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Abstract

A bilateral study to compare guarded-hot-plate measurements at extended temperatures be-
tween laboratories at the National Institute of Standards and Technology (NIST) and the Na-
tional Physical Laboratory (NPL) is presented. Measurements were conducted in accordance
with standardized test methods (ISO 8302 or ASTM C 177) over a temperature range from
20 °C to 160 °C (293 K to 433 K). Following a blind round-robin format, specimens of non-
woven fibrous glass mat, approximately 22 mm thick and having a nominal bulk density of
200 kg-m3, were prepared and studied. Results of the study show that the thermal conductivity
measurements agree over the temperature range of interest to within £1.0 %, or less. Consen-
sus and individual laboratory fits to the data as a function of mean temperature are presented
graphically. Sources of measurement variability are addressed.

Key words

Bilateral; Fibrous glass mat; Guarded hot plate; Industrial insulation; Interlaboratory compar-
ison; Thermal conductivity; Thermal insulation; Uncertainty.
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1. Introduction

The derived quantity thermal conductivity is a vital metric for the energy performance of build-
ing materials and, for analogous reasons, has a comparable status of importance for insulating
materials intended for industrial applications. Mechanical insulation is utilized by diverse fa-
cilities including commercial buildings, power generation, petroleum, chemical, transporta-
tion, and shipbuilding industries, among others. The need for reliable thermal conductivity
data for these types of insulation is important to designers and engineers of industrial facilities
and is critical to insulation manufacturers as part of their quality assurance programs. Infor-
mation for these thermal properties is also essential in establishing a fair competitive basis for
domestic and international commerce. The accurate determination of thermal conductivity for
industrial insulating materials, however, becomes quite challenging at elevated temperatures.

Recently, the National Institute of Standards and Technology (NIST) in the US and the Na-
tional Physical Laboratory (NPL) in the UK completed a bilateral comparison of guarded-hot-
plate laboratories investigating the thermal conductivity of an industrial insulation from 20 °C
to 160 °C (293 K to 433 K). The objective of the investigation was to compare the state of the
art between the laboratories from ambient to moderate temperatures. This study is considered
a first step for subsequent explorations of thermal conductivity reference materials intended
for temperatures up to 650 °C. The benefit of a bilateral comparison, in contrast to a compar-
ison among several laboratories, permits a direct and, typically, a more thorough evaluation of
the data obtained from the two laboratories. By examining comparison data from only two
labs, subtle trends in the data become (more) noticeable that, otherwise, could be obscured
when data from several laboratories are present.

In preparation for this comparison, the laboratory participants developed a detailed test proto-
col that included a careful evaluation of candidate materials and test specimens, and a compre-
hensive test report form. This bilateral comparison utilized a single pair of specimens of non-
woven fibrous glass mat that was tested sequentially in a blind round-robin format, first by
NIST and subsequently by NPL. Each laboratory agreed to send its test data to a statistician
in the NIST Statistical Engineering Division who, upon agreement from both laboratory par-
ticipants, released the data (presented herein) for review. This report describes the preparation
and selection of test specimens, the test protocol, equipment, and measurement results. The
data are reviewed graphically and physical processes to explain the behavior of the data are
suggested. Recommendations for the development of high-temperature reference materials are
given.

2. Specimens

2.1. Material

The specimens were prepared from commercially available non-woven fibrous-glass mat,
composed of 100 % E glass (alkali-free borosilicate glass), and having approximate values for
bulk density and thickness of 200 kg-m™ and 22 mm, respectively. The insulating material,
which is intended for industrial applications, consists of continuous glass filament needled to-
gether bonding the fibers mechanically. The fibers, because of their abrasive characteristics,
were treated with a starch-oil emulsion by the vendor to facilitate fabrication. This coating
was later removed by NIST by conditioning the test specimens at elevated temperature
(Sec. 2.2).
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The thermal stability of the material was initially investigated using thermal gravimetric anal-
ysis (TGA). Two small samples, having masses of 20.4 mg and 23.9 mg, were taken from the
material and heated in a nitrogen atmosphere at a rate of 5 °C-min™! to 700 °C. Prior to heating,
the samples were maintained at 30 °C for 15 min. Figure 1 plots the mass change, in percent,
as a function of temperature for the two small samples (identified as #1, #2). The main feature
of interest in Fig. 1 is the very small mass loss, on the order of 0.6 % to 0.8 % over the large
temperature range. The mass loss was, presumably, due to the desorption of water and decom-
position of organic materials, i.e., the starch-oil emulsion. The reason for the small increase
in Sample #1 near 250 °C is not known.

100.0 — — Sample #1
. — Sample #2

Fraction of initial mass, %

T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700

Temperature, °C

Fig. 1. TGA analysis of test samples of non-woven fibrous-glass mat.

2.2. Preparation

Figure 2 illustrates the comparative sizes of the thermal conductivity test specimens for the
guarded-hot-plate apparatuses at NIST and NPL. Although three sets of specimens were ini-
tially considered (Fig. 2), the final number involved two guarded-hot-plate apparatus (circular
geometry for NIST and square for NPL). NIST explored techniques for hand cutting the spec-
imens, however, the complexity of inlaid patterns (Fig. 2), including their spacer cut-out pro-
files, proved too difficult to implement. Instead, the specimens were prepared by waterjet
machining provided by a commercial vendor using water without added abrasives as the cut-
ting fluid. The ten specimens were cut in pairs sequentially from a large roll of material ac-
quired by NIST in 2007. Waterjet cutting under computer control is capable of accurate, intri-
cate cuts in materials with minimum heating effects. Figure 3 is a photograph of the test spec-
imens cut to final dimensions by waterjet machining. The outer circular slap represents the
NIST specimen. The faint outline of the inner square NPL specimen is slightly visible.
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NIST Specimen

500 mm Dia. \

NPL Specimens
305 mm Dia.
305 mm x 305 mm

Cut-outs for spacers

Fig. 2. Test specimen configurations for NIST and NPL.

Fig. 3. Test specimens for NIST and NPL (faint square outline visible inside circular slab).

To remove any organic material(s), the test specimens were heat treated in a large convection
oven, shown in Fig. 4, over a period of three days. The air temperature in the oven was linearly

ramped over a 24 h interval from room temperature to 475 °C, maintained at 475 °C for 24 h,
and cooled to room conditions over the final 24 h.
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Fig. 4. Test specimens in convection oven for conditioning at 475 °C for 24 h.

2.3.  Evaluation and Selection

The evaluation of test specimens focused on two physical properties — specimen mass and,
more importantly, thermal resistance — before and after heat treatment at 475 °C. The objective
was to ascertain the best matched pair from the 10 specimens, that is, the two specimens nearest
in agreement for both thermal resistance and specimen mass. Measurements of steady-state
thermal transmission properties were conducted at NIST using a large heat-flow meter appa-
ratus [1] at a mean temperature of 24 °C and a temperature difference of 22 K. The specimen
masses were determined at NIST by gravimetric measurements.

Figure 5 plots the thermal resistance of the specimens before and after heat treatment denoted
by triangle and square data points, respectively. The data are ranked by their initial measure-
ments of thermal resistance (triangle data points). The average increase in thermal resistance
for the 10 specimens was 3.7 %. As evident in Fig. 5, specimens 2 and 8 were among the
closest in agreement for thermal resistance.

Figure 6 plots the corresponding mass loss of the specimens before and after heat treatment.
The average loss for the 10 specimens was 1 %, which compares favorably with the TGA
results from Fig. 1. The results of Fig. 6 show that specimens 2 and 8 are quite close in mass.
Collectively, the results of Figs. 5 and 6 indicate that specimens 2 and 8 are the pair that was
closest in in agreement for both thermal resistance and specimen mass. Consequently, speci-
mens 2 and 8 were selected for the interlaboratory comparison.
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Fig. 5. Thermal resistance measurements for specimens 1 to 10 (2 and 8 highlighted).
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Fig. 6. Mass measurements for specimens 1 to 10 (2 and 8 highlighted).
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Figure 7 plots the specimen thermal conductivity at 24 °C as a function of bulk density offering
a supplementary assessment of the specimens. The horizontal lines represent the average ther-
mal conductivity of the specimens before and after heat treatment (dashed and solid lines, re-
spectively). Linear fitted lines for the data were investigated but, over the limited range of
bulk density, the slopes were found to be small and statistically insignificant. As shown in
Fig. 7, the bulk density of specimens 2 and 8 decreased by 4.2 %, but the thermal conductivity
changed only slightly. This finding does not contradict the results of Fig. 5 because the thermal
conductivity determination includes the effect of dimensional changes in the specimen thick-
ness. In closing, Fig. 7 shows that specimens 2 and 8 are well matched in thermal conductivity
and bulk density.

0.0420— .
A Initial measurement (pre-heat treatment)
7 B Replicate (post-heat treatment at 475°C)
_, 0.0415— Tm=24°C,AT=22K
x
3 _
g A
= 0.0410— [ A
R =]

> | 2 2
z / /
B 0.0405— - m At a
2 - — A
S T = A N 8
©° 8 A A
< 0.0400—
£ =] B A m
0] _
ey
'_

0.0395—

0.0390—

T | T | T | T | T | T | T | T | T
185 190 195 200 205 210 215 220

Bulk density, kg -m-3

Fig. 7. Thermal conductivity of test specimens of non-woven fibrous glass mat as a function
of bulk density (before and after heat treatment).

3. Comparison Protocol

The protocol document established by NIST and NPL for this comparison is provided in Ap-
pendix A. Development and approval of the protocol took place over several years due to
changes in personnel at both NIST and NPL. The basic design of the comparison is that of a
pilot study following a round-robin test program for a single pair of specimens. The guarded-
hot-plate measurements were conducted first at NIST and subsequently at NPL. The specimen
pair (2 and 8) were transported in a rugged flight case. It is important to emphasize that the
participants followed a blind experimental protocol. The test results from each laboratory were
submitted electronically to the NIST statistician and were only released after both data sets
were received.
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3.1.  Test Conditions

Table 1 summarizes the measurement sequence, temperature settings, and the number of ob-
servations conducted per run at each temperature. Each laboratory participant conducted three
runs at mean temperatures (Tm) from 20 °C to 160 °C for a total of 15 measurements. The
observations at 90 °C were added later to corroborate the presence of curvature in the thermal
conductivity data. The sequence order for Trm was deliberately not randomized due to practical
considerations. The temperature difference (AT) was fixed at either 20 K or 25 K.

The purpose of conducting three runs was to determine the within-laboratory repeatability for
each participant. Furthermore, every run was intended to be independent. To satisfy this re-
quirement, the operator was requested, upon the completion of a run, to shut down their appa-
ratus, remove the specimens and re-condition for 24 h prior to re-installation for the next run.
Prior to each run, the specimens were conditioned at 23 °C £ 1 °C and 50 % RH + 10 % RH
for 24 h.

Table 1. Test conditions and replicates.

Se- Tm AT Observation per run
guence (°C) (K) (K) 1 2 3
1 20 293 20 1 1 1

2 40 313 20 1 1 1

3 90 363 25 1 1 1

4 140 413 25 1 1 1

5 160 433 25 1 1 1

3.2.  Specimen Characterization

The laboratories determined the bulk density (p) of specimens 2 and 8 by gravimetric method
prior to each run in their guarded-hot-plate apparatus. The final volume of the specimens was
corrected by subtracting the spacer cut-out volumes to account for the minor volume of mate-
rial removed for installation of the spacers (Fig. 2).

3.3.  Guarded-hot-plate Measurements

The laboratories conducted the thermal conductivity measurements in accordance with their
internal protocols based on standardized test method ISO 8302 [2] or ASTM C 177 [3]. Ad-
ditional guidelines concerning specimen thickness and test order were agreed upon as de-
scribed below and in Appendix A.

e Spacers: Both laboratory participants utilized rigid spacer stops located at the periphery
of the specimens (Fig. 2). The spacer materials were fused-quartz and calcium silicate
for NIST and NPL, respectively. Both laboratories corrected their in-situ thickness
results for thermal expansion effects.

e Test order: Both laboratory participants conducted their measurements, for each run,
in ascending order for the mean specimen temperature (Table 1).

e Environment: Both laboratory participants recorded their environmental conditions ei-
ther near the specimens, that is, in the vacuum bell jar for NIST, or in the immediate
laboratory enclosure for NPL.
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4. Apparatus and Uncertainties

This section summarizes the test method and describes the guarded-hot-plate (GHP) apparat-
uses used in this comparison.

4.1. Test Method

Figure 8 illustrates the main components of a GHP apparatus designed for either: a) vertical or
b) horizontal heat flow through the specimens. The typical arrangement, as shown in Fig. 8,
utilizes parallel flat plates as constant temperature heat sources and sinks in contact with the
surfaces of homogeneous specimens to establish a steady-state heat flux across the thickness
dimension of the specimen. The central heating element of the apparatus (e.g., meter plate) is
encompassed by a primary guard designed to promote one dimensional heat flow (Q) perpen-
dicular to the plate surface in the central volume of the adjoining test specimens. The physical
separation between the meter plate and guard plate components is designated the guard gap, or
gap for short, and consists of an airspace.

Guard plate ~||
I~
Meter plate ~|] =
| N
z Q Q z
IS IS
Gap Meter plate o (e a
o o
/ 5 S5
| \ Cold plate 1 / | O O
\ ] ’_
| Specimen 1\ ' / | =T
Guard_| I\ | 7 n | Gap — - =
plate g 2
Specimen 2 Q | S S
joR [N
| Cold plate 2 | 2 2
a) Horizontal plates (vertical heat flow) b) Vertical plates

(horizontal heat flow)

Fig. 8. Schematic of guarded-hot-plate apparatus: a) horizontal plates; b) vertical plates.

Standardized test methods [2-4] permit plate designs having either square or circular geome-
tries and operation of the apparatus in either the double-sided (with two specimens) or single-
sided (with a single specimen) modes of measurement. The double-sided mode requires that
the cold plates operate at the same temperature; thus, the heat flow Q represents the measure-
ment for the pair of specimens (Fig. 8). The guard plate is independently operated at the same
temperature as the hot plate to minimize lateral heat flows.
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The governing equation for the guarded-hot-plate method employs an algebraic form of the
Fourier heat conduction equation. The thermal transmission calculations, based on heat flux
measurements from the guarded-hot-plate apparatus, are implemented in accordance with
Eq. (1) for double-sided operation.

Q Lavg

A = 1
TP 2AAT,, @

The terms Lavg and ATayg in Eq. (1) represent the average values associated with the pair of
specimens 1 and 2 in Fig. 8. The 2A term in Eq. (1) represents heat flow through two surfaces
of the metered area. Both laboratories corrected their metering areas for thermal expansion
effects at a test temperature. Values of Aexp are reported at the mean specimen temperature,
Tm, given in Eqg. (2).
7 _TatT T, +(T,+T,,)/2
" 2 2

@)

The thermal transmission properties of heat insulators determined from standard test methods
typically include multiple mechanisms of heat transfer, including conduction, radiation, and
possibly convection. For that reason, some experimentalists will include the adjective “appar-
ent” when describing the thermal conductivity of insulating materials. However, for brevity,
the term thermal conductivity will be used in this report.

4.2. NIST

Figure 9 shows the GHP apparatus used in this comparison by NIST. The apparatus plates,
shown in the vertical arrangement (illustrated schematically in Fig. 8b), are enclosed by a vac-
uum bell jar when under operation. The plates are commercially pure nickel and the working
surfaces have been treated with a black ceramic coating to have a surface total emittance of
0.8. The surfaces in contact with the specimen metering area are flat to within 0.1 mm. The
hot plate and cold plates are suspended from overhead rails and translate in the horizontal
direction during installation of the specimen pair. A clamping force is transmitted axially to
each cold plate by manual application, and an in-line load cell measures the applied loading
(i.e., clamping pressure) during the test. The apparatus is described in detail in [5-6].

The hot plate is a monolithic assembly, 16.0 mm thick, consisting of a meter plate 200 mm in
diameter and a co-planar, concentric guard plate 500 mm in diameter. The circular gap sepa-
rating the meter plate and guard plate is 0.92 mm wide at the plate surface. The cross-sectional
profile of the gap is diamond shaped to minimize lateral heat flow [5-6]. The temperature
difference across the gap is measured by combining the outputs from two individual Type K
twelve-junction thermopiles. Each thermopile is embedded on opposing surfaces of the hot
plate.
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Fig. 9. NIST 500 mm diameter guarded-hot-plate apparatus: plates and edge guard (fore-
ground), vacuum bell jar (background).

The metal-sheathed heaters for the hot plate are 3.2 mm in diameter and were custom manu-
factured using an internal bifilar design of nickel wires butt welded to gold (99.99 % nominal
purity) wire leads. The heaters were formed such that the nickel-gold weld terminations were
within 3 mm (or less) of the plate edge and the 2-to-4 wire transition of the meter-plate heater
was within 1 mm of the centerline of the guard gap. After forming, the heaters were vacuum
brazed in serpentine patterns at the midplane of the plate. The electrical resistance of the meter-
plate heater at room temperature is approximately 3.3 Q.

Each cold plate system is a multi-layered assembly consisting of the following components:
thermometry plate; woven glass fabric; heater plate; microporous insulation; coolant plate;
rigid alumina insulation; and, water-cooled back plate. For Tm equal to 20 °C and 40 °C (Ta-
ble 2), a mixture of water and ethanol (70 %, 30 % by volume) was circulated through the
coolant plates. For higher temperatures, dry air was circulated through the coolant plates.
Temperature control of the thermometry plate was provided by the adjoining heater plate.

The primary temperature sensors installed in each plate are long-stem standard platinum re-
sistance thermometers (SPRTSs). The sensors have a 4-wire sensing element located within the
first 50 mm of the sheath tip. The SPRT is placed in a well that is brazed at the midplane of
the plate so that the sensing region resides in the geometric center of the plate as shown in
Fig. 10. To check temperature uniformity of a plate, six Type N metal sheathed thermocouples,
1.6 mm in diameter, were brazed in the surface of each plate at the locations illustrated in
Fig. 10.
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Guarg

H Long-stem SPRT © Type N thermocouple

Inner radius = 108.5 mm
Outer radius = 230.0 mm

Fig. 10. Temperature sensor locations for NIST 500 mm diameter plates.

The meter plate electrical power is determined from the multiplicative product of the direct-
current voltage and corresponding amperage of the circuit. The direct-current voltage across
the meter-plate heater is measured by voltage taps welded to the heater leads in the center of
the gap. The direct-current amperage is determined by measuring the voltage drop across a
0.1 Q standard resistor placed in an oil bath at 25.0 °C and wired in series electrically with the
meter plate heater.

43. NPL

Figure 11 shows the NPL GHP apparatus [7] used in this comparison. The NPL apparatus is
a 305 mm by 305 mm double-sided guarded hot plate (NPL LTGHP) with a 150.5 mm by
150.5 mm physical centre area and an isothermal edge-guard. In the double specimen config-
uration, there is a specimen on either side of the heater-plate, and cold-plates on either side of
the specimens. In this apparatus, the specimen is mounted horizontally (as illustrated sche-
matically in Fig. 8a) within the apparatus, so that heat flows vertically from the heater-plate,
through the specimens to the cold-plates. The apparatus was originally designed for measure-
ments in the temperature range -175 °C to 50 °C and conformed to 1SO 8302 [2] and EN 12667
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[4]. The upper temperature limit has been recently extended to 160 °C. Its use is normally
restricted to specimens up to 65 mm thick having a thermal conductivity up to 0.15 W-m*.K?
and thermal resistance down to 0.025 m2-K-W,

Fig. 11. Image of the NPL Guarded Hot-Plate for measuring thermal conductivity of insula-
tion from —175°C to 160°C.

The guarded heater plate was made of aluminium alloy and has lateral dimensions of 305 mm
by 305 mm, with a central metering area of 152.5 mm by 152.5 mm and an air gap of 2 mm.
Temperature balance between the metering area and lateral guard was maintained using the
output of a 64-junction Type T thermopile with 32 junctions on each side to control the power
supplied to the lateral guard heater. The two cold plates are each made from 30 mm thick
copper, and their temperatures were regulated by a combination of fluid circulation and elec-
trical heating. The surfaces of the guarded heater plate and cold surface plate had an estimated
total hemispherical emittance of 0.9 and all the temperature sensors (Type T thermocouples)
and electrical instruments used were calibrated with traceability to United Kingdom national
standards. The plate/specimen stack is situated within an environmental chamber that consists
of two chambers, one inside the other (Fig. 11). The air inside the inner chamber stabilizes at
the temperature of the walls of the inner chamber and is maintained close to the mean specimen
temperature. The apparatus has a compressive load system that incorporates a strain gauge, a
motorized rotating screw lifting system, and an electronic control loop. The system maintains
a compressive load (up to 2 kPa) on the specimen, as measured by the strain gauge, by raising
or lowering the upper cold plate.

12
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Figure 12 illustrates the lateral surface locations of the temperature sensors on the hot and cold
plates. There are seven Type T thermocouples on each side of the guarded hot plate arranged
so that five thermocouples are positioned within the metering area (i.e., meter plate) and two
sensors are on the guard plate (Fig. 12a). For the cold plate, there are five Type T thermocou-
ples arranged as shown in Fig. 12b on the surfaces in contact with the specimen.

Guarded hot plate Cold plate
— ~— 25 mm
S
o S
&
oMeter plate o l
) l )
£ T ]
o e o
o o o)
S |
—
° £
Guard plate ‘ T Py
Lo

O Type T thermocouple

Fig. 12. Temperature sensor locations for NPL 305 mm by 305 mm plates (typical dimen-
sions).

4.4. Apparatus Comparison

Table 2 summarizes the guarded-hot-plate apparatuses used by NIST and NPL in this study.
The descriptions include 22 characteristics covering the size, shapes and orientations of plates,
operation mode, and guarding, among other features of the equipment. Both laboratories have
designed and constructed their guarded-hot-plate apparatus in-house [5-7].

As evident in Table 2, the apparatus are diverse in design and the few similarities that are
prominent include: 1) two-sided operation mode; 2) comparable plate emittances; 3) same
number of heaters in the meter plate; 4) same location of the voltage tap for the meter plate
heater; 5) a guard gap consisting of an air space; and, 6) isothermal edge guard.

In contrast, there are major differences between the apparatus including: plate size, lateral plate
guard ratio (2.5 versus 2.0), plate geometry (round versus square), orientation (horizontal ver-
sus vertical), guarding, and plate material (nickel versus aluminium). Additionally, the two
apparatus utilize different configurations for the plate heaters and different types of primary
temperature sensors, as well as a different number and type of edge guard temperature sensors.
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Table 2. Summary of guarded-hot-plate apparatuses.

NIST [5-6] NPL [7]
Plate size 500 mm diameter 305 mm x 305 mm
Operation 2 sided 2 sided
Heat flow direction horizontal vertical
Plate material nickel 201 aluminium alloy (heater

plate), copper (cold plate)

Emittance 0.8 > 0.895
Meter plate size 200 mm diameter 150.5 mm x 150.5 mm
Meter plate sensor (number) SPRT (1) Type T (2x5)
Meter plate sensor location(s) mid-plane center surface grooves
Number heaters in plate 3 2
Number heaters in meter plate 1 1
Number heaters in guard plate 2 1
Heater type metal sheathed polyimide film
Heater active element nickel 201 austenitic nickel-chromium

Heater configuration
Voltage tap location
Guard gap sensor type

labyrinth circular pattern
4-wire, guard gap mid-point
Type K thermopile

labyrinth rectangular pattern
4-wire, guard gap mid-point
Type T thermopile

Number of guard gap junctions 24 (12 each face) 64 (32 each face)
Guard gap material airspace airspace
Edge guard type isothermal isothermal
Edge guard sensor type Type N Type T
Number of edge guard sensors 12 1
Distance between plate and 10 mm? 100 mm®

secondary guard

aDistance from plate edge to cylindrical edge guard
bDistance from plate edge to inside chamber wall

4.5. Laboratory Uncertainty Budgets

This section describes basic definitions, procedures, and formulae conforming to international
guidelines [8] for evaluating the combined standard uncertainty, uc, and expanded uncertainty,
U, of dexp given by Eq. (1). The examples presented below abide by recently developed formats
from an international comparison [9] of guarded-hot-plate apparatus organized under the aus-
pices of the Consultative Committee for Thermometry (CCT), part of the International Com-
mittee for Weights and Measures (CIPM). The laboratory uncertainties, which include both
Type A and Type B evaluations, are utilized in Sec. 6.4 to assess the engineering significance
of the measured thermal conductivity data.

Under international guidelines [8], uncertainty components are classified by their method of
evaluation. Type A evaluations are determined by statistical analysis of a series of independent
observations. In this study, a Type A evaluation is useful for assessing dispersion about a
consensus fit of the bilateral data (shown later in Sec. 6.3). In contrast, Type B evaluations are
obtained from an assumed probability density function and can be based on information from
previous measurements, calibration, experience, and manufacturer specifications, among other
sources.
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The combined standard uncertainty, uc (Aexp), is obtained by combining the individual standard
uncertainties, ui, by root sum of the squares [8]. Assuming the input quantities in Eq. (1) are
uncorrelated, uc (Aexp) is the positive square root of the combined variance given by

Uy (Ao ) = /g“[ciu(xi )]2, (3)

where u(x;) are standard uncertainties of the input estimates for the input quantities, Xi, deter-
mined by each lab. The standard uncertainties, u(xi), are determined from either a Type A
(statistical means) or Type B evaluation (non-statistical) described above.

The sensitivity coefficients, ci, are partial derivatives and are evaluated at the input estimates
Xi. Equation (4) derives the sensitivity coefficients for the input quantities in Eq. (1).
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An example of the NIST uncertainty budget for thermal conductivity measurements of non-
woven fibrous-glass mat specimen at 20 °C is shown in Table 3.

Table 3. NIST uncertainty budget at 20 °C.

Components Value Ui Ci [ci.uil
Heat flow Q 2.3580 W 1.26 x10*W  0.01719 m1K? 2.17 x 108
Metering area A 0.031730 m? 232x10%°m? -1.27711 W-m3.K*? 2.97 x 106
Specimen thickness Lavg 0.021772 m 245x10°m  1.86123 W-mZK™ 4,57 x 10°®
Temperature diff. ATayg 19.96 °C 291x102K  -0.00203 W-m*.K? 5.90 x 105
Thermal conductivit Combined standard uncertainty (k=1
Lexp from Eq. (1) ’ 0.04051 WK (Z |ciui?)%s VD 0.000059 W™K

Expressed as a percent, uc from Table 3 is 0.15 %. The repeatability of the NIST guarded-hot-
plate apparatus was determined from repeated measurements as a function of temperature. At
20 °C, the relative process standard deviation was 0.28 %. Summation of these relative values
in quadrature yielded 0.32 % which was rounded, for convenience, to 0.5 % for this study.
This process was repeated for the other mean temperatures. As shown in Sec. 5.3, the NIST
uncertainties increased with temperature due to increasing variability in the replication data.
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An example of the NPL uncertainty budget for non-woven fibrous-glass mat specimen meas-
urements at 20 °C is shown in Table 4. The values for u; are derived from an analysis of each
element of the NPL LTGHP apparatus:
* ug includes resolution, calibration of electrical power measurement, metering/guard
balance, metering/auxiliary balance and edge heat gains/losses.
* uaincludes resolution, calibration, alignment, and the uncertainty in the correction of
the area due to thermal expansion effects.
» upincludes resolution, calibration, parallelism, linearization, stability, and the uncer-
tainty in the correction of specimen thickness due to thermal expansion effects.
* uatincludes resolution, calibration, linearization and spread.

Table 4. NPL uncertainty budget at 20 °C.

Components Value Ui Ci [Ci-ui]
Heat flow Q 1.8524W 1.25x 102 W 0.02222 mt.K1 2.77 x 10
Metering area A 0.023266 m? 1.70x 105 m?  -1.76901 W-m3.K™! 3.00 x 10
Specimen thickness La,g ~ 0.020967 m 1.15x10*m 1.96298 W-m2.K1 2.26 x 10*
Temperature diff. AT,g  20.28 K 9.71x 102K  -0.00203 W-m-K? 1.97 x 10*

Thermal conductivity 0.04116 W-m-L-K-1 Combined standard uncertainty (k=1)

.mlk-1
Aexp from Eq. (1) » |Ci'Ui|2)0'5 0.00041 W-m*-K

The results of Tables 3 and 4 indicate that, although the method used to combine standard
uncertainties by NIST and NPL are the same, the underlying methods to determine the standard
uncertainties for the primary quantities (Q, A, Lavg, and ATayg) are different. Moreover, the
process standard deviation for NIST was significant, particularly at elevated temperatures. To
examine these differences more rigorously, the methods used to determine sublevel component
uncertainties, ui, need to be investigated. Further work is suggested in this area for future
comparisons.

The combined standard uncertainty, uc, is taken to have a coverage factor of k equal to 1. For
this comparison, however, it was decided to utilize an expanded uncertainty, U, which has a
coverage factor of k equal to 2 defining an interval having a level of confidence of approxi-
mately 95 % [8].

U =ku, =2u, (5)
The relative expanded uncertainty is given by

U =—. (6)

The relative expanded uncertainties, expressed as a percent (%), were reported by both labor-
atories for each thermal conductivity measurement.

5. Measurements

This section provides a synopsis of the laboratory measurements including the bulk density
measurements obtained prior to each run and the guarded hot plate measurements conducted

16


https://doi.org/10.6028/NIST.TN.2059

at the test conditions described in Table 1. Report copies of the laboratory measurements are
provided in Appendices B through D. The compiled data and supplementary information are
also available, in the form of zipped files, online [10].

5.1.  Specimen Bulk Density

As described in 3.2, pre-and post-characterization of specimens 2 and 8 were conducted by
each laboratory for each run in the guarded-hot-plate apparatus. These independent assess-
ments checked for changes in the physical properties of the material which, in turn, could in-
dicate potential complications in the thermal conductivity measurements. The pre-run exami-
nations were conducted in accordance with internal laboratory protocols after the specimens
were conditioned at 23 °C = 1 °C and 50 % RH = 10 % RH for 24 h.

Table 5 extracts and summarizes the pre-run data for thickness, clamping pressure, and bulk
density (p) from Appendix B. Values of p did not change appreciably across runs for either
laboratory. The last column, however, shows an overall decrease in the specimen bulk densi-
ties between the 500 mm diameter and the 305 mm by 305 mm specimens studied at NIST and
NPL, respectively. The difference is indicative of the presence of a small within-specimen
inhomogeneity in the material. The minor differences in bulk density, however, have a mini-
mal effect on the thermal conductivity measurements as demonstrated by the heat-flow-meter
measurements of the 10 specimens (Fig. 7).

Table 5. Specimen characterization data prior to each run.

Thickness Clamping pressure p Change
Specimen (mm) (kPa) (kg'm) in p
Run ID NIST NPL NIST NPL NIST NPL (%)
1 2 21.33 21.17 0.84 0.25 208.1 200.7 -3.5
8 20.93 20.80 0.84 0.25 211.3 205.3 -2.8
5 2 21.40 21.17 0.84 0.25 207.5 201.0 -3.1
8 21.07 20.79 0.84 0.25 209.3 205.3 -1.9
3 2 21.33 21.17 0.84 0.25 208.1 200.7 -3.6
8 20.97 20.80 0.84 0.25 211.0 205.2 2.7

5.2.  Environmental Conditions

During the guarded-hot-plate tests, the participants recorded the ambient conditions in their
respective laboratories. Because of major differences in exactly how the secondary guards of
the guarded-hot-plate apparatus are instrumented, the test protocol defined ambient data as
either the adjacent region around the apparatus (i.e., the chamber surrounding the apparatus)
or from within the laboratory module accommodating the apparatus. As a result, NIST re-
ported data from within the vacuum bell jar surrounding the apparatus and NPL reported data
from the laboratory module (Appendix D).

5.3. Guarded-Hot-Plate Measurement Results

Table 6 extracts the thermal conductivity data from each laboratory report in Appendix C and
compiles the pertinent input and output data for side-by-side comparison. The final two col-
umns in Table 6 summarize the relative expanded uncertainties, Uy, for each measurement.
Test data for A and Uy (last four columns) are examined graphically in Sec. 6. The NIST and
NPL data for heat flux, g, differed by a factor of 2. The difference, however, did not affect the
determination of A. Future comparisons should clearly specify in the protocol how the quantity
q is to be reported.
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6. Analysis

This section examines the thermal conductivity measurements from both laboratories and is
motivated by a central theme of the comparison; that is, how do the laboratories perform over
the predetermined temperature range. The objective of the analysis addresses the underlying
question of interest: What is the level of difference, if any, between the laboratories; and, if
present, is the level significant? The technical approach focuses on the following analyses:

1. Graphical exploration of the data;

2. Assessment of the statistical (Type A) significance of the data; and,

3. Assessment of the engineering (Type A and Type B combined) significance of the data.

6.1. Graphical Exploration — Consensus Fit

A linear relationship between the measured thermal conductivity (Aexp) and mean specimen
temperature (Tm) was assumed and the data from both laboratories were fit to the linear model.
The final fitted model is given in Eqg. (7). The residual standard deviation of the consensus
line fit is 0.000349 W-m™-K™ on 28 degrees of freedom.

A

A =0.038325+1.2263x107T | (7)

Figure 13 shows the scatter plot for Aexp as a function of Tm. The data from NIST and NPL
are color coded as shown in the legend.
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Fig. 13. Measured thermal conductivity of non-woven fibrous glass mat (205 kg'm?) as a
function of measured mean temperature.
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6.2.  Relative Deviations
The relative deviations from the fit in Eq. (7), which represent the relative vertical distance
from the consensus line, were computed from Eq. (8):

A =M
B = ®)
A

rel

where Jexp IS the experimental thermal conductivity from Eq. (1) and M is the predicted value
from Eq. (7). Figure 14 plots the relative deviations (often referred to as residuals) from the
consensus line as a function of temperature. The individual runs (1, 2, 3) are coded as shown
in the legend (solid line equals Run 1, dashed line equals Run 2, and dotted line equals Run 3).

Figure 14 reveals that most of the relative deviations are within £0.01 (1 %) of the consensus
fit and some are within £0.005 (0.5 %) of the fit. The main conclusion from Fig. 14 is that the
two laboratories do indeed behave differently — that is, there is a change in location relative to
the consensus line. The NIST data suggest subtle non-linear behavior, and the individual runs
behave systematically; the variation increases with temperature. The NPL data do not have
systematic structure (i.e., more random behavior) but, in their entirety, exhibit curvature.
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Fig. 14. Scatter plot showing the relative deviations from the consensus line fit.
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6.3.  Statistical (Type A) Significance

For each laboratory, Type A uncertainty intervals are constructed from confidence intervals
centered on the mean of the three relative deviations at each value of temperature in Fig. 14.
The confidence interval is constructed from the expression given in Eq. (9).

AVrel T ta/Z (%]’ (9)

where, for each temperature and each laboratory, s is the standard deviation of the 3 relative
deviations. For a 95 % confidence interval where a equals 0.05 (two tail), the Student’s critical
t-value is computed for degrees of freedom (v) =n-1=2.

Figure 15 replots the relative deviations from Fig. 14 with error bars constructed from the 95 %
confidence interval given in Eq. (9). From Fig. 15, we observe that the error bars overlap at
90 °C and 160 °C but not at the other temperatures. Based on the close relationship between
confidence intervals and hypothesis testing, we conclude that, from a statistical (Type A) per-
spective, the deviations are different at the 0.05 level of significance.
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Fig. 15. Scatter plot showing the relative deviations from the consensus line fit with error
bars representing the 95 % confidence interval based on the relative standard deviation from
the consensus line fit (2 degrees of freedom).
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6.4. Engineering (Type A and Type B Combined) Significance

Figure 16 replots the relative deviations from Fig. 14 with error bars constructed based on the
expanded (Type A and Type B combined) uncertainty (k = 2) reported by the laboratories
(Table 6). In contrast to Fig. 15, which examined the separation between labs based only on
the bilateral comparison data, Fig. 16 incorporates supplementary laboratory uncertainties de-
rived from data independent of this comparison (summarized in Table 6). We observe that, at
every temperature, the error bars clearly overlap the respective laboratory data. Thus, we can-
not conclude from an engineering viewpoint that the laboratories are significantly different. In
other words, there is no detectable difference between the laboratories.
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Fig. 16. Scatter plot showing the relative deviations from the consensus line fit with error
bars representing the expanded (k = 2) uncertainty interval reported by the laboratories.

6.5.  Graphical Exploration — Individual Laboratory Fits

In contrast to the consensus fit in 6.1, the thermal conductivity data from each laboratory were
fitted to individual linear models summarized in Table 7. Although similar in concept to the
original analysis, this approach seeks to answer a different, but related, question: are the two
lines equivalent? Figure 17 replots the same data shown in Fig. 13 with individual linear fits
for the NIST and NPL data.
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Table 7. Linear fits for each laboratory.

Intercept term Temperature term
Lab Estimate S Estimate S
NIST 0.03803 0.0000760 0.0001227  0.000000723
NPL 0.03861 0.000104 0.0001226  0.000000995
0.060 — Non-woven fibrous glass mat
& NIST
- @ NPL
0.055 —
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£
= 0.050 —
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Lab intercept slope
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NPL 0.03861 0.0001226
0.040 —
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Fig. 17. Measured thermal conductivity of non-woven fibrous glass mat (205 kg'm?) as a
function of measured mean temperature (individual linear fits).

6.6. Confidence Ellipse

Because lines are parametrized by intercept and slope, visually, we can represent each line by
a single point on the slope-intercept plane as plotted in Fig. 18. The data are color coded
following the same presentation as previous plots. The ellipse surrounding each point repre-
sents the region containing the true slope-intercept with 95 % confidence [11]. The angle of
tilt indicates correlation between the fitted parameters of each line — slope and intercept. Ex-
amining Fig. 18 to compare the two lines, it is evident that both labs have very precise data.
If, for example, the data were noisier, the ellipses would be more likely to overlap. It is clear
that the slopes (vertical axis) for each lab overlap indicating that, from a statistical (Type A)
perspective, the laboratory slopes are not different significantly. However, the intercepts (hor-
izontal axis) do not overlap indicating that the laboratory intercepts are different significantly.
In other words, a significant (Type A) offset is present.
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Fig. 18. 95 % confidence ellipse plot.

7. Discussion

The cause-and-effect diagram constructed in Fig. 19 shows six major causalities and identifies
a few contributory factors that potentially affected the laboratory test result (Aexp). The list of
contributory factors is somewhat constrained by the scope of the comparison; for instance, only
one material was studied in this comparison. Even so, there was a slight difference in the
measured bulk densities, as evident in Table 5. This small difference is not believed to be a
major effect as demonstrated in the heat-flow-meter data (Fig. 7) which shows that the thermal
conductivity data are insensitive to bulk density for the range considered.

The other major factors — procedure, measurement, and equipment — are discussed in Sec. 7.1
and Sec. 7.2. The operator factor is set aside for the present study. The environmental factors
are described in Appendix D. As a side note, it was realized during subsequent discussions by
the laboratory participants that similar methods of cooling (Fig. 19) for the cold plates were
utilized during the guarded-hot-plate tests. The effects of changing the coolants for active
cooling during testing are discussed further in Sec. 7.1.
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Operator Procedure Material

NIST NPL
Liquid coolant: 20°C, 40°C \ Liquid nitrogen: 20°C, 40°C
Air: 90°C, 140°C, 160°C Air: 90°C, 140°C, 160°C

N NPL
210 kg-m3 \ 203kg-m? | Laboratory
| Test Result
7Vexp
NIST NPL (Table 6)
500 mm GHP /305 mm GHP N4
/ AT
Equipment Measurement Environment
(Table 2)

Fig. 19. Cause-and-effect diagram for laboratory test result (Aexp).

7.1.  Within-laboratory Effects

As clearly exhibited in the plot of relative deviations in Fig. 14, the within-laboratory variabil-
ity is different for each laboratory. The within-lab effects for the NIST data points (diamond
symbols), however, are more pronounced, particularly from 90 °C to 160 °C. An examination
of internal NIST protocols, auxiliary test data in Appendix C, and subsequent measurement
data obtained in a separate study identified two procedural factors and two equipment factors
as likely sources for the variability exhibited in Fig. 14.

The initial level of variability observed at 20 °C and 40 °C is probably due to slight differences
in the test setup for each run. To establish independent runs, the equipment was shutdown at
the end of each run and the specimens were removed and re-conditioned. Prior to each run,
the datum settings for the thickness and clamping load measurements were reset, potentially
contributing to the initial level of variability. From 40 °C to 90 °C, there is also an interesting
change in direction observed for each run. This subtle shift down coincided with a procedural
adjustment for cooling the apparatus. At 20 °C and 40 °C, active cooling was provided by two
refrigeration baths circulating a mixture of water and ethanol through the apparatus. At the
completion of the 40 °C test, the mixture was drained, and active cooling for the higher tem-
peratures was achieved by circulating air.

The increasing level of variability from 90 °C to 160 °C for the NIST data is not well under-
stood at present. For insight, the auxiliary data presented in Appendix C on the temperature
uniformity of the plates was examined. Figure 23 summarizes the standard deviations of the
six thermocouples shown in Fig. 10 for the NIST hot plate and cold plates for each run. The
temperature uniformity of the plates at 20 °C and 40 °C varied by about 0.1 K, or less. How-
ever, the variations for each plate increased dramatically from 90 °C to 160 °C. In the worst
case, the variation of cold plate #2 at 160 °C was about 0.53 K. By comparison, the NPL plate
uniformity in Fig. 24 for the thermocouples shown in Fig. 12 was generally on the order of
0.1 K, or less, over the entire temperature range.
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The variations of the plate temperature uniformity were attributed, in part, to the plate thermal
conductivity (aluminum and copper versus nickel) — the high thermal conductivity of the alu-
minum and copper plates in the NPL apparatus would enhance isothermal conditions. Another
factor was recently discerned by a series of separate experiments conducted by NIST. That
investigation revealed, for a fixed temperature, the variations of the plate temperatures de-
creased as the air pressure was decreased, indicating the probable presence of a convective
loop within the apparatus. The effects of a convective loop would cause a vertical temperature
gradient along the plates (Fig. 8b). Additional studies are recommended to verify the magni-
tude of this effect.

Although the within-lab effects for NPL are small, the NPL data points (circle symbols) in
Fig. 14 exhibit curvature that may correlate to a procedural factor. At T of 20 °C and 40 °C,
active cooling of the NPL apparatus was provided by circulating liquid nitrogen. For higher
temperatures, active cooling was achieved by circulating compressed air. This procedural ad-
justment appears to have coincided with a change in the slope of the NPL data in Fig. 14.

7.2.  Between-laboratory Effects

The response patterns between the laboratories observed in Fig. 14 appear quite consistent
from run to run. The agreement between the laboratories is = 1 %, or less, which is quite good
over the temperature range of interest. It is somewhat surprising, however, that the minimum
and maximum deviations between the laboratory data are at 90 °C and 20 °C, respectively.
This trend departs from well-known assertions in guarded-hot-plate standards [2-4] that state
that the test method is capable of measuring thermal conductivity to within £2 % when the
mean temperature is near room temperature and £5 % over the entire operating range. The
increasing trend observed in the deviations above 90 °C is possibly due to thermal radiation
heat transfer. Further research is necessary to confirm this potential explanation.

In a recent bilateral comparison [12], the Laboratoire national de métrologie et d’essais (LNE)
and NIST compared guarded-hot-plate data over a 17-year interval for two categories of insu-
lation materials — fibrous and cellular polystyrene. Over a more limited temperature range of
7 °C to 47 °C (280 K to 320 K), the consistency in the data for fibrous and cellular insulating
materials was on the order of £1 % and + 0.5 %, respectively. As was the case for this com-
parison, a graphical analysis revealed that the data for fibrous materials between LNE and
NIST were mostly offset and parallel. Interestingly, in both studies, the NIST thermal conduc-
tivity data were typically lower than the data from the other national metrology institute.

An extensive analysis of causal factors in the LNE/NIST bilateral comparison [12] identified
material composition (more specifically, anisotropic thermal conductivity properties), equip-
ment design (e.g., lateral guarding), and their interaction as the most probable factors affecting
the test results. In addition, it was noticed that for compressible materials, the usage of rigid
spacer stops, as was done in this study, reduced the level of variability. Although this study
was limited to a single fibrous material, it is plausible that a similar set of material causal
factors affected the lab behavior between LNE and NIST, and between NIST and NPL.
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8. Summary and Future Work

This bilateral study of guarded-hot-plate laboratories at NIST and NPL demonstrated that, over
a temperature range of 20 °C to 160 °C (293 K to 433 K), the thermal conductivity test data
for a non-woven fibrous-glass insulating material agreed to within £1 %. The key finding is
that, from an engineering perspective considering the combined laboratory uncertainties (both
Type A and Type B), the analysis could not conclude that the laboratories were significantly
different. The level of agreement in this study is well within uncertainty statements in guarded-
hot-plate standards [2-4] of +2 % when the mean temperature is near room temperature and
+5 % over the entire operating range.

A cause-and-effect analysis investigated possible factors that potentially affected the labora-
tory test results. The analysis identified a common factor between the labs that was procedural
in classification. At temperatures below 90 °C, both laboratories employed active cooling
using liquid coolants. In the case of NIST, a water/ethanol mixture was utilized and for NPL,
liquid nitrogen. At 90 °C, and above, both laboratories circulated dry air for active cooling of
the cold plates during testing. These changes in coolants appeared to result in changes in the
behaviour of the laboratory thermal conductivity measurements. Further work, however, is
needed to establish any causal relationship between differences in the coolants/procedures with
deviations in the experimental results. The study also revealed the presence of lateral temper-
ature variations in the NIST plates that may have contributed to increased variability in the
thermal conductivity measurements at extended temperatures.

For the presentation of the uncertainty analyses, this study built upon current international
guidelines for guarded-hot-plate comparisons. As part of the test protocol, the participants
agreed to share their laboratory uncertainty budgets. Examples of uncertainty budgets con-
ducted for 20 °C showed that, although the combined standard uncertainties were similar, the
methods used to determine the uncertainties were different. For NIST, Type A evaluations
predominated, and for NPL, the Type B evaluations tended to prevail. Further work is recom-
mended in this area when conducting future bilateral comparisons.

This study is the first comparison of guarded-hot-plate laboratories from two national metrol-
ogy institutes between Europe and the United States covering an extended temperature range.
Corroboration of the guarded-hot-plate test method at extended temperatures is a critical step
in the development of high-temperature thermal insulation reference materials. When properly
prepared and conditioned (as was the case for this study), non-woven fibrous-glass mat is a
candidate for further development. The next phase should focus on the robustness and long-
term stability of the material.
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Appendix A

Appendix A: Comparison Protocol

Prepared by: Robert Zarr and Will Guthrie, NIST, Jiyu Wu, and Clark Stacey, NPL
Final Revision: 23 November 2015 (Version 7)
Al. Objective: The objective of this pilot study is to compare the state-of art of thermal
conductivity measurements between guarded-hot-plate apparatus at NPL and NIST.
A2 Participants: NIST, NPL
A3 Schedule
- 05 May 2011 Confirmation of participants
- October 2011 Preparation of samples
- 23 May 2015 Agreements on schedule and measurement protocol
- 2017 Measurements will be carried out (measurement schedule will
depend on the organization details)
- 2018-2019 Analysis of the results
- TBD Report
A4 Method: The thermal conductivity measurement will be carried out using a guarded-
hot-plate apparatus according to 1SO and/or ASTM test methods, as appropriate.
A5 Material
- Non-woven fibrous-glass blanket thermal insulation (100 % E-glass, mechanically
bonded by needling process)
- Nominal bulk density (p): 200 kg'm™
- Nominal thickness (L): 22 mm
- Nominal thermal conductivity (\): 0.039 W-m™-K at mean temperature (Tm) of 24 °C
- Maximum service temperature: 538 °C (1000 °F)
A6 Specimens
- 10 specimens cut for multiple plate sizes (Fig. 20) by waterjet (NIST)
- 10 specimens conditioned (Fig. 2) in a convection oven at 475 °C for 24 h (NIST).
- Select 2 specimens (1 pair) matched for bulk density, thickness, and thermal re-
sistance (NIST/NPL)
- Specimen pair designated as A and B (NIST/NPL)
- NIST will determine spacer lengths for specimens A and B and transmit length to NPL
A7 Protocol

Participants complete the electronic data sheet “GHP_Inter-Lab_NPL_NIST_Re-
portFormVer10.xIsx’” by entering data in the following workbook tabs.

0 Apparatus

O Specimens

0 Measurements

o Environmental
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500 mm Dia.

465 mm Dia.

305 mm Dia.

305 mm

120° (Typ.)

Fig. 20. Technical drawing of NIST and NPL specimens for waterjet cutting.

Test conditions: Participants conduct 3 separate runs of guarded-hot-plate meas-
urements at the temperature conditions summarized in Table 7.

Table 8. Original protocol test conditions

Tm AT

(°C) (K) (K)
20 293 20
40 313 20
140 413 25
160 433 25
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Specimen characteristics: Participants determine the specimen characteristics be-
fore and after each run according to their internal laboratory protocols following the
guidelines below:

(0]

(0]

(0]

Prior to a Run#1, condition the specimens at 23 °C + 1°C, 50 % RH + 10 %
RH for 24 h.

After conditioning, determine specimen(s) A and/or B lateral dimensions (di-
ameter or length and width).

After conditioning, determine the thickness of specimen(s) A and/or B under
compressed load. Weigh specimen(s) A and/or B. Determine the bulk den-
sity (p) of specimen(s) A and/or B. The density determination excludes the
insulation material to be removed for insertion of the spacers. Dimensional
measurements of openings are to be measured and retained by each labora-
tory.

After each run (#1 thru #3), remove the specimen(s) from the apparatus and
condition the specimens at 23 °C + 1°C, 50 % RH = 10 % RH for 24 h.
Repeat the dimensional/mass measurements (above) and re-compute the bulk
density.

Complete the SPECIMEN CHARACTERISTICS section of the Measure-
ments tab.

Guarded hot plate measurements: Participants determine the thermal conductivity
of the specimen(s) according to their internal laboratory protocols following the
guidelines below:

(0}

Specimen thickness: The specimen thickness is determined using spacer
stops placed between the apparatus plates. The spacer stops can be fabricated
from either calcium silicate or fused quartz. The specimen thickness shall be
corrected for thermal expansion effects of the spacer material.

Clamping pressure (optional): The clamping pressure can be recorded by
each laboratory for their own purposes.

Thermal conductivity measurements: The thermal conductivity measure-
ments are conducted at temperature conditions specified in Table 7 in ascend-
ing order (i.e., from lowest to highest value of Tm). The measurements are
performed according to ISO 8302 or ASTM C 177.

Complete the GUARDED HOT PLATE MEASUREMENTS section of the
Measurements tab.

Complete the MEASUREMENT ENVIRONMENT CONDITIONS section
of the Environmental tab (averages of final steady-state period).

A8 Measurement Results

The results of this comparison will be analysed by the NIST Statistical Division and
discussed among the participants.

The results of this comparison will be published only after agreement of all partici-

pants.

The participants agree to share their uncertainty budgets. The complete details of the
uncertainty budgets will not be published.
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Fig. 21. NIST specimen data.
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Fig. 22. NPL specimen data.
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Fig. 23. NIST guarded-hot-plate measurement data.
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Fig. 24. NPL guarded-hot-plate measurement data.
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Appendix D: Environment Measurements — Report Form

LABORATORY: [NIST
APPARATUS: [500 mm guarded-hot-plate
MATERIAL: non-woven fibrous-glass blanket
MEASUREMENT ENVIRONMENT CONDITIONS NIST
Test No Nominal Nominal Date of teQmQ:riZtr:Jtre Aprrzssijrnet c)fercvbpisinntt
Tn (°C AT (K) measurement Q) KPa Q)
1 20 20 2016-Feb-09 21.46 98.24 -69
2 40 20 2016-Feb-11 23.34 99.65 -73
3 90 25 2016-Feb-12 28.08 99.84 -74
4 140 25 2016-Feb-14 32.70 101.46 -75
5 160 25 2016-Feb-16 34.83 98.63 -70
6 20 20 2016-Feb-20 18.85 99.38 -66
7 40 20 2016-Feb-22 21.54 100.20 -65
8 90 25 2016-Feb-24 27.04 98.67 -66
9 140 25 2016-Feb-26 32.06 99.45 -68
10 160 25 2016-Feb-27 34.21 100.04 -71
11 20 20 2016-Mar-03 19.25 100.40 -71
12 40 20 2016-Mar-05 20.83 100.45 -70
13 90 25 2016-Mar-06 27.13 100.69 -69
14 140 25 2016-Mar-09 32.30 100.30 -67
15 160 25 2016-Mar-10 34.32 99.90 -65
Significant Year-Month-Day| ~ DD.DD DDD.DD DD
digits

Fig. 25. NIST environmental data.
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LABORATORY: [NPL
APPARATUS: |305 mm x 305 mm GHP
MATERIAL: non-woven fibrous-glass blanket
MEASUREMENT ENVIRONMENT CONDITIONS NPL
Test No Nominal SN La il tegm[g:riaetrlltre Agrrzssilfrnet :l:nr:ii;irt]yt
In (°C AT (K) measurement Q) KPa %RH
1 20 20 2016-11-30 22.90 103.39 145
2 40 20 2016-12-01 22.60 103.072 14.4
3 90 25 2016-12-07 24.85 102.525 33.95
4 140 25 2017-01-05 22.54 103.093 18.52
5 160 25 2017-01-06 22.50 103.585 19.2
6 20 20 2017-01-28 22.78 100.568 229
7 40 20 2017-03-01 22.50 99.569 27.24
8 90 25 2017-02-17 24.12 102.653 30.52
9 140 25 2017-02-25 23.42 101.520 29.5
10 160 25 2017-02-27 23.40 99.193 34.2
11 20 20 2017-04-05 22.26 102.983 28.76
12 40 20 2017-04-06 22.42 103.003 29.7
13 a0 25 2017-04-07 22.82 102.713 29.2
14 140 25 2017-04-08 22.62 102.354 31.28
15 160 25 2017-04-10 22.72 102.092 33.62
Significant Year-Month-Day|  DD.DD DDD.DD DD
digits

Fig. 26. NPL environmental data.
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