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Abstract

There are a variety of new, improved, and/or innovative fire protection technologies that
have the potential to improve fire protection and life safety in residences including barrier
fabrics for upholstered furniture, new nano-scaled flame retardants, and better fire detection
technology. However, there is no accepted methodology available to determine the absolute
or even relative performance of different technologies. The Engineering Laboratory of the
National Institute for Standards and Technology (NIST) has undertaken an effort to develop
a method to better quantify the relative improvements in fire safety provided by different
technologies to evaluate the impact of changes in prescriptive or performance-based
requirements.

In order to better understand the overall process for the analysis, this report examines the
process for quantitative calculation of fire hazard of fire protection design alternatives using
as an example case study the potential benefits of alternate requirements for residential
smoke alarms. The case study will help define the process, data, and tools necessary for a
quantitative analysis of changes in fire protection designs. The long-term goal of the project
is to develop a well-defined process and set of tools for such analyses.

This report shows the result of the case study as well as a discussion of the procedure itself.
Several conclusions are apparent. With the speed of current machines and zone fire models, it
IS practical to generate tens of thousands of cases to analyze. There is also a need for
additional data, including but not limited to fire data, information about the distribution of
floor plans and about type and arrangement of the contents. Finally, there needs to be
guidance and modeling available to account for the impact of occupants’ actions and their
interactions with fires.

Going forward, research should focus on a two-prong approach. First, tools are needed to
make Monte Carlo analysis more efficient. Second, additional opportunities to apply Monte
Carlo analysis to real research problems would develop a base of expertise to further the use
of this analysis.

Key words

Assessing new technologies; fire modeling; Monte Carlo; residential egress; residential fire
safety; smoke alarms: technology performance metrics
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1. Introduction

In 2015, structure fires injured nearly 15 000 people and killed 3 400 people in the United
States [1]. Of the people who died in fires 77 % or 2 630 died in home structure fires, which
includes apartment buildings and other multi-family housing [1]. These facts suggest that to
impact the civilian death toll requires a focus on home structure fires.

There are a variety of fire protection technologies that have the potential to improve life
safety in residences such as barrier fabrics for upholstered furniture, new nano-scaled flame
retardants, or better fire detection technology. Currently, there is no accepted methodology to
determine the absolute or even relative performance of new or competing technologies.
However, as will be reviewed and discussed later, when faced with the need to estimate the
impact of certain technologies on the residential fire problem, researchers have come up with
very similar approaches. Typically, the approaches use a given fire model or models to run a
large number of simulations, setting up the cases with some kind of Monte Carlo procedure,
and doing a statistical analysis of the resulting simulations. Fractional Effective Dose (FED)
limit or the possibility of flashover have generally been used as performance criteria. There
have even been attempts to describe a standard method for doing the analysis, but no
standard of analysis has been fully adopted.

There are a number of challenges to this type of analysis which prevent it from more wide
adoption. One problem is the issue of data to define a comprehensive set of modeled
scenarios, including its availability and the needed assumptions to fill in any gaps in the data.
Examples of issues include appropriate floor plans and their distributions, fire scenarios, and
distributions of populations. A second problem is how to run the large number of simulations
needed to generate good statistics. Even with zone fire models that can be run quickly, the
labor required to set up thousands of runs and process the results by hand is prohibitive. A
third problem is deciding what output variables to use in the analysis and how resulting
statistical analyses relate to what we see in real communities. Some researchers have
attempted to predict actual fire deaths; others have looked at the time to hazardous conditions
or flashover or even attempted to predict the probability of hazardous conditions occurring.
Each method can have its advantages and disadvantages.

The Engineering Laboratory of the National Institute for Standards and Technology (NIST)
has undertaken an effort to develop a method to quantify the relative improvements in fire
safety that different technologies can make in a community. The overall goal is to provide
tools to evaluate the impact of changes in prescriptive or performance-based codes and
standards requirements. While the system will be primarily focused on community impact, it
ought to scale down for use on individual residential structures.

In order to better understand the process, this report examines a procedure for quantitative
calculation of fire hazard of fire protection design alternatives using as an example case study
of the potential benefits of new smoke alarm standards, ANSI/UL 217 2015 [2]. The case
study will help define the process, data, and tools necessary for a quantitative analysis of
changes in fire protection designs. The long-term goal of the project is to develop a well-
defined and generally accepted process and set of tools for such analyses. The report is
organized as follows:



e Chapter 2 reviews the available literature on fire hazard analysis, residential
evacuation, and fire statistics to inform necessary data, calculations, and analysis
required for the case study and for defining the steps of a quantitative analysis
procedure.

e Chapter 3 describes the process and choices for input data and calculations with
details for the case study.

e Chapter 4 presents the results of the calculations for the chosen analysis variables.

e Chapter 5 discusses the implications of the analysis on the process of fire hazard
analysis and provides an assessment of its current limitations.

e Chapter 6 summarizes future research needs to better address quantitative fire hazard
analyses.

2. Background Review

In its simplest form, the analysis of fire safety during a building evacuation can be described
in the concept of ASET/RSET. ASET, the available safe egress time, is the amount of time
that conditions in the building allow occupants to safely leave the structure. RSET, the
required safe egress time, is the amount of time needed to safely evacuate all the occupants
of a building. The basic idea is that ASET should always be greater than RSET in a building
to ensure the fire safety design of a particular building [3].

This section reviews the quantitative analysis of fire safety and includes three parts: the
calculation of ASET/RSET in fire safety analyses to date (which informs how well we know
how to calculate ASET and RSET in residences), the current state of the literature related to
residential evacuation (including significant limitations on the use of RSET in residences),
and fire statistics including causes and impacts of fires in residences (which informs
important fire scenarios and populations that must be considered in analyses).

The review is intended to give an overview of the different aspects of residential egress.
2.1.  Fire Hazard Analyses

This section provides a brief review of efforts to quantify the impact of different fire safety
technologies. The idea of using a statistical approach to understand the impacts of different
technologies and/or scenarios is not a new idea. Available engineering calculations and fire
models make this kind of analysis relatively straightforward to do. However, researchers
have had to create their own ad-hoc method including developing their own critical
measurements and criteria for evaluating the results.

Bukowski [4] used a zone model to predict the hazard of various residential upholstered
furniture (RUF) fires in a three room layout. The varied parameters were floor plan
geometry, wall materials, heat of combustion of the fuel, the smoke yield, the RUF burning
rate, and the presence or absence of an open door. These parameters were typically varied to
one or two values other than nominal values. Hazard was quantified in terms of gas



temperatures, hot gas layer (HGL) height, optical density, and thermal FED. It was found that
the hazard criteria are most sensitive to the burning rate of the fuel. The results of this
analysis are qualitative due to the limited number of cases considered and the fact that these
cases are not rigorously connected to real fire scenarios through well-characterized building
data.

The methodology described in the preceding paragraph was implemented in the software
HAZARD | [5]. HAZARD | was designed with a focus towards single-family residential
structures. The zone model FAST in conjunction with evacuation models was used to predict
fire losses. The authors cautioned that the results should only be used for comparisons
between products as the models were not developed enough to make precise predictions. The
HAZARD | model was applied with examples for several residential fire scenarios.

An approach similar to that of the present report was developed by Clarke et al. [6]. The
objective of the research was to use fire and egress models in conjunction with fire data to
estimate the change in hazard associated with a change in product. Several applications were
studied including the hazard of RUF [7]. The relative weightings of the specific fire scenario
parameters (e.g., time of day, mobility, house size, etc.) were mostly based on data from the
national fire statistics with some weightings for RUF provided by an expert panel. For the
furniture application, the modeled fires were assumed to take place in a prototypical ranch
home. Fire dynamics and egress were modeled using HAZARD 1. Predicted fire deaths
compared well with the deaths recorded in the available fire statistics. The research examined
the sensitivity of the results to such factors as the locations of the occupants, the potential for
occupant rescue, occupant delay in evacuating the house, duration of pre-flaming smoldering,
thermal window breakage, and home size.

The hazard of a single room scenario was explored by Babrauskas [8]. HAZARD | was used
to predict the hazard for several cases in which the heat release rate (HRR), toxicity, and
ignition time of a RUF fire were varied. Hazard was quantified in terms of gas temperature
(exceeding 100 °C) and toxicity (a time-integrated exposure to the mass concentration of
toxic products of combustion exceeding a value of [9] 900 (g/m®) min?). It was concluded
that life safety is much more strongly dependent on HRR as compared to toxicity. This is
primarily a consequence of the fact that only flaming pre-flashover cases were considered in
which the toxicity of gases is relatively low.

Peacock et al. [10] studied flashover using several correlations in addition to the
Consolidated Model of Fire and Smoke Transport (CFAST) [11]. Flashover is typically
defined in terms of the conditions needed to ignite certain target materials within the room of
fire origin. Flashover is relevant to hazard in that a post-flashover compartment is certainly
untenable and may produce significant toxic gases that may be transported to other rooms
within the home. Recommended flashover criteria were taken to be temperatures exceeding
600 °C and floor heat fluxes greater than 20 kW/m?. It was found that correlations such as
those of Thomas [12] and McCaffrey et al. [13] are able to predict flashover just as well as
CFAST for the scenarios considered. In a continuation of this work, Babrauskas et al. [14]
found that there was considerable variability in the occurrence of flashover as a function of
HRR in rooms of similar geometry. This variability was attributed to differences in the

1 To put this value in context, note that a 1 minute average concentration of 30 g/m® would reach lethality after 30 min. The density of air at
standard temperature and pressure is 1225 g/m? so the toxic material would only have to be 2.4 % mass fraction.



dynamic behavior of HRR versus time curves. Such behavior is not accounted for in typical
correlations. CFAST simulations were used to show that there is a broad range of critical
HRRs needed for flashover. Although the critical HRR was found to depend strongly on the
time at which flashover occurs, simulations indicate that the results are relatively insensitive
to the shape of the HRR curve.

In order to assess the reduction in fire losses associated with a changed mattress flammability
standard, Ohlemiller and Gann [15] used CFAST to predict the spread of smoke in a four
room structure. This structure was similar to that used by Bukowski [4], but with an
additional large compartment to account for the rest of the house. Variations were made to
the size of the room of fire origin as well as the fire room door opening size. It was found
that a reduction in HRR did not eliminate all risk to the occupants, but it did lead to a much
reduced probability that a nearby item would be ignited. From an investigation of fire
statistics, it was determined that a significant reduction in HRR would result in a significant
reduction in the number of flashovers. Consequently, fire losses would be significantly
reduced.

The potential for sublethal incapacitation in fires was studied by Peacock et al. [16] using
CFAST. In this work, it was noted that a significant limitation of CFAST is an inability to
account for the toxicity associated with under-ventilated fires. Three scenarios were
simulated: a ranch house, a hotel, and an office. Tenability was accounted for using a thermal
Fractional Effective Dose (FED) based on heat and incapacitating asphyxiant gases.
Calculation of this FED was based on the models given in ISO 13571 [17]. It was found that
time to incapacitation due to heat was much smaller than the time to incapacitation due to
asphyxiant gases except for cases of smoldering. Fire deaths due to toxic gas inhalation
mostly occur post-flashover.

Several papers have demonstrated methods for propagating uncertainty through fire models.
Upadhyay and Ezekoye used the Quadrature Method of Moments (QMOM) to propagate
HRR uncertainty through CFAST and an algebraic model for layer height [18]. Layer height
cumulative distribution functions (CDFs) were reconstructed using a generalized lambda
distribution. The results of the QMOM simulations compared favorably with those obtained
by more thorough Monte Carlo simulations. This indicates that efficient methods such as
QMOM could be used to adequately propagate uncertainty through fire models.

Monte Carlo simulation of CFAST was used to determine the effects of HRR curve
uncertainty on the available safe egress time by Kong et al. [19]. Latin hypercube sampling
was used to improve efficiency. Two uncertain parameters, peak HRR and fire growth rate,
were considered as random model inputs and modeled as normal or log-normal probability
distributions. An extremely large single compartment, representing a commercial building,
was considered, and the results were presented along with a sensitivity analysis.

Bruns [20] developed the statistical analysis technique in a mathematically rigorous fashion.
The problem being addressed was to predict the impact of different barrier fabrics on the
hazards from a fire on the upholstered furniture. The technique made use of test fires to
determine the HRR rate of chairs of the same design with two different covering fabrics and
six barrier fabrics. A simple empirical correlation by McCaffery, Quintiere, and Harkleroad,
the MQH) correlation [21] and CFAST simulations were used to estimate the impact of the



12 combinations of cover fabrics and barrier fabrics in a three room floorplan. Estimates of
the probability of each combination reaching flashover in the living rooms and lethal
conditions in the bedroom were made.

Notarianni [22] defined the process for understanding the uncertainty inherent in fire
protection modelling applications through a case study on residential fire sprinklers. The
work demonstrated the need to include distributions for uncertain inputs and the impact of
uncertainty in the selection and analysis of design criteria for fire protection engineering
designs. Notarianni and Parry [23] describe steps for performance-based design in fire
protection applications that include uncertainty throughout the design process. In part, this
report builds on the work of Notarianni to better understand the tools and calculations needed
for the statistical treatment of fire modeling in the design process.

2.2.  Fire Statistics

The National Fire Incident Reporting System (NFIRS) is a reporting system used by fire
departments nationwide to report on their activities. The system is maintained by the U.S.
Department of Homeland Security and the U.S. Fire Administration and is designed to
capture all activities engaged in by a fire department, including fires, emergency medical
service (EMS) and community outreach. The system is voluntary at the national level, so
some departments do not use the system or report data from it. Additional data and analyses
are available from the National Fire Protection Association(www.nfpa.org).

The NFIRS system records the time, date and location of all incidents, the type of the
incident (e.qg., fire, EMS call, hazardous materials incident, service call, etc.), property use,
equipment and personnel on the call, number type and severity of casualties, actions taken,
and a host of other data. For fires specifically, NFIRS collects information on the size of the
fire, room of origin, heat source, item first ignited, human and other factors contributing to
ignition, presence and effectiveness of detection and automatic suppression equipment
among other data.

Data for NFIRS is filled out by firefighters at the scene, so the information it contains is
typically limited to the information a firefighter at the scene would have. For example, fire
deaths are defined as any fire casualties resulting in death within one year. However, it seems
likely that follow-up on casualties is sporadic at best. Often data that is not required is left
unentered. For example, extent of fire spread is recorded for only about 30 % of fires. Other
systematic problems can occur. For example, a number of large departments report in excess
of 80 % of the fires they respond to are confined fires (the nationwide average is less than

40 %). Nevertheless, while NFIRS has known reporting problems, it is still the best data set
available for understanding the nature and extent of the urban fire problem in the United
States.

2.2.1. Severity of Fires Resulting in Fatalities

Data from NFIRS can provide insight into important characteristics of fire scenarios that
would be important to capture in a fire hazard analysis. This section identifies the
characteristics of fires that contribute to their deadliness. A number of factors contribute to
the number of deaths that occur from fire, including the number of fires that occur, number of
people exposed to a fire, characteristics of the people who are exposed (e.g., age, frailty [24],



sex), and characteristics of the environment and fire. This study is interested the
characteristics of the environment and fire that contribute to fatal fires. As such it abstracts
from the characteristics of people exposed to fire, and from the number of fires and number
of people exposed to fires.

In NFIRS, there is no data on the number or characteristics of people exposed to a given fire
(although it does have information on people who are injured or Killed in fires). Since data on
people exposed to fire is not generally available, it is beyond this study to account for it.

Characteristics that are considered are time of day, day of week, number of floors in the
building, room of origin of the fire, heat source for the fire, item first ignited, item most
contributing to flame spread, and extent of fire spread.

Some 20 % of the data is selected randomly and reserved as a test set, while the remaining
80 % is used to fit the models.

A number of records were removed if data components were missing, if there were obvious
miscodings, and when the room of origin was listed as 'workspace'. The latter was removed
because there were so few single-family residential fires with a ‘workspace' as the room of
origin that it detracted from the analysis. Total number of records removed for these reasons
was 106 477. Total number of fires in the training set was 673 353. Total number of fires in
the test set was 169 083.

2.2.2. Regression Modeling

Two regression models were run to test the relationship between a number of predictor
factors, X;;, on the probability of fire fatality, P(deaths; ), a representation of the deadliness

of a fire. The first model excluded the NFIRS field fire_sprd, and the second one included it.
Both models were logistic regression models evaluated using a generalized linear models
(GLM) approach.

The first model is estimated as:

g(P(deaths;)) = quﬂ 1)

where X;; is the value of the jth predictor for the |th fire (note that all the predictors in the
estimation are dummy variables), ; is the regression coefficient for the jth predictor, and g is
the linking function -- in this case the logit function.

The second model is estimated as:

g (P (deaths,))= Z':.kaﬁleﬂ (2)

where F;;, is the dummy variable for the kth flre size for the ith fire, a;, is the regression
coefficient for the kth fire size, and all the remaining terms have the same meaning as above.

Complete results are listed in Appendix A.



To test the accuracy of the models, predictions were generated for the data. Predictions are
generated for all the data, but we are primarily interested in the predictions on the test set.

From the predictions we generate root-mean-square errors on the (out-of-sample) test set.

Include Fire RMS

Spread Error
No 0.0902
Yes 0.0900

Interestingly, there is little difference between the 2 models. In particular, adding an indicator
of the fire size (which is clearly a significant factor in fire deaths) does not substantially
decrease the error in the out-of-sample predictions. To the extent that fire size contributes to
fire deaths, its effect is fully explained by the fire environment variables.

Since fire spread contributes so little to predictability of the deadliness of fires, it is ignored
for the rest of this analysis.

The graphs below show the coefficients, fj, from the estimation. Note that the coefficients for
each group of dummy variables have been centered in the graphs below. That is possible
because the coefficients for each group are only defined up to a constant. Specifically, what
is graphed is the value of the estimated coefficient for that variable minus the mean of the
coefficients for all the variables in that group.

Figure 1 shows that the day of week has no effect on the dangerousness of fires.

As can be seen in Figure 2, fires that occur in the early morning (when everyone is probably
asleep) are significantly deadlier than fires that occur in the afternoon.

Except for homes with zero floors, the number of floors in a house has no effect on the
deadliness of a fire as seen in Figure 3 (although an allowed input in NFIRS, it is not clear
what it means for a single-family residence to have zero floors).

Figure 4 shows that area of origin has the greatest range of effect of any of the variables
tested. Fires that start in service and exterior spaces are significantly less deadly than other
fires. The deadliest room for a fire to start in is the living room. It is important to point out
that this is a simultaneous regression with the other factors listed. So, for example, fires that
start in the kitchen are almost invariable among the least deadly. However, there is a very
large overlap between kitchen fires and cooking fires. What this means is that the location is
not the significant factor in the relatively low deadliness of kitchen fires.

For the most part, the NFIRS field heat_source does not distinguish between more and less
deadly fires as seen in Figure 5. The only exception to this is smoking materials which are
significantly deadlier than fires from other heat sources.

Looking at item first ignited in Figure 6, fires that start in bedding, upholstered furniture, and
“Soft Goods” (like clothing), are significantly deadlier than fires that start in other materials.
Fires that start in structural components are the least deadly.



For the closely related field of item most contributing to flame spread shown in Figure 7,
fires where liquids (excluding cooking materials) contribute most to flame spread are the
most dangerous. Fires where cooking or electrical materials contribute most to flame spread
are the least dangerous.

It is worth noting that the “Item First Ignited” and “Item Most Contributing to Flame Spread”
fields differ only when the item most contributing to flame spread is different from the item
first ignited. They differ only in 10.6 % of fires. Comparing the results for the two groups of
variables, it seems likely that item contributing most to spread is carrying most of the weight
for the two variables. Likely, “Item First Ignited” only matters when the two variables differ.

Finally, in Figure 8, considering cause of ignition, fires under investigation are the deadliest,
while fires with natural causes are the least deadly. Interesting, fires with intentional causes
are less deadly than fire with unintentional causes. It is not clear how to interpret the results
for fires whose cause is under investigation, since it is not an actual cause. It seems likely
that some of those fires are under investigation precisely because there were fatalities. It is
also not clear how these results would change if the underlying cause were used rather than
the “investigating” placeholder.
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Figure 1 Relative impact of the day of the week on the deadliness of the fire. Uncertainty
bars represent 95 % confidence limits.
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Figure 2 Relative impact of the time of day on the deadliness of the fire. Uncertainty bars
represent 95 % confidence limits.
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Figure 3 Relative impact of the number of floors on the deadliness of the fire. Uncertainty
bars represent 95 % confidence limits.
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Figure 4 Relative impact of the area of fire origin on the deadliness of the fire.
Listed in order of most deadly to least. Uncertainty bars represent 95 % confidence limits.
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Figure 5 Relative impact of the heat source for the fire on its deadliness.

Listed in order of most deadly to least. Uncertainty bars represent 95 % confidence limits.
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Figure 6 Relative impact of the first item ignited on the deadliness of the fire.
Items listed from most deadly to least. Uncertainty bars represent 95 % confidence limits.
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Figure 7 Relative impact of the item contributing most to flame spread on the deadliness of
the fire. Items listed in order of most deadly to least. Uncertainty bars represent 95 %

confidence limits.
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Figure 8 Relative impact of the cause of ignition on the deadliness of the fire.
Causes listed in order from most deadly to least. Uncertainty bars represent 95 %
confidence limits.

Area of origin is the single most important factor in determining the deadliness of fires, with
the most dangerous fires starting in the living room, hall, or other function areas (i.e., other
than those listed). The least dangerous places for fires to start are outside or in service,
equipment, or structural areas. Fires that start at night are significantly more dangerous than
fires that start in the day. Fires started by smoking materials are much more dangerous. Fires
that start in bedding or upholstered furniture are more dangerous than fires that start in other
materials.

How does this analysis inform the scenarios we will look at in our analysis? First, note that
the most dangerous room for a fire to start is the living room and the fourth most dangerous
room is the bedroom. Match that up with the first and second most dangerous items first
ignited are upholstered furniture and bedding and it leads to two clear scenarios. One is an
item of upholstered furniture in the living room and the other is a mattress in the bedroom.

Because, smoking materials are the only the heat source that is statistically differentiated
from all the other heat sources we will assume that half the fires start off smoldering and half
with a small flaming ignition. The idea is to see if the method can capture the difference in
the two types of ignition.

So, the analysis will consist of four scenarios that can be analyzed separately or together.
Two groups will be upholstered chairs in the living room starting with either small flaming or
smoldering fires, and two will be mattresses either starting with either small smoldering or
flaming fires.
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2.3. Residential Egress

A 1935 report surveyed then-current practice in providing building exits to aid in reducing
“the deplorable loss of life that occurs annually in building fires” [25]. Although primarily
focused on commercial buildings since at the time, “statistical data relative to loss of life in
dwellings are not readily available” [25], the report identifies a residential occupancy class
that includes one- and two-family dwellings, apartment buildings, hotels and dormitories and
outlines code requirements for egress for residential buildings.

As was the case in 1935, most recent research on evacuations has often focused on
commercial rather than residential spaces [26, 27].

This review of residential egress is broken up into two sections. The first section looks at
work based on actual emergency evacuation events and the second section looks at in-situ or
laboratory evacuation experiments.

2.3.1. Real Events

Wood [28] conducted one of the first studies that looked at human behavior in a fire. The
study looked at a collection of data from the United Kingdom that focused on fires with
individuals involved. A majority of the data came from dwellings. Wood looked at the first
three actions that each person took. In order of most frequent the first three were: “some fire-
fighting action,” “contact fire brigade,” and “investigate fire.” “Evacuated oneself” from
building was the sixth most frequent action. He then broke down the actions based on the
individual’s familiarity with the building layout, perception of the seriousness of the fire, the
degree of training, and previous experience in a fire. This allowed for a breakdown in the
general behavior, how evacuations occurred, and movement through the smoke. Gender
differences were also considered due to the noticeable differences in actions between male
and females. One such difference was how men and women noticed a fire. Women were
more likely to come to the conclusion that a fire was occurring based on seeing smoke. Men,
however, more often had to see flames to be convinced of a fire. Wood also looked at
circumstances people would move through smoke and how far they would travel.

Bryan [29] designed a study based on Wood’s [28] that focused on fires that occurred in the
metropolitan Washington, D.C/Baltimore, MD area. The majority of the fires occurred within
dwellings and apartments [29]. Bryan started by looking at how the participant population
became aware of the fire, and then looked at the gender distribution of this data. As Wood
did, Bryan also looked at the first three actions that were completed. The actions were
analyzed based on gender distribution, training, and previous fire experience After Bryan had
completed his study called Project People [29], he wrote a paper [30] comparing his results
with Wood’s [28]. The comparison looked at the cultural variations between Americans and
British in the first three actions completed during a fire. It was seen that the British
populations were more likely to fight the fire as their first action, whereas Americans were
more likely to notify others. Also, Americans were more likely to present behaviors related to
evacuation, and the British were more likely to reenter a building.

Bryan and DiNenno [31] analyzed a fire that occurred in an apartment building in 1979. The
analysis was completed through interviews and questionnaires of residents and firefighters
that responded to the incident. Of the 94 responses received, 31 occupants answered that they
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were alerted to the fire by hearing the Fire Department arrive outside. One reason this was
the most common answer was that the alarm system in the building had to be manually
activated and was not activated until firefighters entered the building. However, the alarm
only sounded for 8 s to 10 s.

Occupants were also asked if they alerted anyone else before evacuating the building.
Nineteen occupants responded that they did alert another occupant with the most common
responses being “knocking on doors” and “waking roommates.” It was also seen that 22
occupants attempted to gain more information before evacuating with the most common
response being phoning the front desk.

In 1995 Proulx [32] examined the evacuation time and movement during evacuation drills in
4 apartment buildings. The purpose was to time how long it would take individuals to start
evacuating and how long it would take to evacuate the building fully. In the first 5 min in
buildings 1 and 4, 76 % and 70 % of the occupants, respectively, had finished their
evacuation, and 93 % and 86 %, respectively, had started evacuating. In Buildings 2 and 3
the results were only 42 % and 34 %, respectively, had started evacuation in the first 3 min
and only 53 % and 44 % had started in the first 5 min, respectively. The reported reason was
that people in buildings 2 and 3 could not hear the fire alarm, and many did not start
evacuating until firefighters had arrived at the building. Another part of the study was to
determine what pre-evacuation actions were taken. For Buildings 2 and 3, a common
behavior was “have a look in corridor” [32]. The pre-evacuation actions show that occupants
did not think immediate evacuation should take place. This may be due to a lack of training.
Interviews conducted before the drills showed that evacuation drills had never taken place in
three of the apartment buildings and the fourth had not held one in years. Proulx [32] also
measured the amount of time it took to clear the buildings. Building 1 emptied in3 min 5s
while building 4 took 4 min 38 s. In the two buildings where hearing the alarm seemed to be
problematic it took 9 min 38 s to clear building 2 and 10 min 57 s to clear building 3. A clear
contributing factor to the differing results is the pre-movement time and most important how
long it took to come to the decision to evacuate. The fact that “have a look in the corridor”
was an activity that so many did in buildings 2 and 3 implies strongly that information
gathering was an important activity during the evacuation.

Proulx and Fahy [33] analyzed what could be classified as a good alarm or a poor alarm. This
allowed them to create a graph that depicted the percentage of individuals that evacuated
during a certain time. It was seen with the poor alarm that individuals were still evacuating
25 min after the alarm was activated. The review also covered the Forest Laneway Fire
where occupants took a mean time of 3.18 hours to start evacuating. Twenty-four percent of
occupants were unable to hear the fire alarm inside their apartments. The flames damaged the
door to the exit staircase and allowed for smoke to enter and spread to other floors. By the
time the occupants noticed a fire was occurring, the corridors and staircases were filled with
smoke. It demonstrated that alarms should be located in a manner that allows for all
occupants to hear the alarm signal when a fire occurs.

Proulx [34] analyzed a high-rise apartment fire and the behaviors that occupants
demonstrated. All occupants were given a survey that asked questions such as, “How did you
first become aware of the fire emergency?” [34]. Based on the data, a majority of the
occupants became aware that a fire was occurring based on the voice communication system
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and fire alarm. It was found that 83 % of the respondents attempted to evacuate the building.
A majority did not attempt to leave immediately; 82 % of the evacuating population put on
warmer clothing first because of the weather conditions outside. Occupants were also asked
what their perception of the smoke was and whether it made them choose not to evacuate
from the building. The study concluded that occupants of high-rise apartments may be
endangering themselves by not evacuating until they hear a message broadcast over the voice
communications system [34].

Pauls [35] analyzed two different fires that both resulted in fatalities. The analysis shows a
set of times that indicate when various actions were thought to have occurred during both
fires. The first fire occurred in a 21-story apartment building on the seventh floor. It started
off as a smoldering fire that took the occupant of the apartment between 15 min to 30 min to
notice. The occupant attempted to extinguish the fire. However, they soon realized it would
not be possible and fled the apartment. Shortly after, the apartment experienced flashover,
and the building alarm started to sound. The family that experienced the two fatalities left
their apartment five minutes after they heard the alarm. They attempted to evacuate down the
stairs but encountered smoke on the 15" floor and proceeded back up the stairs. Once they
reached the 21% floor, they traveled to the other staircase and descended it. The family
encountered even more smoke on the 14" floor and ascended the staircase again. They
attempted to exit onto the roof, but the doors were locked. Fifty minutes after the fire
department was notified of the fire they located the family. The one year old child and the
mother both died due to smoke inhalation. The second fire, which was caused by ashes from
an ashtray being dumped into the trash, occurred in a two-story apartment. It started on the 1%
floor of the building. This fire had over 2 h to build before a burning smell was detected by
the occupants in the apartment where the fatality occurred. The male occupant went to go and
investigate the 1%-floor apartment. While investigating, he left the apartment door open
which caused smoke to start building up in the stairway. The female occupant was unable to
evacuate due to the amount of smoke. She died from carbon monoxide poisoning from
smoke inhalation.

Sekizawa et al. studied a fire in a 20 story high-rise apartment in Hiroshima City, Japan in
1996 [36]. The fire started on the 9™ floor and climbed the exterior of the building, going
from balcony to balcony, all the way to the 20" floor. Occupants filled out questionnaires that
showed a correlation between the time delay in evacuating and previous experience with fire
incidents in the building. Because previous incidents had been small and well controlled,
residents were slow in their response to the fire cues. This showed the need for information
that every incident will have a different outcome. The surveys also showed that 47 % of
occupants used the elevator to evacuate. Occupants were then asked why they chose this
means of egress. Of those that used the elevator 44 % did so because they used it daily. The
other common answer for another 22 % of occupants that used the elevator thought that it
was a safer means of egress. These two answers showed that residents were unaware that
elevators should not be used during a fire.

Hall [37] did an analysis of 5 years of fire incidence data. Using two different methods he
analyzed how deaths and injuries would be reduced if the occupants had more time.
According to his analysis, deaths could be cut by as much as half, and injuries could be cut
by two-thirds. However, these results are using some potentially optimistic assumptions. If it
is assumed that extra time would only help those that were in fact evacuating, then fatalities
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and injuries would each only be reduced by one quarter. For this reason, Hall argues that we
should spend less time on quantitative changes to RSET and ASET, meaning changing the
amount of ASET or RSET, and focus on qualitative changes, meaning stopping fires from
even starting.

Bruck and Ball [38] created a review that analyzed factors that contributed to deaths while
individuals were sleeping. The risks were high levels of background noises, being a heavy
sleeper, sleep deprivation, being a child, sleeping tablets, alcohol intoxication, hearing
impairments, and being an older adult [38]. This led to an analysis of the fire alarms
commonly used. It was seen that the typical high-frequency alarm would not wake up those
in the risk group. It was suggested that low-frequency signals, as well as voice alarms, would
be more likely to get a response out of individuals.

Miller and Davey [39] looked at the effect of fires on older people. Eight interviews with fire
survivors were conducted for the report. The interviews looked at what the interviewee was
doing before the fire broke out, the cause of the fire, and the reaction of the interviewee to the
fire. Most fires occurred in the kitchen. Also, most interviewees reported now being more
cautious about what they think may cause a fire in their homes [39]. The report concluded
that people may not be as cautious as necessary until they have been affected by a fire.

An analysis of the Consumer Product Safety Commission third national telephone survey of
unreported and non-fire department-attended residential fires was performed by Greene and
Anders [40]. The report has a great deal of data about the characteristics of fires attended by
fire departments and those unattended by fire departments. The headline statistics of the
report is that compared to the approximately 23.7 million residential structure fires (28.3
residential structure fires per 100 households) found in the 1984 survey, residential fires have
decreased significantly. The 2004-2005 survey found there were only 7.4 million residential
fires, which is a rate of 6.6 residential structures per 100 households. This is a 68.7 %
reduction in the number of structure fires and a 76.8 % decrease in the rate. The percent of
fires attended by the fire department stayed about the same, going from 3.7 % in the 1984
survey to 3.4 % in the 2004-2005 survey.

Harpur, Boyce, and McConnell [41] found that children under the age of 5 are more at risk of
a fire injuring them or being a fatality in a dwelling fire. The main reasons are young children
have an underdeveloped sense of danger, are reliant on adults to escape, and spend a majority
of time at home. The study [41] mentions that fire play and fire interest are risks only
associated with this age group. Of the 14 incidents that were investigated, 11 were started
from fire play. It was seen that 88 % of the fire play incidents were influenced by a parent
being a smoker, which allowed for the children to have availability to ignition sources.

Human behavior in dwelling fires has not received as much attention in the last 30 years as
human behavior in public areas [42] [26]. Thompson and Wales [42] focused on accidental
dwelling fires in Kent, UK. They focused on the motivations and behaviors of individuals
during an accidental dwelling fire. Out of the ten interviews that were conducted, 50 % of the
interviewees did not realize that a fire was occurring in their home. The interviewees that did
not realize a fire was occurring went to investigate the cues to determine what was
happening. The Thompson and Wales [42] analysis also showed that 50 % of injuries were
due to interviewees attempting to fight the fire. They were surprised at the speed of the fires’
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development and how much smoke was involved. It was also seen that half of the
interviewees reentered the property while the fire was occurring, supporting the observations
made by Bryan [29]. By reentering, individuals are putting themselves more at risk for

injury. The reasons for reentering were that they were attempting to help other individuals or
rescuing pets. It was seen that more importance needs to be stressed on staying out of a
building once evacuated. The authors believed that if this study was expanded, it would allow
for a further understanding of the behaviors demonstrated in accidental dwelling fires and
increase the importance of the subject.

2.3.2. Experiments

Kahn [43] also looked at the effectiveness of different cues in waking. In the study subjects
were unaware of what cues would be presented, but they were told that something may
change in the room. Twenty-four subjects were split into two groups. One had three different
types of alarms: 78 dBA, 54 dBA, and 44 dBA. The second group’s cues were a 54 dBA,
smoke odor, and heat. Participants were required to press a button which allowed for a timed
response. It was seen that the 78 dBA alarm had the quickest response time. Any subjects
that responded to the cue were asked to identify what had woken them up. Out of the 18
subjects, only one was able to identify the alarm showing the disorientation when individuals
first woke up. In the morning, the same set of questions were asked, and only one other
subject could identify the smoke alarm. The experiment showed that individuals are not
capable of immediately identifying a cue for fire detection.

Pearson and Joost [44] researched how various impairments could affect a person’s ability to
evacuate their residence. The scenarios were meant to show a set of actions that would occur
during egress. The first experiment showed that wheelchair-bound adults could move large
distances. However, they were slowed down by having to open doors while navigating their
wheelchair. Blind subjects were at a disadvantage, being disoriented by the location of
objects related to the scenarios. Tasks, where hand-eye coordination had to be applied, lead
to a time-delay in egress. It was suggested that if the blind subjects had been more familiar
with the environment the times to complete tasks may have been reduced.

Duncan [45] looked at the effectiveness of a smoke alarm in waking someone up. Three risk
groups in New Zealand were studied. The study was used to see what the average overall
response time was. Then the data was analyzed in four categories; risk groups, gender, the
timeframe of alarm, and if the bedroom door was open or closed. One observation was that
during timeframes in which individuals would normally be asleep, the average response time
was greater. This may have been due to the extra time it took for individuals to wake up and
become aware of what was occurring. The average response times were all under 30 s with
one exception, but they all fell within “the safety period before a fire becomes life
threatening” which was 2.5 min [45].

Bruck [46] researched if children would wake from hearing an alarm that is 60 dBA at pillow
level. The information that was gathered showed that 100 % of the parents woke up on both
nights that the alarm went off, whereas only 15 % of the children woke up. The majority of
the children, 55 %, did not wake up either night that the alarm went off. Another study [46]
had parents of children age 5 years to 15 years set off an alarm for 30 s and report their
sleeping child’s reaction. The alarm did not wake 78 % of the children, and no correlation

17



between the bedroom door being open or closed was found. This information showed that
parents cannot rely on children to wake up during a fire.

Hasofer and Bruck [47] conducted two experiments, one focusing on the response to auditory
and visual cues and the other focused on olfactory cues. The first experiment had 33
participants that ranged in age from 25 years to 55 years. It focused on the auditory and
visual cues, which were a shuffling noise between 43 dBA to 45 dBA, a crackling noise
between 42 dBA to 48 dBA, and a flickering light that was 5 lux. The second experiment
focused on olfactory cues and had 20 participants between the ages of 18 years to 26 years.
Auditory and visual cue testing occurred in the participants’ homes during their normal
sleeping hours, whereas the second experiment occurred during the afternoon. By analyzing
the data from both experiments, it was seen that the auditory cues had the most probability to
awaken the participants. The crackling noise had the highest probability of waking both
males and females. It also was seen that females were 15 % more likely than males to
awaken when the olfactory cue was presented. The cue that had the fastest mean time
response was the shuffling noise. The study can be used to show that in a fire, an auditory
cue such as an alarm is the best way to try and get an individual to wake up.

In 2004, Ball and Bruck [48] conducted a study which evaluated how a person’s blood
alcohol concentration (BAC) can affect response time to a fire alarm. The study used
students at Victoria University, age 18 years to 25 years. Three different types of alarms were
tested: a female voice, the Australian Standard Alarm, and the Temporal-Three Evacuation
Signal. Individuals were tested at three different BAC levels, which were sober, 0.05 BAC,
and 0.08 BAC. It was seen that the most significant difference in response time was between
sober and 0.05 BAC. The results showed that even a small amount of alcohol could greatly
affect a person’s response time to a fire alarm.

Sleeping through an alarm is also a concern for those that are hard of hearing. Ashley [49]
studied how three groups of various hearing levels would respond to three different types of
alarms: a strobe light, a bed shaker, and an audible smoke alarm. The audible smoke alarm
was only able to awaken those in the hearing and hard of hearing individuals. An effective
alert for all three groups was the intermittent bed shaker which awakened 100 % of the
participants. It was also shown that the strobe light, which is seen as the alternative to the
smoke alarm, was shown to be ineffective.

Kady and Davis [50] analyzed how much time it would take for 18 subjects to travel an
escape route. There were nine male and nine female subjects that were split into three groups
normal, overweight, and obese. The subjects had to crawl two different escape routes, a
straight route and an indirect route; each was 100 ft. The purpose was to determine if there
was a time difference. It was found that with any body composition, it took more time for the
indirect route to be navigated. The average time differences for the males were 2.62 s, 4.09 s,
and 6.36 s for normal, overweight, and obese groups respectively. The average time
differences for the females were 2.61 s, 2.85 s, and 0.56 s.

Smoke can affect the walking speed and thinking ability of an individual. Jin and Yamada
[51] analyzed how far someone could walk in a smoke-filled corridor. As the individual
proceeded down the hallway they were given arithmetic problems, and the amount of correct
answers was collected. A control group was set by having subjects walk down the hallway
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without any smoke. It was determined that as individuals went farther down the smoke-filled
corridor, the walking speed and amount of correct answers decreased. This shows that fire
smoke can negatively affect a person’s thinking ability and walking speed, which can affect
how long it takes someone to evacuate a building.

2.3.3. Discussion

There are significant features that make residential egress qualitatively different from
commercial egress. One example is that commercial egress can often be described in terms of
crowd dynamics while single family homes must more frequently be described in terms of
individual behavior.

One such behavior is occupants fighting the fire. As noted above, Greene and Anders [40]
found that only 3.4 % of residential fires were attended by the fire department. The
implication is residents successfully extinguish the majority of home fires. The value of the
kind of analysis presented in this work is understanding the impact of the new technology on
occupant behavior including but not limited to fighting the fire.

In conclusion, a number of articles on residential egress were reviewed. It became clear
through the review that there was no consensus in terms of a model for residential egress.
Therefore, it would not be practical to model residential egress in any realistic way for this
report, so it has been left out of the final analysis.

3. Method

Bukowski [4], Clarke et al. [6], and more recently, building codes [52] and engineering
handbooks [53] provide a structure for a fire hazard analysis that can be used to characterize
the relative performance of two sets of fire scenarios. They outline several key areas that
need to be addressed in the analysis. These include definition of:

1. Community / Building / Occupant characteristics
2. Fire scenarios

3. Analysis variables / Criteria for comparisons

4. Statistical analysis of calculation results

Much of the purpose of this report is to better understand and quantify the general process for
defining each of these areas to better represent an overall hazard analysis with statistically
defensible results and analysis.

3.1.  Community / Building / Occupant Characteristics

Step one is to develop a method to characterize the community being considered. The
question is what constitutes a full characterization of a community and how is that
accomplished. It is likely that there are holes in the available data, so it is important to
understand and document any assumptions that would have to be made and the extra analysis
that must be done. An example is sensitivity testing of the assumptions, to ensure confidence
in the resulting analysis.
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3.1.1. Distribution of Houses

To characterize an average U.S. community, the starting point taken is the American Housing
Survey (AHS) performed every other year by the United States Census Bureau for the
Department of Housing and Urban Development (HUD) [54]. The AHS has been around
since 1973 in one form or another and is taken every odd number year with the purpose “to
provide a current and continuous series of data on selected housing and demographic
characteristics.” [54]

Information from the AHS can be presented in a variety of tables. For this project, the base
data starts with the total floor area in square feet? of the homes. The data is sorted into a
number of bins that divide up total area from 0 ft? to more than 4000 ft? (272 m?) and yields a
number of houses in each bin. For example, of the estimated 92 676 000 houses reporting
total area in the survey, 23 563 000 or 27.6 % had a floor area between 1000 ft? (93 m?) and
1499 ft? (139 m?). From this a smooth cumulative density function (CDF) can be constructed
as seen in Figure 9. As can be deduced from Figure 9, the maximum total floor area
considered is 5000 ft? (465 m?). The actual survey’s final bin is a total area of 4000 ft? (272
m?) or more. However, since less than 3.2 % of houses were over 4000 ft? (272 m?) and there
was no real information on the distribution of larger houses, the decision was made to cut the
total floor area off at 5000 ft? (465 m?).

The data are further broken down to give the number of bedrooms for each house in a
particular bin. Continuing with the example of the homes between 1000 ft? (93 m?) to

1499 ft? (139 m?), there are only 20 000 or 0.08 % of the homes that do not have a bedroom,
while 12 510 000 or 53.1 % of the homes have three bedrooms. Finally, for a given number
of bedrooms in any given total area bin, the AHS gives the distribution of the number of
rooms the house has. For the 12 510 000 homes with total area between 1000 ft? (93 m?) and
1499 ft? (139 m?) and three bedrooms, 5 918 000 or 47.3 % have five total rooms, not
counting bathrooms. From these data, a series of conditional CDFs can be created to allow
definition of a set of houses with a random total area, a random number of bedrooms, and a
random total number of rooms, which are all consistent with the housing data.

2 The AHS provides data in square feet. While NIST’s preferred units would be square meters we use square feet to make it easier to go
back to the original reference.
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Figure 9 Cumulative Distribution Function (CDF) for the total area of the home.

3.1.2. Determining the Floorplan

Once the total square footage and number of rooms was determined, a floorplan was
generated according to a few simple rules. The total area was divided amongst the rooms
randomly with an assumed minimum room area of 20 ft? (1.9 m?). A room aspect ratio of
width divided by length was assumed to be 0.75 for all rooms. This assumption should not
significantly affect the results of zone model simulations such as are performed in CFAST
because the only impact is on the amount of energy transferred to the walls and this is a
relatively small amount of energy as compared to other sources and sinks of energy, for
example the fire and openings such as doors and windows.

To connect the rooms, a simple method was used. Each pair of rooms was considered and
assigned a 50 % chance of being connected. While this means that some scenarios use houses
that have many connections, it still leaves the possibility of rooms and even sections of the
house being closed off from the fire, which is assumed to be the impact of closed doors. This
random approach to generating connections has a probability of resulting in a floorplan that
cannot be instantiated in a single story. More technically, if the floorplan is thought of as a
graph with the rooms as vertices and the connections as edges, some of the randomly
generated graphs will be nonplanar for cases with more than four rooms. A planar graph is
one that can be drawn on a piece of paper and none of the edges cross. The probability of
generating a nonplanar floorplan increases as the number of rooms increases. In order to

21



eliminate such nonphysical cases from the analysis, any randomly generated floorplan can be
checked for planarity and rejected if necessary and replaced by a new randomly generated
floorplan.

3.2.  Modeling Smoke Detectors

The current version of the fire model CFAST [11] uses a default alarm threshold based on a
temperature rise of 5 °C, from a study of Bukowski and Averill [55], or a smoke
concentration of 8.0 %/ft (23.0 %/m) obscuration, based on an evaluation of smoke detector
performance by Milke, Mowrer, and Gandhi [56]. These estimates represent average alarm
threshold values without any predetermination of the type of alarm or smoke properties. A
more detailed model is required in this case study to account for the variation in smoke alarm
response, given differing smoke properties for flaming and smoldering upholstered furniture
combustion and given differing alarm sensor types.

A statistical smoke alarm activation model was developed for upholstered furniture
containing polyurethane foam [57]. The statistical model is represented as a log-normal
distribution with a geometric mean and geometric standard deviation. The specific
distribution depends on the smoke alarm type, and the mode of combustion prior to alarm
activation. Thus, the distributions are more refined than the current default alarm threshold
value in CFAST. Comparison of the statistical model results to real-scale furniture mockup
experiments shows good agreement with flaming scenarios and the correct trend in
smoldering scenarios. The data used to develop the statistical model comes from experiments
recently conducted at NIST on the response of a number of smoke alarms to the new
smoldering and flaming polyurethane foam tests specified in ANSI/UL 217-2015 [2]. A total
of 45 different alarm designs, representing alarms currently available in the U.S. (23
containing ionization sensors and 22 containing photoelectric sensors), were examined in the
study. An additional benefit to using the results from the ANSI/UL 217-2015 test
configuration is that the performance of new alarms meeting the standard can be directly
translated into statistical models for those alarms. This would allow direct comparison
between newer smoke alarms and pre-2015 edition smoke alarms. Currently, no alarms that
meet the standard are available. Therefore, an estimate was made for the geometric mean and
geometric standard deviation of the obscuration at alarm for flaming and smoldering
upholstered furniture fires for new smoke alarms that would meet the ANSI/UL 217-2015
standard. Table 1 give the means and standard deviations for ionization, photoelectric and
new smoke alarms for flaming and smoldering upholstered furniture fires.
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Table 1 Parameters for smoke alarm statistical models

Flaming Fire Obscuration Smoldering Fire Obscuration

Alarm Type Geometric Geometric Geometric Geometric

Mean (%/ft) Std. Dev. Mean (%/ft) Std. Dev.
lonization 2.1 1.3 10.0 1.2
Photoelectric 6.7 1.3 35 1.7
New 3.0 1.3 5.0 1.3

3.3.  Fire Scenarios

As was discussed in section 2.2 there are two fire scenarios of particular importance in
residential fire loss statistics, an upholstered chair fire in a living room and a mattress fire in
a bedroom. For all fire scenarios, the fire was assumed to start as a small smoldering or
flaming incipient fire in a single furniture item (either an upholstered chair or a mattress),
which at some point transitioned to vigorous burning. With this, we can look at both the
performance of fire detection devices and the tenability conditions in rooms remote from the
fire.

In determining distributions to sample from, a basic assumption was made: all the underlying
data would result in simple uniform or triangular distributions. There are two reasons for this.
The first is the reality that these quantities are generally confined to a simple range. For
example, the peak heat release rate (HRR) is limited by the size and shape of the object
burning. Unless the conditions allow an object to self-extinguish there is going to be a
minimum peak HRR above 0 kW. Because of the limits of surface area, total fuel, and
radiation to the object, there is a physical maximum peak HRR that can be achieved. The
second reason for the simple distributions was the limited data available from which to draw
inferences on more complex distributions.

To determine the fire defined for each test case, four parameters were sampled from
distributions. Because we were looking at the impact of different alarm types, we decided to
focus on fires that have an initial slow growth phase due to a very small ignition. This means
started with a linear growth phase that grew from 0 kW at a specified linear rate and for a
specified time. At the end of the linear growth phase the fire transitioned to a more vigorous
burning phase characterized by a t-squared profile and a peak HRR. The four parameters
were the linear growth rate, the time of the linear growth phase, the peak HRR, and the time
when the peak HRR is achieved.

This basic model for representing the fire was taken from Cleary [58] who conducted a series

of real-scale experiments with smoldering and flaming ignition of upholstered furniture
items. Among the data collected were ignition delay (for flaming fires), time to flaming
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transition (for smoldering fires), estimates of HRR at the time of transition from the initial,
assumed linear growth phase to a t-squared growth phase (these three values define the initial

linear growth phase for both fire types as a linear growth time, t, , and a HRR value at the

end of the linear growth phase, QL), and time to a HRR of 1055 kW (a value consistent with

the typical definition of t-squared fires). With exceptions, fires grew at a roughly medium t-
squared fire growth rate (typically defined as a 300 s time to 1055 kW HRR). Peak HRR was
not reported. Table 2 summarizes the test data collected, with the materials that made up the
furniture items listed in the first column.

Table 2. Ignition delay and growth rate of upholstered furniture fires from reference [58].

Material | Experiment | Ignition Location Linear Phase Time to
Mode t, (5) Q. (kw) | 1055 kw
PET/LD 4 Flaming LR 150 10 271
PET/LD 17 Flaming LR 200 25 212
PET/LD 19 Flaming LR 175 25 201
PET/HD 8 Flaming BR 260 30 223
PET/HD 10 Flaming BR 280 30 161
PET/HD 24 Flaming BR 240 25 207
PET/LD 7 Flaming BR 180 25 205
PET/LD 11 Flaming BR 160 10 182
CT/LD 1 Flaming LR 1200 25 312
CT/LD 6 Flaming LR 220 25 285
CT/LD 18 Flaming LR 800 25 190
CT/LD 5 Smoldering LR 6180 10 191
CT/LD 22 Smoldering LR 5790 10 177
CT/HD 16 Smoldering LR 5240 10 177
CT/HD 21 Smoldering LR 6210 10 160
CT/HD 23 Smoldering LR 5180 10 163
CT/LD 12 Smoldering BR 4840 10 174
CT/LD 15 Smoldering BR 10910 20 131
CT/LD 2 Smoldering BR 6125 10 298
CT/LD 9 Smoldering BR 6790 10 228

PET = Polyester fabric, CT = Cotton fabric, LD = Low density foam, HD = High density foam, LR = Living
Room, BR = Bedroom

In this study, both flaming and smoldering fires are modeled with an initial linear growth
incipient fire phase (before vigorous burning) followed by a t-squared growth curve. For
flaming fires, the average of the linear phase duration was 207 s + 46 s*, and the average and
range of the transition HRR was 23 kW £ 7 kW. For smoldering fires, the average and range
of the linear phase duration was 6363 s + 1812 s, and of transition HRR was 11 kW + 3 kW.
After the linear growth phase, the fires grew at a medium t-squared rate, taking 222 s + 47 s

% For consistency with typical uncertainty results reported for fire models, all uncertainty values in this report are expressed as one standard
deviation.
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to reach 1055 kW for flaming fires and taking 189 s + 48 s to reach 1055 kW for smoldering
fires.

For upholstered chairs, Babrauskas [59] compared predictive models of upholstered furniture
fire growth to a range of available experimental data. Peak HRR for the upholstered furniture
ranged roughly from 200 kW to 2500 kW.

The type of distribution was determined by inspection of the data available. For example,
consider the length of time for the linear growing phase for the flaming chair. Figure 10
shows the time of the linear phase for each of the flaming chair tests in Table 2. Most of the
times are in a narrow range from 150 s to 280 s, with only two times outside of the cluster.
Clearly it would not be appropriate to represent this data set with a uniform distribution, and
S0 we use a triangular distribution as seen in Figure 11.

0 200 400 600 800 1000 1200 1400

Linear Growth Time (s)
Figure 10 Distribution of linear growth time for flaming chair
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Figure 11 Triangular distribution for linear growth time for flaming chair

For mattresses, Olhemiller and Gann [15] provide experimental results for flaming ignition
fires of three mattress types (discussed earlier in section 2.1). The M1 type represented
currently available mattresses (termed “Old Matresses” in this report), while M3 and M5
were two different types of mattresses designed to meet reduced HRR standards (combined,
termed “New Mattresses” in this report). The mattress peak HRR values and times to peak
HRR are reported in Table 3. Note that half the experiments were conducted under an open
hood and half were conducted in an enclosure designed to simulate a bedroom.

In many of the tests, there were two peaks. In the table both peaks are included, if applicable,
with the smaller peak in parentheses. For our analysis, only the large peak values were used.

The fuel properties were not varied according to a distribution. We used typical values for
upholstered furniture, consistent with Cleary [58]: heat of combustion 13 000 kJ/kg, soot
yield 0.01 kg/kg fuel for flaming fire, soot yield 0.23 kg/kg fuel for smoldering fires, and CO
yield 0.05 kg/kg fuel. The chemical formula for the fuel was defined as carbon =9,

chlorine = 0, hydrogen = 6, nitrogen = 0.2, and oxygen = 2.
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Table 3 Peak HRR and time to peak HRR for flaming ignition of three mattress types both

under a hood and in a room

Design Size Location Peak HRR (kW/m?) | Time to Peak (s)
M3 Twin Hood 166, (155) ca. 390, (ca. 710)
M3 Twin Hood (165), 187 (ca. 360), ca. 660
M3 King Hood 240 640

M3 King Hood 290 380

M5 Twin Hood (230), 655 (405), 715

M5 Twin Hood (255), 595 (420), 880

M5 King Hood 775, (660) 700, (1240)

M5 King Hood 620 1160

M1 Twin Hood 2275 400

M1 Twin Hood 2310 435

M1 King Hood 3370 370

M1 King Hood 3850 305

M3 Twin Room (140), 150 (490), 680

M3 Twin Room (130), 190 (430), 710

M3 King Room 390 550

M3 King Room 420 525

M5 Twin Room (300), 1670 (600), 915

M5 Twin Room (225), 190 (420), 1140

M5 King Room (880), 955 (445), 970

M5 King Room (700), 815 465, (1165)

M1 Twin Room 3850 365

M1 Twin Room 2995 350

M1 King Room 3465 305

M1 King Room 4620 335

3.4. Monte Carlo Modeling with CFAST

The preceding discussion provides a statistical description of residential fire scenarios. The
hazard of a specific individual scenario may be predicted by the use of an appropriate fire
model. However, a rigorous characterization of the fire hazard faced by a community will
necessarily be statistical. It is therefore necessary to propagate the probability distributions
describing the scenarios through the fire model to obtain a statistical characterization of the
fire hazard. A straightforward approach to achieving this propagation is through use of
Monte Carlo simulation. Monte Carlo simulation is simply the repeated execution of a model
using random samples of stochastic model inputs. In addition to its simplicity, Monte Carlo

simulation has the advantage of converging at a rate of 1/+/N (with N being the number of
model simulations) regardless of the dimensionality of the problem (i.e., the number of
stochastic model inputs).
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The approach described in the following is a specific example of a general approach. The
Monte Carlo approach to characterizing hazard can, in principle, be applied to any set of
statistically described fire scenarios. Furthermore, any fire model can be used to execute the
Monte Carlo simulations. For the purposes of this report, CFAST was chosen as an
appropriate model for use with a Monte Carlo simulation of the fire scenarios described
above.

The process can be decomposed into four distinct parts:

Scenario sampling,

CFAST input file generation,
CFAST execution, and
Post-processing of CFAST outputs.

HPwnhE

The process was implemented as a Python script wrapped around a CFAST executable. First,
the scenario was randomly sampled from the probability distributions described above. A
sampled scenario consists of a complete description of the home layout, fire, and smoke
alarm response characteristics. This sampled scenario is stored as a Python data structure and
input into a function that generates a CFAST input file. The governing script then calls the
external CFAST executable, opens several of the resulting output files and extracts the
information relevant to the hazard associated with the sampled scenario. In a Monte Carlo
simulation, this procedure is repeated many times, and the results are interpreted as a
statistical representation of the fire hazard.

The CFAST simulations can take a varying amount of time depending on the sampled
scenario. In some cases, the sampled fire is simply of longer duration and takes longer to
simulate. In other cases, the system of differential equations underlying CFAST will require
smaller time steps, and therefore a larger number of time steps, to maintain stability. Cases in
which the number of time steps exceeded a critical value were stopped prior to completion to
avoid impractically long simulation times. These cases accounted for around 5 % to 10 % of
the total number of simulations. The impact of these failed cases on the results is discussed in
Section 4.1.

In any case, the procedure described above is easily parallelizable since each Monte Carlo
run is independent of the others. This allowed for a large amount of data to be produced in a
relatively short amount of time.

3.5.  Analysis Variables

Choosing modeling results for analysis depends on the goals of the hazard analysis and the
particular technology under study. In the most general sense, this means understanding what
results are indicative of improved fire safety. This is not a cost benefit analysis, which is a
superset of this analysis and outside the scope of this project. To improve fire safety
generally means reducing the deaths and injuries due to a fire. So, the goal is to identify
which variables, that can be calculated, would give an indication that a new technology, in
our case the new smoke alarm technology, will reduce deaths and injuries.
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To determine if occupants would escape a fire unharmed, we would need to be able to
properly distribute a population in the houses, including understanding the demographics of
the population, their position in the house, and their activity. For example, from the analysis
of fire data in section 2.2.2, the deadliest times for fire is the late night and early morning
(presumably when most people are asleep). Thus, we would need to be able to calculate what
people do in reaction to cues of a fire, e.g., smelling smoke or hearing an alarm. The actions
are quite varied and include fighting the fire [28] and notifying others [29]. Finally, we
would need to determine the impact of the fire’s heat and toxic gases on the occupants as
they react to the fire.

As discussed in section 2.3.3, currently available egress models do not take into account all
the varied activity of occupants in residential fires. However, there are simple surrogate
measures that can act as zeroth order models of occupant behavior to fires. The first is to
determine a reasonable maximum required egress time that is independent of the fire
scenario. In NIST’s fire safety analysis of smoke alarms in homes [60] a value of 90 s was
seen to be a reasonable estimate of the egress time of a young family at night in reaction to
an alarm sounding. While that time was for a manufactured house and a specific two-story
structure, we will use the same value as a base time. To better understand the impact of a
residential egress model and the fact that some groups of occupants will evacuate faster or
slower than others, we will consider some multiples of the base 90 s. In this analysis we will
also consider the ability of occupants to fully evacuate the house in 45s, 90's, 180 s, and
270 s. For an actual analysis, a better understanding of egress time in residences would be
required.

The second behavior that would be good to model is if an occupant successfully fights the
fire, as this eliminates the need to evacuate the house. As was discussed in section 3.3, all the
fire scenarios used in this analysis have a linear growth incipient fire phase. We will assume
that it is much easier to put the fire out if it is discovered before the vigorous burning (t-
squared profile) starts. As a simple model, following the example of egress, we will assume
that if the alarm sounds at least 30 s, 60 s, 120 s, and 180 s before the end of the linear
growth phase, there is a high probability that the fire would be put out. Otherwise there is a
low probability that the fire is extinguished.

To quantify the impact of the fire’s heat and toxic gases on people, 1ISO International
Standard 13571 details calculations of tenability resulting from asphyxiant gases and
convected heat from fires [17]. These calculations are implemented in the CFAST model to
account for the impact of CO, CO2, and HCN with the limitation that the tenability
calculations are made at fixed locations within a room. Still, these calculations can be used as
a benchmark. For example, a successful evacuation can be assumed if tenability conditions in
rooms remote from the fire are less than the critical values up to 90 s after an alarm sounds.
We will track three critical values of fractional effective dose (FED)*: 0.3, 0.5, and 1.0, all
calculated at 1.524 m (5 ft) high.

4 The fractional effective dose (FED) is a measure of the impact of toxic gases and heat on individuals exposed to a fire. It is defined as the
dose of a toxic product acquired during a short period of time, expressed as a fraction of the dose required to cause incapacitation or death
during that time interval. Typical values are 0.3 as an incapacitating dose for sensitive populations, 0.5 as an incapacitation dose for normal
populations, and 1.0 as a lethal dose for normal populations.
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We will also consider another indicator of hazard, smoke optical density, to be consistent
with previous NIST studies [60]. The hazard condition is when any room in the floor plan
has an optical density of 0.25 m™ at 1.524 m (5 ft). This is a conservative limit especially
because it is for any room, not necessarily along any occupant’s egress path. Still, we include
the indicator not only to be consistent with previous studies, but also because egress should
not be considered safe just because it happens that a single occupant does not encounter
through smoke. Rather, it should be the case that there is no chance of crossing through
smoke, and that no room in the house, other than the fire room, has enough smoke to inhibit
egress.

Clearly, these models of occupant behavior and movement are simplistic and have somewhat
arbitrary criteria in trying to account for the actions of occupants during a fire. It is not clear
how much confidence we can have in the analysis or its ability to represent real performance.
Also, it does not necessarily give a complete or accurate understanding of how the new
technology is working. Thus, this report is mainly used as a surrogate pending a better
quantitative understanding of human behavior in residential fires.

For our case study, the question is how the new smoke alarms respond compared to current
ionization and photoelectric alarms. To better understand this, we will look at the difference
in activation times between the alarms as well as the difference in available egress time
between the alarms.

4. Results

A part of understanding the Monte Carlo process is to analyze the results. In the following
sections, examples of data analysis are discussed with the aim of better understanding the
necessary steps of the process.

Key initial questions for the analysis include how many cases could realistically be run and
how many cases are actually needed for a valid analysis. Over the course of approximately
17 days we were able to generate, run and process 57 500 cases. In the following sections we
will discuss the results of those simulations including a discussion of how many runs were
needed for a valid statistical analysis of the data in section 4.2.

4.1. Observations

To obtain 57 500 valid cases, we generated 62 902 cases. 5 402 cases were discarded because
they failed with mathematical error in the model or because the cases took too long to run in
a reasonable time.

To better understand the distribution of cases, a number of histograms of input data are
presented in Figure 12 to Figure 19. Figure 12 shows the distribution of fires that were run.
The fire distributions were designed so that each fire type would be equally possible.
However, from Figure 12, we see that the old mattress type fires are underrepresented and
that the new mattress type fires are a little overrepresented.
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Figure 12 Histogram of percentage for each fire type.

One possibility for the discrepancies is that the simulations for the different fire types did not
all fail at the same rate. Modifying the program to identify specifics of the failed cases, we
ran an additional set of 1000 cases (Figure 13). The old mattress cases failed at a much
higher rate than the other cases. It is likely due to the higher heat release rate of the old
mattress category which provided a more challenging solution for the model. Note that the
second largest percentage of failures is the flaming chair which is the second lowest
percentage of total runs. The new mattresses have the highest percentage of runs and the
lowest percentage of failures. The analysis shown in Figure 13 is consistent with the data in
Figure 12 and seems to explain the discrepancies.

Fire detection time s