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Abstract 
When designing a test to confirm that an artifact (e.g., a radiation detection system) meets a 
performance threshold where the artifact’s performance is estimated based on a binary re-
sponse, the number of required observations is often an initial question. To determine the re-
quired sample size, two pieces of information are necessary: the performance threshold; and a 
statement of acceptable risk or required confidence. In this chapter, we provide guidance on 
developing a defensible and successful test through the informed selection of a performance 
threshold and statement of acceptable risk. Using the statistical hypothesis testing framework, 
we illustrate the meaning of risk and confidence from both the consumer and producer’s per-
spectives. We define the power of a test and demonstrate how an experimenter can use a power 
curve to balance the tradeoffs between test burden (costs) and producer risk (type II error) 
while satisfying the required confidence. We provide a sample size and acceptance criterion 
table to define a fixed sample test that will satisfy a variety of performance thresholds and 
levels of acceptable risk. We conclude with a general discussion of sequential sampling tests 
and provide important considerations and contrasts to their fixed sample counterparts.  

 

Keywords 
Binomial test response; consumer and producer risks; hypothesis test; performance threshold; 
power of a test; radiation detection systems. 
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 Introduction 

Often, experimenters wish to confirm that a test artifact meets some predefined, fixed perfor-
mance criterion or claim. For example: does the newly formulated pharmaceutical reduce the 
disease rate by 10 % or more; will the composite overwrapped pressure vessel fail prior to the 
completion of the 15-year space mission; or, can the radiation detection system detect the spec-
ified radiological source with at least 80 % probability? The answers to these questions are a 
simple yes or no, but because of the inherent uncertainty in the measurements used in the as-
sessment, there is a risk of answering the question incorrectly. This chapter provides guidance 
on developing an experimental sample size and acceptance criterion to determine whether a 
test artifact satisfies a predefined and fixed performance criterion when the response variable 
observed is binary, such as a success or failure to detect. We provide a sample size and ac-
ceptance criterion table to define a fixed sample test that will satisfy a variety of performance 
thresholds and levels of acceptable risk. We conclude with a general discussion of sequential 
sampling tests and provide important considerations and contrasts to their fixed sample coun-
terparts. 

 Choosing a Performance Threshold 

A defensible and successful test always begins with a testable objective. As will be further de-
fined throughout this chapter, a test to support the confirmation that a test artifact satisfies a 
performance threshold where the experimental response is binary will consist of two compo-
nents: 

1. a performance threshold; and  
2. a statement of acceptable risk or required confidence. 

Together, the defined performance threshold and statement of acceptable risk will lead di-
rectly to the required number of trials (samples) and acceptance criterion. If the number of 
trials required to support the performance threshold at the stated level of acceptable risk cannot 
be achieved due to budgetary or other constraints, then the value of performing a lesser test 
must be considered. Here, a lesser test is a test that maintains a lower performance threshold 
or assumes a higher level of risk than desired. This section presents a philosophical view on 
setting a performance threshold. A description of confidence and risk, and guidance on select-
ing an acceptable risk are presented in Sec. 5.2. 

A defensible and successful test begins with a testable objective that in-

cludes a performance threshold and required level of confidence or ac-

ceptable risk. The number of trials necessary and the acceptance criterion 

follow directly from these test requirements. 

For radiation detection applications, performance thresholds are often based on the conse-
quences of not detecting a threat object with a single radiation detection system or a system of 



 
 

2 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2045 

 

systems. These performance thresholds may be directed by public policy, user needs, standard 
requirements (e.g., ANSI, IEC, TCS), or acquisition requirements (see Acronyms Section). 
Current technological limitations in passive radiation detection should be considered when de-
fining the performance threshold. Care should be taken to consider the class of detector, source 
strength of interest and other test parameters. There are several classes of radiation detection 
systems that vary in detector size, capability, and intended use, e.g., PRDs, SRPMs, RIIDs, 
BRDs, mobile systems, RPMs, and SRPMs. It is unrealistic to expect a small, portable PRD to 
perform the same as a large, stationary RPM. Requirements in the ANSI and IEC standards, 
for example, provide reasonable estimates of the performance levels equipment can attain to-
day. The test parameters may be based on how detection systems are used in an operational 
setting or defined by standard test methods. A risk of defining the performance threshold solely 
on user requirements is that unrealistic goals may be set for a given class of detection systems. 
There may be value in accepting a lower performing system so long as the system’s limitations 
are well understood, and users can adjust their operating procedure to compensate for these 
limitations. 

The consequence of failing to detect a threat object, detector technolog-

ical limitations and intentions, test parameters, and user needs should be 

considered collectively in defining a performance threshold for radiation 

detection systems.     

 Binary Response Variable 

An experiment with a binary response is often used in estimating a performance measure that 
takes the form of a rate, a ratio, or a probability. The probability that a radiation detection 
system correctly detects or identifies a given source is an example of such a performance meas-
ure. Experiments with two, and only two possible outcomes, such as head or tail, success or 
failure, or defective or non-defective are known as Bernoulli trials [1]. The probability of one 
of the two outcomes (e.g., “detect”) is denoted by p, while the probability of the complemen-
tary outcome (“no detect”) is given by 1 – p. 

The total number of events observed (e.g., detections) in a sequence of independent and 
identical Bernoulli trials is distributed as a binomial random variable. The binomial distribu-
tion is characterized by two parameters, n and p, where n represents the number of trials and p 
represents the probability of the outcome of interest. The binominal distribution, as described 
by Casella and Berger [1], is defined in Eq. (1).  

 ( ) ( )| , 1 0,1,2, , ; 0 1n xxn
P X x n p p p x n p

x
− 

= = − = ≤ ≤ 
 

   (1) 

The focus of this chapter is to help develop a test whose objective is to determine if the test 
artifact’s true but unknown performance measure, p, is above or below some predefined, fixed 
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performance threshold that we denote by p*. We are only concerned with a one-sided test, that 
is, investigating *p p≥ (or, if appropriate, *p p≤ ). We provide guidance in this chapter for 
determining the sample size, n, and the acceptance criterion to prove that a test artifact meets 
or exceeds a performance threshold. 

 Stating the Test Requirement 

Ensuring that a testable requirement has been stated is the initial, crucial step in identifying the 
sample size and acceptance criterion to prove that a test artifact satisfies a performance thresh-
old. For this purpose, a testable requirement has two key parts: 1.) a performance threshold, 
and 2.) a statement of acceptable risk or required confidence. For example, the radiation de-
tection system shall provide at least an 80 % probability of correct detection with 95 % con-
fidence when exposed to source A under conditions X, is a testable requirement. In this ex-
ample, 80 % probability of correct detection is the minimum performance threshold and 95 % 
confidence is the statement of required confidence. Without these two key pieces of a test 
requirement, a test’s necessary sample size and acceptance criterion cannot be determined. 

A test requirement must contain both a performance threshold and a 

statement of acceptable risk (or required confidence).   

We note that the performance threshold could be either a lower bound as in the example 
above, or an upper bound, as would be the case in assessing a detection system’s false alarm 
performance. In this chapter, we focus on the performance threshold as a lower bound, as-
sessing the probability of detection. In a subsequent chapter we focus on the performance 
threshold as an upper bound in false alarm testing. 

We are interested in drawing a conclusion about the true value of the performance measure 
of the test artifact, but all that we have available is an uncertain estimate of the performance 
measure obtained from the test results. It is this uncertainty that leads us to the possibility of 
drawing the wrong conclusion. In the following sections, we present a rigorous approach to 
designing a test that allows for the probability of drawing an incorrect conclusion to be quan-
tified and controlled.   

 Hypothesis Tests 

The statistical method that may be used to support the task of confirming that a test artifact 
meets a specified performance threshold is the hypothesis test [2]. Hypothesis testing begins 
with a specific conjecture called the null hypothesis. Data is gathered that directly pertain to 
whether the null hypothesis is true. All possible outcomes of the data are considered in estab-
lishing an acceptance criterion. The collected data are examined and, in conjunction with the 
established acceptance criterion, the null hypothesis is either rejected or not. The following 
subsections provide details on implementing a hypothesis test to prove that a test artifact’s 
performance measure of interest satisfies a performance threshold. 
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5.1. The Null Hypothesis      

The true state of a test artifact can fall into one of two categories when its true performance 
measure is compared to a performance threshold; that is, the true performance measure meets 
or exceeds the performance threshold, or it does not. If we label a test artifact as “good” if its 
true performance measure satisfies the performance threshold, and “bad” otherwise, then two 
possible positions exist for the null hypothesis conjecture: 1.) the test artifact is good; or, 2.) 
the test artifact is bad. Because the hypothesis test relies on the idea of proof by contradiction, 
we state the null hypothesis conjecture as opposite of what we would like to prove. Thus, in 
our effort to prove that the test artifact is good, we adopt as the null hypothesis that the test 
artifact is bad. For example, if we seek to prove that a radiation detection system meets or 
exceeds a detection performance threshold of 80 %, then we state the null hypothesis as the 
radiation detection system’s true probability of correct detection against source A is less than 
80 %. 

Because the hypothesis test relies on the idea of proof by contradiction, 

we adopt as the null hypothesis conjecture that the test artifact is bad and 

seek data to prove that it is good. 

Based on the established acceptance criterion and the observed patterns in the collected 
data, we either reject the null hypothesis in favor of its alternative or fail to reject the null 
hypothesis. Rejecting the null hypothesis in this case leads us to the conclusion that the test 
artifact’s performance measure satisfies the performance threshold, i.e., the test artifact is good. 
Failure to reject the null hypothesis is not evidence that the test artifact is bad, but rather that 
insufficient evidence was found to support the conclusion that the test artifact meets or exceeds 
a detection performance threshold, that is, we fail to deem the artifact as good. 

5.2. Errors in Hypothesis Testing 

A test artifact has a true but unknown value of its performance measure. It follows, that the 
test artifact has a true but unknown state, either “good” or “bad”, as would be determined by 
comparing its true performance measure value to the stated performance threshold. The statis-
tical hypothesis test provides a framework for an experimenter to deem an artifact as “good”, 
based on an estimate of the artifact’s true performance measure value. Because the estimated 
performance value is uncertain (all measurements carry uncertainty), our conclusion about the 
true state of the artifact may be incorrect. The following subsections describe the two ways in 
which we may draw an incorrect conclusion and how we can control the rate at which these 
errors occur through the definition of the test.    
5.2.1. Consumer and Producer Risks 
There are two ways that we may make a mistake. The first error, a false positive, happens when 
our hypothesis test leads us to deem the artifact to be “good” when in fact, the test artifact’s 
true state is “bad.” Statisticians refer to this mistake as a type I error and denote the probability 
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of its occurrence with the Greek letter α. We note here that the statistical term confidence level 
is defined as 1 – α and the statistical term significance level is defined as α. 

The second error that could be made in carrying out a hypothesis test, a false negative, 
happens when the test artifact is truly “good,” but we fail to deem the artifact as “good.” Stat-
isticians refer to this as a type II error and denote the probably of its occurrence with the Greek 
letter β. These errors are illustrated in the truth table displayed in Table 1. 

Table 1: Hypothesis test truth table. 

  Artifact’s True State 
  “Good” “Bad” 

H
yp

ot
he

si
s T

es
t 

C
on

cl
us

io
n Deem 

“Good” Correct Decision Type I 
Error 

Fail to deem 
“Good” 

Type II 
Error Correct Decision 

The severity of the consequences associated with each of the above described errors are 
often not equivalent and the sensitivity to each depends on perspective. For example, a poten-
tial consumer of a radiation detection system, such as the U.S. Customs and Border Protection 
(CBP), will go to great lengths to protect itself from purchasing and deploying a “bad” system 
because the consequence of such an action could have a detrimental impact on the American 
public if illicit radiological or nuclear material were able to compromise a protected area. Thus, 
the CBP will desire a test with a low probability of committing a type I error. On the other 
hand, it is in the best interest of the manufacturer of the radiation detection system under test 
to minimize the probability of a type II error as such an error may lead to his truly “good” 
system not being purchased. For these reasons, the risk associated with a type I error in this 
construct is termed consumer risk, and that associated with a type II error is termed producer 
risk. 

5.2.2. Power of a Test 
Fortunately, both the consumer risk and producer risk can be controlled through the design of 
the hypothesis test and the selection of the sample size. These risks can be evaluated prior to 
conducting a test and are illustrated through a test’s power curve that displays the probability 
of deeming a test artifact as “good” as a function of the test artifact’s true but unknown perfor-
mance measure. 

An ideal test would deem a test artifact as “good” with certainty (i.e., a probability of one) 
when the artifact’s true performance measure value meets or exceeds the desired performance 
threshold and never deem a test artifact as “good” when the artifact’s true performance measure 
value is below the performance threshold. Figure 1 provides a power curve for this ideal test 
when the performance threshold, * 0.80p = . 

Unfortunately, a test with no risk, such as the ideal test illustrated with the power profile 
displayed in Fig. 1, requires an infinite number of samples. Therefore, common practice is to 
state a maximum acceptable consumer risk (type I error probability) and construct a suitable 
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acceptance criterion and sample size. The resulting power curve is examined, and the sample 
size adjusted to satisfy the desired producer risk (type II error probability). As discussed in 
Sec. 4, this statement of maximum acceptable consumer risk, paired with the minimum perfor-
mance requirement provides the necessary basis for constructing the hypothesis test. 

 

Fig. 1: Power curve for an ideal test with a performance threshold p* = 0.8. 

An experimenter must carefully consider the consequence of committing a type I error 
before setting its maximum acceptable value. For experiments published in the medical and 
health science literature, where committing a type I error may have detrimental implications 
on human life, the maximum acceptable type I error is often selected to be very small, e.g., 
0.01 or 0.001. For experimental results found in the physical science literature, when implica-
tions on human life are typically lower, type I error rates are often selected (by default) to be 
0.05.  

For homeland security applications, the type I error probability is interpreted as the proba-
bility of purchasing and deploying a “bad” detection system. Such an action would lead to a 
faulty detection system being fielded that, unbeknownst to the operator, does not perform as 
specified and may result in illicit material going undetected. It should be noted, however, that 
in certain operational situations the detection of illicit material may not be limited to the quality 
of a single detection system but rather to that of a system of detection systems. In these situa-
tions, the entire system design should be considered in determining acceptable risk. Thus, the 
selected type I error should be carefully considered, and selected based on the goals and poli-
cies set within the Department of Homeland Security (DHS). 
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A statement of acceptable risk, i.e., the type I error probability, defines the 

probability that a “bad” test artifact will be accepted. Type I error proba-

bility of ≤ 1 % is common practice in the medical and health science fields, 

where failure consequences are dire. Type I error probability of 5 % is 

common practice in the physical sciences. DHS goals and policies should 

drive their statement of acceptable risk. 

Figure 2 illustrates power curves for the ideal test ( n = ∞ ) and tests of sample size 
25,50,100,500n = , each with a consumer risk (type I error probability) no greater than 0.05 

and a performance threshold, * 0.80p = . We first observe that for the limited sample tests 
when n ≠ ∞ , the power to the left of the performance threshold is similar. That is, for each of 
these tests, when the artifact under test has a true performance measure 0.80p < , i.e., a “bad” 
artifact, the probability of deeming the artifact as good does not exceed 0.05.  

 

Fig. 2: Power curves for several tests of varying sample sizes, n, each with a maximum con-
sumer risk (type I error probability) α = 0.05 and a performance threshold p* = 0.8. 

On the other hand, when the artifact under test is “good”, i.e., true performance measure
0.80p ≥ , the probability of correctly deeming the artifact as good varies across the tests of 
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different sample sizes. For example, consider a “good” artifact with true performance measure 
0.9p = . From Fig. 2, we observe that the probability of deeming this artifact as good to be 

0.27 when the test has 25n = . As the sample size of the test is increased, so too is the proba-
bility of deeming this artifact as good: 0.62 when 50n = , 0.88 when 100n = , and 1.00 when 

500n = . The complement of these probabilities are the producer risks (type II error probabil-
ities) associated with each of the different tests. We see that as the sample size n increases, the 
producer risk decreases. Thus, the experimenter must consider and balance the tradeoffs be-
tween increasing sample size (test cost) and decreasing producer risk. 

With the performance threshold and acceptable consumer risk defined, 

the experimenter selects the test that satisfies the tradeoffs between test 

burden (sample size) and desired producer risk. 

5.2.3. Acceptance Criterion 
Each individual trial of a test will produce a success or a failure; e.g., a detection or a failure 
to detect. If the total number of successes observed during the entire test is greater than or equal 
to the predefined acceptance criterion, then the test artifact is deemed as “good”.  

The acceptance criterion is the smallest number of successes needed to 

be observed to deem the test artifact as “good”. 

We note that most statistics references, when discussing the topic of hypothesis testing, 
refer to the rejection region: the set of realized observations that will result in a rejection of 
the null hypothesis. Because the formulation of our null hypothesis assumes that the test arti-
fact is “bad” (Sec. 5.1), a rejection of the null hypothesis results in an acceptance of the test 
artifact. Thus, for simplicity, we refer to the rejection of the null hypothesis as the acceptance 
criterion. The following section provides details on deriving an acceptance criterion for a fixed 
sample test.  

 Fixed Sample Test 

The total number of trials and the acceptance criterion for a fixed sample test are determined 
prior to making any test observations and must remain fixed and unchanged throughout testing 
for the performance requirements of the test to be attained. In this section, we develop sample 
sizes and acceptance criterion to support a fixed sample hypothesis test constructed to confirm 
that a test artifact satisfies a performance requirement. We also illustrate how power curves, 
such as those displayed in Fig. 2, are generated. 

Provided a performance threshold and statement of acceptable risk (or required confi-
dence), there are many statistical methods that can be leveraged to define the parameters of a 
hypothesis test when observing binary response data. Because of its coverage properties, we 
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chose to implement the approach based upon the Clopper-Pearson “exact” method [3]. The 
exact method directly utilizes the definition of the binomial distribution provided in Eq. (1). 
See Agresti and Coull [4] for a presentation of the exact method and several additional appli-
cable methods and their properties.  

We begin by defining the following notation, most of which has been previously defined 
in this chapter: 

 
p  test artifact’s true but unknown performance measure 
p*  performance threshold 
α  maximum acceptable risk (type I error probability)  
n  sample size 
c  acceptance criterion  
X  total number of successes observed during the entire test 

 
As stated in the Sec. 4, the first step in designing a defensible and successful test is defining 

the performance threshold, *p , and stating the maximum acceptable risk, α . Because we 
view the performance threshold in this chapter as a lower bound, any test artifact with a true 
performance measure, p, that is greater than or equal to *p  is considered “good”, otherwise, 
the test artifact is considered “bad”.  

We deem a test artifact as good if the total number of successes observed during the test, 
X, is greater than or equal to the acceptance criterion, c. From the definition of the binomial 
distribution, we can calculate the probability of deeming a test artifact with true performance 
measure p as good for any acceptance criterion, c, and sample size, n, using Eq. (2). That is, 
we calculate the probability that the number of successes observed, X, will be greater than or 
equal to the acceptance criterion, c, for a binomial random variable with sample size n and 
success probability p.  

 ( ) ( ) ( )
1

0
deem artifact good | , 1 1

c
x n x

x

n
P P X c n p p p

x

−
−

=

 
= ≥ = − − 

 
∑   (2) 

As an example, consider a test with performance threshold * 0.8p = , maximum acceptable 
risk 0.05α = , sample size 20n = , and acceptance criterion 18c = ; we calculate the probabil-
ity of deeming a test artifact as good with true performance measure 0.7p =  by: 

( ) ( ) ( )
17

20

0

20
deem artifact good 18 | 20, 0.7 1 0.7 1 0.7 0.035x x

x
P P X n p

x
−

=

 
= ≥ = = = − − = 

 
∑  

Since the true state of this example artifact is “bad” (true performance measure 0.7p =  is 
less than performance threshold * 0.8p = ), we desire a low probability of deeming the artifact 
as good. This example calculation can be carried out for many different true performance val-
ues ranging from 0 to 1 as illustrated in Fig. 3. The results of these calculations provide the 
basis for the power curve. 
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Fig. 3: Illustration of power curve construction for test with parameters n = 20, c = 18, and 
p* = 0.8. The horizontal dotted line is maximum acceptable risk of α = 0.05.  

Beyond illustrating the construction of the power curve, Fig. 3 highlights a problem with 
the underlying example. All artifacts with true performance measures less than the perfor-
mance threshold * 0.8p =  are defined as bad artifacts. We observe from Fig. 3 that the proba-
bility of deeming a truly bad artifact as good is as high as 0.206 (at 0.8p ε= − , where ε is 
some very small, negligible value); this violates the stated maximum acceptable risk of 

0.05α = . To rectify this issue, either the sample size or the acceptance criterion – or both – 
must be altered. Increasing the sample size to 22n =  and the acceptance criterion to 21c =  
resolves the issue in this example by providing a maximum probability of deeming a bad in-
strument as good of 0.048. 

In practice, optimization routines can be used in conjunction with Eq. (2) to identify test 
parameters n and c that satisfy the stated maximum acceptable risk. An often-used strategy is 
to first investigate the minimum sample size test which occurs when no failures are allowed 
for acceptance of the artifact, i.e., c n= . From here the sample size is increased, with appro-
priate adjustments to the acceptance criterion to allow the type I error to be as large as possible 
without exceeding the stated maximum acceptable risk. The result of the increased sample size 
is a decrease in the producer risk (type II error) as was illustrated in Fig. 2. This exercise allows 
the experimenter to identify test parameters n and c that are of practical size, satisfy the stated 
maximum acceptable risk, and provide a producer risk that is satisfactory. Table 2 provides the 
required sample size, n, and number of allowable failures, n c− , for a range of performance 
thresholds and acceptable risk levels. 
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Table 2: Required sample size for stated performance threshold, acceptable risk (type I er-
ror) and maximum number of failures allowable to deem test artifact as good. 

Performance 
Threshold 

Acceptable 
Risk 

Number of Allowable Failures 
0 1 2 3 4 5 6 7 8 9 10 

0.99 0.01 459 662 838 1001 1157 1307 1453 1596 1736 1874 2010 
0.99 0.05 299 473 628 773 913 1049 1182 1312 1441 1568 1693 
0.99 0.10 230 388 531 667 798 926 1051 1175 1297 1418 1538 
0.99 0.15 189 337 471 600 726 848 969 1088 1206 1323 1439 
0.99 0.20 161 299 427 551 671 790 906 1022 1137 1251 1364 
0.95 0.01 90 130 165 198 229 259 288 316 344 371 398 
0.95 0.05 59 93 124 153 181 208 234 260 286 311 336 
0.95 0.10 45 77 105 132 158 184 209 234 258 282 306 
0.95 0.15 37 67 94 119 144 169 193 216 240 263 286 
0.95 0.20 32 59 85 110 134 157 180 204 226 249 272 
0.90 0.01 44 64 81 97 113 127 142 156 170 183 197 
0.90 0.05 29 46 61 76 89 103 116 129 142 154 167 
0.90 0.10 22 38 52 65 78 91 104 116 128 140 152 
0.90 0.15 19 33 46 59 72 84 96 107 119 131 142 
0.90 0.20 16 29 42 54 66 78 90 101 113 124 135 
0.85 0.01 29 42 53 64 74 84 93 103 112 121 130 
0.85 0.05 19 30 40 50 59 68 76 85 93 102 110 
0.85 0.10 15 25 34 43 52 60 68 77 85 93 100 
0.85 0.15 12 22 31 39 47 55 63 71 79 87 94 
0.85 0.20 10 19 28 36 44 52 59 67 75 82 90 
0.80 0.01 21 31 39 47 55 62 69 76 83 89 96 
0.80 0.05 14 22 30 37 44 50 57 63 69 76 82 
0.80 0.10 11 18 25 32 38 45 51 57 63 69 75 
0.80 0.15 9 16 23 29 35 41 47 53 59 65 70 
0.80 0.20 8 14 21 27 33 39 44 50 56 61 67 
0.75 0.01 17 24 31 37 43 49 54 60 65 70 76 
0.75 0.05 11 18 23 29 34 40 45 50 55 60 65 
0.75 0.10 9 15 20 25 30 35 40 45 50 55 59 
0.75 0.15 7 13 18 23 28 33 37 42 47 51 56 
0.75 0.20 6 11 16 21 26 31 35 40 44 49 53 
0.70 0.01 13 20 25 30 35 40 44 49 53 58 62 
0.70 0.05 9 14 19 24 28 33 37 41 45 49 53 
0.70 0.10 7 12 16 21 25 29 33 37 41 45 49 
0.70 0.15 6 10 15 19 23 27 31 35 39 42 46 
0.70 0.20 5 9 14 18 21 25 29 33 37 40 44 
0.60 0.01 10 14 18 22 25 29 32 36 39 42 45 
0.60 0.05 6 10 14 17 21 24 27 30 33 36 39 
0.60 0.10 5 9 12 15 18 21 24 27 30 33 36 
0.60 0.15 4 8 11 14 17 20 23 26 28 31 34 
0.60 0.20 4 7 10 13 16 19 22 24 27 30 33 
0.50 0.01 7 11 14 17 19 22 25 27 30 33 35 
0.50 0.05 5 8 11 13 16 18 21 23 26 28 30 
0.50 0.10 4 7 9 12 14 17 19 21 24 26 28 
0.50 0.15 3 6 8 11 13 16 18 20 22 25 27 
0.50 0.20 3 5 8 10 12 15 17 19 21 24 26 

 
An experimenter uses Table 2 by identifying the row that corresponds to the stated perfor-

mance threshold and acceptable risk. Within that row, the first column in the main body of the 
table is the number of samples required if the acceptance criterion were such that no failures 
were to be allowed, i.e., c n= . As one moves across the row in the main body of the table, the 
required sample size increases as the number of allowable failures also increases. This increase 
in sample size reduces the producer risk (type II error). We remind the reader that under this 
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fixed sample test approach, the sample size and acceptance criterion must be selected prior to 
the beginning of test execution and cannot be revised during testing for the performance re-
quirements of the test to be attained.  

Consider an experiment with a stated performance threshold of * 0.85p =  and a maximum 
acceptable risk of 0.01α = . From Table 2, we see that the experimenter could choose to per-
form a test with as few as 29n =  trials, though the test artifact would be deemed as good only 
if all 29 trials resulted in successes. If the experimenter wished to increase the sample size, 
increase the number of allowable failures, and decrease the producer risk, he or she could do 
so by increasing the sample size to 42n =  and allow for one failure, or 53n =  with two fail-
ures, or 64n =  with three failures, and so on. The power curves associated with this family of 
potential tests, which satisfy a stated performance threshold of * 0.85p =  and a maximum ac-
ceptable risk of 0.01α =  are displayed in Fig. 4. From such a figure, the experimenter can 
view the benefit gained in producer risk by increasing the sample size.  

 

Fig. 4: Power curves for family of tests that satisfy a stated performance threshold of 
p* = 0.85 and maximum acceptable risk of α = 0.01. 

 Sequential Sampling Test 

In Sec. 6 we presented an approach to develop a test for which the total number of trials and 
the acceptance criterion are determined prior to making any test observations and these remain 
fixed and unchanged throughout testing, i.e., a fixed sample test. In sequential sample testing, 
test observations are collected in batches with the outcomes of each batch immediately ana-
lyzed and a decision made based on the information gathered thus far in the experiment. The 
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possible decisions after each batch of data is collected are to either 1.) stop testing and deem 
the test artifact as good, 2.) stop testing and do not deem the test artifact as good, or 3.) continue 
testing and collect a subsequent batch of observations. The advantage of a sequential sampling 
test, or simply, sequential test, is that in certain situations the total number of observations 
required to confirm a performance threshold may be substantially fewer than required in a 
fixed sample test. 

Beginning with the foundational work of Abraham Wald [5], there exists extensive litera-
ture on the topic of sequential testing. In this section, we introduce the concept of sequential 
testing through an example and offer several words of caution in implementation. However, 
due to the complexity and subtleties involved, we strongly encourage seeking guidance from 
a qualified party when designing and implementing a sequential test. 

7.1. Structure 

Fig. 5 provides a schematic of a three-phased sequential test that seeks to confirm that a test 
artifact satisfies a performance threshold where the response variable observed is binary. Each 
phase of the test consists of a batch of twelve binary observations, e.g., success or failures, for 
a maximum of 36 total observations. Beginning with phase 1 at the top of Fig. 5, 1 12n =  binary 
observations are made, and the number of observed successes, 1X , are noted. If all twelve 
observations resulted in a success, i.e., 1 12X = , then testing ceases and we deem the test arti-
fact as good, or acceptable. This is denoted in Fig. 5 as the arrow labeled 1 12X =  terminating 
at the circle labeled “A”. If nine, ten, or eleven successes are observed in phase 1, i.e., 1 9X =  , 

1 10X = , or 1 11X = , then testing continues with phase 2 where another batch of twelve binary 
observations are collected. If eight or fewer successes are observed in phase 1, i.e., 1 8X ≤ , 
then testing ceases and we conclude that we cannot deem the test artifact as good (for simplic-
ity, these terminal paths are not displayed on the schematic). This same interpretation of the 
schematic follows for phases two and three where in phase three no further testing ensues, and 
the test artifact is either deemed good or not.          

Before examining the probabilistic properties of the sequential test represented by Fig. 5, 
we make some general comments about its structure. First, there are three phases and in each 
of the first two phases testing may either cease or it may continue. The third phase is terminal, 
regardless of the outcome. There is nothing particular about the number of phases and in gen-
eral, they may be chosen as a practical matter. Second, we note that in each phase the batch 
size is equal to twelve. Again, there is nothing particular about the size of the batches, and in 
fact they could be a small as a single observation and the batch sizes do not need to be equiv-
alent across phases. As we will examine next, the constraints on batch size, number of phases, 
and terminal nodes are a result of the desired probabilistic properties. More specifically, like 
the fixed sample test, the probabilistic properties and resulting structure of the sequential test 
follow directly from a stated testable objective that must include a performance threshold and 
required level of confidence or acceptable risk. 
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Fig. 5: Schematic of a three-phased sequential test. Each phase i = 1, 2, 3 consists of ni = 12 
observations with binary responses. The random variable Xi is the number of successes ob-

served within the phase. The paths leading to an “A” are terminal, ending in deeming the ar-
tifact as good or acceptable. All other possible values for Xi that are not shown are terminal 

paths failing to deem the artifact as good. 

7.2. Probabilistic Properties  

We observe in Fig. 5 that a test artifact is deemed as good only if three or fewer failures are 
observed throughout the entire sequential test which may include up to 36 total observations. 
In comparing this to a similar sized fixed sample test, we note from Table 2 that a fixed sample 
test with a total sample size of 36 that allows for three failures supports a test objective with a 
performance threshold of * 0.85p =  and a maximum acceptable risk of 0.20α = . Can the se-
quential test in  Fig. 5 support this same test objective?   

Recall from the Sec. 6 that the maximum risk of a defined test is found by calculating the 
maximum probability of deeming a test artifact as good when it is truly bad, and that this 
maximum occurs at *p ε− , where ε is some very small, negligible value. So, for the fixed 
sample test with performance threshold * 0.85p = , sample size 36n = , and acceptance crite-
rion 33c =  (three allowable failures), the maximum probability of deeming a test artifact as 
good when it is truly bad is given by: 

( ) ( ) ( )
32

36

0

36
deem artifact good 33 | 36, 0.85 1 0.85 1 0.85 0.191x x

x
P P X n p

x
−

=

 
= ≥ = = = − − = 

 
∑  

which satisfies the stated maximum acceptable risk of 0.20α = .  
In a similar, but slightly more complicated manner, we can calculate the maximum proba-

bility of deeming a test artifact as good when it is truly bad for the sequential test of Fig. 5. We 
note that in the sequential test of Fig. 5 there are nine different ways that we will deem a test 
artifact as good, e.g., when 12 successes are observed in the first batch of 12 trials, or when 11 
successes are observed in the first batch of 12 trials and 12 successes are observed in the second 
batch of 12 trials, and so on. Each of the nine paths to deeming a test artifact as good must be 

n1 = 12 A

n2 = 12 n2 = 12 n2 = 12

X1=12

X1=9
X1=10

X1=11

n3 = 12n3 = 12 n3 = 12 n3 = 12 n3 = 12

X2=12 X2=11 X2=12 X2=10 X2=11

A A A A A

X3=12 X3=12 X3=11 X3=12 X3=12

A
X2=12

A A

X3=11 X3=12
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captured in our probability calculation. So, with a performance threshold * 0.85p = , the se-
quential test of Fig. 5 provides a maximum probability of deeming a test artifact as good when 
it is truly bad of: 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1

1 1 2 2

1 1 2 2 3 3

1 1 2 2 3 3

deem artifact good 12 | 12, 0.85

11| 12, 0.85 * 12 | 12, 0.85

11| 12, 0.85 * 11| 12, 0.85 * 12 | 12, 0.85

11| 12, 0.85 * 11| 12, 0.85 * 11| 12, 0.85

P P X n p

P X n p P X n p

P X n p P X n p P X n p

P X n p P X n p P X n p

= = = = +

= = = = = = +

= = = = = = = = = +

= = = = = = = = = +

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1 1

11| 12, 0.85 * 10 | 12, 0.85 * 12 | 12, 0.85

10 | 12, 0.85 * 12 | 12, 0.85 * 12 | 12, 0.85

10 | 12, 0.85 * 12 | 12, 0.85 * 11| 12, 0.85

10 | 12, 0.85 *

P X n p P X n p P X n p

P X n p P X n p P X n p

P X n p P X n p P X n p

P X n p

= = = = = = = = = +

= = = = = = = = = +

= = = = = = = = = +

= = = ( ) ( )
( ) ( ) ( )

2 2 3 3

1 1 2 2 3 3

11| 12, 0.85 * 12 | 12, 0.85

9 | 12, 0.85 * 12 | 12, 0.85 * 12 | 12, 0.85
0.272

P X n p P X n p

P X n p P X n p P X n p

= = = = = = +

= = = = = = = = =

=

 

And hence, the sequential test of Fig. 5 cannot support the maximum acceptable risk of 
0.20α =  test objective. 

A sequential sample test has a higher risk than a fixed sample test that 

allows for the same number of failures over the same total observations. 

As we did in Sec. 6, we can calculate the probability of deeming a test artifact as good over 
the range of the true performance measure, p, to develop the power curve for this sequential 
test. In Fig. 6 we provide the power curves for the sequential test and the fixed sample test with 
a total sample size of 36 that allows for three failures. Also provided in Fig. 6 is a power curve 
for a fixed sample test with a total sample size of 32 that allows for three failures. This latter 
fixed sample test provides a power curve that is most similar to that of the sequential test over 
all possible fixed sample tests.       
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Fig. 6: Power curves for the sequential test and two fixed sample tests with sample sizes of 
36 and 32 that allow for three failures. 

From the previous calculations, we observed that a fixed sample test with a total sample 
size of 36 that allows for three failures does support the test objective with a performance 
threshold of * 0.85p =  and a maximum acceptable risk of 0.20α = . However, the sequential 
test of Fig. 5 that allows for up to three failures in a total of 36 observations cannot support the 
same test objective as the maximum risk associated with the sequential test is 0.272. This ex-
ample illustrates the caution necessary when executing a fixed sample test in a sequential man-
ner. If observations of a fixed sample test are revealed sequentially and it is noted at any time 
during testing that the number of allowable failures has been exceeded, then testing should 
cease as to conserve resources. Otherwise, the total number of trials and the acceptance crite-
rion of a fixed sample test must remain fixed and unchanged throughout testing. Like the fixed 
sample test, designing a sequential test must begin with a test requirement that contains both a 
performance threshold and a statement of acceptable risk. The parameters of the sequential test 
which include the number of phases, the batch sizes, and the acceptance criteria at each phase 
can then be formulated to satisfy the stated test objective. 

Like the fixed sample test, a sequential test must begin with a testable 

objective that contains both a performance threshold and a statement of 

acceptable risk. 
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7.3. Sample Size 

Though there is a significant increase in the complexity involved with properly designing a 
sequential test to confirm a performance threshold with a binary experimental response, the 
tradeoff is the reduction in the expected number of observations required. Intuitively, from the 
sequential test illustrated by Fig. 5, we see that a very poor performing test artifact would 
almost surely end testing after only 12 observations as it is unlikely that the results provided 
in the first phase would satisfy the requirement to continue to phase two. More specifically, 
for any given test artifact with a true performance measure, p, we can calculate its expected 
number of test observations in each phase by the multiplying the probability that it enters the 
phase (using Eq. (1)) by the number of trials in the phase (in this case, 12). For example, the 
probability that a test artifact with a true performance measure 0.65p =  enters phase two of 
the sequential test of Fig. 5, is given by: 

( ) ( )
( )
( )

1 1

1 1

1 1

enter phase 2 9 | 12, 0.65

10 | 12, 0.65

11| 12, 0.65
0.341

P P X n p

P X n p

P X n p

= = = = +

= = = +

= = =

=

 

and thus, its expected number of observations in phase two is 0.341 12 4.09× = . The overall 
expected number of test observations is the sum of the expected number of observations in 
each phase. Continuing with the example of the test artifact with a true performance measure 

0.65p = , the overall expected number of observations is given by: 

( ) ( ) ( ) ( )1 2 3| 0.65 enter phase 1 + enter phase 2 enter phase 3  
=1 12+0.341 12 0.011 12 
=16.22

phase phase phaseE obs p P n P n P n= = × × + ×

× × + ×  

The expected number of required test observations over the range of the true performance 
measure values, p, for the sequential test illustrated by Fig. 5 is provided in Fig. 7. We see that 
when the test artifact’s true performance measure is less than 0.5, then we expect to require 
only 12 observations. The expected number of observations then increases as the true perfor-
mance measure increases, until it reaches its maximum value of 25.6 observations at the true 
performance measure 0.876p = . The expected number of required observations then rapidly 
shrinks back to 12 as the true performance measure approaches one. Note that the maximum 
expected number of observations, 25.6, is less than the 32-observation fixed test that provided 
a power profile most similar to this sequential test.       

Though a sequential test is more complicated to properly design, con-

siderable savings may be provided through a reduction in the expected 

number of observations required. 
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Fig. 7: Expected number of observations for the sequential test of Fig. 5. 
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Acronyms 

ANSI  American National Standard Institute 
BRD Backpack-type radiation detector 
CBP Customs and Border Protection 
DHS Department of Homeland Security 
IEC International Electrotechnical Commission 
PRD Personal radiation detector 
RIID Radioisotope identification device 
RPM Radiation portal monitor 
SPRD Spectrometric personal radiation detector 
SRPM Spectrometric radiation portal monitor 
TCS Technical Capability Standard 
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