NIST Technical Note 2053

Users Guide to Type277
Loosely-Coupled Integration of
TRNSYS with Java

Farhad Omar

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2053

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

NIST Technical Note 2053

Users Guide to Type277
Loosely-Coupled Integration of
TRNSYS with Java

Farhad Omar
Energy and Environment Division
Engineering Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2053

August 2019

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2053
Natl. Inst. Stand. Technol. Tech. Note 2053, 34 pages (August 2019)
CODEN: NTNOEF

This publication is available free of charge from:
https://doi.org/10.6028/NI1ST.TN.2053

https://doi.org/10.6028/NIST.TN.2053

Software Disclaimers

Any mention of commercial products in Type277 and this user’s guide is for information
purposes only; it does not imply recommendation or endorsement by NIST.

This software was developed by employees of the National Institute of Standards and
Technology (NIST), an agency of the Federal Government and is being made available as a
public service. Pursuant to Title 17 United States Code Section 105, works of NIST
employees are not subject to copyright protection in the United States. This software may be
subject to foreign copyright. Permission in the United States and in foreign countries, to the
extent that NIST may hold copyright, to use, copy, modify, create derivative works, and
distribute this software and its documentation without fee is hereby granted on a non-
exclusive basis, provided that this notice and disclaimer of warranty appears in all copies.

THE SOFTWARE IS PROVIDED ‘AS IS'WITHOUT ANY WARRANTY OF ANY KIND,
EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED
TO, ANY WARRANTY THAT THE SOFTWARE WILL CONFORM TO
SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND FREEDOM FROM INFRINGEMENT,
AND ANY WARRANTY THAT THE DOCUMENTATION WILL CONFORM TO THE
SOFTWARE, OR ANY WARRANTY THAT THE SOFTWARE WILL BE ERROR

FREE. IN NO EVENT SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUDING,
BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED
WITH THIS SOFTWARE, WHETHER OR NOT BASED UPON WARRANTY,
CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS
SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR
NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR
USE OF, THE SOFTWARE OR SERVICES PROVIDED HEREUNDER.

Copyright Notice for External Libraries

The JTRNSYS project includes external libraries such as Protocol Buffer, JavaFX, and
matlabcontrol, please read/adhere to the license agreements of these libraries reproduced in
the 3R°_ PARTY_LICENSEs.txt file.

Table of Contents

Lo PUIPOSE ...ttt h et b et e s h e e n e b e nr e e nne e e e ne e ne e 1
R |1 oo L3 T £ o] o OSSPSR 1
2.1, SYStEM REQUITEIMENTSciuiiiiiiieieie ettt 3
3. USING TYPE277 IN TRINSY'S ..ot bbb 3
3.1. Downloading JTRNSY'S PrOJECE........ciiiiiiiiiieieicee s 5
3.2. Co-Simulation between TRNSY'S and JAVA........cccovveiieienieniieiesee e 6
3.2.1. Simulating the PVT Model in TRNSYS ..o 7

4. Accessing Data and Modifying the COUecceiiiiiiiiiiie e 10
4.1, ServerRUNNADIE CIaSS.........coiiiiiiieiieie e e 11
4.2. ServerRunNNableMatlah Class ..o s 13
4.2.1. Performing Calculations in MATLAB ... 14

TR O] o 113 o] o TSR 17
Appendix — Importing JTRNSY'S Project into ECHIPSe........cccovveviiieiiee e 18
R 1= =] 0TS 28

List of Figures

Figure 1. A schematic representation of the co-simulation environment..............c.cccceeevvennene 1
Figure 2. A UML class diagram of the JAVA classes used for implementing a local server
located in the ProjJeCt FEPOSITONYcviiiieie et e e e 2
Figure 3. TYPE277 PrOTOIMA........coviiiiiiiiiieieie e 4
Figure 4. The PVT example model in TRNSYS [1]....coiiiiiieiiiie e 5
Figure 5. User interface for starting the SErVer ... 6
Figure 6. Open the PVTTYPE277 MOUEL.......cccociueiiiiiee et 8
Figure 7. The PVT mModel With TYPE277oviieiieiieeest e 9
Figure 8. Create a TRNSYS input file for PVTType277 model..........cccccvevvvvveiviiniieiec, 10
Figure 9. Result of simulating the PVTType277 example with the local server in Java........ 10
Figure 10. Create an object of ServerRunnable class for launching the server (see
SETVETCONTETOLLET) iiiiiiiieriieieiteeste e e st ettt e s e e te e ste et e asee bt e beaseesbeesbeeneesseebeaneenreeneis 11
Figure 11. Code snippet for processing incoming data from TRNSY'S (see
SErVErRUNNADLE. JAVA) tiiiiiiiiiiiiiiieieie sttt sttt bbbttt e bbb be b s 12
Figure 12. Access data from TRNSYS (see ServerRunnable. java)...e. 12
Figure 13. Sending serialized data back to TRNSYS (see ServerRunnable.java)...... 12
Figure 14. UML class diagram for loosely-coupling TRNSYS and MATLAB via the Java
YT (0] 1< o TSSOSO PUR TSRS 13
Figure 15. Create an object ServerRunnableMATLAB for exchanging data between
TRNSYS @GN0 MATLAB. ..ottt bbbttt st st sbe st e renneas 14
Figure 16. Adding Matlab Files folder to the path of MATLAB software............cc.ccocvrenen. 15
Figure 17. Methods for facilitating the exchange of data between TRNSYS and MATLAB 15
Figure 18. Proxy function call to send and receive data to-and-from MATLAB.................. 16
Figure 19. Method to serialize and return data to TRNSYS........cccoiiieviiicieece e 16
Figure 20. Debugging in MATLAB ... 17
Figure 21. EClipse IMPOIrt WIZard...........cccoooveiieiiiiieiie ettt 18
Figure 22. IMPOrt ProjeCtS WIZAIG.coviirieieiesie sttt 19
Figure 23. Project eXplorer in ECHIPSE.......coviiiiii e 20
Figure 24. Opening properties Window for JTRNSYS ... 21
Figure 25. Editing Java build path for the missing libraries............ccccccoviieiieii i, 22
Figure 26. Adding third-party libraries to the build path for JTRNSYS project.................... 22
Figure 27. Adding a user library to the JTRNSYS Project.........ccccvevveviiieieene e 23
Figure 28. Adding a new JavaFX 11 user library to the JTRNSYS project........c.cccccvvrenee 24
Figure 29. Selecting JavaFX 11 Jar fileS.......ccceiiiiiiiieiecc e 25
Figure 30. JaVaFX 11 USEr HIDIary....... oo 25
Figure 31. Close the Add Library WindOWccccccveiiiiiiiiiecie e 26
Figure 32. Added external libraries to the build path of the JTRNSYS project..................... 26

1. Purpose

The purpose of this document is to provide instructions for using a newly developed TRNSYS
component (Type277). Type277 utilizes socket communication to provide loosely-coupled
integration between TRNSYS and Java-based components. Bi-directional flow of information
is facilitated using the client-server architecture of Java. Type277 is compiled as both a 32-bit
and 64-bit dynamic link library to support co-simulation with TRNSYS17 and TRNSYS18
projects. An application of Type277 is demonstrated by modifying an example TRNSYS
project. The Java project and files, TRNSYS modified example projects, and Type277 dynamic
link libraries are being made available to the public through the NIST GitHub site.

2. Introduction

This section describes the use of NIST-developed software (Type277) for performing co-
simulation by facilitating the exchange of data between a local server and a model developed
with the TRaNsient SYstem Simulation tool (TRNSYS) [1]. A detailed description of the co-
simulation environment is provided in [2]. Figure 1 shows a schematic representation of the
co-simulation environment, describing the interaction of a TRNSYS model and a local server.
Figure 1 also shows that Type277 enables a TRNSYS model to participate in a co-simulation
with a third-party software tool through the local server. An example of co-simulation between
TRNSYS and MATLAB is described in Section 4.2. The connection between TRNSYS and
the local server is accomplished through socket communication, while the connection between
the local server and the third-party software can be established using proxies or other available
libraries.

TTTTTTTTSsssmmmm 1 [T
! T : :
| I B 1 1
| =R b : i
: = 3 : :
| TRNSYS g Socket 9 = Local Server Interface | Third Party i
R N B . i ird Party |
- - B B > 5 o 2 Facilitate co- Yo
- I 7] =
i simulation model 1 [o =2 . ; i Software i
1 [= 5 simulation i i
1 g o B ow g ! !
1 g 11 = = 1 1
] T P
X I Pl w QA i i
11 1]
! TTTT 0 i i
‘ —————————————————— b 4

Figure 1. A schematic representation of the co-simulation environment

The co-simulation environment shown in Figure 1 was implemented in a Java project, which
includes all the necessary folders and files used for loosely-coupled integration of TRNSYS
with a Java environment. The key idea behind this approach is to demonstrate the use of
Type277 and enable users to modify the code to meet their needs. Figure 2 shows a Unified
Modelling Language (UML) class diagram of the Java project without the interface to a third-
party software tool.

<=Java Class=>

<<Java Clags>=

(3 ServerController (® Serverll
application application
& ServerController(} & Serverlii)

@ launchServerButtonClicked():void @ start{Stage):void
{}Smﬂingﬁtring J:void

@ closeServerButtonClicked():void
@ submitinputButtonClicked():void

{}S sendUIDatal) void
@ getinput1():String
{}S setinput1(String).void
{}Sgetln put(}:String
{}S setinput2(Stringjovoid
@ getinput3():String
{}5 setinput3(Stringjovoid

+uiDataClazs

<<Java Class=>
(= UlinputData

commaonClasses

& UlinputDatar)
@ getinput_1().double
@ =setinput_1{double):void

{}Sgetlngutatg}:ﬁtring 0.1 @ getinput_2{}.double
(}Ssetlnputattstring}:'.fuid @ setinput_2({double):void
~uilnputData

@ getinput_3().double
~1 | @ setinput_3({double) void
@ getinput_4().double
@ setinput_4(double):void

~gerverClazs | 0.1

=<=lava Clags=>

(® ServerRunnable
com.socket

{fSewerRunnable(}

@ run(}:void

EF PVT{doublef]}:double[]

c}sreceivedr.mssage(ln putStream):byte[l

{}S PrintDataTRNSY S(JTRNSY SData): List<Double=
{}S sendDataToTRNSY Sidouble]):void

@ interruptServer().boolean

=<=lava Clags=>
(% SingleObjectDataTransfer

commonClasses

ECSII'IghED bjectDataTransfer() _instance

{}Sgetln stance(}.SingleObjectDataTransfer
= |IJ A

Figure 2. A UML class diagram of the JAVA classes used for implementing a local server
located in the project repository

@ startServer():void

The UML class diagram shown in Figure 2, describes the relationship of various classes used
to support the loosely-coupled integration of TRNSYS and Java. The ServerUT is the main
class for rendering the graphical user interface (GUI) and creating an instance of the controller
class (ServerController). The ServerController class controls the functionality
of the GUI and instantiates an object of the ServerRunnable class, which implements the
server and facilitates the exchange of data between TRNSYS and Java. The instructions for
accessing TRNSYS data in ServerRunnable class are presented in Section 4.1. The
ServerController class also instantiates an object of UTInputData class to capture
the user inputs (e.g., get Input 1 ()shown in Figure 2) from the GUI and transfer them to
other classes using a Singleton object.

2.1. System Requirements

=

Personal computer able to run Microsoft Windows 7 or 10 versions;

2. Java Standard Edition (SE) 8 for Windows (JRE 1.8) or Java Development Kit

(JDK 1.8);

JavaFX 11 libraries (included in the project, see Appendix) or earlier versions;

4. MATLAB Java application programming interface matlabcontrol-4.1.0.jar
(included in the project, see Appendix); and

5. Google’s Protocol Buffer library protobuf-java-3.6.1.jar (included in the

project, see Appendix).

w

Note that an implementation of protocol buffers used in this project is not compatible with
JDK 11. This project was created and tested using JRE 1.8 or JDK 1.8 for Windows. Also,
note that MATLAB software must be available in your system to use the example described in
Section 4.2.

3. Using Type277 in TRNSYS

TRNSYS is a modular and extendable simulation environment that consists of a suite of
software tools designed to accommaodate transient simulation of multi-zone buildings and other
thermal systems. The main user interface is Simulation Studio, in which users can setup
projects by graphically connecting model components. Each component is mathematically
described in the TRNSYS simulation engine and has a corresponding graphical representation
(proforma) in Simulation Studio. A proforma is a black-box description of inputs, outputs, and
parameters. TRNSYS components are commonly referred to as Types and are identified by a
number which relates a component to the model of that component written as a subroutine. An
advantage of the TRNSYS modular architecture is its ability to support the integration of user-
defined types, such as Type277.

Type277 is a dynamic-linked library (DLL) designed to facilitate the loosely-coupled
integration of a simulation model in TRNSYS with components written in other programming
languages, e.g., Java and MATLAB. Type277 utilizes socket communication to establish a
connection between TRNSY'S and a local server; effectively converting a TRNSYS model into
a client of the server. To ensure a reliable exchange of information between a server and the
client, the data of the primitive type Double are serialized using Google’s protocol buffers [3].
Type277 is written in C++ and compiled into 32-bit and 64-bit DLLs. This document presents
a step-by-step instruction for using Type277 in a TRNSYS model while exchanging data with
a server implemented in Java. Alternative implementation of the local server in C++ and
Python are also made possible by serializing data with protocol buffers. Relevant C++ and
Python libraries are included with the Java project download from NIST’s GitHub site.

Like all standard types in TRNSY'S, Type277 has a proforma as shown in Figure 3. As can be
seen from Figure 3, the value associated with the first parameter sets the number of inputs and
the value associated with the second parameter sets the number of outputs. Type277 uses these
parameters to set the size of a vector (1 x n dimensional array) for exchanging data of the

primitive type Double. The input data are sent to the server and the returned values can be
connected to the Inputs of other types in a TRNSY'S project.

ﬂ'wu{i
Type2i7
(Project.tpf) Type2i7 = i
Parameter | Input I Output | Commerit
Hame Value Unit More | Macro
1| @l Mumber of inputs 1 - [MDre...]
1 3 || Mumber of outputs 1 - [Ml}re... l
i

Figure 3. Type277 proforma

To demonstrate the use of Type277 in a TRNSYS model, the PVT example TRNSYS project
was modified by replacing the pLoad Equation shown in Figure 4 with Type277. The goal is
to calculate pLoad in Java and MATLAB and return the calculated values back to TRNSYS.

.
o S

Boulder, CO PV/T

fill pump wFill
wColl
!@
coll pump
[A Tl
- - pLoad eqp/lgt sched
battery bank inverter / charge controller

parameters must be compatible with each other.

This example is designed to show the use of Tvpes 47, 43, and 30. Electrical output from the Type30 PV/T array is sent to
the inverter'charge controller (Type48). Electrical output is compared by the inverter/charge controller with a predefined
electrical load (set by a combination of Typelds, Typedl and an equation). The charge controller then decides whether
the electical generation should be used to meet the load or charge the battery. Be aware that Types47 and 48 must be
used in matching modes. In other words, the battery bank mode parameter and the inverter / charge controller mode

The thermal side of the example is somewhat contrived. The collector pump circulates water from the tank when the
differential controller vColl determines that energy can be collected. The tank is emptied by a predefined load and is
refilled by a fill pump when it reaches a low volume limit.

Figure 4. The PVT example model in TRNSYS [1]

i

v DHW Load

div-1

M-F eqp/lgt

ih

Sa eqp/lzt

ih

Su egpilgt

|5sd

flow control

This is a simple calculation, but the purpose of using the PVT example is to demonstrate the
process of exchanging data between TRNSYS and Java. More complex calculations can be
performed in a similar manner. A case study for assessing the performance of six residential
energy management control algorithms through co-simulation of TRNSYS and MATLAB
facilitated by Type277 is presented in [2], [4].

3.1. Downloading JTRNSYS Project

This section provides instructions for downloading a Java project that contains all the necessary
folders and files used for loosely-coupled integration of TRNSY'S and the Java environment.

It is assumed that the 64-bit version of TRNSYS 18 has been installed in the C:\TRNSYS18

folder.

1. Download the zip file or clone JTRNSYS project from
https://github.com/usnistgov/JTRNSYS.qit;

2. Extract jtrnsys-master.zip or clone to your desired location, e.g., C:\jtrnsys-master;
3. In the jtrnsys-master folder:

https://github.com/usnistgov/JTRNSYS.git

a. Navigate to the “TRNSYS 64bit” folder and copy the “Trnsys Socket Client”
folder into the “C:\TRNSY S18\Studio\Proformas” folder;

b. Navigate to the “TRNSYS 64bit\PVT Example” folder and copy the
PVTType277.tpf file into the “C:\TRNSY S18\Examples\PVT” or into another
desired folder such as “C:\TRNSY S18\MyProjects”;

c. Navigate to the “TRNSYS 64bit\Type277DLLs\ReleaseDLL” and copy the
Type277.dll file into the release folder in
“C:\ TRNSYS18\UserLib\ReleaseDLLs”; and

d. Navigate to the “TRNSY'S 64bit\Type277DLLs\DebugDLL” and copy
Type277.dll file into the debug folder in
“C:\ TRNSYS18\UserLib\DebugDLLs”.

To use the 32-bit version of Type277, follow step 3, but copy files from the “TRNSYS 32bit”
folder instead of the “TRNSYS 64bit” folder. The 32-bit version of Type277 will work with
both TRNSYS17 and the 32-bit version of TRNSYS18.

3.2. Co-Simulation between TRNSYS and Java

To perform co-simulation between TRNSYS and Java navigate to the jtrnsys-master folder
and follow these instructions:

1. Double click the ServerUlLaunch.bat file or type java -jar "LaunchServerUl.jar" in
Windows command prompt to launch the GUI as shown in Figure 5; and

2. Double click the Start Server button to launch the server. Do not close the server, it
must remain active to accept a client’s connection. Note that this action may cause a
windows firewall security alert, allow the process to proceed.

B ' Launching Server = | = XS
Simulation
Inputs
Input-1 30
Input-2 20.5
Input-3 23.9
Input-4 50
Submit Inputs
I Start Server . Close Server I

Figure 5. User interface for starting the server

As can be seen from Figure 5, the Server GUI provides a simple interface for capturing user
input data, starting the server, and finally terminating the server and closing the GUI. The four
generic input fields are provided as a mechanism for users to submit their desired values. For
example, users can set heating and cooling setpoints or define threshold limits for controlling
humidity levels. These inputs are captured as text and parsed as the primitive type Double in
ServerController class. The number of input fields can be extended as needed either
graphically by manipulating the Server GUI or editing the JServer. fxml file included in
the JTRNSYS project. To capture user inputs, double click the Submit Inputs button. In the
current implementation, the data from the GUI is stored in an object of UT InputData class.
A method, sendUIData ()in ServerController class, is provided for sending the GUI
input data through an instance of a Singleton object. Note that this is an additional functionality
and not necessary to launch the server or communicate with TRNSYS.

After launching the server, it is ready to listen for a client connection on port 1345, which is
used by Type277 to communicate with the local server. The client is a TRNSYS simulation
model that uses Type277. The port number (1345) was arbitrarily chosen, but it is hard-coded
in Type277.

The next step is to simulate the modified version of the PVT project with Type277 as explained
in the following section. Note that before simulating the TRNSYS model, the server must be
running. In the absence of having an active server, TRNSYS will not throw an error if the
model is simulated. Instead, the simulation will progress slowly, where the value for pLoad
will be equal to zero.

3.2.1. Simulating the PVT Model in TRNSYS

The purpose of this section is to load the modified version of the PVT model (PVTType277)
into the Simulation Studio and simulate it.

1. Open the 64-bit or 32-bit installation of Simulation Studio in TRNSYS18;

2. Select File = Open... from the menu and navigate to the folder where the PVT example
for Type277 was copied in Step b of Section 3.1;

3. Select the PVTType277.tpf file and click Open as shown in Figure 6.

£502'N.L' LSIN/8Z09°0T/B10"10p//:sdNY :woly aBreyd Jo da1y ajqejrene si uogesiqnd siyL

View Direct Access Tools ?

New
Open...

Import TRNSYS Input File ...

Organize v New folder 4=z

% Favorites Name Date modvified Type

B Desktop |+| PVTType277.tpf 3/11/20193:00 PM TRNSYS Studio Pr...
& Downloads |+] PVT.tpf 3/6/2019 9:16 AM TRNSYS Studio Pr...
2] Recent Places

¢& OneDrive

4 Libraries
@ Documents
J Music
[Pictures
Videos

1% Computer
&, Local Disk (C:)
. New Volume (E)
= My Data (F:)
o Shares (G:)
® EL Program Data
S Smart Grid Progr ~ < |]

File name: PVTType277.tpf - [TRNSVS Project Files (*.tpf)

[Open |v] [Cancel

Figure 6. Open the PVTType277 model

The PVT model with Type277, shown in Figure 7, is loaded into Simulation Studio.

o S @

Boulder, CO PV/T mix-1

A

fill pump vFill
r
! ~
B
yColl - -
[T Typessa

coll pump
i
—— bt
e -~ =
" - TypelT7 eqp/lgt sched
battery bank inverter / charge controller

This example is designed to show the use of Types 47, 48, and 50. Electrical output from the Type30 PV/T array is sent to
the inverter/charge controller (Type48). Electrical output is compared by the inverter/charze controller with a predefined
electrical load (set by a combination of Typelds, Typedl and an equation). The charge controller then decides whether
the electical generation should be used to meet the load or charge the battery. Be aware that Types47 and 48 must be
used in matching modes. In other words, the battery bank mode parameter and the inverter / charge controller mode
parameters must be compatible with each other.

The thermal side of the example is somewhat contrived. The collector pump circulates water from the tank when the
differential controller yColl determines that energy can be collected. The tank is emptied by a predefined load and is
refilled by a fill pump when it reaches a low volume limit.

Figure 7. The PVT model with Type277

thi

v DHW Load

M-F eqp/igt

Sa egp/lgt

Su egp/lgt

|esd

flow control

A comparison of Figure 4 and Figure 7 shows that the Equation function for calculating pLoad
in Figure 4 is replaced by the proforma for Type277. The input to Type277 is fLoad, and the

output is pLoad.

4. |In Simulation Studio:

a. Navigate to the Calculate menu item and select Create input file from the drop-

down menu as shown in Figure 8 and click OK; and

b. Runthe PVTType277 example by selecting the Run button in Simulation Studio.
This step launches the TRNEXE software, showing the simulation progress and

values for pLoad calculated in Java. Select the Graph 1 to see the results of this

simulation as shown in Figure 9.

* Simulation Studio - [PVTType277.tpf

*QJ° File Edit View DirectAccess Assembly | Calculate | Tools Window ?

DeEd & é[Create input file
Run simulation 8 |
Parametric study L
@ rSimuIationStudio— 1—8-]‘
O

| Thefile named "PVTType277.dck" has been created!
.

Figure 8. Create a TRNSY'S input file for PVTType277 model

& TRNEXE: CATRNSYS18-64bit\Examples\PVT\PVTType277.dck ==
Calculations Plet Options About
Temperature [C] Heat Transfer Rate [kJ/h]
— fLoad — pload
10.00 2000

5,00 [ESES R - B T RUUUCIDFORUTEU OISO Do X - TV 1600

600 —,— R T - e B AhE i - 1200

Temperature [C]

4.00 I L S S SISO SOUUUUOSU SRR SO 800

Heat Transfer Rate [kJ/h]

2,00 (S L S . S S 400

H H H H 0
2952.0 2976.0 3000.0 3024.0 3048.0

Simulation Time =3048.00 [hr]

000 v ;
2880.0 2904.0 2928.0

liquid loop | electiical side || Graph 1 ;

Figure 9. Result of simulating the PVTType277 example with the local server in Java

4, Accessing Data and Modifying the Code

The objective of this section is to describe the process for accessing data, modifying the code,
and re-building the Java project. There are two main classes ServerRunnable and
ServerRunnableMatlab, which provide access to the data and the ability to modify the
code. In the ServerRunnable class, a user can access the data from TRNSYS and modify
the code to meet their needs in the Java environment. Note that ServerRunnableMatlab

10

is a modified version of the ServerRunnable class with additional functionality of
connecting with a third-party software tool to perform advanced computation. To achieve the
objective of this section, the Java project from Section 3.1 was imported into the Eclipse
integrated development environment (IDE). Note that using Eclipse is not required to edit or
view the content of the Java project. Users can choose a different integrated environment or
none. The instructions for importing the Java project and adding third-party libraries into
Eclipse are documented in Appendix.

4.1. ServerRunnable Class

As previously mentioned, the ServerUT class is responsible for launching the GUI, which
creates an object of the ServerController class. The ServerController class
creates an object of the ServerRunnable class as shown in the code snippet of Figure 10.
These JAVA classes are in the JTRNSY project repository (JTRNSY\src) downloaded in
Section 3.1.

45= /* Uncomment the line below for exchanging data between TRNSYS and Jawva to perform PVT related
46 * calculations in Jawva. */

43 serverRunnable serverClass = new ServerRunnable();

49 \{===
58

51

52 //===
532 /* Uncomment the line below to launch MATLAB and perform PVT related calculations in MATLAB.

54 * Make sure to comment the ServerRunnable line abowe. Use the ServerRunnableMatlab cbject to
55 * exchange data between TRNSYS and MATLAE through Java.

56 7

57

53 //5erverRunnableMatlab serverClass = new ServerRunnableMatlab();

59 |===

Figure 10. Create an object of ServerRunnable class for launching the server (see
ServerController)

ServerRunnable is the main class for sending and receiving data to-and-from TRNSYS.
It has three key functionalities: processing incoming data from TRNSYS, performing
manipulation of incoming data, and sending the results back to TRNSYS. In the code snippet
shown in Figure 11, the incoming data from TRNSYS (client) is read, deserialized, and parsed
into a list and an array of the primitive type Double. This code is used to process incoming
data and should function properly without modification.

11

** Process Incoming Data ***

¥
R R S E

S~ T IR

// Read input stream
InputStream inStream = client.getInputStream();

// Get bytes from the input stream
msg = receivediessage(inStream);

// Dg-serialize input bytes using protocol buffers
JTRN = JTRNSYSData.parseFrom(msg);

// Create an array list of type doubles, holding data from the client
TRNSYSData = new ArraylList<Double>();
TRNSYSData PrintDataTRNSYS(FTRN) ;

// Create an array of type doubles from incoming data for sharing with other processes
dataFromTRNSYS = new double[TRNSYSData.size()];

for (int index = @; index < dataFromTRNSYS.length; index++){
dataFromTRNSYS[index] = TRNSYSData.get(index);

}

Figure 11. Code snippet for processing incoming data from TRNSY'S (see
ServerRunnable.java)

The array of the primitive type Double, dataFromTRNSYS, contains the data from TRNSYS.
The number of entries in this array depends on the number of inputs connected to Type277as
shown in Figure 3. In the modified PVT example fLoad is the only input to Type277; therefore,
dataFromTRNSYS contains a single entry. Recall that fLoad is used to calculate pLoad. The
dataFromTRNSYS is passed in as an input argument to the PvVT () method (Figure 12). The
PVT () method (see ServerRunnable.java) returns an array of the primitive type
Double, returnDataTo, which contains a single entry which is the calculated value of
pLoad for a given value of fLoad. Use the “To Do” space shown in Figure 12 to access and
perform manipulation of the data from TRNSYS.

// Access incoming data from TRNSYS, perform calculations in Java or other software environment
double[] returnDataTc = PVT(dataFromTRNSYS);

Figure 12. Access data from TRNSYS (see ServerRunnable. java)

The output of the PVT () method, returnDataTo, is passed as an input argument to the
sendDataToTRNSYS () method (Figure 13). The sendDataToTRNSYS () is responsible
for serializing and sending the data back to TRNSY'S over the socket communication.

151 [ek kR SRR AR 55 Serio]ize and Send Data to TRNSYS *EEEwE sk
152 sendDataToTRNSYS (dataForTRNSYS);
153

Figure 13. Sending serialized data back to TRNSYS (see ServerRunnable. java)

12

An important feature of this client-server implementation is its ability to halt the simulation for
debugging purposes. The TRNSYS simulation will not advance to the next timestep until it
receives data from the server. Before using this functionality, the connection between the
server and client must be established. In other words, before simulating the TRNSY'S model,
the server must be running. If a model is simulated without an active server, TRNSY'S will not
throw an error or display a warning. Instead, the simulation will progress slowly. To suspend
the simulation, place a breakpoint in the ServerRunnable class and run the ServerUI
class “JTRNSYS\src\application\” in debug mode.

4.2. ServerRunnableMatlab Class

In the previous section, the process for calculating pLoad in the Java environment was
described. In this section, pLoad is calculated using MATLAB. Although TRNSYS has a
MATLAB type, this section is used to demonstrate the functionality of the server
communicating with a third-party software. The UML class diagram in Figure 14 shows the
ServerUI, ServerController, and ServerRunnableMatlab that are included in
JTRNSYS\src repository downloaded in Section 3.1. It describes the relationship of various
classes used to support the loosely-coupled integration of TRNSYS and MATLAB via the
server implemented in Java.

==Java Class=» =<Java Clags=> =<Java Classs»
(® ServerController (® Serverll (@ UlinputData
application application commonClasses

&Sew&rﬂuntruller(} (;PSen.rerUI(} & Ulin putData()
@ launchServerButtonClicked():void @ start(Stage):void @ getinput_1():double
@ closeServerButtonClicked():void {)s main{Stringfl}:void @ setinput_1(double):void
c:)s submi‘tlnputB‘uﬂu.nCIicked(}: void cuiDataClass | © 9etinput_2():double
us sendUIDatag;:-.Ifmd T 7 @ setinput_Z(double):void
Dsgeﬂﬂ put1 ;‘!:Sfrlng) - @ getinput_3():double
Ds setinputi [Strln.g Jowoid @ setinput_3(double):void
t:)sgetlrl put2{ ‘giﬁfrlﬂ‘g _ uinputData @ getinput_4():double
us setinput3(Strln.g Jovoid @ setinput_4(double):void
@ getinput3():String LU
{;S setinput3(String)-void
& getinput4():String
' setinputd(String)-void

~serverClass | 0.1 <=lava Class=>

(9 SingleObjectDataTransfer
<<Java Class== commonClasses
(® ServerRunnableMatiab : :
com.socket mcSlngIeUbJedDataTransfer(} _instance
d: L}sgetlnstance(}:SingleObjectDataTransfer
& ServerRunnableMatiab() = 0.1
@ run(}:void
& runhiatla bi):void

o sendAndReceiveDataToF romhatia bidoublel]): Object]]
Osﬁrseldﬁtla bData(Object]):double]]

& receivedMessa ge(inputStream):byte

Qs PrintDataTRNSY S(JTRNSY SData): List=Double>

@ sendDataToTRN S S(doublef]):void

@ interruptServer():boolean

@ startServer():void

Figure 14. UML class diagram for loosely-coupling TRNSYS and MATLAB via the Java
environment

13

Like before, ServerUT is the main class for rendering the GUI and creating an instance of
the ServerController. The ServerController class controls the functionality of
the GUI and instantiates an object of the ServerRunnableMatlab class as shown in the
code snippet of Figure 15. This change is accomplished by commenting out the
ServerRunnable object on line 48 of Figure 15 and uncommenting the
ServerRunnableMatlab object on line 58. Once the GUI is rendered (Figure 5), double
clicking the Start Server button will launch the server and MATLAB.

45 /* Uncomment the line below for exchanging data between TRNSYS and Java to perform PVT related
46 * calculations in Java. */

4

48 f/serverRunnable serverClass = new ServerRunnable();

A9 ‘f===============================—==
58

51

52 G
53 /* Uncomment the line below to launch MATLAB and perform PVT related calculations in MATLAB.

54 * Make sure to comment the ServerRunnable line above. Use the ServerRunnableMatlab object to

* pxchange data between TRNSYS and MATLAB through Java.

58 ServerRunnableMatlab serverClass = new ServerRunnableMatlab();

Figure 15. Create an object ServerRunnableMATLAB for exchanging data between
TRNSYS and MATLAB

ServerRunnableMatlab is the main class for launching the server and facilitating the
exchange of data between TRNSYS and MATLAB. It has three key functionalities: processing
incoming data from TRNSYS, sending and receiving data to-and-from MATLAB to perform
calculation, and finally sending the results back to TRNSYS. The ServerController
class also instantiates an object of UT InputData class to capture the user inputs from the
GUI and transfer them to other classes using a Singleton object.

In ServerRunnableMaltab class, processing the incoming data from TRNSYS is like the
procedure described in Section 4.1 and shown in Figure 11. In the next section, the procedure
for calculating pLoad in MATLAB is described.

4.2.1. Performing Calculations in MATLAB

After the server is launched and the MATLAB program is opened, right-click on “Matlab
Files” folder and add it to the path as shown in Figure 16. There are two functions in this
directory, the JavaMatlabDemoFunction (), and the PVTType277 (). The
JavaMatlabDemoFunction () isthe entry point to the MATLAB environment. The data
from Java is communicated to MATLAB through the input argument of this function. The
PVTType277 () function in MATLAB computes pLoad for the given values of fLoad from
TRNSYS. Complex calculations using MATLAB’s analytical capabilities are performed in a
similar manner. A case study for assessing the performance of six residential energy
management control algorithms through co-simulation of TRNSYS and MATLAB facilitated
by Type277 is presented in [2], [4].

14

Current Folder) @ Editor - C\Users\fornarEc

Mame Git | JavaMatlabDemoFunctio
=] CLASSPATH File 1 function [o
|| «classpath i 2 i ==========
= Folder 3 % The BEVT -
.git 4 % Inputs
settings 5 2 fLoa
. bin) P 2
5 1 it | |
PVT Open Enter Wutputs:
g z L
5rC Show in Explorer g PR I_Z_EE
Src-qg
cre-o Create Zip File il
Src-g Rename F2 i; - fioaz B ;Eﬁu
o = pload =
Trns Delete Delete 13
Typs
O Text Docur MNew Folder 14 — output_args
|| .gitic Mew File H) 15 - end
PNG image 18
= PROJECT Fi 13
| praj Compare Against v
= PROTO File
Source Control 4
|®] JTRN b
= TXT File Cut Ctrl+X
REAIL
= UCLS File Copy Ctrl+C
|| Clast Ctrl+¥ p
|| Class ™
Add to Path I Selected Folders
¥ Indicate Files Mot on Path Selected Folders and Subfolders
Refresh F5

Figure 16. Adding Matlab Files folder to the path of MATLAB software

Recall that our intended task is to calculate pLoad in MATLAB; therefore, we need to send
fLoad from TRNSYS to MATLAB to perform this calculation. Figure 17 shows the two
methods that facilitate the indirect exchange of data between TRNSYS and MATLAB.

159 17
16@ / To Do - Manipulate Incoming Data from TRNSYS
161

162 // TRNSYS can communicate with other software environments

163 // and participate in co-simulation.

164

165 // dataFromMatlab is storing returned data in an array of Objects from Matlab

166 dataFromMatlab = sendAndReceiveDataToFromMatlab(dataFromTRNSYS);

167

168 //Parse the Object[] data returned from Matlab

169 double[] dataForTRNSYS = parseMatlabDota(dataFromMatlab);

178

171 Iy END

D3 R R R R R

Figure 17. Methods for facilitating the exchange of data between TRNSYS and MATLAB

As can be seen from Figure 17, the datafromTRNSYS is passed as an argument to the
sendAndReceiveDataToFromMatlab () method, which facilitates the exchange of

15

data between Java and MATLAB through a proxy established by using the matlabcontrol
library [5]. As shown in Figure 18, the proxy calls the JavaMatlabDemoFunction ()
and passes on the incoming data from TRNSYS. The output of this proxy function evaluation
contains the returned values from MATLAB.

2512 public static Object[] sendAndReceiveDataToFromMatlab(double[] dToMatlab){
Object[] returnedDataFromMatlab = null;
try {
* proxy function's format: proxy.returningFeval(String functionName, int nargout, Object args):
* "functionName” : JavaMatlabDemoFunction is the entry function where data is exchanged between Java and MATLAB;
* "int nargout” : Returns the number of output arguments specified in the JavaMatlabDemoFunction; and
* "Object args” : In this implementation, it is a 1D-array of type doubles

returnedDataFromMatlab = proxy.returningFeval("JavaMatlabDemoFunction”, 1, dToMatlab);
} catch (MatlabInvocationException e) {
e.printStackTrace();

}

return returnedDataFromMatlab;

Figure 18. Proxy function call to send and receive data to-and-from MATLAB

The output of sendAndReceiveDataToFromMatlab () isan array of objects, which is
the input argument to the parseMatlabData () method (Figure 17). The
parseMatlabData () method extracts the result of calculations from the array of objects
and returns an array of the primitive type Double, dataForTRNSYS. The
sendDataToTRNSYS () method shown in Figure 19 takes dataForTRNSYS as an
argument. It serializes the data and sends it to TRNSY'S using socket communication.

Figure 19. Method to serialize and return data to TRNSY'S

As previously mentioned, an important feature of this client-server implementation is its ability
to halt the simulation for debugging purposes. Before using this functionality, the connection
between the server, client, and MATLAB must be established. In other words, before
simulating the TRNSYS model, the server and MATLAB must be running. The path to the
MATLAB functions must also be configured as described in Figure 16. To suspend the
simulation, place a breakpoint in MATLAB. To pause the simulation in MATLAB, the
ServerUT class “JTRNSYS\src\application\”” does not need to be executed in debug mode.
If a model is simulated with both the server and MATLAB running but the path to MATLAB
functions are not configured as shown in Figure 16, Java will throw
MatlabInvocationException, TRNSYS will display an error message, and MATLAB will
display “Undefined function or variable JavaMatlabDemoFunction”. The simulation will not
run, and the user will need to relaunch the GUI and the server by double clicking the Start
Server button.

16

Figure 20 shows the PvTType277() function in MATLAB with a breakpoint which halted
the TRNSYS simulation from stepping forward.

JavaMatlabDemoFunction.m PV TTypedll.m +
1 function [output_args] = FVIType277(input_args)
2 L =========—=—=—=====————— === ———————————=
3 % The PVTI - example in 64-Bit TRNSY¥S1S8
4 % Inmputs:
5 % fLoad
f %
7 % QCOutputs
i £ pLoad
g e
10
11 - fLoad = input_args(l);
12 @& | pload = 500 * 3.6 * fLoad;
13
14 - output_args = [pLoad]:
15 = end
16
17

Figure 20. Debugging in MATLAB

5. Conclusion

An application of Type277 was successfully demonstrated for facilitating the loosely-coupled
integration of a TRNSY'S model with a Java environment and MATLAB. Type277 provides a
simple and efficient mechanism for running a TRNSY'S model in a co-simulation environment
without changing the core functionality of the server for exchanging data. Type277 is written
in C++ and compiled into 32-bit and 64-bit DLLs, supporting both versions of TRNSYS. It
supports co-simulation of TRNSYS with multiple programming languages such as Java, C++,
and Python.

17

Appendix — Importing JTRNSYS Project into Eclipse

To import the Java project (jtrnsys-master) from Step 2 of Section 3.1 into an existing
workspace or create a new workspace in Eclipse follow these instructions:

1. In Eclipse, choose File and select Import... from the drop-down menu. The Import
wizard opens as shown in Figure 21;

& Import = %
Select N
Create new projects from an archive file or directory. E 4 E |
Select an import wizard:
type filter text
(=% Existing Projects into Workspace -
() File System
[C] Preferences
() Projects from Folder or Archive
> = Git
: = Gradle
> = Install
> = Maven L
s = Oomph 3
> (= Plug-in Development
> = Run/Debug
> = Tasks
> (= Team
> = XML
@ s

Figure 21. Eclipse import wizard

In the Import wizard, choose Existing Projects into Workspace and click Next;

3. Inthe Import Projects window, using the Browse button navigate to the directory
where you extracted the zip folder jtrnsys-master;

4. Select the checkbox next to the Copy projects into workspace to make a copy of the

project into your workspace as shown Figure 22;

N

18

£602°'NL" LSIN/8209 0T/610"10p//:sdny :woy abieyd Jo 231y ajgejiene si uonedignd siyL

-
S Import

Import Projects
Select a directory to search for existing Eclipse projects.

(7 Select archive file:

Projects:

(@) Select root directory: C:\Users\fornar\Downloads\jtrnsys-master

-

L I
=L

Browse...

[#]: JTRMSYS {C\Users\fornarDownloads\jtrnsys-master) |

Options

[7] Search for nested projects

Copy projects into workspace

[] Close newly imported projects upen completion
[T Hide projects that already exist in the workspace

Working sets
[] Add project to working sets

Warking sets:

Select All

Deselect All

Refrech

!

Select...

@ =

Finish

J{

Cancel

Figure 22. Import projects wizard

19

5. Click Finish, this process will import JTRNSY'S Java project into the workspace as shown
in Figure 23.

{% Package Explorer 2 —

4925 JTRNSYS

- B JRE System Library [JavaSE-1.5]

(B sre

. = External Libraries

. = MatLab Files

. [src-gen

- = src-genCPP

- = src-genPy

- = TRMSYS 32hit

- = TRMSYS B4bit
=| 3RD_PARTY_LICEMSES. et
| 7] ITRMSY5Message.proto
|i#] LaunchServerULjar
=| README.txt

| ServerUllaunch.bat

=
=

Figure 23. Project explorer in Eclipse

As can be seen from Figure 23, the Package Explorer (red exclamation mark) indicates that
there are errors in the project. The errors are because of missing required protocol buffers,
matlabcontrol, and JavaFX11 libraries. For convenience, a copy of these libraries is included
in the JTRNSYS project under “jtrnsys-master\External Libraries” folder, and a copy of the
licenses for these libraries are reproduced in the 3R°_PARTY _LICENSES.txt file.

The following steps describe the process of adding these libraries to the JTRNSY project:

a. Right click on the JTRNSYS project and select Properties from the list as shown in
Figure 24;

20

[# Package Explorer &2 = 0

== -
4|87 JTRMSYS

=) New 3
9 Go Into
[
.y Open in New Window
[Open Type Hierarchy F4
= § Show In Alt+Shift+W »
=
= 1[E Copy Ctrl+C

= 1E3 Copy Qualified Name

j [§ Paste Chrl+V
=1 L ¥ Delete Delete
=l § Remove from Context Ctrl+Alt+Shift+Down
=
Build Path 2
Source Alt+Shift+5 »
Refactor Alt+Shift+T »
i Import..
iy Export..
" Refresh F5

Close Project

Assign Working Sets..,

Q Coverage As 3
@ RunAs 3
45 Debug As 2
Restore from Local Histary...
Team 3
Compare With 3
Configure 3
W Validate
Properties Alt+Enter

Figure 24. Opening properties window for JTRNSYS

In the Properties for JTRNSYS window, select Java Build Path and select the Libraries
tab as shown in Figure 25. We first need to remove the references to these missing
libraries and then add them from “jtrnsys-master\External Libraries” folder
downloaded in Section 3.1;

21

[= Properies for JTRNSYS . [EE—E—)

type filter text 1, 2 build path entries are missing. oo v -
> Resource —
Builders (™ Source | = Projects | ®h Libraries |<}9 Order and B(portl @ Module Dependencies
Coverage JARs and class folders on the build path:
doviay Buile Bathy > gpa matlabcontrol-4.1.0.jar - C\Java JARs (missing) Add JARs...
» Java Code style > @ protobuf-java-3.6.1 jar - CrJava JARs (missing)
> Java Compiler B\ JavaFX1l Add External JARs...
> Java Editor -
» B, JRE System Library [JavaSE-1.8] -
Javadoc Location t 0. Add Variable...
i
Add Library...
Project References 1orary.
Run/Debug Settings Add Class Folder...
> Task Repository
Task Tags Add External Class Folder...
> Validation
Migrate JAR File...
Apply
@' [Apply and CIoseJ [Cancel

Figure 25. Editing Java build path for the missing libraries

To remove the missing references to matlabcontrol-4.1.0.jar, protobuf-
java-3.6.1.jar,aswell as JavaFx11 libraries, select each library and click the
Remove button as shown in Figure 25;

To add the missing libraries, click the Add External JARs button (Figure 25) and
navigate to the “jtrnsys-master\External Libraries” folder and select both
matlabcontrol-4.1.0.jar and protobuf-java-3.6.1.jar files and
click Open as shown in Figure 26. This step adds these two libraries on the build path
for JTRNSYS project;

= Properties for JTRNSYS %

type filter text Java Build Path T

> Resource

Builders [® Source | & Projects| B\ Libraries | % Order and Export | @ Module Dependencies

Coverage JARs and class folders on the build path:
Java Build Path

.| jms_matlabeentrol-4.1.0,jar - Cjtrnsys-master\External Libraries Add JARs..
 Java Code Style > : : -
> .| fan_protobuf-java-3.6.1 jar - C:\jtrnsys-master\External Libraries
. Java Compiler . 2 IRE System Library (JavaSE-18] Add External JARS...
 Java Editor

Javadoc Location Add Variable...

Project Natures
Project References
Run/Debug Settings Add Class Folder...

Add Library..

» Task Repository
Task Tags Add External Class Folder..
. Validation
WikiText

Remove

Migrate JAR File...

Apply

@ Apply and Close Cancel

Figure 26. Adding third-party libraries to the build path for JTRNSYS project

22

To add JavaFX 111 library, click the Add Library button as shown in Figure 25.

e. Inthe Add Library window (Figure 27) select the User Library type and click Next;

 Add Library o] 0]
Add Library
Select the library type to add. %: |

IRE System Library

JUnit
Maven Managed Dependencies

Figure 27. Adding a user library to the JTRNSY'S project

f. Inthe Add Library window shown in Figure 28, click the User Libraries button to open
the Preferences (Filtered) window, then click the New button to open the New User
Library window. In the New User Library window, create a name for the new library
like JavaFX11 or any other desired name, and click OK;

! The instructions for adding JavaFX 11 to the Eclipse IDE was obtained from https://openjfx.io/openjfx-docs/

23

https://openjfx.io/openjfx-docs/

% |

= Add Library 1N > | S—

User Library -
Select a library to add to the classpath. B:ﬁ | .

User libraries:

User Libraries... |

& Preferences (Filtered) | S
type filter text User Libraries - v
4 Java L .
Build Path User libraries can be added to a Java Build path and bundle a number of external
4 Build Fat archives, System libraries will be added to the boot class path when launched.
User Libraries . _—
Defined user libraries:
- :
& Mew User Library 23
Edit....
User liby 2
ser library name: Add JARs...
JavaFx11
Add External JARs...
0 [] Systern library (added to the boot class path)
Remove
- Up
: ® [0K] ’ Cancel
— Down
v o
-
Export...
:nt;'| ® P |¢, [Apply and Close] l Cancel

w

Figure 28. Adding a new JavaFX 11 user library to the JTRNSY'S project

In Preferences (Filtered) window, click the Add External JARs (Figure 28) button and
navigate to “C:\jtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib”. Select all jar
files as shown in Figure 29 and click Open;

24

-

.
2 JAR Selection

Organize = Mew folder

-
0 Favorites w

Bl Desktop

4. Downloads
:__‘ Recent Places
@ OneDrive

n

4 Libraries
@ Documents
J’ Music
[E] Pictures

E Videos

18 Computer
£, Local Disk (C:)
a New Velume (E:)
= My Data (F)
— Shares (G:) o

-~
@uv| .+ Computer » Local Disk (C:) » jtrnsys-master » External Libraries » javafx-sdk-11.02 » lib » - |43 | ‘ Search li
— -— =
=
Mame Date modified Type Size
& javafx.base jar 6/20/201910:23 AM Executable Jar File 733 KB
4] javafx.controls.jar 6/20/201910:23 AM Executable Jar File 2453 KB
4] javafufumljar 6/20/201910:23 AM Executable Jar File 125 KB
4] javafx.graphics.jar 6/20/201910:23 AM Executable Jar File 4196 KB
4] javafe.media.jar 6/20/201910:23 AM Executable Jar File 265 KB
4] javafx.swing jar 6/20/201910:23 AM Executable Jar File 118 KB
4] javafxweb, jar 6/20/201910:23 AM Executable Jar File 698 KB
‘ (4] javafx-swit.jar 6/20/201910:23 AM Executable Jar File 36 KB
1 srezip 6/20/201910:23 AM Compressed (zipp... 6,496 KB i
File name: “javafx-swijar’ "javafxbasejar” "javafi.controlsjar” "javafufxmljar" "javafx.graphicsjar’ “javafum « [*.jal’,*.zip ']
[Open |v] l Cancel]

Figure 29. Selecting JavaFX 11 jar files

The procedure in Step 7 creates a JavaFX 11 user library as shown in Figure 30 that can be
added to the Java build path for JTRNSY'S project.

r
= Preferences (Filtered)

type filter text

4 Java
4 Build Path
User Libraries

User Libraries

(21120 (20 (21 (2120 (2 (2]

Defined user libraries:

4|=, JavaFx11

javafx.basejar - C\jtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib
javafx.controls,jar - Chjtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib
javafxfemljar - Chjtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib
javafx.graphics,jar - Ch\jtrnsys-master\External Libraries\javafx-sdk-11.0.24lib
javafx.media jar - C\jtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib
javafx.swing.jar - C\jtrnsys-masterExternal Libraries\javafi-sdk-11.0.2\lib
javafxweb.jar - C\jtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib
javafx-swt.jar - Cjtrnsys-master\External Libraries\javafx-sdk-11.0.2\lib

User libraries can be added to a Java Build path and bundle a number of external archives. System libraries will be
added to the boot class path when launched.

Up

Down

C.

? g

[Apply and Close] ’ Cancel]

Figure 30. JavaFX 11 user library

h. Click Apply and Close button to close the Preferences (Filtered) window, and then click
the Finish button to close the Add Library window (Figure 31);

25

& Add Library

B %

User Library

Select a library to add to the classpath.

User libraries:

=N

= JavaFxil

User Libraries...

®

Mei> || Finsh || Cancel

Figure 31. Close the Add Library window

& Properties for JIRNSYS

type filter text

» Resource
Builders
Coverage
Java Build Path

» Java Code Style

» Java Compiler

» Java Editor
Javadec Location
Project Natures
Project References
Run/Debug Settings

» Task Repository
Task Tags

» Validation
WikiText

®

Java Build Path ~ ©

(® Source | =3 Projects | B Libraries | % Order and Exportl @ Module Dependencies

As shown in Figure 32, the JavaFX11 user library has been added to the build path for
JTRNSYS project. Click the Apply and Close button to exit the Properties for JTRNSYS

4

JARs and class folders on the build path:

> [matlabcontrol-4.1.0,jar - Cjtrnsys-master\External Libraries
> e protobuf-java-3.6.1 jar - C\jtrnsys-master\External Libraries
s i, JavaFx1l

> B JRE System Library [JavaSE-1.8]

Add JARs...
Add External JARs...
Add Variable...
Add Library...
Add Class Folder...

Add External Class Folder...

Edit...

Remove

Migrate JAR File...

[Apply and ClDSE} l

Cancel

Figure 32. Added external libraries to the build path of the JTRNSY'S project

26

The instructions in Step a through h eliminated the errors caused by missing the required
external libraries. To launch the Server GUI from Eclipse (as shown in Figure 5), navigate to

the “JTRNSYS/src/application” and run the ServerUI. java class as a Java Application.
After the Server GUI is activated, follow the instructions in Section 3.2 to launch the server
and start communicating with a simulation model in TRNSYS.

To access the data and modify the code, navigate to “JTRNSYS/src/com.socket” and open

ServerRunnable.java Or ServerRunnableMatlab.java class and follow the
instructions provided in Section 4.

27

References

[1]
[2]

[3]
[4]

[5]

S. A. Klein et al, “TRNSYS 17: A Transient System Simulation program, Solar
Energy Laboratory, University of Wisconsin, Madison, USA,” Trnsys, 2010.

F. Omar, “A Residential Energy Control Algorithm Assessment Tool for Smart Grid :
Multi-Criteria Decision Making Using the Analytical Hierarchy Process,” Ph.D.
Dissertation, 2019. [Online]. Available: https://doi.org/10.18130/v3-d6fh-nj31.
Google, “Protocol Buffers | Google Developers,” 2008. [Online]. Available:
https://developers.google.com/protocol-buffers/. [Accessed: 10-Sep-2014].

F. Omar, S. T. Bushby, and R. D. Williams, “Assessing the Performance of
Residential Energy Management Control Algorithms: Muti-Criteria Decision Making
Using the Analytical Hierarchy Process,” NIST TN 2017, 2018.

Google product, “Google Code Archive - Long-term storage for Google Code Project
Hosting.,” 2013. [Online]. Available:
https://code.google.com/archive/p/matlabcontrol/. [Accessed: 17-Sep-2014].

28

