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Abstract 

This document details methods to compare instrument performance. Comparison methods for 
instruments outputting binary (0-1) responses as well as for instruments outputting continuous 
numeric responses are shown, first for two instruments and then for multiple instruments.  
Hypothesis tests and confidence intervals for instrument differences are demonstrated. Several 
nonparametric procedures are shown along with reasons why they might be needed. Finally, 
equivalence testing is demonstrated for those cases where testing for equivalence rather than for 
differences is indicated.  

 

 

Keywords 

Analysis of variance (ANOVA); binomial test response; confidence interval; continuous test 
response; equivalence testing; hypothesis test; nonparametric tests; normal approximation; 
Student’s t test. 
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Comparing Instruments 
Often, experimenters wish to compare the performances of two or more instruments.  For 
example: what is the difference between how well two detectors perform, or is there any 
significant differences in the instrument response between a group of several instruments? 

 

1 Statistical Preliminaries 
This document will begin with brief primers about hypothesis tests and confidence intervals, as 
those tools will be used repeatedly in this document.  There will be an additional primer about 
using the normal approximation to create a z test, which is a type of hypothesis test used 
repeatedly in this document. 

 
1.1 Hypothesis tests 
In this document we describe several hypothesis tests for comparing instrument performance. 
NIST Technical Note 2045 [1], the NIST/SEMATECH e-Handbook [2], and Mendenhall and 
Sincich [3] all give an introduction to hypothesis testing. However, since the focus of this 
document is the comparison of instrument performance rather than, say, confirming performance 
thresholds, the terminology of the hypothesis tests will be geared toward that application.  In this 
document, the null hypothesis will usually have the form:  

 𝐻𝐻0: All instruments perform equally well. 

The alternative hypothesis will have the form: 

 𝐻𝐻𝐴𝐴: Not all instruments perform equally well. 

 
What is called in the statistical literature a type I error occurs when the hypothesis test result leads 
us to conclude that instruments perform differently when they are not actually different.  
Hypothesis tests can be specified so that the probability of a type I error is bounded above by a 
number α. Such a hypothesis is said to have significance level equal to α. The most commonly 
used value of α is 0.05, although 0.0, 0.10, and 0.20 values are also used depending on the type of 
instrument that is being tested and its use.  These significance levels are used to weigh the risk 
associated with a type I error. 

 
For our hypothesis tests, what we call a type II error occurs when there really are differences 
between the instruments, but the hypothesis test fails to reject the null hypothesis.  The probability 
of such an error is usually denoted by β. The quantity 1-β is called the power of a test, which is 
the probability of rejecting the null hypothesis when there is an actual difference. The power of a 
hypothesis test is not a single number but depends on the magnitude of such an actual difference; 
a large difference between instrument will be much easier to detect than a small difference.   
 
The power function of a hypothesis test is the power of the test as a function of the underlying 
difference.  
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There are trade-offs between type I and type II errors.  To carry it to the most extreme, a 
hypothesis test that never rejects the null hypothesis will have zero type I errors, but have no 
power to detect any significant differences, thus leading to unacceptably high probability of type 
II errors.   
 
1.1.1 P-values 
When one does a hypothesis test using statistical or computational software, the output usually 
contains a p-value. (Except in certain unusual cases, a p-value will not be available without the use 
of statistical software or statistical functions in computational software.) The p-value is used to 
indicate a probability that is calculated after the collected data are analysed. The p-value is the 
probability of obtaining a statistic as extreme or more extreme than what actually occurred, given 
that the null hypothesis is actually true.  In this document on instrument comparison, the p-value 
can usually be interpreted as the probability of measuring a disparity as large or larger than that 
seen, under the assumption that the instruments are actually equivalent.  If the p-value is smaller 
than α, ( p<α), then the null hypothesis is rejected by the test with significance level α.  For 
instance, if the p-value = 0.04, then the null hypothesis would be rejected at a significance level 
α = 0.05,  but not at a  significance level α = 0.01.  The p-value indicates the smallest significance 
level for  which the null hypothesis would be rejected;  thus, the smallness of a p-value can be seen 
as an indicator of the weight of evidence against the null hypothesis. 
 

There is a growing attitude in the scientific and statistical communities that one should not rely 
solely on hypothesis tests and associated p-values to draw conclusions.  One should also examine 
other procedures, especially statistical intervals, which are described in the next section, as well 
as always doing an exploratory data analysis that includes looking at plots of the data. 

 

1.2 Confidence intervals 
A hypothesis test gives no information other than whether the null hypothesis of “no difference 
between the instruments” should be rejected. It does not specify which instrument performed 
better, the magnitude of the difference, and how practically significant the difference is. 
However, a statistical interval, often in the form of a confidence interval, can address those very 
issues, at least in part.  See Hahn and Meeker [4] for a fuller discussion of confidence intervals 
and other intervals. In this document, the intervals will usually be those of performance 
differences between instruments.  In the examples, the performance will be measured as a 
probability of detection or as a continuous measurement of performance such as the limit of 
detection of an instrument, or the magnitude of a signal measured by an instrument. The 
confidence interval for a difference includes values for the difference that are plausible given the 
data. The length of a confidence interval depends on the specified confidence level.  For 
example, a procedure with a 90 % confidence level should include the correct value 90 % of the 
time. The higher confidence level that is desired, the larger that confidence interval must be to 
attain that confidence level. Thus, a 99 % confidence interval is longer than a 95 % confidence 
interval, which is in turn longer than a 90 % confidence interval. 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2106



9 
 

Often there is a correspondence between confidence intervals and hypothesis testing as follows: 
If a 100×(1-α) % confidence interval for the difference contains zero, then that corresponds to 
the null hypothesis of “no difference” not being rejected by a corresponding hypothesis test 
with significance level α.  Conversely, if the 100×(1-α) % confidence interval does not contain 
zero, that corresponds to the null hypothesis being rejected by the corresponding hypothesis 
test with significance level α.   

 

1.3 Normal approximation tests (z tests) 
In various places in this document, we will provide hypothesis tests and procedures that rely on a 
normal distribution approximation.  Due to a theorem from mathematical statistics called the 
Central Limit Theorem, statistics that are averages of a large number of independent, identically 
distributed random variables with finite mean and variance approximately follow a Normal 
distribution, also known as a Gaussian distribution.  Suppose that a random variable x follows a 
Normal distribution with mean µ and variance 𝜎𝜎2 (and standard deviation σ), denoted by N(µ 
, 𝜎𝜎2).  Then, x can be standardized by subtracting the mean and dividing by the standard 
deviation to  𝑧𝑧 = (𝑥𝑥 − µ)/σ, which  has a N(0,1) distribution, known as a standard normal 
distribution.  In practice, µ and σ are not known in advance and in the z statistic formula will be 
replaced by estimates of those parameters.  

A z test involves a statistic z that should approximately follow a standard normal distribution if 
the Null Hypothesis is true.  If |z| is very large, then the Null Hypothesis becomes less plausible.  
More exactly, the p-value for a hypothesis test result is defined as the probability of obtaining a 
result just as extreme as the observed result if the null hypothesis were true.  Since we will be 
doing comparison tests to see if quantities are the same or different, most of the tests in this 
document will be two-sided in that given an observed statistic z, the p-value will be of the form 
P(|Z| ≥|z|) , where Z is the standard normal variate. 

Unfortunately, the cumulative distribution function P (z<Z) of a standard normal variate, usually 
denoted Φ(Z), cannot be written in closed form.  However, there are tables of the percentile 
points of the standard normal distribution in most statistical textbooks as well as in many online 
resources.  In particular, for the two-sided hypothesis tests used repeatedly in this 
document, it is useful to know the two-sided critical points of the standard normal 
distribution are 1.28 for significance level α = 0.20, 1.645 for significance level α = 0.10, 1.96 
for α = 0.05, and 2.576 for α = 0.01.  Most statistical and computational software packages 
possess a function that outputs Φ(Z) for any real value of Z (as well as its inverse function  
Φ−1 (𝑝𝑝) ) ). 
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2 Binary data 
2.1 Comparing two instruments with binary response 
We will first explore the case of comparing two instruments having binary response.  As an 
example, suppose that there are two detectors that register a “present/not present” response to a 
radioactive source.  For the purposes of this section, suppose that during the measurement, a 
radioactive source is present so that detecting it would be considered a success, and not detecting 
would be a failure.  Suppose there are 𝑛𝑛1 trials for Instrument 1 and 𝑛𝑛2 trials for Instrument 2.  
The number of detections by Instrument 1 would be 𝑥𝑥1, with the resulting proportion of success 
being 𝑝𝑝1 = 𝑥𝑥1/𝑛𝑛1; for Instrument 2,  there would be 𝑥𝑥2 successes out of 𝑛𝑛2trials with the 
resulting proportion   𝑝𝑝2 = 𝑥𝑥2/𝑛𝑛2 .  The sample proportions 𝒑𝒑𝟏𝟏and 𝒑𝒑𝟐𝟐 are our best estimates 
of the true proportions 𝑷𝑷𝟏𝟏 and 𝑷𝑷𝟐𝟐, respectively. 

The number of successes for an instrument is modeled by a Binomial distribution modeling the 
number of successes in a set of independent Bernoulli trials; refer to NIST Technical Note 
2045 [1], Ross [5] or most statistics textbooks for more background and justification for these 
models.  

2.1.1 Testing for differences between proportions  

2.1.1.1 Large samples: z-test 

For relatively large sample sizes, we can create a test statistic that is approximately distributed as 
a standard normal variate under the null hypothesis.  If the null hypothesis 𝐻𝐻0 of “no difference 
between instruments” is true, let  𝑝̅𝑝 = 𝑥𝑥1+𝑥𝑥2

𝑛𝑛1+𝑛𝑛2
   be the proportion of successes in the combined 

sample.  Define 

𝑧𝑧 =  𝑝𝑝1−𝑝𝑝2

�𝑝̅𝑝(1−𝑝̅𝑝)( 1
𝑛𝑛1
+ 1
𝑛𝑛2

)
    (2.1) 

Under the null hypothesis 𝐻𝐻0 of “no difference between instruments”, with relatively large 
samples sizes, z is approximately normal with mean 0 and variance 1.  We can apply the 
previous section on normal approximation tests to this z statistic; the null hypothesis 𝐻𝐻0 of “no 
difference between instruments” is rejected if the statistic z is too large or too small to be 
consistent with belonging to the standard normal distribution.  At the α significance level, that 
translates to rejecting the null hypothesis if z falls outside the middle 100(1-α/2) percent of 
the standard normal distribution. The figure below demonstrates that situation for significance 
level α=0.10; the area beneath the standard normal density curve between the two-sided critical 
points -1.645 and 1.645 has area 1- α=0.90.  The null hypothesis of no difference is rejected if  
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Figure 1:  A standard normal distribution, shown with its two-sided critical points (-1.645 and 
1.645) for significance level α = 0.10.  If the 𝑧𝑧 statistic is greater than 1.645 or smaller than          
-1.645, then the null hypothesis of no instrument differences is rejected.   

 

the z statistic z<-1.645 or z> 1.645. 

To tell if the sample sizes are large enough, one can plug in the values of 𝑛𝑛1,𝑛𝑛2, 𝑝𝑝1, and 𝑝𝑝2      
into a formula provided by Mendenhall and Sincich [3].  They state that if the sample sizes  𝑛𝑛1 
and 𝑛𝑛2 are large enough so that the intervals   

𝑝𝑝1 ± 2�𝑝𝑝1(1−𝑝𝑝1)
𝑛𝑛1

  and  𝑝𝑝2 ± 2�𝑝𝑝2(1−𝑝𝑝2)
𝑛𝑛2

    (2.2) 

do not contain 0 or 1, then the normal approximation is reasonably accurate.  Otherwise, if the 
sample sizes are small enough that the above intervals contain 0 or 1, then the use of a 
nonparametric test such as Fisher’s Exact Test (Section 2.1.1.2) is indicated. 

Example:   Suppose that we are trying to test the null hypothesis 𝐻𝐻0 of “no difference between 
Instrument 1 and Instrument 2” at a significance level α=0.10.  An experiment is performed 
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where Instrument 1 successfully detects a source 14 times out of 20 trials, while Instrument 2 
detects a source 10 times out of 20 trials.  Thus we have 𝑝𝑝1 = 14

20
= 0.7, and 𝑝𝑝2 = 10

20
= 0.5, and  

𝑝̅𝑝 = 14+10
20+20

= 0.6.  First, checking on the sample size criterion, we find that 

𝑝𝑝1 ± 2�𝑝𝑝1(1−𝑝𝑝1)
𝑛𝑛1

=0.7±2 �0.7(1−0.7)
20

 =0.7±0.2 = (0.5, 0.9) and 

𝑝𝑝2 ± 2�𝑝𝑝2(1−𝑝𝑝2)
𝑛𝑛2

= 0.5 ± �0.5(1−.5)
20

=0.5±0.22 =(0.28,0.72).   

Neither interval contains 0 or 1, so the normal approximation should be valid. 

 

The z statistic is 

𝑧𝑧 = (0.7 − 05)/�0.6(1 − 0.6) � 1
20

+ 1
20
�=  0.2/√0.024 =1.291. The magnitude of z is smaller 

than 1.645, which is the two-sided standard normal critical point for significance level α=0.10; 
therefore, the null hypothesis of no performance difference between instruments is not rejected at 
this significance level. Using the normal cumulative distribution in statistical software gives the 
additional information that the p-value of z=1.291 is 0.19>0.10; since the p-value is larger than 
the significance level α=0.10, the null hypothesis is not rejected. 

 

2.1.1.2 Fisher’s Exact Test 

When sample sizes are too small for the normal approximation tests to be appropriate, an 
alternative is a nonparametric test such as Fisher’s Exact Test [2].  Suppose that the results of a 
two-instrument test can be tabulated in a 2×2 contingency table as follows: 

 Successes Failures Column Totals 
Instrument 1 A B A+B 
Instrument 2 C D C+D 
Row Totals A+C B+D N=A+B+C+D 

 

Fisher’s Test enumerates how compatible the experimental results are with the null hypothesis.  
Under the null hypothesis of no real performance difference between the instruments, whatever 
differences did occur are due to chance.  If we fix the marginal totals in the table and presume 
that the real success rate of both instruments is (A+C)/N, then the probability of each frequency 
in the contingency table is given by the hypergeometric distribution [5]: 

𝑝𝑝 = �𝐴𝐴+𝐶𝐶𝐴𝐴 ��𝐵𝐵+𝐷𝐷𝐵𝐵 �
� 𝑁𝑁
𝐴𝐴+𝐵𝐵�

 , where �𝑚𝑚𝑘𝑘� = 𝑚𝑚!
𝑘𝑘!(𝑚𝑚−𝑘𝑘)!

 is the number of combinations of k objects that can be 

chosen from a collection of m.  Since we are focused on comparing instruments, the relevant p-
value is the two-sided p-value, being the total probability of possible outcomes of equal or 
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greater instrument difference given fixed marginal totals.  How those outcomes are tabulated is 
best explained using an example (below). 

Example 

Suppose that for an experiment testing two instruments, only 5 independent responses are 
available for each instrument. It is desired to have significance level α=0.05.  Suppose that 
Instrument 1 is successful in 4 of 5 trials, while Instrument 2 is successful in only 1 of 5 trials. 

 Successes Failures Column Totals 
Instrument 1 4 1 5 
Instrument 2 1 4 5 
Row Totals 5 5 10 

 

Suppose that the recorded row and column totals are fixed, so that each instrument has 5 trials, 
and there is a total of 5 successes and 5 failures among these 10 total trials. A result showing the 
same performance difference between instruments as the actual experimental result has 

probability �
5
4��

5
1�

�105 �
= 25

252
= 0.099. 

The only cases that are more extreme than the actual results in opposing the null hypothesis, 
while retaining the same row and column totals, are the cases where one instrument has 5 
successes and the other instrument has 0 successes.  Each of these cases has probability  

�55��
5
0�

�105 �
= 1

252
= 0.004.  Since each case could have either Instrument 1 or Instrument 2 having the 

more successes, the relevant two-sided p-value is 2×0.099 + 2×0.004=0.206, so the result is not 
significant at the α=0.05 level.  Note that if there are only 5 observations for each instrument, the 
only experimental result that would reject the null hypothesis at the significance level α=0.05 is 
the most extreme possible difference result of one instrument being successful in all 5 trials and 
the other instrument failing in all 5 trials (in which case the resulting p-value is 2×0.004=0.008).  
This highlights how having a small sample size limits the extent of statistical conclusions one 
can make, as well as the limitations of Fisher’s Test.  The p-values for Fisher’s Exact Test can be 
laborious to calculate by hand for larger sample sizes and more moderate probabilities, but then 
these are the cases that are ideal for the z-test.  Modern statistical software should make both 
tests easy to perform. 

Regardless of which hypothesis test is utilized, users should perform the confidence interval 
described in the next section to further understand the nature of any differences. 

 

2.1.2 Confidence intervals of difference between proportions 

The hypothesis tests described in the previous sections give no information other than whether 
the null hypothesis of “no difference between the instruments” should be rejected. However, a 
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statistical interval can address at least in part which instrument performed better, the magnitude 
of the difference, and how practically significant the difference is.   

Let 𝑧𝑧1−𝛼𝛼2
 be the 100(1-α/2) percentile point of the standard normal distribution. Then a widely 

used 100(1-α) % level confidence interval for 𝑃𝑃1 − 𝑃𝑃2 based on a normal approximation is: 

(𝑝𝑝1 − 𝑝𝑝2) ± 𝑧𝑧1−𝛼𝛼2
 �𝑝𝑝1(1−𝑝𝑝1)

𝑛𝑛1
+ 𝑝𝑝2(1−𝑝𝑝2)

𝑛𝑛2
 .  (2.3) 

Unfortunately, the interval shown in Equation (2.3), which is also known as a Wald-type 
interval, has been shown not to achieve its desired coverage of the true difference in many cases.  
Agresti and Caffo [6] propose a modification of the Wald interval as follows: Produce a 
“modified” pseudo-data set by adding one success and one failure to each instrument’s results 
and plug the statistics from the resulting pseudo-data set into Equation (2.3).  In more detail, let 
the “modified” sample proportions be   𝑝𝑝�1   = 𝑥𝑥1+1

𝑛𝑛1+2, and  𝑝𝑝�2   = 𝑥𝑥2+1
𝑛𝑛2+2.    Then  a 100(1-α) % level 

confidence interval for 𝑃𝑃1 − 𝑃𝑃2 with good performance qualities is:  

(𝑝𝑝�1 − 𝑝𝑝�2   ) ± 𝑧𝑧1−𝛼𝛼2
 � 𝑝𝑝�1 (1−𝑝𝑝�1 )

𝑛𝑛1+2
+ 𝑝𝑝�2 (1−𝑝𝑝�2 )

𝑛𝑛2+2
 .  (2.4) 

Agresti and Caffo do not claim that this interval satisfies any theoretical optimality criteria; 
rather, they demonstrate from extensive simulation studies that it attains the proper coverage 
probabilities for virtually any choice of 𝑛𝑛1 ,𝑛𝑛2 ,  𝑃𝑃1, and 𝑃𝑃2 that they examined. 

This interval does not have a one-to-one correspondence with the normal approximation-based z-
test hypothesis testing procedure described in the previous section. In this case, whether this 
confidence interval contains or does not contain zero does not correspond exactly to that 
hypothesis test accepting or rejecting, respectively, the null hypothesis of equal 
proportions.  Each procedure was chosen to satisfy its particular purpose, although they will 
agree in the vast majority of cases. Agresti and Caffo [6] do not advocate using the interval (2.4) 
as an implicit hypothesis test instead of the z-test in (2.1) because doing so would be needlessly 
conservative in cases where the hypothetically common proportion of success 𝑃𝑃1 = 𝑃𝑃2 in the null 
hypothesis is close to 0 or to 1.   

 

Example. 

Let us return to our previous example of the two instruments, where Instrument 1 successfully 
detects a source 14 times out of 20 trials, while Instrument 2 detects a source 10 times out of 20 
trials.  Adding pseudo-observations of one success and one failure to each instrument’s data 
produces “modified” sample proportions  𝑝𝑝�1   = 15

22
= 0.68, and 𝑝𝑝�2   = 11

22
= 0.5.  Using the 

formula in (2.4), a 90 % confidence interval for the difference 𝑃𝑃1 − 𝑃𝑃2  is 
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(0.68 − 0.5) ± 𝑧𝑧
1−0.1

2
 �

0.68(1 − 0.68)
22

+
0.5(1 − 0.5)

22
                              

= 0.18 ± 1.645 (0.146) = 0.18 ± 0.24 = (-0.06, 0.42). 

Note that this confidence interval contains zero at the 90% confidence level.  However, we do 
see that the range of plausible values for the difference  𝑃𝑃1 − 𝑃𝑃2 includes numbers as large as 
0.42 on the positive end, but only extends to      -0.06 on the negative end.  Thus, it is much more 
plausible for 𝑃𝑃1 to be a little larger than 𝑃𝑃2, rather than the reverse, as would be expected given 
𝑝𝑝1 was larger than 𝑝𝑝2. 

 

2.1.3 Sample Size Requirements 

2.1.3.1 Sample Sizes for testing equality of proportion 

In terms of practical significance, it may be desired to specify how many trials are needed to 
detect a significant difference at a given significance level.  For this to make sense, what must be 
specified first is the minimum difference the test is required to discover, as well as the minimum 
power and maximum Type I error needed for the Hypothesis test.  We will follow the treatment 
of Chapter 3 of Fleiss [7].   In a problem of this type, one instrument has a relatively known 
success rate of 𝑃𝑃1, and a comparison study with a new instrument is worth doing only if it is able 
to detect a difference between the old instrument and a new instrument with rate 𝑃𝑃2. 

Suppose we need such a test to have significance level α and power 1-β, for a desired α and β. 
We will assume equal sample sizes for both instruments. 

Let 𝑃𝑃� = (𝑃𝑃1 + 𝑃𝑃2)/2.   Let 

𝑛𝑛′ =
�𝑧𝑧1−𝛼𝛼2  �2𝑃𝑃

�(1−𝑃𝑃�)−𝑧𝑧β �𝑃𝑃1(1−𝑃𝑃1)+𝑃𝑃2(1−𝑃𝑃2)  �
2

(𝑃𝑃2−𝑃𝑃1)2   (2.5) 

Then 𝑛𝑛′ is the same size needed for each sample. 

According to Fleiss, there are studies that say the above formula underestimates the needed 
sample size needed to achieve the desired power.  This should be especially relevant when a 
continuity correction is utilized in the test statistic (it is not in this document). He lists a formula 
that uses a continuity correction in the formula to adjust the needed sample size, with an 
accompanying close approximation that we list here: 

𝑛𝑛′′ = 𝑛𝑛′ + 2
|𝑃𝑃2−𝑃𝑃1|

    (2.6) 

 

Example 
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Refer to the previous example again.  Let us presume the sample proportions were the actual 
population proportions, i.e. 𝑃𝑃1 = 0.7 and 𝑃𝑃2 = 0.5 .  Suppose we desired a hypothesis test with 
significance level α = 0.10 and power (1-β) = 0.75.  According to the formula above, the sample 
size for each instrument needed is  𝑛𝑛′ =64.  If we wanted to even be more conservative, the 
augmented formula gives a sample size of 𝑛𝑛′′=74.  It is no wonder that our hypothesis test in the 
first example failed to reject the null hypothesis, as the actual sample of 20 is much smaller. 

Note that if we drastically lowered the needed power of the test (1-β) to a mere 0.50 and 
weakened the significance level to α=0.20, then a sample size of 𝑛𝑛′=20 is needed.  

The table below shows the sample sizes needed, showing both 𝑛𝑛′ (Formula (2.5) above) and  𝑛𝑛′′  
(from Formula (2.6)), to satisfy several values of α and β, for some combinations of   𝑃𝑃1 , and 𝑃𝑃2.  
All tables show how the sample size needed depends on the significance level and power 
required.  Comparing the first two sub-tables shows how the required sample sizes can depend 
on the magnitudes of 𝑃𝑃1 and 𝑃𝑃2 , even though   𝑃𝑃1 − 𝑃𝑃2 is the same for both sub-tables.  Finally, 
the third sub-table shows that the sample sizes needed can be much smaller if one instrument has 
a very sizeable advantage over the other. 

α 1-β 𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐 𝒏𝒏′ 𝒏𝒏′′ 
0.10 0.60 0.7 0.5 43 53 
0.10 0.70 0.7 0.5 56 66 
0.10 0.80 0.7 0.5 73 83 
0.05 0.60 0.7 0.5 59 69 
0.05 0.70 0.7 0.5 73 83 
0.05 0.80 0.7 0.5 93 103 

 

α 1-β 𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐 𝒏𝒏′ 𝒏𝒏′′ 
0.10 0.60 0.9 0.7 29 39 
0.10 0.70 0.9 0.7 37 47 
0.10 0.80 0.9 0.7 49 59 
0.05 0.60 0.9 0.7 39 49 
0.05 0.70 0.9 0.7 49 59 
0.05 0.80 0.9 0.7 62 72 

 

α 1-β 𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐 𝒏𝒏′ 𝒏𝒏′′ 
0.10 0.60 0.95 0.6 10 16 
0.10 0.70 0.95 0.6 13 19 
0.10 0.80 0.95 0.6 17 22 
0.05 0.60 0.95 0.6 14 20 
0.05 0.70 0.95 0.6 17 23 
0.05 0.80 0.95 0.6 21 27 

 

Table 1: Sample sizes needed for each group to satisfy several values of α and β, for some 
combinations of  𝑃𝑃1 and 𝑃𝑃2.   
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2.1.3.2 Sample Sizes for estimating the difference of proportion 

Suppose there is a need to estimate the difference between the two instrument means 𝑃𝑃1 − 𝑃𝑃2 to 
within a margin of H with probability 1-α.  A reasonable magnitude for H depends on the context 
and application of the experiment.  Suppose there is prior knowledge about the approximate 
magnitude of  𝑃𝑃1  and 𝑃𝑃2.   Presuming equal sample sizes, the number of trials for each sample 
required is [3]: 

𝑛𝑛 = �
𝑧𝑧1−𝛼𝛼2
𝐻𝐻
�
2

[ 𝑃𝑃1(1 − 𝑃𝑃1) + 𝑃𝑃2(1 − 𝑃𝑃2)].   (2.7) 

If there is no prior knowledge of the approximate magnitude of 𝑃𝑃1  and 𝑃𝑃2, since the sample size 
formula is maximized by  𝑃𝑃1 = 𝑃𝑃2 = 0.5 , then a conservative estimate of the number of trials 
for each sample required can be obtained plugging in 𝑃𝑃1 = 𝑃𝑃2 = 0.5 ∶ 

𝑛𝑛 = 1
2

 �
𝑧𝑧1−𝛼𝛼2
𝐻𝐻
�
2
     (2.8) 

If 𝑃𝑃1  and 𝑃𝑃2 are much different from 0.5, then this sample size may be much larger than needed. 

 

Example. 

Refer again to the example used in the previous sections.  Suppose we had prior knowledge that 
the two instrument means were approximately 𝑃𝑃1 = 0.7 and 𝑃𝑃2 = 0.5 .  Suppose we needed to 
estimate the difference between the two instrument means 𝑃𝑃1 − 𝑃𝑃2 to within a margin of 0.2 with 
probability 0.90. Then the number of trials for each sample required is: 

𝑛𝑛 = �
1.645

0.2 �
2

[0.7(1 − 0.7) +). 5(1 − 0.5)] = 67.64 ( 0.46) = 31.1 ≈ 31.     

We round n=31.1 to n=31 trials needed for each sample. 

Suppose that we had no prior knowledge about 𝑃𝑃1  and 𝑃𝑃2, and used  𝑃𝑃1 = 𝑃𝑃2 = 0.5 as a 
conservative procedure.  Since the estimates we used earlier are relatively close to, or even equal 
to 0.5, the resulting number n =  67.64 (0.5) = 33.8, which we round to n = 34, is not very 
different. 

 

2.2  Comparing multiple instruments with binary response 
2.2.1   Chi-square test for equality of proportions 

Suppose that there are k > 2 instruments that when tested yield Detect/No Detect binary 
responses. Using the same notation as the previous section, suppose that instrument 𝑖𝑖 has 𝑥𝑥𝑖𝑖 
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successes in 𝑛𝑛𝑖𝑖 trials, for a sample proportion of  𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖  /𝑛𝑛𝑖𝑖 ,  for  i=1,…,k.   How do we 
compare these proportions? 

The first step in the analysis is to test whether all instruments have the same probability of 
success. Here, the null hypothesis has the form:  

 𝐻𝐻0 : All instruments have the same proportion of success. 

The alternative hypothesis is: 

 𝐻𝐻𝐴𝐴 : Not all the instruments have the same proportion of success. 

The test used is an example of a chi-square goodness of fit test on a contingency table [2,8].  If 
all proportions are the same, this common proportion can be estimated by pooling all the trials: 

𝑝̅𝑝 =   ∑ 𝑥𝑥𝑖𝑖  𝑘𝑘
𝑖𝑖=1 / ∑ 𝑛𝑛𝑖𝑖 𝑘𝑘

𝑖𝑖=1     (2.9) 

Under the null hypothesis, the expected number of successes for the ith instrument is 𝒔𝒔𝒊𝒊 =
𝒏𝒏𝒊𝒊𝒑𝒑𝒊𝒊, with corresponding expected number of failures 𝒓𝒓𝒊𝒊 = 𝒏𝒏𝒊𝒊(𝟏𝟏 − 𝒑𝒑𝒊𝒊).  Our test statistic is 
the sum of the squared deviation of the numbers of successes and failures each from its expected 
number, and each normalized by the expected number: 

𝜒𝜒2 = ∑ (𝑥𝑥𝑖𝑖−𝑠𝑠𝑖𝑖)2

𝑠𝑠𝑖𝑖
+ ∑ (𝑛𝑛𝑖𝑖−𝑥𝑥𝑖𝑖−𝑟𝑟𝑖𝑖)2

𝑟𝑟𝑖𝑖
 .    𝑘𝑘

𝑖𝑖=1     𝑘𝑘
𝑖𝑖=1   (2.10) 

Another way to write the same formula that may be more familiar to those experienced with 
contingency table tests is: 

𝜒𝜒2 =  ∑ (𝑓𝑓𝑜𝑜−𝑓𝑓𝑒𝑒)2 

𝑓𝑓𝑒𝑒
,𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐     (2.11) 

Here  𝑓𝑓𝑒𝑒 is the expected frequency, and 𝑓𝑓𝑜𝑜 is the observed frequency of each particular cell out of 
the 2k number of cells in a contingency table. 

Given a significance level of α, 𝑯𝑯𝟎𝟎 is rejected if the test statistic 𝝌𝝌𝟐𝟐 is larger than the      
100(1- α) percentile of the chi-squared distribution with k-1 degrees of freedom.  Unlike the 
hypothesis tests previously discussed in this document, this is a one-sided test in that only the 
area under the right tail of the reference distribution is the rejection region of the test.  The plot 
below depicts a possible chi-square distribution (with 5 degrees of freedom); the critical point for 
that distribution (11.07) is that point where 95% of the area under the density curve lies to the 
left, and 5% of the area to the curve lies to the right. If the 𝜒𝜒2 statistic is greater than 11.07, then 
the null hypothesis of no instrument differences is rejected.  Tables of critical values are 
available in most statistics textbooks as well as many online resources. Alternatively, one can use 
a statistical software to compute a p-value. 
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Note: It is well-known that for the case of 2 instruments, this 𝜒𝜒2 test is equivalent to the z-test 
comparing two proportions shown earlier in Section 2.1.1.1.

 

Figure 2:  A chi-square distribution with 5 degrees of freedom, shown with its critical point 
(11.07) for significance level α = 0.05.  If the 𝜒𝜒2 statistic is greater than the critical point, then 
the null hypothesis of no instrument differences is rejected.   

 

Example 

Refer to our previous example involving two instruments.  Suppose that in addition to the two 
instruments there was a third instrument that had 6 successes in 20 trials. 

Instrument 1 2 3 Row totals 
Successes 14 10 6 30 
Failures 6 10 14 30 
Column Totals 20 20 20 60 
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For this example, 𝑝̅𝑝 = 14+10+6
60

= 1
2
 , and since each instrument had 20 trials, the expected number 

of successes for each instrument under the null hypothesis is 10. The expected number of failures 
for each instrument under the null hypothesis is also 10. So, the test statistic for this example is 

𝜒𝜒2 =
[ (14 − 10)2 + (10 − 10)2 + (6 − 10)2 + (6 − 10)2 + (10 − 10)2 + (14 − 10)2]

10
= 6.4. 

The reference distribution is the chi-square distribution with k-1=2 degrees of freedom.  The 𝜒𝜒2 
statistic of 6.4 is larger than the critical point of 5.99 for significance level α=0.05, so the null 
hypothesis of “all instruments being the same” is rejected.  Statistical software shows that the p-
value of 6.4 is 0.04. 

 

2.2.2 Comparing Multiple proportions: Marascuilo procedure 

If running a multiple proportions contingency table hypothesis test leads you to conclude that not 
all instruments perform equally, it still does not inform you which instruments are better or 
worse.  The instruments can be ranked by their respective proportions of success, but that does 
not indicate which proportions are significantly different. The Marascuilo procedure [2] is a way 
to simultaneously test the differences between all pairs of instruments. 

Once again suppose that there are k instruments, and that instrument 𝑖𝑖 has  𝑥𝑥𝑖𝑖 successes in 𝑛𝑛𝑖𝑖 
trials, for a sample proportion of  𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖 /𝑛𝑛𝑖𝑖 ,  for  i=1,…,k.    

For every pair of sample proportions, compute the absolute value of the difference |𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗| for 
every i≠j in 1, …, k.  This will be the test statistic for that pair. There will be 𝑘𝑘(𝑘𝑘 − 1)/2 
different proportion differences. 

Next for every pair of i≠j, for a chosen overall significance level α, the critical value of that test 
statistic will be  

𝑟𝑟𝑖𝑖𝑖𝑖 =   �𝜒𝜒1−𝛼𝛼,𝑘𝑘−1
2    �𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)

𝑛𝑛𝑖𝑖
+ 𝑝𝑝𝑗𝑗�1−𝑝𝑝𝑗𝑗�

𝑛𝑛𝑗𝑗
  (2.12) 

Here 𝜒𝜒1−𝛼𝛼,𝑘𝑘−1
2  is the 100(1-α) percentile point of a chi-squared distribution with k-1 degrees of 

freedom.  As before the numerical value of 𝜒𝜒1−𝛼𝛼,𝑘𝑘−1
2  can be found in the literature, online, or 

using a statistical software. 

For each of the k(k-1)/2 pairs of proportions, if �𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗� > 𝑟𝑟𝑖𝑖𝑖𝑖  , then those two proportions are 
significantly different. 
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Example 

Returning to the same example used in the contingency table test, there are three instruments that 
have 14, 10, and 6 successes out of 20 trials for each experiment.  Thus, 𝑝𝑝1 = 0.7,𝑝𝑝2 = 0.5, and 
𝑝𝑝3 = 0.3.   There are k(k-1)/2= 3 possible pair differences. 

A significance level of α=0.05 will be used.  Then 𝜒𝜒1−𝛼𝛼,𝑘𝑘−1
2 =  𝜒𝜒0.95,2 

2 = 5.99. 

• For Instruments 1 and 2, |𝑝𝑝1 − 𝑝𝑝2| = 0.2  < 𝑟𝑟12 = √5.99  �0.7(1−0.7)
20

+ 0.5(1−0.5)
20

 = 0.37, 

so Instruments 1 and 2 are not significantly different. 
 

• For Instruments 1 and 3, |𝑝𝑝1 − 𝑝𝑝3|=0.4 > 𝑟𝑟13 = √5.99  �0.7(1−0.7)
20

+ 0.3(1−0.3)
20

 = 0.35, so 

Instruments 1 and 3 are significantly different. 
 

• For Instruments 2 and 3, |𝑝𝑝2 − 𝑝𝑝3|=0.2 <  𝑟𝑟23 = √5.99  �0.5(1−0.5)
20

+ 0.3(1−0.3)
20

 = 0.37, so 

Instruments 2 and 3 are not significantly different. 
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3 Continuous measurements 
The binary nature of the data discussed earlier can sometimes make it problematic to find 
definitive answers with small sample sizes.  If there is continuous data available, it can be much 
more informative than simple counts of (0/1) trials.   

As a hypothetical example, suppose that instead of (Detect/No Detect) responses from an 
instrument from a fixed distance from a source, there are multiple trials of the following 
experimental procedure: a source and a detector are gradually moved closer together until the 
instrument detects the source, with the detection distance recorded.  Here we presume the 
instrument will always eventually detect the source, otherwise the result can be denoted as zero 
or some previously agreed to quantity. In practice, such numerical measurements are never truly 
continuous due to the limited resolution of measurement, and in this scenario, it would be 
practical to move the detector and instrument closer in steps rather than as a continuous process. 

Another example of continuous measurements would be the time till detection of the source by 
the detector. (This test would be more likely for a chemical detector or if a radiation detector 
integrates the signal until there are enough counts above background to be detected.) 

The increased complexity of continuous data over binary data brings an accompanying 
complexity in how instruments can be compared.  Figure 3 contains some schematics of how 
instrument performances can differ. The upper left plot depicts hypothetical data of an 
experiment where the measurements taken from Instrument 1 and Instrument 2 have the same 
mean and variability.  The upper right plot depicts an experiment where the data from the two 
instruments have the same variability, but different means.  In the lower left plot, the 
measurements taken on both Instrument 1 and Instrument 2 are centered on the same mean, but 
those of Instrument 2 are much more variable. The lower right plot shows a situation where the 
measurements from Instrument 2 are both larger on the average and more variable than those of 
Instrument 1.  This section on comparing instruments that produce continuous measurements 
will concentrate first on location-based methods for comparing instruments based on analysis of 
their mean measurements, before moving to methods for comparing instruments by examining 
the respective variances of the instrument measurements.    
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Figure 3:  This set of graphs are schematics of some different ways that the measurements of two instruments can 
compare with each other.  In the two graphs on the left, the two instruments have the same measurement means, 
while in the graphs on the right, the two instruments have different measurement means.  In the graphs on the top 
row, the two instruments have the same measurement variances, while in the graphs on the bottom row the two 
instruments have different measurement variances.   
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3.1 Comparing two instruments with continuous measurements 
Suppose we want to compare two instruments where the data are in the form of numeric 
measurements. For instance, they may be from multiple trials of the distance till first detection of 
the source, as described in the previous section.  For the rest of this section we have the 
following notation for the observations: 

Suppose for Instrument 1, there are 𝑚𝑚 ≥ 2 measurements denoted as: 𝑥𝑥1. … , 𝑥𝑥𝑚𝑚 . 

Suppose for Instrument 2, there are 𝑛𝑛 ≥ 2  measurements denoted as:  𝑦𝑦1, … , 𝑦𝑦𝑛𝑛. 

Let 𝑥̅𝑥 =   1
𝑚𝑚
∑ 𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1  be the mean of the measurements for Instrument 1. 

Let 𝑦𝑦� =   1
𝑛𝑛
∑  𝑦𝑦𝑗𝑗𝑛𝑛
𝑗𝑗=1  be the mean of the measurements for Instrument 2. 

Let 𝑠𝑠𝑥𝑥  
2 =   1

𝑚𝑚−1
 ∑ (𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 − 𝑥̅𝑥)2  be the sample variance of the measurements for Instrument 1. 

Let 𝑠𝑠𝑦𝑦  
2 =   1

𝑛𝑛−1
 ∑ (𝑦𝑦𝑗𝑗𝑛𝑛

𝑗𝑗=1 − 𝑦𝑦�)2  be the sample variance of the measurements for Instrument 2. 

 

3.1.1 Hypothesis tests for comparing two instruments  

When comparing two instruments where the data are in the form of numeric measurements, the 
simplest way to compare is to test whether they have the same mean.  The classical test is the 
two-sample Student’s t-test, of which we describe two variations here.  

Suppose that the measurements 𝑥𝑥1. … , 𝑥𝑥𝑚𝑚 come from a distribution with mean 𝜇𝜇1, and the 
measurements 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 come from a distribution with mean 𝜇𝜇2. 

For the t-test, the null and alternative hypotheses will be: 

𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2 

𝐻𝐻𝐴𝐴: 𝜇𝜇1 ≠ 𝜇𝜇2 

3.1.1.1 Student’s t-test: Equal variance case. 

Suppose it is presumed or verified (see Section 3.3 on comparing variances) that the 
measurements for both instruments have approximately the same variance. Then we can use a 
pooled estimator for the variance that pools the sample variances from both instruments: 

𝑠𝑠𝑝𝑝2 =
(𝑚𝑚 − 1)𝑠𝑠𝑥𝑥  

2 + (𝑛𝑛 − 1)𝑠𝑠𝑦𝑦  
2

𝑚𝑚 + 𝑛𝑛 − 2
 . 

Our test statistic is 

𝑇𝑇 =
𝑥̅𝑥 − 𝑦𝑦�

𝑠𝑠𝑝𝑝 �
1
𝑚𝑚 + 1

𝑛𝑛  
  .    
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For a given significance level α, reject the null hypothesis that the two instruments are equal if  

|𝑇𝑇| > 𝑡𝑡1−𝛼𝛼/2,𝑣𝑣 , 

Where 𝑡𝑡1−𝛼𝛼/2,𝑣𝑣 is the 100(1- α) percentile of the Student’s t distribution with v degrees of 
freedom.  For this test, 𝑣𝑣 = 𝑚𝑚 + 𝑛𝑛 − 2. 

Tables of t-test critical values are widely available in any statistics textbook, as well as online 
resources such as the NIST-Sematech handbook [2].  

 

3.1.1.2 Student’s t-test: Unequal variance case. 

If the two variances are presumed or tested not to be equal, or if there is doubt about the equality 
of the variances, then one should not utilize the pooled variance estimate.  In that case the 
preferred form of a t-test statistic is 

𝑇𝑇 = 𝑥̅𝑥−𝑦𝑦�

�𝑠𝑠𝑥𝑥  2

𝑚𝑚 +
𝑠𝑠𝑦𝑦  2

𝑛𝑛   

                                                (3.1) 

 

For a given significance level α, reject the null hypothesis that the two instruments are equal if  

|𝑇𝑇| > 𝑡𝑡1−𝛼𝛼/2,𝑣𝑣 , 

Here the degrees of freedom used is given by the Welch-Satterthwaite formula [2]: 

                             𝑣𝑣 =
�𝑠𝑠𝑥𝑥  

2

𝑚𝑚 +
𝑠𝑠𝑦𝑦  
2

𝑛𝑛 �
2

�𝑠𝑠𝑥𝑥  
2

𝑚𝑚 �
2

(𝑚𝑚− 1)  +   �
𝑠𝑠𝑦𝑦  
2

𝑛𝑛 �
2

(𝑛𝑛 − 1)�  �
                                                (3.2) 

The calculated estimate of v can be rounded to the nearest or to the next lowest integer; 
alternatively, many statistical software packages have t-distribution functions that do not require 
the degrees of freedom to be integers. 

 

3.1.1.3 Student’s t-test Example: 

Suppose for each of two instruments, a sample of 15 measurements of the distance till detection 
was measured in cm. 

The measurements for Instrument 1 (𝑥𝑥1, … , 𝑥𝑥15):  

91 95 107 105 102 85 88 92 101 99 102 85 114 91 95 
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For Instrument 2, the measurements are (𝑦𝑦1, … , 𝑦𝑦15): 

 93 99 97 101 70 83 97 100 91 73 90 86 95 70 87 

Let’s proceed with a Student’s t-test with significance level α=0.05. 

Thus, m = n = 15,    𝑥̅𝑥 = 96.8,   𝑦𝑦� = 88.8,   𝑠𝑠𝑥𝑥  
2 = 71.17, and 𝑠𝑠𝑦𝑦  

2 =112.6. 

 

Equal Variance test 

Let us first presume that the variances of the distribution are equal.  Then the pooled estimate of 
variance is 

𝑠𝑠𝑝𝑝2 =
(15 − 1)71.17 + (15 − 1)112.6

15 + 15 − 2
= 91.885 

Thus, 𝑠𝑠𝑝𝑝 = √91.885 = 9.586. 

Our test statistic is 

𝑇𝑇 =
96.8 − 88.8

9.586 � 1
15 + 1

15 
    

=
8.0
3.5

= 2.29. 

The critical point 𝑡𝑡1−𝛼𝛼2,𝑚𝑚+𝑛𝑛−2 =  𝑡𝑡0.975,28 is 2.05  <  |2.29|, so the null hypothesis of equal mean is 

rejected. 

 

Unequal Variance test 

In the unequal variance t-test, the denominator of the T statistic is  

�𝑠𝑠𝑥𝑥  
2

𝑚𝑚
+
𝑠𝑠𝑦𝑦  
2

𝑛𝑛
=  �

71.17
15

+
112.6

15
  = 3.5  

 

The approximate degrees of freedom is estimated by the Satterthwaite formula.  Plugging 
numbers in the formula gives 

𝑣𝑣 =
150.1
5.633

= 26.6, 

which we can round down to v = 26.  Thus, 

|𝑇𝑇| =
8.0
3.5

= 2.29 > 𝑡𝑡0.975,27 = 2.06, 
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so the null hypothesis is rejected in this case as well.  

  

3.1.1.4 Student’s t-test: Paired tests 

There can be situations where data measurements from different instruments can be paired. For 
instance, suppose there were a series of different configurations of radioactive sources, and the 
distance till detection was measured simultaneously for two instruments for each configuration. 
Suppose the measurements for all instruments vary depending on the configuration, but that the 
differences between instruments are consistent across configurations and can be logically 
grouped into a sample. It is then more efficient and powerful to reduce the data to a single 
sample of paired differences 𝑑𝑑1 = 𝑥𝑥1 − 𝑦𝑦1, … ,𝑑𝑑𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘 .  

The paired Student’s t test essentially takes the differences 𝑑𝑑1, … ,𝑑𝑑𝑘𝑘 and performs a one sample 
t-test of whether the differences have mean zero. 

Let 𝑑̅𝑑=∑ 𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖=1 /𝑘𝑘 be the mean of the sample of differences, and 𝑠𝑠𝑑𝑑2 = 1

(𝑘𝑘−1)
 ∑ �𝑑𝑑𝑖𝑖 − 𝑑̅𝑑�2𝑘𝑘

𝑖𝑖=1  be the 

sample variance of the differences. The test statistic is  

𝑇𝑇 =
𝑑̅𝑑

𝑠𝑠𝑑𝑑/√𝑘𝑘
 . 

For a selected significance level α, the null hypothesis is rejected if  

|𝑇𝑇| > 𝑡𝑡1−𝛼𝛼2 ,𝑘𝑘−1 . 

 

Example of paired t-test: 

Suppose that a performance measure for Instrument 1 and for Instrument 2 is measured 
simultaneously on k = 20 different trials. Presume that it makes sense to look at the pooled set of 
paired differences. The measurements 𝑥𝑥𝑖𝑖 for Instrument 1, the measurements 𝑦𝑦𝑖𝑖 for Instrument 2, 
as well as the differences 𝑑𝑑𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖  are listed in Table 2 below.  Calculations show 

𝑑̅𝑑 = 6.6, and 𝑠𝑠𝑑𝑑2 = 49.  Thus, 𝑇𝑇 = 6.6
7/√20 

 = 4.2.     

With a significance level of α = 0.05,  

𝑡𝑡1−𝛼𝛼2,𝑘𝑘−1 = 𝑡𝑡0.975,19 = 2.1, so the null hypothesis of no difference between the instruments is 

rejected.  In fact, statistical software shows that the associated p-value is 0.0005, which should 
be very strong evidence for a difference in instruments. 

Note that if one applied either of the unpaired t-tests described above with this data, the p-
value would be around 0.265, so a significant difference between instruments would not be 
detected.  That is because the instrument difference would be hidden amidst the large 
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differences between measurements for each instrument. This highlights the importance of 
knowing the background behind one’s data and tailoring the analysis accordingly. 

  

 

𝒙𝒙𝒊𝒊 𝒚𝒚𝒊𝒊 𝒅𝒅𝒊𝒊 = 𝒙𝒙𝒊𝒊 − 𝒚𝒚𝒊𝒊 
102 89 13 
67 60 7 
109 101 8 
97 96 1 
72 73 -1 
46 39 7 
83 70 13 
86 92 -6 
58 35 23 
65 64 1 
73 67 6 
92 90 2 
105 93 2 
96 84 12 
92 95 -3 
60 53 7 
88 74 14 
78 75 3 
65 53 12 
64 63 1 

 

Table 2: List of paired data  

 

3.1.2 Confidence intervals for differences between means 

As stated earlier in the section on binary results, readers are urged to proceed beyond hypothesis 
testing and to examine confidence intervals summarizing the difference between instruments’ 
performance.  The same data scenario will be repeated: 

Suppose that the measurements 𝑥𝑥1. … , 𝑥𝑥𝑚𝑚 for Instrument 1 come from a distribution with mean 
𝜇𝜇1, and the measurements 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 come for a distribution with mean 𝜇𝜇2.  It is desired to find a 
confidence interval for the difference 𝜇𝜇1 − 𝜇𝜇2 .   

We will describe three different confidence intervals to use depending on the assumptions and 
data scenario. They will be closely linked to the three different kinds of Student’s t test described 
earlier.  For the first two intervals, we again use the following quantities: 
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Let 𝑥̅𝑥 =   1
𝑚𝑚
∑ 𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1  be the mean of the measurements for Instrument 1. 

Let 𝑦𝑦� =   1
𝑛𝑛
∑  𝑦𝑦𝑗𝑗𝑛𝑛
𝑗𝑗=1  be the mean of the measurements for Instrument 2. 

Let 𝑠𝑠𝑥𝑥  
2 =   1

𝑚𝑚−1
 ∑ (𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 − 𝑥̅𝑥)2  be the sample variance of the measurements for Instrument 1. 

Let 𝑠𝑠𝑦𝑦  
2 =   1

𝑛𝑛−1
 ∑ (𝑦𝑦𝑗𝑗𝑛𝑛

𝑗𝑗=1 − 𝑦𝑦�)2  be the sample variance of the measurements for Instrument 2. 

 

3.1.2.1 Confidence intervals for differences between means: Equal variance case 

Suppose it is presumed or verified (see Section 3.3 on comparing variances) that the 
measurements for both instruments have approximately the same variance. Then we can use a 
pooled estimator for the variance that pools both sample variances: 

𝑠𝑠𝑝𝑝2 =
(𝑚𝑚 − 1)𝑠𝑠𝑥𝑥  

2 + (𝑛𝑛 − 1)𝑠𝑠𝑦𝑦  
2

𝑚𝑚 + 𝑛𝑛 − 2
 . 

 

For a given confidence level α, the two-sided confidence interval for 𝜇𝜇1 − 𝜇𝜇2 is 

𝑥̅𝑥 − 𝑦𝑦�  ± 𝑡𝑡1−𝛼𝛼2 ,𝑚𝑚+𝑛𝑛−2  𝑠𝑠𝑝𝑝   �
1
𝑚𝑚

+
1
𝑛𝑛

 . 

 

3.1.2.2 Confidence intervals for differences between means: Unequal variance case: 

For a given confidence level α, the two-sided confidence interval for 𝜇𝜇1 − 𝜇𝜇2 is 

𝑥̅𝑥 − 𝑦𝑦�  ± 𝑡𝑡1−𝛼𝛼2 ,𝑣𝑣  �
𝑠𝑠𝑥𝑥  
2

𝑚𝑚
+
𝑠𝑠𝑦𝑦  
2

𝑛𝑛
 , 

where v is the effective degrees of freedom estimated by the Welch-Satterthwaite approximation 
[2]. 

 

Examples for confidence intervals for differences between means 

Refer to the data set in the t-test example in section 3.2. Recall that m = n = 15,    𝑥̅𝑥 = 96.8  ,
𝑦𝑦� = 88.8  ,   𝑠𝑠𝑥𝑥  

2 = 71.17, 𝑠𝑠𝑦𝑦  
2 = 112.6, and 𝑠𝑠𝑝𝑝 =  9.586. 
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Example: Equal variances confidence interval 

A 95 % confidence interval for the difference between instrument means, assuming equal 
variances, is 

96.8 − 88.8 ±  𝑡𝑡.975,28  9.586 �
1

15
+

1
15

= 8.0 ± 7.17 = (0.83, 15.17). 

 

A 95 % confidence interval for the mean difference between instruments, assuming unequal 
variances, is 

96.8 − 88.8 ± 𝑡𝑡.975,26  �
71.17

15
+
112.6

15
= 8.0 ± 7.19 = (0.81, 15.19). 

The interval is slightly wider than the equal-variance interval. Note that for this example, we 
rounded down the Satterthwaite approximation for effective degrees of freedom v = 26.6 to 
v = 26 (this would be appropriate for those using tables of the Student’s t distribution).  Many 
statistical software packages will not round v because they can calculate percentiles of Student’s 
t distribution with non-integer degrees of freedom. 

 

3.1.2.3 Confidence intervals for differences between means: Paired case 

Assume that the data from the two observations are paired in a way that it makes sense to look at 
the sample of paired differences 𝑑𝑑1 = 𝑥𝑥1 − 𝑦𝑦1, … ,𝑑𝑑𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘.  

Let 𝑑𝑑 �= ∑ 𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖=1 /𝑘𝑘, and 𝑠𝑠𝑑𝑑2 = 1

(𝑘𝑘−1)
 ∑ �𝑑𝑑𝑖𝑖 − 𝑑̅𝑑�2𝑘𝑘

𝑖𝑖=1  . 

For a given confidence level α, the two-sided confidence interval for 𝜇𝜇1 − 𝜇𝜇2 is 

𝑑̅𝑑 ± 𝑡𝑡1−𝛼𝛼2 ,𝑘𝑘−1
𝑠𝑠𝑑𝑑
√𝑘𝑘

 . 

 

Example. 

Refer to the data contained in the table on paired t-tests in Section 1.3.1.3. A 95 % confidence 
interval for the difference between instrument means is 

𝑑̅𝑑 ± 𝑡𝑡1−𝛼𝛼2 ,𝑘𝑘−1
𝑠𝑠𝑑𝑑
√𝑘𝑘

= 6.6 ±
7

√20 
= (3.32, 9.88). 
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3.1.3 Sample size requirements for estimating mean difference 

Suppose it is needed to estimate the difference between the two instrument means 𝜇𝜇1 − 𝜇𝜇2 to 
within a margin of H with probability 1-α.  Suppose also that the variances 𝜎𝜎12and 𝜎𝜎22 are known, 
or at least can be estimated or approximated. Presuming equal sample sizes, the number of 
measurements for each sample required is: 

𝑛𝑛 = �
𝑧𝑧1−𝛼𝛼2
𝐻𝐻

�
2

(𝜎𝜎12 + 𝜎𝜎22) 

(Mendenhall and Sincich [3]).   

 

Example. 

The variances 𝜎𝜎12and 𝜎𝜎22 are often not known and have to be estimated from prior knowledge or 
approximated.  Let us go back to our previous data example with the unpaired t-test from section 
3.1.2 and presume that we had some prior knowledge that 𝜎𝜎12 is approximately 100 and 𝜎𝜎22  is 
approximately 120.  If it is needed to estimate the difference between the two instrument means 
𝜇𝜇1 − 𝜇𝜇2 to within 10 cm with probability 0.95, then the number of measurements for each sample 
required is: 

𝑛𝑛 = �1.96
10
�
2

(100 + 120) = 8.45, which we round up to n = 9. 

Suppose there was a more stringent objective of estimating the difference between the two 
instrument means 𝜇𝜇1 − 𝜇𝜇2 to within 5 cm with probability 0.95; then the number of 

measurements for each sample required is 𝑛𝑛 = �1.96
5
�
2

(100 + 120) =33.8, which we round to 
n = 34. 
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3.2 Comparing multiple instruments with continuous data 
3.2.1 Hypothesis test: ANOVA test 

Suppose there are multiple instruments where the performance output is in the form of 
continuous numerical measurements.  There will be k instruments. Instrument 𝑖𝑖 has 𝑛𝑛𝑖𝑖 
measurements 𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖  that originate from a distribution with mean 𝜇𝜇𝑖𝑖 .   Experiment designers 
should know that it is advantageous for the sample sizes 𝑛𝑛1, … ,𝑛𝑛𝑘𝑘 to be equal. 

A one-way Analysis-of-variance (ANOVA) hypothesis test to compare how the instruments 
perform will compare the means of their measurements. 

The model underlying the ANOVA is that the jth observation from the ith instrument can be 
written as: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑎𝑎𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 . 

This model decomposes each observation into three components: an overall mean 𝜇𝜇, an 
instrument effect 𝑎𝑎𝑖𝑖 (the deviation of the ith Instrument mean from the grand mean), and a 
residual 𝑒𝑒𝑖𝑖𝑖𝑖 .  The ANOVA model presumes that the residuals are independent, approximately 
normally distributed with mean 0, and have approximately the same variance for each 
instrument. 

The null hypothesis that all instruments perform the same will be 

𝐻𝐻0: 𝜇𝜇1 = ⋯ = 𝜇𝜇𝑘𝑘 

The alternative hypothesis is  𝐻𝐻𝐴𝐴: Not all the 𝜇𝜇𝑖𝑖 are the same. 

In terms of the ANOVA model, the null hypothesis 𝐻𝐻0 states that for each instrument 𝑎𝑎𝑖𝑖= 0. 

Denote the ith instrument mean as   𝑦𝑦𝑖𝑖∙ = 1
𝑛𝑛𝑖𝑖

 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑗𝑗=1  . 

Let 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1  be the total number of observations. 

The grand mean is  𝑦𝑦..�=    1
𝑁𝑁
∑  𝑘𝑘
𝑖𝑖=1  ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖
𝑗𝑗=1 . 

 The sum of squares due to Factor, which in our context is the Instrument is 

𝑆𝑆𝑆𝑆𝑆𝑆 = �  
𝑘𝑘

𝑖𝑖=1

 𝑛𝑛𝑖𝑖�𝑦𝑦𝑖𝑖∙ − 𝑦𝑦..��
2
 

The sum of squares due to Error (residual) is 

  𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑  𝑘𝑘
𝑖𝑖=1  ∑ (𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖
𝑗𝑗=1 − 𝑦𝑦𝑖𝑖∙ )

2 . 

The mean squares are the sum of squares divided by the associated degrees of freedom: 

MSF=SSF/(k-1)   and MSE=SSE/(N-k).   
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The test statistic is F=MSF/MSE. 

Under the null hypothesis of no instrument effects, MSF and MSE would be essentially 
estimating the same quantity of variation and would follow an 𝐹𝐹𝑘𝑘−1,𝑁𝑁−𝑘𝑘  distribution, which is an 
F distribution with k-1 and N-k degrees of freedom.  Under the alternative hypothesis, the 
existence of significant instrument effects should cause MSF to be larger than MSE.  Thus, the 
null hypothesis is rejected at significance level α if the test statistic F is larger than the 
100(1-α) percentile point of the  𝑭𝑭𝒌𝒌−𝟏𝟏,𝑵𝑵−𝒌𝒌  distribution.   Critical points of the F distribution 
for selected significance levels and various degrees of freedom are available in many statistics 
textbooks and online resources.  Statistical software will usually provide a p-value associated 
with the result. 

 

Example 

Suppose for each of three instruments, a sample of 5 measurements of the distance till detection 
was measured in cm. 

The measurements for Instrument 1 (𝑦𝑦1,1, … ,𝑦𝑦1,5): 

67 88 72 68 69 

The measurements for Instrument 2 (𝑦𝑦2,1, … ,𝑦𝑦2,5): 

99 83 102 101 76 

The measurements for Instrument 3 (𝑦𝑦3,1, … ,𝑦𝑦3,5): 

108 132 114 108 124 

 

Doing the ANOVA calculations show that for the sums of squares SSF= 4954.5 and SSE= 
1314.4.  The relevant degrees of freedom are k-1= (3-1), and N-k = (15-3).  Thus, the F-statistic 
is 

𝐹𝐹 =
𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀

=  (
𝑆𝑆𝑆𝑆𝑆𝑆
2

)/(
𝑆𝑆𝑆𝑆𝑆𝑆
12

) = 22.61. 

For significance level α = 0.05, the relevant critical point of the 𝐹𝐹2,12 distribution is 3.9, which is 
much smaller than the observed F-statistic, so the null hypothesis of no mean instrument 
differences is rejected. 
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3.2.2 Multiple Comparisons 

3.2.2.1 Tukey Procedure 

If the F-test rejects the null hypothesis of no instrument difference, it does not show how or 
which instrument means are different from each other.  If one particular pair of instruments are 
singled out for comparison, then a confidence interval for that difference can be calculated.  
However, it is not appropriate to compute 100(1-α) % intervals for all or multiple pairwise 
comparisons between means because the 100(1-α) % confidence level will not hold for the set of 
comparisons.   

One can use the Tukey method to estimate intervals for all pairwise mean differences and an 
overall confidence level of 100(1-α) % for the set of intervals.  Suppose that there are k 
instruments, and all the data set up, notation, and quantities are the same as in the previous 
section on the ANOVA test.  Assume all instruments have the same sample size 𝑛𝑛𝑖𝑖 = 𝑛𝑛, so the 
total number of observations is N = kn. 

Let MSE be the same mean squares as in the previous section.  For a given overall significance 
level α, for every pair of i ≠ j, the set of simultaneous 100(1- α) % confidence intervals for the 
instrument mean differences includes 

𝑦𝑦𝚤𝚤.� − 𝑦𝑦𝚥𝚥.��� ± 𝑞𝑞1−𝛼𝛼;𝑘𝑘,𝑁𝑁−𝑘𝑘 �
𝑀𝑀𝑀𝑀𝐸𝐸
𝑛𝑛

 . 

Here 𝑞𝑞1−𝛼𝛼;𝑘𝑘,𝑁𝑁−𝑘𝑘 is the 100(1- α) percentile point of the studentized range distribution with 
parameters k and N-k.  While not as well-known as the t or F distributions, tables of the 
studentized range distribution are available in many statistics textbooks and online resources.  
Many statistical software packages also contain a function for percentile points of the 
distribution for given parameters 

Example. 

Let’s return to the same data used in the ANOVA test example in the previous section. For that 

data set, MSE= 1314.4/12 = 109.53, so �𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛

 =�109.53
5

 = 4.68.  The multiplier for a set of 95 % 

simultaneous confidence intervals for the mean differences is 𝑞𝑞0.95;3,12= 3.77, so 

𝑞𝑞1−𝛼𝛼;𝑘𝑘,𝑁𝑁−𝑘𝑘 �𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛

= 3.77 (4.68) = 17.66.   If we denote the mean for Instrument i as 𝜇𝜇𝑖𝑖 ,, the set 

of intervals for the mean instrument differences are: 

µ2 − µ1:  19.4 ± 17.66 = (1.74, 37.06) 

µ3 − µ1:   44.4 ± 17.66 = ( 26.74, 62.06) 

µ3 − µ2:  25.0 ± 17.66 = (7.34,42.66). 
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All instrument means are significantly different from each other, with µ3 the largest, µ1 the 
smallest, and closest together are µ1 and µ2. 

 

3.2.2.1 Tukey-Kramer Procedure for unequal sample sizes 

The Tukey procedure in the previous section presumed equal sample sizes for each instrument.  
A modification called the Tukey-Kramer procedure can handle unequal sample sizes.  Each 
interval width is calculated separately depending on the sample size. 

Let MSE be the same mean squares as in the previous section.  For a given overall significance 
level α, for every pair of i ≠ j, the set of simultaneous confidence intervals for the instrument 
mean differences includes 

𝑦𝑦𝚤𝚤.� − 𝑦𝑦𝚥𝚥.��� ± 𝑞𝑞1−𝛼𝛼;𝑘𝑘,𝑁𝑁−𝑘𝑘 �
𝑀𝑀𝑀𝑀𝑀𝑀
2

  �
1
𝑛𝑛𝑖𝑖

+
1
𝑛𝑛𝑗𝑗

 . 

This procedure is known to be conservative in that its true confidence level is larger than 1-α 
when sample sizes are unequal, meaning that the intervals are longer than they need to be to 
achieve a true 100(1-α) % confidence level for the set of simultaneous intervals. 

 

3.3 Comparing instrument variances with continuous data  

3.3.1 Comparing variances from two instruments  

Recall the data scenario from Section 3.1.1 when comparing two instruments where the data are 
in the form of numeric measurements. Suppose that the measurements 𝑥𝑥1. … , 𝑥𝑥𝑚𝑚 come from a 
distribution with variance 𝜎𝜎12, and the measurements 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 come from a distribution with 
variance 𝜎𝜎22.  An F-test can be used to test whether the variances are equal. 

For this F-test, the null and alternative hypotheses will be: 

𝐻𝐻0:𝜎𝜎12 = 𝜎𝜎22  

𝐻𝐻𝐴𝐴:𝜎𝜎12  ≠ 𝜎𝜎22 

Let 𝑠𝑠𝑥𝑥  
2 =   1

𝑚𝑚−1
 ∑ (𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 − 𝑥̅𝑥)2  be the sample variance of the measurements for Instrument 1. 

Let 𝑠𝑠𝑦𝑦  
2 =   1

𝑛𝑛−1
 ∑ (𝑦𝑦𝑗𝑗𝑛𝑛

𝑗𝑗=1 − 𝑦𝑦�)2  be the sample variance of the measurements for Instrument 2. 

Then the F-statistic takes the form   𝐹𝐹 = 𝑠𝑠𝑥𝑥  
2 / 𝑠𝑠𝑦𝑦  

2 . 

If the significance level is α, then the null hypothesis that the two population variances are equal 
is rejected if   𝐹𝐹 < 𝐹𝐹𝛼𝛼 /2 ,𝑚𝑚−1,𝑛𝑛−1  or  𝐹𝐹 > 𝐹𝐹1−𝛼𝛼 /2 ,𝑚𝑚−1,𝑛𝑛−1 , where 𝐹𝐹𝛽𝛽,𝑚𝑚−1,𝑛𝑛−1 is the  100(𝛽𝛽)th 
percentile point of the F distribution with 𝑚𝑚− 1 and 𝑛𝑛 − 1 degrees of freedom.  Critical points 
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of the F distribution for selected significance levels and degrees of freedom are available in 
statistical textbooks and software. Note that this is the same F distribution in Section 3.2.1, 
although this test and its relevant test statistic is different. 

 

Example: 

We return to the example from Section 3.1.1.1. The measurements for Instrument 1 are 
(𝑥𝑥1, … , 𝑥𝑥15):  

91 95 107 105 102 85 88 92 101 99 102 85 114 91 95 

For Instrument 2, the measurements are (𝑦𝑦1, … , 𝑦𝑦15): 

 93 99 97 101 70 83 97 100 91 73 90 86 95 70 87 

Thus, m = n = 15,   𝑠𝑠𝑥𝑥  
2 = 71.17, and 𝑠𝑠𝑦𝑦  

2 =112.6.  The F-statistic 𝐹𝐹 = 71.17 / 112.6 = 0.632.      

If the significance level is, 𝛼𝛼 = 0.05,  we find that the F-statistic is between the two critical 
points: 

𝐹𝐹𝛼𝛼 /2 ,𝑚𝑚−1,𝑛𝑛−1 = 𝐹𝐹0.05,14,14  = 0.336 < 𝐹𝐹 = 0.632 <   𝐹𝐹1−𝛼𝛼 /2 ,𝑚𝑚−1,𝑛𝑛−1 = 𝐹𝐹0.975,14,14   = 2.98. 

The null hypothesis of equal variances is not rejected because the null hypothesis is rejected only 
if the F-statistic is outside the interval formed by the two critical points.   

This F-test assumes that both distributions are normally distributed.  If that assumption is in 
doubt, one can utilize a test that is robust to assumptions.  Such a test is the Levene Test, which 
is described in the next section. 

 

3.3.2 Comparing variances from multiple instruments 

The Levene test can be used to test if multiple samples come from distributions with the same 
variance [2].  Levene’s test is more robust to assumptions than a more classical procedure like 
the Bartlett test, which assumes normal distributions for the data.  This section describes a form 
of Levene’s test that was proposed by Brown and Forsythe [9]. 

Suppose that there are k samples, each from its own distribution, with 𝑘𝑘 ≥ 2. For this test, the 
null and alternative hypotheses will be: 

𝐻𝐻0:𝜎𝜎12 = 𝜎𝜎22  = ⋯ = 𝜎𝜎𝑘𝑘2 

𝐻𝐻𝐴𝐴:𝜎𝜎𝑖𝑖2  ≠ 𝜎𝜎𝑗𝑗2  for some 1≤ i< j≤ k. 

Suppose that from the k samples, sample 𝑖𝑖 has 𝑛𝑛𝑖𝑖 measurements 𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖  . Let 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1  be 

the total number of observations. Define 𝑦𝑦�𝑖𝑖 to be the median of the ith sample. Let   

𝑧𝑧𝑖𝑖𝑖𝑖 = �𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖�. 
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 Suppose 𝑧𝑧𝑖̅𝑖∙ is the mean of the 𝑧𝑧𝑖𝑖𝑖𝑖 for the ith group, and 𝑧𝑧·̅· is the grand mean of all the 𝑧𝑧𝑖𝑖𝑖𝑖.  Then, 
the test statistic for Levene’s test is 

𝑊𝑊 =
(𝑁𝑁 − 𝑘𝑘)∑ 𝑛𝑛𝑖𝑖𝑘𝑘

𝑖𝑖=1  (𝑧𝑧𝑖̅𝑖∙ − 𝑧𝑧·̅·)2

(𝑘𝑘 − 1)∑ ∑ (𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖̅𝑖∙)2
𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝑘𝑘
𝑖𝑖=1  

 . 

The null hypothesis of equal variances is rejected if 𝑊𝑊 > 𝐹𝐹1−𝛼𝛼 ,𝑘𝑘−1,𝑛𝑛−𝑘𝑘, which is the 100(1 −
𝛼𝛼 /2) percentile point of the F distribution with k-1 and N-k degrees of freedom. 

Note that the original formulation of Levene’s test used the sample mean instead of the median 
in the definition of the 𝑧𝑧𝑖𝑖𝑖𝑖.  Brown and Forsythe [9] proposed modifying the test to use the 
median or trimmed mean instead of the mean.  This section uses the median form of the test 
because it should be robust to non-normality while still maintaining good efficiency [2]. 

 

Example 

Let us return to the example from Section 3.2.1.  Suppose for each of three instruments, a sample 
of 5 measurements: 

The measurements for Instrument 1 (𝑦𝑦1,1, … ,𝑦𝑦1,5): 

67 88 72 68 69 

The measurements for Instrument 2 (𝑦𝑦2,1, … ,𝑦𝑦2,5): 

99 83 102 101 76 

The measurements for Instrument 3 (𝑦𝑦3,1, … ,𝑦𝑦3,5): 

108 132 114 108 124 

The respective medians of the three samples are 69, 99, and 114.  Thus, we have  

(𝑧𝑧1,1, … , 𝑧𝑧1,5) = (2 19 3 1 0) 

(𝑧𝑧2,1, … , 𝑧𝑧2,5) = (0 16 3 2 23) 

(𝑧𝑧3,1, … , 𝑧𝑧3,5) = (6 18 0 6 10) 

Further calculation shows that the test statistic is 𝑊𝑊 = (15−3)(40.133)
(3−1)(836.8) = 0.288.  If the significance 

level is 𝛼𝛼=0.05, then the criticial value is 𝐹𝐹0.95,2,12= 3.9.  Since the test statistic W = 0.288 is far 
below the critical value, we cannot reject the null hypothesis of equal variances 
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4 Non-normal data 
The t-test and its associated confidence interval as well as ANOVA are designed to be optimal 
when the data follow a normal distribution (also known as a Gaussian distribution).  While the t-
test is known to be robust to Type I errors when the data deviate from normality, it always pays 
to graph the data to check its shape, trends, and variability. 

4.1 Diagnosis and repair 
4.1.1 Graphical tools 

It is recommended that experimenters always plot their data.  Even the most rudimentary plots 
that could be done with paper and pencils in the past can provide insights into the data that can 
go beyond summary statistics. 

A histogram can be useful for checking if the data approximately follows the bell-shaped curve 
of the normal distribution.  If available, normal probability plots, also known as qq-norm plots 
(or normal Q-Q plots), should also be checked. The normal probability plot is a graph that plots 
the ordered measurements on the vertical axis versus the median or average of the corresponding 
order statistics of a standard normal sample of the same size.  Samples that are normally 
distributed should produce a normal probability plot where the points appear to be scattered close 
to a straight line.  A normal probability plots that is far from linearity is evidence of non-
normality.  Unfortunately, it is unfeasible to do a probability plot by hand; however, it is 
available in many statistical and worksheet programs. A histogram and a normal probability plot 
of a normally distributed sample is shown in Figure 4. 
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Figure 4: Histogram and Normal probability plot of a normally distributed sample of distance 
measurements 

 

4.1.2 Transformations 

It is possible that the data will be approximately normally distributed if transformed. Ideally, 
there will be a physical basis such a transformation.  Otherwise, a particularly useful family of 
transformations is the Box-Cox transformation: 

𝑇𝑇(𝑋𝑋) =
𝑋𝑋𝜆𝜆 − 1
𝜆𝜆

, 

Here 𝜆𝜆 is a parameter chosen to make the data Gaussian. For 𝜆𝜆 = 0, T(X) = log (X). 

The logarithmic transformation is the most commonly used transformation for positive 
measurement data that are skewed to the right. 
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Example 

Testing of one instrument yielded 20 measurements of distance till detection (in cm): 

68 45 477 60 48 143 39 109 238 217 563 291 110 137 278 353 19 75 262 764 

The histogram and normal probability plots ( Figure 5) of this data show that it is not normally 
distributed. 

 

 Figure 5: The histogram and normal probability plot show that this sample of distance 
measurements is not normally distributed. 

 

Using a logarithmic transformation on the distance data yields:  

4.22 3.81 6.17 4.09 3.87 4.96 3.66 4.69 5.47 5.38 6.33 5.67 4.70 4.92 5.63 5.87 2.94 4.32 5.57 
6.64 
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The histogram and normal probability plot of the transformed data inFigure 6  show that the 
transformed data approaches approximate normality. 

 

 

Figure 6 : The histogram and normal probability plot of the transformed data show that the 
transformed data approaches approximate normality. 

 

One problem with transforming the data is the need to refer to the transformed data rather 
than the original data, as well as the possibility of no appropriate transformation existing for 
that particular data. 
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4.2 Nonparametric methods 
It may be important to use methods not beholden to any, or at least many fewer, distributional 
assumptions.  Nonparametric methods attempt to achieve some of the same purposes as more 
classical procedures such as Student’s t test and the ANOVA F-test, but without the same 
required distributional assumptions.  There is always a trade-off as classic methods are optimal 
for normally distributed data, but nonparametric methods can be much more powerful for non-
normal data.  Also, nonparametric statistics tend to be more cumbersome to compute than 
classical statistics, but the increasing prevalence of computational and statistical software has 
lessened that burden considerably. 

 

4.2.1 Wilcoxon test for comparing two distributions  

A robust efficient alternative to the t-test that is not based on normal data is the Wilcoxon Rank 
Sum test. Note that another popular nonparametric test known as the Mann-Whitney U-test has 
been shown to be equivalent to the Wilcoxon test, so it will not be covered here. For the 
Wilcoxon test, the null hypothesis is that the two distributions are equivalent, while the 
alternative hypothesis is that one of the distributions is shifted to the right or the left of the other 
distribution [3]. The test is designed for continuous numerical data, as the presence of many ties 
in the combined data set (as might happen in a situation where the same number occurs many 
times, as in a Likert scale sample) can be problematic. 

Suppose that measurements for Instrument 1 are  𝑥𝑥1, … , 𝑥𝑥𝑚𝑚, and for Instrument 2 are 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛.  
Then rank all m + n measurements in order of magnitude, with the smallest one receiving rank 
one and the largest one receiving rank m + n.  Tied observations are given ranks equal to the 
mean of their ranks.  For example, if the seventh and eighth smallest measurements are the same, 
both measurements are assigned the rank of 7.5.  Let T1 be the sum of the ranks from Instrument 
1, and T2 be the sum of the ranks from Instrument 2.  If the null hypothesis that the two 
distributions are the same is true, then one would expect that the average rank from each 
distribution would be roughly the same; for the equal sample size case of m = n, we would 
expect T1 and T2 to be similar; in that case, if either T1 or T2 were much larger than the other 
rank sum, that would be evidence against the null hypothesis.  In practice take the rank sum of 
the sample with fewer observations (if m = n, then take either rank sum), and compare to the 
appropriate critical points given m and n in a table of Wilcoxon Rank Sum Test critical values, 
which should be in many statistics textbooks and online resources.  If both sample sizes are 
large, say at least 10, then a normal approximation test can be used.  Let T1 be the rank sum of 
the sample with fewer measurements (making 𝑚𝑚 ≤ 𝑛𝑛 in the following formula).  Let 

𝑍𝑍 =  (T1 – � 
 𝑚𝑚𝑚𝑚 +  𝑚𝑚(𝑚𝑚 + 1)

2 �)/�
𝑚𝑚𝑚𝑚(𝑚𝑚 + 𝑛𝑛 + 1)

12
 . 

Then it is known that under the null hypothesis of identical populations, the statistic Z can be 
approximated by a normal distribution with mean 0 and variance 1.  Therefore, the null 
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hypothesis of same distributions is rejected if Z is beyond the critical point in a standard normal 
table, i.e. for significance level α, reject the equality of the instruments if |𝑍𝑍| > 𝑧𝑧1−𝛼𝛼2 . 

 

Example 

Suppose for each of two instruments, a sample of 10 measurements of the distance till detection 
was measured in cm. 

The measurements for Instrument 1 (𝑥𝑥1, … , 𝑥𝑥10):  

 34 53 38 62 21 36 46 28 73 107 

For Instrument 2, the measurements are (𝑦𝑦1, … , 𝑦𝑦10): 

72 57 70 54 127 128 61 56 99 55 

It is needed to test whether the samples come from the same distribution. Neither sample appears 
normally distributed, so it is decided to use a Wilcoxon test. First, the two samples are combined, 
and each observation is assigned a rank.  These ranks are listed in the following table. 

𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊 (𝒄𝒄𝒄𝒄) Rank Instrument 
21 1 1 
28 2 1 
34 3 1 
36 4 1 
38 5 1 
46 6 1 
53 7 1 
54 8 2 
55 9 2 
56 10 2 
57 11 2 
61 12 2 
62 13 1 
70 14 2 
72 15 2 
73 16 1 
99 17 2 

107 18 1 
127 19 2 
128 20 2 

 

Table 3: List of instrument measurements with ranks. 
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The sum of ranks of the Instrument 1 measurements is T1 = 75, while the sum of ranks of the 
Instrument 2 measurements is T2 = 135.  Since both sample sizes are at least 10, the normal 
approximation can be used, leading to the statistic: 

𝑍𝑍 = (75 − �
10(10) + 10(10 + 1)

2 � /�
10(10)(10 + 10 + 1)

12
 

= −
30

13.23
= −2.27. 

If a significance level of α = 0.05 is used, the critical point is 𝑧𝑧.975 = 1.96 < |-2.27|, so the null 
hypothesis of no instrument difference is rejected.  Using statistical software on this example 
will yield a p-value of 0.02. 

 

4.2.2 Sign test for paired comparisons 

Let us go back to the situation of paired samples in Section 3.1.1.3, for which we previously used 
the paired t-test. Suppose that the assumptions of normally distributed differences do not hold. A 
simple nonparametric alternative to the paired t-test that is easy to calculate is the sign test, 
which tests if the median difference is significantly different from zero. For this paired situation, 
the sign test reduces each paired difference as either positive (+) or negative (-). Suppose we 
presume the two distributions were equal, then a (+) would be equally likely as a (-). Then under 
this null hypothesis, if S+ is the number out of k paired differences that are positive, and S- is the 
number out of k paired differences that are negative, then both S+ and S- would follow a 
Binomial distribution with k trials and probability ½, with average value being k/2.  Let 
S=max(S+, S-).  Then, the p-value associated with S is 2 P(X ≥ S) if X is a Binomial random 
variable with k trials and probability ½.  For a hypothesis test with significance level α, the null 
hypothesis is rejected if this p-value is less than α. 

The Binomial distribution with k trials and p=1/2 can be approximated by a Normal distribution 
with mean k/2 and variance k/4 for large k, say k ≥ 10 [3]. Thus, we can again transform the test 
into a z statistic: 

 𝑧𝑧 =
 𝑆𝑆−𝑘𝑘2  

 �𝑘𝑘/4
  . 

The null hypothesis is rejected if z is greater than the 100 (1- α/2) th percentile point of the standard 
normal distribution. 

 

Example 

Refer to the dataset highlighted in the example in Section 3.1.3 on the paired t-test. The set of 20 
paired differences between the two instrument measurements is: 
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13 7 8 1 -1 7 13 -6 23 1 6 2 12 12 -3 7 14 3 12 1. 

Note that 17 differences are positive, and 3 are negative. Suppose the significance level is 
α = 0.05.  If X is a binomial random variate with 20 trials and probability 0.5, then the associated 
p-value is 2 P(X ≥ 17) = 0.0026.  Thus, the null hypothesis of equal distributions (or at least 
equal medians) is rejected. 

It may be easier for some to use the normal approximation, which produces a z statistic of 

𝑍𝑍 =
17 − 20

2

�204

 = 3.13, 

which also signifies rejection of the null hypothesis. 

Since much of the information in the data is not taken into account, the sign test is much less 
powerful and efficient than the paired t-test if the data are normal or close to it.  Conversely, 
the sign test can be more powerful than the t-test in non-normal cases. 

 

4.2.3 Kruskal-Wallis procedure for testing multiple distributions 

Suppose there are k instruments each yielding approximately continuous numerical 
measurements, with the ith instrument having 𝑛𝑛𝑖𝑖 measurements. The Kruskal-Wallis (KW) 
procedure tests the null hypothesis that all k samples come from the same distribution without 
making the distributional assumptions of ANOVA. The alternative hypothesis is that at least two 
of the distributions differ in location from each other. The samples do need to be random and 
independent.  As with the Wilcoxon test, the measurements should be continuous numerical data 
to avoid repeated data values. 

The KW procedure is similar to the Wilcoxon Test described in one of the previous sections in 
that it is based on ranks.  Put all 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘

𝑖𝑖=1  measurements into one sample and rank them in 
order of magnitude, with the smallest one receiving rank one and the largest one receiving rank 
N.  Tied observations are given ranks equal to the mean of their ranks. Let the sum of ranks for 
the ith instrument be 𝑅𝑅𝑖𝑖 .   If the null hypothesis is true, and if each sample size is at least 5, then 
the test statistic 

𝐻𝐻 = [ 
12

𝑁𝑁(𝑁𝑁 + 1) �(𝑅𝑅𝑖𝑖2
𝑘𝑘

𝑖𝑖=1

/𝑛𝑛𝑖𝑖) ]   −   3(𝑁𝑁 + 1)  

should be approximated by a chi-square distribution with k-1 degrees of freedom.  For 
significance level α, the null hypothesis is rejected if H is greater than the 100(1-α) percentile 
point of the 𝜒𝜒𝑘𝑘−12  distribution. 
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Example 

Refer back to the data set of the example in Section 3.2.1 on ANOVA.  The three samples are 
pooled and then ranked according to magnitude as:  

Distance 
(cm) 

Rank Instrument 

67 1 1 
68 2 1 
69 3 1 
72 4 1 
76 5 2 
83 6 2 
88 7 1 
99 8 2 

101 9 2 
102 10 2 
108 11.5 3 
108 11.5 3 
114 13 3 
124 14 3 
132 15 3 

 

The rank sums are: 𝑅𝑅1 = 17, 𝑅𝑅2 = 38, 𝑅𝑅3 = 65 .  So the test statistic is 

𝐻𝐻 =
12

15(15 + 1)
( 1191.6) − 3(15 + 1) = 11.6. 

For significance level α = 0.5, the null hypothesis is rejected because H=11.6 >𝜒𝜒0.95: 2
2 =5.99. 

Statistical software shows the p-value is 0.003. 
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5 Proving Equivalence 
The methods provided thus far have sought to show that the true mean performances of two (or 
more) instruments are different. In these traditional hypothesis test formulations, we began with 
the assumption that the instruments’ true performances are the same and sought data-based 
evidence to prove that they are different. In this section we present the equivalence test (Wellek 
2010), (Richter and Richter 2002) that allows for the experimenter to prove that the true mean 
performances of two (or more) instruments are the same.  

The traditional hypothesis test formulation allows an experimenter to prove 
that the true mean performances of two (or more) instruments are different. 

The equivalence test allows an experimenter to prove that the true mean 
performances of two (or more) instruments are the same.    

For a practical example where an experimenter may like to prove that the true mean performances 
of two instruments are equivalent, we look to the American National Standards Institute’s, 
American National Standard Performance Criteria for Alarming Personal Radiation Detectors for 
Homeland Security, ANSI N42.32(2016). The functionality tests of ANSI N42.32 seek to 
demonstrate that an instrument is unaffected by an imposed environmental, electromagnetic, or 
mechanical shock. That is, the experimenter would like to prove that the performance of the 
instrument after the imposed shock is equivalent to the performance of the instrument prior to 
being exposed to the shock. Though we are not strictly comparing two instruments, we can view 
the pre-shock instrument and the post-shock instrument as two instruments.  

5.1 Null Hypothesis and Indifference Zone 
The equivalence test differs from the traditional hypothesis test formulation on two main accounts: 

1. In equivalence testing we begin with the assumption (null hypothesis) that the instruments’ 
performances are different. We then seek data-based evidence to prove that they are the 
same. 

2. The equivalence test only considers differences in instruments’ performances that are of 
practical significance to the experimenter. 

Recall that the hypothesis test relies on the idea of proof by contradiction. That is, we state as the 
null hypothesis the conjecture that is opposite of what we would like to prove. In the traditional 
hypothesis test formulation where we seek to identify a meaningful difference, we define the null 
hypothesis as the instruments’ true performances being the same. If we find sufficient evidence to 
reject the null hypothesis, then we can confidently state that the instruments’ true performances 
are different. Failure to reject the null hypothesis does not prove that the instruments’ true 
performances are the same, but rather that insufficient evidence was found to support the 
conclusion that the instruments’ true performances are different. 

In equivalence testing it is our goal to prove that the true mean performances of two (or more) 
instruments are the same. Thus, we begin with the assumption (null hypothesis) that the 
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instruments’ performances are different and seek evidence to show that they are the same. When 
we find such evidence to support the rejection of the null hypothesis, we can then confidently state 
that the instruments’ true performances are equivalent. Here again, failure to reject the null 
hypothesis is not proof the that null hypothesis is true, but simply indicates that insufficient 
evidence was found to support the conclusion that the instruments’ true performances are 
equivalent. 

Experimenters may find comfort in the fact that the equivalence test allows for deviations that are 
viewed as practically irrelevant in its definition of “the same”. In developing the equivalence test, 
the experimenter must define the “indifference zone” where differences in the instruments’ true 
mean performances are small enough to not be considered of practical importance in the context 
of the decision being made. We adopt the notation [ ],L Uδ δ  to represent the indifference zone where 

Lδ  provides the lower bound of the indifference zone and Lδ  provides the upper bound. Guidance 
for choosing the endpoints of the indifference zone can be found in Wellek (2010) and Anderson-
Cook and Borror (2016). 

For example, though not formulated strictly as an equivalence test, the functionality tests of ANSI 
N42.32 are written in such a way as to not penalize an instrument if its post-shock performance is 
within 15 % of its pre-shock performance. If we let preµ  represent the instrument’s true pre-shock 

performance, then the indifference zone is 0.15 ,0.15pre preµ µ −  . That is, a difference between the 

pre-shock and post-shock instrument performance that is within ±15 % of the pre-shock 
performance is considered practically irrelevant.     

5.2 Hypothesis Test 
In equivalence testing we begin with the null hypothesis that the instruments’ performances are 
different and seek evidence that allows us to reject the null hypothesis and prove that they are the 
same. Let Aµ  represent the true performance of instrument A and Bµ  represent the true 
performance of instrument B. We define “different” such that the difference in the instruments’ 
true performances, A Bµ µ−  falls outside of the indifference zone [ ],L Uδ δ . That is the instruments 
are considered different if A B Lµ µ δ− <  or A B Uµ µ δ− > . We see that this equates to not a single 
hypothesis test, but two one-sided tests (TOST) as provided in Equations (5.1) and (5.2), where 

0H  and 1H  represent the null and alternative hypothesis. 

 𝐻𝐻0: 𝜇𝜇𝐴𝐴 − 𝜇𝜇𝐵𝐵 < 𝛿𝛿𝐿𝐿  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  𝐻𝐻1: 𝜇𝜇𝐴𝐴 − 𝜇𝜇𝐵𝐵 ≥ 𝛿𝛿𝐿𝐿  (5.1) 

and, 

 𝐻𝐻0: 𝜇𝜇𝐴𝐴 − 𝜇𝜇𝐵𝐵 > 𝛿𝛿𝑈𝑈  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  𝐻𝐻1: 𝜇𝜇𝐴𝐴 − 𝜇𝜇𝐵𝐵 ≤ 𝛿𝛿𝑈𝑈  (5.2)  

Assuming that the instruments’ performances are measured using a continuous measurement, the 
test statistics used to evaluate these two one-sided tests are based on Student’s t-test (see Section 
3) and are provided in Equations (5.3) and (5.4). 
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( )

1 1
A B

A B L
L

p n n

X X
T

s

δ− −
=

+
  (5.3) 

 
( )

1 1
A B

A B U
U

p n n

X X
T

s

δ− −
=

+
  (5.4) 

Where AX  and BX are the means of the An  and Bn  performance measurements of instruments A 
and B. The pooled standard deviation, ps  is calculated according to Equation (5.5). 

 ( ) ( )2 21 1
2

A A B B
p

A B

n s n s
s

n n
− + −

=
+ −

  (5.5) 

Where As  and Bs  are the standard deviations of the of the An  and Bn  performance measurements 
of instruments A and B. 

To ascertain whether we are to reject each of the null hypothesis in Equations (5.1) and (5.2), we 
compare the test statistics of Equations (5.3) and (5.4) to an associated rejection criteria. To define 
this rejection criteria, we must determine the largest probability of committing a type I error that 
we are willing to accept. Recall that a type I error occurs when we erroneously reject the null 
hypothesis. In the equivalence test setting, a type I error means that we conclude that instruments’ 
performances are equivalent when in fact they are truly different. See Leber, Pibida, and Enders 
(2019) for a discussion on selecting an acceptable type I error probability in the context of radiation 
and nuclear detection systems. We denote the probability of committing a type I error with the 
Greek letter α. 

With α identified, and LT  and UT  calculated according to Equations (5.3) and (5.4), we reject the 
null hypothesis of Equation (5.1) if: 

 1 , 2A BL n nT t α− + −>   (5.6) 

and we reject the null hypothesis of Equation (5.2) if: 

 1 , 2A BU n nT t α− + −< −   (5.7) 

Here, 1 , 2A Bn nt α− + −  is the ( )1 100thα− ×  Student’s t quantile with 2A Bn n+ −  degrees of freedom. 
Student’s t quantile values are easily assessable through tables found in statistics textbooks, e.g., 
Montgomery and Runger (2018), or lookup functions in statistical software, spreadsheet tools, and 
online calculators. 

If we are able to reject the null hypothesis in both Equations (5.1) and (5.2), then we reject the 
overall null hypothesis of the equivalence test, and conclude that the instruments’ performances 
are the same. If we fail to reject either of the null hypotheses of Equations (5.1) and (5.2), then we 
cannot reject the overall null hypothesis of the equivalence test, and thus we are unable to deem 
that the instruments’ performances are the same.    

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2106



50 
 

5.3 Example 
In the spirit of using the ANSI N42.32 standard as an example, a personal radiation detection 
(PRD) system is subjected to an over-range shock for photons by subjecting the instrument to a 
gamma-ray field that exceeds its maximum measurable exposure rate by a factor of two for two 
minutes. The instrument’s pre- and post-shock performance is captured by its ability to measure 
the radiation exposure rate of a small radioactive source that produces a stable radiation field. The 
goal is to prove that the instrument was not adversely affected by the over-range shock for photons. 
That is, we want to show that the instrument’s pre-shock performance is equivalent to its post-
shock performance. We define equivalence as a difference between the pre-shock and post-shock 
performance that does not exceed 15 % of the pre-shock performance. We will perform this test at 
the 0.05α =  level. 

In the test area a radiation field of 30 µR/h (7.74×10−9(C/kg)/h) is produced by a small radioactive 
source at the reference point of the instrument, the instrument provided the following pre- and 
post-shock readings: 

pre-shock (µR/h): 30, 30, 30, 30, 30, 31, 31, 31, 31, 31  

post-shock (µR/h): 28, 30, 30, 30, 29, 29, 29, 30, 30, 30 

The summary statistics for these observations are: 

pre 30.5x =  pre 0.527s =  10pren =   post 29.5x =  post 0.707s =  10postn =   

We first define the lower and upper bounds of the indifference zone, [ ],L Uδ δ , as ±15 % of the pre-
shock performance: 

0.15 4.575L prex R hδ µ= − = −  and 0.15 4.575U prex R hδ µ= = . 

Next, we calculated the pooled standard deviation, ps , according to Equation (5.5) and the test 
statistics LT  and UT  according to Equations (5.3) and (5.4). 

( ) ( ) ( ) ( )2 2 2 21 1 10 1 0.527 10 1 0.707
0.6236

2 10 10 2
A A B B

p
A B

n s n s
s

n n
− + − − + −

= = =
+ − + −

 

( ) ( ) ( )
1 1 1 1

10 10

30.5 29.5 4.575
19.990

0.6236
A B

A B L
L

p n n

X X
T

s

δ− − − − −
= = =

+ +
 

( ) ( ) ( )
1 1 1 1

10 10

30.5 29.5 4.575
12.819

0.6236
A B

A B U
U

p n n

X X
T

s

δ− − − −
= = = −

+ +
 

And finally, we formulate our conclusion by comparing the test statistics 19.990LT =  and 
12.819UT = −  with their appropriate rejection regions as defined by Equations (5.6) and (5.7). With 

1 , 2 0.95,18 1.734
A Bn nt tα− + − = = , we reject the null hypothesis of Equation (5.1) since 1.734LT >  and we 
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reject the null hypothesis of Equation (5.2) since 1.734UT < − . Because we reject the null hypothesis 
in both Equations (5.1) and (5.2), then we reject the overall null hypothesis of the equivalence test, 
and conclude that the instrument’s post-shock performance is equivalent to its pre-shock 
performance. 

5.4 Confidence Interval Representation 
In general, a hypothesis test can be formulated and presented in terms of a confidence interval that 
is compared to some threshold. For the equivalence test presented in this section, we reject the 
overall null hypothesis of the equivalence test and conclude that the instruments’ performances are 
the same at the α-level of significance if the confidence interval provided in Equation (5.8) is 
entirely contained within the indifference zone [ ],L Uδ δ . 

 ( ) 1 1
1 , 2A B A BA B n n p n nX X t sα− + −− ± +   (5.8) 

The confidence interval of Equation (5.8) is formulated by combining the two one-sided 
confidence intervals that correspond to the tests of Equations (5.1) and (5.2). The result is a 

( )100 1 2 %α−  two-sided confidence interval with an expansion factor based on the 100(1 − 𝛼𝛼)𝑡𝑡ℎ 
Student’s t quantile. Note that this is unlike the ( )100 1 %α−  confidence intervals presented in 
Section 3 that are used to detect a difference between two instruments and rely on an expansion 
factor based on the 100 �1 − 𝛼𝛼

2
� 𝑡𝑡ℎ Student’s t quantile. 

In continuing with the above example, the confidence interval for equivalence is: 

 ( ) ( ) [ ]1 1 1 1
1 , 2 10 1030.5 29.5 1.734 0.6236 1 0.484 0.516,1.484

A B A BA B n n p n nX X t sα− + −− ± + = − − ⋅ + = ± =   

Since this interval is entirely contained within the indifference zone [ ] [ ], 4.575,4.575L Uδ δ = −  we 
reject the overall null hypothesis of the equivalence test, and conclude that the instrument’s post-
shock performance is equivalent to its pre-shock performance. An illustration of this confidence 
interval approach is provided in Figure 7. 

 

Figure 7: Combined one-sided 95 % confidence intervals for the difference in the pre- and post-
test response. The indifference zone [δL,δU] is displayed by the dashed lines. 

5.5 Power and Sample Size 
As with the traditional formulation of a hypothesis test, two errors are possible in an equivalence 
test. A type I error occurs when the equivalence test leads us to conclude that the performances of 
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the instruments are the same when in fact, they are truly different. While a type II error is when 
we fail to conclude that the performances of the instruments are equivalent when they are truly the 
same. We can control the probabilities of these errors through our choice of sample size and can 
use a power curve to evaluate the expected impact of sample size on the equivalence test’s type I 
and type II errors.  

In the case of the equivalence test, the power curve provides the probability of concluding that the 
instruments are equivalent (i.e., rejecting the null hypothesis) as a function of the true difference 
in the instruments’ performances. Ideally, when the true difference in the instruments’ 
performances is within the indifference zone we would always conclude (probability of one) that 
the instruments are equivalent and otherwise always fail to conclude (probability of zero) that the 
instruments are equivalent. This ideal power curve, for the above example with the indifference 
zone [ ] [ ], 4.575,4.575L Uδ δ = − , is displayed in Figure. 

Unfortunately, a test with no risk (no type I and type II errors), such as the ideal test illustrated 
with the power profile displayed in Figure 8, requires an infinite number of samples. Therefore, 
common practice is to state a maximum acceptable type I error probability and construct a suitable 
acceptance criterion and sample size. The resulting power curve is examined, and the sample size 
adjusted to satisfy the desired type II error probability. See Leber, Pibida, & Enders(2002) for 
further discussion on setting maximum acceptable errors in the context of homeland security 
applications. 

 

Figure 8: Power curve for an ideal equivalence test with indifference zone 

 [δL,δU] = [-4.575,4.575]. 
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To calculate the power of the equivalence test for a given finite sample size, { },A Bn n , we must 
calculate the probability of rejecting the null hypotheses of both Equations (5.1) and (5.2). Since 
we reject the null hypothesis of Equation (5.1) when 1 , 2A BL n nT t α− + −>  and we reject the null 
hypothesis of Equation (5.2) when 1 , 2A BU n nT t α− + −< − , then it follows that the power of the 
equivalence test is provided by Equation (5.9). 

 ( )1 , 2 1 , 2A B A BL n n U n nPower P T t and T tα α− + − − + −= > < −   (5.9) 

where TL and TU are the test statistics provided by Equations (5.3) and (5.4) that are distributed 
according to a non-central t-distribution with non-centrality parameters ( ) ( )1 1

A BA B L n nµ µ δ σ− − +  

and ( ) ( )1 1
A BA B U n nµ µ δ σ− − + , respectively (Leber, Pibida et al. 2019). Using Equation (5.9) and 

ps  as an estimate for σ , we calculate the power for the test from the above example with 
10A Bn n= =  and several alternative sample sizes. These power curves are presented, along with 

the ideal power curve ( )A Bn n= = ∞  in Figure 9. 

 

Figure 9: Power curves for several equivalence tests of varying sample sizes, nA = nB, each with 
a maximum type I error probability α = 0.05, indifference zone [δL,δ]] = [-4.575,4.575], and s 

estimated as 0.624. 

Among the finite tests displayed in Figure 9, we observe that the power curve of the 30A Bn n= =  
test most closest represents that of the ideal A Bn n= = ∞  test. Further, when the true difference in 
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the instruments’ responses is of practical significance to the experimenter, i.e., falls outside of the 
indifference zone [ ] [ ], 4.575,4.575L Uδ δ = − , the probability of erroneously deeming the instruments 
equivalent does not exceed 0.05 for all of the finite tests. We also note that for all tests displayed 
in Figure 9 the power curves reach their maximum value of one within the indifference zone. The 
difference between the tests is the rate at which they reach the maximum power. Consider, for 
example, two “equivalent” instruments whose true difference in response is 4 µR/h (1.03 × 10−9 

(C/kg)/h), then, from the curves provided in Figure 9, we observe: 

1. When 5A Bn n= = , the probability of deeming these truly equivalent instruments as such is 
0.42 (probability of a type II error = 0.58); 

2. When 10A Bn n= = , the probability of deeming these truly equivalent instruments as such 
is 0.63 (probability of a type II error = 0.37); and,  

3. When 30A Bn n= = , the probability of deeming these truly equivalent instruments as such 
is 0.97 (probability of a type II error = 0.03). 

Thus, amongst the three finite tests illustrated in Figure 9, we are most likely to draw the correct 
conclusion in the 30A Bn n= =  test. The experimenter must consider whether this increase in test 
performance (power) is worth the increased cost associated with the additional required samples. 

In Figure 10 we illustrate how variability in the test measurements, in addition to the sample size, 
effects the power of the equivalence test. In Figure 10 we again calculate the power for the test 
from the above example, however, here we have increased ps , the estimate for σ , by a factor of 
four. 
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Figure 10: Power curves for several equivalence tests of varying sample sizes, nA = nB, each 
with a maximum type I error probability a = 0.05, indifference zone [δL,δU] = [-4.575,4.575], 
and s estimated as 2.494. 

By comparing the power curves in Figure 10 to those in Figure 9, we see that the increased 
variability in the measurements has reduced our ability to deem truly equivalent systems as such. 
As an extreme case, consider two instruments whose responses are exactly the same, i.e., the true 
difference in response is 0 µR/h (0 (C/kg)/h). With the lower measurement variability of Figure 
9, the probability of deeming these two systems equivalent is one, even with the small sample 
size of 5A Bn n= = . However, when the measurement variability is larger (Figure 10), we see that 
for the small sample size test of 5A Bn n= = , the probability of deeming these two systems 
equivalent is 0.87. That is, there is a 13 % chance that the test will fail to deem these two systems 
equivalent. 

5.6 Other Applications 
This section provided an overview of an equivalence test that allows for experimenter to prove 
that the true mean performances of two (or more) instruments are the same. Pardo (2002) provides 
practical applications of equivalence tests that expand beyond this application to include the 
equivalence of proportions and variances.  
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