervals, or comparisons of the mean squared prediction error (MSPE) between models. 

Lastly, the prediction and confidence intervals of the model estimates are developed and 

compared. The former provides evidence of whether it is possible to statistically say that a 

prediction came from one model with a certain level of significance, while the latter evinces 

whether the mean predictions from two models differ statistically. Information criterion are 

also used in selecting between models. 

Due to the use of robust standard errors to account for heteroskedasticity, the typical 

formulas for hypothesis testing do not work. Outside of the significance of predictors, which 

can be determined using the Huber-White Sandwich estimator, nonparametric bootstrapping 

is utilized for differences in adjusted R2 values between models and confidence intervals on 

the line as well as other regression statistics that require adjustment due to the use of robust 

standard errors, while quantile regression is utilized for prediction intervals. 

 Analysis 

4.1. EnergySage Regressions 

The primary driver for a quoted system cost remains the size in WDC of the system in 

question. As such, most estimates of solar PV price use only the average based on system 

size when developing estimates (essentially the mean total cost per watt). Conceptually, one 

could argue that if there is no system then there is no cost of installation and no need to add a 

fixed cost, however the model is predicated on a system being installed, as such the fixed 

cost of installation should be evidenced in any model. For the purposes of the initial 

inspection of the EnergySage and TTS data, this paper assumes linearity through the entire 

data region through using OLS, although it is possible that the fixed cost may induce some 

non-linearity near the origin. Webb et al. [5] presents a justification for inclusion of the 

regression constant on the basis that certain costs are not on a per watt basis, however there 

are also statistical reasons to include it. In situations where there isn’t enough data near the 

origin to train the model in that region, enforcing no constant can bias the model by assuming 

a set value where the data cannot statistically justify it. 

Bearing the regression constant in mind, the first OLS model assumes the most simplistic 

form, see Equation 1. At this point the “Economy” tier is dropped from the analysis, as it 

does not have sufficient observations to maintain significance through all regressions, leaving 

“Standard” and Premium” tiers. This is a result of panel efficiencies increasing rapidly, as 

observed in Barbose et al. [1]. 

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽0 + 𝜖0 (1) 

Where 𝛽1 is the regression coefficient on system size, 𝛽0 is the regression constant, and 𝜖0 is 

the error term for the model. For simplicity, all future models use 𝛽 to represent coefficients, 

though they are not equal. In this case the error term does not meet the requirements of the 
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basic OLS model as the data has a high degree of heteroskedasticity, as evident in Figure 2. 

Note that all regressions performed on the EnergySage data are based on the same set of 

9357 data points. 

 
Figure 2. Plot of Quoted Price against System Size for the Filtered EnergySage Data 

The results of the regression using Equation 1 are presented in Table 1. The adjusted R2 is 

0.9475 with a marginal price3 of $2.79/WDC and a fixed cost of approximately $1500. This 

represents a high degree of linearity indicating quotes may be based on fairly simple cost 

models. From this basic model two different models are developed, one based on system 

specifications and another based on location and installer. 

Table 1. Equation 1 Regression Results 

  Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 2.788 0.006 500.700 0.000 2.777 2.799 

Constant 1523.913 47.791 31.890 0.000 1430.235 1617.591 
 

4.1.1. Advanced System Specification Models 

The first iteration of the solar PV system specification model adds the quality variable 

interacted with size as an indicator, as seen in Equation 2. Quality is directly related to the 

 
3 Marginal cost refers to cost per additional Watt. Solar PV panels typically come in non-divisible units (i.e. a 320 W panel) making actual 

panels more akin to lump sum payments. There is no standard panel size though, so the marginal cost is used. 
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solar PV panel (e.g., efficiency) and, therefore, is expected to primarily impact the marginal 

cost. However, there are other factors expected to be captured in quality that could impact the 

fixed costs (e.g., warranties). 

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝑇𝑖𝑒𝑟 + 𝛽3 ∗ 𝑖. 𝑇𝑖𝑒𝑟 + 𝛽0 + 𝜖0 (2) 

𝛽0 is the regression constant, all other 𝛽 values are coefficients, and # represents the 

interaction between two variables. 𝑖. 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑎𝑚𝑒 means the variable is an indicator 

variable.  

Table 2 contains the regression results. Adding quality creates a new significant predictor to 

the model but has little impact on the adjusted R2 at 0.9480. Looking at the mean squared 

prediction error (MSPE) using an 80/20 training to test split reveals no statistical difference 

between the two models (Equation 1 MSPE is 7 106 548, Equation 2 MSPE is 6 953 777)4. 

The “Premium” panels add $251 in fixed costs and $0.06/W in marginal costs over 

“Standard” panels. The data reveals a significant relationship with quality but no effect on 

prediction. For the goal of prediction, the additional increase in predictive power is not 

justified by the additional model complexity. 

Table 2. Equation 2 Regression Results 

 

Robust 
Coef. 

Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 2.790 0.0105 266.12 <0.001 2.770 2.811 

Tier       
      Standard -251.037 108.162 -2.32 0.020 -463.05 -39.025 

Tier#Size       
      Standard -0.0615 0.0173 -3.55 <0.001 -0.0955 -0.0276 

Constant 1612.984 71.975 22.41 <0.001 1471.903 1754.065 
 

The next model excludes the quality variable and includes the inverter type as shown in 

Equation 3. The inverter type (string versus microinverter) is expected to impact the costs of 

a solar PV system, potentially through both marginal cost because the size of the inverter is 

directly correlated with the size of the system, and fixed costs because different inverter 

approaches may require different hardware and labor costs not associated with the size of the 

system. 

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐼𝑛𝑣 + 𝛽3 ∗ 𝑖. 𝐼𝑛𝑣 + 𝛽0 + 𝜖0 (3) 

Table 3 contains the results of the regression. Similar to the quality variable, the inverter type 

is significant, with microinverters being less expensive by $1060 in fixed cost relative to 

string inverters and more expensive in marginal cost by $0.06/W. In terms of explained 

variance or prediction error, including inverter variables does not add predictive power of the 

model (adjusted R2 is 0.9479 and MSPE is 7 046 423). 

 
4 All comparisons of adjusted R2 and MSPE are done using a non-parametric bootstrap with 100 resamplings 
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Table 3. Equation 3 Regression Results 

 

Robust 
Coef. 

Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 2.840 0.0207 137.22 <0.001 2.800 2.881 

Inv       
     String 1060.241 160.938 6.59 <0.001 744.781 1375.701 

Inv#Size       
     String -0.0640 0.0231 -2.77 0.006 -0.109266 -0.0187 

Constant 668.922 146.366 4.57 <0.001 382.026 955.819 
 

The final specification that is possible to regress on in the EnergySage data is the use of a DC 

optimizer in conjunction with a string inverter. This regression is similar to Equation 3; 

however, the string inverter systems must be further disaggregated.  

Table 4 presents the regression results. The string inverter without a DC optimizer (String No 

Opt) shows no significant difference from microinverters in both marginal and fixed cost, 

which could be driven by a lack of data points for that system type. There is a significant 

difference from a string inverter with a DC optimizer relative to the microinverter ($1056 

high fixed costs and $0.06/W lower marginal costs). This result is logical because solar PV 

panels with microinverters built into the panel tend to be more expensive than panels without 

microinverters, but do not require the hardware and labor to install string inverters. The 

inverter variables may also be capturing the impact of increased efficiency of the solar PV 

panels because microinverters are typically included in high efficiency panels. Explained 

variance (EV) and prediction error (PE), however, is not significantly approved (adjusted R2 

= 0.9479, MSPE = 7050633). 

Table 4. Equation 3 Regression Results with DC Optimizer 

  
Robust 
Coef. 

Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 2.840 0.021 137.210 0.000 2.800 2.881 

InvOpt             

String No Opt 1740.260 1113.664 1.560 0.118 -442.670 3923.191 

String Opt 1055.893 161.005 6.560 <0.001 740.302 1371.483 

InvOpt##Size             

String No Opt -0.100 0.187 -0.540 0.590 -0.466 0.265 

String Opt -0.064 0.023 -2.760 0.006 -0.109 -0.018 

Constant 668.922 146.376 4.570 <0.001 382.006 955.839 
 

For predictive purposes, the system size is sufficient for predictive purposes when using the 

EnergySage data, however there are additional model specifications available using the 

available variables. The final regression involves finding a model that includes the most 

significant predictors. After examining multiple model specifications, Equation 4 was 
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developed and includes size, tier, tier interacted with size, inverter, and inverter interacted 

with size. The inverter variable in this case includes the DC optimizer option. 

𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝑇𝑖𝑒𝑟 + 𝛽3 ∗ 𝑖. 𝑇𝑖𝑒𝑟 + 𝛽4 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐼𝑛𝑣 + 𝛽5

∗ 𝑖. 𝐼𝑛𝑣 + 𝛽0 + 𝜖0 

(4) 

The results of this regression are presented in Table 5. The size, tier, and inverter type are all 

statistically significant, although the Tier-Size interaction is only marginally statistically 

significant at the 90 % confidence level. As before, the EV and PE are not significantly 

improved (adjusted R2 = 0.9485, MSPE = 6 900 347). Otherwise, the significance trends 

from the previous models are preserved. A model involving a triple interaction between the 

three predictors was examined, but most predictors lost significance. 

 

Table 5. Equation 4 Regression Results 

  Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 2.784 0.021 131.840 0.000 2.743 2.826 

Tier             

Standard -377.268 179.312 -2.100 0.035 -728.808 -25.729 

Tier#Size             

Standard -0.051 0.028 -1.810 0.070 -0.105 0.004 

Inv#Size             

String No Opt -0.376 0.174 -2.160 0.031 -0.717 -0.035 

String Opt -0.006 0.029 -0.210 0.833 -0.062 0.050 

InvOpt             

String No Opt 3409.467 1131.085 3.010 0.003 1191.984 5626.950 

String Opt 650.080 182.706 3.560 0.000 291.888 1008.273 

Constant 1162.598 150.517 7.720 0.000 867.511 1457.686 
 

The benefit of this model is that is allows for comparison of different system configurations. 

Table 6 shows the estimated fixed cost and marginal cost based on the different configuration 

options. Let’s compare the following: premium panels with microinverters, standard panels 

with string inverter and optimizers, and standard panel with sting inverter. The fixed costs for 

these three configurations are $4195, $1435, and $1163, respectively, while the marginal 

costs are $2.36/W, $2.73, and $2.78/W. The premium system with microinverters has 

statistically significant lower fixed costs and higher marginal costs. 

Table 6. Estimated Fixed Cost and Marginal Cost by System Specification 

Fixed Cost Standard Premium  Marg Cost Standard Premium 

String 4195 4572  String 2.357 2.408 

Opt 1435 1813  Opt 2.727 2.778 

Micro 785 1163  Micro 2.733 2.784 
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Assuming a 10.0 kW system, the installed costs are estimated at $27 765, $28 765, and 

$29 003, respectively. The $1238 difference in installed costs would not be captured in the 

Size only model as all these systems would have the same predicted value. 

4.1.2. Installer Models 

Instead of focusing on the specifications of the system being installed, the installer model 

focuses on two variables in the EnergySage data set, City and Installer. The installer is 

expected to capture some of the same variation identified by quality tier and inverter 

characteristics as well as installer specific cost variation. The city is expected to capture 

market cost and competition differences. One city may have a more developed market with 

more competition and more informed consumers, and lower costs driven by installers being 

further out the learning curve. Also, some cities may have more stringent permitting and 

commissioning processes that increase installation costs. Three regressions are performed, 

the first focusing on just the Installer variable, the next on just the City variable, and the final 

regression examining a City-Installer group variable. All regressions include system size. 

These regressions are given in Equations 5 through 7. 

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐼𝑛𝑠𝑡 + 𝛽3 ∗ 𝑖. 𝐼𝑛𝑠𝑡 + 𝛽0 + 𝜖0 (5) 

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐶𝑖𝑡𝑦 + 𝛽3 ∗ 𝑖. 𝐶𝑖𝑡𝑦 + 𝛽0 + 𝜖0 (6) 

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐶𝑖𝑡𝑦𝐼𝑛𝑠𝑡 + 𝛽3 ∗ 𝑖. 𝐶𝑖𝑡𝑦𝐼𝑛𝑠𝑡 + 𝛽0 + 𝜖0 (7) 

Given the large number of installers, many smaller installers have too few installations to 

produce statistically significant results. Therefore, this analysis focused on the top 10 

installers (representing 65 % of all quotes) to keep comparisons interpretable.  

Table 7 presents these results. The installer model does show a significant improvement in 

adjusted R2 (0.9859) and MSPE (5 363 717) and significant predictors for the selected top 10 

installers. Fixed costs vary across the installers by $2346 ($1465 lower to $881 higher) 

relative to the base installer and marginal costs varying by $1.22/WDC relative to the base 

installer. However, when examining the prediction interval compared to the Size only model, 

the prediction intervals (estimated using quantile regression) overlap for over 99 % of the 

data points. Thus, if using the model for predictive purposes there would be no statistically 

significant way to claim that a prediction from the installer model could not have also come 

from the Size only model. 
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Table 7. Equation 5 Regression Results 

  Coef. 
Robust 
Std. Err. T P>t [95% Conf. Interval] 

Size 2.452 0.013 194.690 <0.001 2.427 2.476 

Inst             

2 -1302.196 80.527 -16.170 <0.001 -1460.048 -1144.344 

3 -309.000 102.869 -3.000 0.003 -510.645 -107.354 

4 880.937 257.051 3.430 0.001 377.060 1384.814 

5 -549.344 104.107 -5.280 <0.001 -753.418 -345.270 

6 -1102.930 163.586 -6.740 <0.001 -1423.596 -782.265 

7 -1270.441 136.809 -9.290 <0.001 -1538.618 -1002.264 

8 -1465.251 105.029 -13.950 <0.001 -1671.133 -1259.370 

9 -732.335 119.591 -6.120 <0.001 -966.761 -497.910 

10 -195.809 260.075 -0.750 0.452 -705.616 313.998 

Inst#Size             

2 0.244 0.013 18.070 <0.001 0.218 0.270 

3 0.306 0.016 19.270 <0.001 0.275 0.337 

4 0.219 0.030 7.260 <0.001 0.160 0.279 

5 0.311 0.017 17.840 <0.001 0.277 0.346 

6 0.452 0.030 15.230 <0.001 0.394 0.510 

7 0.376 0.021 18.060 <0.001 0.335 0.417 

8 0.402 0.016 24.610 <0.001 0.370 0.434 

9 1.216 0.021 57.520 <0.001 1.175 1.258 

10 0.188 0.030 6.220 <0.001 0.129 0.247 

Constant 1811.129 72.221 25.080 <0.001 1669.560 1952.699 
 

The City model is presented in Table 8 and, as with the installer model, only looks at the top 

10 installers to allow comparison with other installer models.  
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Table 8. Equation 6 Regression Results 

  Coef. 
Robust 
Std. Err. T P>t [95% Conf. Interval] 

Size 3.049 0.072 42.380 <0.001 2.908 3.190 

City             

Los Angeles -312.693 558.815 -0.560 0.576 -1408.077 782.690 

San Diego 206.677 576.463 0.360 0.720 -923.300 1336.654 

San Francisco 576.953 970.231 0.590 0.552 -1324.884 2478.790 

San Jose -34.950 585.461 -0.060 0.952 -1182.566 1112.666 

City#Size             

Los Angeles -0.269 0.072 -3.710 <0.001 -0.411 -0.127 

San Diego -0.290 0.078 -3.750 <0.001 -0.442 -0.138 

San Francisco 0.180 0.158 1.140 0.256 -0.130 0.489 

San Jose 0.025 0.079 0.310 0.753 -0.131 0.181 

Constant 957.548 554.076 1.730 0.084 -128.547 2043.642 
 

The City interaction does have a statistically significant lower marginal cost for Los Angeles 

(-$0.27/W) and San Diego (-$0.29/W) relative to Fresno (base city) while there is no 

statistically significant impact on fixed cost for any city. The lower marginal costs may be 

due to numerous factors, namely the inclusion of different installers for each city. Based on 

this, a city only model can be specified as in Equation 8. The EV and PE are not significantly 

improved in this case (adjusted R2 = 0.9580, MSPE = 5 814 342). 

Combining the city and installers into a single variable yields Equation 8 and the regression 

results in Table 95.  

 𝑄𝑢𝑜𝑡𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐶𝑖𝑡𝑦 + 𝛽0 + 𝜖0 (8) 

For those variables that are statistically significant (95% CI), the fixed costs vary by $4645 

and the marginal costs vary by $1.02/W. While the installer-city model does have a 

statistically significant improvement in EV and PE in relation to the city only model 

(adjusted R2 = 0.9901, MSPE = 3 124 373) most of the coefficients are not significantly 

different from the base city-installer group. For that reason, the city-installer model is an 

inefficient model for prediction as it is impossible to attribute the increase in predictive 

power to genuine trends in the coefficients and noise in the data. It should be noted that it 

appears that the installer may proxy for city, as installers in the current data set remain highly 

localized to a single city. This also is why city is not treated as an isolated independent 

variable. 

 
5 An examination of installers across cities reveals installers mostly stick to markets, making trends in installers across cities difficult to 

model using the current data set. 
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Table 9. Equation 7 Regression Results 

  Coef. 
Robust 

Std. Err. T P>t [95% Conf. Interval] 

Size 2.825 0.072 39.260 <0.001 2.684 2.966 

CityInst             

Fresno 2 1063.126 676.231 1.570 0.116 -262.440 2388.692 

Fresno 3 -455.568 688.232 -0.660 0.508 -1804.659 893.524 

Fresno 4 -1305.039 671.779 -1.940 0.052 -2621.879 11.801 

Fresno 5 -670.635 603.708 -1.110 0.267 -1854.041 512.771 

Fresno 6 534.669 656.090 0.810 0.415 -751.417 1820.754 

Los Angeles 1 -820.220 578.374 -1.420 0.156 -1953.965 313.525 

Los Angeles 2 -704.554 583.913 -1.210 0.228 -1849.156 440.048 

Los Angeles 3 -548.900 632.441 -0.870 0.385 -1788.628 690.829 

Los Angeles 4 -177.478 601.722 -0.290 0.768 -1356.991 1002.034 

Los Angeles 5 -1089.277 613.822 -1.770 0.076 -2292.507 113.953 

Los Angeles 6 -1122.307 605.480 -1.850 0.064 -2309.185 64.571 

Los Angeles 7 -1369.615 580.865 -2.360 0.018 -2508.242 -230.988 

Los Angeles 8 225.991 1159.177 0.190 0.845 -2046.261 2498.242 

Los Angeles 9 -219.361 749.934 -0.290 0.770 -1689.402 1250.680 

San Diego 1 469.359 580.895 0.810 0.419 -669.328 1608.046 

San Diego 2 -776.189 579.290 -1.340 0.180 -1911.730 359.352 

San Diego 3 -241.954 596.833 -0.410 0.685 -1411.883 927.976 

San Diego 4 2120.894 789.956 2.680 0.007 572.399 3669.388 

San Diego 5 -195.160 586.768 -0.330 0.739 -1345.359 955.039 

San Diego 6 -716.555 611.518 -1.170 0.241 -1915.268 482.159 

San Diego 7 -193.133 595.371 -0.320 0.746 -1360.195 973.929 

San Diego 8 -1200.289 581.106 -2.070 0.039 -2339.388 -61.189 

San Diego 9 443.965 585.248 0.760 0.448 -703.254 1591.185 

San Diego 10 1280.529 657.400 1.950 0.051 -8.126 2569.183 

San Francisco 1 -323.729 691.277 -0.470 0.640 -1678.790 1031.332 

San Francisco 2 2197.943 1308.913 1.680 0.093 -367.824 4763.710 

San Francisco 3 35.488 725.285 0.050 0.961 -1386.235 1457.211 

San Francisco 4 -2523.912 617.543 -4.090 0.000 -3734.438 -1313.387 

San Francisco 5 1257.294 1297.448 0.970 0.333 -1286.000 3800.588 

San Jose 1 529.593 600.579 0.880 0.378 -647.679 1706.865 

San Jose 2 494.378 1004.321 0.490 0.623 -1474.321 2463.076 

San Jose 3 -43.618 609.091 -0.070 0.943 -1237.575 1150.338 

San Jose 4 -1125.979 587.652 -1.920 0.055 -2277.910 25.953 

San Jose 5 -1142.989 597.865 -1.910 0.056 -2314.940 28.962 



 

 

17 

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.T

N
.2

1
1
4

 

 

San Jose 6 -480.489 581.991 -0.830 0.409 -1621.323 660.345 

San Jose 7 78.679 704.841 0.110 0.911 -1302.971 1460.328 

CityInst#Size             

Fresno 2 -0.023 0.080 -0.290 0.775 -0.180 0.134 

Fresno 3 -0.052 0.083 -0.630 0.532 -0.214 0.111 

Fresno 4 0.132 0.085 1.550 0.121 -0.035 0.299 

Fresno 5 0.910 0.075 12.090 <0.001 0.762 1.057 

Fresno 6 -0.270 0.079 -3.430 0.001 -0.425 -0.116 

Los Angeles 1 -0.129 0.072 -1.780 0.074 -0.270 0.013 

Los Angeles 2 -0.034 0.073 -0.470 0.641 -0.176 0.109 

Los Angeles 3 -0.077 0.078 -0.990 0.324 -0.229 0.076 

Los Angeles 4 -0.062 0.075 -0.820 0.410 -0.208 0.085 

Los Angeles 5 -0.043 0.078 -0.550 0.582 -0.195 0.110 

Los Angeles 6 0.036 0.075 0.470 0.635 -0.112 0.183 

Los Angeles 7 0.032 0.072 0.440 0.657 -0.110 0.174 

Los Angeles 8 0.349 0.160 2.190 0.029 0.036 0.662 

Los Angeles 9 -0.111 0.086 -1.290 0.197 -0.281 0.058 

San Diego 1 -0.373 0.073 -5.110 0.000 -0.516 -0.230 

San Diego 2 -0.143 0.073 -1.960 0.050 -0.285 0.000 

San Diego 3 -0.084 0.078 -1.080 0.279 -0.237 0.068 

San Diego 4 -0.258 0.091 -2.850 0.004 -0.436 -0.081 

San Diego 5 -0.054 0.075 -0.710 0.475 -0.202 0.094 

San Diego 6 -0.109 0.083 -1.320 0.188 -0.272 0.053 

San Diego 7 -0.096 0.077 -1.250 0.211 -0.246 0.054 

San Diego 8 -0.024 0.073 -0.330 0.742 -0.167 0.119 

San Diego 9 0.643 0.074 8.710 0.000 0.499 0.788 

San Diego 10 -0.329 0.081 -4.080 0.000 -0.487 -0.171 

San Francisco 1 0.157 0.094 1.660 0.096 -0.028 0.341 

San Francisco 2 0.202 0.131 1.540 0.124 -0.055 0.459 

San Francisco 3 -0.067 0.098 -0.680 0.497 -0.259 0.126 

San Francisco 4 1.471 0.080 18.420 <0.001 1.315 1.628 

San Francisco 5 -0.226 0.168 -1.350 0.178 -0.556 0.103 

San Jose 1 0.045 0.076 0.590 0.557 -0.105 0.195 

San Jose 2 0.098 0.149 0.660 0.510 -0.194 0.390 

San Jose 3 -0.040 0.080 -0.490 0.621 -0.197 0.118 

San Jose 4 0.207 0.075 2.760 0.006 0.060 0.354 

San Jose 5 0.235 0.075 3.150 0.002 0.089 0.382 

San Jose 6 0.873 0.073 11.980 <0.001 0.730 1.016 

San Jose 7 -0.178 0.088 -2.030 0.043 -0.351 -0.006 
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Constant 1341.770 576.361 2.330 0.020 211.972 2471.569 
 

 

4.1.3. Discussion 

Table 10 presents all the regressions for the EnergySage Data for ease of comparison 

(excludes installer regressions). The EnergySage data is highly linear and shows a strong 

correlation with the system size variable. The strength of that correlation is powerful enough 

that using the Size variable alone is sufficient to serve as a predictive model, even compared 

to model specifications that include more detail and have other statistically significant 

coefficients. For the purposes of the forthcoming PV LCC tool (Present Value of 

Photovoltaics – PV2), quote data from EnergySage can rely on system size only for 

prediction of default cost estimates for homeowners. This also prevents overfitting by 

focusing on installers that may not exist at future times. 

Other observations can be made regarding the significant coefficients in the model. Using the 

specification model, no significant improvement to adjusted R2 or MSPE is achieved, even 

when using all significant variables related to technology. The installer model does improve 

adjusted R2 and MSPE relative to the Size only model. There are a few hypotheses as to why 

the installer model accounts for more variability. First, installers may be consistently using 

the same modules and inverters, thus the installer variable may be proxying for module, 

inverter and quality, while also incorporating other non-technology costs specific to the 

installer (e.g., operational overhead). A clearing house also may be more competitive than 

other solar PV markets, causing installers to price match in order to attract buyers. Lower 

soft costs may also be a factor. It should be noted that the improvements in adjusted R2 and 

MSPE are not proof of superiority of the installer model relative to the specification model 

but do suggest that such a relationship may be worth further investigation through more 

complex analysis with a more comprehensive dataset. Last, there are multiple significant 

predictors that using the Size only model ignores. Inverter type, quality, and city are 

statistically significant in solar PV quote models. Although these do not translate to 

improvements in predictive power due to the large portion of the quoted cost explained by 

system size as well as the inherent noise in the data, the trends they represent are real and 

worth considering. The significant difference in the City coefficients is especially interesting 

because it shows statistically what is generally accepted, that locality has a significant impact 

on PV quotes, and suggests further research is needed in more refined markets.  
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Table 10. EnergySage Regression Coefficients (Dark Yellow, p <0.010, Medium Yellow, p < 

0.050, Light Yellow, p < 0.100) 

Equation 1 2 3a 3b 4 6 

Adjusted R2 0.948 0.948 0.948 0.948 0.949 0.958 

Size 2.788 2.790 2.840 2.840 2.784 3.049 

Tier       
Standard  -251.037   -377.268  

Tier#Size       
Standard  -0.0615   -0.051  

Inv       
String   1060.241    

Inv#Size       
String   -0.0640    

InvOpt       

String No Opt    1740.260 3409.467  

String Opt    1055.893 650.080  

InvOpt##Size       

String No Opt    -0.100 -0.376  
String Opt    -0.064 -0.006  

City       

Los Angeles      -312.693 

San Diego      206.677 

San Francisco      576.953 

San Jose      -34.950 

City#Size       
Los Angeles      -0.269 

San Diego      -0.290 

San Francisco      0.180 

San Jose      0.025 

Constant 1523.913 1612.984 668.922 668.922 1162.598 957.548 

 

4.2. Tracking the Sun Regressions 

The TTS data analysis follows a similar pattern to the EnergySage analysis with a few 

differences. First the dependent variable being regressed is the installed price of the system, 

as opposed to the quote. Therefore, TTS data points are all real system installations, as 

opposed to quotes for potential systems. As quoted prices and installed prices for the same 

system can differ due to changes to system designs, delays, permitting issues, or other 

unexpected problems, installed prices are far less certain and more variable. The TTS data 
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also is more detailed in terms of technical specifications than the EnergySage data, though it 

lacks a quality variable. Figure 3 shows another difference in the two data sets, as the TTS 

data is far more dispersed than the EnergySage quotes shown in Figure 2. Note that all 

regressions are done on the same set of 2514 observations. 

 
Figure 3. Plot of Total Installed Price against System Size for the Filtered TTS Data 

Heteroskedasticity isn’t as evident as the EnergySage data due to the dispersed nature of the 

TTS data, however a Breusch-Pagan test confirms heteroskedasticity between Size and Price. 

Considering that Size is required for all regressions that follow, all regressions utilize robust 

standard errors. 

Regressing Price on Size according to Equation 9 yields The adjusted R2 for the model is 

0.6950 and the MSPE is 6.4126E7. Unlike the EnergySage data that shows a high degree of 

correlation between the Quote and Size variables, the TTS data shows moderate correlation 

and a much higher prediction error. This outcome is likely due to the idiosyncrasies involved 

in working on a specific project as opposed to dealing with a quote which is often more 

standardized and potentially optimistic. The marginal cost is $0.60/WDC (22 %) higher at 

$3.39 per WDC compared to $2.79 per WDC relative to the EnergySage estimate, implying 

higher reported installed costs than the quoted installed costs from the online platform. 

However, a true comparison isn’t feasible due to the natural lag between obtaining a quote 

and deciding on and finishing installation of a system. Additionally, the EnergySage data 

may account for a specific subset of the overall market due to its online platform nature. As 

before, a specification-based model and an installer-based model are developed from the 

available variables in the TTS data set. 

Table 11 (marginal cost in $/kWDC). 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽0 + 𝜖0 (9) 

The adjusted R2 for the model is 0.6950 and the MSPE is 6.4126E7. Unlike the EnergySage 

data that shows a high degree of correlation between the Quote and Size variables, the TTS 
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data shows moderate correlation and a much higher prediction error. This outcome is likely 

due to the idiosyncrasies involved in working on a specific project as opposed to dealing with 

a quote which is often more standardized and potentially optimistic. The marginal cost is 

$0.60/WDC (22 %) higher at $3.39 per WDC compared to $2.79 per WDC relative to the 

EnergySage estimate, implying higher reported installed costs than the quoted installed costs 

from the online platform. However, a true comparison isn’t feasible due to the natural lag 

between obtaining a quote and deciding on and finishing installation of a system. 

Additionally, the EnergySage data may account for a specific subset of the overall market 

due to its online platform nature. As before, a specification-based model and an installer-

based model are developed from the available variables in the TTS data set. 

Table 11. Equation 9 Regression Results 

  
Robust 
Coef. 

Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 3.388 0.070 48.12 <0.001 3.250 3.526 

Constant 2.071 0.367 5.65 <0.001 1.352 2.790 
 

4.2.1. Specification Models 

Module efficiency is used to proxy for the quality variable defined in the EnergySage data 

(see Equation 10 for the model specification).  

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝐸𝑓𝑓#𝑆𝑖𝑧𝑒 + 𝛽3 ∗ 𝐸𝑓𝑓 + 𝛽0 + 𝜖0 (10) 

Table 12 provides the results for the Efficiency regression. Of note is the fact that the 

Efficiency and Size interaction is not significant while the Efficiency fixed cost variable is 

significant.  

Table 12. Equation 10 Regression Results 

 Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 2.956 0.936 3.16 0.002 1.122 4.791 

Eff 57940.040 22747.120 2.55 0.011 13335.000 102545.100 

Eff#Size 1.898 4.660 0.41 0.684 -7.240 11.035 

Constant -8994.140 4494.123 -2.00 0.045 -17806.710 -181.571 

 

Decomposing the regression into just the Efficiency variable produces Equation 11.  

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝐸𝑓𝑓 + 𝛽0 + 𝜖0 (11) 

Table 13 gives the results. All coefficients are significant, indicating that Eff is a significant 

predictor. Efficiency is measured in percentage in the TTS data set, so interpreting the 

coefficient is not as straightforward since an increase of efficiency of one unit would result in 

a 100 % efficiency, which is not possible. One could naively say however that a 100 % 

efficient system would add roughly $62 000 to the price of the system. Because efficiency is 

independent of system size in the above model this increase would be a flat rate. 
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Interestingly, the fixed cost is now negative and statistically significant. This is likely a result 

of the efficiency representing a fixed value increase independent of the Size variable, causing 

the constant to adjust to account for it. Furthermore, there are no systems below roughly 

16 % efficiency, so the data has no points near the origin in relation to the efficiency axis. In 

this case the constant cannot be readily interpreted as anything more than an adjustment to 

minimize the loss function.  

Table 13. Equation 11 Regression Results 

 Robust Coef. 
Robust Std. 

Err. T P>t [95% Conf. Interval] 

Size 3.324 0.073 45.260 <0.001 3.180 3.468 

Eff 61867.760 9201.793 6.720 <0.001 43824.000 79911.510 

Constant -9596.575 1697.279 -5.650 <0.001 -12924.760 -6268.388 
 

In terms of predictive power, the addition of efficiency is insignificant, with the adjusted R2 

increasing to only 0.7027 and the MSPE becoming 6.3224E7 relative to the Equation 9 

regression. For predictive purposes the efficiency variable can be omitted. 

The Efficiency regression with only the interaction variable per Equation 12 is used to 

evaluate the marginal effects of efficiency that may be hidden by the fixed cost effects from 

the previous regression. 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝐸𝑓𝑓#𝑆𝑖𝑧𝑒 + 𝛽0 + 𝜖0 (12) 

The results of Equation 12 are presented in Table 14. If only the interaction is included, then 

it becomes significant. Using the Akaike and Bayesian Information Criteria, the Eff model is 

not distinguishable from the interaction model (Efficiency AIC is 51742.71, BIC is 51760.24, 

for the interaction model AIC is 51746.97, BIC is 51764.5). Given their near identical nature, 

expert judgement can be used to guide model development. Since efficiency is directly 

associated with the solar PV panels, it is expected to directly impact the marginal cost in 

practice and the predictive power is statistically indistinguishable, Equation 12 is selected. 

Table 14. Equation 12 Regression Results 

 Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 1.425 0.437 3.26 0.001 0.568 2.283 

Eff#Size 9.864.615 2.010 4.91 <0.001 5922.523 13806.710 

Constant 2111.593 377.1237 5.60 <0.001 1372.088 2851.099 

 

Looking next at inverter type the regression becomes Equation 13: 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐼𝑛𝑣 + 𝛽3 ∗ 𝑖. 𝐼𝑛𝑣 + 𝛽0 + 𝜖0 (13) 

Table 15 summarizes the regression results. The regression suggests that string inverters are 

less expensive than microinverters by $1850 of fixed cost with no statistical difference in 

marginal costs. This seems counterintuitive given that system size should determine the 
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inverter size and thus the total price. One explanation could simply be that both micro and 

string inverters are sized to roughly the same capacity, therefore the marginal effect washes 

out leaving only the difference in installation cost. 

Table 15. Equation 13 Regression Results 

  
Robust 
Coef. 

Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 3.433 0.085 40.410 <0.001 3.266 3.600 

Inv             

String -1849.644 752.892 -2.460 0.014 -3325.986 -373.301 

Inv#Size             

String -0.039 0.142 -0.270 0.786 -0.319 0.242 

Constant 2921.388 432.941 6.750 <0.001 2072.435 3770.340 
 

Regardless, the Size and Inverter Type interaction can be removed from Equation 13 

resulting in the following form for the inverter type model in Equation 14. 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑖. 𝐼𝑛𝑣 + 𝛽0 + 𝜖0 (14) 

In terms of additional predictive power, the Inverter Type variable is negligible with an 

adjusted R2 of 0.7031 and an MSPE of 6.4899E7. 

Adding the DC optimizer to the regression works the same way as for the EnergySage data. 

Regression values are found in Table 16. The results are similar to the EnergySage results 

with the exception that there is no significant difference between the microinverter marginal 

cost and either of the string inverter marginal costs. The optimizer in this case has a lower 

fixed cost than the microinverter as opposed to the greater price in the EnergySage data. 

Constraint should be used when comparing the results as the lag between quoted systems and 

installed systems may give sufficient time for price trends to change. The adjusted R2 and 

MSPE are 0.7057 and 6.4928E7, respectively, and represent a statistically insignificant 

change from the Size only model. 

Table 16. Equation 14 Regression Results with DC Optimizer 

  Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 3.433 0.085 40.390 <0.001 3.266 3.600 

InvOpt             

String No Opt -2268.463 2960.712 -0.770 0.444 -8074.112 3537.186 

String Opt -1529.150 763.515 -2.000 0.045 -3026.323 -31.976 

InvOpt##Size             

String No Opt -0.591 0.613 -0.960 0.335 -1.793 0.611 

String Opt -0.059 0.145 -0.400 0.686 -0.342 0.225 

Constant 2921.388 433.111 6.750 <0.001 2072.101 3770.674 
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The last specification regression seeks to find a combination of the above specification 

models that maintains significant coefficients. The ultimate form is given in Equation 15. 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑖. 𝐼𝑛𝑣 + 𝛽3 ∗ 𝐸𝑓𝑓 + 𝛽0 + 𝜖0 (15) 

The regression results are found Table 17. All predictors are significant, and the same basic 

relationships hold in the aggregate model that existed in the piece-wise models. Higher 

efficiency panels are more expensive ($0.06/W per 1% in rated efficiency) and systems with 

microinverters are also more expensive ($4400 more than with string inverters and $1413 

more than with optimizers). Predictive power is, again, not significantly increased (adjusted 

R2 and MSPE are 0.7087 and 6.3426E7, respectively). 

Table 17. Equation 15 Regression Results 

  Coef. 
Robust Std. 
Err. t P>t [95% Conf. Interval] 

Size 2.130 0.470 4.53 <0.001 1.207 3.053 

InvOpt             

String No Opt -4400.378 873.9334 -5.04 <0.001 -6114.071 -2686.686 

String Opt -1412 268.8247 -5.26 <0.001 -1939.898 -885.6232 

Eff#Size 6.323 2.173 2.91 0.004 2.063 10.584 

Constant 3033.642 366.6197 8.27 <0.001 2314.739 3752.545 
 

Similar to the EnergySage specification model, the benefit of this model is that is allows for 

comparison of different system configurations. Table 18 below shows the estimated fixed 

cost and marginal cost based on the different configuration options. Let’s compare the 

following: high efficiency (20 %) panels with microinverters, standard efficiency (18%) 

panels with string inverter and optimizers, and standard efficiency panel with sting inverter. 

Additional fixed costs for different inverter types may represent different installation 

techniques, however the cause of the difference is beyond the scope of the current paper. 

Table 18. Fixed Cost and Marginal Cost by System Specification 

Inverter 

Fixed 

Cost  Efficiency 

Marg 

Cost 

String -1367  16 % 3.14 

Opt 1621  18 % 3.27 

Micro 3034  20 % 3.40 

 

Assuming a 10.0 kW system, the installed costs are estimated at $31 320, $34 307, and 

$36 985, respectively. The $5665 difference (Roughly 15 % to 20 % of total installed costs) 

across these systems would not be captured in the Size only model that would project the 

costs to be the same for all systems.  

4.2.2. Installer Models 

The same three basic regressions in Equations 5 through 7 are run for the TTS data, except 

using Price in lieu of Quote. All regressions with city-installer interactions are limited to the 
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top 10 installers per city except for Los Angeles and San Francisco, where an insufficient 

number of city-installer groups with enough data to generate significant results were 

available (in total 46 % of all installations after filtering out systems per Section 3.2 and 

removing any systems with missing data). There is a small amount of overlap in installers 

between cities, reducing the total number of installers in the model further. As such 33 

installers are represented instead of 50. These cities are limited to four and three installer 

groups, respectively. 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐼𝑛𝑠𝑡 + 𝛽3 ∗ 𝑖. 𝐼𝑛𝑠𝑡 + 𝛽0 + 𝜖0 (16) 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐶𝑖𝑡𝑦 + 𝛽3 ∗ 𝑖. 𝐶𝑖𝑡𝑦 + 𝛽0 + 𝜖0 (17) 

 𝑃𝑟𝑖𝑐𝑒 = 𝛽1 ∗ 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 𝑆𝑖𝑧𝑒#𝑖. 𝐶𝑖𝑡𝑦𝐼𝑛𝑠𝑡 + 𝛽3 ∗ 𝑖. 𝐶𝑖𝑡𝑦𝐼𝑛𝑠𝑡 + 𝛽0 + 𝜖0 (18) 

Looking at the installer model first (Table 19). The marginal cost of solar PV sees the most 

significant variables (21 of 33) relative to the base installer with variations of marginal costs 

from -$2.81/W to $2.00/W. Only five installers realize significant differences in fixed costs 

with a range from -$10 868 to $9558.  Several installers (12, 15, and 18) have statistically 

significant differences in both fixed costs and marginal costs. In these three cases, the 

installers realize much higher fixed costs and lower marginal costs, which could be due to 

different cost structures (capacity for wholesale purchases) in those installers or artifacts of 

the available data from those installers.  

Table 19. Equation 16 Regression Results 

  Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 4.407 0.195 22.590 <0.001 4.024 4.789 

Inst             

2 62.702 2259.537 0.030 0.978 -4368.099 4493.503 

3 246.859 2184.325 0.110 0.910 -4036.458 4530.176 

4 4807.211 3839.487 1.250 0.211 -2721.768 12336.190 

5 -6441.186 5542.720 -1.160 0.245 -17310.090 4427.720 

6 273.806 2318.013 0.120 0.906 -4271.665 4819.276 

7 5456.836 3933.097 1.390 0.165 -2255.706 13169.380 

8 2147.228 4619.898 0.460 0.642 -6912.085 11206.540 

9 -5481.471 4129.653 -1.330 0.185 -13579.450 2616.505 

10 6799.491 6322.469 1.080 0.282 -5598.452 19197.430 

11 10291.440 5411.926 1.900 0.057 -320.989 20903.860 

12 8204.946 3320.190 2.470 0.014 1694.275 14715.620 

13 4214.172 3162.438 1.330 0.183 -1987.159 10415.500 

14 -808.555 2252.335 -0.360 0.720 -5225.235 3608.125 

15 9558.215 4540.583 2.110 0.035 654.434 18462.000 

16 7443.541 2526.930 2.950 0.003 2488.400 12398.680 

17 -1041.680 2801.964 -0.370 0.710 -6536.145 4452.785 
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18 685.326 4459.628 0.150 0.878 -8059.709 9430.360 

19 -2299.057 3144.813 -0.730 0.465 -8465.826 3867.712 

20 3475.562 3229.732 1.080 0.282 -2857.728 9808.852 

21 1715.257 2595.028 0.660 0.509 -3373.421 6803.935 

22 -841.994 2244.986 -0.380 0.708 -5244.262 3560.274 

23 3554.371 3934.717 0.900 0.366 -4161.347 11270.090 

24 3789.344 2805.629 1.350 0.177 -1712.308 9290.995 

25 1003.017 2353.253 0.430 0.670 -3611.555 5617.589 

26 1675.481 2267.415 0.740 0.460 -2770.769 6121.730 

27 3341.695 2586.524 1.290 0.196 -1730.306 8413.696 

28 2355.239 2382.125 0.990 0.323 -2315.949 7026.428 

29 -335.929 2305.281 -0.150 0.884 -4856.433 4184.575 

30 -10868.080 3365.610 -3.230 0.001 -17467.810 -4268.340 

31 1772.419 3403.191 0.520 0.603 -4901.012 8445.850 

32 -467.514 2296.000 -0.200 0.839 -4969.816 4034.789 

33 8645.316 3089.603 2.800 0.005 2586.810 14703.820 

Inst#Size             

2 -1.071 0.221 -4.830 <0.001 -1.506 -0.636 

3 -1.669 0.229 -7.290 <0.001 -2.119 -1.220 

4 -1.376 0.430 -3.200 0.001 -2.219 -0.532 

5 0.849 1.017 0.840 0.404 -1.145 2.844 

6 -0.515 0.301 -1.710 0.088 -1.107 0.076 

7 -1.687 0.361 -4.660 <0.001 -2.397 -0.978 

8 1.294 0.431 3.000 0.003 0.448 2.139 

9 -0.871 0.840 -1.040 0.300 -2.519 0.776 

10 -0.087 1.181 -0.070 0.941 -2.403 2.229 

11 -1.097 1.269 -0.860 0.387 -3.587 1.392 

12 -2.805 0.632 -4.440 <0.001 -4.044 -1.565 

13 -1.638 0.379 -4.320 <0.001 -2.382 -0.894 

14 -0.023 0.259 -0.090 0.927 -0.533 0.485 

15 -2.100 0.399 -5.260 <0.001 -2.883 -1.317 

16 -0.382 0.316 -1.210 0.226 -1.002 0.237 

17 -0.412 0.362 -1.140 0.255 -1.123 0.297 

18 2.000 0.851 2.350 0.019 0.330 3.670 

19 -0.408 0.278 -1.470 0.142 -0.953 0.136 

20 -1.892 0.414 -4.560 <0.001 -2.705 -1.079 

21 -2.147 0.360 -5.950 <0.001 -2.855 -1.439 

22 -0.669 0.226 -2.950 0.003 -1.113 -0.224 

23 -1.953 0.416 -4.690 <0.001 -2.770 -1.136 
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24 -1.187 0.267 -4.430 <0.001 -1.712 -0.662 

25 -0.987 0.237 -4.160 <0.001 -1.452 -0.521 

26 -1.198 0.217 -5.510 <0.001 -1.624 -0.771 

27 -0.930 0.319 -2.910 0.004 -1.557 -0.303 

28 -1.502 0.260 -5.760 <0.001 -2.013 -0.991 

29 0.032 0.269 0.120 0.905 -0.496 0.560 

30 0.442 0.385 1.150 0.251 -0.313 1.198 

31 -1.322 0.300 -4.410 <0.001 -1.911 -0.734 

32 -1.383 0.208 -6.630 <0.001 -1.793 -0.974 

33 -2.300 0.390 -5.890 <0.001 -3.066 -1.534 

Constant 378.347 2169.401 0.170 0.862 -3875.705 4632.398 
 

The negative constants are possibly due to wide scatter for some installers or too few points 

near the origin to be able to meaningfully interpret behavior of the model. The EV for the 

model is significantly increased; however, the PE is significantly increased for this model 

(adjusted R2 and MSPE are 0.8233 and 8.6218E7, respectively). The increase in PE is likely 

due to the smaller sample size for each Inst group. Also, the prediction intervals overlap 

between the Size only model and this model for nearly every data point. The installer model 

does show higher total installed prices for roughly 75 % of its predictions. While there is no 

statistical justification using the current data to say this bias is significant, should more data 

become available this potential bias should be investigated further. 

Equation 17’s regression results are found in Table 20. Statistically significant differences 

exist at the city level. Using Fresno as the base city, San Francisco and San Jose have 

statistically significant increases in fixed cost (around $5000), while Los Angeles and San 

Diego are statistically the same. All cities have a significant increase in marginal cost (range 

of $0.48/W to $1.31/W) except for San Jose, which is statistically identical. Adjusted R2 and 

MSPE are not significantly improved (0.7372 and 6.5263E7, respectively). 
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Table 20. Equation 17 Regression Results 

  Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 3.139 0.065 47.960 <0.001 3.011 3.267 

City             

Los Angeles -2678.630 1843.921 -1.450 0.146 -6294.397 937.137 

San Diego -1063.674 689.275 -1.540 0.123 -2415.281 287.933 

San Francisco 4880.999 2095.650 2.330 0.020 771.613 8990.384 

San Jose 5456.736 1427.892 3.820 <0.001 2656.765 8256.706 

City#Size             

Los Angeles 1.099 0.341 3.220 0.001 0.431 1.768 

San Diego 0.484 0.129 3.730 <0.001 0.229 0.738 

San Francisco 1.311 0.445 2.950 0.003 0.438 2.184 

San Jose 0.202 0.233 0.870 0.387 -0.255 0.660 

Constant 1427.348 407.115 3.510 <0.001 629.031 2225.664 
 

Last, the city-installer group model is presented in Table 21. Significant differences appear 

when using the model in Equation 16, but the improvement over the Size only model is 

negligible in terms of MSPE (6.4348E7) and over 99 % of prediction intervals overlapping 

between the two but shows a significant increase in adjusted R2 (0.8242). The statistically 

significant variation of $21 160 (-$9824 to $11 335) in the city-installer fixed costs and 

$4.85/W (-$2.81/W to $2.00/W) in marginal costs are like those found in the installer only 

model ($20 426 and $4.81/W). As before the constant becomes negative for a small number 

of groups. Based on the results, using the Size only model is justified for predictive purposes. 

Table 21. Equation 18 Regression Results 

  Coef. 
Robust 
Std. Err. t P>t [95% Conf. Interval] 

Size 3.445 0.117 29.390 <0.001 3.215 3.675 

CityInst             

Fresno 2 1290.878 854.042 1.510 0.131 -383.843 2965.600 

Fresno 3 6500.855 3385.622 1.920 0.055 -138.136 13139.850 

Fresno 4 10602.230 4077.616 2.600 0.009 2606.287 18598.180 

Fresno 5 -1255.038 2421.723 -0.520 0.604 -6003.882 3493.807 

Fresno 6 4598.391 3387.510 1.360 0.175 -2044.302 11241.080 

Fresno 7 273.349 1162.185 0.240 0.814 -2005.622 2552.320 

Fresno 8 2816.439 2749.936 1.020 0.306 -2576.012 8208.889 

Fresno 9 576.506 1109.668 0.520 0.603 -1599.484 2752.496 

Fresno 10 9689.335 2349.343 4.120 <0.001 5082.423 14296.250 

Los Angeles 1 1044.020 2320.761 0.450 0.653 -3506.845 5594.885 
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Los Angeles 2 1317.825 1154.673 1.140 0.254 -946.415 3582.066 

Los Angeles 3 9248.966 2646.180 3.500 <0.001 4059.974 14437.960 

Los Angeles 4 -9824.058 2703.134 -3.630 <0.001 -15124.730 -4523.382 

San Diego 1 -4437.451 3612.813 -1.230 0.219 -11521.950 2647.047 

San Diego 2 235.465 1015.930 0.230 0.817 -1756.710 2227.640 

San Diego 3 2.340 1954.280 0.000 0.999 -3829.879 3834.558 

San Diego 4 2759.277 1642.777 1.680 0.093 -462.105 5980.659 

San Diego 5 202.026 999.476 0.200 0.840 -1757.883 2161.934 

San Diego 6 2047.037 1224.100 1.670 0.095 -353.346 4447.419 

San Diego 7 2719.500 1049.043 2.590 0.010 662.393 4776.608 

San Diego 8 4385.714 1629.265 2.690 0.007 1190.829 7580.600 

San Diego 9 3399.259 1278.902 2.660 0.008 891.414 5907.104 

San Diego 10 417.393 1247.206 0.330 0.738 -2028.299 2863.086 

San Francisco 1 7843.510 6003.928 1.310 0.192 -3929.812 19616.830 

San Francisco 2 8487.561 1532.571 5.540 <0.001 5482.285 11492.840 

San Francisco 3 2894.372 5503.406 0.530 0.599 -7897.458 13686.200 

San Jose 1 1649.182 1661.615 0.990 0.321 -1609.141 4907.505 

San Jose 2 5851.230 3276.043 1.790 0.074 -572.883 12275.340 

San Jose 3 -5397.167 5173.485 -1.040 0.297 -15542.040 4747.709 

San Jose 4 3191.248 4166.042 0.770 0.444 -4978.096 11360.590 

San Jose 5 11335.460 5032.637 2.250 0.024 1466.775 21204.140 

San Jose 6 5258.192 2444.641 2.150 0.032 464.405 10051.980 

San Jose 7 4021.253 4640.380 0.870 0.386 -5078.238 13120.740 

San Jose 8 4519.582 2531.371 1.790 0.074 -444.276 9483.439 

San Jose 9 4833.363 1959.548 2.470 0.014 990.814 8675.912 

San Jose 10 2266.026 1003.012 2.260 0.024 299.183 4232.868 

CityInst#Size           

Fresno 2 -0.707 0.168 -4.210 <0.001 -1.037 -0.378 

Fresno 3 -0.725 0.326 -2.220 0.026 -1.367 -0.084 

Fresno 4 -1.138 0.368 -3.090 0.002 -1.860 -0.417 

Fresno 5 0.553 0.230 2.400 0.016 0.101 1.005 

Fresno 6 -0.991 0.386 -2.560 0.010 -1.750 -0.233 

Fresno 7 1.057 0.265 3.990 <0.001 0.537 1.578 

Fresno 8 -0.360 0.256 -1.400 0.160 -0.864 0.142 

Fresno 9 -0.421 0.138 -3.040 0.002 -0.694 -0.149 

Fresno 10 -1.338 0.358 -3.730 <0.001 -2.041 -0.635 

Los Angeles 1 0.961 0.227 4.220 <0.001 0.515 1.408 

Los Angeles 2 0.446 0.258 1.720 0.085 -0.061 0.953 

Los Angeles 3 -1.843 0.613 -3.000 0.003 -3.046 -0.640 
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Los Angeles 4 1.404 0.352 3.980 <0.001 0.712 2.096 

San Diego 1 0.090 0.827 0.110 0.913 -1.531 1.712 

San Diego 2 0.938 0.208 4.510 <0.001 0.530 1.346 

San Diego 3 0.549 0.327 1.680 0.094 -0.093 1.191 

San Diego 4 -1.185 0.325 -3.640 <0.001 -1.824 -0.546 

San Diego 5 0.292 0.164 1.780 0.075 -0.030 0.615 

San Diego 6 -0.025 0.179 -0.140 0.888 -0.376 0.325 

San Diego 7 -0.236 0.151 -1.560 0.119 -0.533 0.060 

San Diego 8 0.031 0.279 0.110 0.911 -0.516 0.579 

San Diego 9 -0.540 0.209 -2.580 0.010 -0.950 -0.130 

San Diego 10 1.080 0.260 4.150 <0.001 0.569 1.591 

San Francisco 1 0.874 1.173 0.750 0.456 -1.425 3.175 

San Francisco 2 0.579 0.275 2.100 0.035 0.039 1.119 

San Francisco 3 1.841 1.113 1.650 0.098 -0.341 4.025 

San Jose 1 -0.163 0.326 -0.500 0.617 -0.803 0.476 

San Jose 2 -0.414 0.401 -1.030 0.303 -1.201 0.373 

San Jose 3 1.811 1.007 1.800 0.072 -0.162 3.786 

San Jose 4 2.256 0.402 5.600 <0.001 1.466 3.045 

San Jose 5 -0.135 1.262 -0.110 0.914 -2.611 2.339 

San Jose 6 -0.676 0.346 -1.950 0.051 -1.355 0.003 

San Jose 7 3.010 0.985 3.060 0.002 1.078 4.942 

San Jose 8 -0.930 0.384 -2.420 0.016 -1.684 -0.175 

San Jose 9 -0.225 0.218 -1.030 0.301 -0.653 0.202 

San Jose 10 0.685 0.142 4.830 <0.001 0.407 0.964 

Constant -665.673 814.984 -0.820 0.414 -2263.804 932.459 
 

4.2.3. Discussion 

Table 20 presents the reduced regressions for the TTS data (excluding installer regressions) 

for ease of comparison. Looking at the models from a prediction perspective, any pricing tool 

may use the Size only model without losing any statistically significant gains from other 

significant predictors if using the TTS data. Thus, the form in Equation 9 is satisfactory. 

However, the multiple models show that there are significant predictors that need to be 

accounted for if looking from an explanatory perspective. The module efficiency acts as an 

adjustment to marginal cost, while inverter type and city (including the DC optimizer) play a 

role in determining the ultimate price of solar both in terms of fixed and marginal costs. 

There are differences across cities, showing that market-specific estimates are appropriate. 

Installer, as with the EnergySage data, explains the most variance on its own, likely due to 

the aforementioned proxying of technology coupled with the implicit inclusion of installer-

specific fixed costs. However, it fails to increase actual predictive power (relative to MSPE 

or prediction intervals) in a meaningful way. 
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Table 22. Summary of Reduced TTS Expressions 

Equation 9 12 13 14 15 17 

Adjusted R2 0.6950 0.7027 0.7031 0.7057 0.7087 0.7327 

Size 3387.833 1425.346 3433.154 3433.154 2130.432 3139.614 

Eff#Size   9864.615     6323.456   

Inv             

String     -1849.644       

Inv#Size             

String     -38.879       

InvOpt             

String No Opt       -2268.463 -4400.378   

String Opt       -1529.15 -1412.761   

InvOpt#Size             

String No Opt       -590.772     

String Opt       -58.506     

City             

Los Angeles           -2678.63 

San Diego           -1063.674 

San Francisco           4880.999 

San Jose           5456.736 

City#Size             

Los Angeles           1099.926 

San Diego           484.188 

San Francisco           1311.313 

San Jose           202.225 

Constant 2071.054 2111.593 2921.388 2921.388 3033.642 1427.348 

 

 Conclusion 

Total solar PV installations in the U.S. continue to increase significantly each year. Policy 

decisions and the nature of solar markets continue to shift; however, it is likely that the price 

of solar will continue to decrease in the near term. Given the increasing market and more 

competition in installations, it is beneficial to have a greater understanding in the driving 

factors in solar PV pricing, as well as models to help perspective buyers and sellers to obtain 

estimates for the cost of installations.  

At present the most common model for solar PV pricing is solely based on marginal costs by 

the size of the solar PV system. The work in Webb et al. [5] shows that this is likely 

impacting estimates of solar PV pricing by ignoring the fixed cost component. In an 

examination of two data sets for California for installations and quotes for 2018, some key 

findings emerge. First, for the data used, system size with a fixed cost component is a 
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sufficient predictor. While it does not explain the most variation in the data, the model 

produces estimates that are statistically indistinguishable from more complicated models. 

Whether this holds for all data sets is unknown, however the process for making such a 

determination is laid out here. 

Second, using system size by itself glosses over other significant predictors by attempting to 

“bake” them into the model. The inverter technology, quality (or efficiency) of the panels, 

and the city all are important in determining the ultimate price of a quote or installed price 

for a system and may not show up as marginal impacts. Also, an installer regression model, 

with system size, manages to capture more of the variation than using the specifications by 

themselves. This indicates that installer is a possible proxy for the specification variables, as 

well as incorporating pricing impacts not included in the specifications available in the data. 

While all of this is not entirely unsurprising, having the statistical basis informs decisions on 

the development of predictive and explanatory models going forward, as well as other areas 

of vital data collection and research. 

The current work is meant to serve as an initial probe into the data sets using rudimentary 

methods. Future work could include multiple topics. A deeper dive into the spatial 

component of pricing, utilizing ZIP code groupings and the physical location of installers, 

may provide better insight into market competition, it’s pricing impacts, and how markets 

develop if sufficient historical data is provided. Linking the EnergySage and TTS data sets 

would provide the opportunity to see the rate at which quotes become installed systems, and 

how quotes compare with installed prices. Doing so would require additional data not 

available for the current paper. The use of finer time periods, time-series, seasonal and 

autoregressive models could also check for lagged effects or if solar PV pricing varies at time 

frames less than a year, provided sufficient data exists to reduce data from the yearly 

aggregate. 

Other possibilities include looking at more complex models to examine if their prediction 

power is better. Given the large number of variables in the data sets, OLS quickly becomes 

limited, however the use of lasso regression or other machine learning techniques could 

incorporate more variables. An artificial neural network could be developed for instance, that 

would be able to take the specific panel designation and update predictions using it. A 

classification model could also be created to determine if it is possible to predict an installer 

using only system specifications. This would serve as a check of installers purchase patterns, 

namely if installer does serve as a proxy for specifications. With historical data available this 

can be traced to look at the movement of purchase decisions over time. Some of the 

aforementioned topics would require more data and in some cases the collection of more data 

than is currently done in data sets like EnergySage or the public TTS data. 
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