NIST Technical Note 2065

Room Temperature Fracture Toughness Characterization of Additively Manufactured Ti-6Al-4V

Enrico Lucon Jake Benzing Nik Hrabe

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2065

NIST Technical Note 2065

Room Temperature Fracture Toughness Characterization of Additively Manufactured Ti-6Al-4V

Enrico Lucon Jake Benzing Nik Hrabe Applied Chemicals and Materials Division Material Measurement Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2065

September 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2065 Natl. Inst. Stand. Technol. Tech. Note 2065, 203 (September 2019) CODEN: NTNOEF

> This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2065

Abstract

The room temperature elastic-plastic fracture toughness of additively manufactured (AM) Ti-6Al-4V was characterized by means of Elastic Compliance (EC) tests on Charpy-type fatigue precracked and side-grooved specimens. Various fabrication and material conditions were investigated: as-built parameters (effects of scan length and use of supports) and hot isostatic pressing parameters (effects of temperature and cooling rate). The results, although strictly not fully compliant with ASTM E1820-18a^{e1}, can be considered representative of the fracture toughness of the material in the different conditions, and compare favorably with literature data for both non-AM and AM Ti-6Al-4V. Additional analyses were conducted with another single-specimen approach (Normalization Data Reduction) and were compared with EC results.

Key words

Additive manufacturing; elastic compliance; fracture toughness; normalization data reduction; scan length; Ti-6Al-4V.

Table of Contents

1.	Int	roduction	1
2.	Ma	aterial and processing parameters	2
3.	Ex	perimental setup and analysis procedures	3
4.	Te	st Results – As Built Condition	6
4	.1.	Non-Supported Specimens	6
4	.2.	Supported Specimens	11
5.	Te	st Results – Classic HIP Condition	16
5	.1.	Non-Supported Specimens	16
5	.2.	Supported Specimens	20
6.	Te	st Results – Super-β Transus HIP, Non-Supported Condition	21
7.	Dis	scussion	23
7	.1.	Non-supported vs. supported	23
7	.2.	Influence of scan length	25
7	.3.	As-built vs. HIP (classic and super- β transus)	27
7	.4.	Crack jumps and lack-of-fusion (LoF) pores	29
7	.5.	Validity of the measured fracture toughness parameters	31
7	.6.	Elastic Compliance vs. Normalization Data Reduction	33
7	.7.	Comparison with literature fracture toughness values	36
	7.7	1.1. Non-AM Ti64	36
	7.7	2.2. AM Ti64	37
8.	Co	nclusions	38
Ack	knov	wledgements	39
Ref	erei	nces	39

List of Tables

Table 1 – Overall test matrix for the investigation of the room temperature fracture
toughness properties of AM Ti64
Table 2 – AM Ti64 room temperature tensile properties used in the analysis of the fracture
toughness tests
Table 3 – Results obtained on as-built (A), non-supported (N) specimens.
Table 4 – Results obtained on as-built (A), supported (S) specimens. 11
Table 5 – Results obtained on classically HIPed (C), non-supported (N) specimens
Table 6 – Results obtained on classically HIPed (C), supported (S) specimens
Table 7 – Results obtained on super- β transus HIPed, non-supported specimens
Table 8 – Comparison between fracture toughness of non-supported and supported
specimens

Table 9 – Results of unpaired t-tests on the differences between non-supported andsupported mean values (significance level = 0.05). p-values < 0.05 (green) indicate that</td>differences are not statistically significant; p-values > 0.05 (red) indicate that differences arestatistically significant.25**Table 10** – Literature fracture toughness values for non-AM Ti64, and results obtained onAM Ti64 in this investigation.36**Table 11** – Literature fracture toughness values for AM Ti64 reported in [37] and resultsobtained in this investigation.37**Table 12** – Literature fracture toughness values for AM Ti64 reported in [38] and resultsobtained in this investigation.37

List of Figures

Fig. 3 – Data points and J-R curves for as-built, non-supported specimens (scan length = 28**Fig. 4** – Data points and *J-R* curves for as-built, non-supported specimens (scan length = 56Fig. 5 – Data points and J-R curves for as-built, non-supported specimens (scan length = 70Fig. 6 – Data points and J-R curves for as-built, non-supported specimens (scan length = 84**Fig. 8** – Mean J-R curves with $\pm 1\sigma$ error bars for as-built, non-supported specimens. 10 **Fig. 9** – Mean values of J_O and $T_{M,mean}$ as a function of scan length for as-built, non-supported specimens. NOTE: points corresponding to scan length = 84 mm are slightly Fig. 10 – Data points and J-R curves for as-built, supported specimens (scan length = Fig. 11 – Data points and J-R curves for as-built, supported specimens (scan length = 56 mm). J-R curves were obtained by fitting data points lying between the dashed lines. 13 Fig. 12 – Data points and J-R curves for as-built, supported specimens (scan length = 70 mm). J-R curves were obtained by fitting data points lying between the dashed lines. 13 Fig. 13 – Data points and J-R curves for as-built, supported specimens (scan length = 84 mm). J-R curves were obtained by fitting data points lying between the dashed lines. 14 **Fig. 16** – Mean values of J_Q and $T_{M,mean}$ as a function of scan length for as-built, supported Fig. 17 – Data points and J-R curves for classically HIPed, non-supported specimens (scan length = 28 mm). J-R curves were obtained by fitting points lying between dashed lines. ... 17 Fig. 18 – Data points and J-R curves for classically HIPed, non-supported specimens (scan length = 70 mm). J-R curves were obtained by fitting points lying between the dashed lines. **Fig. 19** – Data points and *J*-*R* curves for classically HIPed, non-supported specimens (scan length = 84 mm). *J*-*R* curves were obtained by fitting points lying between the dashed lines.

Fig. 21 – Mean J-R curves with $\pm 1\sigma$ errors for classically HIPed, non-supported specimens. **Fig. 22** – Mean values of J_Q and $T_{M,mean}$ as a function of scan length for as-built and Fig. 23 – Data points and J-R curves for classically HIPed, supported specimens (scan length Fig. 24 – Data points obtained from the EC analyses for super- β transus HIPed, Fig. 25 – Critical toughness values for non-supported and supported specimens, with $\pm 1\sigma$ Fig. 27 – Mean values of tearing modulus for non-supported and supported specimens. 24 **Fig. 28** – Mean values of J_O as a function of scan length. NOTE: scan lengths for as-built **Fig. 29** – Mean values of $T_{M,JO}$ as a function of scan length. NOTE: scan lengths are slightly **Fig. 30** – Mean values of $T_{M,mean}$ as a function of scan length. NOTE: scan lengths are Fig. 31 – Mean values of J_O with $\pm 1\sigma$ error bars for non-supported specimens with scan length = 70 mm. NOTE: the value for super- β transus HIP is a rough engineering estimate. 27 Fig. 32 – Mean values of J_Q with $\pm 1\sigma$ error bars for non-supported specimens with 28 mm, **Fig. 33** – Mean values of $T_{M,JQ}$ with $\pm 1\sigma$ error bars for non-supported specimens with 28 **Fig. 34** – Mean values of $T_{M,mean}$ with $\pm 1\sigma$ error bars for non-supported specimens with 28 Fig. 35 – Force and crack size vs. CMOD for specimen BN-5-1. NOTE: unloading/reloading Fig. 36 – Fracture surfaces of specimens AS-4-2 (high density of LoF pores) and AS-4-3 (low density of LoF pores). Material condition: as-built, supported, scan length = 84 mm. . 30 Fig. 37 – Comparison between values of critical fracture toughness, J_O , obtained from EC **Fig. 38** – Comparison between values of tearing modulus at initiation, $T_{M,IO}$, obtained from **Fig. 39** – Comparison between values of mean tearing modulus, $T_{M,mean}$, obtained from EC

1. Introduction

Additive Manufacturing (AM), previously known as 3D printing, is a process in which material is joined or solidified under computer control to create a threedimensional object, with material being added together (such as liquid molecules or powder grains being fused together), typically layer by layer. In the 1990s, 3D printing was considered only suitable to produce functional or aesthetical prototypes. Nowadays, the precision, repeatability, and material range have increased to the point that 3D printing, or AM, is considered as an industrial production technology.

The sale of AM products and services is projected to exceed \$6.5 billion worldwide by 2019 [1]. To enable use of metal AM in fatigue and fracture applications, a recent NIST/ASTM workshop [2] identified the need for a deeper understanding of fatigue and fracture behavior of these materials through detailed investigations of processing-structure-property-performance relationships.

The objective of the Additive Manufacturing Fatigue and Fracture Project at NIST is twofold:

- Develop appropriate measurement science for fatigue and fracture behavior of additively manufactured metals, to underpin a rapid qualification framework.
- Determine the effect of processing (including post-processing) and structure (e.g. internal defects, external defects, residual stress, crystallographic microstructure, and chemistry) on fatigue and fracture properties of additively manufactured metals.

The first fracture measurements published in the framework of this project characterized the impact properties of electron-beam melted (EBM) Ti-6Al-4V by means of instrumented tests on miniaturized Charpy specimens [3,4]. Tests were performed in two different orientations with respect to the build direction (horizontal and vertical), as well as in the as-built and Hot Isostatic Pressed (HIPed) conditions. The results showed a deleterious effect of internal porosity and a significant influence of texture variations on absorbed energy.

Ti-6Al-4V (commonly, and hereinafter, referred to as Ti64) is the most widely used titanium alloy, featuring good machinability and excellent mechanical properties. It offers the best all-round performance for a variety of weight reduction applications in aerospace, automotive, and marine equipment. Its high strength, low weight, and outstanding corrosion resistance has led to a wide range of successful applications that demand high levels of reliable performance in surgery and medicine (e.g. implants and prosthesis), aerospace, automotive, chemical plants, power generation, oil and gas extraction, sports, and other major industries.

This Technical Note reports on an extensive fracture toughness test campaign on AM Ti64, consisting of 50 tests on Charpy-type specimens performed at room temperature by means of the single-specimen elastic compliance (EC) technique, which allowed determining both critical toughness values of *J*-integral at crack initiation (J_Q) and crack resistance (*J-R*) curves. The following manufacturing parameters were investigated in this campaign:

- As-built versus two types of HIPing (classic and super- β transus).
- Non-supported versus supported specimens¹.

¹ Specimens directly attached to the build plate were identified as "non-supported", while "supported" specimens were connected to the build plate by means of standard thin wafer supports.

• Different scan lengths².

A preliminary fracture toughness study was also performed [6] on non-supported and supported specimens, all in classic HIP condition, for a specific scan length (84 mm). The main objective of this activity (besides developing and fine-tuning the experimental procedure) was to determine whether very sharp Electrically Discharge Machined (EDM) notches could be a reliable alternative to fatigue precracks for AM Ti-6Al-4V Charpy-type specimens. This was found to be case for several steels in a previous investigation [7]. The results of the preliminary study [6] showed that fatigue precracking had to be used for further testing, in order to avoid fracture toughness overestimation caused by the finite root radius of an EDM notch. Based on the outcome of this preliminary campaign, only fatigue precracked specimens were used for the investigation described herein.

2. Material and processing parameters

The AM Ti64 parts used in this study were fabricated using an Arcam³ A1 EBM machine (accelerating voltage 60 kV, layer thickness 50 μ m, speed factor 35, and software version 3.2.132) and standard Arcam Ti-6Al-4V gas atomized powder (particle size range approximately 40 μ m to 100 μ m, average approximately 70 μ m).

Parts on the build plate were organized in such a way that the X and Y scan lengths (distance the electron beam travels on a single track before turning around) were the same for a given melt model. Melt models were designed to have different overall scan lengths (28 mm, 56 mm, 70 mm, and 84 mm). In some cases, 5 mm tall support structures were used, while other parts were not supported (directly attached to the build plate). All parts were manufactured to have the same total build height of 58 mm (including the height of the support structures when applicable).

Parts were subjected to two different HIP treatments:

- (a) "Classic" sub-β transus HIP (900 °C, 100 MPa, 2 h, Ar environment, standard heating and cooling rates) [8].
- (b) Super-β transus HIP (1050 °C, 100 MPa, 2 h, rapid cooling in Ar) with an additional HIP (800 °C, 30 MPa, 2 h, slow cooling in Ar meant for martensite tempering), which however requires further analysis and optimization.

The processing parameters whose influence was investigated in this study (and in the preliminary campaign that investigated the 84 mm scan length documented in [6]) were the following:

- As built vs. HIPed.
- Different scan lengths: 28 mm, 56 mm, 70 mm, and 84 mm for as-built specimens; 28 mm and 70 mm for classic HIP; 70 mm for super-β transus HIP.
- Non-supported vs. supported specimens.

 $^{^{2}}$ Scan length is a manufacturer-specific parameter that corresponds to the distance the electron beam travels on a single track before turning around to begin the next track. It has been shown to determine energy density and affect texture [5].

³ Certain commercial software, equipment, instruments or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the equipment or materials identified are necessarily the best available for the purpose.

The overall test matrix is presented in Table 1. The total number of tests performed (including the preliminary study) was 50.

Material condition	Non-supported vs. supported	Scan length (mm)	Number of tests
		28	4
	Non supported	56	4
	Non-supported	70	4
As-built		84	4
As-built		28	4
		56	4
	Supported	70	4
		84	4
		84	3
Classia UID		28	4
Classic HIP		70	4
	Non-supported	84	3
Super-β transus HIP		70	4

Table 1 – Overall test matrix for the investigation of the room temperature fracturetoughness properties of AM Ti64.

3. Experimental setup and analysis procedures

All tests were performed on fatigue precracked and side-grooved Charpy-type specimens. The specimens were machined with integral knife edges that allowed installing a clip-gage for monitoring crack mouth opening displacement (CMOD). The technical drawings are provided in Fig. 1 (specimen before side-grooving) and Fig. 2 (specimen after side-grooving).

Specimen precracking was performed by cyclic fatigue in accordance with Section 7.4 of ASTM E1820-18a [9] up to a nominal crack-size-to-width ratio a/W = 0.45. After precracking, specimens were side-grooved with an overall thickness reduction of 2 mm or 20 % (1 mm, or 10 %, per side).

Tests were conducted in three-point-bending (span⁴ S = 4W = 40 mm) on a servohydraulic universal machine equipped with a calibrated load cell having 5 kN capacity. As mentioned above, CMOD was measured by means of a clip-gage with a maximum range of 5 mm.

All tests were performed at room temperature, 22 °C \pm 2 °C, in air. Tests were conducted in actuator displacement ("stroke") control, at a rate of 0.1 mm/min (quasi-static testing).

⁴ The span *S* is the distance between the lower rollers in the three-point-bending fixture used for the tests.

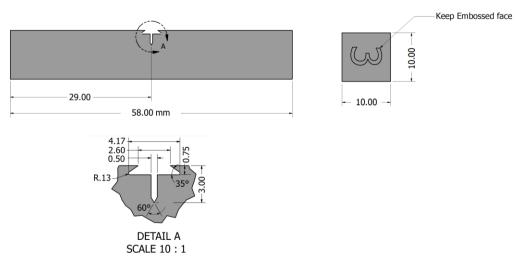


Fig. 1 – Drawing of the Charpy-type specimen before side-grooving.

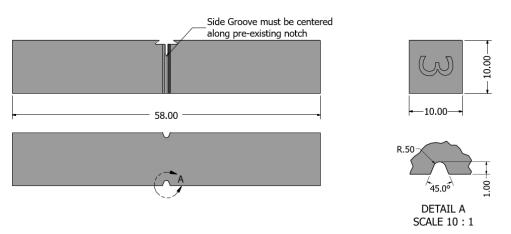


Fig. 2 – Drawing of the Charpy-type specimen after side-grooving.

The single-specimen methodology used to obtain fracture toughness parameters (planestrain fracture toughness, J_Q , and crack resistance, J-R, curves) was the elastic compliance (EC) method, whereby the specimen is periodically unloaded and reloaded during the test to estimate the current crack size based on the specimen elastic compliance⁵ (slope of the linear fit of the unloading/reloading force-CMOD cycle). For every unloading/reloading cycle, the values of J-integral and crack extension Δa are calculated, so that a complete J-R curve and critical toughness J_Q/J_{Ic} can be established in accordance with Annexes A8 and A9 of E1820-18a^{ε 1}, respectively. In order to quantify crack resistance, another parameter (currently not included in E1820, but covered in the past by ASTM E813⁶) was calculated and reported: the tearing modulus T_M , a non-dimensional quantity introduced by Paris in 1977 [10,11] as:

$$T_M = \frac{E}{\sigma_0^2} \cdot \frac{dJ}{da} \qquad , \tag{1}$$

⁵ (Elastic) compliance is defined in ASTM E1820-18a^{ε1} as the ratio of displacement increment to force increment.

⁶ ASTM E813 (*Test Method for J_{IC}, A Measure of Fracture Toughness*) was a precursor to E1820 and was withdrawn in 1997. Its last version was E813-89^{ε 1}.

where *E* is the Young's modulus, σ_0 is the flow stress (average of yield and tensile stresses), and dJ/da is the slope⁷ of the power law fit to the *J*- Δa data points inside the region of qualified data according to E1820. In this study, we reported values of tearing modulus at initiation (*J*_Q), *T*_{*M*,*J*_Q, and the average value between initiation and *J*_{*limit*} (limiting *J*-capacity of the specimen), *T*_{*M*,*mean*.}}

In addition to the EC procedure, another single-specimen method was used for analysis: the Normalization Data Reduction (NDR) technique, which is standardized in Annex A15 of ASTM E1820-18a^{ε 1}. This approach is used to obtain a *J-R* curve directly from a force-displacement record, together with initial and final crack size measurements taken from the specimen fracture surface [12-15]. The NDR analyses were conducted by means of a freeware tool recently made available by Oak Ridge National Laboratory (ORNL) [16], and the results were eventually compared with those of the EC analyses. Such comparison will be examined in the "Discussion" section.

The tests were conducted according to Section 8 (*Procedure*) of ASTM E1820-18a^{ϵ 1} and the analyses were performed following Section 9 (*Analysis of Results*). Values of *J*-integral and crack size were calculated by means of the formulas provided in Annex A1 for bend, SE(B), specimens⁸. For the estimation of crack size from elastic compliance, the recommendations of Appendix X3 were followed:

- only the unload part was used, and
- the first 5 % and the last 5 % of the unload/reload sequence (where significant nonlinearities can occur) were discarded.

Moreover, in order to improve the accuracy of EC crack growth predictions, predicted crack sizes $(a_{i,pred})$ were adjusted based on the measured initial (a_0) and final (a_p) crack sizes, using the following relationship:

$$a_{i,adj} = a_{0q} + \frac{a_p - a_{0q}}{a_{p,pred} - a_{0q}} \left(a_{i,pred} - a_{0q} \right)$$
(2)

where $a_{i,adj}$ is the adjusted crack size and a_{0q} is the initial crack size estimated from compliance in accordance with Annex A9. Eq. (2) is the recommended adjustment for crack size predictions obtained from another single-specimen technique (Direct Current Electric Potential Difference), which is described by Annex A18 of ASTM E1820-18a^{ε 1}.

For the analyses, we used tensile properties (yield and tensile stresses) measured at room temperature at NIST on as-built and HIPed specimens in a recent study [17] for various scan lengths. The values of yield stress and tensile stress for the investigated conditions were obtained by linearly fitting the tensile properties measured in [17] as a function of scan length. The value of Young's modulus to be used for all conditions (E = 128.8 GPa) was estimated in [6] by forcing the average elastic compliance of sharp-notched specimens to correspond to the known initial value of the machined notch (V-notch + EDM slit = 4.5 mm). Table 2 summarizes the tensile properties used in the analysis of the fracture toughness tests.

⁷ Note that ASTM E813 prescribed a linear fit of the valid J- Δa data points, which yielded a unique value of dJ/da and hence of T_M . However, E1820 prescribes a power law fit, and therefore the tearing modulus assumes different values along the J-R curve.

⁸ The precracked Charpy-type specimen is just an example of bend, SE(B), specimen with $B \times B$ cross section (10 mm × 10 mm). The formulas given in ASTM E1820-18a^{ϵ 1}, Annex A1, for SE(B) specimens are therefore fully applicable.

Material condition	Non-supported vs. supported	Scan length (mm)	Yield stress (MPa)	Tensile stress (MPa)
		28	826	967
	Non supported	56	834	972
	Non-supported	70	838	975
As-built		84	841	977
As-built		28	860	960
	Supported	56	876	974
		70	884	981
		84	892	988
		84	841	952
Classic HIP		28	804	919
Classic HIP	NT	70	836	946
	Non-supported	84	846	955
Super-β transus HIP		70	885 ⁹	985 ⁸

Table 2 – AM Ti64 room temperature tensile properties used in the analysis of the fracturetoughness tests.

4. Test Results – As Built Condition

4.1. Non-Supported Specimens

Sixteen fatigue precracked and side-grooved Charpy-type specimens were tested at room temperature for the as-built, non-supported condition, 4 for each of the following scan lengths: 28 mm, 56 mm, 70 mm, and 84 mm.

The results obtained from the EC and NDR techniques are provided in Table 3, with average values and standard deviations (σ). None of the measured J_Q values could be validated as plane-strain fracture toughness J_{Ic} in accordance with ASTM E1820-18a^{ε 1} (the reasons for invalidity are indicated in the Table).

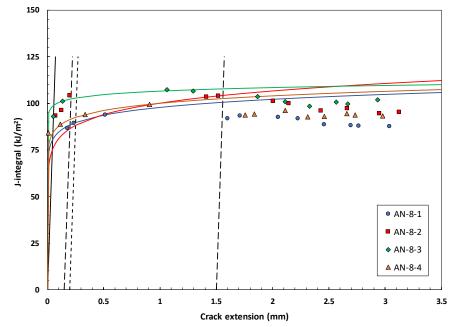
 $J-\Delta a$ data points and J-R curves are compared in Fig. 3 (scan length = 28 mm), Fig. 4 (56 mm), Fig. 5 (70 mm), and Fig. 6 (84 mm).

For several of the tests performed, significant "crack jumps" (large crack advances between two consecutive unloading/reloading cycles) were observed, corresponding to unstable ductile tearing events. The occurrence of these "jumps" was more frequent for shorter scan lengths (Fig. 3 and Fig. 4), causing very low values of tearing modulus for those tests (between 0.1 MPa and 5 MPa).

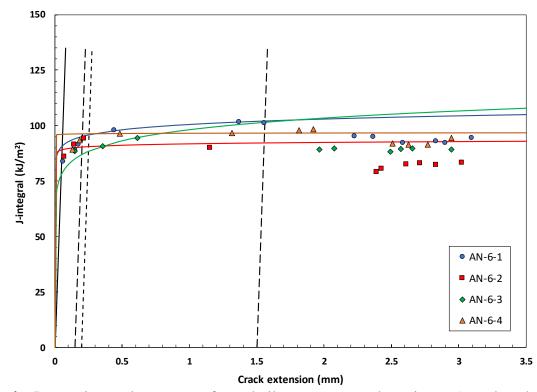
Methodology			Elastic Compliance				Normalization Data Reduction			
Specimen id	Scan length (mm)	$ \begin{array}{c} J_{Q} \\ (kJ/m^{2}) \end{array} $	Invalidity causes	<i>Т_{М,JQ}</i> (MPa)	Т _{М,теап} (MPa)	$\frac{J_Q}{(\mathrm{kJ/m^2})}$	Invalidity causes	<i>Т_{М,JQ}</i> (MPa)	T _{M,mean} (MPa)	
AN-8-1		89.59	c,f,g	3.81	2.25	67.84	e	8.64	5.25	
AN-8-2	28	88.10	c,d,f,g	5.47	3.25	72.83	e	11.17	6.91	
AN-8-3	28	102.80	c,d,f,g	1.73	1.01	71.60	e	11.93	7.42	
AN-8-4		92.45	c,f	3.52	2.08	69.94	e	10.33	6.36	
Average		93.23	-	3.48	2.06	70.55	-	10.52	6.49	
Standard deviation		6.630	-	1.458	0.872	2.159	-	1.413	0.932	

Table 3 – Results obtained on as-built (A), non-supported (N) specimens.

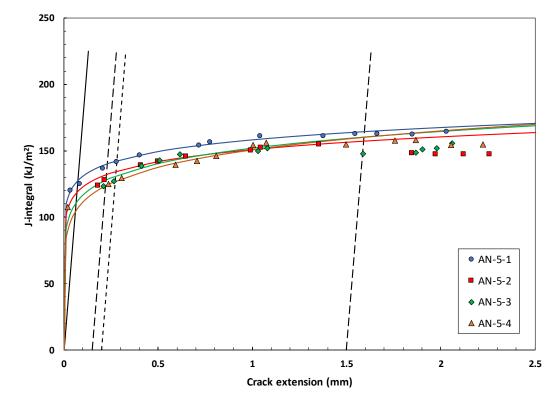
 9 Values measured for scan length = 78 mm (only value of scan length investigated).


Metho	dology		Elastic Con	pliance		Norn	nalization Da	ata Reduo	ction
Specimen	Scan	J_Q	Invalidity	$T_{M,JQ}$	T _{M,mean}	J_Q	Invalidity	$T_{M,JQ}$	T _{M,mean}
id	length (mm)	(kJ/m^2)	causes	(MPa)	(MPa)	(kJ/m^2)	causes	(MPa)	(MPa)
AN-6-1		95.93	c,f	2.07	1.21	70.11	e	10.75	6.65
AN-6-2	56	90.37	c,d,f,g	0.57	0.33	70.49	e	8.23	5.00
AN-6-3	50	88.32	c,f	4.21	2.49	73.26	e	7.96	4.82
AN-6-4		96.24	c,f	0.10	0.06	70.77	e	9.29	5.68
Ave	rage	92.71	-	1.74	1.02	71.16	-	9.06	5.54
Standard	deviation	3.981	-	1.850	1.096	1.430	-	1.266	0.828
AN-5-1		142.32	c,d	6.60	3.97	102.33	e	18.77	11.99
AN-5-2	70	134.41	с	6.86	4.12	99.91	е	15.78	9.92
AN-5-3	70	130.78	с	8.65	5.23	101.31	e	16.81	10.62
AN-5-4		126.95	с	9.66	5.87	92.09	e	17.28	11.01
Ave	rage	133.61	-	7.94	4.80	98.91	-	17.16	10.89
Standard	deviation	6.554	-	1.463	0.908	4.654	-	1.245	0.867
AN-4-1		101.99	c,d	4.11	2.43	94.93	e	10.01	6.10
AN-4-2	84	135.18	c,d	13.47	8.31	104.49	e	22.76	14.90
AN-4-3	04	130.02	с	17.31	10.86	98.70	e	24.37	16.23
AN-4-4	1	117.36	с	2.93	1.73	85.13	e	16.97	10.86
Ave	rage	121.14	-	9.45	5.83	95.81	-	18.53	12.02
Standard	deviation	14.797	-	7.046	4.464	8.134	-	6.509	4.560

LEGEND – <u>Invalidity causes</u>: c – Correlation coefficient of the fit used to calculate $a_{0q} < 0.96$.


d – One or more individual values of initial crack size, estimated from unloading/reloading sequences in the elastic range of the test, differ from the mean by more than ± 0.002 *W*.

e - Final crack extension larger than 15 % of the initial uncracked ligament.


- f Number of data points inside region of qualified data < 5.
- g Distribution of data points inside the region of qualified data invalid (see ASTM E1820 section A9.6.4).

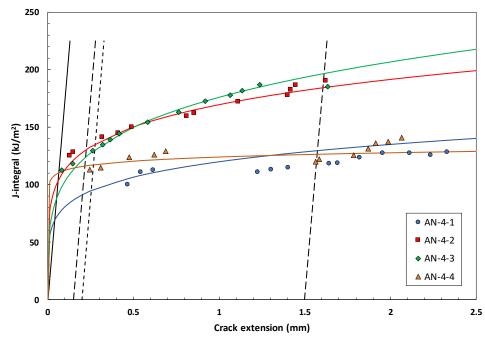

Fig. 3 – Data points and *J-R* curves for as-built, non-supported specimens (scan length = 28 mm). *J-R* curves were obtained by fitting data points lying between dashed lines.

Fig. 4 – Data points and *J*-*R* curves for as-built, non-supported specimens (scan length = 56 mm). *J*-*R* curves were obtained by fitting data points lying between the dashed lines.

Fig. 5 – Data points and *J-R* curves for as-built, non-supported specimens (scan length = 70 mm). *J-R* curves were obtained by fitting data points lying between the dashed lines.

Fig. 6 – Data points and *J*-*R* curves for as-built, non-supported specimens (scan length = 84 mm). *J*-*R* curves were obtained by fitting data points lying between the dashed lines.

The *J-R* curves obtained for the different scan lengths are compared in Fig. 7 (individual curves) and Fig. 8 (mean curves with errors corresponding to one standard deviation, 1σ). We observe that fracture toughness is higher for the longest scan lengths (70 mm and 84 mm), both in terms of J_Q and tearing modulus (slope of the *J-R* curve). The longest scan length (84 mm) exhibits the largest scatter, while the shortest (28 mm) shows the smallest.

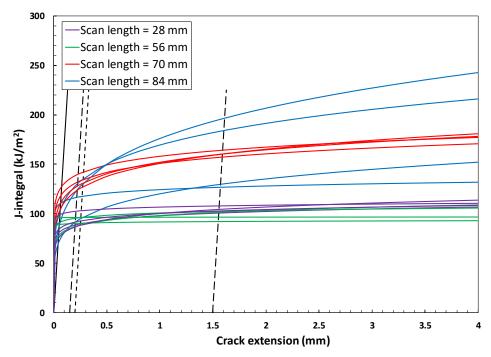
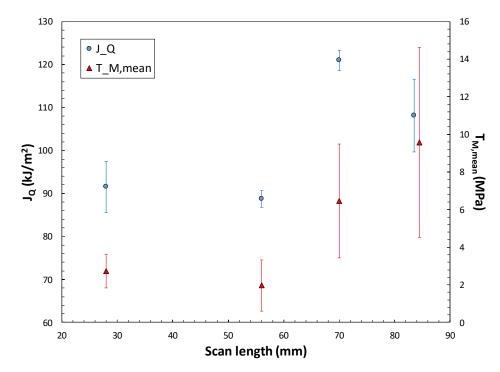



Fig. 7 – Individual *J-R* curves for as-built, non-supported specimens.

Fig. 8 – Mean J-R curves with $\pm 1\sigma$ error bars for as-built, non-supported specimens.

Mean values of J_Q and $T_{M,mean}$, with $\pm 1\sigma$ error bars, are plotted in Fig. 9 as a function of scan length.

Fig. 9 – Mean values of J_Q and $T_{M,mean}$ as a function of scan length for as-built, non-supported specimens. NOTE: points corresponding to scan length = 84 mm are slightly staggered for visual clarity.

Test details for each of the tests performed on as-built, non-supported specimens are provided in Annex 1.

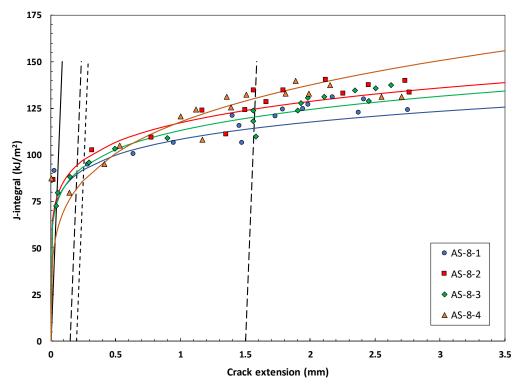
4.2. Supported Specimens

Sixteen fatigue precracked and side-grooved Charpy-type specimens were tested at room temperature for the as-built, supported condition, 4 for each of the following scan lengths: 28 mm, 56 mm, 70 mm, and 84 mm.

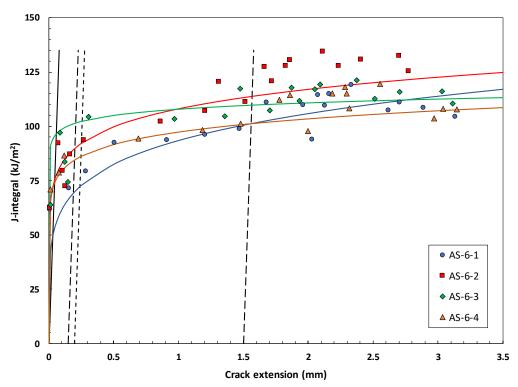
The results obtained from the EC and NDR techniques are provided in Table 4, with average values and standard deviations. None of the measured J_Q values could be validated as plane-strain fracture toughness J_{lc} in accordance with ASTM E1820-18a^{ε 1} (the reasons for invalidity are detailed in the Table).

Specimen id	Scan length (mm)	J_Q (kJ/m^2)	Invalidity causes	<i>Т_{М,JQ}</i> (MPa)	Т _{М,теап} (MPa)	$\begin{vmatrix} J_Q \\ (kJ/m^2) \end{vmatrix}$	Invalidity causes	<i>Т_{М,JQ}</i> (MPa)	Т _{М,теап} (MPa)
AS-8-1		92.11	c,d	6.74	4.04	77.88	e	5.81	3.47
AS-8-2	28	97.52	с	8.04	4.85	74.14	e	9.74	5.97
AS-8-3	20	93.63	a,c	7.92	4.77	77.44	e	7.99	4.84
AS-8-4		86.14	c,d	12.13	7.51	78.01	e	7.74	4.68
Ave	rage	92.35	-	8.71	5.29	76.87	-	7.82	4.74
Standard	deviation	4.724	-	2.359	1.523	1.836	-	1.612	1.025
AS-6-1		80.44	c,d	5.86	3.50	65.95	e	6.00	3.60
AS-6-2	56	92.07	a,c,d	6.38	3.82	76.68	e	7.57	4.57
AS-6-3		102.30	c,d,f	2.32	1.37	65.10	e	7.10	4.29
AS-6-4		86.21	c,f,g	4.60	2.73	71.06	e	5.48	3.27
Ave	rage	90.25	-	4.79	2.85	69.70	-	6.54	3.93
Standard	deviation	9.329	-	1.806	1.092	5.349	-	0.962	0.602
AS-5-1		124.02	с	9.07	5.50	97.53	e	14.51	9.10
AS-5-2	70	136.63	c,d	13.65	8.44	90.92	e	20.40	13.40
AS-5-3	10	128.79	с	13.84	8.57	90.61	e	18.29	11.82
AS-5-4		122.00	c,d	12.76	7.87	84.29	e	17.89	11.61
Ave	rage	127.86	-	12.33	7.60	90.84	-	17.77	11.48
Standard	deviation	6.505	-	2.224	1.430	5.405	-	2.437	1.779
AS-4-1		124.65	с	15.77	9.87	74.82	e	17.09	10.55
AS-4-2	84	127.38	с	9.93	6.05	89.69	e	17.49	11.27
AS-4-3	04	112.93	c,f	5.61	3.35	45.09	e	12.81	8.56
AS-4-4	AS-4-4		c,f	8.18	4.95	72.25	e	15.04	9.68
Ave	rage	123.64	-	9.8 7	6.05	70.46	-	15.61	10.01
Standard	deviation	7.422	-	4.313	2.775	18.582	-	2.151	1.169

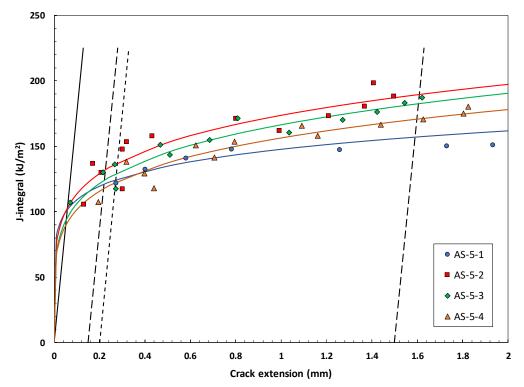
Table 4 – Results obtained on as-built (A), supported (S) specimens.


LEGEND – <u>Invalidity causes</u>: a – Predicted initial crack size (a_{0q}) differs from the measured value (a_0) by more than ±0.5 mm.

- c Correlation coefficient of the fit used to calculate $a_{0q} < 0.96$.
- d One or more individual values of initial crack size, estimated from unloading/reloading sequences in the elastic range of the test, differ from the mean by more than ± 0.002 *W*.
- e Final crack extension larger than 15 % of the initial uncracked ligament.
- f Number of data points inside region of qualified data < 5.
- g Distribution of data points inside the region of qualified data invalid (see ASTM E1820 section A9.6.4).


 $J-\Delta a$ data points and J-R curves are compared in Fig. 10 (scan length = 28 mm), Fig. 11 (56 mm), Fig. 12 (70 mm), and Fig. 13 (84 mm).

The *J-R* curves obtained for the different scan lengths are compared in Fig. 14 (individual curves) and Fig. 15 (mean curves with $\pm 1\sigma$ error bars). The general trends for supported specimens as a function of scan length confirm those observed for non-supported specimens:


- Fracture toughness (initiation and crack resistance) tends to decrease with scan length. However, closer examination of Fig. 15 reveals an "inversion" for the two longer and the two shorter scan lengths: 70 mm is tougher than 84 mm and 28 mm is tougher than 56 mm. Nonetheless, the differences cannot be considered statistically significant, since in both cases the $\pm 1\sigma$ bars overlap.
- The same qualitative trend is observed for the variability, visually indicated by the magnitude of the $\pm 1\sigma$ bars in Fig. 15: shorter scan lengths (28 mm and 56 mm) have less scatter between the individual *J-R* curves than the longer scan lengths (70 mm and 84 mm).

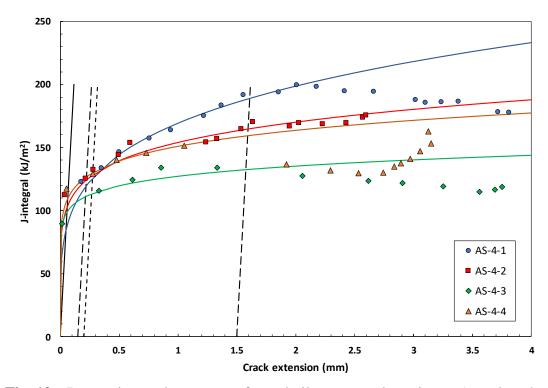
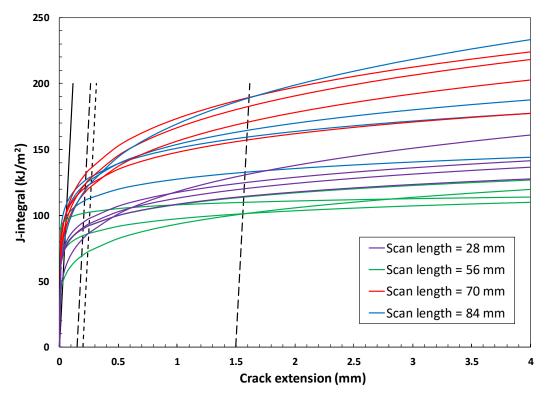
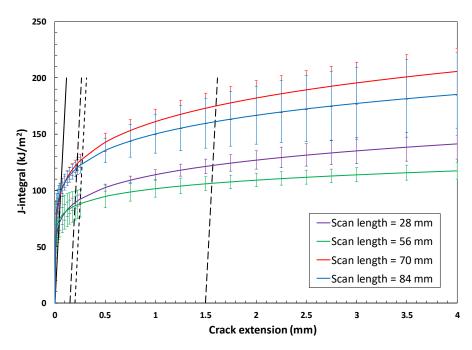

Fig. 10 – Data points and *J*-*R* curves for as-built, supported specimens (scan length = 28 mm). *J*-*R* curves were obtained by fitting data points lying between dashed lines.

Fig. 11 – Data points and *J*-*R* curves for as-built, supported specimens (scan length = 56 mm). *J*-*R* curves were obtained by fitting data points lying between the dashed lines.

Fig. 12 – Data points and *J*-*R* curves for as-built, supported specimens (scan length = 70 mm). *J*-*R* curves were obtained by fitting data points lying between the dashed lines.

Fig. 13 – Data points and *J*-*R* curves for as-built, supported specimens (scan length = 84 mm). *J*-*R* curves were obtained by fitting data points lying between the dashed lines.

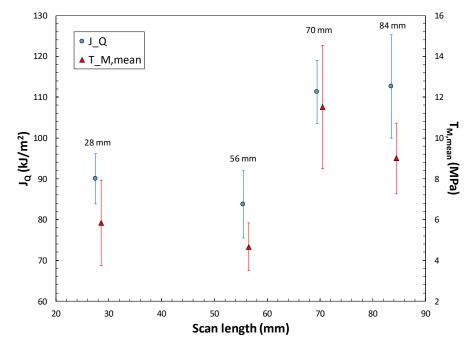

Fig. 14 – Individual *J-R* curves for as-built, supported specimens.

Fig. 15 – Mean *J*-*R* curves with errors $(\pm 1\sigma)$ for as-built, supported specimens.

As in the case of non-supported specimens (Figs. 3-6), crack jumps are observed for most of the tests performed, negatively affecting the overall crack resistance (tearing moduli) of the specimens.

Mean values of J_Q and $T_{M,mean}$, with $\pm 1\sigma$ error bars, are plotted in Fig. 16 as a function of scan length.

Fig. 16 – Mean values of J_Q and $T_{M,mean}$ as a function of scan length for as-built, supported specimens. NOTE: scan lengths are slightly staggered for visual clarity.

Test details for each of the 16 tests performed on as-built, supported specimens are provided in Annex 2.

5. Test Results – Classic HIP Condition

5.1. Non-Supported Specimens

Eleven fatigue precracked and side-grooved Charpy-type specimens were tested at room temperature for the classic HIP, non-supported condition. Three scan lengths were chosen: 28 mm (3 tests), 70 mm (5 tests), and 84 mm (3 tests).

The results obtained from the EC and NDR techniques are provided in Table 5, with average values and standard deviations. None of the measured J_Q values could be validated as plane-strain fracture toughness J_{lc} in accordance with ASTM E1820-18a^{ε 1} (the reasons for invalidity are detailed in the Table).

Three of the tests could not be analyzed by means of the NDR technique, since the analysis did not converge.

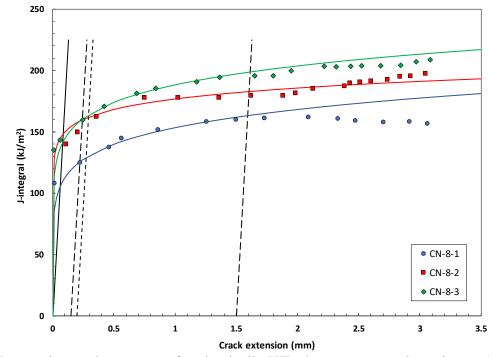
Specimen	Scan	J_{Q}	Invalidity	$T_{M,JQ}$	T _M ,mean	J_{Q}	Invalidity	$T_{M,JQ}$	T _{M,mean}
id	length (mm)	(kJ/m^2)	causes	(MPa)	(MPa)	(kJ/m^2)	causes	(MPa)	(MPa)
CN-8-1		129.04	с	10.84	6.60	95.80	e	19.30	12.31
CN-8-2	28	161.98	c,f	6.79	4.10	110.81	e	23.64	15.30
CN-8-3		163.82	c,d	10.95	6.69	107.66	e	26.11	17.17
Ave	rage	151.61	-	9.53	5.80	104.76	-	23.01	14.93
Standard	deviation	19.571	-	2.370	1.471	7.913	-	3.446	2.452
CN-5-1		181.13	с	14.82	9.18	N/A	N/A	N/A	N/A
CN-5-2		184.05	с	13.27	8.18	N/A	N/A	N/A	N/A
CN-5-3	70	169.96	c,d	6.83	4.13	129.97	e	22.78	14.63
CN-5-4		196.84	с	15.77	9.81	169.65	e	23.93	15.30
CN-5-5		181.24	с	14.74	9.13	122.26	e	29.19	19.48
Ave	rage	182.65	-	13.09	8.09	140.62	-	25.30	16.47
Standard	deviation	9.602	-	3.759	2.288	25.427	-	3.417	2.629
CN-4-1		176.29	b,d	9.73	5.93	125.57	e	23.61	15.28
CN-4-2	84	161.37	с	14.30	8.84	106.64	e	32.07	22.29
CN-4-3		135.34	c,d	8.80	5.33	N/A	N/A	N/A	N/A
Ave	rage	157.67	-	10.94	6.70	116.51	-	27.84	18.78
Standard	deviation	20.725	-	2.944	1.878	13.230	-	5.985	4.956

Table 5 – Results obtained on classically HIPed (C), non-supported (N) specimens.

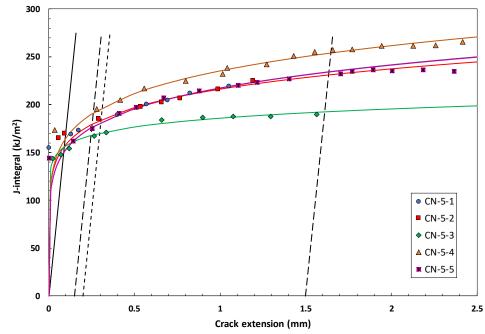
LEGEND – <u>Invalidity causes</u>: b – Number of data points available to calculate $a_{0q} < 8$.

c – Correlation coefficient of the fit used to calculate $a_{0q} < 0.96$.

d – One or more individual values of initial crack size, estimated from unloading/reloading sequences in the elastic range of the test, differ from the mean by more than ± 0.002 *W*.


 $e-Final \ crack$ extension larger than 15 % of the initial uncracked ligament.

f - Number of data points inside region of qualified data < 5.


N/A = not available.

 $J-\Delta a$ data points and J-R curves are compared in Fig. 17 (scan length = 28 mm), Fig. 18 (70 mm), and Fig. 19 (84 mm).

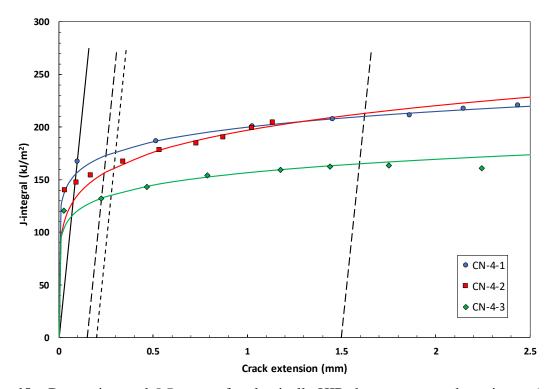

The *J-R* curves obtained for the different scan lengths are compared in Fig. 20 (individual curves) and Fig. 21 (mean curves with $\pm 1\sigma$ error bars). The 70 mm scan length provides the highest values of J_Q and tearing moduli, while the least tough condition corresponds to the smallest scan length (28 mm). There is, however, ample overlapping of the respective $\pm 1\sigma$ error bars.

Fig. 17 – Data points and *J*-*R* curves for classically HIPed, non-supported specimens (scan length = 28 mm). *J*-*R* curves were obtained by fitting points lying between dashed lines.

Fig. 18 – Data points and *J*-*R* curves for classically HIPed, non-supported specimens (scan length = 70 mm). *J*-*R* curves were obtained by fitting points lying between the dashed lines.

Fig. 19 – Data points and *J*-*R* curves for classically HIPed, non-supported specimens (scan length = 84 mm). *J*-*R* curves were obtained by fitting points lying between the dashed lines.

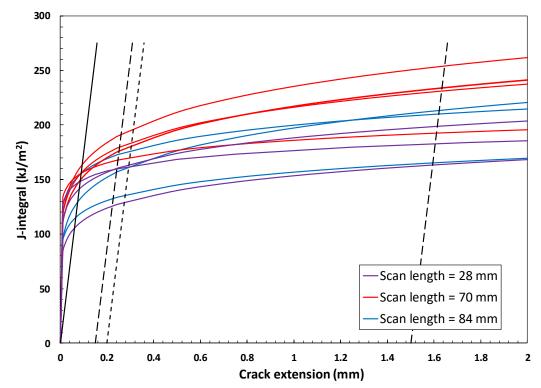


Fig. 20 – Individual J-R curves for classically HIPed, non-supported specimens.

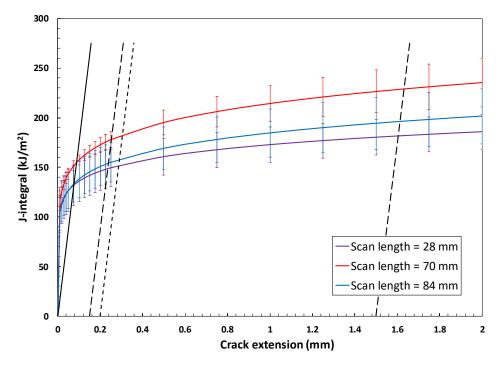
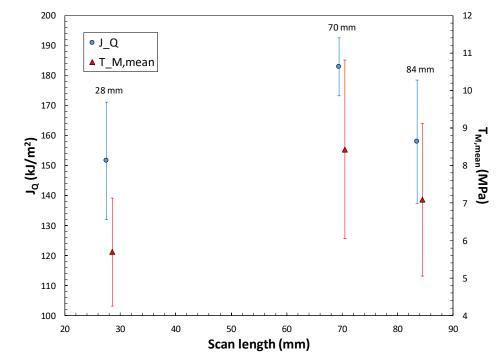



Fig. 21 – Mean *J-R* curves with $\pm 1\sigma$ errors for classically HIPed, non-supported specimens.

Mean values of J_Q and $T_{M,mean}$, with $\pm 1\sigma$ error bars, are plotted in Fig. 22 as a function of scan length.

Fig. 22 – Mean values of J_Q and $T_{M,mean}$ as a function of scan length for classically HIPed and supported specimens. NOTE: scan lengths are slightly staggered for visual clarity.

Although a tendency for both J_Q and $T_{M,mean}$ to increase with scan length is visible in Fig. 22, in both cases a t-statistic regression test shows no statistical evidence of a slope different than zero (*i.e.*, no evidence of a relationship between toughness and scan length) at a significance level of 5 %.

Test details for each of the 11 tests performed on classically HIPed, non-supported specimens are provided in Annex 3.

5.2. Supported Specimens

Three fatigue precracked and side-grooved Charpy-type specimens were tested at room temperature for the classic HIP, supported condition. Only one scan length was considered: 84 mm.

The results obtained from the EC and NDR techniques are provided in Table 6, with average values and standard deviations. None of the measured J_Q values could be validated as plane-strain fracture toughness J_{Ic} in accordance with ASTM E1820-18a^{ϵ 1} (the reasons for invalidity are detailed in the Table).

 $J-\Delta a$ data points and J-R curves are compared in Fig. 23.

Test details for each of the 3 tests performed on classically HIPed, supported specimens are provided in Annex 4.

Metho	Methodology		Elastic Compliance				Normalization Data Reduction			
Specimen id	Scan length (mm)		Invalidity causes	<i>Т_{М,JQ}</i> (MPa)	T _{M,mean} (MPa)		Invalidity causes	<i>Т_{М,JQ}</i> (МРа)	Т _{М,теап} (MPa)	
CS-4-1	1	190.29	с	18.35	11.50	121.36	e	30.45	20.53	
CS-4-2	84	156.38	с	16.63	10.36	170.07	e	19.29	12.13	
CS-4-3		185.65	c,d	16.74	10.44	200.67	e	27.08	17.46	
Average		177.44	-	17.24	10.77	164.03	-	25.61	16.71	
Standard	Standard deviation		-	0.963	0.636	39.998	-	5.724	4.250	

Table 6 – Results obtained on classically HIPed (C), supported (S) specimens.

LEGEND – <u>Invalidity causes</u>: c – Correlation coefficient of the fit used to calculate $a_{0q} < 0.96$.

d – One or more individual values of initial crack size, estimated from unloading/reloading sequences in the elastic range of the test, differ from the mean by more than ± 0.002 *W*.

e - Final crack extension larger than 15 % of the initial uncracked ligament.

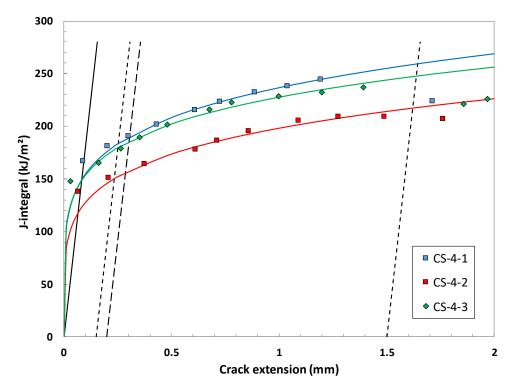


Fig. 23 – Data points and *J*-*R* curves for classically HIPed, supported specimens (scan length = 84 mm). *J*-*R* curves were obtained by fitting points lying between the dashed lines.

6. Test Results – Super-β Transus HIP, Non-Supported Condition

Four fatigue precracked and side-grooved Charpy-type specimens were tested at room temperature for the super- β transus HIP, non-supported condition. Only one scan length (70 mm) was investigated.

For this material condition, clearly visible crack "jumps" between consecutive unloadings were observed, occurring soon after the onset of plastic deformation in the specimens. For all tests, the number of data points falling inside the region of qualified data (bounded by the exclusion lines with offset 0.15 mm and 1.5 mm) was less than the minimum (5) required by ASTM E1820. Specifically, three tests had just one point between the exclusion line, while the fourth (BN-5-2) had none. It's therefore impossible to derive meaningful values of J_Q or tearing modulus.

However, for the three tests that had at least one data point inside the region of qualified data, we obtained rough <u>engineering estimates</u> of EC initiation toughness by ignoring the second exclusion line (offset = 1.5 mm) and fitting all data points to the right of this line (*i.e.*, the fit included points with $\Delta a > \Delta a_{limit}$). Such engineering estimates are indicated by $J_{Q(est)}^{*}$ in Table 7, where an approximate value of 0 MPa (indicating negligible crack resistance) was attributed to all corresponding values of EC tearing modulus. All NDR results in Table 7, on the other hand, are acceptable in accordance with ASTM E1820 Annex A15, except for violating the crack extension limit (15 % of the initial ligament size).

Metho	odology	K	lastic Comp	liance	Normalization Data Reduction			ction
Specimen id	Scan length (mm)	$J^*_{Q(est)} \\ (kJ/m^2)$	T [*] _{M,JQ(est)} (MPa)	T [*] _{M,mean(est)} (MPa)		Invalidity causes	<i>Т_{М,JQ}</i> (MPa)	Т _{М,теап} (MPa)
BN-5-1	70	~ 64	~ 0	~ 0	53.05	e	3.18	1.88
BN-5-2		N/A ¹⁰	N/A	N/A	53.68	e	5.95	3.59
BN-5-3	70	~ 70	~ 0	~ 0	46.94	e	4.41	2.63
BN-5-4		~ 76	~ 0	~ 0	51.93	e	6.17	3.74
Average					51.40	-	4.93	2.96
Standard deviation					3.060	-	1.404	0.872

Table 7 – Results obtained on super- β transus HIPed, non-supported specimens.

LEGEND - Invalidity causes: e - Final crack extension larger than 15 % of the initial uncracked ligament.

The *J*- Δa data points obtained from the EC analyses are shown in Fig. 24.

Test details for each of the 4 tests performed on super- β transus HIPed, non-supported specimens are provided in Annex 5.

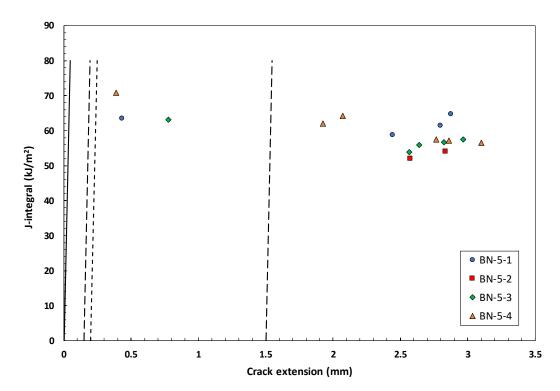


Fig. 24 – Data points obtained from the EC analyses for super- β transus HIPed, non-supported specimens (scan length = 70 mm).

¹⁰ No data points inside the region of qualified data.

7. Discussion

7.1. Non-supported vs. supported

For the as-built and classic HIP conditions, direct comparisons can be made between fracture toughness results obtained from non-supported and supported specimens for the same scan length.

Average values of J_Q , $T_{M,JQ}$, and $T_{M,mean}$ are summarized, with standard deviations, in Table 8, Fig. 25 (J_Q), Fig. 26 ($T_{M,JQ}$), and Fig. 27 ($T_{M,mean}$).

 Table 8 – Comparison between fracture toughness of non-supported and supported specimens.

Material condition	Scan length (mm)	Non-supported vs. supported	J_Q (kJ/m ²)	<i>Т_{М,JQ}</i> (MPa)	Т _{м,mean} (MPa)
	28	Non-supported	93.23 ± 6.630	3.48 ± 1.458	2.06 ± 0.872
	20	Supported	92.35 ± 4.724	8.71 ± 2.359	5.29 ± 1.523
	56	Non-supported	92.71 ± 3.981	1.74 ± 1.850	1.02 ± 1.096
As-built	30	Supported	90.25 ± 9.329	4.79 ± 1.806	2.85 ± 1.092
As-built	70	Non-supported	133.61 ± 6.554	7.94 ± 1.463	4.80 ± 0.908
	70	Supported	127.86 ± 6.505	12.33 ± 2.224	7.60 ± 1.430
		Non-supported	121.14 ± 14.797	9.45 ± 7.046	5.83 ± 4.464
	84	Supported	123.64 ± 7.422	9.87 ± 4.313	6.05 ± 2.775
Classic HIP	04	Non-supported	157.67 ± 20.725	10.94 ± 2.944	6.70 ± 1.878
		Supported	177.44 ± 18.385	17.24 ± 0.963	10.77 ± 0.636

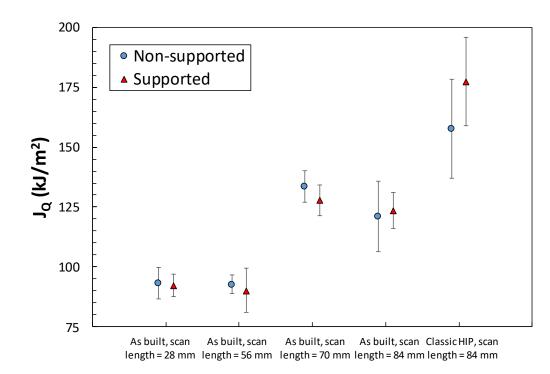


Fig. 25 – Critical toughness values for non-supported and supported specimens, with $\pm 1\sigma$ error bars.

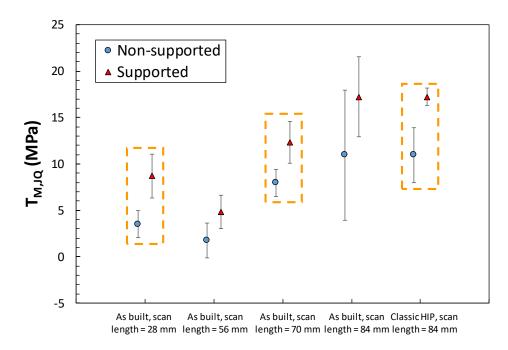
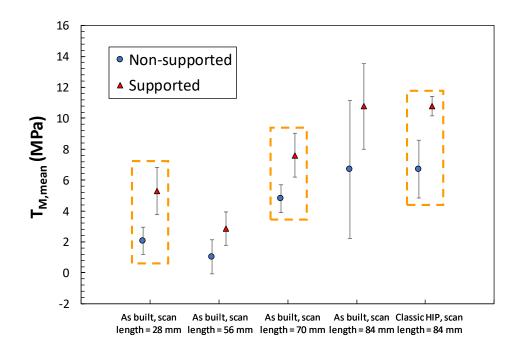
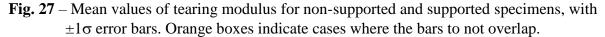




Fig. 26 – Tearing moduli at initiation for non-supported and supported specimens, with $\pm 1\sigma$ error bars. Orange boxes indicate cases where the bars to not overlap.

Unpaired t-tests were conducted to assess the statistical significance of the differences observed between non-supported and supported mean values of J_Q , $T_{M,JQ}$, and $T_{M,mean}$ for the different conditions. The results are summarized in Table 9 in terms of p value.

The influence of the type of support is negligible for initiation toughness values (Fig. 25), while differences in tearing moduli were found to be significant for three of the examined conditions (outlined by dashed boxes in the figures), where the $\pm 1\sigma$ bars do not overlap (Figs. 26 and 27). In general, supported specimens tend to provide higher crack resistance.

Table 9 – Results of unpaired t-tests on the differences between non-supported and
supported mean values (significance level = 0.05). *p*-values < 0.05 (green) indicate that
differences are not statistically significant; *p*-values > 0.05 (red) indicate that differences are
statistically significant.

Material	Scan length	<i>p</i> -value				
condition	(mm)	J_Q	Тм, ја	TM,mean		
	28	0.84	0.01	0.01		
As-built	56	0.64	0.06	0.06		
As-built	70	0.26	0.02	0.02		
	9.4	0.77	0.92	0.94		
Classic HIP	84	0.28	0.02	0.02		

7.2. Influence of scan length

The effect of scan length on fracture toughness test results has already been addressed in the Results section for the different material conditions. In this section, we summarize the influence of scan length on specific fracture parameters (measured with the EC technique) for the conditions investigated: J_Q in Fig. 28, $T_{M,JQ}$ in Fig. 29, and $T_{M,mean}$ in Fig. 30.

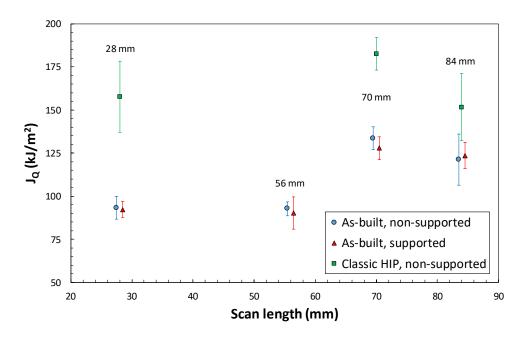
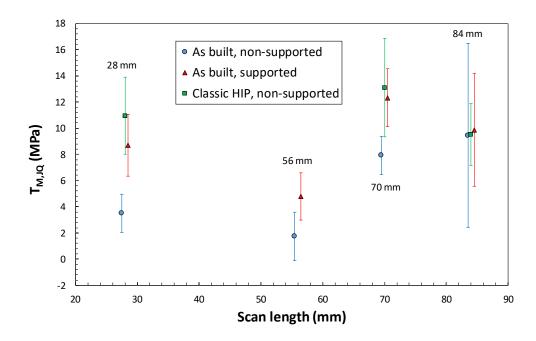
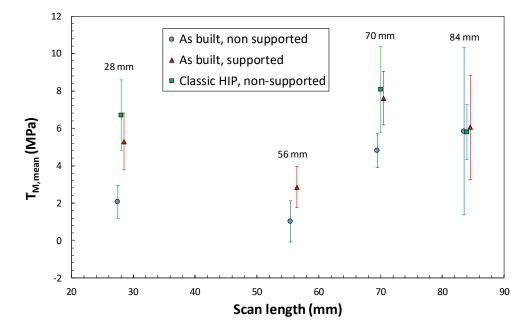




Fig. 28 – Mean values of J_Q as a function of scan length. NOTE: scan lengths for as-built specimens are slightly staggered for clarity.

Fig. 29 – Mean values of $T_{M,JQ}$ as a function of scan length. NOTE: scan lengths are slightly staggered for clarity.

Fig. 30 – Mean values of $T_{M,mean}$ as a function of scan length. NOTE: scan lengths are slightly staggered for clarity.

We performed analyses of residuals (ANOVA) on the correlations between scan length and toughness parameters, which revealed no statistically significant correlation for any of the investigated conditions (P > 0.05). Fig. 28 also provides confirmation that the type of support has a negligible influence on initiation toughness for the as-built material.

7.3. As-built vs. HIP (classic and super-β transus)

Based on the test matrix of this investigation (Table 1), there is only one specimen condition (non-supported, scan length = 70 mm) that allows comparing as-built, classic HIP and super- β transus HIP in terms of initiation toughness J_Q . (Fig. 31). As stated in Section 6, J_Q values for the super- β transus HIP are just engineering estimates, since a regular E1820 analysis could not be performed due to the occurrence of significant "crack jumps".

Comparisons between as-built and classic HIP can be made for non-supported specimens with three scan lengths: 28 mm, 70 mm, and 84 mm (Figs. 32-34).

The classic HIP treatment (2 h, 900 °C, 100 MPa) increases initiation toughness with respect to the as-built condition, whereas its effect on crack resistance is less clear, and seems to depend on scan length. The super- β transus HIP treatment (2 h, 1050 °C, 100 MPa followed by additional HIP – 2 h, 800 °C, 30 MPa) appears to have a deleterious effect on the material's fracture toughness, primarily due to the occurrence of episodes of tearing instability.

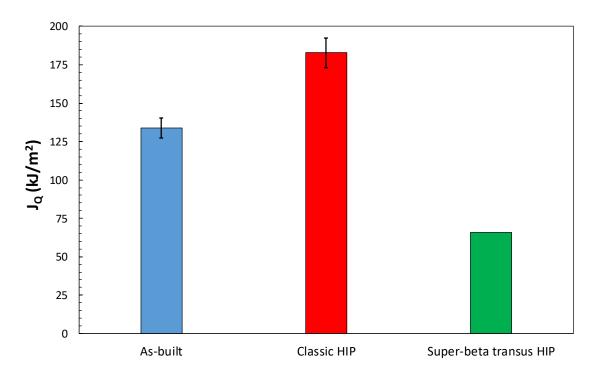


Fig. 31 – Mean values of J_Q with $\pm 1\sigma$ error bars for non-supported specimens with scan length = 70 mm. NOTE: the value for super- β transus HIP is a rough engineering estimate.

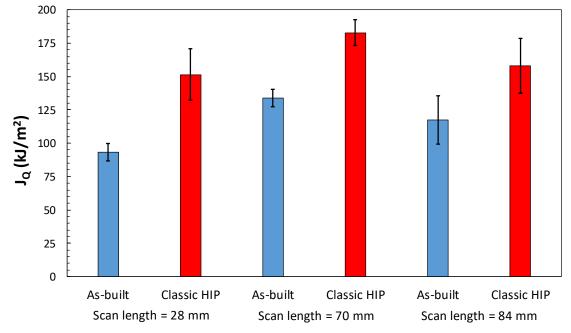
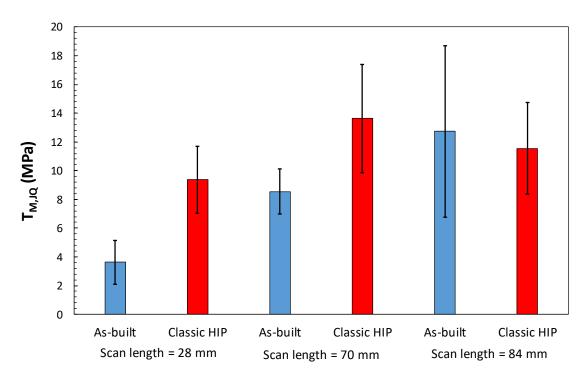
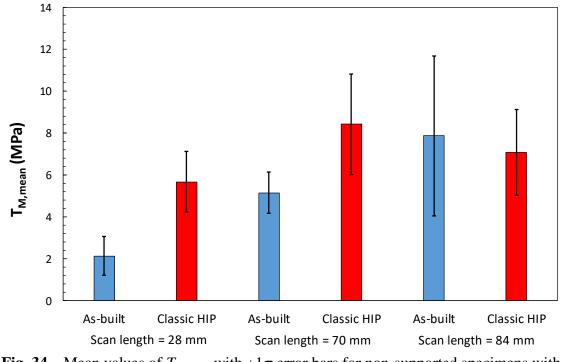
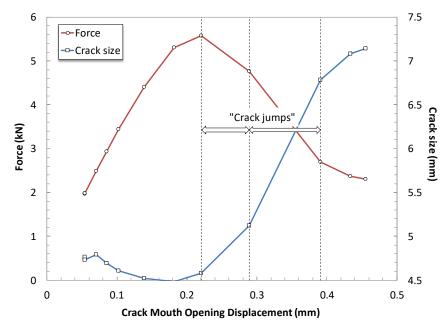




Fig. 32 – Mean values of J_Q with $\pm 1\sigma$ error bars for non-supported specimens with 28 mm, 70 mm, and 84 mm scan lengths.

Fig. 33 – Mean values of $T_{M,JQ}$ with $\pm 1\sigma$ error bars for non-supported specimens with 28 mm, 70 mm, and 84 mm scan lengths.

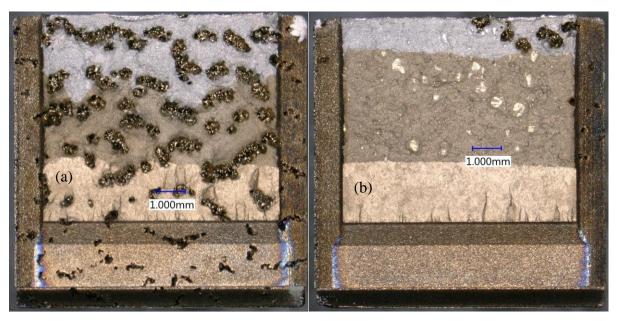
Fig. 34 – Mean values of $T_{M,mean}$ with $\pm 1\sigma$ error bars for non-supported specimens with 28 mm, 70 mm, and 84 mm scan lengths.

7.4. Crack jumps and lack-of-fusion (LoF) pores


In an elastic compliance test, which is commonly performed in actuator displacement ("stroke") control, unloading/reloading cycles are equally spaced at regular displacement intervals. In most cases, this corresponds to approximately equally spaced crack size (or crack extension) values. However, for materials subject to the occurrence of significant "crack jumps", this doesn't hold true anymore.

An example of such behavior is given in Fig. 35, where force and predicted crack size data are plotted as a function of CMOD for specimen BN-5-1 (super- β transus HIP, non-supported, scan length = 70 mm). The two largest increments of crack size are marked in the figure, corresponding to drops of the applied force after reaching its maximum values.

These force drops and crack size increments correspond to episodes of unstable ductile crack growth, which are commonly denominated "tearing instabilities" [10,18-21].


The most common cause of tearing instabilities in fracture toughness specimens is the presence of large microstructural features (defects) encountered by the crack while propagating through the ligament. Another possible cause is the presence of residual stresses in the material.

In the preliminary fracture toughness investigation of AM Ti64 documented in [6], we observed the presence of large lack-of-fusion (LoF) pores on the fracture surface of some of the specimens tested, caused by improper or incomplete fusion among layers and hatches during the AM process [22-24]. LoF is detrimental for the mechanical properties of the AM part, and is often the cause for rejection [5]. LoF pores, when exposed to the surface, cannot be healed by HIPing, since the Ar gas enters the part via those pores.

Fig. 35 – Force and crack size vs. CMOD for specimen BN-5-1. NOTE: unloading/reloading cycles have been removed from the force/CMOD plot for clarity.

In [6], we associated LoF to the large scan length used (84 mm), and stated that the presence of such defects can be avoided by using shorter scan lengths [5]. Such statements were confirmed by the present investigation, insofar as 79 % (11 out of 14) of the specimens corresponding to the longest scan length (84 mm) exhibited various amounts of LoF porosity. In some cases (Fig. 36a), LoF pores are spread all over the fracture surface; in other cases, (Fig. 36b), only a few pores are observed, and they are not located on the path of crack propagation.

Fig. 36 – Fracture surfaces of specimens AS-4-2 (high density of LoF pores) and AS-4-3 (low density of LoF pores). Material condition: as-built, supported, scan length = 84 mm.

The number/density of LoF pores does not appear to have a direct relationship with fracture toughness properties: namely, in reference with the two examples of Fig. 36, the specimen with the highest LoF density (AS-4-2, Fig. 36a) does not correspond to the lowest *J-R* curve in Fig. 13, and the specimen with the lowest LoF density (AS-4-3, Fig. 36b) does not correspond to the highest *J-R* curve, but actually to the lowest.

The real cause(s) of crack jumps and the true driving factor(s) that influence fracture toughness in AM Ti64 will require further investigations of the different material conditions.

7.5. Validity of the measured fracture toughness parameters

ASTM E1820-18a^{ε 1} provides many requirements that need to be fulfilled for the test results to be considered valid, *i.e.*, corresponding to the elastic-plastic fracture toughness of the tested material (not just the tested specimen). In other words, fulfilling all the requirements guarantees that the measured J_Q and J-R curve are size-independent material properties.

The requirements can be classified in the following categories:

- Estimate of initial crack size (section 8.6.3.1): at the very beginning of the test, the standard requires performing at least three unloading/reloading cycles over a force range of 0.5 to 1.0 times the final maximum precracking force. The corresponding estimates of initial crack size, a_{0q} , must not differ from the mean by more than ±0.002 W (for the specimens tested, specimen width is W = 10 mm, and therefore the tolerance becomes ±0.02 mm).
- <u>Comparison between predicted and measured crack extension</u> (section 9.1.5.2): the difference between the total crack extension predicted by the EC method at the last unloading, Δa_{pred} , and the optical measurement on the fracture surface, Δa_{pred} , must not differ by more than $\pm 0.03 \ b_0$ (for the specimens tested, initial ligament size $b_0 \approx 5$ mm, and the tolerance becomes ± 0.15 mm). Note: as mentioned in section 3, all predicted crack sizes were adjusted by means of Eq. (2), hence this requirement does not apply.
- <u>Adjustment of the predicted initial crack size, a_{0q} (section A9.3.3): the revised value of a_{0q} to be used for analysis is obtained by fitting all data points before maximum force by means of the following equation:</u>

$$a = a_{0q} + \frac{J}{2\sigma_Y} + BJ^2 + CJ^3 \quad , \tag{3}$$

where the coefficients, including a_{0q} , are found using a least squares fit procedure. The following requirements have to be met:

- a. the number of fitted points must be at least 8;
- b. three of the fitted data points must lie between 0.4 J_Q and J_Q ;
- c. the correlation coefficient of the fit must be at least 0.96;
- d. a_{0q} must match the measured initial crack size, a_0 , within ± 0.5 mm.
- Establishment of the *J-R* curve and calculation of J_Q (sections A9.6.4, A9.6.6.6, and A9.9.1): the *J-R* curve is obtained by fitting data points inside a qualified data region by means of the following power law relationship:

$$J = C_1 \Delta a^{C_2} \quad , \tag{4}$$

where the coefficients are found using a least squares fit procedure. The following requirements must be met:

- a. the distribution of data points inside the region of qualified data must follow the prescriptions of section A9.6.4;
- b. the number of data points to be fitted inside the region of qualified data must be at least 5 (section A9.6.6.6);
- c. the exponent C_2 in Eq. (4) must be less than 1.0 (section A9.9.1).
- <u>Qualification of J_Q as J_{Ic} (section A9.10): the calculated value of J_Q is qualified as J_{Ic} if both specimen thickness, B, and initial ligament size, b_0 , are bigger than $10 \frac{J_Q}{\sigma_V}$.</u>

None of the 50 tests performed in this investigation fulfilled all the requirements listed above. Excluding the 4 specimens with super- β transus HIP, which could not be analyzed in accordance with E1820, the specific statistics were:

- 17 specimens (46 %) failed the requirement on the initial estimate of a_0 (1).
- 1 specimen (2 %) failed the requirement on the minimum number of points in the a_{0q} fit (3a).
- 45 specimens (98 %) failed the requirement on the correlation coefficient of the a_{0q} fit (3c).
- 2 specimens (4 %) failed the requirement on the difference between a_0 and a_{0q} (3d).
- 5 specimens (11 %) failed the requirement on the distribution of qualified data points (4a).
- 5 specimens (11 %) failed the requirement on the minimum number of qualified data points (4b).
- The following requirements were fulfilled by all specimens tested: minimum number of data points between 0.4 J_Q and J_Q (3b); power law exponent, C_2 , lower than 1.0 (4c); requirements to qualify J_Q as J_{Ic} based on the specimen dimensions (W and b_0) (5).

From the list provided above, it can be noted that the two most violated requirements (46 % and 98 % respectively) both concern the estimation/prediction of the initial crack size. However, only 4 % of the specimens failed to acceptably predict the measured a_0 , and therefore the starting point of the analyses can be considered substantially reliable for the majority of the tests.

Conversely, other requirements that can be deemed more substantial in determining the soundness of the *J*-*R* curves obtained, and therefore of the corresponding critical values, such as number and distribution of the qualified data points, power law exponent, size independence of J_Q , were satisfied by all, or nearly all, specimens tested.

Therefore, based on the authors' experience and the reasoning expressed above, the EC results obtained in the present study provide a reliable characterization of the fracture toughness of AM Ti64 in the investigated conditions (with the exception of super- β transus HIP).

As far as the NDR analyses are concerned, Annex A15 of ASTM E1820-18a^{ε 1} limits crack extension to no more than the lesser of 4 mm and 15 % of b_0 (in this study, this limit corresponds to $\Delta a_{p,max} \approx 0.75$ mm). For the 50 specimens tested, total crack extension ranged from 1.05 mm (21.1 % of b_0) and 3.97 mm (79.3 % of b_0), and therefore none of the tests could be in principle analyzed in accordance with the standard.

Historically, when Annex A15 was added to E1820 in the 2001 version, this requirement was set equal to the crack extension capacity for the determination of the J-R

curve, Δa_{max} . Later, Δa_{max} was increased from $0.15 \cdot b_0$ to $0.25 \cdot b_0$, based on additional research performed, but the requirement for NDR remained unchanged. It is however reasonable to assume that this requirement could be increased to 25 % of b_0 without loss of accuracy [25]. In this case, only 3 tests (specimens CN-4-2, CN-5-1, and CN-5-2) could be considered valid.

Since the ORNL software allowed to run the NDR analyses irrespective of the total crack extension, we decided to analyze of all tests performed, also because the real crack extension limit is still under discussion within the responsible ASTM sub-committee (E08.07.06).

7.6. Elastic Compliance vs. Normalization Data Reduction

It being understood that EC is the reference technique in this study and NDR was added as a secondary analysis approach (and its results might be questionable due to excessive crack extension), we compared the fracture toughness parameters (J_Q , $T_{M,JQ}$, and $T_{M,mean}$) obtained from the two methodologies in Fig. 37, Fig. 38, and Fig. 39 respectively. The comparison was effectively possible on 43 tests, since for 3 specimens the NDR analysis did not converge (CN-4-3, CN-5-1, and CN-5-2) and for the 4 tests on super- β transus HIPed specimens (Table 7) the EC analysis only provided engineering estimates of the fracture parameters.

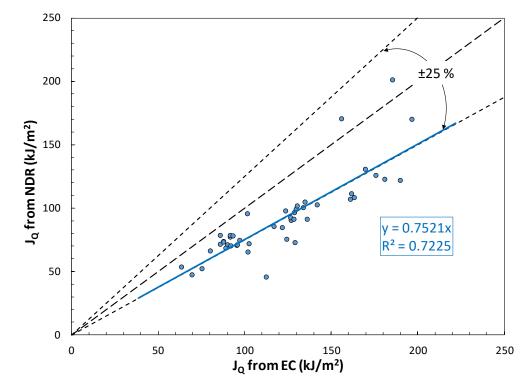
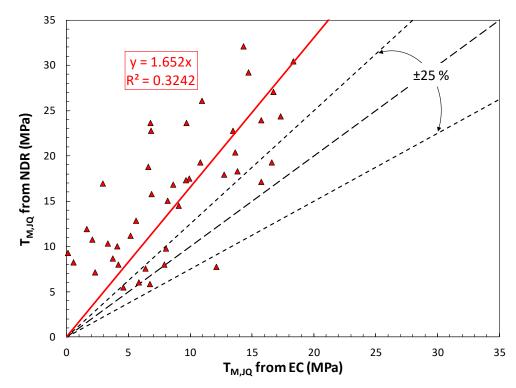
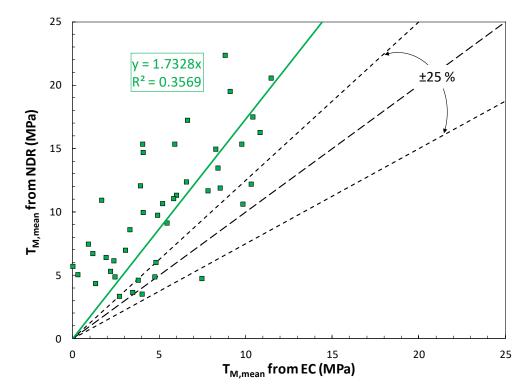




Fig. 37 – Comparison between values of critical fracture toughness, J_Q , obtained from EC and NDR analyses.

Fig. 38 – Comparison between values of tearing modulus at initiation, $T_{M,JQ}$, obtained from EC and NDR analyses.

Fig. 39 – Comparison between values of mean tearing modulus, $T_{M,mean}$, obtained from EC and NDR analyses.

Despite significant scatter, general trends are quite clear in Figs. 37-39:

- J_Q values from NDR were lower than from EC for all tests (except two), with an average ratio $J_{Q(NDR)}/J_{Q(EC)} = 0.75 \pm 0.12$.
- $T_{M,JQ}$ values from NDR were higher than from EC for all tests (except three), with an average ratio $T_{M,JQ(NDR)}/T_{M,JQ(EC)} = 4.55 \pm 13.91$.
- $T_{M,mean}$ values from NDR were also higher than from EC for all tests (except three), with an average ratio $T_{M,JQ(NDR)}/T_{M,JQ(EC)} = 4.78 \pm 14.62$.

In summary, NDR analyses appear to provide generally lower initiation toughness and higher crack resistance (steeper *J*-*R* curves).

Such differences are not consistent with information available from some early NDR references [13-15], which showed good to excellent agreement between EC and NDR *J-R* curves. In 2013, a large database of 348 *J-R* curve tests on C(T) and SE(B) specimens, performed at SCK•CEN (the Belgian Nuclear Center) and analyzed by means of three different single-specimen techniques (EC, NDR, and EPD – electric potential difference), was presented at an ASTM Special Technical Meeting on *Use of Potential Drop in Elastic-Plastic Fracture Toughness Testing* [26]. Based on the presentation and only considering tests on SE(B) specimens, J_Q/J_{Ic} values from NDR were on the average 5 % higher than from EC, while tearing modulus at initiation ($T_{M,JQ}$) from NDR was on the average 31 % lower than from EC. For both parameters, however, scatter bands were huge (ratio NDR/EC: 0.59 – 7.14 for J_Q , 0.34 - 3.46 for $T_{M,JQ}$).

7.7. Comparison with literature fracture toughness values

7.7.1. Non-AM Ti64

Room temperature fracture toughness values for non-AM Ti64 were collected from the literature [27-36] and compared to the results obtained in this investigation in Table 10.

Table 10 – Literature fracture toughness values for non-AM Ti64, and results obtained on
AM Ti64 in this investigation.

Reference	Material form/condition	Reported toughness	Remarks
Tobler, 1976 [27]	1 m diameter hemisphere, 51 mm wall thickness; forging	$K_Q = 77.5 \text{ MPa}\sqrt{\text{m}} - 94.0 \text{ MPa}\sqrt{\text{m}}$	C(T) specimens 10 mm-25.4 mm thick, various orientations
Munz et al., 1976 [28]	Forged and annealed plate, thickness = 44 mm Rolled and annealed plate, thickness = 82 mm	$K_Q = 58.0 \text{ MPa}\sqrt{\text{m}} - 92.7 \text{ MPa}\sqrt{\text{m}}$ $K_Q = 43.5 \text{ MPa}\sqrt{\text{m}} - 83.5 \text{ MPa}\sqrt{\text{m}}$	SE(B) specimens, $W/B = 1-6$ SE(B) specimens, $W/B = 1-20$
Kishi et al., 1980 [29]	Rolled plate, 1 in. thick	$K_{lc} = 40.0 \text{ MPa}\sqrt{\text{m}} - 71.9 \text{ MPa}\sqrt{\text{m}}$	C(T) specimens, B = 7 mm or 20 mm
Rhodes et al., 1982 [30]	α/β processed, quenched	$K_Q = 53 \text{ MPa}\sqrt{\text{m}} - 75 \text{ MPa}\sqrt{\text{m}}$	Precracked Charpy specimens
Niinomi et al., 1988 [31]	Rolled plate 12 mm thick, various HT	$K_Q = 68.8 \text{ MPa}\sqrt{\text{m}} - 90.6 \text{ MPa}\sqrt{\text{m}}$ $J_{Ic(PD)} = 19.6 \text{ kJ/m}^2 - 55.3 \text{ kJ/m}^2$ $T_{M,JQ} = 2.5 \text{ MPa} - 19 \text{ MPa}$	C(T) specimens, 10 mm thick
Donachie, 2000 [32]	As-cast Cast + HIP Wrought β-annealed	$K_{lc} = 107 \text{ MPa}\sqrt{\mathrm{m}}$ $K_{lc} = 109 \text{ MPa}\sqrt{\mathrm{m}}$ $K_{lc} = 91 \text{ MPa}\sqrt{\mathrm{m}}$	
Peters et al., 2001 [33]	Forging	$K_{Ic} = 66 \text{ MPa}\sqrt{\text{m}}$	
Marmy, 2004 [34]	Rod, diameter = 150 mm	$J_Q = 60 \text{ kJ/m}^2$ $K_Q = 88 \text{ MPa}\sqrt{\text{m}}$	Miniature (KLST) precracked Charpy specimens
Salem et al., 2008 [35]	α/β forged plate, 3.5 in. thick (1970)	$K_Q = 78 \text{ MPa}\sqrt{\text{m}} - 101 \text{ MPa}\sqrt{\text{m}}$	Mill annealed
Feng et al., 2013 [36]	As-cast cylinder Cast and HIPed cylinder	$K_Q = 83 \text{ MPa}\sqrt{\text{m}} - 86 \text{ MPa}\sqrt{\text{m}}$ $K_Q = 93 \text{ MPa}\sqrt{\text{m}} - 97 \text{ MPa}\sqrt{\text{m}}$	C(T) specimens, 15 mm thick
This study	As-built AM Ti64 Classically HIPed AM Ti64	$K_{JQ}^{II} = 108 \text{ MPa}\sqrt{\text{m}} - 131 \text{ MPa}\sqrt{\text{m}}$ $K_{JQ} = 140 \text{ MPa}\sqrt{\text{m}} - 154 \text{ MPa}\sqrt{\text{m}}$	Scan lengths = 28 mm to 84 mm

The results obtained in this study are higher than the values reported in the literature, particularly in the HIPed condition.

¹¹ The value of stress intensity factor K_{JQ} corresponding to a J_Q value is given by $K_{JQ} = \sqrt{J_Q \cdot E}$, where *E* is the Young's modulus at the test temperature.

7.7.2. AM Ti64

Some literature references were identified, presenting fracture toughness results on AM Ti64 specimens manufactured according to procedures similar to the ones used in this investigation.

Fracture toughness results were reported by Lewandowski and Seifi in a review of mechanical properties of various additively manufactured metallic materials [37]. The values presented in Table 10 were obtained for electron beam melting (EBM) manufactured Ti64, mostly in as built condition, in different orientations, and for different machine types.

Machine type	Condition	Reported toughness	Remarks
Arcam A1	As built	$K_Q = 102 \text{ MPa}\sqrt{\text{m}} - 110 \text{ MPa}\sqrt{\text{m}}$	
Arcam	As built HIPed	$K_Q = 78 \text{ MPa}\sqrt{\text{m}} - 97 \text{ MPa}\sqrt{\text{m}}$ $K_Q = 83 \text{ MPa}\sqrt{\text{m}} - 99 \text{ MPa}\sqrt{\text{m}}$	C(T) specimens
Arcam A2	As built	$K_Q = 65 \text{ MPa}\sqrt{\text{m}} - 100 \text{ MPa}\sqrt{\text{m}}$	SE(B)
Arcam A1 (this study)	As built HIPed (900 °C, 100 MPa, 2h, Ar)	$\begin{split} K_{JQ} &= 108 \text{ MPa} \sqrt{m} - 131 \text{ MPa} \sqrt{m} \\ K_{JQ} &= 140 \text{ MPa} \sqrt{m} - 154 \text{ MPa} \sqrt{m} \end{split}$	specimens

Table 11 – Literature fracture toughness values for AM Ti64 reported in [37] and resultsobtained in this investigation.

We observe that the values of initiation fracture toughness measured in this study are higher than those reported in [37].

Seifi *et al.* [38] documented orientation-dependent fracture and fatigue properties of as-deposited (as-built) and HIPed Ti64 produced by different generations of Arcam machines (A2 and A2X). Fracture tests were conducted on bend specimens with B = 10 mm and W = 20 mm. The fracture property ranges shown in Table 11 were reported.

Table 12 – Literature fracture toughness values for AM Ti64 reported in [38] and resultsobtained in this investigation.

Machine type	Condition	Reported toughness
Arcam A2	As built HIPed (950 °C, 100 MPa, 3h, Ar)	$K_Q = 43 \text{ MPa}\sqrt{\text{m}} - 95 \text{ MPa}\sqrt{\text{m}} - T_{M,mean} \approx 0 \text{ MPa}$ $J_{Ic} = 29 \text{ kJ/m}^2 - 42 \text{ kJ/m}^2 - T_{M,mean} = 3 \text{ MPa} - 8 \text{ MPa}$
Arcam A2X	As built HIPed (950 °C, 100 MPa, 3h, Ar)	$K_Q = 47 \text{ MPa}\sqrt{\text{m} - 105 \text{ MPa}\sqrt{\text{m} - T_{M,mean}}} = 3 \text{ MPa} - 19 \text{ MPa}$ $J_{Ic} = 45 \text{ kJ/m}^2 - 66 \text{ kJ/m}^2 - T_{M,mean} \approx 8 \text{ MPa} - 15 \text{ MPa}$
Arcam A1	As built	$K_{JQ} = 108 \text{ MPa}\sqrt{m} - 131 \text{ MPa}\sqrt{m} - J_Q = 90 \text{ kJ/m}^2 - 134 \text{ kJ/m}^2$ $T_{M,mean} = 1 \text{ MPa} - 9 \text{ MPa}$
(this study)	HIPed (900 °C, 100 MPa, 2h, Ar)	$K_{\rm JQ} = 140 \ {\rm MPa} \sqrt{{\rm m}} - 154 \ {\rm MPa} \sqrt{{\rm m}} - J_Q = 152 \ {\rm kJ/m^2} - 183 \ {\rm kJ/m^2} \\ T_{M,mean} = 6 \ {\rm MPa} - 12 \ {\rm MPa} $

Again, the results of our tests are higher than the results reported in [38].

8. Conclusions

An in-depth characterization of the room temperature fracture toughness of additively manufactured Ti-6Al-4V was performed at NIST, by testing 50 fatigue precracked and side-grooved Charpy-type specimens in as built and hot isostatically pressed (classic and super- β transus) conditions. Additional parameters investigated included non-supported and supported specimens, and scan length (between 28 mm and 84 mm).

Fracture toughness tests were conducted with the Elastic Compliance (EC) methodology. Force-crack mouth opening displacement curves were also analyzed in accordance with the Normalization Data Reduction (NDR) technique, although total crack extension was too long for the analyses to be compliant with ASTM E1820-18a^{ϵ 1}.

From the results obtained, the following conclusions can be drawn.

- No statistical differences were observed between non-supported and supported specimens in terms of initiation fracture toughness. Tearing moduli, on the other hand, were found to be higher for supported specimens in all the conditions examined.
- Fracture toughness (initiation values and crack resistance) tends to improve with increasing scan length. The highest values of J_Q were obtained, for both as built and classically HIPed specimens, with a scan length of 70 mm. The lowest correspond to 56 mm.
- Two HIP treatments were investigated: classic HIP (900 °C, 100 MPa for 2 h) and super- β transus HIP (1050 °C, 100 MPa for 2 h + additional HIP). Classically HIPed specimens exhibited significantly better toughness than as built specimens. Specimens subject to the super- β transus HIP, on the other hand, exhibited large "crack jumps" (unstable ductile tearing events), which caused low initiation values and poor resistance to crack propagation.
- The occurrence of "crack jumps", or tearing instabilities, was observed on several material conditions investigated and needs to be clarified through microstructural investigations. These events were unrelated to the presence of lack-of-fusion (LoF) pores on the fracture surface, which was observed on most of the specimens corresponding to the longest scan length (84 mm). Although LoF has been reported to be detrimental to the mechanical properties of AM parts and cannot be sealed by HIP, we did not find a direct relationship with the fracture toughness values measured in this study.
- In this investigation, the Elastic Compliance (EC) single-specimen methodology was used as the primary method to measure the fracture toughness properties of AM Ti64. None of the tests performed were strictly valid according to ASTM E1820-18a^{ε1}, if all the requirements stated in the standard are taken into account. However, most of the requirements that were not fulfilled concerned the estimation of the initial crack size, which was nonetheless acceptably predicted for the vast majority of the tests performed. Therefore, in the authors' judgment, the results obtained in this study can be considered reliable measurements of the fracture toughness of AM Ti64 in the different conditions examined.
- An additional methodology (Normalization Data Reduction NDR) was used to analyze the force-crack mouth opening displacement records of the tests performed. For all specimens, final crack extension exceeded the limit prescribed by ASTM E1820-18a^{ε1}, and

therefore the calculated parameters can be considered questionable. Nevertheless, when compared to the outcomes of the EC methodology, the NDR approach generally provided lower values of critical toughness and steeper *J*-*R* curves (*i.e.*, higher crack resistance).

• In terms of critical fracture toughness at crack initiation, the results we obtained in this investigation are generally higher than values found in the literature for both non-AM and AM Ti64, under comparable manufacturing conditions.

Acknowledgements

Sincere thanks to Ross Rentz, who provided invaluable assistance in the preparation and execution of the tests. This research was performed while Jake Benzing held a National Research Council Postdoctoral Research Associateship at the National Institute of Standards and Technology.

References

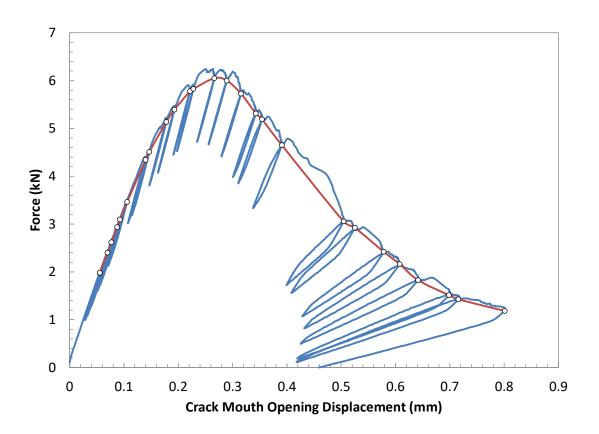
- [1] M. Gorelik, *Additive manufacturing in the context of structural integrity*, Int. J. Fatigue. 94 (2017), pp. 168–177.
- [2] N. Hrabe, N. Barbosa, S.R. Daniewicz, and N. Shamsaei, *Findings from the NIST/ASTM Workshop on Mechanical Behavior of Additive Manufacturing Components*, NIST Advanced Manufacturing Series 100-4, 2016.
- [3] E. Lucon, Instrumented impact tests on miniaturized Charpy specimens of additively manufactured (AM) Ti-6Al-4V, NIST Technical Note 1936, September 2016.
- [4] E. Lucon and N. Hrabe, *Instrumented Impact Testing of Miniaturized Charpy Specimens* of AM Ti-6Al-4V, Mat. Perf. Char., Vol. 7, No. 1, 2018.
- [5] N. Hrabe, T. Gnäupel-Herold, and T. Quinn, *Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress*, Int. J. Fatigue. Vol. 94, 2017, pp. 202–210.
- [6] E. Lucon, J. Benzing, and N. Hrabe, *Effect of Notch Geometry and Lack-of-Fusion on the Elastic-Plastic Fracture Toughness of Additively Manufactured Ti-6Al-4V parts*, submitted to Materials Performance and Characterization, 2019.
- [7] E. Lucon, Cost-Effective Alternatives to Conventional Charpy Tests for Measuring the Impact Toughness of Very-High-Toughness Steels, J. Press. Vess. Tech., Vol. 140, April 2018, pp. 021401-1 to 021401-7.
- [8] ASTM F3001-14, Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion, ASTM International, West Conshohocken, PA.
- [9] ASTM E1820-18a^{ε1}, Standard Test Method for Measurement of Fracture Toughness, Vol. 03.01, ASTM International, West Conshohocken, PA.
- [10] P. C. Paris, H. Tada, A. Zahoor, and H. Ernst, A Treatment of the Subject of Tearing Instability, U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-0311, 1977.
- [11] P.C. Paris, H.A. Ernst, and C.E. Turner, A J-Integral Approach to Development of η -Factors, in "Fracture Mechanics, Proceedings of the Twelfth National Symposium on

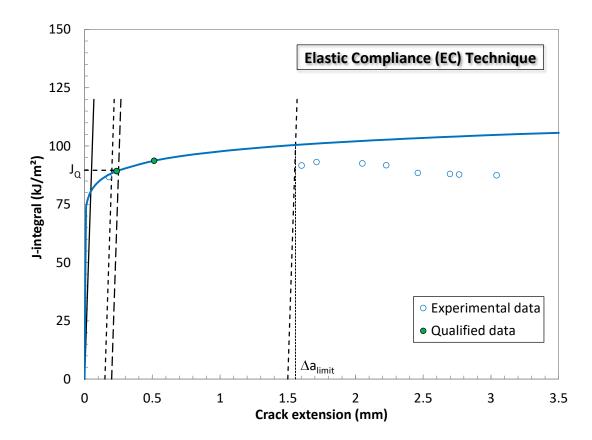
Fracture Mechanics," ASTM STP 700, American Society for Testing and Materials, Philadelphia, PA, 1980.

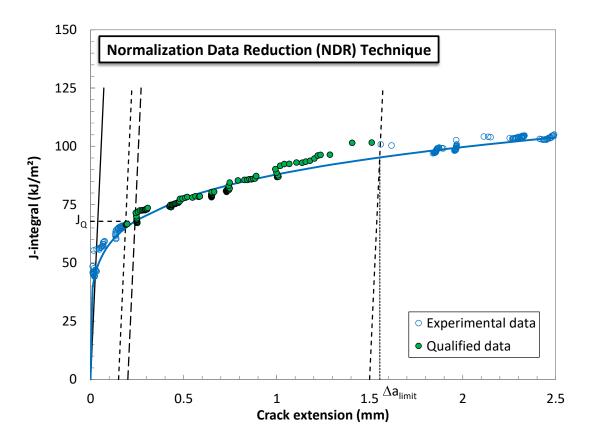
- [12] J. A. Joyce, Analysis of a High Rate Round Robin Based on Proposed Annexes to ASTM E1820, J. Test. and Eval., JTEVA, Vol 29. No. 4. July 2001, pp. 329–351.
- [13] R. Herrera, R. and J. D. Landes, *Direct J-R Curve Analysis: A Guide to the Methodology*, in "Fracture Mechanics: Twenty-First Symposium," ASTM STP 1074, J.P. Gudas, J.A. Joyce, and E.M. Hackett, Eds., ASTM, Conshohocken, PA, 1990, pp 24–43.
- [14] J. D. Landes, Z. Zhou, K. Lee, and R. Herrera, R., *Normalization Method for Developing J R Curves with the LMN Function*, J. Test. and Eval., JTEVA, Vol 19, No. 4, July 1991, pp. 305–311.
- [15] K. Lee, *Elastic-Plastic Fracture Toughness Determination Under Some Difficult Conditions*, Ph.D Dissertation, The University of Tennessee, Knoxville, August 1995.
- [16] A. Esteban Linares, L. Clowers, X. Chen, M. Sokolov, and R. Nanstad, Using Automated J R Curve Analysis Software to Simplify Testing and Save Time, Adv. Mat. & Proc., Vol. 177, No. 2, Feb/Mar 2019, pp. 27-30 (software available at https://code.ornl.gov/xc8/ANJR.git).
- [17] J. Benzing, N. Hrabe, T. Quinn, R. White, and R. Rentz, *Manipulation of microstructure and tensile properties of additively manufactured Ti-6Al-4V parts*, presented at the 19th International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics (42nd National Symposium on Fatigue and Fracture Mechanics), May 15-17, 2019, Denver, CO, USA.
- [18] P.C. Paris, H. Tada, A. Zahoor, and H. Ernst, *The Theory of Instability of the Tearing Mode of Elastic-Plastic Crack Growth*, in "Elastic-Plastic Fracture," ASTM STP 668, J.D. Landes, J.A. Begley, and G.A. Clarke, Eds., American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 5-36.
- [19] H. Ernst, P.C. Paris, M. Rossow, and J.W. Hutchinson, Analysis of Load-Displacement Relationship to Determine J-R curve and Tearing Instability Material Properties, in "Fracture Mechanics," ASTM STP 677, C.W. Smith, Ed., American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 581-599.
- [20] M.G. Vassilaros, R.A. Hays, J.P. Gudas, and J.A. Joyce, *J-Integral Tearing Instability Analysis for 8-inch Diameter ASTM A106 Steel Pipe*, DTNSRDC/SME-83-104, David W. Taylor Naval Ship Research and Development Center, Bethesda, Maryland, May 1984.
- [21] J.D.G. Sumpter, Size effects in tearing instability: An analysis based on energy dissipation rate, Eng. Frac. Mech. 74 (2007) pp. 2352-2374.
- [22] B. Zhang, Y. Li, and Q. Bai, *Defect Formation Mechanisms in Selective Laser Melting: A Review*, Chinese Journal of Mechanical Engineering, Vol. 30, Issue 3, May 2017, pp. 515-527.
- [23] T. Mukherjee and T. DebRoy, *Mitigation of lack of fusion defects in powder bed fusion additive manufacturing*, Journal of Manufacturing Processes 36 (2018), pp. 442-449.
- [24] S. Coeck, M. Bisht, J. Plas, and F. Verbist, Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data, Additive Manufacturing 25 (2019), pp. 347-356.
- [25] J.A. Joyce (retired from US Naval Academy), *Private email communication to E. Lucon*, July 15th, 2019.
- [26] M. Scibetta and E. Lucon, SCK•CEN Activities for the Qualification of the Potential Drop Technique, presented at the ASTM E08.07 Special Technical Meeting on Use of

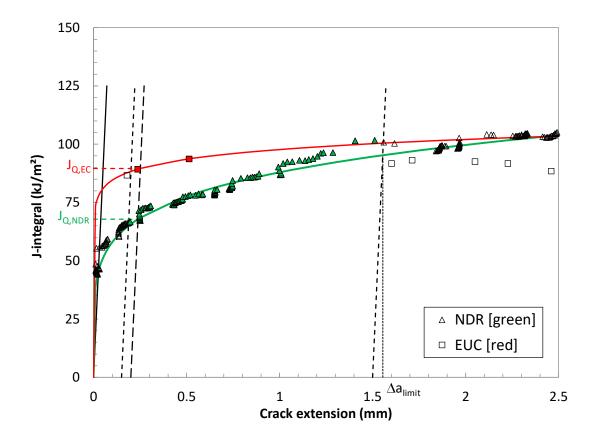
Potential Drop in Elastic-Plastic Fracture Toughness Testing, 12 November 2013, Jacksonville, FL.

- [27] R.L. Tobler, Low Temperature Fracture Behavior of a Ti-6Al-4V Alloy and its Electron Beam Welds, NBSIR 76-836, Kirtland Air Force Base, Albuquerque, New Mexico, April 1976.
- [28] D. Munz, K.H. Galda, and F. Link, *Effect of Specimen Size on Fracture Toughness of a Titanium Alloy*, in "Mechanics of Crack Growth," ASTM STP 590, American Society for Testing and Materials, Philadelphia, PA, 1976, pp. 219-234.
- [29] T. Kishi, H.S. Park, R. Horiuchi, T. Kakimi, M. Nakanose, and T. Tanabe, *Fracture Toughness of Ti-6Al-4V Alloys Determined by ASTM Standard and AE Method*, in "Titanium '80," Proceedings of the Fourth International Conference on Titanium, Kyoto, Japan, May 19-22, 1980, H. Kimura and O. Izumi, Eds.
- [30] C.G. Rhodes, M.R. Mitchell, and J.C. Chesnutt, *Fracture & Fatigue Characteristics in Titanium Alloys*, Final Report for the period July 1, 1979 through September 30, 1981, Rockwell International Science Center, June 1982.
- [31] M. Niinomi and T. Kobayashi, *Toughness and Microstructural Factors of Ti-6Al-4V Alloy*, Mat. Sci. and Eng. 100 (1988), pp. 45-55.
- [32] M.J. Donachie, Jr., *Titanium A Technical Guide*, Second Edition, ASM International, Materials Park, Ohio, 2000.
- [33] J.O. Peters and G. Lütjering, *Comparison of the Fatigue and Fracture of* $\alpha + \beta$ *and* β *Titanium Alloys*, Metallurgical and Materials Transactions A, Vol. 32A, Nov 2011, pp. 2805-2818.
- [34] P. Marmy, Fracture toughness and tensile properties of the titanium alloys Ti6Al4V and Ti5Al2.5S before and after proton and neutron irradiations at 150 °C, EFDA Task TW1-TVV/Titan and TW3-TVM-TICRFA: Titanium Alloys Irradiation Testing, May 2004.
- [35] J.A. Salem, B. Lerch, J.C. Thesken, J. Sutter, and R. Russell, Strength, Fatigue, and Fracture Toughness of Ti-6Al-4V Liner from a Composite Over-Wrapped Pressure Vessel, NASA/TM—2008-215147, March 2008.
- [36] X. Feng, A., Wang, Y. Ma, X. Wu, J. Lei, Y. Cui, and R. Yang, *Influence of Microstructure on Fatigue Crack Propagation and Fracture*, 13th International Conference on Fracture, June 16-21, 2013, Beijing, China.
- [37] J.J. Lewandowski and M. Seifi, *Metal Additive Manufacturing: A Review of Mechanical Properties*, Annu. Rev. Mater. Res. 46, 2016, pp. 151-186.
- [38] M. Seifi, A. Salem, D. Satko, J. Shaffer, J.J. Lewandowski, Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti-6Al-4V, International Journal of Fatigue 94, 2017, pp. 263-287.


ANNEX 1 As-built, non-supported


	TEST REPORT		
Material	Basic Test Information		
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature =	21	MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information		
Type = PCVN	a ₀ = 5	5.04	mm
Identification = AN-8-1	$a_{0q} = 4$	4.81	mm
Orientation = N/A	a _f = 8	8.08	mm
	$\Delta a_p = 3$	3.04	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 3$	3.39	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	ile tearir	BL
a _N = 3 mm			
	Elastic Unloading Compliance	ance	Normalization Data Reduction
Tensile Properties	J _Q = 89.58 kJ/m ²	ן ₂	$J_{Q} = 67.84 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)		Excessive crack extension: YES
v = 0.3	TM _{JQ} = 3.76 MPa	Ψ.	TM _{JQ} = 8.64 MPa
$\sigma_{YS} = 826.0$ MPa	TM _{Jlimit} = 0.68 MPa	5	TM _{Jlimit} = 1.86 MPa
σ _{тs} = 926.0 MPa	TM _{mean} = 2.22 MPa		TM _{mean} = 5.25 MPa


		Estimates of initial crack size:	
a _{0,qmean} =	$a_{0q,2} = 4.813$	a _{0q,1} = 4.795	QU,
4.795	4.813 4.776	4.795	ALIFI
mm	mm	mm	CATIO
		Diff :	QUALIFICATION OF DATA
	0.018		ATA
	< 0.002W =	0.000 < 0.002W =	
	0.0200	0.0200	
	mm	mm	


Differ	(before final adjustment) $\Delta a_{pred} = 3.39$	Crack extension prediction	
Difference = 0.35 mm	apred =	$\Delta a_p =$	Qualit
0.35		3.04	Qualification of data
mm	mm (predicted	$\Delta a_{p} = 3.04$ mm (measured)	of data
PREDICTION NOT ACCEPTABLE	edicted)	easured)	

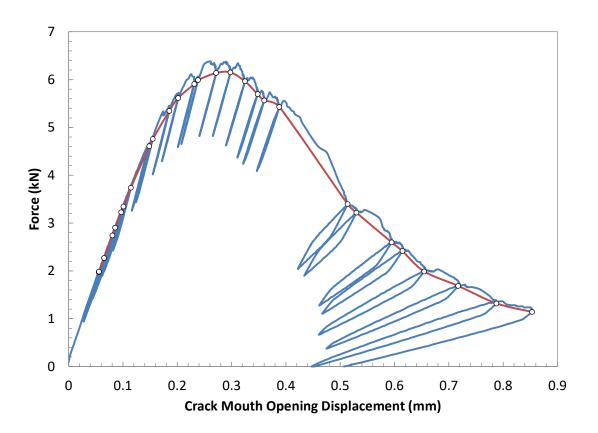
→ QUALIFIED		MPa < Sy	22.4	Regression line slope in Δa_{Q} :
\rightarrow QUALIFIED	Q/SY	mm > 10 JQ/SY	4.96	Initial ligament $b_0 =$
→ QUALIFIED	Q/SY	mm > 10 JQ/Sy	10.00	Thickness B =
	J _Q as J _k	Qualification of J_Q as J_k	Qual	
		ē		
	NOT VALID		tribution :	Data points distribution :
ightarrow data set not adequate	< 0.96	0.959 < 0.96	nt a _{0q} fit :	Correlation coefficient a _{oq} fit :
ightarrow qualified	ı∨ 3	13	IJ _q and J _q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	I∨ ∞	11	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.23	a _{0q} - a ₀ =	
ightarrow qualified	< 1.0	0.062771	icient C ₂ =	Power coefficient $C_2 = 0.062771 < 1.0$
	۱ of data	J_{Q} - Qualification of data	J _α - Q	

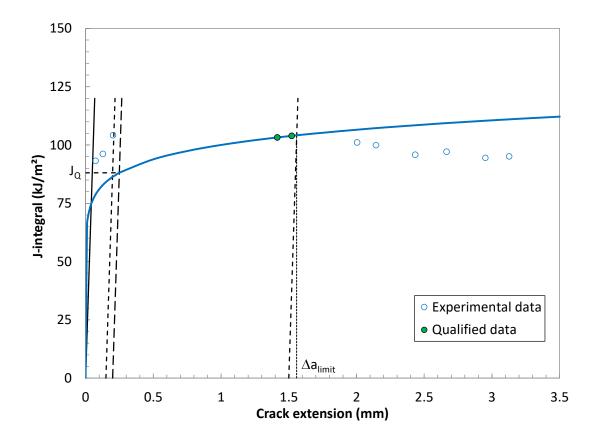
	TEST REPORT	
Material	Basic Test Information	
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21	MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information	
Type = PCVN	$a_0 = 5.04$	mm
Identification = AN-8-2	$a_{0q} = 4.76$	mm
Orientation = N/A	a _f = 8.16	mm
	$\Delta a_{p} = 3.13$	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 3.43$	mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	ng
a _N = 3 mm		
	Elastic Unloading Compliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 88.10 \text{ kJ/m}^2$	$J_{Q} = 72.83 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	Excessive crack extension: YES
v = 0.3	$TM_{JQ} = 5.18$ MPa	TM _{JQ} = 11.17 MPa
თ _{vs} = 826.0 MPa	TM _{Jlimit} = 0.98 MPa	TM _{Jlimit} = 2.65 MPa

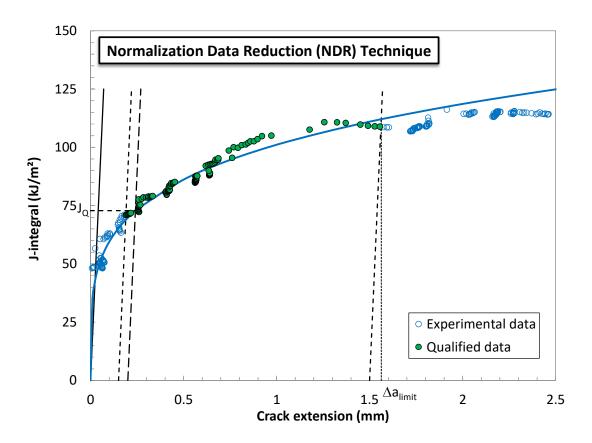
		Estimates of initial crack size:	
$a_{0,q3} = 4.766$	a _{0q,2} =	a _{0q,1} = 4.769	Q
4.766	4.805	4.769	
mm	mm	mm	FA
		Diff :	QUALIFICATION OF DATA
0.014	0.025	0.011	ATA
< 0.002W =	> 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

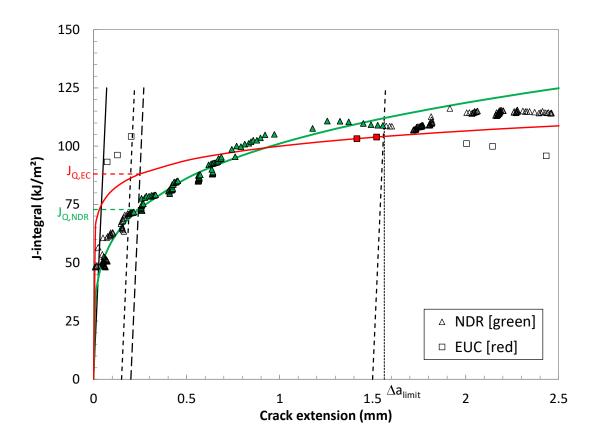
a_{0,qmean} = 4.780 mm

2		(before final adjustment) $\Delta a_{\text{ored}} = 3.43$	Crack extension prediction	
	foronco -	$\Delta a_{\text{pred}} =$	∆a _p = 3.13	Quali
0.01	0 21	3.43	3.13	Qualification of data
	3		mm (n	of data
	DREDICTION NOT ACCEDTARI E	mm (predicted)	mm (measured)	

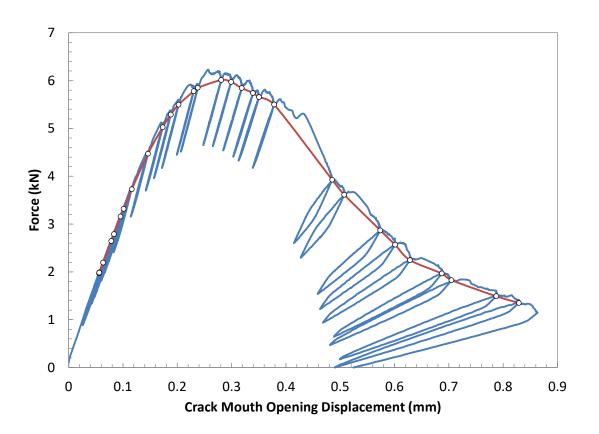

 → QUALIFIED → QUALIFIED → QUALIFIED 	J _Q as J _k Q/Sy Q/Sy	Qualification of J _Q as J _k 00 mm > 10 JQ/Sy 96 mm > 10 JQ/Sy 3 MPa < Sv	Quali 10.00 4.96	Thickness B = Initial ligament b ₀ = Regression line slope in Δao.
	NOT VALID	NOT	ta points :	Number of qualified data points :
ightarrow data set not adequate	06 < 0.96 NOT VALID	0.906 < 0.96	nt a _{0q} fit : tribution :	Correlation coefficient a _{0q} fit : Data points distribution :
ightarrow QUALIFIED	v 3	7	IJ _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	∾ ו∨	13	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.28	a _{0q} - a ₀ =	_
ightarrow QUALIFIED	< 1.0	0.091351	icient C ₂ =	Power coefficient $C_2 = 0.091351 < 1.0$
	ı of data	J_{Q} - Qualification of data	J _Q - Q	

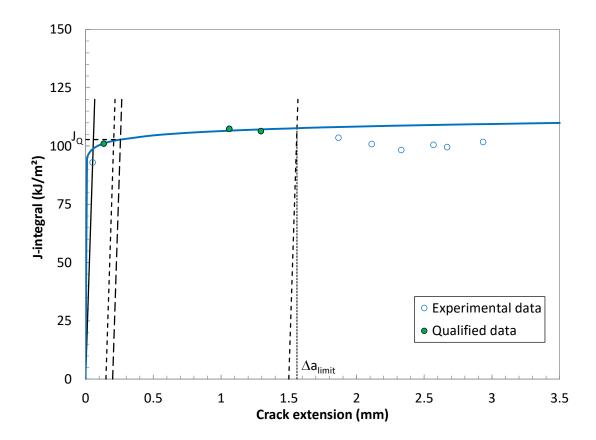

σ_{тs} = 967.0 MPa

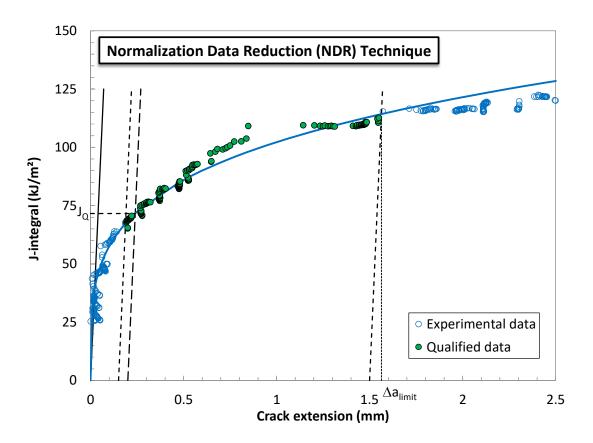

TM_{mean} =

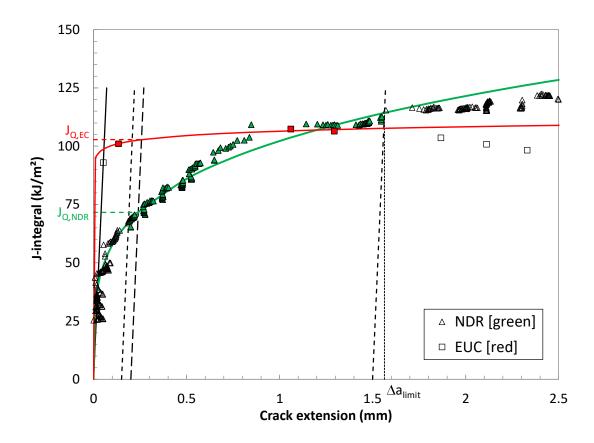

3.08 MPa

TM_{mean} = 6.91 MPa

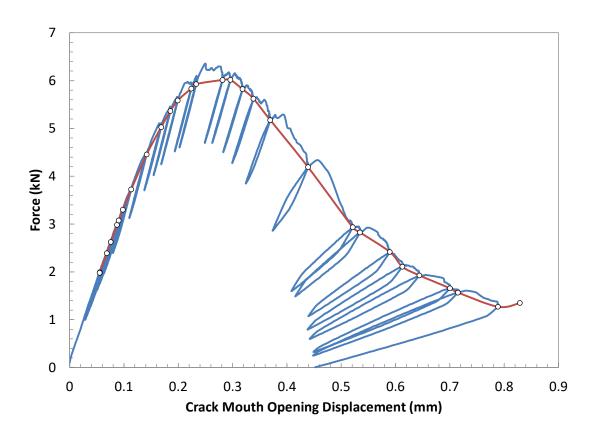


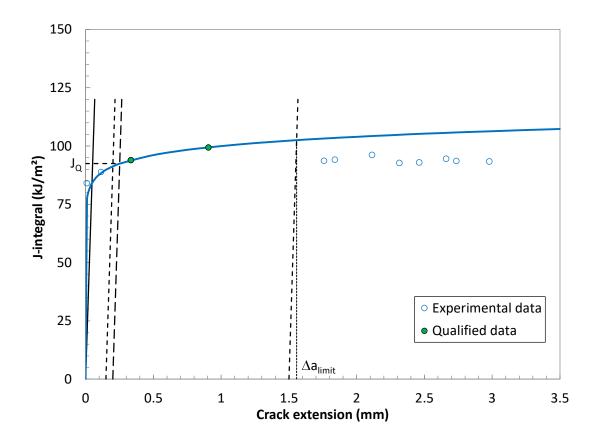

	TEST REPORT		
Material	Basic Test Information		
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature =	21	MPa√m/s (linear elastic portion) °C
Specimen Information	Crack Size Information		
Type = PCVN	a ₀ = 4	4.99	mm
Identification = AN-8-3	a _{0q} = 4	4.79	mm
Orientation = N/A	a _f = 5	8.06	mm
	$\Delta a_p = 3$	3.07	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 3$	3.19	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	ble tear	ing
a _N = 3 mm			
	Elastic Unloading Compliance	liance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 102.80 \text{ kJ/m}^{2}$	m²	$J_{Q} = 71.60 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	0	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 1.64 MPa	ฉั	$TM_{JQ} = 11.93$ MPa
σ _{γs} = 826.0 MPa	TM _{Jlimit} = 0.28 MPa	ลั	TM _{Jlimit} = 2.92 MPa
σ _{тs} = 967.0 MPa	TM _{mean} = 0.96 MPa	ลั	TM _{mean} = 7.42 MPa

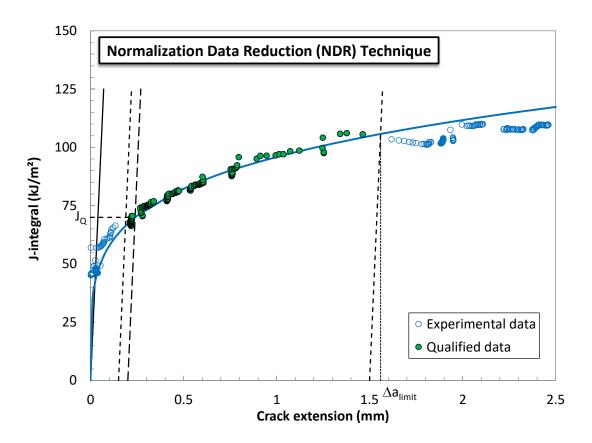

			Estimates of initial crack size:	
a _{0,qmean} = 4.795	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.786	Q
4.795	4.763	4.835		
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.032	0.041	0.009	ATA
	> 0.002W =	> 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

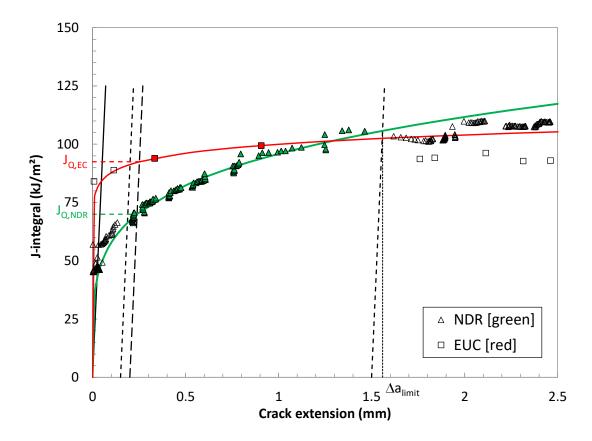

Dit	(before final adjustment) $\Delta a_{pred} = 3.19$	Crack extension prediction	
Difference = 0.12 mm	$\Delta a_{pred} =$	$\Delta a_{p} = 3.07$	Quali
0.12	3.19	3.07	Qualification of data
mm	mm (p	mm (n	of data
(PREDICTION ACCEPTABLE)	mm (predicted)	mm (measured)	

Initial ligament D_0 = 5.01 mm > 10 JQ/SY Regression line slope in $\Delta a_{\rm Q}$: 10.2 MPa < Sy	10.00	Qualification of J_{Q} as J_{lc}	Number of qualified data points : NOT VALID	Data points distribution : NOT VALID	Correlation coefficient a _{0q} fit : 0.929 < 0.96	# of data between 0.4J _q and J _q : 14 \geq 3	# of data available to calculate a_{0q} : 12 ≥ 8	$ a_{0q} - a_0 = 0.20$ mm	Power coefficient $C_2 = 0.025578 < 1.0$	J_{Ω} - Qualification of data
→ QUALIFIED → QUALIFIED		5 J _{IC}	D	D	.96 → DATA SET NOT ADEQUATE	→ QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	.0 \rightarrow QUALIFIED	lata

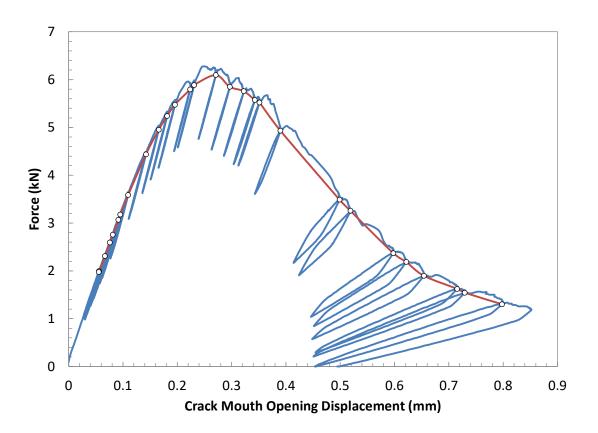

	TEST REPORT	
Material	Basic Test Information	
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21	MPa√m/s (linear elastic portion) . °C
Specimen Information	Crack Size Information	
Type = PCVN	a ₀ = 5.03	3 mm
Identification = AN-8-4	a _{oq} = 4.76	6 mm
Orientation = N/A	a _f = 8.00	0 mm
	$\Delta a_p = 2.98$	8 mm
Basic dimensions	$\Delta a_{\text{predicted}} = 3.29$	9 mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	tearing
a _N = 3 mm		
	Elastic Unloading Compliance	Ice Normalization Data Reduction
Tensile Properties	$J_{Q} = 92.45 \text{ kJ/m}^{2}$	$J_{q} = 69.94 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 3.33 MPa	TM _{JQ} = 10.33 MPa
$\sigma_{YS} = 826.0$ MPa	TM _{Jlimit} = 0.60 MPa	TM _{Jlimit} = 2.39 MPa
σ _{τs} = 967.0 MPa	TM _{mean} = 1.96 MPa	TM _{mean} = 6.36 MPa

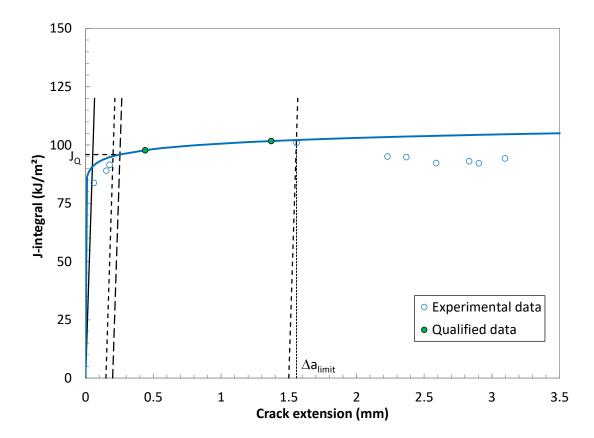

QUALIFICATION OF DATA Estimates of initial crack size: a_{0q1} = 4.774 mm Diff: 0.010

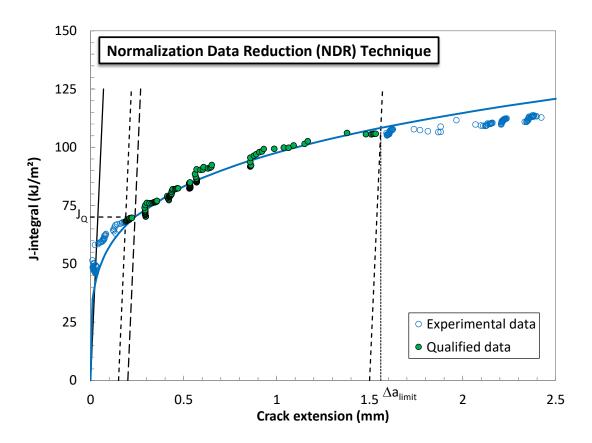

			ack size:	
⊂0,qmean −	a _{0,q3} =	a _{0q,2} =	a _{0q,1} =	
4./04	4.781	4.798	4.774	
	mm	mm	mm	
			Diff :	
	0.004	0.014	0.010	
			< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

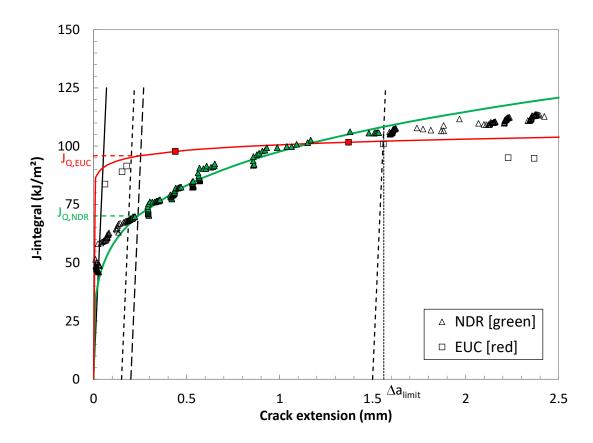

Dit	(before final adjustment) $\Delta a_{pred} = 3.29$	Crack extension prediction	
Difference = 0.31 mm	$\Delta a_{pred} =$	Δa _p =	Quali
0.31	3.29	2.98	Qualification of data
mm	mm (p	mm (r	of data
PREDICTION NOT ACCEPTABLE	mm (predicted)	$\Delta a_p = 2.98$ mm (measured)	

 → QUALIFIED → QUALIFIED → QUALIFIED 	Q/SY Q/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.97 20.8	Thickness B = Initial ligament b_0 = Regression line slope in Δa_{cl} :
	J _Q as J _{Ic}	Qualification of J_Q as J_k	Quali	
	VALID NOT VALID	NOT	ribution : a points :	Data points distribution : Number of qualified data points :
ightarrow data set not adequate	< 0.96	0.910 < 0.96	nt a _{oq} fit :	Correlation coefficient a _{oq} fit :
ightarrow QUALIFIED	s	8	J _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	≥ 8	13	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.27	a _{0q} - a ₀ =	a
→ QUALIFIED	< 1.0	0.056574	cient C ₂ =	Power coefficient $C_2 = 0.056574 < 1.0$
	ו of data	$J_{\rm Q}$ - Qualification of data	J _Q - Q	




	TEST REPORT	
Material	Basic Test Information	
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21	MPa√m/s (linear elastic portion) °C
Specimen Information	Crack Size Information	
Type = PCVN	$a_0 = 4.99$	mm
Identification = AN-6-1	$a_{0q} = 4.73$	mm
Orientation = N/A	a _f = 8.09	mm
	$\Delta a_{p} = 3.10$	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 3.30$	mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	earing
a _N = 3 mm		
	Elastic Unloading Compliance	e Normalization Data Reduction
Tensile Properties	J _Q = 95.93 kJ/m ²	$J_{Q} = 70.11 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 2.07 MPa	TM _{JQ} = 10.75 MPa
σ _{γs} = 834.0 MPa	TM _{Jlimit} = 0.36 MPa	TM _{Jlimit} = 2.54 MPa
σ _{тs} = 972.0 MPa	TM _{mean} = 1.21 MPa	TM _{mean} = 6.65 MPa

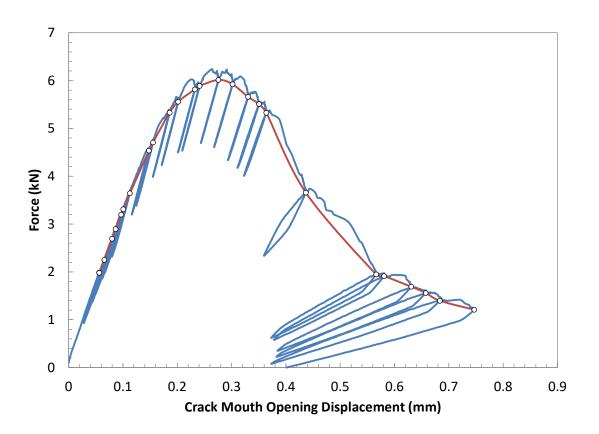

			Estimates of initial crack size:		
a _{0,qmean} = 4.747	a _{0.03} =	a _{00.2} =	a _{0q,1} = 4.744	QU,	
4.747	4.736	4.762	4.744	ALIFI	
mm	mm	mm	mm	CATI	
			Diff :	QUALIFICATION OF DATA	
	0.011	0.015	0.004	ATA	
	< 0.002W =	< 0.002W =	< 0.002W =		
	0.0200	0.0200	0.0200		
	mm	mm	mm		

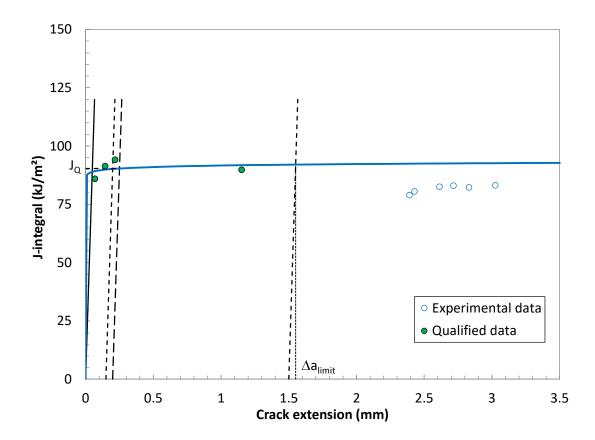

Difference = 0.20 mm	(before final adjustment) $\Delta a_{pred} = 3.30$	Crack extension prediction Δa_p	0
ï	"	ΪI	lualifi
0.20	3.30	3.10	cation •
mm PREDICTION NOT ACCEPTABLE	mm (predicted)	$\Delta a_p = 3.10$ mm (measured)	Qualification of data

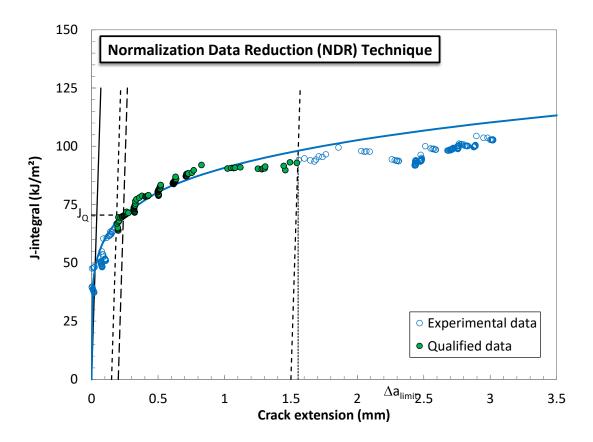
 → QUALIFIED → QUALIFIED 	Q/SY Q/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 5.01 13.1	Thickness B = Initial ligament b_0 = Regression line slope in Δa_0 :
	J _Q as J _k	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	Qual	
	VALID NOT VALID	NOT	tribution : ta points :	Data points distribution : Number of qualified data points :
ightarrow data set not adequate	0.917 < 0.96		ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
→ QUALIFIED	ı∨ 3	14	IJ _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	ı∨ 8	12	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.27	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	0.034583	icient C ₂ =	Power coefficient $C_2 = 0.034583 < 1.0$
	ח of data	J _Q - Qualification of data	J ₀ - 0	

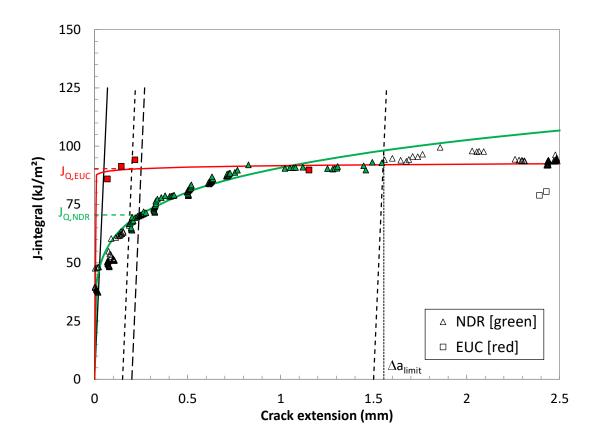
σ _{γs} = 834.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm <i>J</i>	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AN-6-2	Type = PCVN	Specimen Information C	Material Designation = Ti64 AM Notch = Fatigue precrack		
TM _{Jlimit} = 0.09 MPa	TM _{JQ} = 0.57 MPa	(uncertainty > 4%)	$J_{Q} = 90.37 \text{ kJ/m}^2$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 3.37$	$\Delta a_p = 3.02$	a _f = 8.05	$a_{0q} = 4.76$	$a_0 = 5.02$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
TM _{Jlimit} = 1.76 MPa	$TM_{JQ} = 8.23$ MPa	Excessive crack extension: YES	$J_{\alpha} = 70.49 \text{ kJ/m}^2$	Normalization Data Reduction		gu			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃		

			Estimates of initial crack size:	
a _{0,qmean} = 4.796	$a_{0,q3} = 4.783$	$a_{0q,2} = 4.818$	$a_{0q,1} = 4.787$	QU/
4.796	4.783	4.818	4.787	ALIFI
mm	mm	mm	mm	CATIC
			Diff :	QUALIFICATION OF DATA
	0.013	0.022	0.009	ΛTA
	< 0.002W =	> 0.002W =	0.009 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Di	(before final adjustment) $\Delta a_{pred} = 3.37$ mm (predicted	Crack extension prediction	
Difference = 0.35 mm	$\Delta a_{pred} =$	$\Delta a_p = 3.02$	Quali
0.35	3.37	3.02	Qualification of data
mm	mm (p	mm (n	of data
PREDICTION NOT ACCEPTABLE	redicted)	mm (measured)	


 → QUALIFIED → DATA SET NOT ADEQUATE → QUALIFIED → QUALIFIED → QUALIFIED 	14 23 14 23 NOT VALID NOT VALI	adval 2 2 dval 14 2 dval 18 2 gantic 0.890 <0.96 ion NOT VALID NOT VALID Qualification of Jass Je NOT VALID QUALING NOT VALID	J _q and J _q : nt a _{0q} fit : rribution : a points : 10.00 4.98 3.6	$\label{eq:constraint} \begin{array}{l} \# \mbox{ of data between 0.4}_{q} \mbox{ and } J_{q}: \\ \mbox{ Correlation coefficient } a_{q} \mbox{ fit}: \\ \mbox{ Data points distribution :} \\ \mbox{ Number of qualified data points :} \\ \mbox{ Number of qualified data points :} \\ \mbox{ Cual is the set of qualified data points :} \\ \mbox{ Thickness B} = 10.00 \\ \mbox{ Initial ligament } b_{q} = 4.98 \\ \mbox{ Regression line slope in } \Delta a_{q}: 3.6 \end{array}$
ightarrow data set adequate ightarrow data set adequate	> 8 ×	0.26	a _{0q} - a ₀ =	= a _{0q} - a ₀ = # of data available to calculate a ₀
ightarrow QUALIFIED	< 1.0	0.009979	cient C ₂ =	Power coefficient $C_2 = 0.009979 < 1.0$
	ו of data	J_{Q} - Qualification of data	J _Q - QL	


 $\sigma_{TS} = 972.0$ MPa


TM_{mean} = 0.33 MPa

TM_{mean} = 5.00 MPa

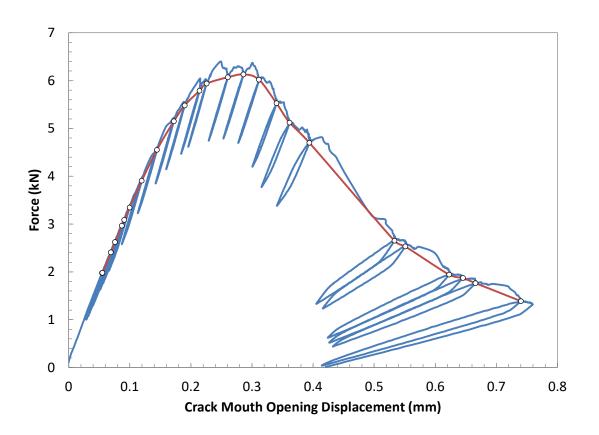
Material	TEST REPORT Basic Test Information	DRT		
Notch = Fatigue precrack	Ecoding Rate = Test temperature =	re = 21		°C
Specimen Information	Crack Size Information	tion		
Type = PCVN		a ₀ = 5.00	0 mm	
Identification = AN-6-3	a	a _{0q} = 4.75	5 mm	
Orientation = N/A		a _f = 7.95	5 mm	
	Δā	$\Delta a_p = 2.94$	4 mm	
Basic dimensions	$\Delta a_{\text{predicted}} =$	_{ed} = 3.20	0 mm	
B = 10.00 mm				
B _N = 8.00 mm	Analysis of Results			
W = 10.00 mm	Fracture type = stable tearing	e = stable	tearing	
a _N = 3 mm				
	Elastic Unloading Compliance	g Complian	_	Normalization Data Reduction
Tensile Properties	$J_{Q} = 88.32 \text{ kJ/m}^{2}$	2 kJ/m²	J _Q =	73.26 kJ/m ²
E = 128804 MPa	(uncertainty > 4%)	ty > 4%)	Excessive cra	Excessive crack extension: YES
v = 0.3	$TM_{JQ} = 4.21$	MPa	TM _{JQ} =	7.96 MPa
$\sigma_{YS} = 834.0$ MPa	TM _{Jlimit} = 0.77	' MPa	TM _{Jlimit} =	1.68 MPa
σ _{тs} = 972.0 MPa	$TM_{mean} = 2.49$) MPa	TM _{mean} =	4.82 MPa

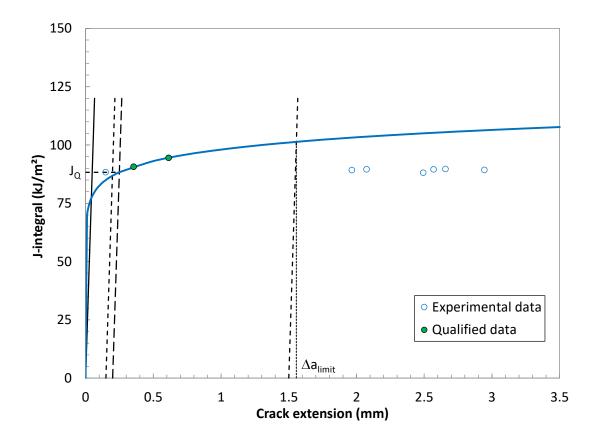
Estimates of initial crack size:	
a _{0q,1} = 4.772 mm	QU,
4.772	ALIFI
mm	QUALIFICATION OF DATA
Diff :	OF D/
Diff: 0.002 < 0.002	λTA
< 0.002	

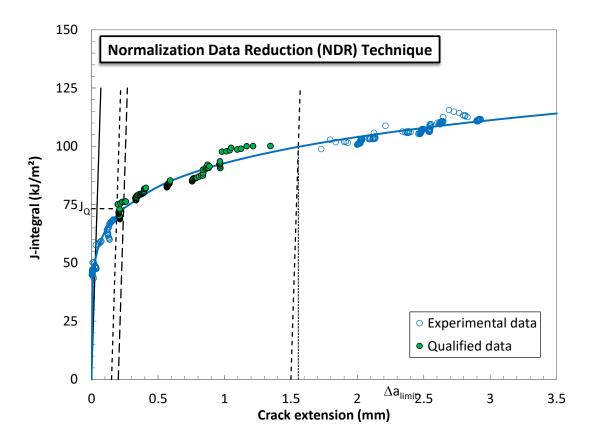
 → QUALIFIED → QUALIFIED 	JQ/SY JQ/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 5.00 26.7	eq:thm:thm:thm:thm:thm:thm:thm:thm:thm:thm
	f J _Q as J _{Ic}	Qualification of J_{Q} as J_{k}	Qualit	
	VALID NOT VALID	NO	tribution : ta points :	Data points distribution : Number of qualified data points :
→ QUALIFIED → DATA SET NOT ADEOUATE	7 ≥3 0.926 <0.96	7	IJ _q and J _q : nt a ₂₂ fit :	# of data between $0.4J_q$ and J_q :
ightarrow data set adequate	I∨ 80	12	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.25	a _{0q} - a ₀ =	_ a
→ QUALIFIED	5 < 1.0	0.07512	icient C ₂ =	Power coefficient $C_2 = 0.075125 < 1.0$
	J_{Q} - Qualification of data	alificatio	յ _զ - զւ	
PREDICTION NOT ACCEPTABLE	mm	0.25	Difference =	Dif
edicted)	mm (predicted)	3.20	$\Delta a_{pred} =$	(before final adjustment)
asured)	mm (measured)	2.94	$\Delta a_p =$	Crack extension prediction

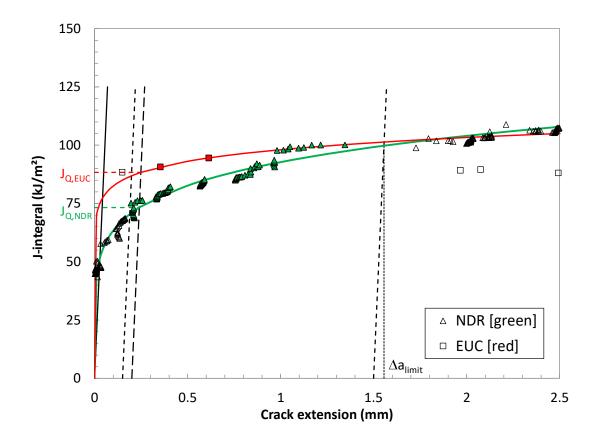
a _{0,qmean} =	a _{0,q3} =	$a_{0q,2} =$
4.769	4.754	4.783
mm	mm	mm
	0.016	0.014
	< 0.00	< 0.00

a^2 =	a _{0q,2} =	a _{0q,1} =
4.754	4.783	4.772
mm	mm	mm
		Diff :
0.016	0.014	0.002
^	^	^


Ň	
mm	
Diff :	
0.002	
^	


772	
mm	
D	
Diff :	
0	


mm	
Diff :	
0.002	
^	

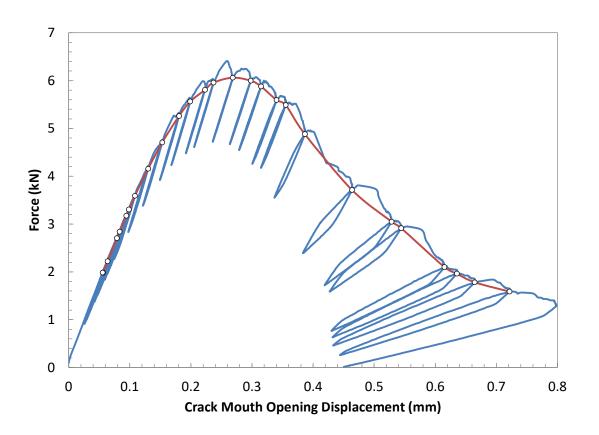

Qualification of data

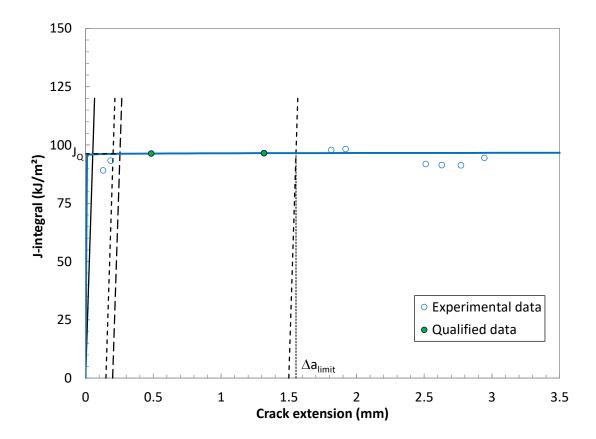
<0.002W = 0.0200 mm <0.002W = 0.0200 mm <0.002W = 0.0200 mm

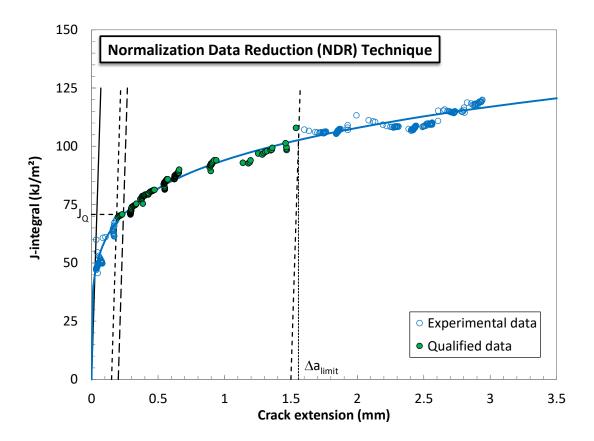
v= 0.3 T	E = 128804 MPa	Tensile Properties	Ela	a _N = 3 mm	W = 10.00 mm	$B_N = 8.00 \text{ mm}$ Analy	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AN-6-4	Type = PCVN	Specimen Information Cracl	Material Basic Designation = Ti64 AM Notch = Fatigue precrack Te	TE	
TM _{JQ} = 0.10 MPa	(uncertainty > 4%)	$J_{Q} = 96.24 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 3.01$	$\Delta a_p = 2.94$	a _f = 7.95	$a_{0q} = 4.79$	$a_0 = 5.00$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
$TM_{JQ} = 9.29$ MPa	Excessive crack extension: YES	$J_{\Omega} = 70.77 \text{ kJ/m}^2$	Normalization Data Reduction		ing			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) °C		

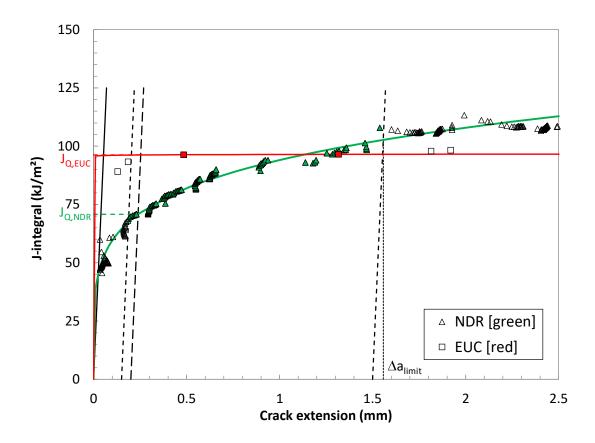
		Estimates of initial crack size:	
a _{0,q3} = 4.796	$a_{0q,2} = 4.819$	$a_{0q,1} = 4.815$	QU/
4.796	4.819	4.815	ALIFI
mm	mm	mm	CATI
		Diff :	QUALIFICATION OF DATA
0.014	0.009	0.005	ATA
< 0.002W =	< 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

a_{0,qmean} = 4.810 mm


Difference = 0.06 mm	(before final adjustment) $\Delta a_{pred} = 3.01$	Crack extension prediction Δa	
ce =	ed =	ap =	Qualif
0.06	3.01	2.94	Qualification of data
mm	mm (mm (of data
(PREDICTION ACCEPTABLE)	mm (predicted)	$\Delta a_{p} = 2.94$ mm (measured)	


⁰ r	- Qua	J_{0} - Qualification of data	of data	
Power coefficient $C_2 = 0.001674 < 1.0$	C ₂ = 0	0.001674	< 1.0	→ QUALIFIED
a _{0q} - a ₀ =	"	0.21	mm	ightarrow data set adequate
# of data available to calculate a_{0q} :	90q :	12	IV ©	ightarrow data set adequate
# of data between 0.4J $_q$ and J $_q$:	J _q	12	ω	ightarrow QUALIFIED
Correlation coefficient a _{0q} fit :	fit :	0.912 < 0.96	< 0.96	ightarrow data set not adequate
Data points distribution :	on:	VALID	LD	
Number of qualified data points :	nts :	NOT VALID	VALID	
	Qualifi	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	J _Q as J _{Ic}	
Thickness B = 10.00		mm > 10 JQ/Sy	Q/SY	→ QUALIFIED
Initial ligament $b_0 = 5.00$		mm > 10 JQ/Sy	Ω/Sγ	ightarrow QUALIFIED
Regression line slope in Δa_{Ω} : 0.6		MPa < Sy		→ QUALIFIED

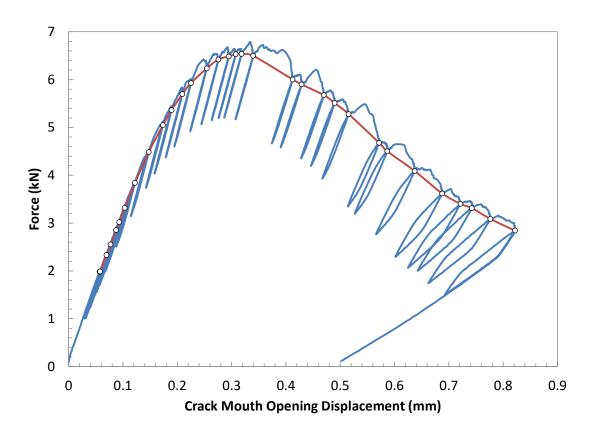

 $\sigma_{TS} = 972.0$ MPa

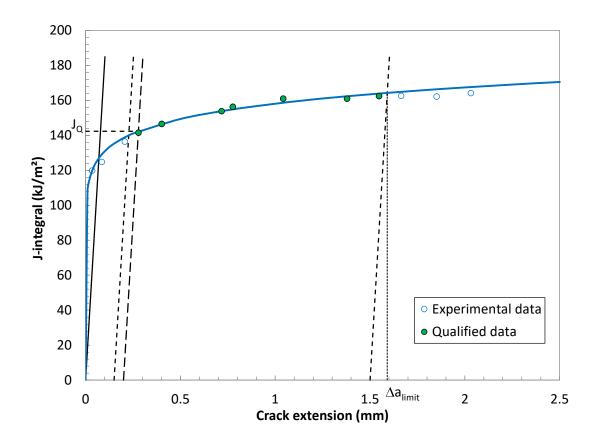

TM_{mean} = 0.06 MPa

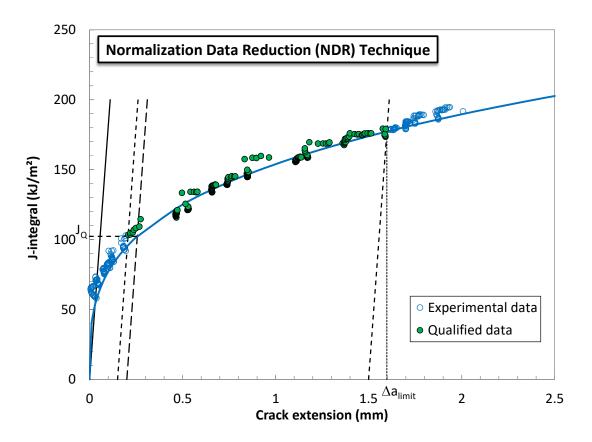
TM_{mean} = 5.68 MPa

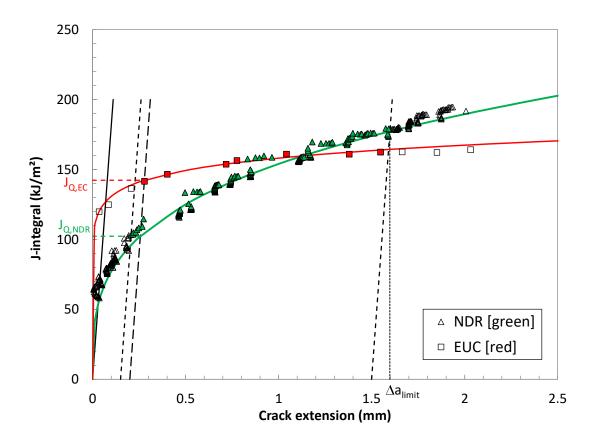
σ _{γs} = 838.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm <i>L</i>	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AN-5-1	Type = PCVN	Specimen Information (Material Designation = Ti64 AM Notch = Fatigue precrack		
TM _{Jlimit} = 1.33 MPa	TM _{JQ} = 6.60 MPa	(uncertainty > 4%)	$J_{Q} = 142.32 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.06$	$\Delta a_{p} = 2.03$	a _f = 7.11	$a_{0q} = 4.81$	$a_0 = 5.08$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
TM _{Jlimit} = 5.22 MPa	$TM_{JQ} = 18.77$ MPa	Excessive crack extension: YES	$J_{Q} = 102.33 \text{ kJ/m}^{2}$	Normalization Data Reduction		gu			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) °C		

			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.823	QU,
4.840	4.833	4.864	4.823	ALIFI
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.007	0.024	0.017	λTA
	< 0.002W =	> 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


	Quali	Qualification of data	of data
Crack extension prediction	$\Delta a_{p} = 2.03$	2.03	mm (measured)
(before final adjustment)) ∆a _{pred} = 2.06	2.06	mm (predicted)
Diff	Difference =	0.02	mm (PREDICTION ACCEPTABLE)


→ QUALIFIED → QUALIFIED → QUALIFIED	od'aa a ^c d\2À	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.92 42.1	Thickness B = Initial ligament b ₀ = Regression line slope in ∆a _Q :
		Oualification of J ₂ as J ₂	ta points : Oual	Number of quanned data points :
	VALID	< <	tribution :	Data points distribution :
ightarrow data set not adequate	0.906 < 0.96	0.906	ent a _{0q} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	υ	10	IJ _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ 80	15	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.26	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	0.082366	icient C ₂ =	Power coefficient $C_2 = 0.082366 < 1.0$
	ו of data	J_{Q} - Qualification of data	J _α - Ο	

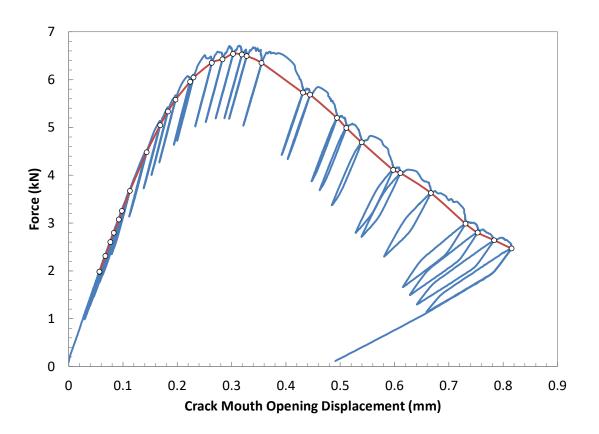

σ_{тs} = 975.0 MPa

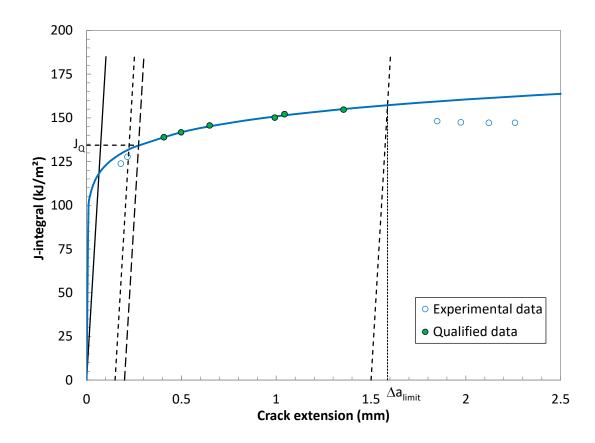

TM_{mean} = 3.97 MPa

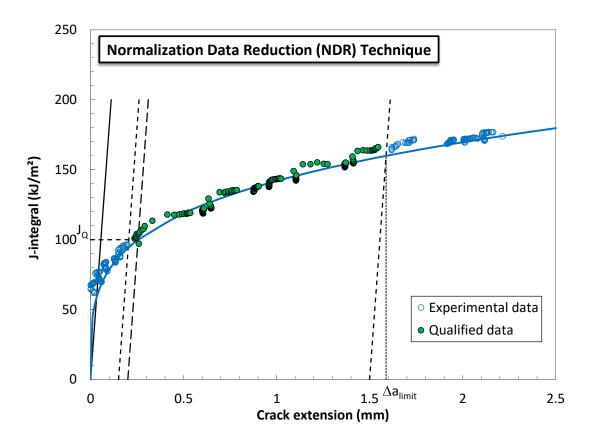
TM_{mean} = 11.99 MPa

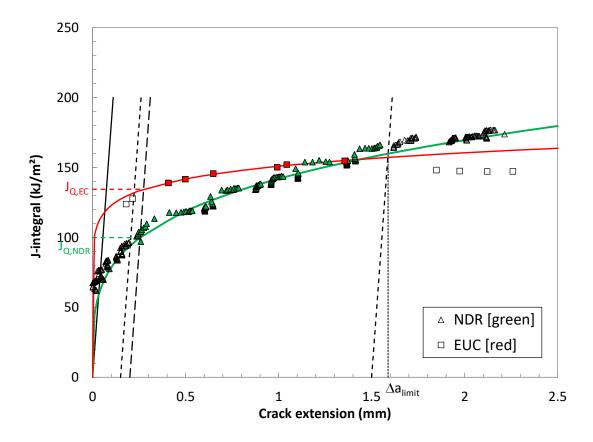
σ _{YS} = 838.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm A	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AN-5-2	Type = PCVN	Specimen Information C	B Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 1.39 MPa	TM _{JQ} = 6.86 MPa	(uncertainty > 4%)	$J_{Q} = 134.41 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{predicted} = 2.36$	$\Delta a_{p} = 2.26$	a _f = 7.38	$a_{0q} = 4.78$	$a_0 = 5.12$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 4.05 MPa	$TM_{JQ} = 15.78$ MPa	Excessive crack extension: YES	$J_{Q} = 99.91 \text{ kJ/m}^{2}$	Normalization Data Reduction		gu			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) °C	

σ_{тs} = 975.0 MPa


TM_{mean} = 4.12 MPa


TM_{mean} = 9.92 MPa


			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.829	QU,
4.834	4.831	4.841	4.829	
mm	mm	mm	mm	CATIO
			Diff :	QUALIFICATION OF DATA
	0.003	0.008		ATA
	< 0.002W =	< 0.002W =	0.005 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Qualification of data

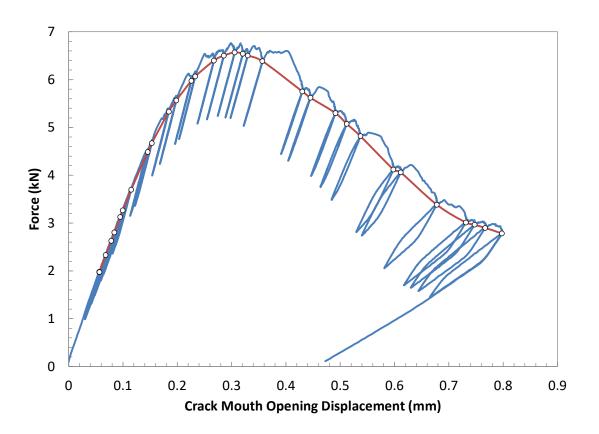
 → QUALIFIED → QUALIFIED → QUALIFIED 	JQ/SY JQ/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.88 43.8	Thickness B = Initial ligament b ₀ = Regression line slope in ∆a _Q :
	f J _Q as J _k	Qualification of J_Q as $J_{\rm c}$	Quali	
	VALID	< <	ribution : ta points :	Data points distribution : Number of qualified data points :
 DATA SET NOT ADEQUATE 	≤ o < 0.96	9 0.889	nt a _{0q} fit :	H of data between 0.44 and a_q . Correlation coefficient a_{0q} fit :
DATA SET ADEQUATE	v IV 0 00	14	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.35	a _{0q} - a ₀ =	
ightarrow QUALIFIED	2 < 1.0	0.089302	icient C ₂ =	Power coefficient $C_2 = 0.089302 < 1.0$
	n of data	J_Q - Qualification of data	J _Q - Q	
(PREDICTION ACCEPTABLE)	mm	0.10	Difference =	Dif
dicted)	mm (predicted)	2.36	$\Delta a_{pred} =$	(before final adjustment)
asured)	mm (measured)	2.26	$\Delta a_p =$	Crack extension prediction

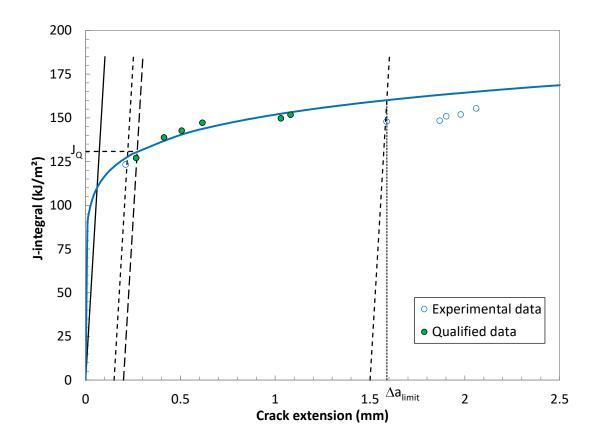
Ti64 AM Fatigue pre Fatigue pre PCVN PCVN AN-5-3 N/A N/A 10.00	TEST REPORT Basic Test Information Loading Rate = Test temperature = 21 Crack Size Information $a_0 =$ 21 Crack Size Information $a_0 =$ 2.04 $a_0 =$ 5.04 $a_0 =$ 2.05 $a_0 =$ 2.06 $\Delta_{predicted} =$ 2.18	MPa√m/s (linear elastic portion) °C mm mm mm mm
00		MPa√m/s (linear elastic port °C
Specimen Information	Crack Size Information	
Type = PCVN		mm
Identification = AN-5-3		mm
Orientation = N/A		mm
		mm
Basic dimensions		mm
10.00		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	aring
a _N = 3 mm		
	Elastic Unloading Compliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 130.78 \text{ kJ/m}^{2}$	$J_{Q} = 101.31 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	Excessive crack extension: YES
v = 0.3	ТМ _{јд} = 8.65 МРа	TM _{JQ} = 16.81 MPa
$\sigma_{\rm YS} = 838.0$ MPa	TM _{Jlimit} = 1.81 MPa	TM _{Jlimit} = 4.43 MPa

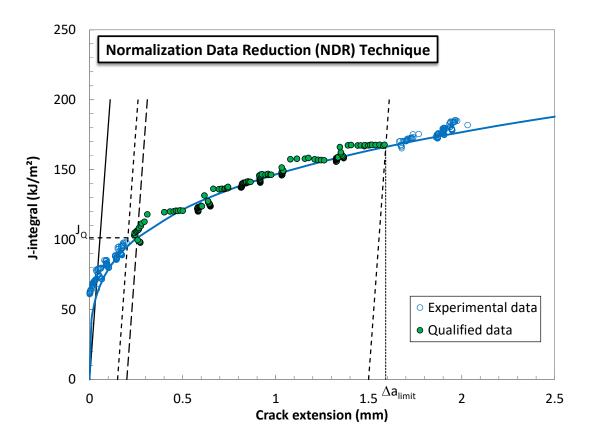
a _{0,1}			Estimates of initial crack size:	
a _{0,qmean} = 4.783	a _{0,q3} =	a _{0q,2} =	a _{0q,1} =	QU/
4.783	$a_{0,q3} = 4.782$	$a_{0q,2} = 4.799$	$a_{0q,1} = 4.766$	LIFI
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.000	0.017	0.016	ATA
	< 0.002W =	< 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

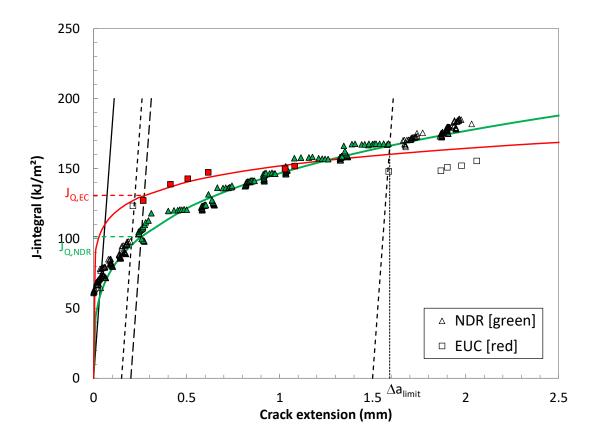
Diff	(before final adjustment) $\Delta a_{pred} = 2.18$	Crack extension prediction	
Difference =	$\Delta a_{pred} =$	$\Delta a_p =$	Quali
0.12 mm	2.18	2.06	Qualification of data
mm	mm (p	mm (n	of data
(PREDICTION ACCEPTABLE)	mm (predicted)	$\Delta a_p = 2.06$ mm (measured)	

	Jr co Dr		Quai	
	J_ as J_	Oualification of J ₂ as J ₂	Ouali	
	VALID	<	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	0.862 < 0.96	0.862	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	ı∨ 3	10	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	∨ ∞	17	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.31	a _{0q} - a ₀ =	_
\rightarrow QUALIFIED	< 1.0	0.114768	icient C ₂ =	Power coefficient $C_2 = 0.114768 < 1.0$
	n of data	J _Q - Qualification of data	J _Q - Q	

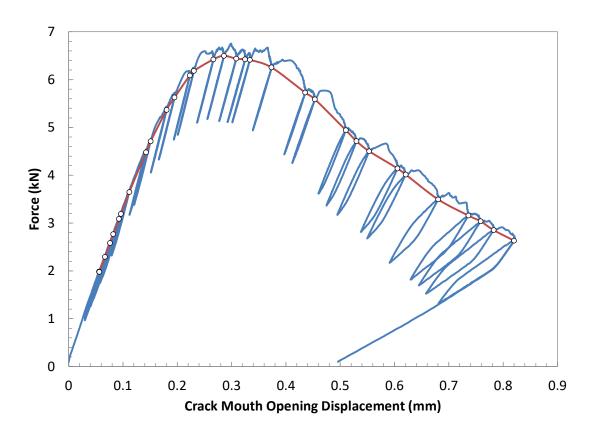

σ_{TS} = 975.0 MPa

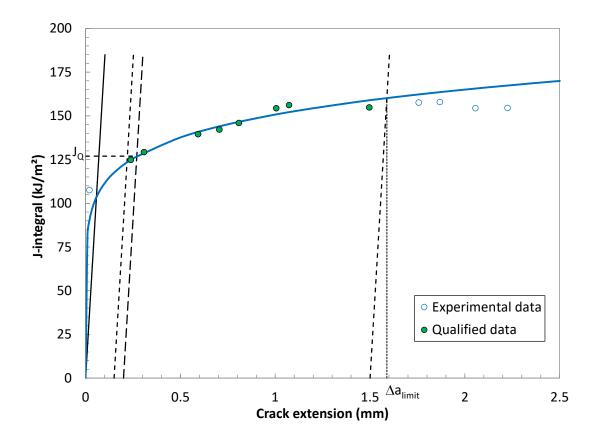

TM_{mean} =

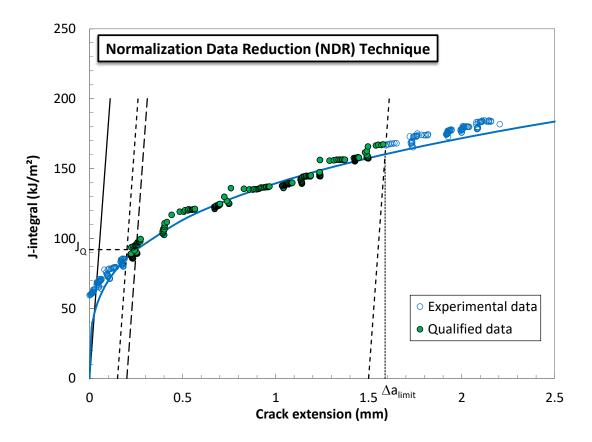

5.23

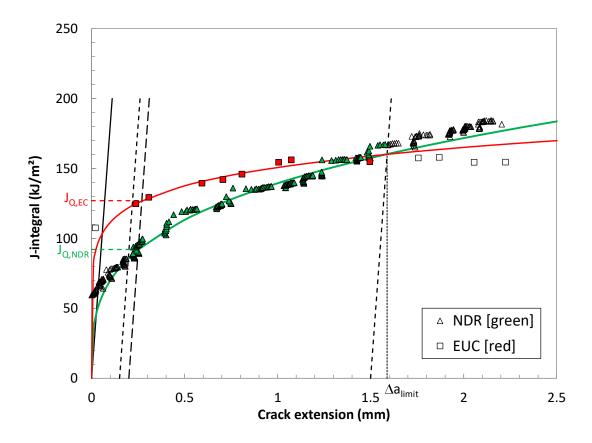

MPa

TM_{mean} = 10.62 MPa




Material Designation = Ti64 AM Notch = Fatigue precrack	TEST REPORT Basic Test Information Loading Rate = Test temperature =	F REPORT est Information Loading Rate = temperature =	21	MPa√m/s (linear elastic portion) °C
Specimen Information	Crack Size Information	rmation		
Type = PCVN		a ₀ =	5.07	mm
Identification = AN-5-4		a _{oq} =	4.71	mm
Orientation = N/A		a _f =	7.30	mm
		$\Delta a_p =$	2.23	mm
Basic dimensions	Δa _p	$\Delta a_{\text{predicted}} =$	2.28	mm
B= 10.00 mm				
B _N = 8.00 mm	Analysis of Results	sults		
W = 10.00 mm	Fracture	Fracture type = stable tearing	table tea	ring
a _N = 3 mm				
	Elastic Unloading Compliance	iding Com	Ipliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 1$	$J_{Q} = 126.95 \text{ kJ/m}^{2}$	J/m²	$J_{q} = 92.09 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncer	(uncertainty > 4%)	%)	Excessive crack extension: YES
v = 0.3	TM _{JQ} =	9.66 N	MPa	TM _{JQ} = 17.28 MPa
$\sigma_{YS} = 838.0$ MPa		2.07 N	MPa	TM _{Jlimit} = 4.75 MPa
σ _{τs} = 975.0 MPa	TM _{mean} =	5.87 N	MPa	TM _{mean} = 11.01 MPa

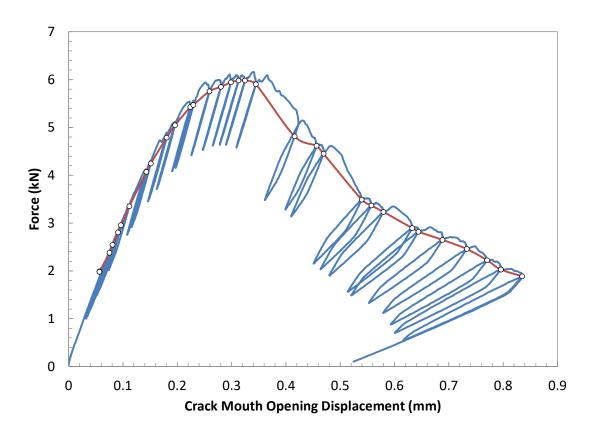

a _o			Estimates of initial crack size:	
a _{0,qmean} = 4.745	$a_{0,q3} = 4.731$	$a_{0q,2} = 4.769$	a _{0q,1} = 4.734	QU/
4.745	4.731	4.769	4.734	
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.013	0.025	0.011	ATA
	< 0.002W =	> 0.002W =	Diff: 0.011 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

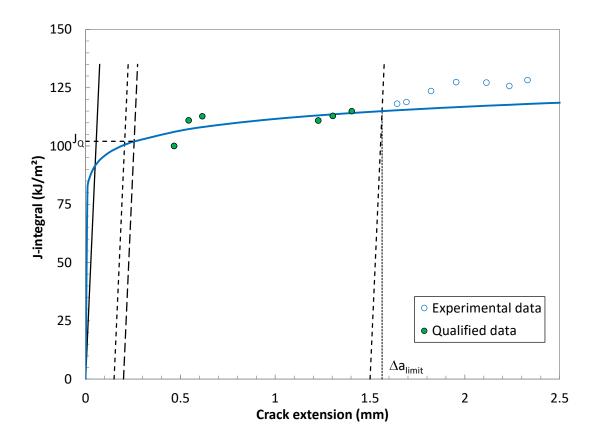

Difference = 0.05 mm	(before final adjustment) $\Delta a_{pred} = 3$	Crack extension prediction Δ	
ce =	red =	ia _p =	Qualit
0.05	2.28	2.23	Qualification of data
mm	mm (mm (of data
(PREDICTION ACCEPTABLE)	mm (predicted)	$\Delta a_{p} = 2.23$ mm (measured)	

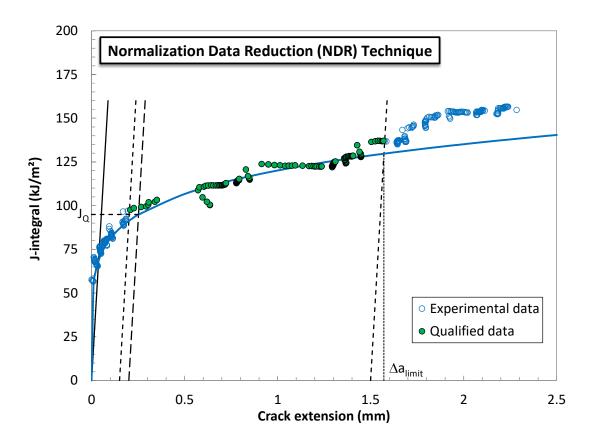
 → QUALIFIED → QUALIFIED → QUALIFIED 	Q/Sy Q/Sy	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.93 61.6	Thickness B = Initial ligament b ₀ = Regression line slope in Δa _α :
	J _o as J _k	Qualification of J _o as J _k	Quali	
	VALID	<	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	0.891 < 0.96	0.891	ent a _{0q} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	r S	9	IJ _q and J _q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	I∨ 80	14	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.36	a _{0q} - a ₀ =	_
ightarrow QUALIFIED	< 1.0	0.13109	icient C ₂ =	Power coefficient $C_2 = 0.13109 < 1.0$
) of data	J_{Q} - Qualification of data	J _Q - Q	

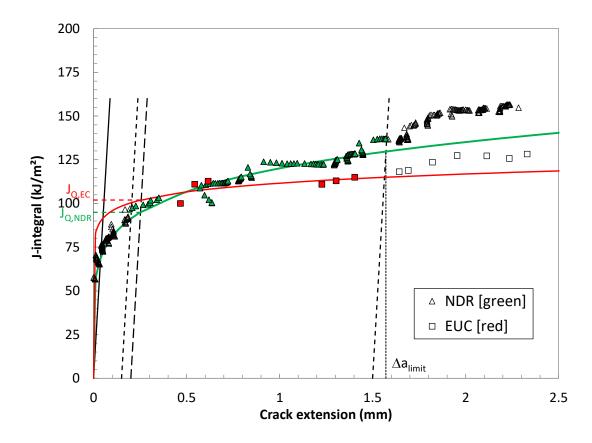
$\sigma_{YS} = 841.0$ MPa	v = 0.3	E = 128804 MPa	Tensile Properties		$a_N = 3$ mm	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AN-4-1	Type = PCVN	Specimen Information	Material Designation = T164 AM Notch = Fatigue precrack		
TM _{Jlimit} = 0.76 MPa	$TM_{JQ} = 4.11$ MPa	(uncertainty > 4%)	$J_{Q} = 101.99 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.61$	$\Delta a_{p} = 2.33$	a _f = 7.56	$a_{0q} = 4.93$	$a_0 = 5.23$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
TM _{Jlimit} = 2.19 MPa	TM _{JQ} = 10.01 MPa	Excessive crack extension: YES	$J_{Q} = 94.93 \text{ kJ/m}^{2}$	Normalization Data Reduction		gu			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃		

QUALIFICATION OF DATA	


	(before final adjustment) $\Delta a_{pred} = 2.61$	Crack extension prediction					Estimates of initial crack size:
Dii	adjustment)			a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	$a_{0q,1} = 4.760$
Difference = 0.28	$\Delta a_{pred} =$	∆a _p =	Qui	4.773	4.763	4.796	
0.28	2.61	2.33	Qualification of data	mm	mm	mm	mm
mm P	mm (predicted)	$\Delta a_{p} = 2.33$ mm (measured)	of data				Ditt :
REDICTIC	ed)	red)			0.010	0.023	0.013
PREDICTION NOT ACCEPTABLE					< 0.002W =	> 0.002W =	0.013 < 0.002W =
TABLE					0.0200	0.0200	0.0200
					mm	mm	mm


J _Q - Qu	$J_{\rm Q}$ - Qualification of data	of data	
Power coefficient $C_2 = 0.066168 < 1.0$	0.066168	< 1.0	\rightarrow QUALIFIED
a _{0q} - a ₀ =	0.30	mm	ightarrow data set adequate
# of data available to calculate a_{0q} :	14	IV 00	ightarrow data set adequate
# of data between 0.4J $_q$ and J $_q$:	9	υ	\rightarrow QUALIFIED
Correlation coefficient a _{0q} fit :	0.923 < 0.96	< 0.96	ightarrow data set not adequate
Data points distribution :	VA	VALID	
Number of qualified data points :	VA	VALID	
Qualif	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	J _Q as J _{Ic}	
Thickness B = 10.00 I	mm > 10 JQ/Sy	Q/SY	→ QUALIFIED
Initial ligament $b_0 = 4.77$ I	mm > 10 JQ/Sy	Q/SV	ightarrow QUALIFIED
Regression line slope in Δa_{Ω} : 26.4 I	MPa < Sy		→ QUALIFIED

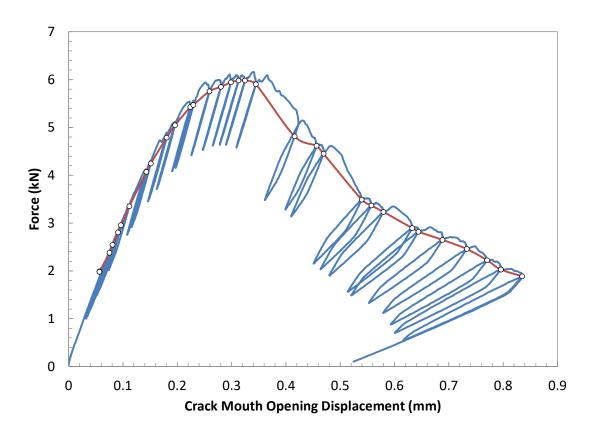

σ_{тs} = 977.0 MPa

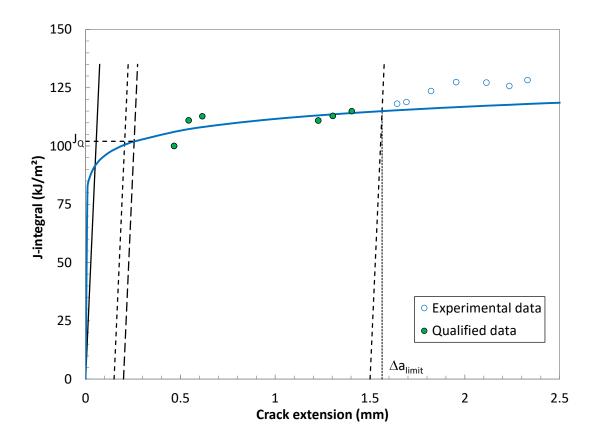

TM_{mean} = 2.43 MPa

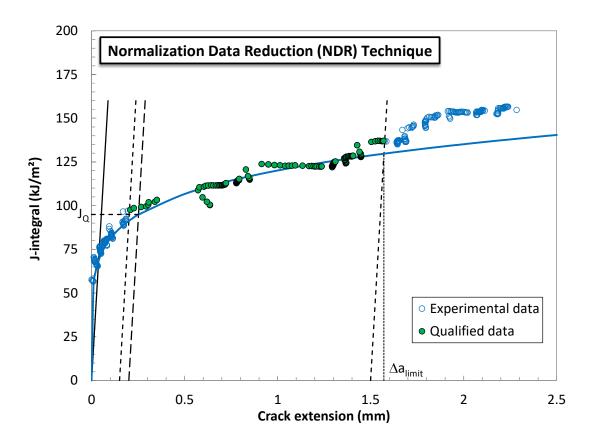
TM_{mean} = 6.10 MPa

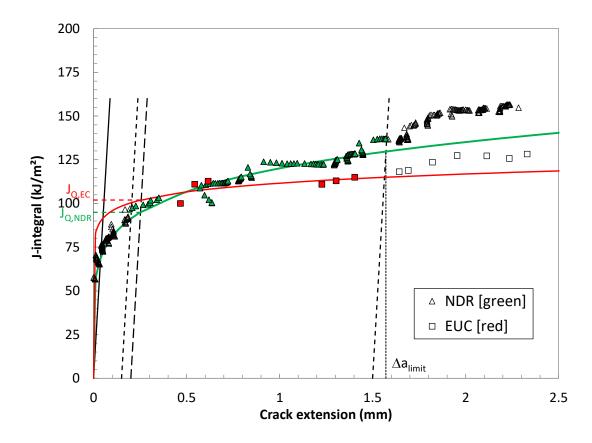
$\sigma_{YS} = 841.0$ MPa	v = 0.3	E = 128804 MPa	Tensile Properties		$a_N = 3$ mm	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AN-4-1	Type = PCVN	Specimen Information	Material Designation = T164 AM Notch = Fatigue precrack		
TM _{Jlimit} = 0.76 MPa	$TM_{JQ} = 4.11$ MPa	(uncertainty > 4%)	$J_{Q} = 101.99 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.61$	$\Delta a_{p} = 2.33$	a _f = 7.56	$a_{0q} = 4.93$	$a_0 = 5.23$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
TM _{Jlimit} = 2.19 MPa	TM _{JQ} = 10.01 MPa	Excessive crack extension: YES	$J_{Q} = 94.93 \text{ kJ/m}^{2}$	Normalization Data Reduction		gu			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃		

QUALIFICATION OF DATA	


	(before final adjustment) $\Delta a_{pred} = 2.61$	Crack extension prediction					Estimates of initial crack size:
Dii	adjustment)			a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	$a_{0q,1} = 4.760$
Difference = 0.28	$\Delta a_{pred} =$	∆a _p =	Qui	4.773	4.763	4.796	
0.28	2.61	2.33	Qualification of data	mm	mm	mm	mm
mm P	mm (predicted)	$\Delta a_{p} = 2.33$ mm (measured)	of data				Ditt :
REDICTIC	ed)	red)			0.010	0.023	0.013
PREDICTION NOT ACCEPTABLE					< 0.002W =	> 0.002W =	0.013 < 0.002W =
TABLE					0.0200	0.0200	0.0200
					mm	mm	mm


J _Q - Qu	$J_{\rm Q}$ - Qualification of data	of data	
Power coefficient $C_2 = 0.066168 < 1.0$	0.066168	< 1.0	\rightarrow QUALIFIED
a _{0q} - a ₀ =	0.30	mm	ightarrow data set adequate
# of data available to calculate a_{0q} :	14	IV 00	ightarrow data set adequate
# of data between 0.4J $_q$ and J $_q$:	9	υ	\rightarrow QUALIFIED
Correlation coefficient a _{0q} fit :	0.923 < 0.96	< 0.96	ightarrow data set not adequate
Data points distribution :	VA	VALID	
Number of qualified data points :	VA	VALID	
Qualif	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	J _Q as J _{Ic}	
Thickness B = 10.00 I	mm > 10 JQ/Sy	Q/SY	→ QUALIFIED
Initial ligament $b_0 = 4.77$ I	mm > 10 JQ/Sy	Q/SV	\rightarrow QUALIFIED
Regression line slope in Δa_{Ω} : 26.4 I	MPa < Sy		→ QUALIFIED

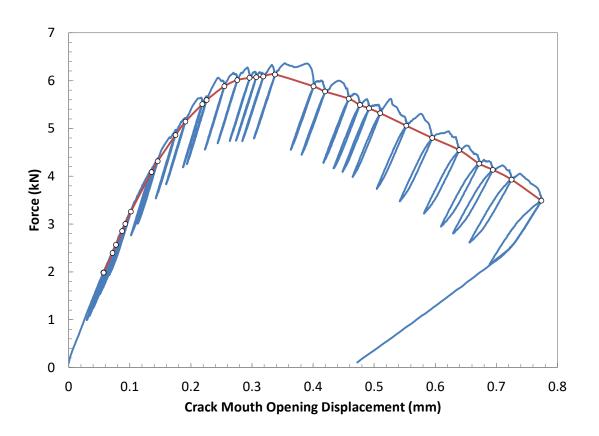

σ_{тs} = 977.0 MPa

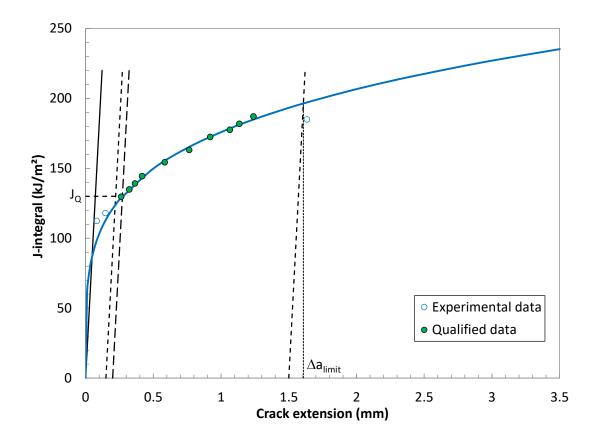

TM_{mean} = 2.43 MPa

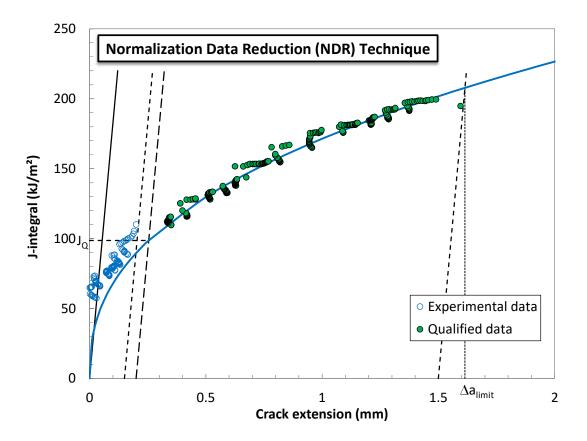
TM_{mean} = 6.10 MPa

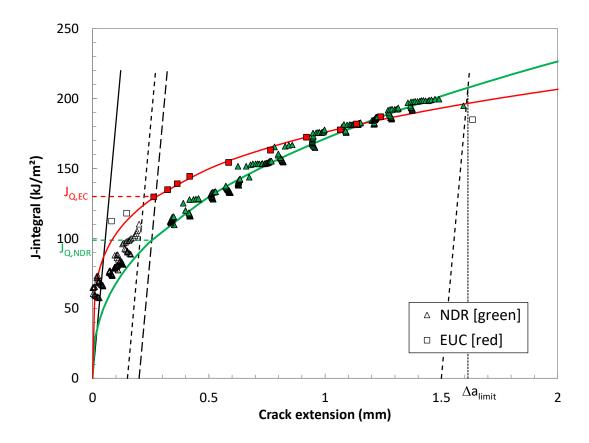
	$v = 0.3$ $TM_{JQ} = 17.31$ MPa TI	E = 128804 MPa (uncertainty > 4%) Exc	Tensile Properties J _{lc} = 130.02 kJ/m ²	nce	$a_N = 3$ mm	W = 10.00 mm Fracture type = stable tearing	B _N = 8.00 mm Analysis of Results	B= 10.00 mm	Basic dimensions $\Delta a_{\text{predicted}} = 1.36 \text{ mm}$	$\Delta a_p = 1.63$ mm	Orientation = N/A a _f = 6.57 mm	Identification = AN-4-3 a _{0q} = 4.77 mm	Type = PCVN $a_0 = 4.94$ mm	Specimen Information Crack Size Information	Material Basic Test Information Designation = Ti64 AM Loading Rate = MPaV Notch = Fatigue precrack Test temperature = 21 °C	TEST REPORT	
TM _{Jlimit} = 8.08 MPa	$TM_{JQ} = 24.37$ MPa	Excessive crack extension: YES	$J_{Q} = 98.70 \text{ kJ/m}^2$	Normaliza		aring			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃		

			Estimates of initial crack size:	
a _{0,qmean} = 4.797	$a_{0,q3} = 4.780$	a _{0q,2} =	$a_{0q,1} = 4.803$	QU,
4.797	4.780	a _{0q,2} = 4.807		ALIFI
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.017	0.010	0.006	ATA
	< 0.002W =	< 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

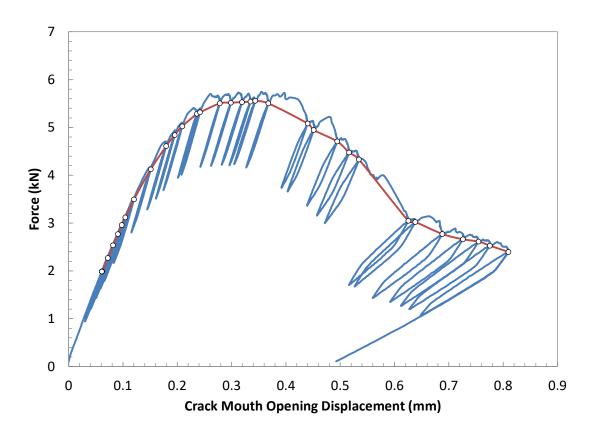

Difference = -0.28 mm	(before final adjustment) $\Delta a_{pred} = 1.36$ mm (predicted	Crack extension prediction Δa_p	Q
"	"	п	Jalifi
-0.28	1.36	1.63	cation (
mm PREDICTION NOT ACCEPTABLE	mm (predicted)	$\Delta a_p =$ 1.63 mm (measured)	Qualification of data

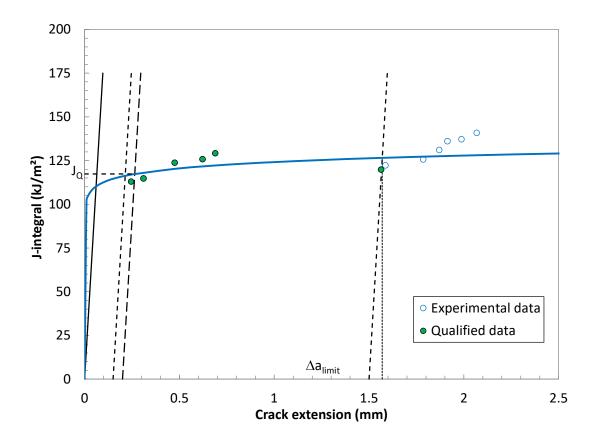

 → QUALIFIED > QUALIFIED > COMMITTEED 	Q/SY Q/SY	Qualification of J _Q as J _k 00 mm > 10 JQ/SY 06 mm > 10 JQ/SY	Quali 10.00 5.06	Qualification of Thickness B = 10.00 mm > 10.1 Initial ligament b_0 = 5.06 mm > 10.1 Begrossion line elongin Aa - 1110 Marco 40
	VALID		tribution : ta points :	Data points distribution : Number of qualified data points :
ightarrow data set not adequate	< 0.96	0.861 < 0.96	nt a _{oq} fit :	Correlation coefficient a _{oq} fit :
→ QUALIFIED	ı∨ 3	9	U_q and J_q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	∨ ∞	16	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.17	a _{0q} - a ₀ =	
→ QUALIFIED	< 1.0	0.231847	icient C ₂ =	Power coefficient $C_2 = 0.231847 < 1.0$
	of data	J_{Ω} - Qualification of data	J _Q - Q	

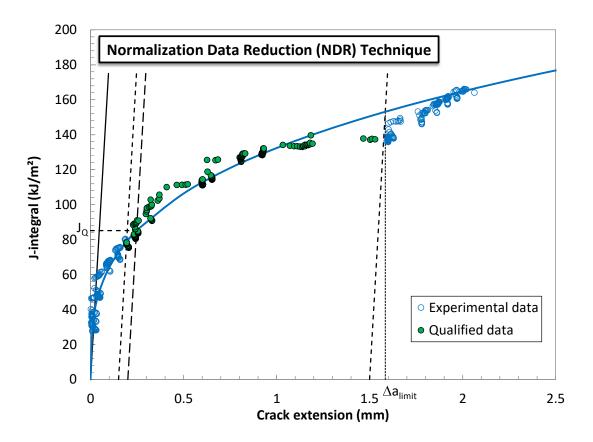

σ_{тs} = 977.0 MPa

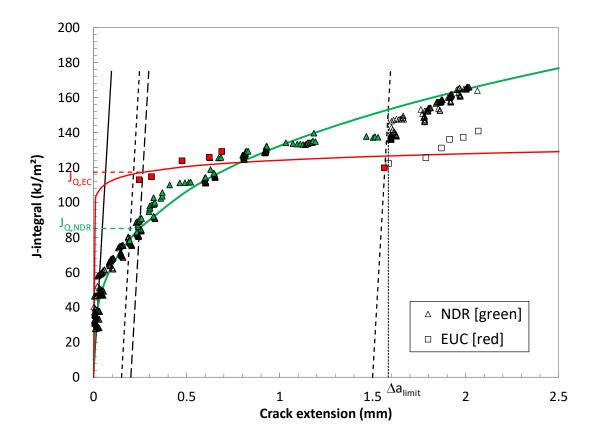

TM_{mean} = 10.86 MPa

TM_{mean} = 16.23 MPa




	TEST REPORT	
Material	Basic Test Information	
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21	MPa√m/s (linear elastic portion) °C
Specimen Information	Crack Size Information	
Type = PCVN	$a_0 = 5.03$	mm
Identification = AN-4-4	$a_{0q} = 4.95$	mm
Orientation = N/A	a _f = 7.10	mm
	∆a _p = 2.07	mm
Basic dimensions	$\Delta a_{predicted} = 2.24$	mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	aring
a _N = 3 mm		
	Elastic Unloading Compliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 117.36 \text{ kJ/m}^{2}$	$J_{Q} = 85.13 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 2.93 MPa	TM _{JQ} = 16.97 MPa
$\sigma_{YS} = 841.0$ MPa	TM _{Jlimit} = 0.53 MPa	TM _{Jlimit} = 4.75 MPa
σ _{тs} = 977.0 MPa	TM _{mean} = 1.73 MPa	TM _{mean} = 10.86 MPa


		Estimates of initial crack size:	
a _{0,q3} = 4.972	a _{0q,2} =	$a_{0q,1} = 4.968$	QU
4.972	4.999	4.968	ALIFI
mm	mm	mm	CATI
		Diff :	QUALIFICATION OF DATA
0.008	0.019	: 0.011	ATA
< 0.002W =) < 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	


Qualification of data	of data	
Crack extension prediction $\Delta a_p = 2.07$	mm (measured)	ured)
(before final adjustment) $\Delta a_{pred} = 2.24$	mm (predicted)	cted)
Difference = 0.17 mm		PREDICTION NOT ACCEPTABLE
J _Q - Qualification of data	n of data	
Power coefficient $C_2 = 0.042363 < 1.0$	< 1.0	
$ a_{0q} - a_0 = 0.08$	mm	ightarrow data set adequate
# of data available to calculate a_{0q} : 16	I∨ ⊗	ightarrow data set adequate
# of data between $0.4J_q$ and J_q : 10	ı∨ ω	→ QUALIFIED
Correlation coofficient a fit · DOED /DOE		V DATA SET NOT ADEDITATE

Regression line slope in Δa_Q : 18.8	Initial ligament $b_0 = 4.97$	Thickness B = 10.00	Qualit	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{oq} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.042363 < 1.0$	Ja - ar	
MPa < Sy	mm > 10 JQ/SY	mm > 10 JQ/Sy	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	47	47	0.858 < 0.96	10	16	0.08	0.042363	J _Q - Qualification of data	
	Q/SY	Q/SY	J _Q as J _k	VALID	VALID	< 0.96	ı∨ 3	IV ∞	mm	< 1.0	of data	
ightarrow QUALIFIED	→ QUALIFIED	→ QUALIFIED				ightarrow data set not adequate	→ QUALIFIED	→ DATA SET ADEQUATE	ightarrow data set adequate	→ QUALIFIED		

ANNEX 2 As-built, supported

σ _{YS} = 860.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-8-1	Type = PCVN	Specimen Information	Material Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 1.34 MPa	TM _{JQ} = 6.74 MPa	(uncertainty > 4%)	$J_{Q} = 92.11 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.29$	$\Delta a_{p} = 2.75$	a _f = 7.77	$a_{0q} = 4.55$	$a_0 = 5.01$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 1.13 MPa	TM _{JQ} = 5.81 MPa	Excessive crack extension: YES	$J_{Q} = 77.88 \text{ kJ/m}^{2}$	Normalization Data Reduction		gu			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃	

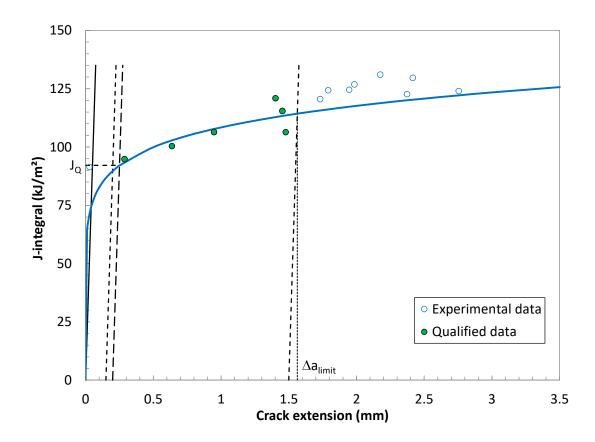
			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} =	QU
4.814	4.802	4.843	a _{0q,1} = 4.797	ALIFI
mm	mm	mm	mm	CATIO
			Diff :	QUALIFICATION OF DATA
	0.012	0.029	0.017	ATA
	< 0.002W =	> 0.002W =	Diff: 0.017 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

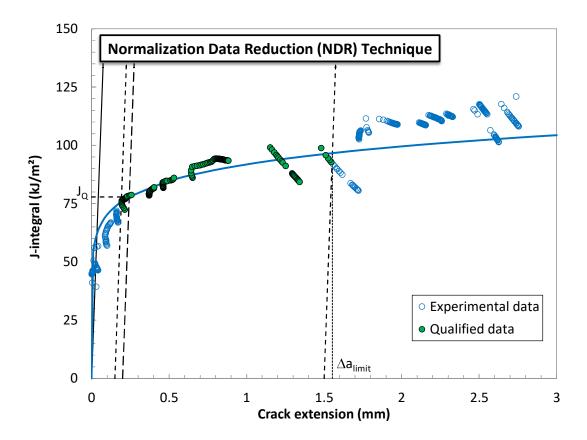
Qualification of data

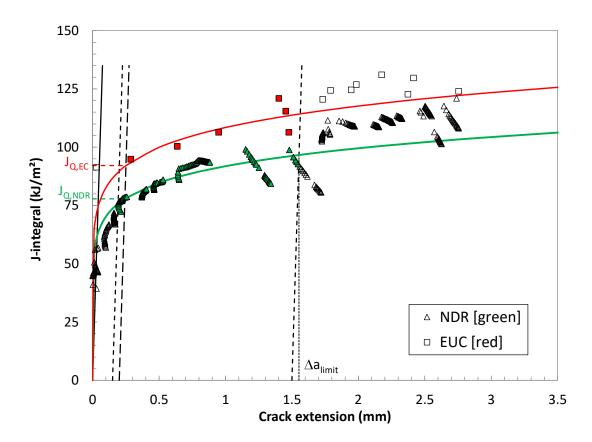
		40		
	f J _Q as J _k	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	Qualit	
	VALID	<	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	0.815 < 0.96	0.815	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
\rightarrow QUALIFIED	⊳ 3	00	J_q and J_q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	i∨ 8	13	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.46	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	0.117846	icient C ₂ =	Power coefficient $C_2 = 0.117846 < 1.0$
	n of data	J_{Q} - Qualification of data	յ _զ - զւ	
PREDICTION NOT ACCEPTABLE	mm	-0.46	Difference =	Di
dicted)	mm (predicted)	2.29	$\Delta a_{pred} =$	(before final adjustment)
asured)	mm (measured)	2.75	Δa _p =	Crack extension prediction

→ QUALIFIED	J _Q as J _€	00 mm > 10 JQ/SY	10.00	Thickness B =
	VALID	<	ta points :	Number of qualified data points :
	VALID	<,	ribution :	Data points distribution :
ightarrow data set not adequate	< 0.96	0.815 < 0.96	nt a _{0q} fit :	Correlation coefficient a _{0q} fit :
\rightarrow QUALIFIED	∾ 3	8	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ 80	13	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.46	a _{0q} - a ₀ =	
	/ H.O	0.11/040		Fower coefficient $c_2 = 0.117840 < 1.0$


σ_{TS} = 960.0 MPa


TM_{mean} =


4.04 MPa


TM_{mean} =

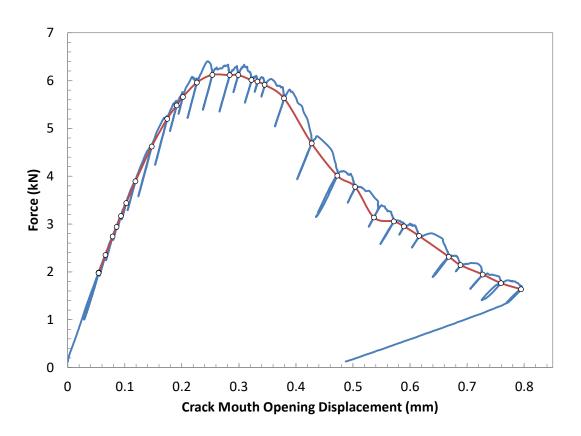
3.47 MPa

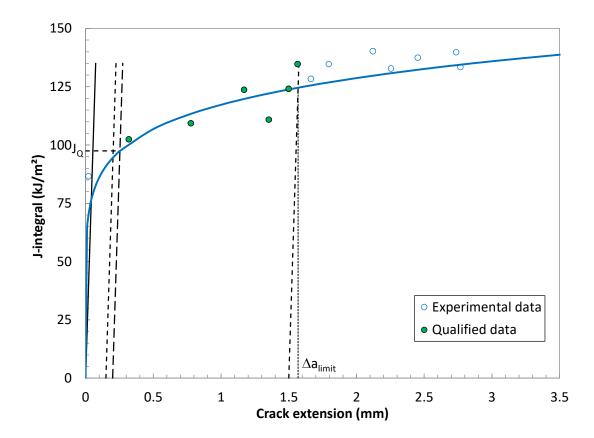
σ _{γs} = 860.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		$a_N = 3 mm$	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-8-2	Type = PCVN	Specimen Information	Material Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 1.66 MPa	$TM_{JQ} = 8.04$ MPa	(uncertainty > 4%)	$J_{Q} = 97.52 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.09$	$\Delta a_{p} = 2.77$	a _f = 7.77	$a_{0q} = 4.60$	$a_0 = 5.00$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 2.20 MPa	TM _{JQ} = 9.74 MPa	Excessive crack extension: YES	$J_{Q} = 74.14 \text{ kJ/m}^{2}$	Normalization Data Reduction		gn			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) °C	

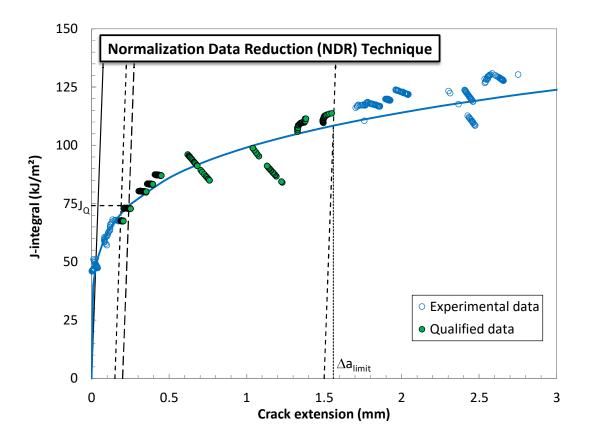
		Estimates of initial crack size:	
a _{0,q3} = a _{0,qmean} =	a _{0q,2} =	a _{0q,1} = 4.707	Q
4.703 4.712	4.725	4.707	
mm	mm	mm	CATIO
		Diff :	QUALIFICATION OF DATA
0.008	0.013	0.005	ATA
< 0.002W =	< 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

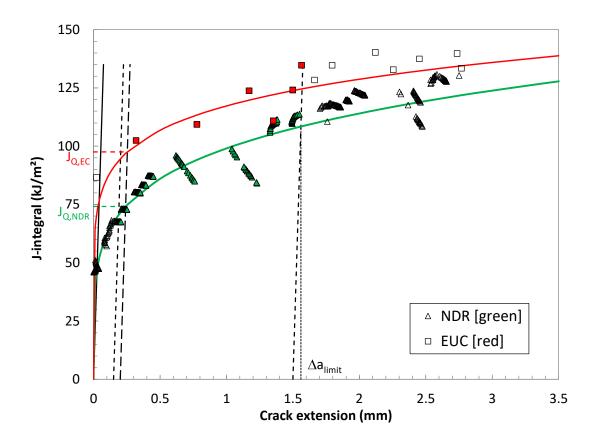
Qualification of data

→ OUALIFIED	^S/ UI	mm > 10	Thickness B = 10.00 mm > 10 10/Sv	11
	f J _Q as J _{Ic}	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	Qual	
	VALID	<	Number of qualified data points :	Number o
	VALID	< <	Data points distribution :	
ightarrow data set not adequate	0.741 < 0.96	0.741	Correlation coefficient a _{0q} fit :	Correl
→ QUALIFIED	ı∨ 3	9	# of data between 0.4J $_{\rm q}$ and J $_{\rm q}$:	# of dat
ightarrow data set adequate	IV 8	14	# of data available to calculate a_{0q} :	# of data av
ightarrow data set adequate	mm	0.41	a _{0q} - a ₀ =	
\rightarrow QUALIFIED	9 <1.0	0.134389	Power coefficient $C_2 = 0.134389 < 1.0$	
	n of data	J_Q - Qualification of data	J _Q - Q	
PREDICTION NOT ACCEPTABLE	mm	-0.68	Difference =	
dicted)	mm (predicted)	2.09	idjustment) Δa _{pred} =	(before final adjustment)
asured)	mm (measured)	2.77	n prediction $\Delta a_p =$	Crack extension prediction

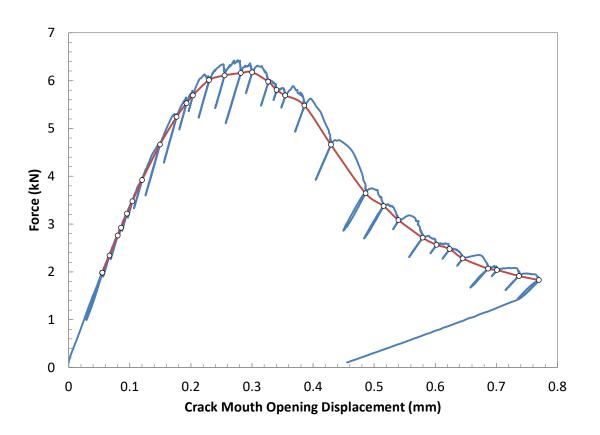

Thickness B = 10.00 Initial ligament b ₀ = 5.00 Regression line slope in Δa_{0} : 51.7	Qua	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{0q} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.134389 < 1.0$	յ ⁻ Ծ
mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	Qualification of J_Q as J_k	V۶	٧V	0.741 < 0.96	9	14	0.41	0.134389	J_{Q} - Qualification of data
Q/SY Q/SY	J _Q as J _{Ic}	VALID	VALID	< 0.96	ı∨ 3	IV 80	mm	< 1.0	of data
→ QUALIFIED → QUALIFIED → QUALIFIED				ightarrow data set not adequate	ightarrow QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	ightarrow QUALIFIED	

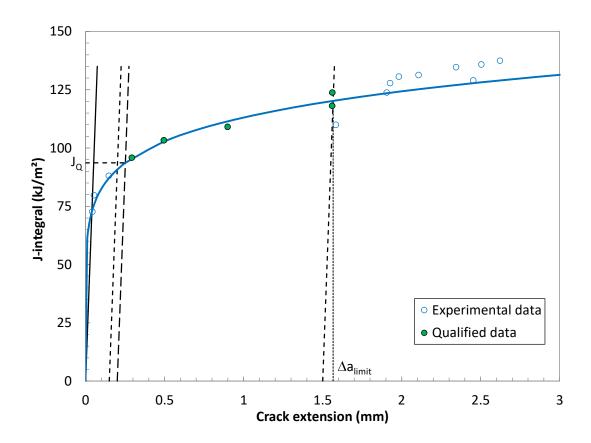

σ_{TS} = 960.0 MPa

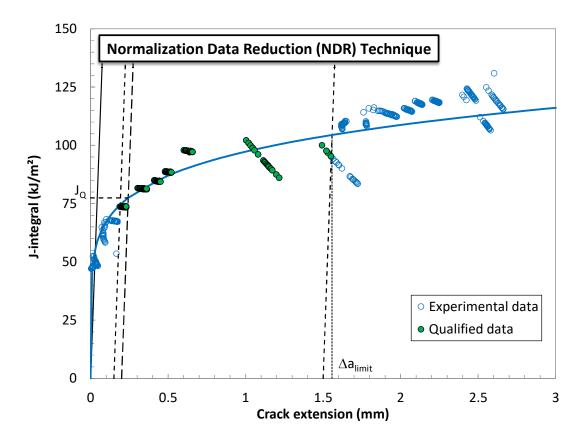

TM_{mean} =

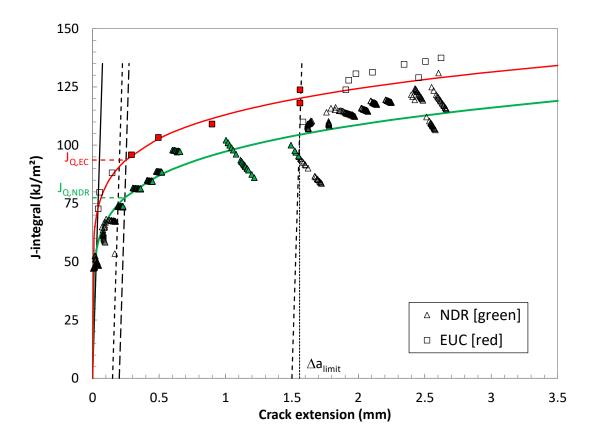

4.85 MPa

TM_{mean} = 5.97 MPa

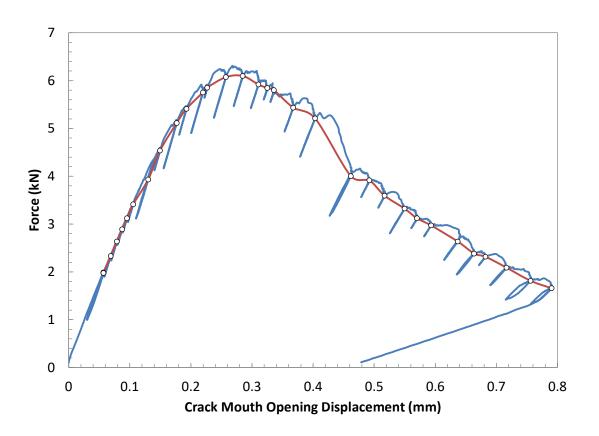

	TEST REPORT		
Material	Basic Test Information		
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21		MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information		
Type = PCVN	$a_0 = 4.99$	99 mm	
Identification = AS-8-3	$a_{0q} = 4.48$	48 mm	
Orientation = N/A	a _f = 7.61	51 mm	
	$\Delta a_p = 2.62$	52 mm	
Basic dimensions	$\Delta a_{\text{predicted}} = 2.09$	09 mm	
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	e tearing	
a _N = 3 mm			
	Elastic Unloading Compliance	_	Normalization Data Reduction
Tensile Properties	$J_{Q} = 93.63 \text{ kJ/m}^{2}$	J _Ω =	77.44 kJ/m ²
E = 128804 MPa	(uncertainty > 4%)	Excessive cr	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 7.92 MPa	TM _{JΩ} =	7.99 MPa
σ _{γs} = 860.0 MPa	TM _{Jlimit} = 1.63 MPa	TM _{Jlimit} =	1.68 MPa
σ _{тs} = 960.0 MPa	TM _{mean} = 4.77 MPa	TM _{mean} =	4.84 MPa

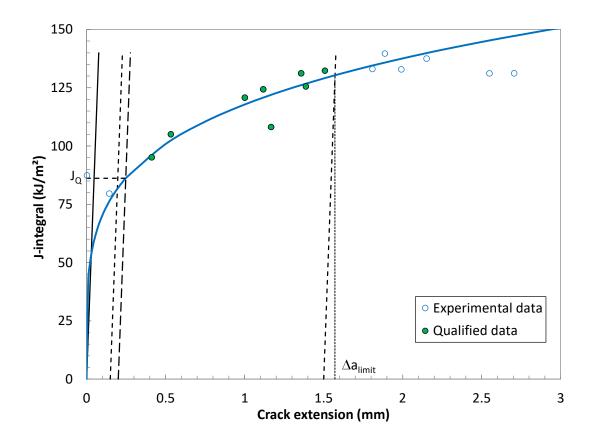

→ QUALIFIED→ QUALIFIED→ QUALIFIED

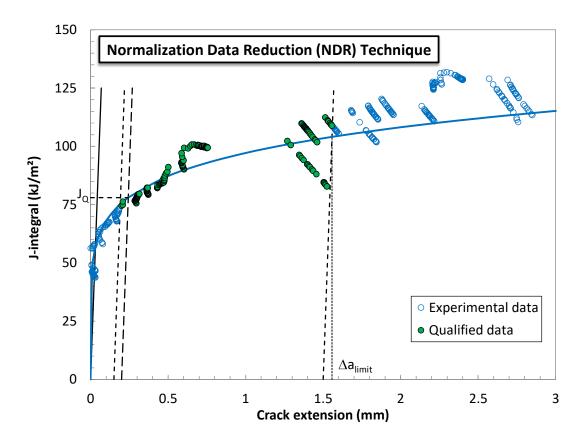

		Estimates of initial crack size:	
a _{0,q3} = a _{0,qmean} =	$a_{0q,2} = 4.745$	a _{0q,1} = 4.726	Q
4.723 4.731	4.745	4.726	ALIFI
mm	mm	mm	CATIO
		Diff :	QUALIFICATION OF DATA
0.009	0.014	0.005	ATA
< 0.002W =	< 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

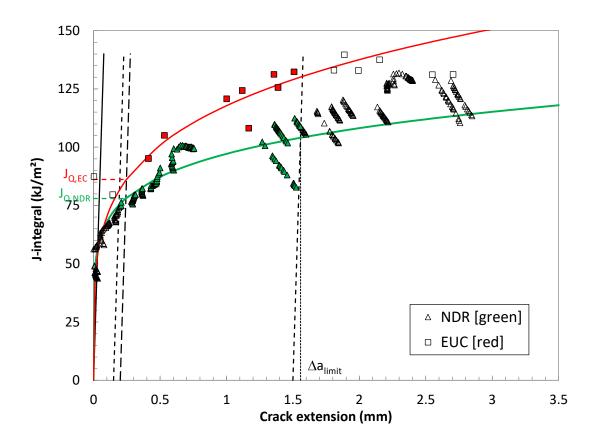

Qualification of data

	1		
	J ₀ as J _{1c}	Qualification of J _Q as J _k	Quali
	VALID	<	Number of qualified data points :
	VALID	. <	Data points distribution :
ightarrow data set not adequate	0.736 < 0.96	0.736	Correlation coefficient a _{0q} fit :
→ QUALIFIED	υ	7	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	∨ ∞	13	# of data available to calculate a_{0q} :
ightarrow data set not adequate	mm	0.51	a _{0q} - a ₀ =
\rightarrow QUALIFIED	< 1.0	0.136658	Power coefficient $C_2 = 0.136658 < 1.0$
	ו of data	J _Q - Qualification of data	J _Q - Q
PREDICTION NOT ACCEPTABLE	mm	-0.53	Difference =
licted)	mm (predicted)	2.09	(before final adjustment) $\Delta a_{pred} =$
sured)	mm (measured)	2.62	Crack extension prediction $\Delta a_p =$




	TEST REPORT	
Material	Basic Test Information	
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21	MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information	
Type = PCVN	a ₀ = 5.05	mm
Identification = AS-8-4	$a_{0q} = 4.56$	mm
Orientation = N/A	a _f = 7.76	mm
	$\Delta a_p = 2.71$	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 2.30$	mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	aring
a _N = 3 mm		
	Elastic Unloading Compliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 86.14 \text{ kJ/m}^{2}$	$J_{q} = 78.01 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 12.13 MPa	TM _{JQ} = 7.74 MPa
σ _{γs} = 860.0 MPa	TM _{Jlimit} = 2.89 MPa	TM _{Jlimit} = 1.61 MPa
σ _{τs} = 960.0 MPa	TM _{mean} = 7.51 MPa	TM _{mean} = 4.68 MPa


			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} =	QU
4.803	= 4.785 r	4.833	a _{0q,1} = 4.790	
mm	mm	mm	mm	
			Diff :	QUALIFICATION OF DATA
	0.018	0.031		ATA
	< 0.002W =	> 0.002W =	0.012 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Dif	(before final adjustment) $\Delta a_{pred} = 2.30$ mm (predicted)	Crack extension prediction	
Difference = -0.41 mm	$\Delta a_{pred} =$	∆a _p =	Quali
-0.41	2.30	2.71	Qualification of data
mm	mm (pre	$\Delta a_{p} = 2.71$ mm (measured)	of data
PREDICTION NOT ACCEPTABLE	edicted)	asured)	

 → QUALIFIED → QUALIFIED → QUALIFIED 	Q/SY Q/SY Q/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.95 78.0	Thickness B = Initial Ilgament b_0 = Regression line slope in Δa_0 :
	J _o as J _e	Qualification of J _o as J _e	Quali	
		< <	tribution : ta points :	Data points distribution : Number of qualified data points :
ightarrow data set not adequate	0.750 < 0.96	0.750	nt a _{oq} fit :	Correlation coefficient a _{0q} fit :
\rightarrow QUALIFIED	∾ 3	7	H_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ ∞	12	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.49	a _{0q} - a ₀ =	
ightarrow QUALIFIED	< 1.0	0.223986	icient C ₂ =	Power coefficient $C_2 = 0.223986 < 1.0$
	۱ of data	J_{Q} - Qualification of data	J _Q - Q	

	$v = 0.3$ $TM_{10} =$	E = 128804 MPa (u	Tensile Properties J _α =	Elastic L	a _N = 3 mm	W = 10.00 mm Fra	B _N = 8.00 mm Analysis of Results	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-6-1	Type = PCVN	Specimen Information Crack Size	Material Basic Test Designation = Ti64 AM Lo Notch = Fatigue precrack Test te	TEST	
1.14	5.86	(uncertainty > 4%)	$J_{Q} = 80.44 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	of Results		$\Delta a_{predicted} =$	$\Delta a_p =$	a _f =	a _{oq} =	a ₀ =	Crack Size Information	Basic Test Information Loading Rate = Test temperature =	TEST REPORT	
MPa	MPa	4%)	kJ/m²	npliance		stable tea			2.88	3.13	8.15	4.57	5.02		21	-	
$TM_{llimit} = 1.20$	TM _{JQ} = 6.00	Excessive crack extension: YES	J _Q = 65.95	Normalization Data Reduction		ring			mm	mm	mm	mm	mm		MPa \sqrt{m}/s (linear elastic portion) °C		
MPa	MPa	sion: YES	5 kJ/m ²	ta Reduction											astic portion)		

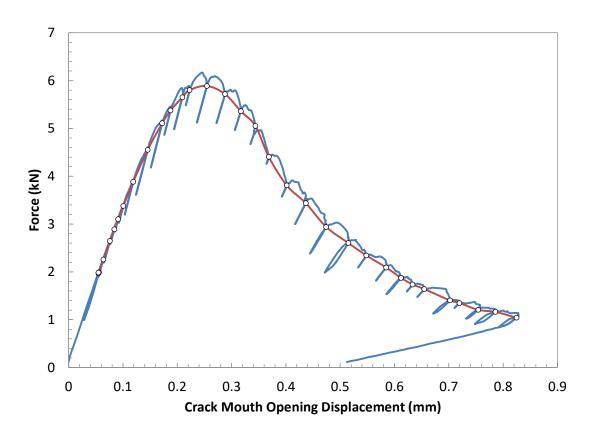
		Estimates of initial crack size:	
$a_{0,q3} = 4.802$	a _{0q,2} =	a _{0q,1} = 4.796	QU/
4.802	4.840	4.796	ALIFI
mm	mm	mm	CATI
		Diff :	QUALIFICATION OF DATA
0.011	0.028	0.016	ATA
< 0.002W =	> 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

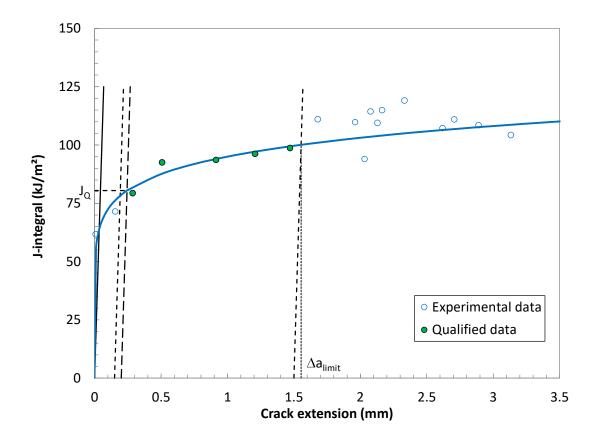
a_{0,qmean} = 4.813 mm

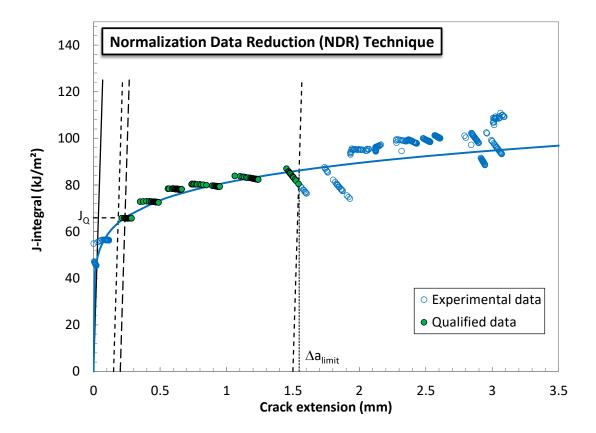
Difference = -0.25 mm	(before final adjustment) $\Delta a_{pred} = 2.88$	Crack extension prediction $\Delta a_p =$	Qu
-0.25	- 2.88	- 3.13	alificatior
5 mm PREDICTION NOT ACCEPTABLE	3 mm (predicted)	$\Delta a_{p} = 3.13$ mm (measured)	Qualification of data

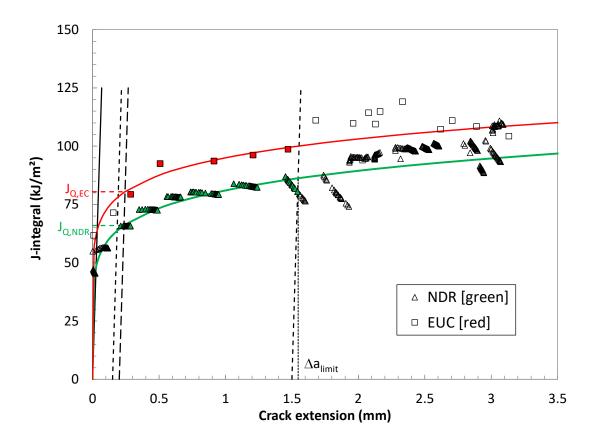
	VALID	<	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	0.856 < 0.96	0.856	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
→ QUALIFIED	∾3	7	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ ∞	11	ulate a _{oq} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.45	a _{0q} - a ₀ =	_
ightarrow QUALIFIED	< 1.0	0.11791	icient C ₂ =	Power coefficient $C_2 = 0.11791 < 1.0$
	۱ of data	J_{Ω} - Qualification of data	J _Q - Q	

σ_{тs} = 974.0 MPa


TM_{mean} =


3.50


MPa

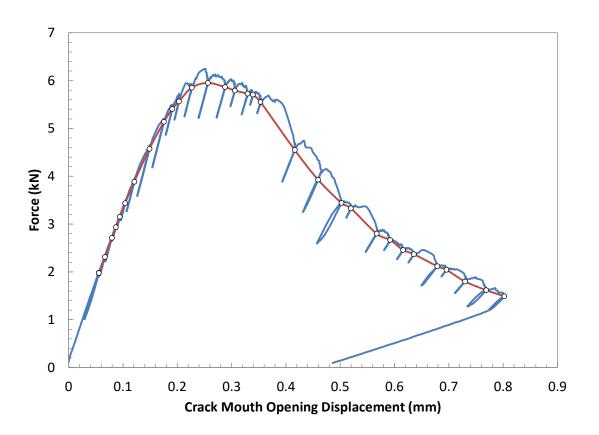

TM_{mean} =

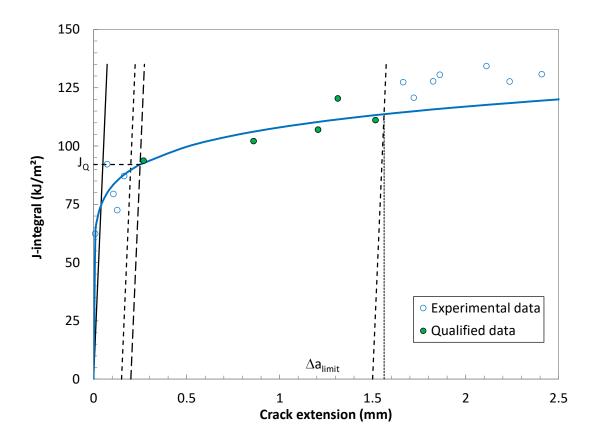
3.60 MPa

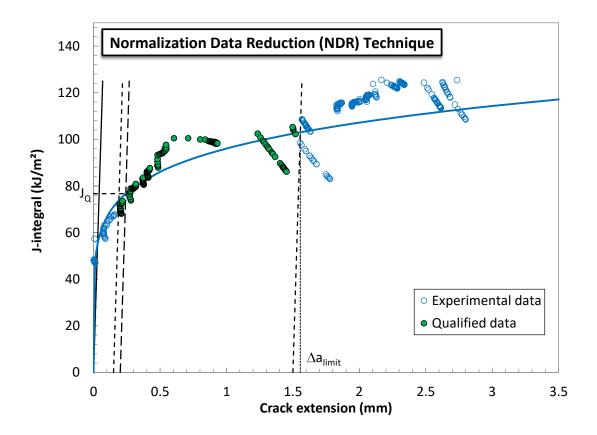
σ _{γs} = 876.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm /	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-6-2	Type = PCVN	Specimen Information	Material Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 1.26 MPa	TM _{JQ} = 6.38 MPa	(uncertainty > 4%)	J _Q = 92.07 kJ/m ²	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.30$	∆a _p = 2.77	a _f = 7.83	$a_{0q} = 4.54$	$a_0 = 5.05$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 1.58 MPa	TM _{JQ} = 7.57 MPa	Excessive crack extension: YES	$J_{Q} = 76.68 \text{ kJ/m}^{2}$	Normalization Data Reduction		ing			mm	mm	mm	mm	mm		MPav/m/s (linear elastic portion) °C	

		Estimates of initial crack size:	
a _{0,q3} = a _{0,qmean} =	a _{0q,2} =	a _{0q,1} = 4.796	QU
4.802 4.813	4.840	4.796	ALIFI
mm	mm	mm	CATIO
		Diff :	QUALIFICATION OF DATA
0.011	0.028	0.016	ATA
< 0.002W =	> 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

Difference	(before final adjustment) $\Delta a_{pred} = 2.30$ mm (predicted	Crack extension prediction Δa_{p}	0
ii.	П	П	ualif
-0.47	2.30	2.77	Qualification of data
mm PRE	mm (predicted)	$\Delta a_{p} = 2.77 \text{ mm} (\text{measured})$	of data
Difference = -0.47 mm PREDICTION NOT ACCEPTABLE))		


	J_Q as J_k	Qualification of J_Q as J_k	Qua	
	Ę			
		< <	tribution :	Data points distribution :
ightarrow data set not adequate	< 0.96	0.764 < 0.96	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
→ QUALIFIED	∾ 3	7	J _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ ∞	11	ulate a _{0q} :	# of data available to calculate a _{0q} :
ightarrow data set not adequate	mm	0.52	a _{0q} - a ₀ =	_
\rightarrow QUALIFIED	< 1.0	0.114898	icient C ₂ =	Power coefficient $C_2 = 0.114898 < 1.0$
	۱ of data	$J_{\rm Q}$ - Qualification of data	J ₀ - 0	


σ_{тs} = 974.0 MPa

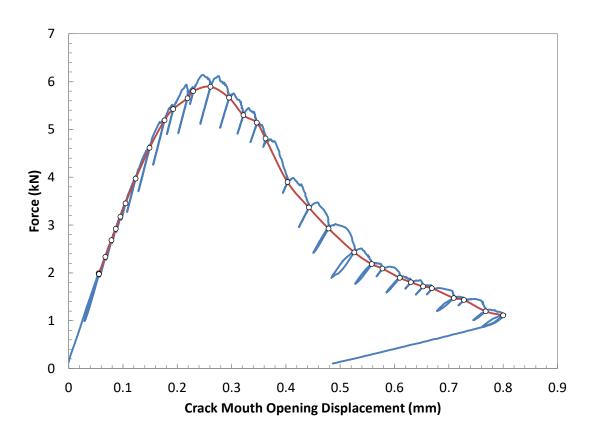

TM_{mean} =

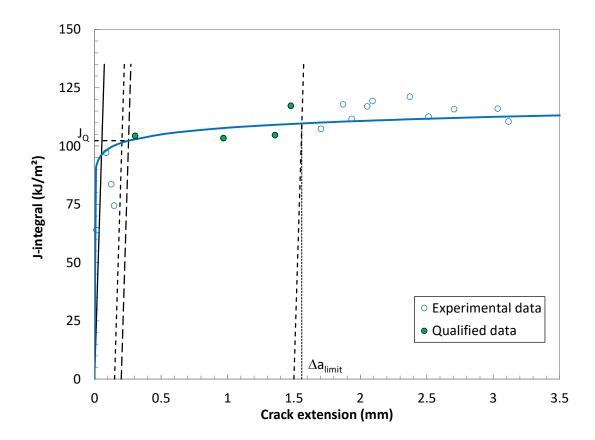
3.82 MPa

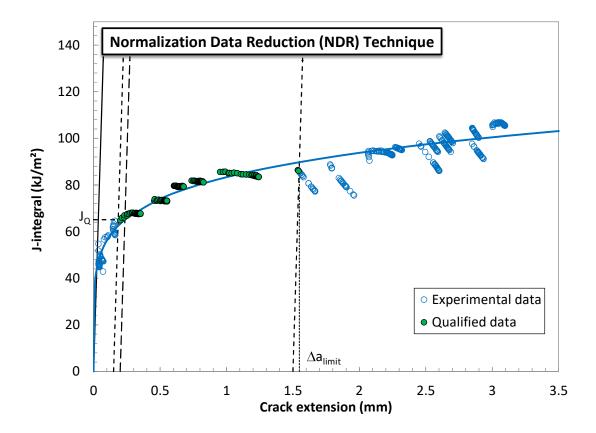
TM_{mean} = 4.57 MPa

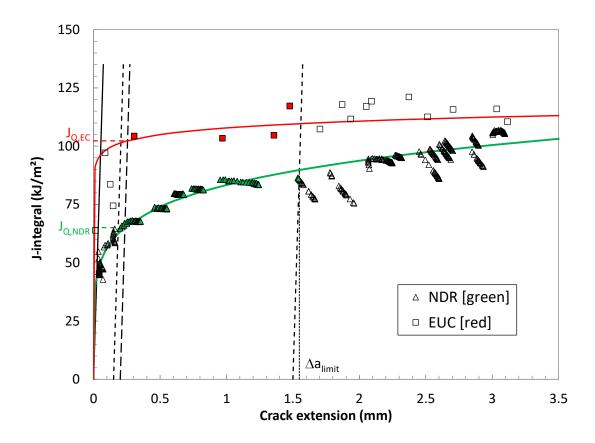
$\sigma_{YS} = 876.0$ MPa	v= 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm A	B= 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-6-3	Type = PCVN	Specimen Information C	Material Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 0.41 MPa	TM _{JQ} = 2.32 MPa	(uncertainty > 4%)	$J_{Q} = 102.30 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.31$	$\Delta a_{p} = 3.12$	$a_{\rm f} = 8.13$	$a_{0q} = 4.53$	$a_0 = 5.02$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 1.49 MPa	$TM_{JQ} = 7.10$ MPa	Excessive crack extension: YES	$J_{q} = 65.10 \text{ kJ/m}^{2}$	Normalization Data Reduction		gn			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) °C	

			Estimates of initial crack size:	
a _{0,qmean} =	$a_{0,q3} = 4.717$	$a_{0q,2} = 4.744$	$a_{0q,1} = 4.710$	QU
4.724	4.717	4.744	4.710	
mm	mm	mm	mm	
			Diff :	QUALIFICATION OF DATA
	0.006	0.020	Diff: 0.014	ATA
	< 0.002W =	> 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Difi	(before final adjustment) $\Delta a_{pred} = 2.31$	Crack extension prediction	
Difference = -0.81 mm	$\Delta a_{pred} =$	∆a _p = 3.12	Quali
-0.81	2.31	3.12	Qualification of data
	mm (predicted)	mm (m	of data
PREDICTION NOT ACCEPTABLE	redicted)	mm (measured)	


→ QUALIFIED → QUALIFIED → QUALIFIED	Q/SY Q/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.98 15.4	Thickness B = Initial ligament b_0 = Regression line slope in Δa_0 :
	J _Q as J _k	Qualification of J_Q as J_k	Qual	
	NOT VALID	NOT	ta points :	Number of qualified data points :
			ribution :	Data points distribution :
ightarrow data set not adequate	0.754 < 0.96		nt and fit :	Correlation coefficient and fit :
\rightarrow QUALIFIED	ι∨ 3	6	IJ _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	IV 80	11	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.48	a _{0q} - a ₀ =	
→ QUALIFIED	< 1.0	0.03854	icient C ₂ =	Power coefficient $C_2 = 0.03854 < 1.0$
	ו of data	J_{Q} - Qualification of data	J _α - Ο	

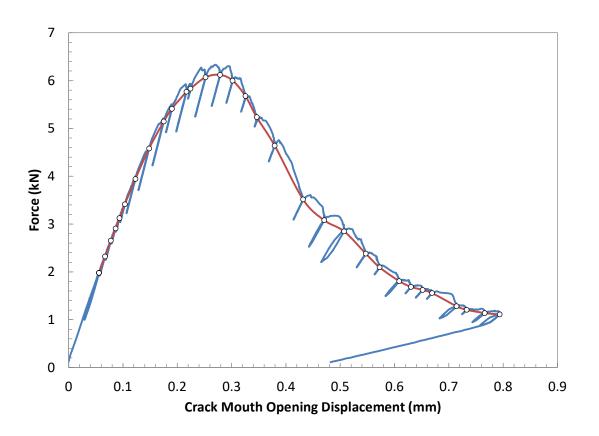

σ_{тs} = 974.0 MPa

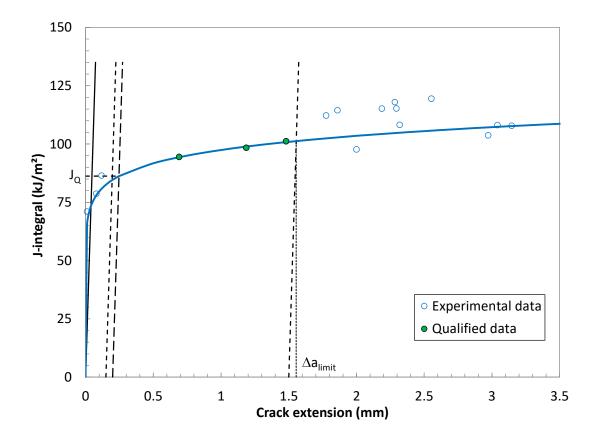

TM_{mean} = 1.37 MPa

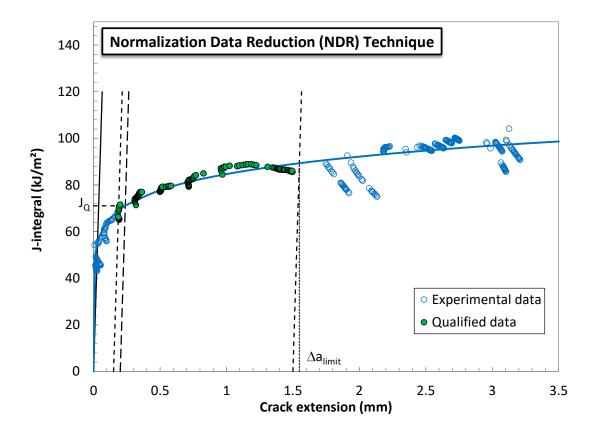
TM_{mean} = 4.29 MPa

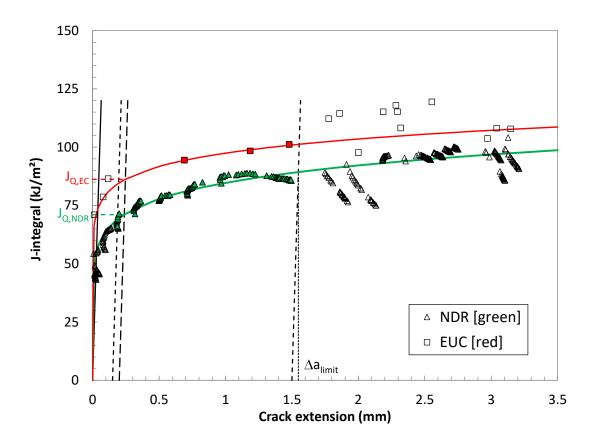
σ _{γs} = 876.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm <i>L</i>	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-6-4	Type = PCVN	Specimen Information	Material Designation = Ti64 AM Notch = Fatigue precrack		
TM _{Jlimit} = 0.86 MPa	TM _{JQ} = 4.60 MPa	(uncertainty > 4%)	J _Q = 86.21 kJ/m ²	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 2.74$	$\Delta a_p = 3.15$	$a_{\rm f} = 8.18$	$a_{0q} = 4.54$	$a_0 = 5.03$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
TM _{Jlimit} = 1.06 MPa	TM _{JQ} = 5.48 MPa	Excessive crack extension: YES	$J_{q} = 71.06 \text{ kJ/m}^{2}$	Normalization Data Reduction		gn			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃		

		Estimates of initial crack size:	
a _{0,q3} = 4.771 a _{0,qmean} = 4.799	a _{0q,2} =	a _{0q,1} = 4.801	Q
4.771 4.799	4.825	4.801	ALIFI
mm	mm	mm	CATI
		Diff :	QUALIFICATION OF DATA
0.028	0.026	0.002	ATA
> 0.002W =	> 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

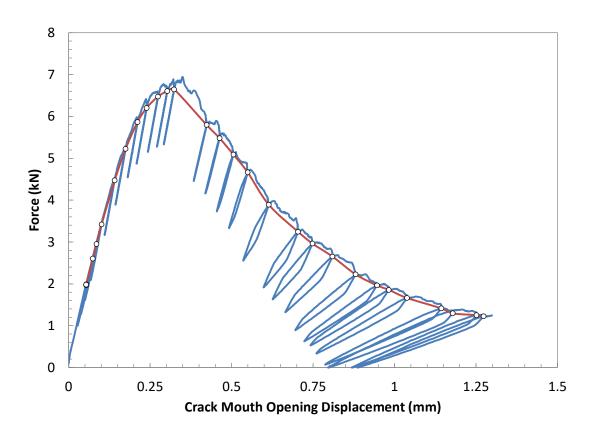

	Quali	Qualification of data	of data
Crack extension prediction	$\Delta a_{p} = 3.15$	3.15	mm (measured)
(before final adjustment)	$\Delta a_{pred} =$	2.74	mm (predicted)
Diff	Difference = -0.41 mm	-0.41	mm PREDICTION NOT ACCEPTABLE

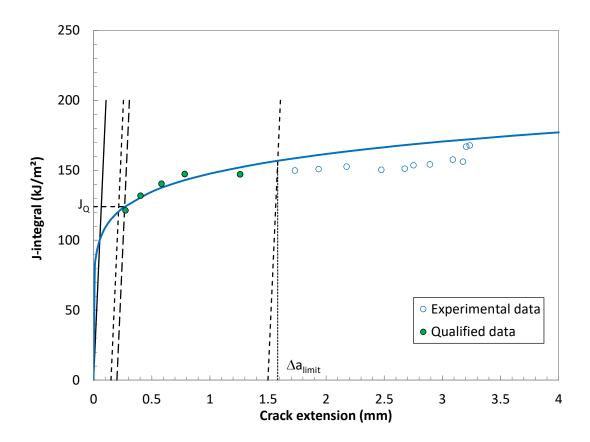

 → QUALIFIED → QUALIFIED → QUALIFIED 	Q/SY Q/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.97 30.5	Thickness B = Initial ligament b_0 = Regression line slope in Δa_{Ω} :
	J _Q as J _{Ic}	Qualification of J_Q as J_k	Quali	
	NOT VALID	NOT	ta points :	Number of qualified data points :
	NOT VALID	NOT	tribution :	Data points distribution :
ightarrow data set not adequate	< 0.96	0.745 < 0.96	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	υ	7	J_q and J_q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	l∨ 8	12	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.49	a _{0q} - a ₀ =	_
ightarrow QUALIFIED	< 1.0	0.087369	icient C ₂ =	Power coefficient $C_2 = 0.087369 < 1.0$
	۱ of data	J_Q - Qualification of data	յ _զ - զ	

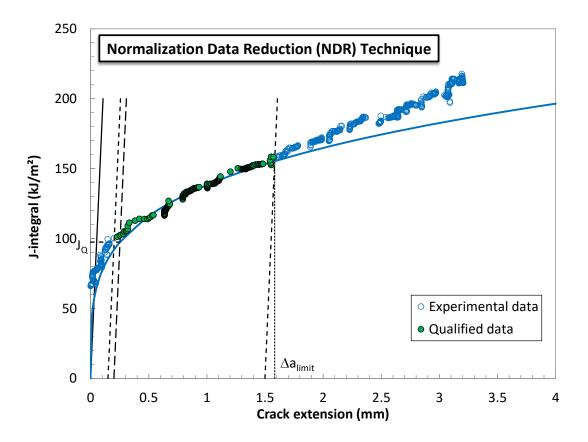

 $\sigma_{TS} = 974.0$ MPa

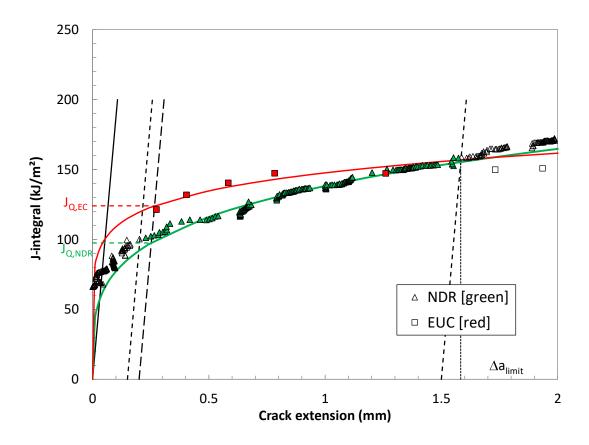

TM_{mean} = 2.73 MPa

TM_{mean} = 3.27 MPa




Material Designation = Ti64 AM Notch = Fatigue precrack Specimen Information	TEST REPORT Basic Test Information Loading Rate = Test temperature = Crack Size Information	F REPORT est Information Loading Rate = temperature = ize Information		MPavm/s (linear elastic portion) °C	elastic port
Type = PCVN		a ₀ =	5.02	mm	
Identification = AS-5-1		a _{oq} =	4.66	mm	
Orientation = N/A		a _f =	8.26	mm	
		$\Delta a_p =$	3.23	mm	
Basic dimensions	Δa	$\Delta a_{\text{predicted}} =$	3.52	mm	
B = 10.00 mm					
B _N = 8.00 mm	Analysis of Results	sults			
W = 10.00 mm	Fractur	Fracture type = stable tearing	table tea	ring	
a _N = 3 mm					
	Elastic Unloading Compliance	ading Corr	Ipliance	Normalization Data Reduction)ata Reduc
Tensile Properties	J _Q = 1	$J_{Q} = 124.02 \text{ kJ/m}^{2}$	J/m²	J _Q = 97.	97.53 kJ/m ²
E = 128804 MPa	(uncei	(uncertainty > 4%)	%)	Excessive crack extension: YES	insion:
v = 0.3	TM _{JQ} =	9.07 N	MPa	$TM_{JQ} = 14.51$	51 MPa
σ _{γs} = 884.0 MPa	TM _{Jlimit} =	1.93 N	MPa	TM _{Jlimit} = 3.68	68 MPa
$\sigma_{TS} = 981.0$ MPa	TM _{mean} =	5.50 N	MPa	TM _{mean} = 9.10	.0 MPa

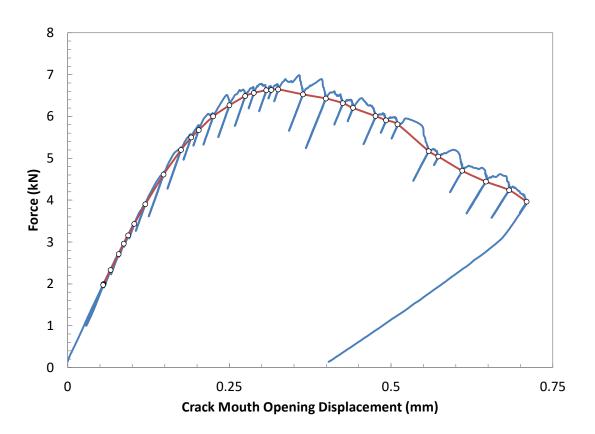

		Estimates of initial crack size:		
$a_{0,qmean} = 4.769$	$a_{0q,2} = 4.774$	a _{0q,1} = 4.771	QU,	
4.769	4.774	4.771	ALIFI	
mm	m m	mm	CATI	
		Diff :	QUALIFICATION OF DATA	
0.000	0.006	0.003	ΔTA	
/ 0.002.W	< 0.002W =	< 0.002W =		
0.0200	0.0200	0.0200		
	mm	mm		

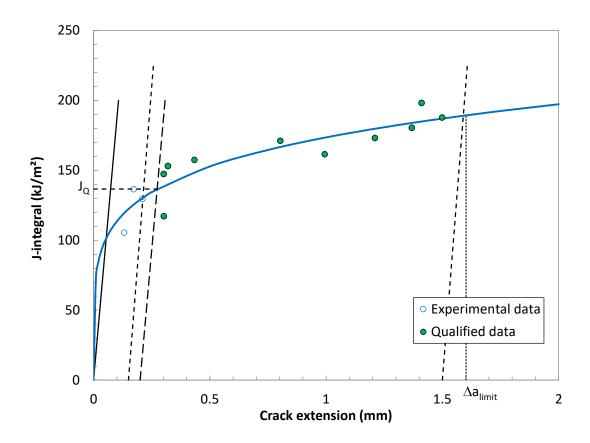

Difference = 0.28 mm PREDICTION NOT ACCEPTABLE	0.28 m	fference =	Dit
m (predicted)	3.52 m	$\Delta a_{pred} =$	(before final adjustment) $\Delta a_{pred} = 3.52$ mm (predicted)
$\Delta a_p = 3.23$ mm (measured)	3.23 m	$\Delta a_p =$	Crack extension prediction
dra	עעמוווינמנוטוי טו עמנמ	Quali	

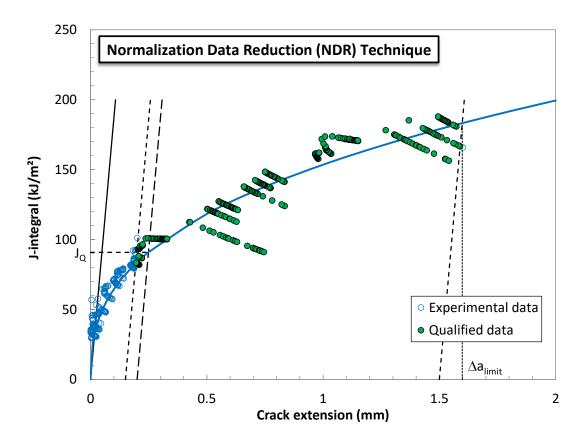
→ QUALIFIED → QUALIFIED → QUALIFIED	ي م/sy م/sy	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.98 61.2	Thickness B = Initial ligament $b_0 =$ Regression line slope in Δa_0 :
	J _o as J _e	Qualification of J_0 as J_F	Quali	
	valid valid	55	tribution : ta points :	Data points distribution : Number of qualified data points :
ightarrow data set not adequate	0.827 < 0.96	0.827	nt a _{oq} fit :	Correlation coefficient a _{oq} fit :
\rightarrow QUALIFIED	∾ 3	ъ	J_q and J_q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	∣∨ 80	9	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.36	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	0.1316	icient C ₂ =	Power coefficient $C_2 = 0.1316 < 1.0$
	۱ of data	J_Q - Qualification of data	J _α - Q	

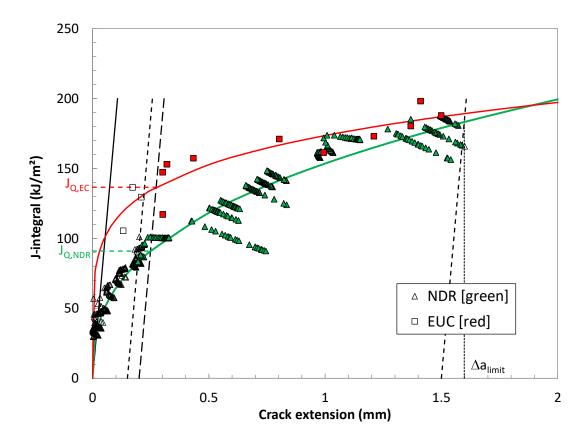
σ _{γs} = 884.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		$a_N = 3 mm$	W = 10.00 mm	B _N = 8.00 mm <i>L</i>	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-5-2	Type = PCVN	Specimen Information	Material Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 3.23 MPa	TM _{JQ} = 13.65 MPa	(uncertainty > 4%)	$J_{Q} = 136.63 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 0.99$	$\Delta a_{p} = 1.50$	$a_{\rm f} = 5.90$	$a_{0q} = 4.55$	$a_0 = 4.40$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 6.40 MPa	TM _{JΩ} = 20.40 MPa	Excessive crack extension: YES	$J_{\alpha} = 90.92 \text{ kJ/m}^2$	Normalization Data Reduction		ng			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) °C	

σ_{TS} = 981.0 MPa


TM_{mean} = 8.44 MPa


TM_{mean} = 13.40 MPa


0			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} = 4.775	a _{0q,2} =	a _{0q,1} = 4.763	QU
4.781	4.775	4.804	4.763	
mm	mm	mm	mm	CATIO
			Diff :	QUALIFICATION OF DATA
	0.006	0.023		ATA
	< 0.002W =	> 0.002W =	0.018 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Qualification of data

							-	
Thickness B = 10.00 Initial ligament b_0 = 5.60 Regression line slope in Δa_{Ω} : 92.2	Qua	Data points distribution : Number of qualified data points :	# of data between 0.4J _q and J _q : Correlation coefficient a _{0q} fit :	$ a_{0q} - a_0 = a_{0q} - a_0 $	Power coefficient $C_2 = 0.184339 < 1.0$	J _Q - C	∆ Differe	Crack extension prediction $\Delta a_n =$
mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	Qualification of J_Q as J_k		10 0.798	. 0.15	0.184339	J_Q - Qualification of data		: 1.50
JQ/SY JQ/SY	^F J _Q as J _{Ic}	VALID VALID	≥ 3 < 0.96	≥ 8) <1.0	n of data	mm (predicted) mm PREI	mm (measured)
 → QUALIFIED → QUALIFIED → QUALIFIED 			→ QUALIFIED → DATA SET NOT ADEQUATE	→ Daia sei adequate → Data set adequate			dicted) PREDICTION NOT ACCEPTABLE	asured)

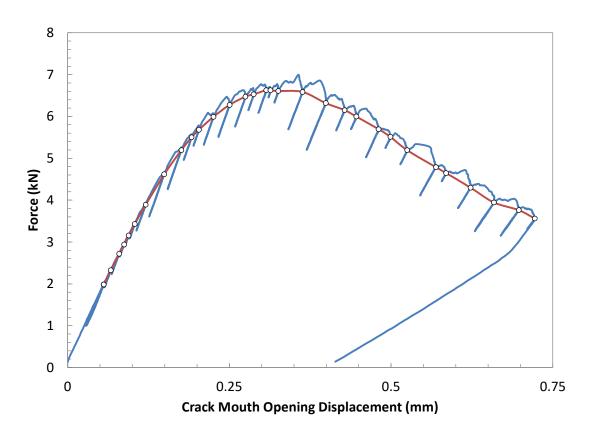
σ _{γs} = 884.0 MPa	v= 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm A i	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-5-3	Type = PCVN	Specimen Information Cr	Material Designation = Ti64 AM Notch = Fatigue precrack	_	
TM _{Jlimit} = 3.30 MPa	TM _{JQ} = 13.84 MPa	(uncertainty > 4%)	J _Ω = 128.79 kJ/m²	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 1.19$	$\Delta a_{p} = 1.62$	a _f = 5.99	a _{oq} = 4.57	$a_0 = 4.37$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT	
TM _{Jlimit} = 5.36 MPa	TM _{JQ} = 18.29 MPa	Excessive crack extension: YES	$J_{Q} = 90.61 \text{ kJ/m}^{2}$	Normalization Data Reduction		ng			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃		

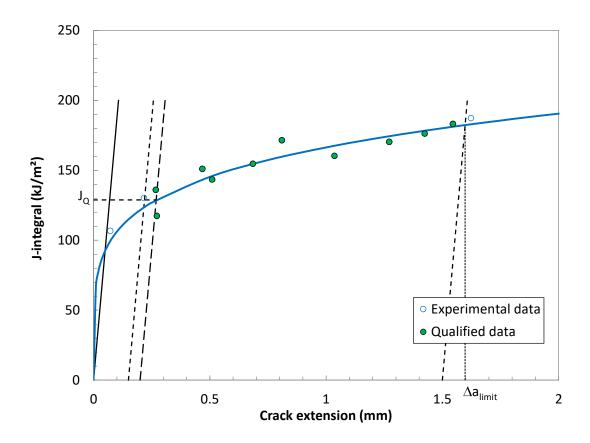
Estimates of initial crack size:

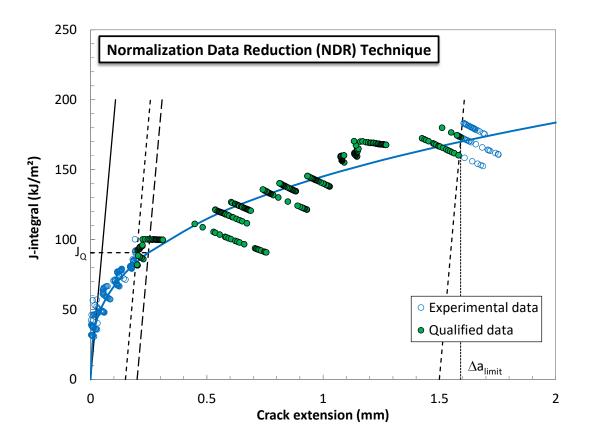
: $a_{0q,1} = 4.770$ mm $a_{0q,2} = 4.798$ mm $a_{0q,3} = 4.783$ mm $a_{0,q,3} = 4.783$ mm $a_{0,qmean} = 4.784$ mm

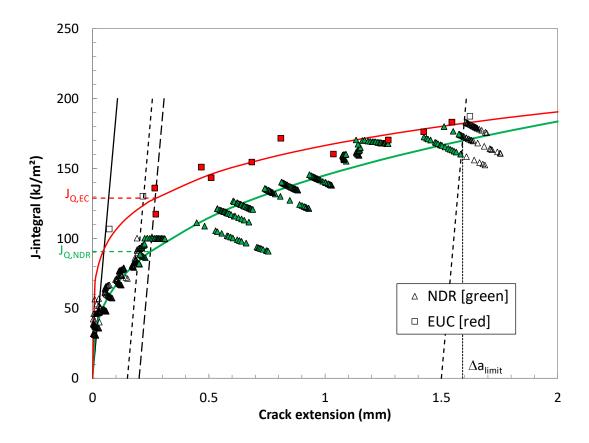
> Diff: 0.014 <0.002W= 0.0200 mm 0.014 <0.002W= 0.0200 mm 0.000 <0.002W= 0.0200 mm

Qualification of data

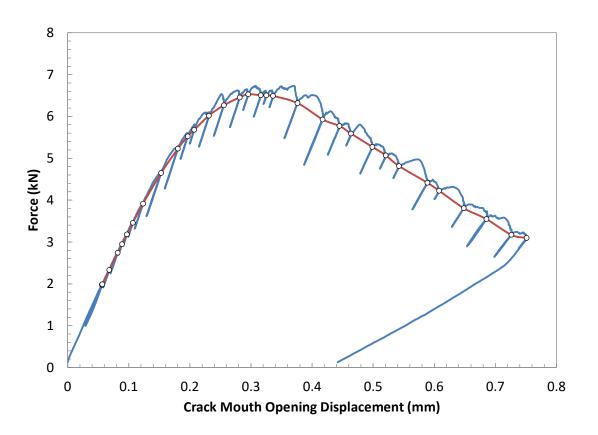

 → QUALIFIED → QUALIFIED → QUALIFIED 	IQ/SY IQ/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 5.63 93.5	Thickness B = Initial ligament b ₀ = Regression line slope in Δa _Ω :
	[:] J _Q as J _{Ic}	Qualification of J_Q as J_k	Quali	
	VALID VALID	< <	ribution : ta points :	Data points distribution : Number of qualified data points :
 → QUALIFIED → DATA SET NOT ADEQUATE 	≥ 3 <0.96	9 0.815	iJ _q and J _q : int a _{0q} fit :	# of data between 0.4J _q and J _q : Correlation $coefficient a_{0q}$ fit :
ightarrow data set adequate	≥ 8	0.20 14	l a _{0q} - a ₀ I - lculate a _{0q} :	$ a_{0q} - a_{0} $
→ QUALIFIED	~ 1.0	0.195235	icient $C_2 =$	Power coefficient $C_2 = 0.195235$
	n of data	J_{Q} - Qualification of data	J _Q - Q	
PREDICTION NOT ACCEPTABLE	mm	-0.43	Difference =	Dif
licted)	mm (predicted)	1.19	$\Delta a_{pred} =$	(before final adjustment)
isured)	mm (measured)	1.62	$\Delta a_p =$	Crack extension prediction

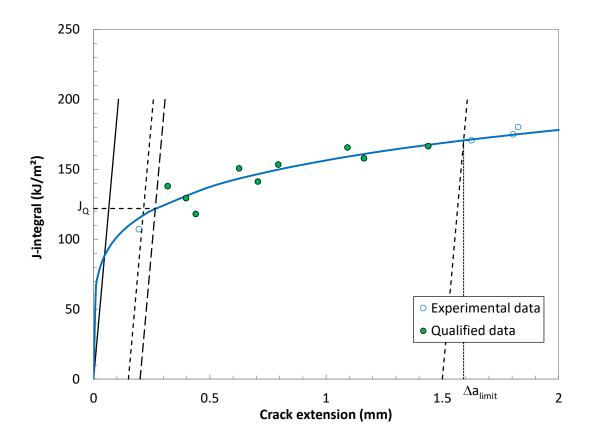

σ_{тs} = 981.0 MPa

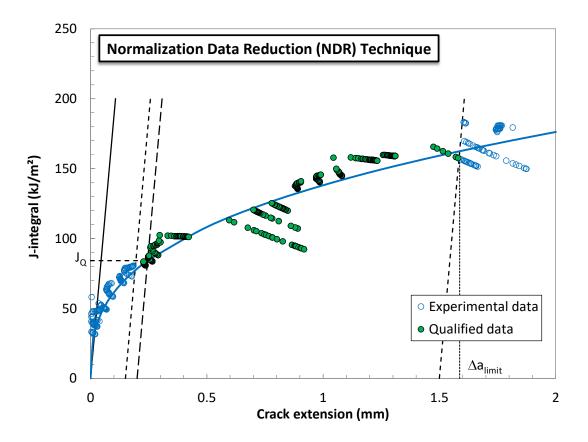

TM_{mean} =

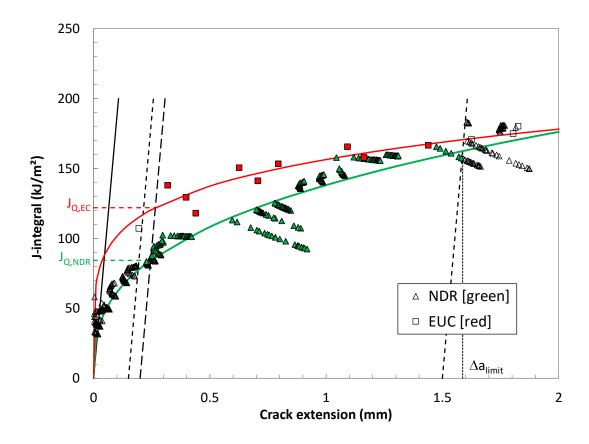

8.57 MPa

TM_{mean} = 11.82 MPa

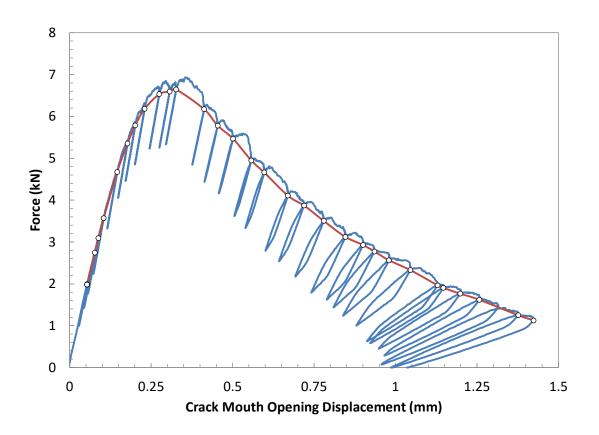


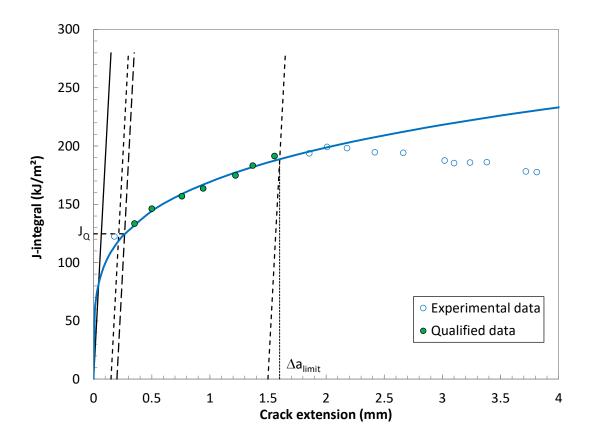

	TEST REPORT		
Material	Basic Test Information		
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 2	21 °C	MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information		
Type = PCVN		4.32 n	mm
Identification = AS-5-4	$a_{0q} = 4$	4.53 n	mm
Orientation = N/A	a _f = 6.	6.15 n	mm
	$\Delta a_{p} = 1.$	1.83 n	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 1.$	1.42 n	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	e tearin	υq
a _N = 3 mm			
	Elastic Unloading Compliance	ance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 122.00 \text{ kJ/m}^{2}$	2	$J_{Q} = 84.29 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)		Excessive crack extension: YES
v = 0.3	TM _{JQ} = 12.76 MPa		TM _{JQ} = 17.89 MPa
σ _{γs} = 884.0 MPa	TM _{Jlimit} = 2.98 MPa		TM _{Jlimit} = 5.33 MPa
σ _{тs} = 981.0 MPa	TM _{mean} = 7.87 MPa		TM _{mean} = 11.61 MPa

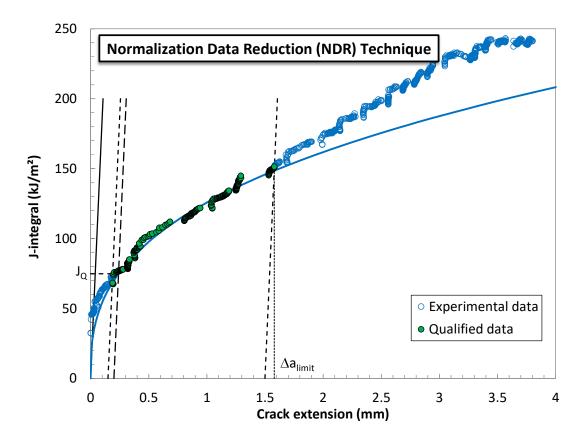

		Estimates of initial crack size:	
a _{0,q3} = a _{0,qmean} =	a _{0q,2} =	a _{0q,1} = 4.815	QU
4.814 4.825	4.846	4.815	ALIFI
mm	mm	mm	CATIO
		Diff :	QUALIFICATION OF DATA
0.011	0.021	0.010	ATA
< 0.002W =	> 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

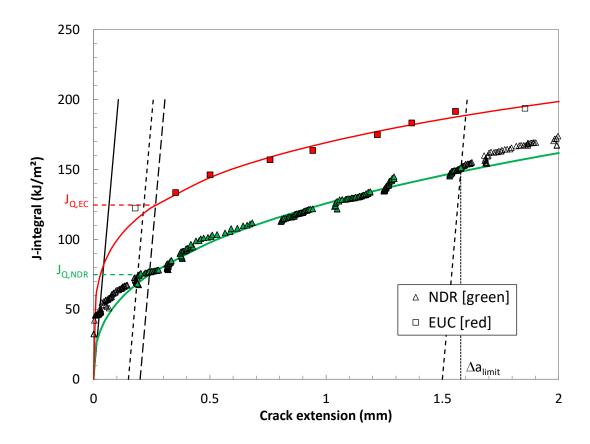

	Quali	Qualification of data	of data	
Crack extension prediction		A = 183	mm (measured	actined
(before final adjustment) $\Delta a_{pred} =$	t) ∆a _{pred} =	1.42	mm (predicted	dicted)
	Difference = -0.41 mm	-0.41	mm	PREDICTION NOT ACCEPTABLE

 → QUALIFIED → QUALIFIED → QUALIFIED 	a _Q as a _€ Q/Sy Q/Sy	00 mm > 10 JQ/Sy 38 mm > 10 JQ/Sy 38 mm > 10 JQ/Sy .2 MPa < Sy	5.68 86.2	Thickness B = Initial ligament b ₀ = Regression line slope in ∆a _Q :
		fication of	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	0.882 < 0.96	0.882	nt a _{oq} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	υ	9	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ 80	13	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.20	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	0.187439	icient C ₂ =	Power coefficient $C_2 = 0.187439 < 1.0$
	ו of data	J_{Q} - Qualification of data	J _Q - Q	

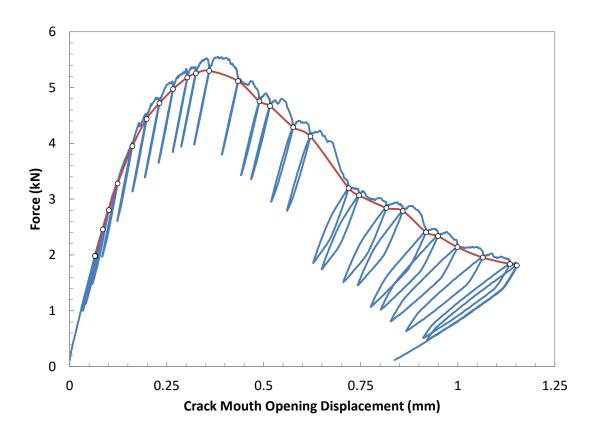

	QU/	LIFI	QUALIFICATION OF DATA	DE D'	ΛTA			
of initial crack size:	$a_{0q,1} = 4.691$	4.691	mm	Diff :	0.011	< 0.002W =	0.0200	mm
	a _{0q,2} =	= 4.719	mm		0.018	< 0.002W =	0.0200	mm
	$a_{0,q3} = 4.696$	4.696	mm		0.006	< 0.002W =	0.0200	mm

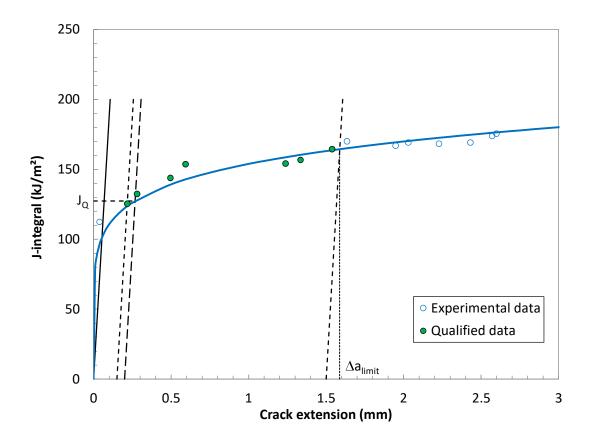

Estimates

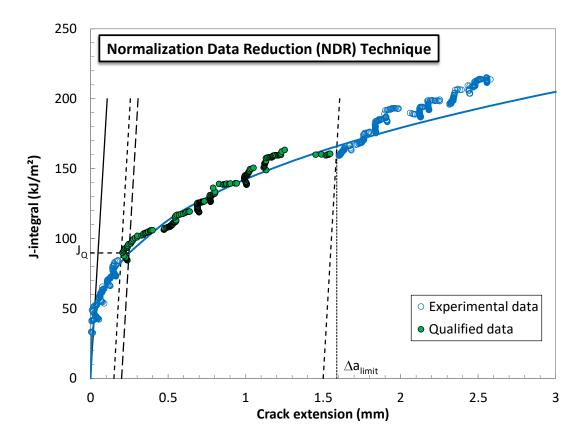

		$a_{0,qmean} = 4.702 \text{ mm}$	$a_{0,q3} = 4.696$
QL		4.702	4.696
Qualification of data		mm	mm
			0.006
			0.006 < 0.002W = 0.0200
			0.0200
	I		Ħ

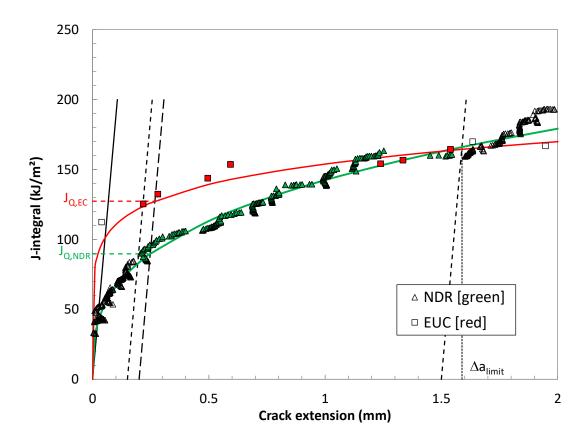

Difference = -0.20 mm	(before final adjustment) $\Delta a_{pred} = 3.61$	Crack extension prediction $\Delta a_p =$
-0.20	3.61	3.81
mm PREDICTION NOT ACCEPTABLE	mm (predicted)	mm (measured)

	đ			
		< <	tribution : ta noints :	Data points distribution : Number of gualified data points
ightarrow data set not adequate	0.846 < 0.96	0.846	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
→ QUALIFIED	υ	σ	J_q and J_q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	I∨ 80	12	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.18	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	0.2311	icient C ₂ =	Power coefficient $C_2 = 0.2311 < 1.0$
	ı of data	J_{Q} - Qualification of data	J _Q - Q	




Material Designation = Ti64 AM Notch = Fatigue precrack	TEST REPORT Basic Test Information Loading Rate = Test temperature =	DRT tion e = 21		MPa√m/s (linear elastic portion) °C
Specimen Information	Crack Size Information	tion		
Type = PCVN	0	a ₀ = 5.01	1 mm	Э
Identification = AS-4-2	a	a _{0q} = 5.04	4 mm	Э
Orientation = N/A		a _f = 7.61	1 mm	Э
	Δa	$\Delta a_{p} = 2.60$	0 mm	Э
Basic dimensions	$\Delta a_{\text{predicted}} =$	_{ed} = 2.55	5 mm	Э
B = 10.00 mm				
B _N = 8.00 mm	Analysis of Results			
W = 10.00 mm	Fracture type = stable tearing	e = stable 1	tearing	
a _N = 3 mm				
	Elastic Unloading Compliance	Complian	_	Normalization Data Reduction
Tensile Properties	$J_{Q} = 127.38 \text{ kJ/m}^{2}$	8 kJ/m²		J _Q = 89.69 kJ/m ²
E = 128804 MPa	(uncertainty > 4%)	y > 4%)		Excessive crack extension: YES
v = 0.3	TM _{JQ} = 9.93	MPa		TM _{JQ} = 17.49 MPa
σ _{YS} = 892.0 MPa	TM _{Jlimit} = 2.16	MPa		TM _{Jlimit} = 5.05 MPa
σ _{τs} = 988.0 MPa	$TM_{mean} = 6.05$	MPa		TM _{mean} = 11.27 MPa


			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} = 5.073	$a_{0q,2} = 5.088$	a _{0q,1} = 5.087	QU,
5.083	5.073	5.088	5.087	ALIFI
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.010	0.005	Diff: 0.004	ATA
	< 0.002W =	< 0.002W =	< 0.002W = 0.0200	
	0.0200	0.0200	-	
	mm	mm	mm	


Diffe	(before final adjustment) $\Delta a_{pred} = 2.55$	Crack extension prediction	
Difference = -0.05 mm	$\Delta a_{pred} =$	$\Delta a_{p} =$	Qualit
-0.05	2.55	2.60	Qualification of data
mm	mm (predicted)	$\Delta a_p = 2.60 \text{ mm} (\text{measured})$	of data
(PREDICTION ACCEPTABLE)	edicted)	easured)	

	-	MPa < Sy		Regression line slope in Δa_{Q} :
\rightarrow QUALIFIED	IQ/Sv	mm > 10 JQ/Sv	4.99	Initial ligament b _n =
→ QUALIFIED	lQ/SY	mm > 10 JQ/Sy	10.00	Thickness B =
	J _Q as J _k	Qualification of J _Q as J _k	Quali	
	VALID	<	ta points :	Number of qualified data points :
	VALID	< <	tribution :	Data points distribution :
ightarrow data set not adequate	0.839 < 0.96	0.839	nt a _{oq} fit :	Correlation coefficient a _{0q} fit :
→ QUALIFIED	ı∨ 3	6	U_q and J_q :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	I∨ 8	9	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.02	a _{0q} - a ₀ =	_
ightarrow QUALIFIED	< 1.0	0.143252	icient C ₂ =	Power coefficient $C_2 = 0.143252 < 1.0$
	ח of data	J_{Q} - Qualification of data	J _Q - Q	

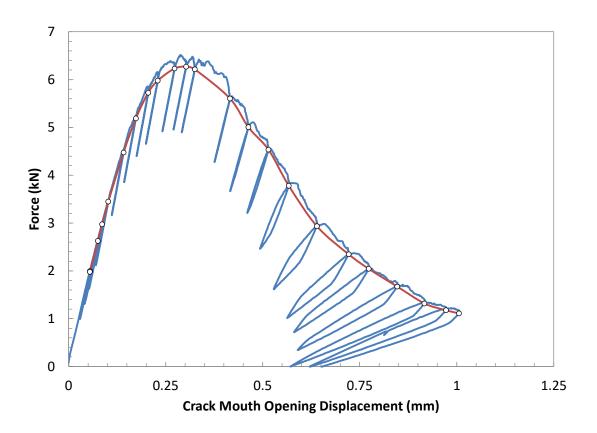
σ _{vs} = 892.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = AS-4-3	Type = PCVN	Specimen Information	Material Designation = Ti64 AM Notch = Fatigue precrack	
TM _{Jlimit} = 1.09 MPa	TM _{JQ} = 5.61 MPa	(uncertainty > 4%)	J _Q = 112.93 kJ/m ²	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 3.52$	$\Delta a_p = 3.75$	a _f = 8.71	$a_{0q} = 4.67$	$a_0 = 4.96$	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 4.30 MPa	$TM_{JQ} = 12.81 MPa$	Excessive crack extension: YES	$J_{Q} = 45.09 \text{ kJ/m}^{2}$	Normalization Data Reduction		ing			mm	mm	mm	mm	mm		MPa\m/s (linear elastic portion) °C	

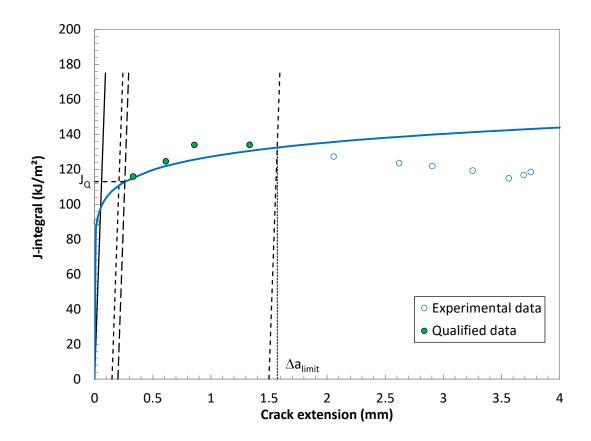
σ_{TS} = 988.0 MPa

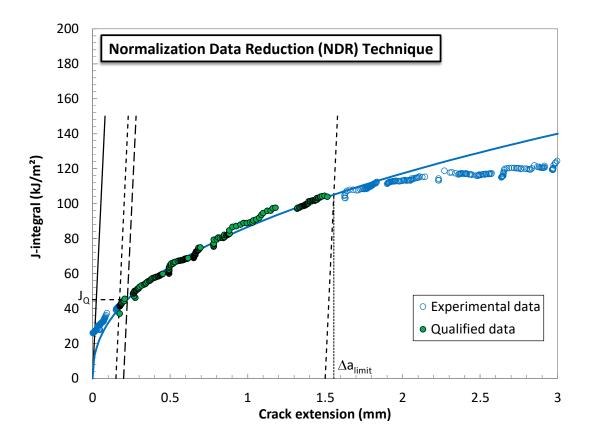
TM_{mean} =

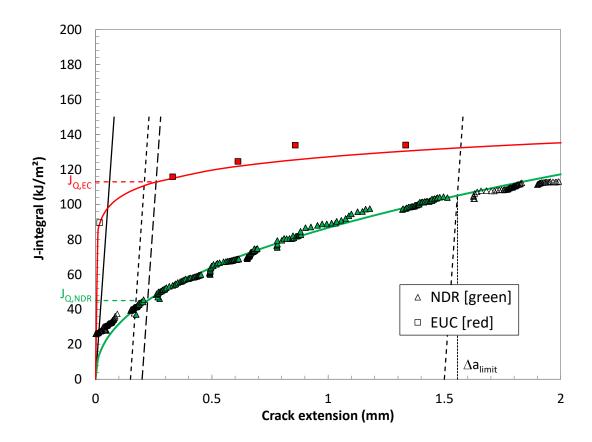
3.35 MPa

TM_{mean} =

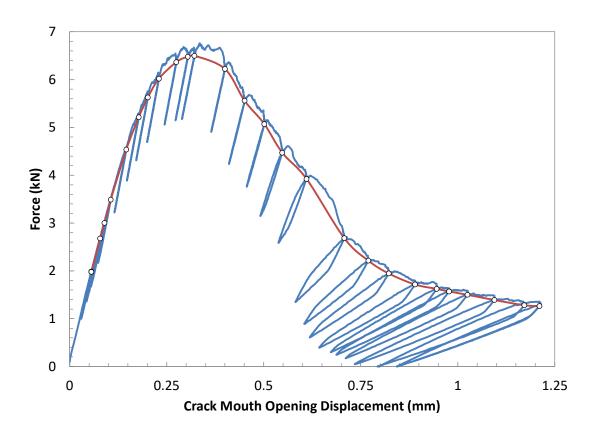

8.56 MPa

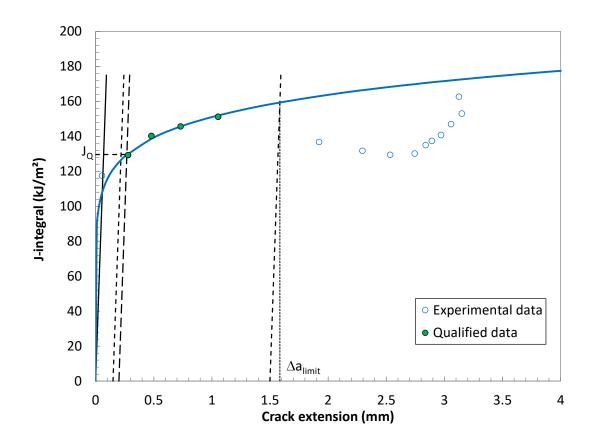

	QU/	LIFI	QUALIFICATION OF DATA	I OF DA	ΛTA			
ial crack size:	$a_{0q,1} = 4.704$	4.704	mm	Diff :	0.007	< 0.002W =	0.0200	mm
	a _{0q,2} =	4.726	mm		0.015	< 0.002W =	0.0200	mm
	$a_{0,q3} = 4.704$		mm		0.007	< 0.002W =	0.0200	mm

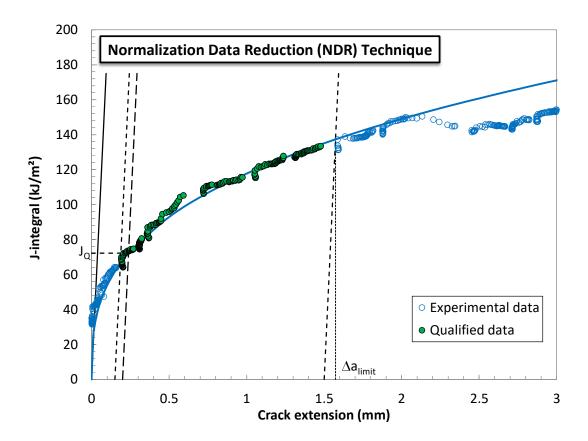

Estimates of initial crack size:

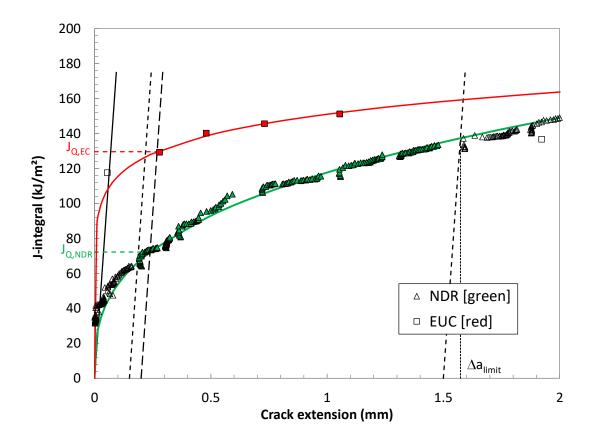

: $a_{0q,1} = 4.704$ mm $a_{0q,2} = 4.726$ mm $a_{0q,3} = 4.704$ mm $a_{0,q,3} = 4.704$ mm $a_{0,qmean} = 4.712$ mm

→ QUALIFIED		MPa < Sy	38.5	Regression line slope in Δa_Q :
ightarrow QUALIFIED	iQ/Sy	mm > 10 JQ/Sy	5.04	Initial ligament $b_0 =$
\rightarrow QUALIFIED	IQ/SY	mm > 10 JQ/Sy	10.00	Thickness B =
	: J _Q as J _{Ic}	Qualification of J_Q as J_k	Quali	
	NOT VALID	ION	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	< 0.96	0.880	ent a _{oq} fit :	Correlation coefficient a _{oq} fit :
→ QUALIFIED	ı∨ 3	б	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ ∞	11	ulate a _{oq} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.29	a _{0q} - a ₀ =	
→ QUALIFIED	< 1.0	0.088599	icient C ₂ =	Power coefficient $C_2 = 0.088599$
	n of data	J _Q - Qualification of data	J _Q - Q	
PREDICTION NOT ACCEPTABLE	mm	-0.23	Difference =	Dit
dicted)	mm (predicted)	3.52	$\Delta a_{pred} =$	(before final adjustment)
asured)	mm (measured)	3.75	$\Delta a_{p} =$	Crack extension prediction
	of data	Qualification of data	Qua	




TEST REPORT aasic Test Information Loading Rate = Test temperature = 21 % Test temperature = 21 % $a_0 =$ 5.03 m $a_0 =$ 4.71 m $a_1 =$ 8.18 m $a_1 =$ 3.42 m $a_1 =$ 3.42 m $a_1 =$ 3.42 m $a_1 =$ stable tearing m $a_1 =$ 1.29.60 kJ/m² $u(ucertainty > 4\%)$ m m TM _{Jint} = 1.71 MPa	MPaVm/s (linear elastic portion) °C mm mm mm mm J _Q = 72.25 kJ/m ² Exersive crack extension: YES TM _{JIQ} = 15.04 MPa
--	--

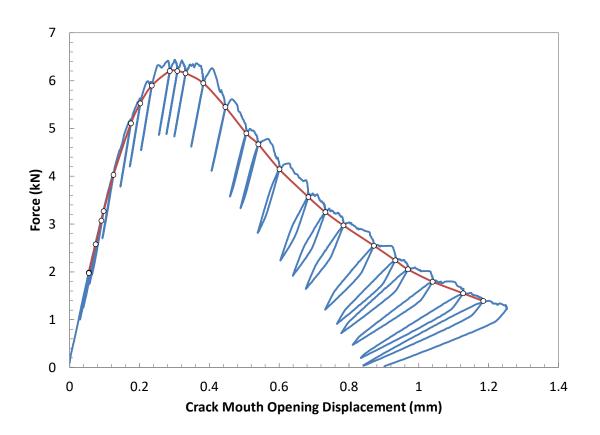

			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.757	Q
4.764	4.749	4.787	4.757	ALIFI
mm	mm	mm	mm	CATIO
			Diff:	QUALIFICATION OF DATA
	0.016	0.023	0.008	ATA
	< 0.002W =	> 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

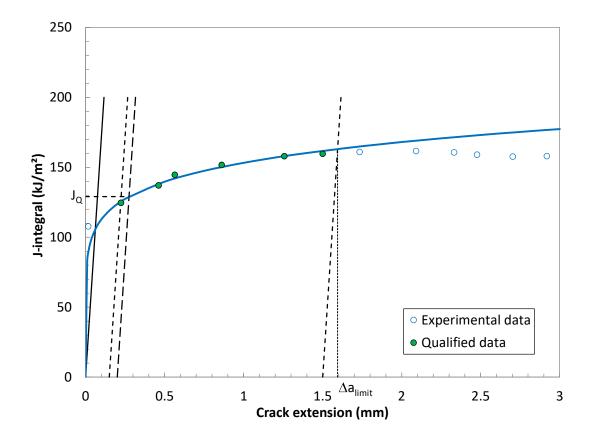

djustment) $\Delta a_{pred} =$			Qu
ω.	ω		alificat
42	15		ion o
mm (predicted)	mm (measured)		Qualification of data
		$\Delta a_p = 3.15$ $\Delta a_{pred} = 3.42$	$\label{eq:crack-extension-prediction} \Delta a_p = 3.15 \mbox{ mm (measured)} \end{tabular} (before final adjustment) \end{tabular} \Delta a_{pred} = 3.42 \mbox{ mm (predicted)}$

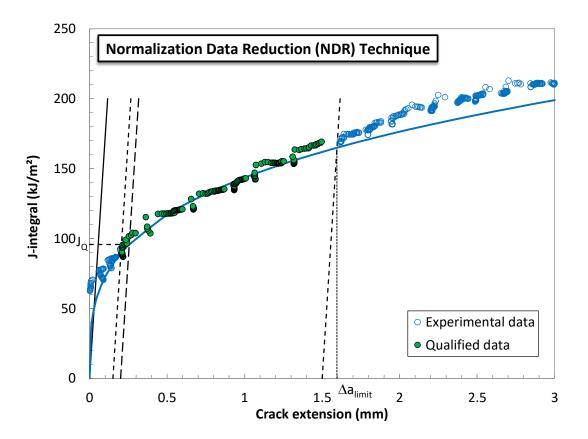
lo - 01	I ₂ - Oualification of data	ofdata	
Power coefficient $C_2 = 0.1165 < 1.0$	0.1165	< 1.0	→ QUALIFIED
a _{0q} - a ₀ =	0.32	mm	ightarrow data set adequate
# of data available to calculate a_{0q} :	12	∾ 8	ightarrow data set adequate
# of data between 0.4J $_q$ and J $_q$:	7	v 3	\rightarrow QUALIFIED
Correlation coefficient a _{0q} fit :	0.890 < 0.96	< 0.96	ightarrow data set not adequate
Data points distribution :	47	VALID	
Number of qualified data points :	NOT	NOT VALID	
Qualif	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	J _Q as J _k	
Thickness B = 10.00 r	mm > 10 JQ/Sy	Q/SY	→ QUALIFIED
Initial ligament $b_0 = 4.97$ I	mm > 10 JQ/Sy	Q/SY	ightarrow QUALIFIED
Regression line slope in Δa_{Ω} : 56.1 I	MPa < Sy		→ QUALIFIED

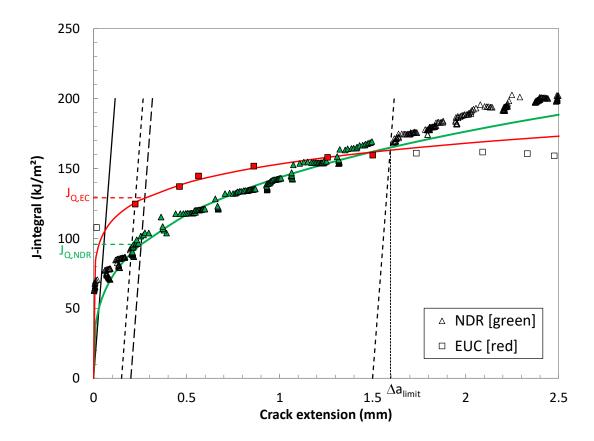
ANNEX 3 Classic HIP, non-supported

$J_{Q} = 95.80 \text{ kJ/m}^{2}$	J/m²	$J_{Q} = 129.04 \text{ kJ/m}^{2}$	0,	Tensile Properties	Tensile F
Normalization Data Reduction	pliance	Elastic Unloading Compliance			
			mm	ω	a _N =
ing	table teari	Fracture type = stable tearing	mm	10.00	= W
		Analysis of Results	mm	8.00	B _N =
			mm	10.00	B =
mm	3.29	$\Delta a_{predicted} =$			Basic dimensions
mm (62% of uncracked ligament)	3.07	$\Delta a_p =$			
mm	8.11	a _f =		V/A	Orientation = N/A
mm	4.71	a _{0q} =		CN-8-1	Identification = CN-8-1
mm	5.04	a ₀ =		PCVN	Type = PCVN
		Crack Size Information		on	Specimen Information
ĉ	21	Test temperature =	ecrack	Notch = Fatigue precrack	Notch = F
MPa√m/s (linear elastic portion)		Loading Rate =		fi64 Am	Designation = Ti64 AM
		Basic Test Information			Material
		TEST REPORT			

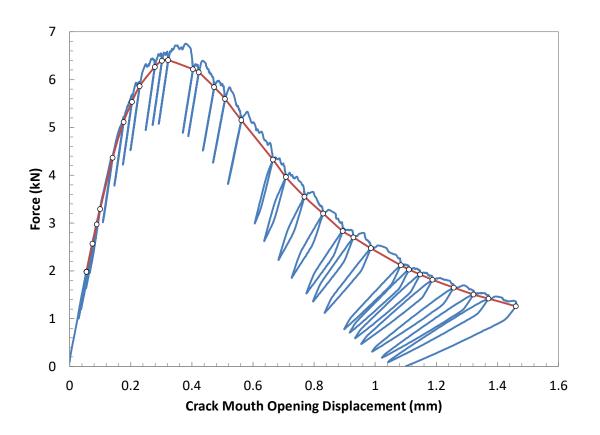

TM _{mean} = 6.60 MPa	TM _{Jlimit} = 2.36 MPa	$TM_{JQ} = 10.84$ MPa	(uncertainty > 4%)	J _Q = 129.04 kJ/m ²	Elastic Unloading Compliance
TM _{mean} =	TM _{Jlimit} =	TMJQ =	Excessive cra	J _Q =	Normalization Data Reduction
12.31	5.32	19.30	Excessive crack extension:	95.80	tion Data F
MPa	MPa	MPa	YES	kJ/m²	Reduc

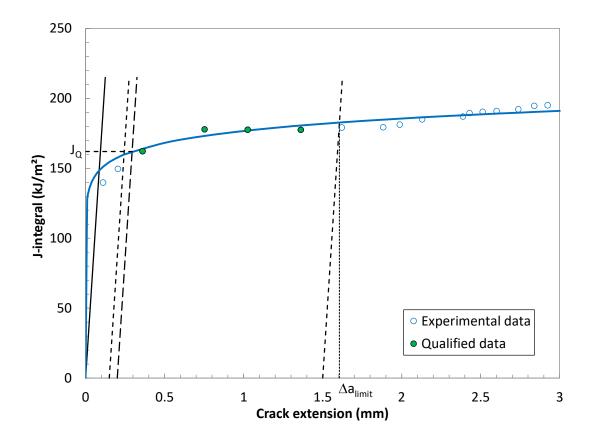

 $\begin{array}{rcrcr} {\sf E} = & 128804 & {\sf MPa} \\ {\sf v} = & 0.3 \\ {\sf \sigma}_{\rm 15} = & 804.0 & {\sf MPa} \\ {\sf \sigma}_{\rm 75} = & 919.0 & {\sf MPa} \end{array}$

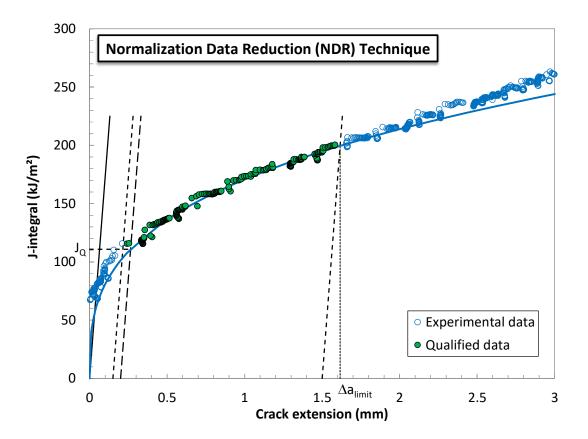

			Estimates of initial crack size:	
3 _{0,qmean} =	a _{0,q3} = 4.726	a _{0q,2} = 4.756	a _{0q,1} =	
4.738	4.726	4.756	4.731	
mm	mm	mm	mm	
			Diff :	
	0.012	0.019	0.007	
	2 < 0.002W =	.9 < 0.002W =	< 0.002W =	
	0.0200		0.0200	
	mm	mm	mm	

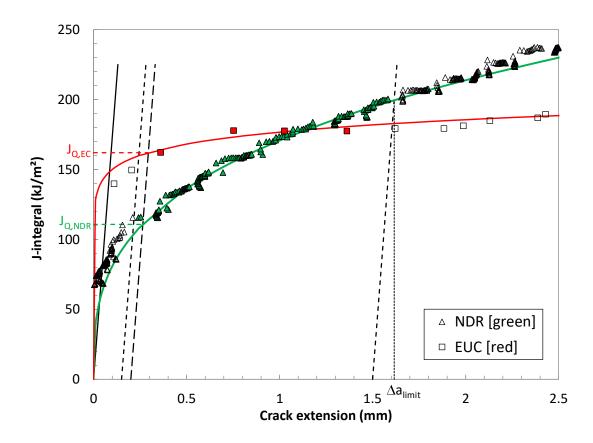

Diffe	(before final adjustment) $\Delta a_{pred} = 3.29$ mm (predicted	Crack extension prediction	
Difference = 0.22 mm	$\Delta a_{pred} =$	∆a _p =	Quali
0.22	3.29	3.07	Qualification of data
mm	mm (p	mm (r	of data
PREDICTION NOT ACCEPTABLE	redicted)	$\Delta a_{p} = 3.07$ mm (measured)	

Initial ligament b ₀ = 10.00 Initial ligament b ₀ = 4.96 Initial ligament b ₀ = 62.5 I	Qualif	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{0q} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.133049 < 1.0$	J _Q - Qu	
mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	Qualification of J_{Q} as J_{k}	17	17	0.954 < 0.96	6	10	0.33	0.133049	J_Q - Qualification of data	
Q/SY Q/SY	J _Q as J _k	VALID	VALID	< 0.96	s	IV 80	mm	< 1.0	۱ of data	
 → QUALIFIED → QUALIFIED → QUALIFIED 				ightarrow data set not adequate	\rightarrow QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	ightarrow QUALIFIED		


15.30	MPa		TM _{mean} =	MPa	919.0	σ _{TS} =	
TM _{Jlimit} = 6.96 MPa	MPa	1.40 ľ	TM _{Jimit} =	MPa	804.0	σ _{γs} =	
TM _{JQ} = 23.64 MPa	MPa	6.79	TM _{JQ} =		0.3	v =	
Excessive crack extension: YES	(%1	(uncertainty > 4%)	(un	MPa	128804	E =	
$J_{Q} = 110.81 \text{ kJ/m}^{2}$	cJ/m²	$J_{Q} = 161.98 \text{ kJ/m}^{2}$	J _Q =	•	roperties	Tensile Properties	
Normalization Data Reduction	npliance	Elastic Unloading Compliance	Elastic Un				
				mm	ω	a _N =	
ring	table tear	Fracture type = stable tearing	Fract	mm	10.00	= W	
		Results	Analysis of Results	mm	8.00	B _N =	
				mm	10.00	B =	
mm	3.39	$\Delta a_{\text{predicted}} =$				Basic dimensions	
mm (61% of uncracked ligament)	3.05	$\Delta a_p =$					
mm	8.08	a _f =			I/A	Orientation = N/A	
mm	4.71	a _{0q} =			N-8-2	Identification = CN-8-2	
mm	5.03	a ₀ =			ĊVN	Type = PCVN	
		nformation	Crack Size Information		'n	Specimen Information	
°C	21	Test temperature =	Test tem	ecrack	atigue pr	Notch = Fatigue precrack	
MPa√m/s (linear elastic portion)		Loading Rate =	Load		164 AM	Designation = Ti64 AM	
		nformation	Basic Test Information			Material	
	-	TEST REPORT	TEST F				


	Elastic Unloading Compliance	npliance	Normalization Data Reduction	ion Data R	eduction
s	$J_{Q} = 161.98 \text{ kJ/m}^{2}$	kJ/m²	J _Q =	$J_{Q} = 110.81 \text{ kJ/m}^{2}$	kJ/m²
MPa	(uncertainty > 4%)	4%)	Excessive crack extension	ck extension:	YES
	TM _{JQ} = 6.79 Ν	MPa	TMJQ =	23.64	MPa
MPa	TM _{Jlimit} = 1.40 N	MPa	TM _{Jlimit} =	6.96	MPa
MPa	TM _{mean} = 4.10 M	MPa	TM _{mean} =	15.30	MPa

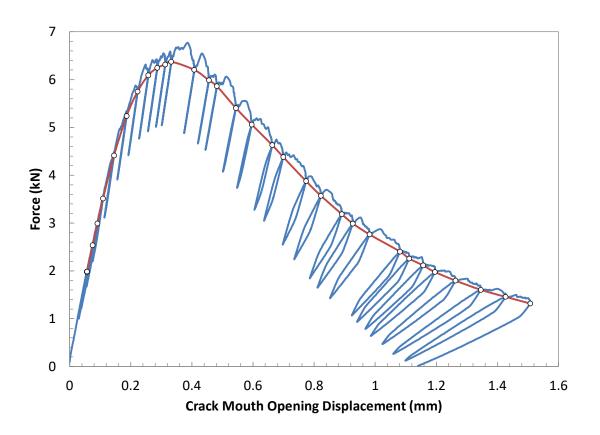

			Estimates of initial crack size:	
3 _{0,qmean} =	a _{0,q3} = 4.737	a _{0q,2} =	a _{0q,1} =	
4.743	4.737	4.759	4.733	
mm	mm	mm	mm	
			Diff :	
	0.006	0.016	0.010	
	< 0.002W =	< 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

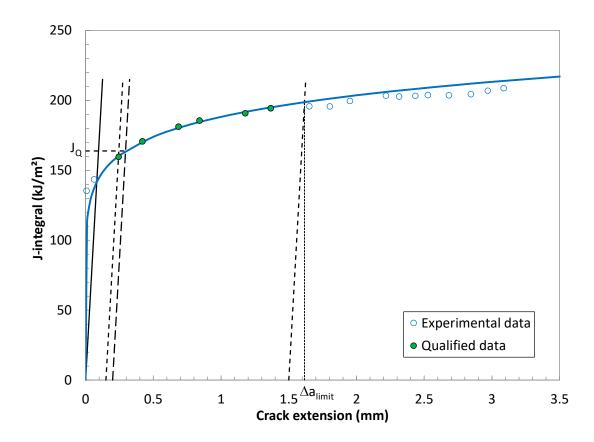

Diff	(before final adjustment) $\Delta a_{pred} = 3.39$	Crack extension prediction	
Difference = 0.34 mm	$\Delta a_{pred} =$	∆a _p =	Quali
0.34		3.05	Qualification of data
mm	mm (p	mm (n	of data
PREDICTION NOT ACCEPTABLE	mm (predicted)	$\Delta a_{p} = 3.05$ mm (measured)	

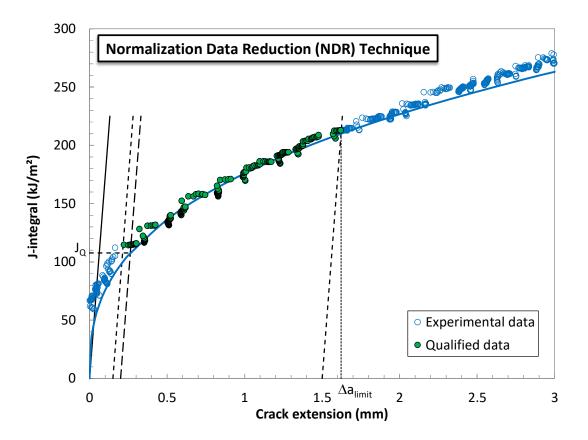
Regression line slope in Δa_{Ω} : 39.1 MPa < Sy	Initial ligament $b_0 = 4.97$ r	Thickness B = 10.00 r	Qualif	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{oq} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.071028 < 1.0$	J _Q - Qu	
vlPa < Sy	mm > 10 JQ/Sy	mm > 10 JQ/Sy	Qualification of J_Q as J_k	NOT	<i>t</i> v	0.932	7	12	0.32	0.071028	J_{Q} - Qualification of data	
	Q/SY	Q/SY	J _Q as J _{Ic}	NOT VALID	VALID	< 0.96	υ	I∨ ∞	mm	< 1.0	ı of data	
ightarrow QUALIFIED	ightarrow QUALIFIED	ightarrow QUALIFIED				ightarrow data set not adequate	→ QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	→ QUALIFIED		

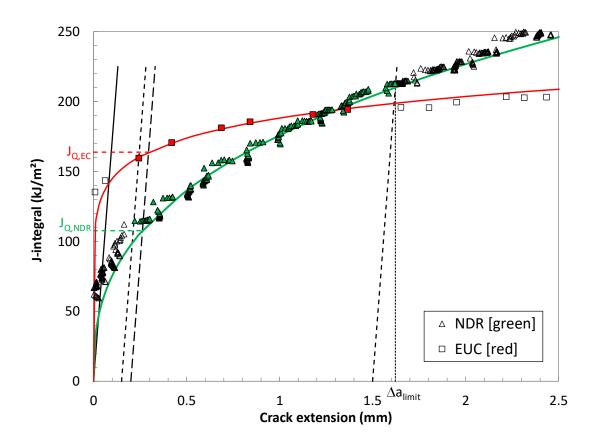
σ _{тs} = 919.0 MPa	σ _{YS} = 804.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = CN-8-3	Type = PCVN	Specimen Information	Notch = Fatigue precrack	Designation = Ti64 AM	Material	
TM _{mean} = 6.69 MPa	TM _{Jlimit} = 2.43 MPa	TM _{JQ} = 10.95 MPa	(uncertainty > 4%)	$J_{Q} = 163.82 \text{ kJ/m}^{2}$	Elastic Unloading Compliance		Fracture type = stable tea	Analysis of Results		$\Delta a_{\text{predicted}} = 3.30$	$\Delta a_p = 3.09$	a _f = 8.15	a _{oq} = 4.77	$a_0 = 5.07$	Crack Size Information	Test temperature = 21	Loading Rate =	Basic Test Information	TEST REPORT

		Estimates of initial crack size:	
a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.805	QU,
a _{0,q3} = 4.786	4.836	4.805	ALIFI
mm	mm	mm	CATI
		Diff :	QUALIFICATION OF DATA
0.023	0.027	0.004	ATA
> 0.002W =	> 0.002W =	< 0.002W =	
0.0200	0.0200	0.0200	
mm	mm	mm	

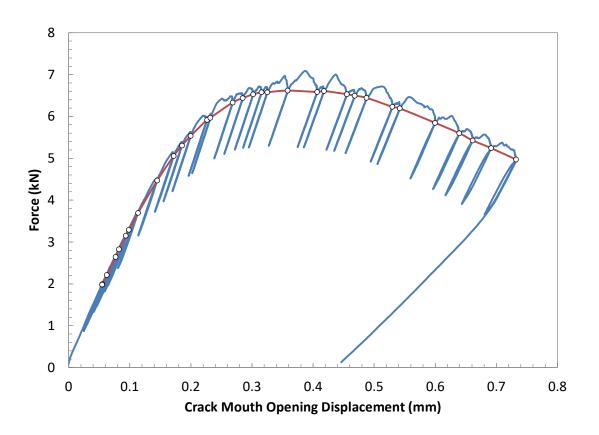

 → QUALIFIED → QUALIFIED → QUALIFIED 	JQ/SY JQ/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.94 63.1	$\label{eq:transform} \begin{array}{c} \mbox{Thickness B} = \\ \mbox{Initial ligament } b_0 = \\ \mbox{Regression line slope in } \Delta a_0 : \end{array}$
	f J _Q as J _{Ic}	Qualification of J_Q as J_k	Quali	
	VALID	<	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	< 0.96	0.931	ent a _{oq} fit :	Correlation coefficient a _{0q} fit :
\rightarrow QUALIFIED	∾ 3	8	$4J_q$ and J_q :	# of data between 0.4J $_q$ and J $_q$:
→ DATA SET ADEQUATE	∣∨ 8	12	culate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.29	a _{0q} - a ₀ =	_
\rightarrow QUALIFIED	1.0	0.11365:	icient C ₂ =	Power coefficient $C_2 = 0.113651 < 1.0$
			2	
	n of data	J _o - Qualification of data	J ₀ - Q	
PREDICTION NOT ACCEPTABLE	mm	0.22	Difference =	Di
dicted)	mm (predicted)	3.30	$\Delta a_{pred} =$	(before final adjustment)
asured)	mm (measured)	3.09	$\Delta a_p =$	Crack extension prediction

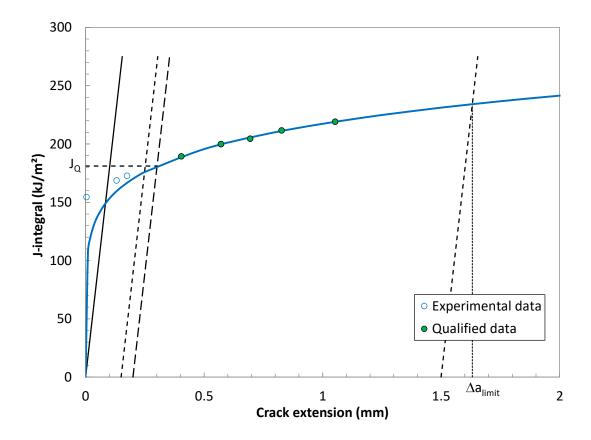

Analysis of Results Fracture type = stable tearing	$\Delta a_{\text{predicted}} =$	$\Delta a_p =$	a _f =	a _{oq} =	a ₀ =	
ble tear	3.30	3.09	8.15	4.77	5.07	
ing	mm	mm (63% of uncracked ligament)	mm	mm	mm	


Elastic Unloading Compliance	Normaliza	Normalization Data Reduction	eduction
$J_{Q} = 163.82 \text{ kJ/m}^{2}$	J _Q =	107.66 kJ/m ²	kJ/m ²
(uncertainty > 4%)	Excessive cra	Excessive crack extension:	YES
TM _{JQ} = 10.95 MPa	TM _{JQ} =	26.11	MPa
TM _{Jlimit} = 2.43 MPa	TM _{Jlimit} =	8.24	MPa
TM _{mean} = 6.69 MPa	TM _{mean} =	17.17 MPa	MPa


Qualification of data	Qualif		
ш	4.809 mm	a _{0,qmean} =	
m	4.786 mm	a _{0,q3} =	
m	4.836 mm	a _{0q,2} =	
т	4.805 mm	$a_{0q,1} =$	nates of initial crack size:

MPa√m/s (linear elastic portion) ℃


	MPa	9.18	МРа Т	946.0 I	σ _{τs} =
	MPa	TM _{Jlimit} = 3.54	MPa T	836.0 I	σ _{YS} =
	MPa	$TM_{JQ} = 14.82$		0.3	V =
	4%)	(uncertainty > 4%)	MPa	128804 I	E =
	kJ/m²	J _Q = 181.13 kJ/m ²		Tensile Properties	Tensile P
	npliance	Elastic Unloading Compliance	Е		
I			mm	ω	a _N =
ring	stable tear	Fracture type = stable tearing	mm	10.00 г	W =
		Analysis of Results	mm An	8.00 r	B _N =
			mm	10.00 r	B =
mm	0.66	$\Delta a_{\text{predicted}} =$			Basic dimensions
mm	1.05	$\Delta a_p =$			
mm	6.18	a _f =		I/A	Orientation = N/A
mm	4.72	a _{0q} =		N-5-1	Identification = <mark>CN-5-1</mark>
mm	5.13	a ₀ =		CVN	Type = PCVN
		Crack Size Information	Cra	'n	Specimen Information
ĉ	21	Test temperature =		Notch = Fatigue precrack	Notch = F
MPaVm/s (linear elastic portion)		Loading Rate =		i64 AM	Designation = Ti64 AM
•		Basic Test Information	Bas		Material
		TEST REPORT	<u> </u>		


			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.745	QU,
4.757	4.748	4.778	4.745	ALIFI
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.009	0.021	0.012	ATA
	< 0.002W =	> 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

Diffe	(before final adjustment) $\Delta a_{pred} =$	Crack extension prediction	
Difference =	$\Delta a_{pred} =$	$\Delta a_p =$	
-0.39 mm	0.66	1.05	
mm PREDICTION NOT ACCEPTABLE	mm (predicted)	mm (measured)	

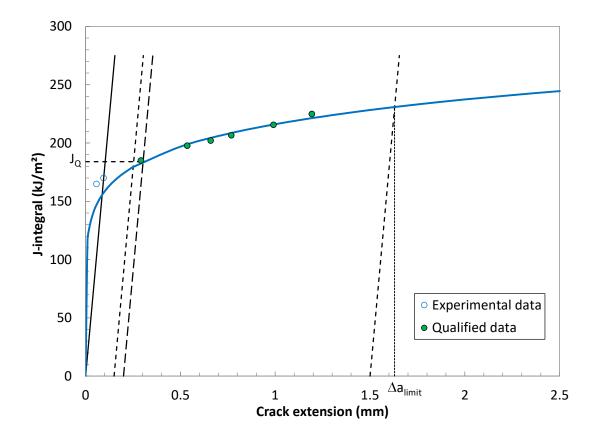
Qualification of data

→ QUALIFIED	iQ/Sy	mm > 10 JQ/Sy	10.00	Thickness B =
	J _O as J _{IC}	Qualification of J _Q as J _k	Quali	
	VALID	<	a points :	Number of qualified data points :
	VALID	<	ribution :	Data points distribution :
ightarrow data set not adequate	0.899 < 0.96	0.899	nt a _{0q} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	υ	12	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ 8	20	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.41	a _{0q} - a ₀ =	
→ QUALIFIED	< 1.0	0.152064	cient C ₂ =	Power coefficient $C_2 = 0.152064 < 1.0$
	n of data	J_{Ω} - Qualification of data	J _Q - Q	

	TEST REPORT	
Material	Basic Test Information	
Designation = Ti64 AM Notch = Fatigue precrack	Loading Rate = Test temperature = 21	MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information	
Type = PCVN	$a_0 = 5.12$	mm
Identification = CN-5-2	$a_{0q} = 4.74$	mm
Orientation = N/A	a _f = 6.31	mm
	$\Delta a_{p} = 1.19$	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 0.74$	mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	ing
a _N = 3 mm		
	Elastic Unloading Compliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 184.05 \text{ kJ/m}^{2}$	$J_{Q} = \#N/A kJ/m^2$
E = 128804 MPa	(uncertainty > 4%)	
v = 0.3	TM _{JQ} = 13.27 MPa	TM _{JQ} = #DIV/0! MPa
σ _{γs} = 836.0 MPa	TM _{Jlimit} = 3.10 MPa	TM _{Jlimit} = #DIV/0! MPa
σ _{тs} = 946.0 MPa	TM _{mean} = 8.18 MPa	TM _{mean} = #DIV/0! MPa

a			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.785	QU,
4.788	4.770	4.807	4.785	
mm	mm	mm	mm	CATI
			Diff :	QUALIFICATION OF DATA
	0.017	0.020	0.002	λΤΑ
	< 0.002W =	< 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

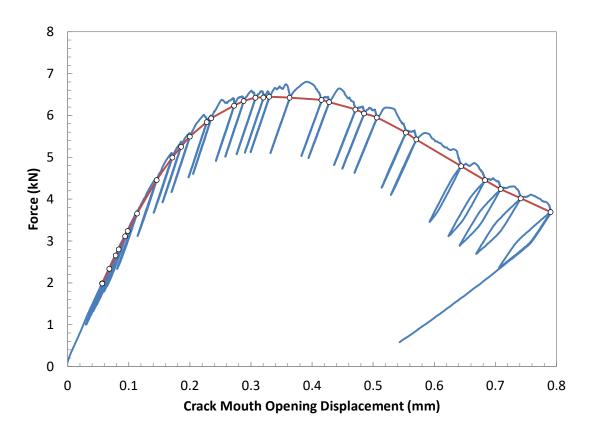

	VALID	<i>1</i> >	Data points distribution :
ightarrow data set not adequate	< 0.96	0.910 < 0.96	Correlation coefficient a _{oq} fit :
ightarrow QUALIFIED	⊳ 3	12	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:
ightarrow data set adequate	∣∨ 80	20	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.37	$ a_{0q} - a_0 = 0.37$
→ QUALIFIED	< 1.0	0.134784	Power coefficient $C_2 = 0.134784 < 1.0$
	ı of data	$J_{\mathbb{Q}}$ - Qualification of data	J _Q - QL
PREDICTION NOT ACCEPTABLE		-0.45	Difference = -0.45 mm
dicted)	mm (prec	0.74	(before final adjustment) $\Delta a_{pred} = 0.74$ mm (predicted)

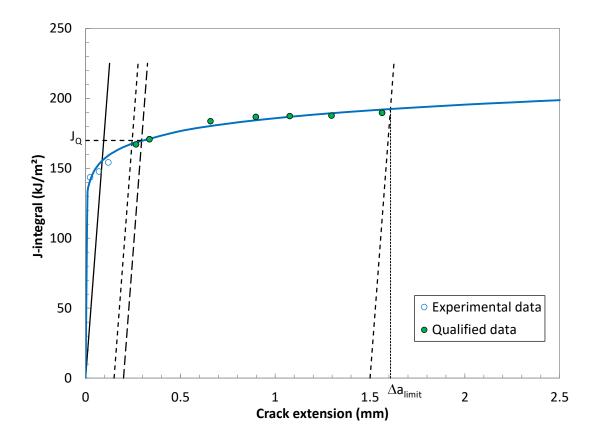

Thickness B = 10.00 n Initial ligament b ₀ = 4.88 n	Qualifi	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{oq} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	$ a_{0q} - a_0 = 0.37$	Power coefficient $C_2 = 0.134784 < 1.0$	J _Q - Qui	
mm > 10 JQ/Sy mm > 10 JQ/Sy	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	<i>1</i> /	<i>1</i> ,	0.910 < 0.96	12	20	0.37	0.134784	$J_{\rm Q}$ - Qualification of data	
Q/SY Q/SY	J _Q as J _{Ic}	VALID	VALID	< 0.96	ı∨ 3	IV 80	mm	< 1.0	ı of data	
→ QUALIFIED				ightarrow data set not adequate	\rightarrow QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	→ QUALIFIED		

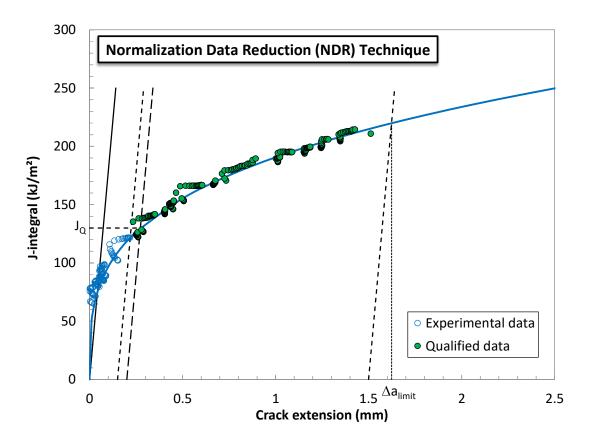
Regression line slope in Δa_{Ω} : 81.8 MPa < Sy

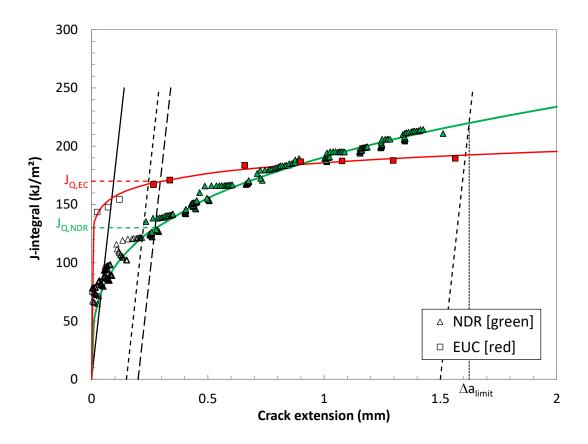
 \rightarrow QUALIFIED

(before final adjustment) $\Delta a_{red} =$	Crack extension prediction $\Delta a_p =$	Qua	
N 7 N	1.19	Qualification of data	
mm (prodicted)	mm (measured)	of data	

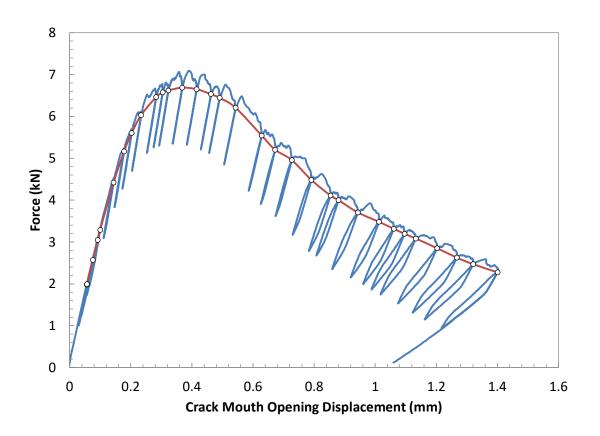

TM _{mean} = 14.63 MPa	MPa	4.13	MPa	σ _{τs} = 946.0	
TM _{Jlimit} = 6.48 MPa	MPa	1.42	MPa	σ _{YS} = 836.0	
TM _{JQ} = 22.78 MPa	MPa	TM _{JQ} = 6.83 N		v = 0.3	
Excessive crack extension: YES	%)	(uncertainty > 4%)	MPa	E = 128804 MPa	
$J_{Q} = 129.97 \text{ kJ/m}^{2}$	J/m²	$J_{Q} = 169.96 \text{ kJ/m}^{2}$		Tensile Properties	
Normalization Data Reduction	pliance	Elastic Unloading Compliance			
			mm	a _N = 3	
ring	table tear	Fracture type = stable tearing	mm	W = 10.00	
		Analysis of Results	mm	B _N = 8.00	
			mm	B = 10.00	
mm	1.46	$\Delta a_{predicted} =$		Basic dimensions	Ba
mm (32% of uncracked ligament)	1.56	$\Delta a_p =$			
mm	6.67	a _f =		Orientation = N/A	
mm	4.74	a _{0q} =		Identification = CN-5-3	
mm	5.11	a ₀ =		Type = PCVN	
		Crack Size Information		Specimen Information	sp
°C	21	Test temperature =	ecrack	Notch = Fatigue precrack	
MPa√m/s (linear elastic portion)		Loading Rate =		Designation = Ti64 AM	
		Basic Test Information		Material	M
	.	TEST REPORT			
					٦

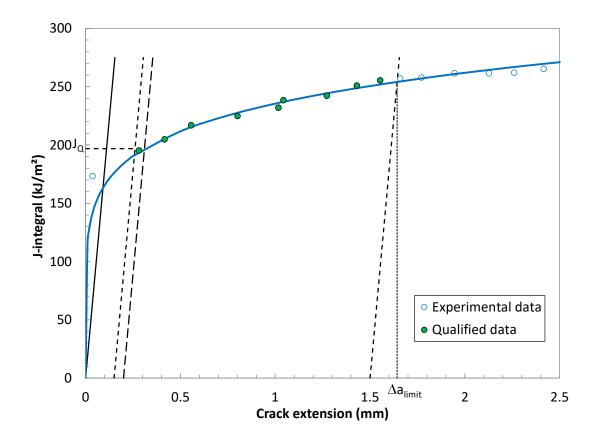

	Normaliza	Normalization Data Reduction	eduction
J _Q = 169.96 kJ/m ²	J _α =	129.97	kJ/m ²
(uncertainty > 4%)	Excessive cra	Excessive crack extension:	YES
TM _{JQ} = 6.83 MPa	TM _{JQ} =	22.78	MPa
TM _{Jimit} = 1.42 MPa	TM _{Jlimit} =	6.48	MPa
TM _{mean} = 4.13 MPa	TM _{mean} =	14.63	MPa

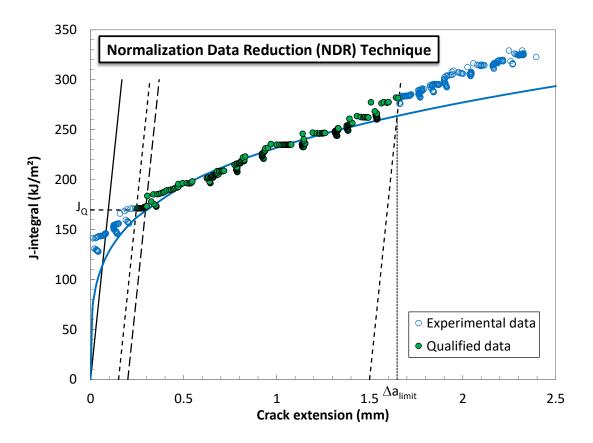

			Estimates of initial crack size:	
¹ 0,qmean =	$a_{0,q_3} = 4.765$	a _{0q,2} =	a _{0q,1} =	
4.780	4.765	4.812	4.765	
mm	mm	mm	mm	
			Diff :	
	0.015	0.031	0.016	
	< 0.002W =	> 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

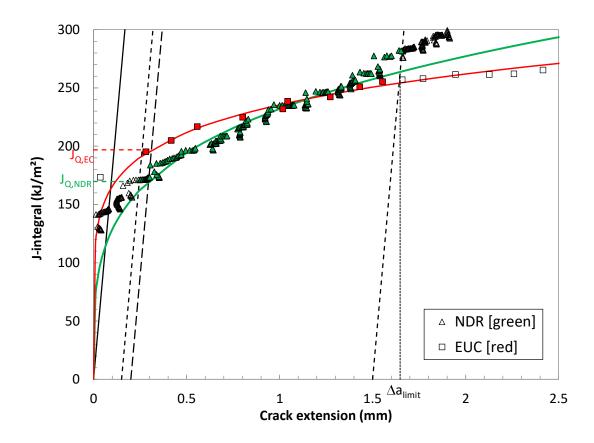

Difference = -0.11 mm	(before final adjustment) $\Delta a_{pred} =$	Crack extension prediction $\Delta a_p =$	Qua
-0.11	1.46	1.56	Qualification of data
mm (PREDICTION ACCEPTABLE)	mm (predicted)	$\Delta a_{p} = 1.56$ mm (measured)	of data

Thickness B = Initial ligament b₀ = Regression line slope in ∆aゐ :		Number of qualified data points :	Data points distribution :	Correlation coefficient a _{0q} fit :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:	# of data available to calculate a_{0q} :	a ₀₀	Power coefficient $C_2 = 0.073182 < 1.0$	
10.00 4.89 42.1	Qua	points :	bution :	: a _{oq} fit	and J _q	ate a _{0q}	1 - a ₀ =	ent C ₂ =	J _Q - C
mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	Qualification of $J_{\rm Q}$ as $J_{\rm k}$		VALID	0.887 < 0.96	12	19	$ a_{0q} - a_0 = 0.37$	0.073182	J_Q - Qualification of data
J/SA X/SA	J _Q as J _{Ic}	VALID	Đ	< 0.96	r× 3	IV 80	mm	< 1.0	of data
 → QUALIFIED → QUALIFIED → QUALIFIED 				ightarrow data set not adequate	ightarrow QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	ightarrow QUALIFIED	

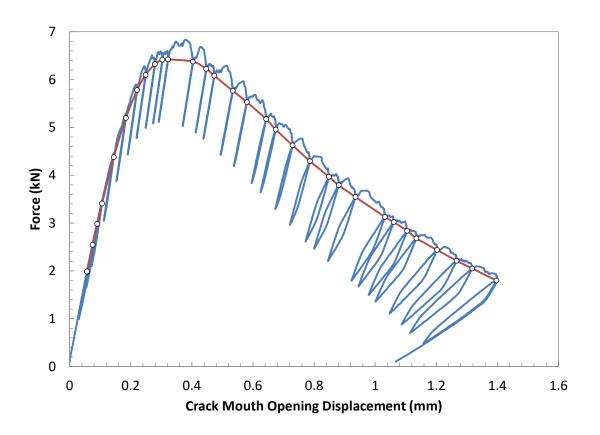


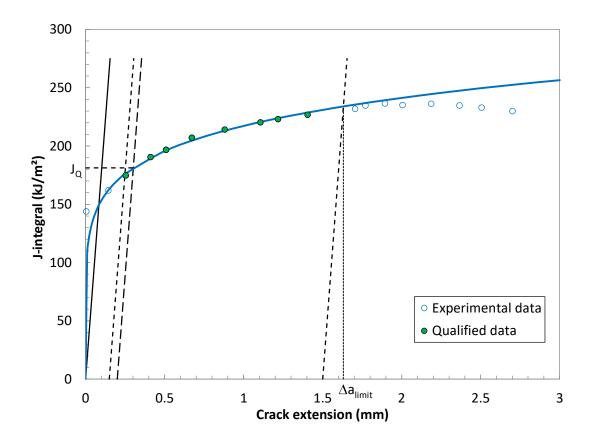


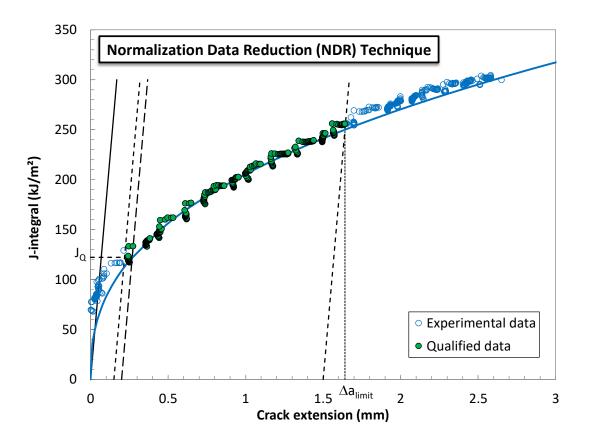

			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	$a_{0q,2} = 4.849$	a _{0q,1} = 4.807	QU,
4.824	4.816	4.849	4.807	ALIFI
mm	mm	mm	mm	CATIO
			Diff :	QUALIFICATION OF DATA
	0.008	0.025		ATA
	< 0.002W =	> 0.002W =	0.017 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	

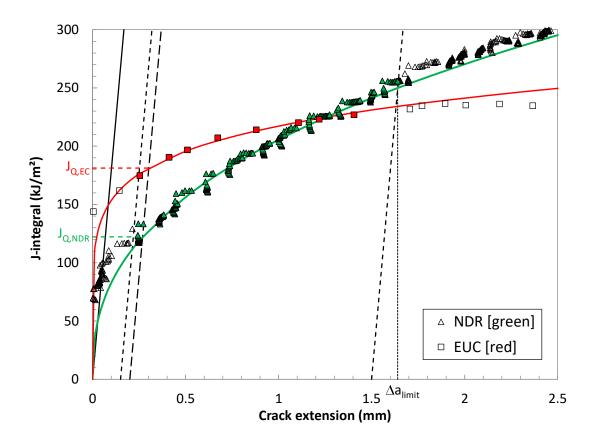

Dif	(before final adjustment) $\Delta a_{pred} = 2.53$ mm (predicted	Crack extension prediction	
Difference = 0.12 mm	$\Delta a_{pred} =$	$\Delta a_{p} = 2.42$	Quali
0.12	2.53	2.42	Qualification of data
mm	mm (p	mm (n	of data
(PREDICTION ACCEPTABLE)	redicted)	mm (measured)	

 → QUALIFIED → QUALIFIED → QUALIFIED 	IQ/SY IQ/SY	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.88 97.2	$\label{eq:theta} \begin{array}{llllllllllllllllllllllllllllllllllll$
	J _Q as J _k	Qualification of J _Q as J _k	Quali	
	VALID	<.	ta points :	Number of qualified data points :
	VALID	<	ribution :	Data points distribution :
ightarrow data set not adequate	0.946 < 0.96	0.946	nt a _{oq} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	s	8	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	∨ 80	12	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.33	a _{0q} - a ₀ =	
\rightarrow QUALIFIED	< 1.0	0.153338	icient C ₂ =	Power coefficient $C_2 = 0.153338 < 1.0$
			,	
	n of data	Jo - Qualification of data	J~ - OL	




	TEST REPORT		
Material	Basic Test Information		
Designation = Ti64 AM	Loading Rate =		MPa√m/s (linear elastic portion)
Notch = Fatigue precrack	Test temperature =	21	റ്
Specimen Information	Crack Size Information		
Type = PCVN	a ₀ =	5.11	mm
Identification = CN-5-5	a _{0q} =	4.78	mm
Orientation = N/A	a _f =	7.81	mm
	$\Delta a_p =$	2.70	mm (55% of uncracked ligament)
Basic dimensions	$\Delta a_{\text{predicted}} =$	2.87	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	table tea	aring
a _N = 3 mm			
	Elastic Unloading Compliance	npliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 181.24 \text{ kJ/m}^{2}$	cJ/m²	$J_{Q} = 122.26 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	(%1	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 14.74 MPa	МРа	TM _{JQ} = 29.19 MPa
σ _{γs} = 836.0 MPa	TM _{Jlimit} = 3.52	MPa	TM _{Jlimit} = 9.77 MPa
σ _{тs} = 946.0 MPa	9.13	MPa	TM _{mean} = 19.48 MPa


Elastic Unloading Compliance	Normalization Data Reduction	ion Data R	eduction
$J_{Q} = 181.24 \text{ kJ/m}^{2}$	J _Q =	122.26 kJ/m ²	kJ/m ²
(uncertainty > 4%)	Excessive crack extension:	ck extension:	YES
TM _{JQ} = 14.74 MPa	TMJQ =	29.19	MPa
TM _{Jlimit} = 3.52 MPa	TM _{Jlimit} =	9.77	MPa
TM _{mean} = 9.13 MPa	TM _{mean} =	19.48	MPa


01			Estimates of initial crack size:	
0,qmean =	$a_{0,q_3} = 4.769$	a _{0q,2} =	a _{0q,1} =	
4.794	4.769	4.821	4.793	
mm	mm	mm	mm	
			Diff :	
	0.025	0.027	0.001	
		> 0.002W =		
	0.0200	0.0200	0.0200	
	mm	mm	mm	

$\label{eq:constraint} \begin{array}{rcl} Thickness \ B &= & 10.00\\ \\ Initial ligament \ b_0 &= & 4.89\\ \\ Regression line \ slope \ in \ \Delta a_{q_1} &: & 90.9 \end{array}$	Quali	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{oq} fit :	# of data between 0.4J $_{ m q}$ and J $_{ m q}$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.15124$	J _Q - Q
mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	Qualification of J_Q as $J_{\rm k}$	V,	<	0.952	8	11	0.33		J_{Q} - Qualification of data
IQ/SY IQ/SY	J _Q as J _k	VALID	VALID	0.952 < 0.96	ω	≥8	mm	< 1.0	n of data
 → QUALIFIED → QUALIFIED → QUALIFIED 				ightarrow data set not adequate	ightarrow QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	ightarrow qualified	

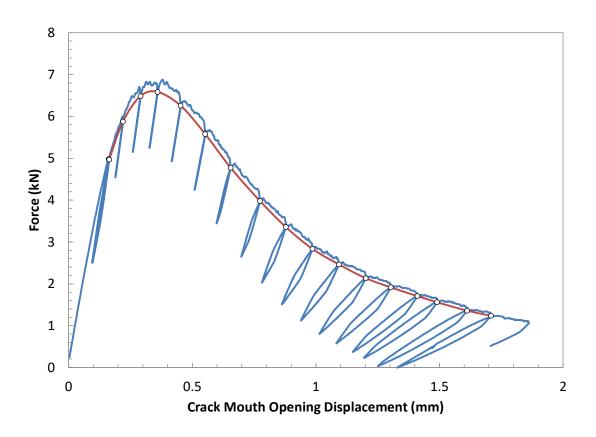
σ _{γs} = 846.0 MPa	v = 0.3	E = 128804 MPa	Tensile Properties		a _N = 3 mm	W = 10.00 mm	B _N = 8.00 mm	B = 10.00 mm	Basic dimensions		Orientation = N/A	Identification = CN-4-1	Type = PCCv	Specimen Information	Material Designation = Ti64 AM Notch = fatigue precrack	
TM _{Jlimit} = 2.14 MPa	TM _{JQ} = 9.73 MPa	(uncertainty > 4%)	J _Q = 176.29 kJ/m ²	Elastic Unloading Compliance		Fracture type = stable tearing	Analysis of Results		$\Delta a_{\text{predicted}} = 3.06$	$\Delta a_p = 3.29$	a _f = 8.28	$a_{0q} = 5.11$	a ₀ = 4.99	Crack Size Information	Basic Test Information Loading Rate = Test temperature = 21	TEST REPORT
TM _{Jlimit} = 6.95 MPa	TM _{JQ} = 23.61 MPa	Excessive crack extension: YES	$J_{Q} = 125.57 \text{ kJ/m}^{2}$	Normalization Data Reduction		ng			mm	mm	mm	mm	mm		MPa√m/s (linear elastic portion) ℃	

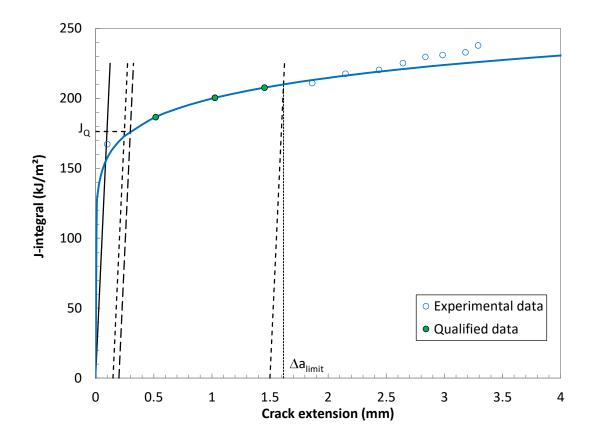
Estimates of initial crack size: a_{0q1} = 4.881 mm a_{0q2} = 4.892 mm a_{0q3} = 4.881 mm a_{0,qmean} = 4.885 mm **QUALIFICATION OF DATA** Diff: 0.004 <0.002W= 0.0200 mm 0.007 <0.002W= 0.0200 mm 0.003 <0.002W= 0.0200 mm

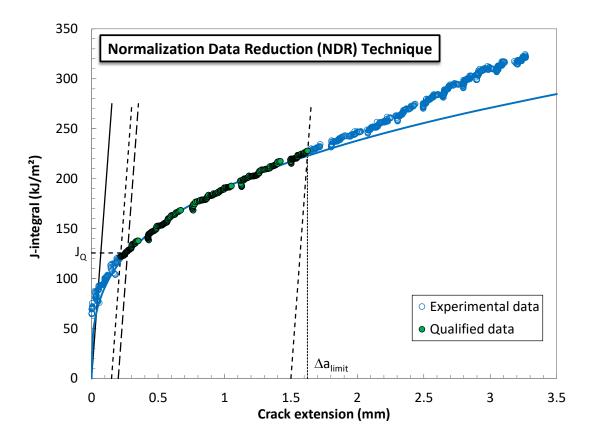
$J_{\mathbf{Q}}$ - Qualification of data	Power coefficient $f_{-} = 0.103/81 < 1.0 \rightarrow 0.1111111$				0.12 mm 5 <8 4 ≥3
		→ QUALIFIED	→ QUALIFIED→ DATA SET ADEQUATE	 → QUALIFIED → DATA SET ADEQUATE → DATA SET NOT ADEQUATE 	 > QUALIFIED > DATA SET ADEQUATE > DATA SET NOT ADEQUATE > QUALIFIED

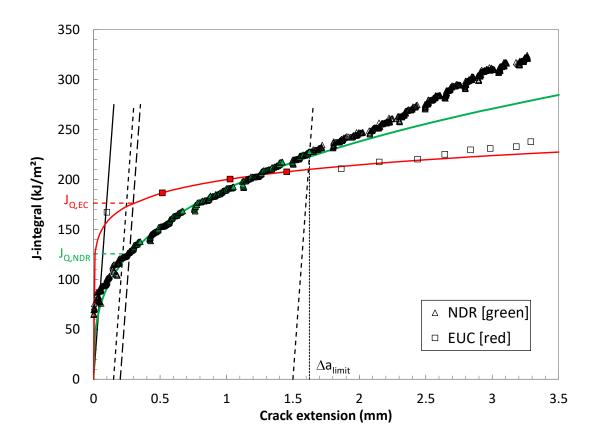
Thickness B = 10.00 Initial ligament b ₀ = 5.01	Quali	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{0q} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.103481 < 1.0$	J _Q - Q
mm > 10 JQ/Sy mm > 10 JQ/Sy	Qualification of ${\rm J}_{\rm Q}$ as ${\rm J}_{\rm k}$	NOT	<	1.000	4	ы	0.12	0.103481	J_{Q} - Qualification of data
IQ/SY IQ/SY	J _Q as J _k	NOT VALID	VALID	1.000 ≥ 0.96	υ	~ 8	mm	< 1.0	ר of data
ightarrow QUALIFIED				ightarrow data set adequate	→ QUALIFIED	ightarrow data set not adequate	ightarrow data set adequate	\rightarrow QUALIFIED	

Regression line slope in Δa_{Ω} : 61.2 MPa < Sy

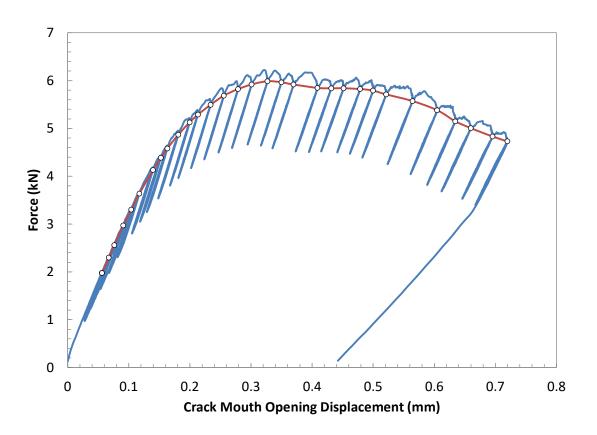

 \rightarrow QUALIFIED

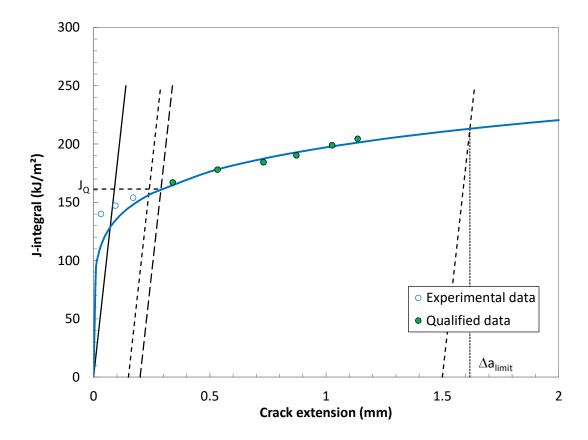

σ_{TS} = 955.0 MPa

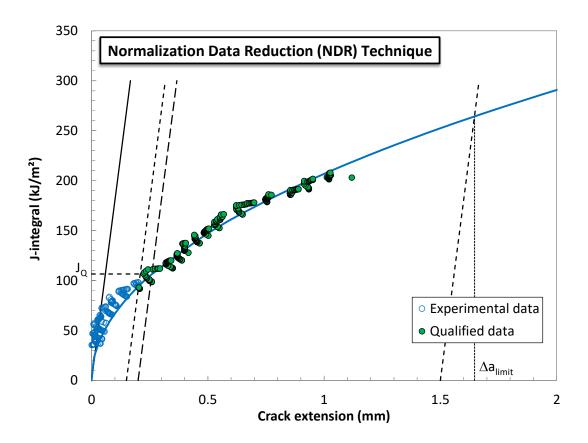

TM_{mean} =

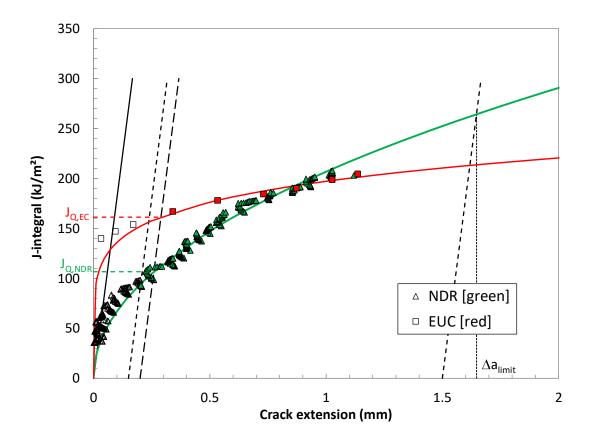

5.93 MPa

TM_{mean} = 15.28 MPa

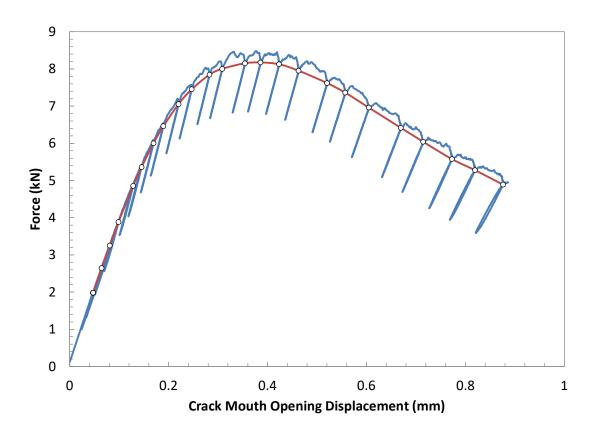


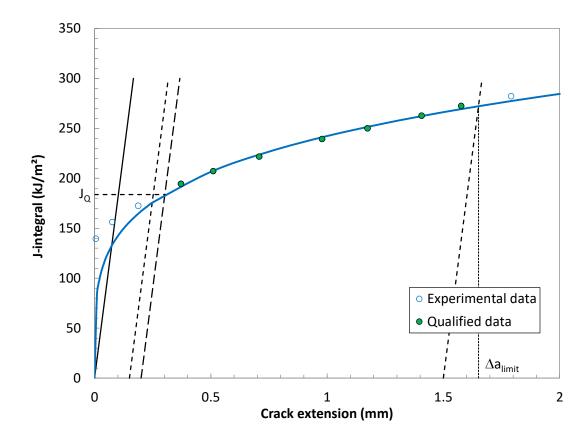


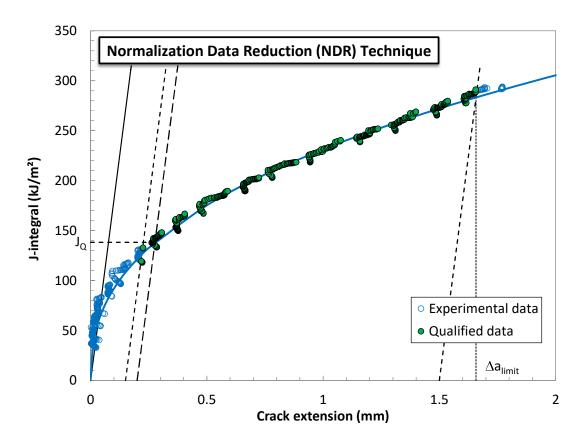

	TEST REPORT		
Material	Basic Test Information		
Designation = Ti64 AM Notch = fatigue precrack	Loading Rate = Test temperature =	21	MPa√m/s (linear elastic portion) ℃
Specimen Information	Crack Size Information		
Type = PCCv	a ₀ =	4.89	mm
Identification = CN-4-2	a _{0q} =	4.94	mm
Orientation = N/A	a _f =	6.02	mm
	$\Delta a_{p} =$	1.14	mm
Basic dimensions	$\Delta a_{\text{predicted}} =$	0.59	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	ble teai	'ing
a _N = 3 mm			
	Elastic Unloading Compliance	liance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 161.37 \text{ kJ/m}^{2}$	m²	$J_{Q} = 106.64 \text{ kJ/m}^{2}$
E = 128804.1 MPa	(uncertainty > 4%)	-	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 14.30 MPa	ฉั	TM _{JQ} = 32.07 MPa
σ _{γs} = 846.0 MPa	TM _{Jlimit} = 3.38 MPa	ฉั	TM _{Jlimit} = 12.51 MPa
σ _{тs} = 955.0 MPa	TM _{mean} = 8.84 MPa	ă	TM _{mean} = 22.29 MPa

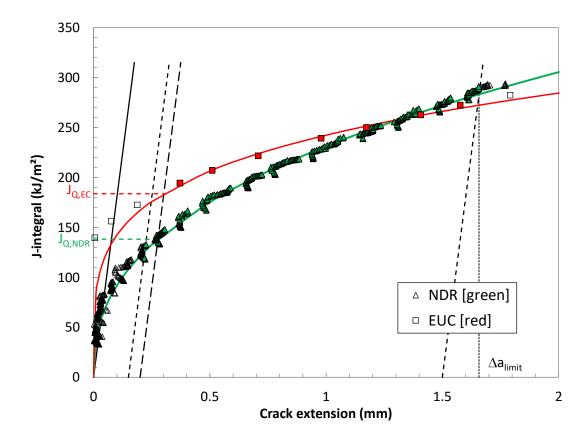

Г

ightarrow qualified ightarrow qualified ightarrow qualified


Material	Basic Test Information	
Designation = Ti64 AM	Loading Rate =	MPa√m/s (linear elastic portion)
Notch = fatigue precrack	Test temperature = 21	°C
Specimen Information	Crack Size Information	
Type = Cv-SN	$a_0 = 4.50$	mm
Identification = CN-4-3	$a_{0q} = 4.15$	mm
Orientation = N/A	$a_{\rm f} = 6.29$	mm
	$\Delta a_{\rm p} = 1.79$	mm
Basic dimensions	$\Delta a_{\text{predicted}} = 1.37$	mm
B = 10.00 mm		
B _N = 8.00 mm	Analysis of Results	
W = 10.00 mm	Fracture type = stable tearing	ring
a _N = 3 mm		
	Elastic Unloading Compliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 183.74 \text{ kJ/m}^{2}$	$J_{Q} = 138.20 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	
v = 0.3	TM _{JQ} = 22.34 MPa	$TM_{JQ} = 31.80$ MPa
σ _{γs} = 846.0 MPa	TM _{Jlimit} = 6.05 MPa	TM _{Jlimit} = 10.88 MPa
σ _{тs} = 955.0 MPa	TM _{mean} = 14.20 MPa	TM _{mean} = 21.34 MPa

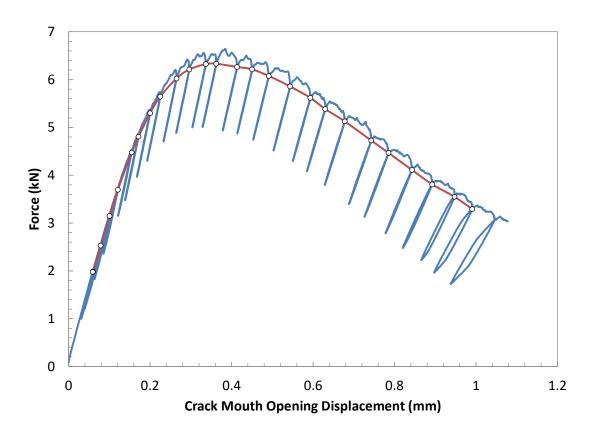

				n of data	Qualification of data	Q			
					mm	4.500	a _{0,qmean} = 4.500		
з	0.0200	0.000 < 0.002W =	0.000		mm	4.500	$a_{0,q3} = 4.500$		
з	0.0200	0.004 < 0.002W =	0.004		mm	4.504	$a_{0q,2} = 4.504$		
з	0.0200	Diff: 0.004 < 0.002W = 0.0200	0.004	Diff :	mm	4.496	a _{0q,1} = 4.496	Estimates of initial crack size:	μ.
			ΛTA	QUALIFICATION OF DATA	CATIC	ALIFI	QU,		

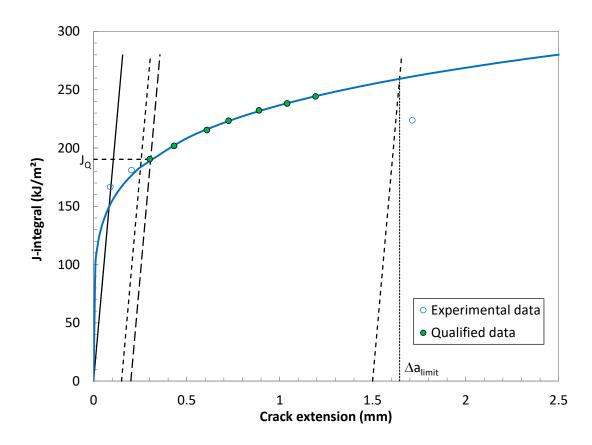

mm mm

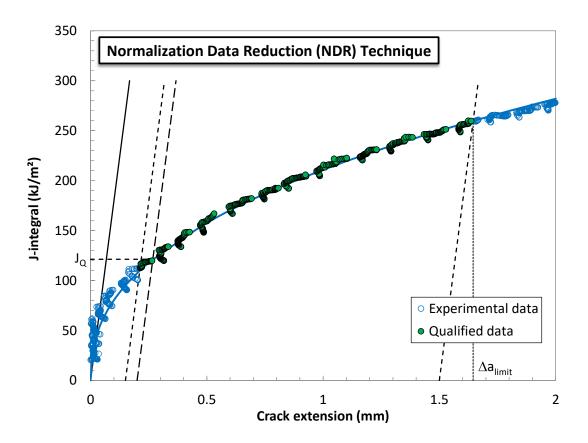

Differer	(before adjustment) $\Delta a_{pred} = 1.37$ mm (predicted	Crack extension prediction	
nce =	ored =	Δa _p =	
Difference = -0.42 mm	1.37	$\Delta a_{p} = 1.79$	
mm PREDICTION NOT ACCEPTABLE	mm (predicted)	mm (measured)	

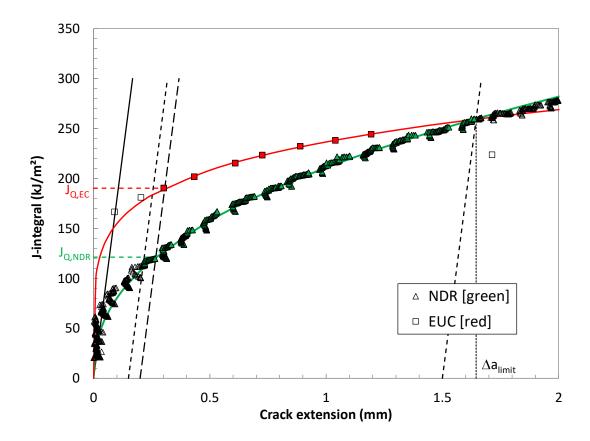
	101			
→ OUALIFIED	0/5/	mm > 10 10/Sv	10.00	Thickness B =
	J _Q as J _k	Qualification of $J_{\rm Q}$ as $J_{\rm k}$	Quali	
	VALID	17	ta points :	Number of qualified data points :
	VALID	17	:ribution :	Data points distribution :
ightarrow data set adequate	≥ 0.96	0.963 ≥ 0.96	nt a _{oq} fit :	Correlation coefficient a _{0q} fit :
ightarrow QUALIFIED	∾ 3	7	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set not adequate	^ 8	ω	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.35	a _{0q} - a ₀ =	
\rightarrow QUALIFIED	< 1.0	0.231228	icient C ₂ =	Power coefficient $C_2 = 0.231228 < 1.0$
	of data	J _Q - Qualification of data	J _α - Q	

ANNEX 4 Classic HIP, supported


	TEST REPORT		
Material Designation = Ti64 AM Notch = Fatigue precrack	Basic Test Information Loading Rate = Test temperature =	21	MPa√m/s (linear elastic portion) °C
Specimen Information	Crack Size Information		
Type = PCVN	a ₀ =	5.02	mm
Identification = CS-4-1	= 90d	4.92	mm
Orientation = N/A	a _f =	7.03	mm
	∆a _p =	2.01	mm (40% of uncracked ligament)
Basic dimensions	$\Delta a_{\text{predicted}} =$	1.71	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	able tea	ring
a _N = 3 mm			
	Elastic Unloading Compliance	pliance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 190.29 \text{ kJ/m}^{2}$	/m²	$J_{Q} = 121.36 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	5	Excessive crack extension: YES
v = 0.3	TM _{JQ} = 18.35 MPa	Ра	ТМ _{JQ} = 30.45 МРа
σ _{γs} = 841.0 MPa	TM _{Jlimit} = 4.65 MPa	Ра	TM _{Jlimit} = 10.61 MPa
σ _{тs} = 952.0 MPa	TM _{mean} = 11.50 MPa	Pa	TM _{mean} = 20.53 MPa

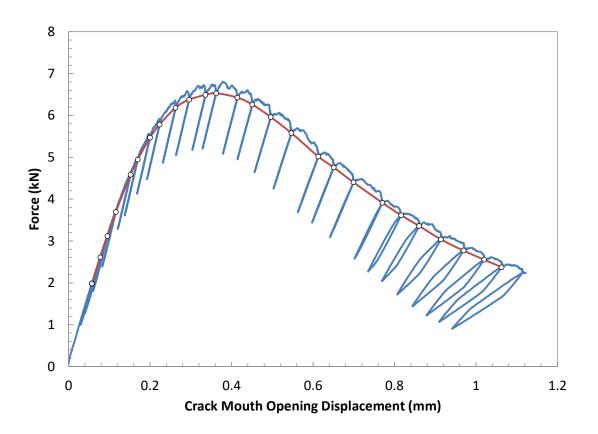

a			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 5.012	QU,
5.020	5.032	5.016		
mm	mm	mm	mm	CATIO
			Diff :	QUALIFICATION OF DATA
	0.012	0.004	0.008	ATA
	< 0.002W =	< 0.002W =	< 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Qualification of data

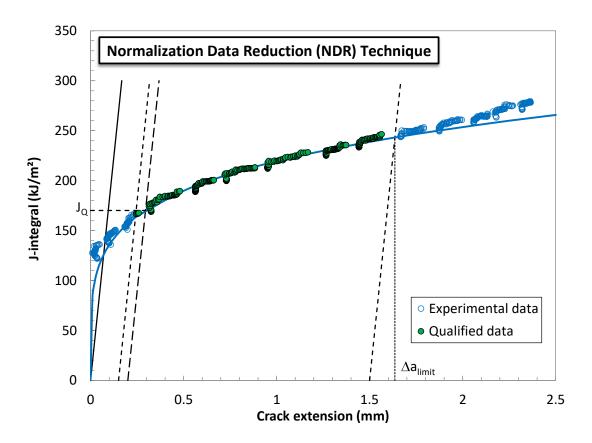

	J _Q as J _k	Qualification of J_Q as J_k	Qualit
	VALID	v,	Number of quantied data points .
	VALID	: <	Data points distribution :
ightarrow data set not adequate	0.859 < 0.96	0.859	Correlation coefficient a _{0q} fit :
→ QUALIFIED	υ	00	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	IV ∞	13	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.11	$ a_{0q} - a_0 = 0.11$
→ QUALIFIED	< 1.0	0.184167	Power coefficient $C_2 = 0.184167 < 1.0$
	ו of data	J_{Q} - Qualification of data	J _α - Qι
PREDICTION NOT ACCEPTABLE	mm	-0.29	Difference =
licted)	mm (predicted)	1.71	(before final adjustment) $\Delta a_{pred} =$
isured)	mm (measured)	$\Delta a_{p} = 2.01$	Crack extension prediction $\Delta a_p =$

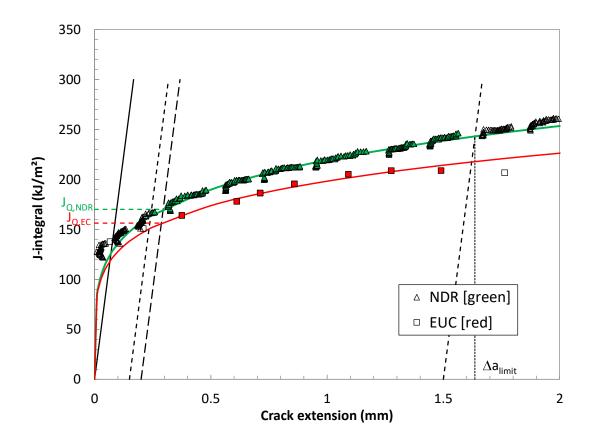
$\begin{split} J_{0}-\text{ Qualification of dat}\\ & \text{Power coefficient } C_{2}=0.184167 < 1.0\\ & \left a_{0q}-a_{0}\right =0.11 & \text{mm}\right.\\ & \text{ of data available to calculate } a_{0q}: 13 \geq 8\\ & \text{ # of data between } 0.4_{1q} \text{ and } J_{q}: 8 \geq 3\\ & \text{ Correlation coefficient } a_{0q} \text{ fit : } 0.359 < 0.9\\ & \text{Data points distribution : } VALID\\ & \text{Number of qualified data points : } VALID\\ & \text{ Qualification of } J_{0} \text{ as } J \end{split}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ion of data 67 < 1.0 ≥ 8 ≥ 3) < 0.96 VALID VALID VALID VALID	 → QUALIFIED → DATA SET ADEQUATE → DATA SET ADEQUATE → QUALIFIED → DATA SET NOT ADEQUATE
Quali	lification of J _Q as mm > 10 JQ/Sy	J _Q as J _{Ic} Q/Sy	
Regression line slope in Δa_{Q} : 114.5 MPa < Sy	MPa < Sy		ightarrow QUALIFIED

TM _{Jlimit} = 4.97 MPa TM _{mean} = 12.13 MPa	MPa MPa	$TM_{mean} = 4.10 \text{ N}$ $TM_{mean} = 10.36 \text{ N}$	MPa MPa	841.0 952.0	σ _{YS} =
TM _{JQ} = 19.29 MPa	MPa	TM _{JQ} = 16.63 Ν		0.3	= ۷
Excessive crack extension: YES	%)	(uncertainty > 4%)	MPa	128804 MPa	E =
$J_{Q} = 170.07 \text{ kJ/m}^{2}$	J/m²	$J_{Q} = 156.38 \text{ kJ/m}^{2}$	•.	Tensile Properties	Tensile F
Normalization Data Reduction	npliance	Elastic Unloading Compliance			
			mm	ω	a _N =
ing	table teari	Fracture type = stable tearing	mm	10.00	= W
		Analysis of Results	mm	8.00	B _N =
			mm	10.00	B =
mm	2.59	$\Delta a_{\text{predicted}} =$			Basic dimensions
mm (49% of uncracked ligament)	2.46	$\Delta a_{p} =$			
mm	7.47	a _f =		√/A	Orientation = N/A
mm	4.78	= ^{bo} e		CN-4-2	Identification = CN-4-2
mm	5.01	a ₀ =		°CVN	Type = PCVN
		Crack Size Information		on	Specimen Information
°C	21	Test temperature =	ecrack	atigue pr	Notch = Fatigue precrack
MPa√m/s (linear elastic portion)		Loading Rate =		164 AM	Designation = Ti64 AM
		Basic Test Information			Material
	'	TEST REPORT			


			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.853	QU
4.839	4.834	4.831	4.853	
mm	mm	mm	mm	
			Diff :	QUALIFICATION OF DATA
	0.005	0.009		ATA
	< 0.002W =	< 0.002W =	0.013 < 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


Diffe	(before final adjustment) $\Delta a_{pred} = 2.59$ mm (predicted)	Crack extension prediction	
erence =	$\Delta a_{pred} =$	$\Delta a_p =$	
0.13	2.59	2.46	
Difference = 0.13 mm (PREDICTION ACCEPTABLE)	mm (predicted)	$\Delta a_p = 2.46 \text{ mm} (\text{measured})$	

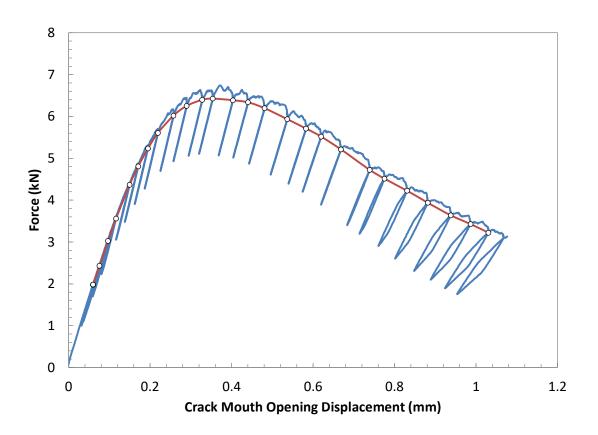

Qualification of data

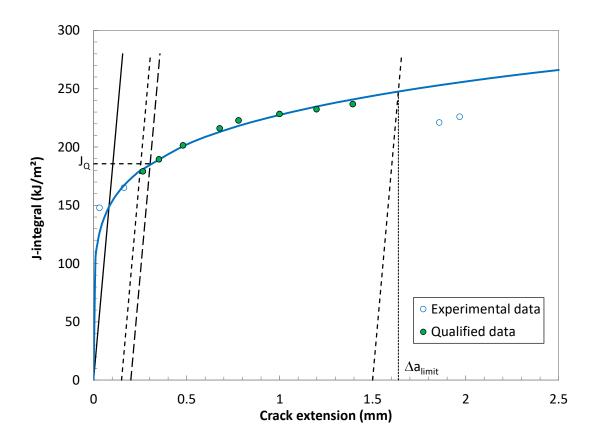

103.7	Initial ligament $b_0 = 4.99$ I	Thickness B = 10.00 r	Qualif	Number of qualified data points :	Data points distribution :	Correlation coefficient a _{oq} fit :	# of data between 0.4J $_q$ and J $_q$:	# of data available to calculate a_{0q} :	a _{0q} - a ₀ =	Power coefficient $C_2 = 0.190531 < 1.0$	J _Q - Qu	
MPa < Sy	mm > 10 JQ/Sy	mm > 10 JQ/Sy	Qualification of $J_{\rm Q}$ as $J_{\rm k}$: <	0.861	7	13	0.23	0.190531	J_{Ω} - Qualification of data	
	IQ/Sy	IQ/SY	J _Q as J _k	VALID	VALID	0.861 < 0.96	ı∨ 3	≥8	mm	< 1.0	ח of data	
→ QUALIFIED	\rightarrow QUALIFIED	ightarrow QUALIFIED				ightarrow data set not adequate	→ QUALIFIED	ightarrow data set adequate	ightarrow data set adequate	\rightarrow QUALIFIED		

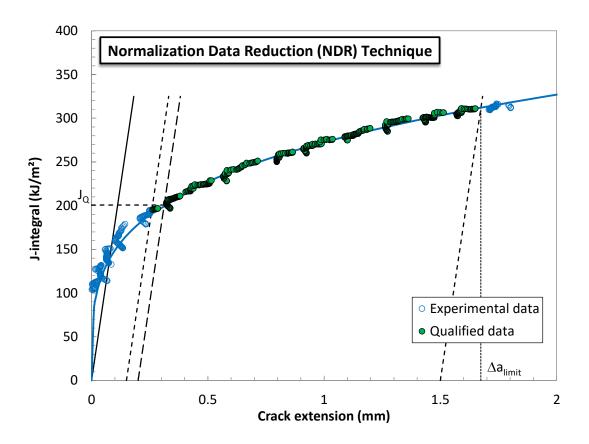
	^a r co Dr	Quannication of J ⁰ as J ⁶	L L L L L L L L L L L L L L L L L L L
		firstion of	0
	VALID	<	Number of qualified data points :
	VALID	<	Data points distribution :
ightarrow data set not adequate	0.861 < 0.96	0.861	Correlation coefficient a _{oq} fit :
\rightarrow QUALIFIED	ı∨ 3	7	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	∨ ∞	13	# of data available to calculate a_{0q} :
→ DATA SET ADEQUATE	mm	0.23	a _{0q} - a ₀ =
→ QUALIFIED	< 1.0	0.190531	Power coefficient $C_2 = 0.190531 < 1.0$
	n of data	$J_{\rm Q}$ - Qualification of data	J _Q - Q

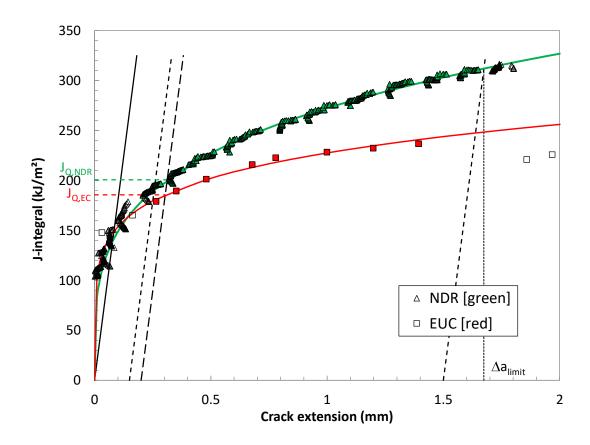
•	MPa		MPa	952.0	- sho
$TM_{\text{tirest}} = 7.85$ MPa	MPa	4.14	MPa	841.0	σ _{vc} =
TM _{JQ} = 27.08 MPa	ЛРа	TM _{JQ} = 16.74 MPa		0.3	V =
Excessive crack extension: YES	%)	(uncertainty > 4%)	MPa	128804 MPa	E =
$J_{q} = 200.67 \text{ kJ/m}^{2}$	J/m²	$J_{Q} = 185.65 \text{ kJ/m}^{2}$		Tensile Properties	Tensile F
Normalization Data Reduction	pliance	Elastic Unloading Compliance			
			mm	ω	a _N =
ing	table tearii	Fracture type = stable tearing	mm	10.00	= W
		Analysis of Results	mm	8.00	B _N =
			mm	10.00	B =
mm	1.97	$\Delta a_{\text{predicted}} =$			Basic dimensions
mm (38% of uncracked ligament)	1.84	$\Delta a_p =$			
mm	7.00	a _f =		V/A	Orientation = N/A
mm	4.87	a _{0q} =		CS-4-3	Identification = CS-4-3
mm	5.16	a ₀ =		CVN	Type = PCVN
		Crack Size Information		on	Specimen Information
MPa√m/s (linear elastic portion) °C	21	Loading Rate = Test temperature =	ecrack	nation = Ti64 AM Notch = Fatigue precrack	Designation = Ti64 AM Notch = Fatigue
-		Basic Test Information			Material
		TEST REPORT			

			Estimates of initial crack size:	
a _{0,qmean} =	a _{0,q3} =	a _{0q,2} =	a _{0q,1} = 4.934	QU
4.911	4.892	4.908	4.934	
mm	mm	mm	mm	
			Diff :	QUALIFICATION OF DATA
	0.019	0.003		ATA
	< 0.002W =	< 0.002W =	0.023 > 0.002W =	
	0.0200	0.0200	0.0200	
	mm	mm	mm	


\rightarrow QUALIFIED	IQ/Sy	mm > 10 JQ/Sy	4.84	Initial ligament $b_0 =$
ightarrow QUALIFIED	IQ/SY	mm > 10 JQ/Sy	10.00	Thickness B =
	⁻ J _Q as J _{Ic}	Qualification of J_{Q} as J_{k}	Quali	
	VALID	<	ta points :	Number of qualified data points :
	VALID	<	tribution :	Data points distribution :
ightarrow data set not adequate	0.892 < 0.96	0.892	nt a _{oq} fit :	Correlation coefficient a _{0q} fit :
\rightarrow QUALIFIED	∾ 3	8	J_q and J_q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	∣∨ 80	13	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.29	a _{0q} - a ₀ =	_
ightarrow QUALIFIED	< 1.0	0.170757	icient C ₂ =	Power coefficient $C_2 = 0.170757 < 1.0$
	n of data	$J_{\rm Q}$ - Qualification of data	J _α - α	
(PREDICTION ACCEPTABLE)	mm	0.12	Difference =	Di
dicted)	mm (predicted)	1.97	$\Delta a_{pred} =$	(before final adjustment) $\Delta a_{pred} =$


Regression line slope in Δa_{Ω} : 104.4 MPa < Sy


 \rightarrow QUALIFIED


# of data bots on a long l . o	# of data available to calculate a_{0q} :	$ a_{0q} - a_0 = 0.29$	Power coefficient $C_2 = 0.170757 < 1.0$	J _Q - Q	Difference =	(before final adjustment) $\Delta a_{pred} =$	Crack extension prediction $\Delta a_p =$	
		~	0.1	lualif				
	13	0.29	70757	icatior	0.12	1.97	1.84	
/ 0	I∨ 80	mm	< 1.0	J_{Q} - Qualification of data	mm	mm (predicted)	mm (measured)	
	ightarrow data set adequate	→ DATA SET ADEQUATE	ightarrow QUALIFIED		(PREDICTION ACCEPTABLE)	dicted)	asured)	

Qualification of data

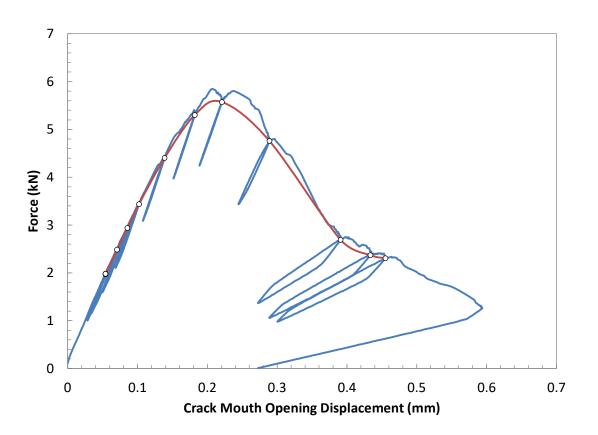
ANNEX 5

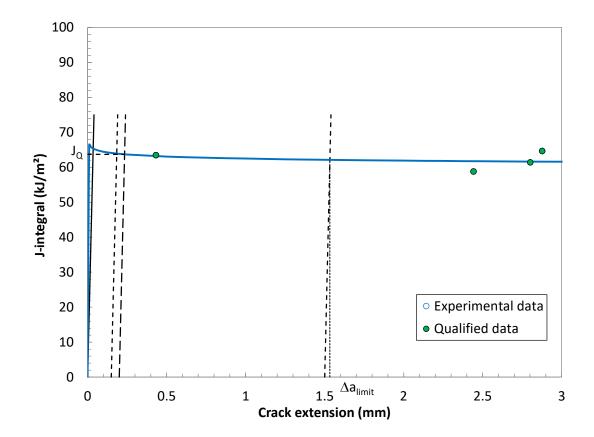
Super-β transus HIP, non-supported

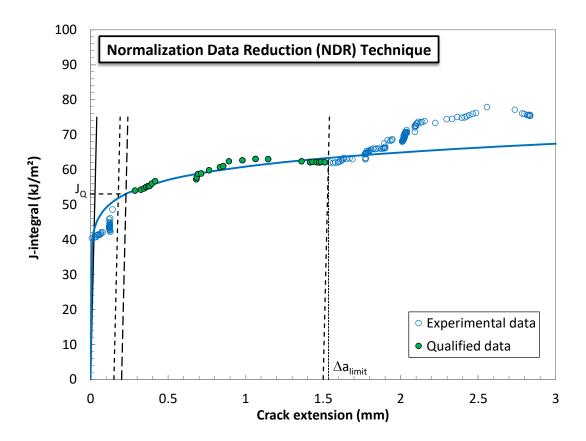
	TEST REPORT		
Designation = Ti64 AM	Loading Rate =	_	MPavm/s (linear elastic portion)
Notch = Fatigue precrack	Test temperature =	21	°C
Specimen Information	Crack Size Information		
Type = PCVN	a ₀ =	5.05	mm
Identification = BN-5-1	a _{0q} =	4.76 1	mm
Orientation = N/A	a _f =	7.92	mm
	$\Delta a_{p} =$	2.88	mm (58% of uncracked ligament)
Basic dimensions	$\Delta a_{predicted} =$	2.38	mm
B = 10.00 mm			
B _N = 8.00 mm	Analysis of Results		
W = 10.00 mm	Fracture type = stable tearing	ble tearir	BL
a _N = 3 mm			
	Elastic Unloading Compliance	liance	Normalization Data Reduction
Tensile Properties	$J_{Q} = 64 \text{ kJ/m}^2$	m²	$J_{Q} = 53.05 \text{ kJ/m}^{2}$
E = 128804 MPa	(uncertainty > 4%)	2	Excessive crack extension: YES
v = 0.3	TM _{JQ} = -0.54 MPa	a	$TM_{JQ} = 3.18$ MPa
$\sigma_{YS} = 885.0$ MPa	TM _{Jlimit} = -0.08 MPa	a	TM _{Jlimit} = 0.57 MPa
σ _{тs} = 985.0 MPa	TM _{mean} = -0.31 MPa	ă	TM _{mean} = 1.88 MPa

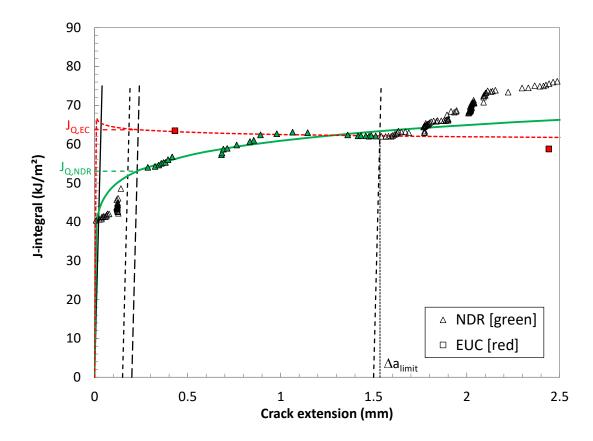
QUAL
LIFICAT
ION OF
F DATA

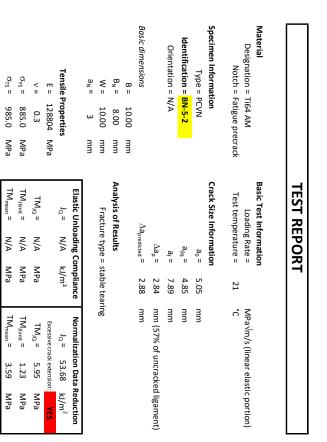
Estimates of initial crack size:

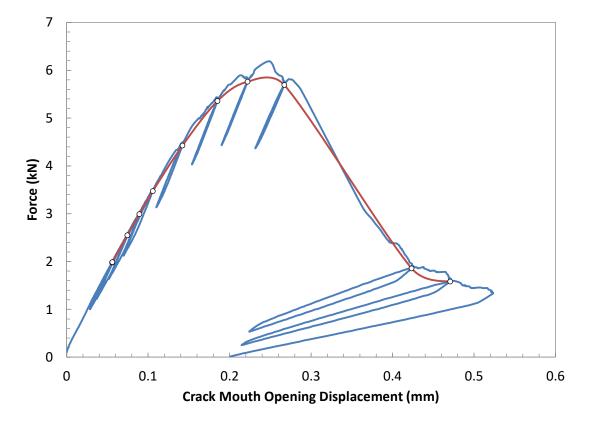

 $a_{0q_1} = 4.742$ mm $a_{0q_2} = 4.766$ mm $a_{0q_3} = 4.734$ mm $a_{0,qmean} = 4.747$ mm

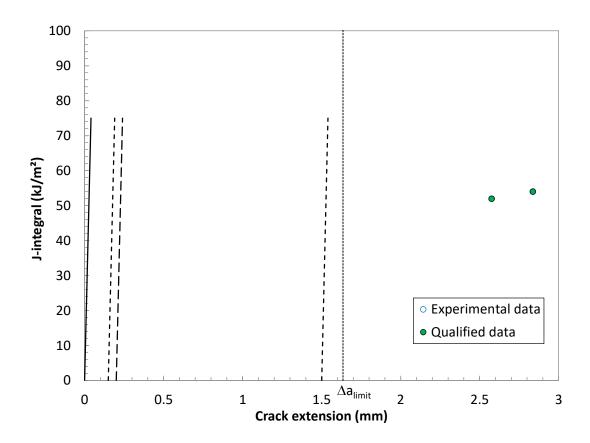

Diff: 0.005 < 0.002W = 0.0200 mm 0.019 < 0.002W = 0.0200 mm 0.013 < 0.002W = 0.0200 mm

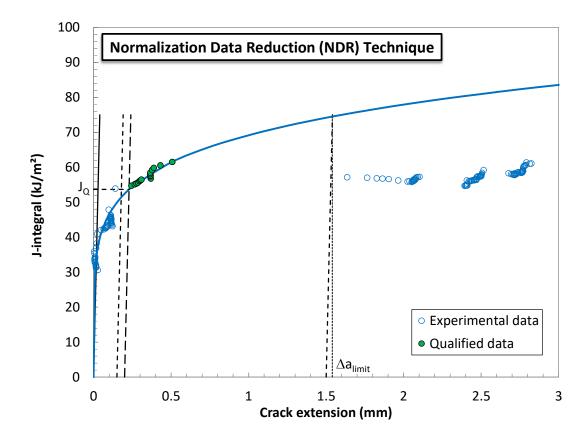

I

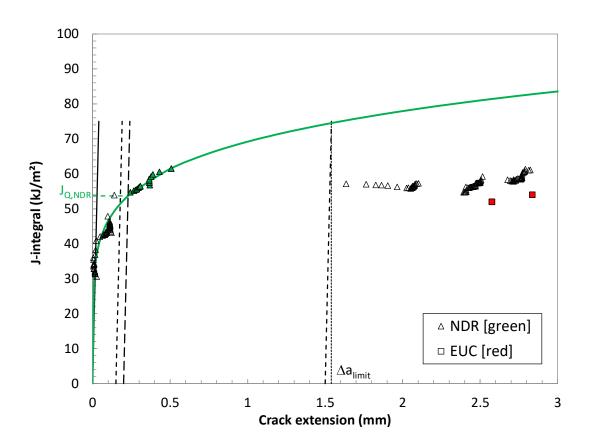

Qualification of data	
Crack extension prediction $\Delta a_p = 2.88$ mm (measured)	red)
(before final adjustment) $\Delta a_{pred} = 2.38$ mm (predicted)	:ed)
Difference = -0.50 mm PREDICT	PREDICTION NOT ACCEPTABLE
J _Q - Qualification of data	
Power coefficient C $_2$ = -0.01344 < 1.0 $ ightarrow$ QUA	
$ a_{0q} - a_0 = 0.28$ mm \rightarrow DAT/	ightarrow data set adequate
8 ≥8	ightarrow data set adequate
# of data between 0.4J $_{ m q}$ and J $_{ m q}$: 5 \geq 3 \rightarrow QUA	→ QUALIFIED
Correlation coefficient a_{0q} fit : 0.970 \geq 0.96 \rightarrow DAT/	ightarrow data set adequate
Data points distribution : VALID	


 → QUALIFIED → QUALIFIED → QUALIFIED 	a/sy a/sy	mm > 10 JQ/Sy mm > 10 JQ/Sy MPa < Sy	10.00 4.95 21.6	Thickness B = Initial ligament b_0 = Regression line slope in Δa_0 :
lysis]	[NDR ana	Qualification of J _o as J _{lc} [NDR analysis]	Jalification	Q
	NOT VALID	NOT	ta points :	Number of qualified data points :
	VALID	<i>1</i> /	tribution :	Data points distribution :
ightarrow data set adequate	≥ 0.96	0.970 ≥ 0.96	ent a _{0q} fit :	Correlation coefficient a _{0q} fit :
\rightarrow QUALIFIED	v 3	л	IJ _q and J _q :	# of data between 0.4J $_q$ and J $_q$:
ightarrow data set adequate	I∨ 80	∞	ulate a _{0q} :	# of data available to calculate a_{0q} :
ightarrow data set adequate	mm	0.28	a _{0q} - a ₀ =	_
→ QUALIFIED	< 1.0	-0.01344	icient C ₂ =	Power coefficient $C_2 = -0.01344 < 1.0$
	ı of data	J_{Q} - Qualification of data	J _α - α	

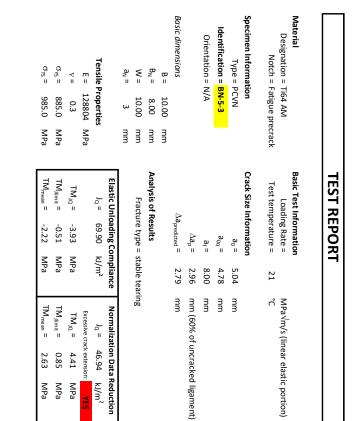


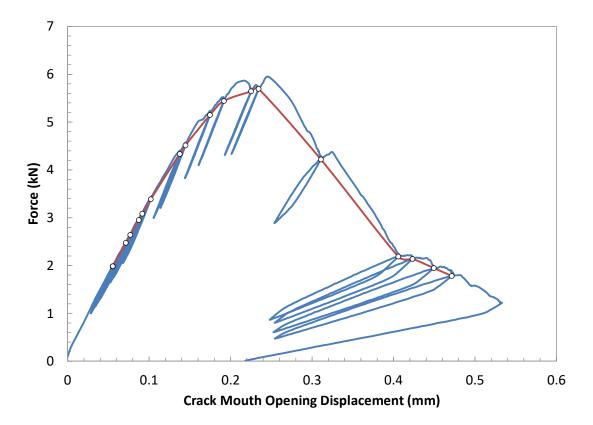

TM_{mean} =

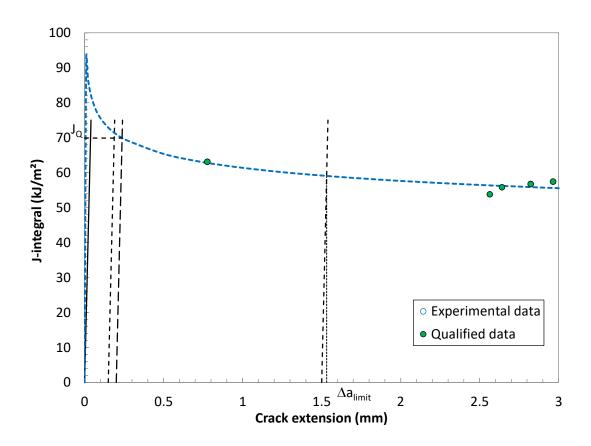

N/A

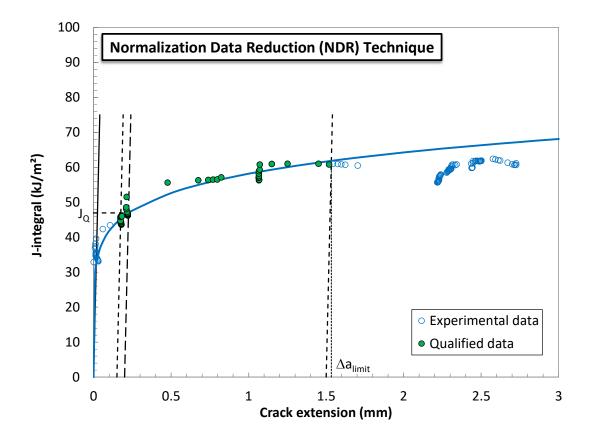

 $TM_{mean} =$

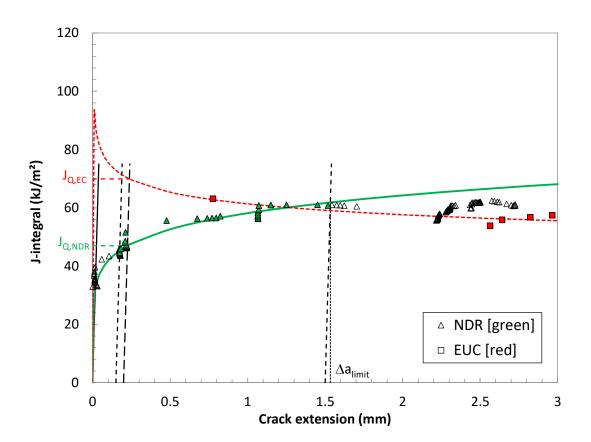
3.59

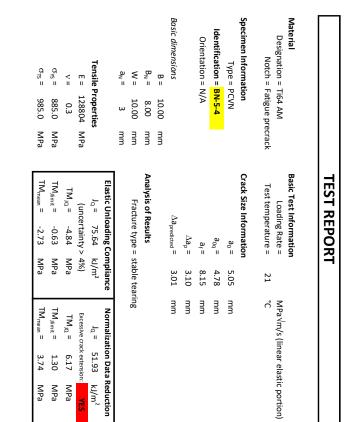

MPa

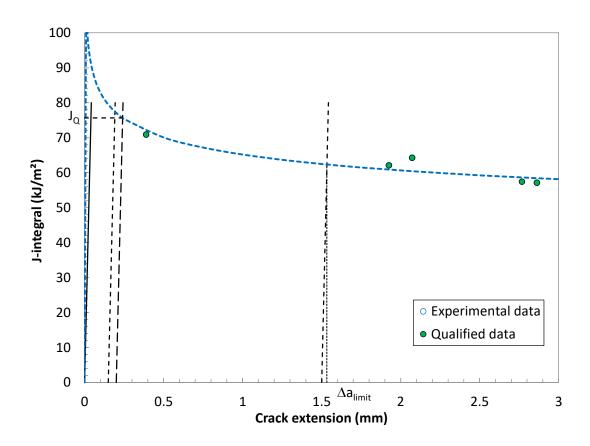


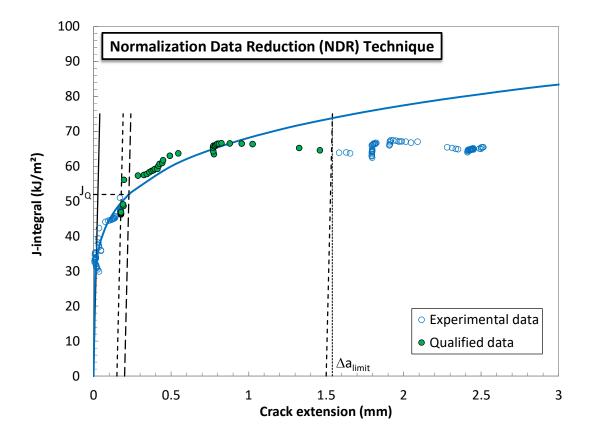


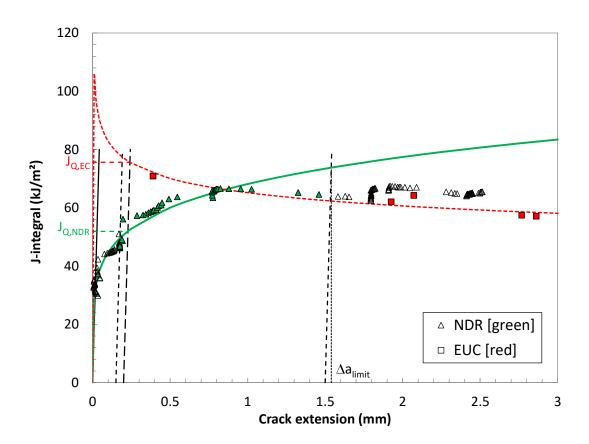

MPa MPa MPa




4.773 4.807 4.765		Diff:	0.009 0.016	< 0.002W = > 0.002W = < 0.002W =	0.0200 0.0200	
	mm		0.010	< 0.002W		Ē
Quali	Qualification of data	ıf data				
Crack extension prediction $\Delta a_p =$	2.96	mm (measured)	ured)			
(before final adjustment) $\Delta a_{pred} =$	2.79	mm (predicted)	cted)			
Difference =	-0.18	mm	PREDICTIC	PREDICTION NOT ACCEPTABLE	TABLE	
J _Q - Qui	$J_{\rm Q}$ - Qualification of data	of data				I
Power coefficient $C_2 = -$	-0.09049	< 1.0	\rightarrow QUALIFIED	FIED		
a _{oq} - a _o =	0.26	mm	ightarrow data s	ightarrow data set adequate		
# of data available to calculate a _{0q} :	13	I∨ ∞	ightarrow data s	ightarrow data set adequate		
# of data between $0.4 J_q$ and J_q :	9	∾3	\rightarrow QUALIFIED	FIED		
Correlation coefficient a _{0q} fit :	0.955	< 0.96	ightarrow data s	ightarrow data set not adequate	JATE	
Data points distribution : Number of qualified data points :	NOT	NOT VALID VALID				
Qualification of J_{Q} as J_{lc} [NDR analysis]	of J _Q as J _{Ic}	[NDR analy	sis]			
	mm > 10 JQ/Sy mm > 10 JQ/Sy	Q/SY Q/SY	ightarrow qualified $ ightarrow$ qualified	FIED		
Thickness B = 10.00 n Initial ligament b ₀ = 4.96 n			\rightarrow QUALIFIED	FIED		







4.802 mm 0.019 < 0.002W =	4.776 mm 0.007 < 0.002W = 0.0200	a _{q1,1} = 4,3 a _{q2,2} = 4,3 a _{q3} = 4,3 a _{q3} = 4,3 a _{q3} = 4,3 a _{q3} = 4,3 adjustment) A adjustment) A biffere a _{q1} - 1 a _{q2} - 1 a _{q3} - 1 a _{q4} - 1 	redic	0.012 0.0019 0.007 0.007 red) PREDICTIC	< 0.002W = < 0.002W = < 0.002W =	0.0200 0.0200 0.0200 E)
	$a_{00,1}^{-1} = 4.771$ mm 0.012 $0.002W = 0.0200$ $a_{00,2}^{-1} = 4.802$ mm 0.019 $< 0.002W = 0.0200$		7	6 2 0		
	$a_{0_{1},2}$ = 4.802 mm 0.019 < 0.002W = 0.0200	Estimates of initial crack size: $a_{00,1} = 4.771$ mm	Diff :	0.012	< 0.002W =	0.0200
	4.802 mm 0.019 < 0.002W = 0.0200	orly a				
4.776 mm 0.007 < 0.002W = 0.0200		100				
4.776 mm 0.007 < 0.002W = 0.0200		4.783				
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm	4.783					
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm	4.783					
4.776 mm 0.007 <0.002W = 0.0200 4.783 mm	4.783	Qualification	of data			
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm Qualification of data	4.78					
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm Qualification of data	4.78	Δa _p =	mm (measu	red)		
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm Qualification of data Δa _p = 3.10 mm (measured)	4.783 mm Qualification of ∆a _p = 3.10	∧	mm (nredict	-p-d)		
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm Qualification of data Map = 3.10 mm (measured)	4.783 mm Qualification of $\Delta a_p = 3.10$	∆d _{pred} =	mm (predic	.eu)		
4.776 mm 0.007 <0.002W = 0.0200 4.783 mm Qualification of data Δa _p = 3.10 mm (measured) Δa _{pred} = 3.01 mm (predicted)	4.783 mm Qualification of Δa_{p} = 3.10 Δa_{pred} = 3.01			PREDICTIC	IN ACCEPTABL	E
4.776 mm 0.007 $<$ 0.002W = 0.0200 4.783 mm Qualification of data $\Delta a_{p,e} = 3.10$ mm (measured) $\Delta a_{pred} = 3.01$ mm (predicted)	4.783 mm Qualification of data Δa _p = 3.10 mm (measu Δa _{pred} = 3.01 mm (predic Difference = -0.09 mm					
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm Qualification of data Δa _p = 3.10 mm (measured) Δa _{pred} = 3.01 mm (predicted) Jifference = -0.09 mm (PREDICTION ACCEPTABLE)	4.783 mm Qualification of data $\Delta a_{p} = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic)ifference = -0.09 mm	J _Q - Qualificatio	n of data			
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm Qualification of data Δa _p = 3.10 mm (measured) Δa _{pred} = 3.01 mm (predicted) Jifference = -0.09 mm (PREDICTION ACCEPTABLE) J _Q -Qualification of data	4.783 mm Qualification of data $\Delta a_{p} = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic)ifference = -0.09 mm J _Q -Qualification of data					
	4.783 mm Qualification of data Δa _p = 3.10 mm (measu Δa _{pred} = 3.01 mm (predic Difference = -0.09 mm J _Q - Qualification of data		< 1.0			
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm $\Delta a_{\mu} = 3.10$ mm (measured) $\Delta a_{pred} = 3.01$ mm (predicted) $\Delta a_{pred} = 3.01$ mm (predicted) $\Delta a_{pred} = -0.09$ mm (PREDICTION ACCEPTABLE) J_{Q} - Qualification of data J_{Q} - Qualification of data	4.783 mm Qualification of data $\Delta a_{\mu} = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic)ifference = -0.09 mm J_Q-Qualification of data J_Q-Qualification of data			→ QUALIF	ED	
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm $\label{eq:alpha}$ \label	4.783 mm Qualification of data $\Delta a_{p} = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic)ifference = -0.09 mm Ja - Qualification of data Ja - Qualification of data			→ QUALIF	Ē	
4.776 mm 0.007 < 0.002W =	4.783 mm Qualification of data $\Delta a_{p,e}$ 3.10 mm (measu Δa_{pred} 3.01 mm (predic Difference = -0.09 mm J_{q} -Qualification of data fificient C_{g} = -0.10433 <1.0 I_{aq} - a_{0} = 0.27 mm			→ QUALIF → DATA SE	IED T ADEQUATE	
4.776 mm 0.007 < 0.002W =	4.783 mm Qualification of data $\Delta a_{\mu} = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic)ifference = -0.09 mm J_2 - Qualification of data J_2 - Qualification of data Idaga - $a_0 \mid = 0.27$ mm Iculate a_{0q} : 14 ≥ 8			→ qualif → data se → data se	IED IT ADEQUATE	
4.776 mm 0.007 < 0.002W =	4.783 mm Qualification of data $\Delta a_p = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic $\Delta a_{pred} = -0.09$ mm Jac-Qualification of data Jac-Qualification of data Jac-Qualification of data [a_0_{1} = 0.27 mm [culate a_{0q} : 14 ≥ 8 Jac-Qualifiert $L_{1} = 0.27$			 → QUALIF → DATA SE → DATA SE 	IED IT ADEQUATE IT ADEQUATE	
4.776 mm 0.007 < 0.002W =	4.783 mm Qualification of data $\Delta a_{p} = 3.10$ mm (measu $\Delta a_{pred} = 3.01$ mm (predic)ifference = -0.09 mm ()ifference = -0.09 mm (a_{o_{q}} - a_{0} = 0.10433 < 1.0 fificient $C_{z} = -0.10433 < 1.0$ a_{o_{q}} = 0.27 mm lculate $a_{o_{q}}$: 14 ≥ 8 .44 _q and J _q : 11 ≥ 3			 → QUALIF → DATA SE → DATA SE → QUALIF 	IED IT ADEQUATE IT ADEQUATE	
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm dap 3.01 mm (measured) Δa_{pred} 3.01 mm (predicted) Δa_{pred} Δ	$\begin{array}{c c c c c c c c c c c c c c c c c c c $.96	 → QUALIF → DATA SE → DATA SE → QUALIF → QUALIF 	IED IT ADEQUATE IT ADEQUATE IED IED	ATE
4.776 mm 0.007 < 0.002W =	4.783 mm $\begin{array}{c} \mbox{Qualification of data} \\ \mbox{Aa}_{pe} = 3.10 mm (measu \mbox{Aa}_{pred} = 3.01 mm (predic \mbox{Dapred} = -0.09 mm (predic \mbox{Difference} = -0.09 mm (predic \mbox{Difference} = -0.10433 < 1.0 \mbox{Ifficient } C_{c} = -0.10433 < 1.0 \mbox{Ifficient } C_{c} = 0.27 mm \mbox{Icutare } a_{oq} : 1.4 \geq 8 \mbox{Icutare } a_{oq} : 1.1 \geq 3 \mbox{Ient } a_{oq} : 1.0 \mbox{Imbox{Imbox}} = 0.27 \mbox{Imbox} = 0.27 \mbox} = 0.27 \mb$.96	 → QUALIF → DATA SE → DATA SE → QUALIF → QUALIF 	ied It adequate It adequate Ied Ied	ATE
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm da _a 0.007 da _b 0.0200 Cualification of data Δa_{pred} 3.01 mm (measured) Δa_{pred} Δa_{1}	4.783 mm Qualification of data $\Delta a_{p} =$ 3.10 mm (measu $\Delta a_{pred} =$ 3.01 mm (predicing) $\Delta a_{pred} =$ -0.09 mm $\Delta a_{pred} =$ -0.09 mm Ifference = -0.09 mm $\Delta a_{pred} =$ -0.10433 <1.0		0.96	 → QUALIF → DATA SE → QUALIF → QUALIF → DATA SE 	IED ET ADEQUATE ET ADEQUATE IED IED	ATE
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm	4.783 mm Qualification of data $\Delta a_p =$ 3.10 mm (measu $\Delta a_{pred} =$ 3.01 mm (predicing) $\Delta a_{pred} =$ -0.09 mm (predicing) $\Delta a_{pred} =$ -0.09 mm (predicing) $\Delta a_{pred} =$ -0.09 mm (predicing) $\Delta a_{pred} =$ -0.09 mm (predicing) Ifference -0.09 mm (predicing) Idage a_0 0.10433 <1.0	Qualification o	0.96	 → QUALIF → DATA SE → DATA SE → QUALIF → DATA SE 	IED IT ADEQUATE IT ADEQUATE IED IED IED	ÂTE
4.776 mm 0.007 < 0.002W = 0.0200 4.783 mm	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= 10.00		 → QUALIF → DATA SE → DATA SE → QUALIF → QUALIF → DATA SE 	IED IT ADEQUATE IT ADEQUATE IED IED IT NOT ADEQU	ÂTE I
4.776 mm 0.007 < 0.002W =	$\begin{array}{c c} \medskip Qualification of data $$ Aa_{p,ed} = 3.10 $$ mm (measu $$ \Delta a_{p,red} = 3.01 $$ mm (predic $$ Difference = -0.09 $$ mm $$ (predic $$ mm $$ (predic $$ Difference = -0.09 $$ mm $$ mi $$ Difference = -0.09 $$ mm $$ Difference = -0.09 $$ mm $$ Difference = -0.09 $$$			 → QUALIF → DATA SF → QUALIF → QUALIF → DATA SF 	IED IT ADEQUATE IED IED IED	
4.776 mm 0.007 < 0.002W =	4.783 mm Qualification of data $\Delta a_{p} =$ 3.10 mm (measu $\Delta a_{pred} =$ 3.01 mm (predicion) $\Delta a_{pred} =$ 3.00 mm (predicion) $\Delta a_{pred} =$ -0.09 mm $\Delta a_{pred} =$ -0.09 mm $\Delta a_{pred} =$ -0.09 mm Inference -0.09 mm $ a_{q} - a_{q} =$ 0.27 mm Iculate a_{qq} 1.1 \geq 8 A_{q} and J_{q} 1.1 \geq 8 A_{q} and J_{q} 0.90 <0.96	1 05		 → QUALIF → DATA SE → DATA SE → QUALIF → DATA SE → DATA SE 	IED FT ADEQUATE FT ADEQUATE IED FT NOT ADEQU	ÀT
4.776 mm 0.007 < 0.002W =	4.783 mm Qualification of data Δa_{p} 3.10 mm (measu Δa_{pred} 3.01 mm (predici Δa_{pred} -0.09 mm (predici) Ja- Qualification of data -0.09 mm (predici) Iffcient C_{z} -0.10433 <1.0	4.95		 → QUALIF → DATA SE → DATA SE → QUALIF → QUALIF → QUALIF 	IED IED IED IED IED IED	ATE

