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Abstract 

Externally-launched computer worms which maliciously propagate within networks are 
one of the most serious and dangerous security threats facing the commercial, political, 
military, and research communities today. With an eye to the ultimate goal of detection 
and prevention of such worms, the purpose of this paper is twofold: to develop predictive 
models for the number of infected hosts per iteration and the number of iterations to satura-
tion, and to present a systematic methodology (simulator construction + data generation + 
2 sequential ftting steps) for the construction of such models. This methodology will have 
application across a variety of worm-modeling scenarios. These models will have 3 core 
factors known to affect worm propagation : size of the network space, proportion of the 
space with susceptible hosts, and rate at which an infected host scans for other vulnerable 
hosts; three additonal factors will then be added for exceptionally large networks. Further, 
this paper presents a worm propagation sensitivity analysis which provides valuable insight 
into the most important factors (and interactions) affecting worm propagation speed. For 
demonstration purposes (and with no loss of generality), we apply this methodology to a 3-
factor class B (= 216 − 1 IP Addresses) network and derive a high quality predictive model 
(error < 4%). 

Key words 

Computer Network, Network Propagation Models, Propagation Methodology, Sensitivity 
Analysis, Experiment Design, Predictive Models, Worm Modeling. 
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1. Introduction 

Computer worms are one of the most dangerous forms of cyber attack on the internet [1][2]. 
Once a computer worm infects a host, the worm propagates to infect other hosts and the 
infected hosts are collectively being used for (i) Distributed Denial of Service (DDoS) 
attack [3], (ii) Phishing [4], and (iii) Exfltration. In 2001, Code-Red (computer worm) in-
fected 359,000 hosts all across the globe and launched a DDoS attack, causing an estimated 
damage of $2.6 billion [5]. 

The purpose of this paper is twofold: to develop predictive models for the number 
of infected hosts per iteration and the number of iterations to saturation, and to present 
a systematic methodology (simulator construction + data generation + 2 sequential ftting 
steps) for the construction of such models. This methodology will apply to both global 
propagation worms and to local / internal over a relevant IP (Internet Protocol) v4 (Version 
4) address subspace (we use, for example, the IPv4 Class B Address subspace of size Ω = 
216 as shown in Figure 1)[6, 8]. In our paper, we take a data-driven approach consisting of 
6 steps : 

1. Defne a population space over which we want our model to be valid. 
2. Determine factors and range of factors settings that span the population space. 
3. Determine a representative subset of the population that may be sampled. 
4. Construct a generic worm simulator—valid over the population space. 
5. Generate simulator data over a subset of relevant representative conditions in the 

population space. 
6. Carry out a specifc 2-step modeling sequence: local, then global, to create a fnal 

general model valid over the specifed population space. 

Fig. 1. Generalized Network Propagation of Computer Worms (Internal Network IP Address 
216)Space Size = Ω = 

1 
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Over time, there have been several worm propagation models presented in the litera-
ture [1]; though serving as advancements, these models were theoretical in nature, did not 
present ftted model parameter values, nor estimates of model error. The novelty of our 
approach (and how it differs from the literature) is that it is “data-driven”, has elements of 
both formal experiment design and statistical analysis intrinsic to the methodology, does 
present relevant ftted model parameters, and does yield a fully-ftted model with small 
predictive error (< 4%). 

The organization of the paper is as follows: 

1. Introduction: this section discusses the relevance of our work and the paper itself. 
2. Related Work: elaborates on the related worm propagation models in literature and 

the motivation. 
3. Experiment Design: deals with the scope of our experiment, factors and levels and 

the experiment design matrix (8 design points) we have decided for our experiment. 
4. Data Generation / Collection: deals with description of the generic algorithm and 

the generated 8 design points for our experiment. 
5. Data Analysis: deals with the sensitivity analysis and optimization study, local and 

global modeling using the 8 design points data. 
6. Conclusion: concisely discusses the impact and importance of our methodology and 

model. 

2. Scan-Based Models 

The modeling of computer worm propagation can be broadly divided into several types, the 
two most noteworthy being Scan-Based Models, which make use of infection probabilities, 
population subsets and host scanning rates; and Topology-Based Models, which make use 
of and exploits additional network topology information (if known). Our work focuses on 
Scan-Based Models, which have two further components, based on domain-scope [1]: 

1. Homogeneous models in which the contamination is global (e.g., world-wide-web); 
2. Localized models in which the contamination is confned within a subnetwork (e.g., 

NIST). 

A seminal paper on Scan-Based models was Chen[7] in 2007, which presents solutions 
for both the Homogeneous and Localized cases. The Chen Scan-Based Homogeneous 
(internet wide) Model is referred to as the AAWP (Analytical Active Worm Propagation) 
Model. In their paper at any discrete time tick t, the number of hosts is denoted by mt , 
the number of infected hosts is denoted by nt and the number of initial infected hosts is 
denoted by h0 (i.e. at time t = 0, n0=h0). If the Scanning Rate of the worm is s, then the 
AAWP number of infected hosts at a given time tick t is given by � � ��snt1 

nt+1 = nt +(mt − nt) 1− 1− (1)
232 

2 
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If the notions of Death Rate (d) and Patching Rate (P) are introduced, then the AAWP 
number of infected hosts at each time tick t is given by � � ��snt1 

nt+1 = nt +(mt − nt) 1− 1− −(d+ p)nt (2)
232 

Chen’s Scan-Based Localized Model is referred to as the LAAWP (Local AAWP) 
model, and is a special case of Localized Models known as Discrete Time Models. For 
simplicity, the authors omit Death Rate and Patching Rate in this model. For their solution, 
they take into account three probabilities (i) p0–scans a random address, (ii) p1–scans an 
address with the same frst octet and (iii) p2–scans an address with the same frst two octets, 
where ∑2 

i=0 pi = 1. They applied their model to three subnets: 

• subnet 1 (Ω = 28− 1), where the frst octet is fxed; 
• subnet 2 (Ω = 28−1) having same frst octet like subnet 1, but with a smaller hit list; 
• subnet 3 (Ω = 216 − 28), having a larger population. 

For the LAAWP Model, the average number of infected hosts and the average number 
of scans hitting subnet i, are represented by bi and ki respectively, where i = 0,1,2. 

k1 = p2sb1 + p1s[b1 +(28− 1)b2]/28 

+ p0s[b1 +(28− 1)b2 +(216 − 28)b3]/216 

k2 = p2sb1 + p1s[b1 +(28− 1)b2]/28 

+ p0s[b1 +(28− 1)b2 +(216 − 28)b3]/216 

k3 = p2sb3 + p1sb3 

+ p0s[b1 +(28− 1)b2 +(216 − 28)b3]/216 

Using the LAAWP Model, the number of infected hosts bi is derived to be– � � �ki
� 

N 1
bi+1 = bi +( −−bi)ni 1− 1− (3)

216 216 

3. Motivation 

Our model is different than Chen’s model in many ways. Our model provides an alternate 
approach to derive worm propagation equations from synthetic data. We provide a generic 
algorithm that could be used for IP scanning and email scanning. We provide realism 
by experimenting with different seeds in the Pseudo-Random Number Generator (PRNG). 
Idealy, the comparison and ranking of IDS should be accurate for both benign traffc and 
malicious traffc. Chen’s model would allow accurate IDS comparison, but for scanning 
worms only. Our generic algorithm on the contrary could be extended to allow accurate IDS 
comparison for scanning worms, fash worms, email worms, router worms, and botnets. 

3 
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4. Experiment Design 

In this section, we present the experiment design of our paper. We initially discuss the 
scope, which presents the various factors associated with the propagation of computer 
worms in a network. The factors which we have chosen for our experiment illustrated in 
the next section 3.1. Finally, we conclude this section with the Experiment Design Matrix. 

Worm Behavior in the real world depends on many factor, some depending on the host, 
some depending on the environment, and some depending on worm specs itself. Among 
host factors one would include the number of scannable hosts in an enterprise, the number 
of infectible hosts, and the number of initially infected hosts. Environment factos would 
include network topology and death and patching rates. Worm factors would include scan-
ning rates. Following Chen’s lead, our study will focus on 6 of these 7 factors, reserving 
the network topology for the subject of another paper. 

¡In reality, one can come up with several factors which affect worm propagation apart 
from the ones we have taken. We have purposely chosen these factors to illustrate our 
methodology–keeping chen’s model as a reference. Our methodology serves as an im-
provement by not only ecompassing the existing types of worms, but also encompassing 
future worms. 

From these factors we will develop an improved model (and model-building methodol-
ogy) which will have a signifcantly broader and more robust range of applications covert-
ing not just (Chen’s) scanning worms but also router worms, email worms and botnets.¿ 

4.1 Factors 

In [7], Chen et al. have presented a general model on the propagation of computer worms. 
That model includes the following k = 6 factors: 

1. Population Size (Number of Hosts Scannable). 
2. Hit List (Number of Hosts Infectible). 
3. Scanning Rate (Number of probes/sec scannable by an infected host). 
4. Number of Initial Infected Hosts. 
5. Death Rate (Number of infected hosts/second getting “disconnected”/“dead”). 
6. Patching Rate (Number of infected hosts/second getting “recovered”). 

The factors and settings in our experiment have been derived from Chen’s model (see 
column 1 of Table 1). For our convenience, we have chosen to rename Chen’s “Hit List” 
factor as “Susceptible Proportion” (see Factor X2). This represents the proportion of the 
Population Size (IP Address Space) [8] of a network which could be infected by the com-
puter worm. 

From these factors we will develop an improved model (and model-building method-
ologies) which will have a signifcantly broader and more robust range of applications, 
covering not just Chen’s Scanning worms, but also fash email worms, router worms and 
even botnets. 

4 
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4.2 Scope 

Every experiment has a specifed (conceptual) range (That is , “scope”) of factor values 
(population) over which a derived model is deemed valid. To be useful, these factor ranges 
must be based in reality and practice. The population/scope of the 6 factors in our experi-
ment is shown in column 2 of Table 1: 

1. For X1 (Population Size), the population Ω of admissible values is 224 for Class A 
blocks, 216 for Class B blocks, and 28 for Class C blocks. This is in line with practical 
domain sizes encountered in a moderately-sized enterprise (100,000 hosts). 

2. For X2 (Susceptible Proportion), the probability range is (obviously) 0 to 1. 
3. For X3 (Scanning Rate), the chosen range is 10 to 100 probes per second. 
4. For X4 (Number of Initial Infected Hosts), the value ranges from 1 to Np. 
5. For X5 (Death Rate), the “reasonable” population is 0 to 0.001 (e.g. if at a point in 

time, a total of 7000 hosts become infected then 7 hosts would be “disconnected”, 
“dead” or “eliminated without patching” ). 

6. For X6 (Patching Rate), the chosen rate is 0 to 0.0005 (e.g. if at a point in time Np = 
20,000 then 10 hosts would become “recovered” or “invulnerable”). 

Table 1. Scope–Factors and Settings 

Factors Applicable Settings Chosen Settings 

X1–Population Size (N) 

Class A Blocks 
(Ω = 224) 

Class B Blocks 
(Ω = 216) 

Class C Blocks 
(Ω = 28) 

{64000 , 128000 } 

X2–Susceptible Proportion (p) [0 , 1] {0.25 , 0.75} 

X3–Scanning Rate (r) [10 , 100] {10 , 50} 

Number of Initial 
X4–Infected Hosts (n) 

[1 , < Np] { 1 } 

X5–Death Rate (d) [0,0.001] { 0 } 

X6–Patching Rate (P) [0,0.0005] { 0 } 

5 
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4.3 Settings 

Beyond the population and scope of the factor is the additional issue as to what settings 
(levels) the factor should take on during the course of the conducted experiment. Such 
settings are dictated by the total number of runs affordable in the experiment in concert 
with what settings constitute a “representative” subsampling from the larger population. 
For our initial experiment, the chosen settings for the 6 factors are given in columnn 3 of 
Table 1: 

1. For X1 (Population Size), we have chosen 2 settings (N=64000 and N=128000 hosts). 
2. For X2 (Susceptible Proportion), we have chosen 2 rates: p=0.25 and p=0.75. 
3. For X3 (Scanning Rate), the 2 values selected were 10 and 50 probes/second. 
4. For the 3 Factors X4 (Number of Initial Hosts Infected), X5 (Death Rate), and X6 

(Patching Rate), the following single settings were chosen (1, 0, and 0, respectively) 
to refect the fact that all 3 of these factors were fxed in our initial experiment. 

For justifcation of the settings of Factors 3 through 6, see Chen [7]. 

4.4 Initial Modelling 

As a frst pass we have chosen to focus our modeling effort on the propagation of computer 
worms on internal networks, and so the number k) of factors under investigation will sub-
sequently be reduced. In particular, the underlying assumptions in our experiment are that 
once a computer worm penetrates an internal network it is undetectable while it propagates. 
In such case factors X5 (Death Rate) and X6 (Patching Rate) do not apply in our model and 
hence our system reduces from k = 6 to k = 4 factors. These factors will be reincorporated 
later in the manuscript when we generalize our model from internal to world wide. 

Further, we have found factor X4 (the Number of Initial Infected Hosts) to be redundant 
in our experiment design since the expanded model for Y = number of infected hosts: 

Y = g(t,X1,X2,X3,X4) (4) 

will be found to be identical to the more parsimonious model: 

Y = f (t + X4,X1,X2,X3) (5) 

Thus our system under study will initially consist of the iteration factor t plus k = 3 
domain factors. Other factors (known or unknown) could of course come into play by 
potentially having an effect, but the purpose of this paper is to not only derive meaningful 
worm behavior results, but also to demonstrate an underlying model-building methodology 
which would encompass all such factors–however many in number. In this context, we have 
chosen this smaller number (k = 3) of factors at frst pass with the thought that extension 
to a larger number of factors should be evident. 

6 
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4.5 Design Matrix 

From the previous section, we have k=3 (domain-defnition) factors. The appropriate exper-
iment design is dictated by the desired scope on the one hand, and time/cost considerations 
on the other. In light of how a researcher might use our approach in practice and in the 
interest of specifcity, we (arbitarily) set the data generation / collection component of our 
experiment to be 10 observations or less for our initial experiment. 

In order to accommodate estimation of factor effects and interactions, we could thus 
run an ideal default 23 full factorial design. This design has k = number of factors = 3 , 
and n = number of runs = 8. The design is given tabularly (in Table 2) and graphically (in 
Figure 2): 

Table 2. Experiment Design Matrix 

Run # 
Factors in Original Units 

Population Susceptible Scanning 
Size N Proportion p Rate r 

Factors in 
Coded Units 

X1 X2 X3 
1 64000 0.25 10 -1 -1 -1 
2 128000 0.25 10 +1 -1 -1 
3 64000 0.75 10 -1 +1 -1 
4 128000 0.75 10 +1 +1 -1 
5 64000 0.25 50 -1 -1 +1 
6 128000 0.25 50 +1 -1 +1 
7 64000 0.75 50 -1 +1 +1 
8 128000 0.75 50 +1 +1 +1 

Fig. 2. Graphical Representation of Runs 1–8 (Given in Table 2) 

7 
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In Figure 2, we number the 8 vertices 1 to 8 which corresponds to the “Yates” [10] order 
given in Table 2. We emphasize that other designs involving more levels and with more 
replications could have been used, but we chose this design because, though simple, it still 
allows us to apply the full range of analysis operations that will result in a good-ftting fnal 
model. Note also, that though this design has but 3 factors and 2 levels, it will prove to be 
an excellent frst step in providing insight into– 

1. Important Factors: the relative importance of the 3 Factors–X1, X2 and X3 (and their 
interactions). 

2. Optimal Settings: the best (and worst) Settings of those 3 Factors. 
3. Predictive Model: for a given iteration t and for a given (X1, X2, X3), a curve relating 

the number of individual infected-hosts curve as a function of (t,X1,X2,X3). 

5. Data Generation/Collection 

The purpose of this section is to describe the algorithmic components that were incorpo-
rated to generate (for each of the 8 points specifed in the above experiment design matrix) 
the data set by which our analysis approach could be applied in generating the desired fnal 
ftted model.For each (X1,X2,X3), the output from this section will be a time series con-
sisting of the response Y (t) (= number of infected hosts) as a function of iteration t. This 
will continue until saturation is achieved; i.e., until all hosts have become infected. 

5.1 Algorithm: Worm Propagation 

Here we present our algorithm which describes the steps involved in the propagation of 
a computer worm in a generalized network. This algorithm is general in the sense that it 
accommodates not only the above 3 factors (X1 to X3), but also makes provision for the 3 
additional factors: X4: Number of Initial Infected Hosts, X5: Death rate, and X6: Patching 
rate (which we fxed for purposes of demonstrating our approach). 

The output of the algorithm is the list of infected IP address’s at the end of each iteration 
of scanning done by the infected hosts. Table 3 describes the lists, important variables and 
functions used in Algorithm 1. 

Algorithm 1 has 3 loops–one outer while loop and two inner loops. The outer-while 
loop deals with the termination of the algorithm. The inner while-loop creates random 
IP addresses to be scanned (by the infected hosts). The inner nested for-loop deals with 
the identifcation of newly infected hosts by the computer worm. Over time, the number 
of infected hosts i will equal the number of susceptible hosts s and the algorithm will 
terminate. 

8 



______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2035

Table 3. Generator Algorithm–Parameters and Pseudo Code 

Type Name Description 
List IP List of IP Address’s in IP Space. 
List SP List of Susceptible IP Address’s. 

Lists List IIP List of Infected IP Address’s. 
Rand IP List of Random IP Address’s. 

List INF 
List of the Number of Infected Hosts 

(IP Address’s) in each iteration. 
N Number of hosts in a network (X1). 

p 
Proportion of hosts susceptible 

to the computer worm (X2). 
Variables r Scan Rate of the worm (X3). 

n Number of Initial Infected Hosts (X4). 
d Death Rate of the worm (X5). 
P Patching Rate of the worm (X6). 
i Number of newly infected hosts (per iteration). 

Functions Random ( L , n ) 
Function which returns n random 

IP addresses from a list of IP 
Address’s (L) in the form of a List. 

9 
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Algorithm 1 Generalized Network Worm Propagation 
Input: List IP , N , p , r, n, d, P 
Output: List INF 

1: Rand IP ← φ 
2: List INF ← φ 
3: i← n 
4: List SP = Random ( List IP , | (p× N) | ) 
5: while i < | (p× N) | do 
6: k← 0 
7: while k < (i - (d + P) × i) doU 
8: Rand IP { Random ( List IP , p ) }
9: k← k+ 1 

10: for ipi in Random IP do 
11: for ip j in List SP do 
12: if ipi == ip j and ipi 6∈ List IIP thenU 
13: List IIP { ipi}
14: i← i+ 1 U 
15: List INF { i }
16: Rand IP ← φ 

17: return List INF 

10 



______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2035

5.2 Data 

Application of Algorithm 1 to the 8 design points in Table 2 yielded 2 responses (Y (t) 
= cumulative number of infected hosts through iteration t and Y 0 = minimum number of 
iterations-to-saturation) for each iteration (column 5 of Table 4). This was continued until 
full saturation (all hosts in the population become infected). The number of iterations-to-
saturation will of course vary depending on the specifed (X1,X2,X3) settings. Table 4 
below shows the synthetically generated response for the 8 design points. 

Table 4. Response Yield 

Run Id X1 
Pop. Size 

Factors 
X2 

Susc. Prop. 
X3 

Scan. Rate 

Response Y 
(Cumulative number of 
Infected Hosts per iteration) 

Response Y 0 

(Min. number of iterations 
to Saturation) 

1 -1(64K) -1(.25) -1(10) 
1,3,4,44,158,1890,5556,11684,15279,15935, 
15997,16000. 

12 

2 +1(128K) -1(.25) -1(10) 
1,3,10,32,110,375,1306,4264,12107,24240, 
30842,31880,31988,31999,32000. 

15 

3 -1(64K) +1(.75) -1(10) 1,7,64,554,4468,26323,47667,48000. 8 
4 +1(128K) +1(.75) -1(10) 1,6,50,427,3571,26065,86856,95987,96000. 9 
5 -1(64K) -1(.25) +1(50) 1,12,162,2093,13306,16000. 6 
6 +1(128K) -1(.25) +1(50) 1,10,120,1610,15749,31956,32000. 7 
7 -1(64K) +1(.75) +1(50) 1,36,1374,32031,48000. 5 
8 +1(128K) +1(.75) +1(50) 1,36,1353,40084,96000. 5 

Note the frst design run (X1,X2,X3) = (-1,-1,-1) = (64000,0.25,10). The generator 
started at iteration t=0 with 1 host infected, and then took 11 more iterations until saturation 
(= all of the 64000× 0.25 = 16000 hosts being infected). For this frst case, these 1+11 
values are suffcient to carry out the modeling of 

Y (t) = number of infected hosts = f1(t,−1,−1,−1). 

Similarly the second design run (X1,X2,X3) = (+1,-1,-1) = (128000,0.25,10) yields 
1+13 values; this is suffcient to carry out the modelling of 

Y (t) = f2(t,+1,−1,−1), (6) 

and so on for all 8 design points. These 8 functions f1, f2, . . . f8 will thus serve as a basis 
for deriving a universal function 

Y = g(t,X1,X2,X3) (7) 

to encompass all of the domain defnition factor values. 

Figure 3 is a graphical display of the data in Table 2. 
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Fig. 3. Multi-trace plot of the infected number of hosts as a function of the Iteration ID t for each 
of the 8 domain-defnition specifcations in the design matrix. 

In Figure 3, it is seen that 

1. All traces are monotonically increasing (with a sigmoid shape). 
2. Some traces for e.g., 8 is steep and where saturation is achieved quickly. 
3. Other traces for e.g., 1 are more elongated and where saturation takes a much 

longer time. 
4. The number of iterations-to-saturation is modest (between 4 and 14). 

An alternate graphical representation of the generated data is the following (Figure 4) 
cube-plot: 

The left and right cube faces correspond to X1 (Population Size) being small (64k) and 
large (128K) respectively. Note that each of the 8 nodes of the cube shows the cumulative 
number of infected hosts as a function of iteration t. Similarly, the bottom and top faces 
are X2 (Susceptible Proportion: .25 and .75) and the front and back faces are X3 (Scanning 
Rate: 10 and 50). 

12 
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Fig. 4. Cube-trace plot of the infected number of hosts as a function of the Iteration ID t for each 
function of the 8 domain-defnition specifcation in the design matrix 

6. Data Analysis 

6.1 Sensitivity and Optimization Study 

Sensitivity analysis is the process of determining those factors (and interactions) that most 
effect a particular response of interest. This determination is a necessary and insightful frst 
step to achieving the ultimate objective of this manuscript as a whole–to produce a global 
predictive function f : 

Y = f (t,X1,X2,X3) (8) 

where 

Y = Cumulative number of infected hosts, 
t = Iteration ID, 
X1 = Population Size, 
X2 = Susceptible Proportion, and 
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X3 = Scanning Rate. 

Our approach is to frst carry out a classical sensitivity analysis on the k = 3 Factors 
(and interactions) and then incorporate iteration information later. 

This sensitivity analysis is preliminary (but essential) to the actual modeling process. 
Sensitivity analysis provides the information (and insight) as to what factors are most (and 
least) critical. Sensitivity analysis will not translate that importance determination into a 
quantitative weighting–that task is relegated to the formal model-ftting, which is the phase 
2 component in our methodology. 

With respect to which of the k = 3 factors most affect systems responses, we present 
Figures 5, 6 and 7, which embed factor setting information within the plot via character 
and color. The plot characters in Figure 5 are the two Population Sizes (blue = 64K and red 
= 128K); the plot characters in Figure 6 denote the two Susceptible Proportions (blue=25% 
and red=75%); and the plot characters in Figure 7 show the two Scanning Rates (blue=10 
and red=50). 
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Fig. 5. Plot of the Cumulative Number of Infected Hosts versus Iteration ID with Plot Character 
representing X1 = Population Size 

The three plots on the raw data give us as an initial view of the effect of various factors 
on the response. The most striking conclusion from the three plots comes from Figures 6 
and 7. In Figure 7, e.g., it is seen that the preponderance of the response traces on the right 
half of the plot (= the larger iteration half) are blue (= low Scanning Rate of 10) which is 
consistent with the expected behavior that low (= 10) Scanning Rates will take longer to 
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Fig. 6. Plot of the Cumulative Number of Infected Hosts versus Iteration ID with Plot Character 
representing X2 = Susceptible Proportion 
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Fig. 7. Plot of the Cumulative Number of Infected Hosts versus Iteration ID with Plot Character 
representing X3 = Scanning Rate 
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saturate, while high (= 50) Scanning Rates will saturate faster (= shorter iterations); the 
appearance of Figure 7 affrms that X3 (=Scanning Rate) is an important (and, as it turns 
out the most important) of the 3 factors regarding its infuence on Y = cumulative number 
of the infected hosts (and hence also Y 0 = the number of iterations-to-saturation). 

Figure 8 is a cube-plot in which each node shows Y 0 = number of iterations-to-saturation. 
The Y 0 = 12 shown in the lower left corner of the cube indicates that for this (-1,-1,-1) = 
(64K,0.25,10) condition it took 12 iterations to reach saturation (as confrmed in row 1 of 
Table 4). 

Fig. 8. Cube plot for Y 0 = Number of iterations-to-saturation 

It is clear as one precedes from the low Scanning Rate (= front of cube) to the high 
Scanning Rate (back of cube), the iterations-to-saturation decrease in all 4 cases (11 to 5, 
14 to 6, 7 to 4, and 8 to 4), thus 

1. X3 = Scanning Rate is an important factor; 
2. the more severe setting is on the back plane (X3 = 50 = Faster Scanning Rate); 
3. both of the above two conclusions are robustly true over all 4 (X1: Population Size, X2: Sus-

ceptible Proportion) combinations. 

Note also that the biggest Scanning Rate effect (=15-7=8) occurs at the (Population 
Size = + = 128K, Susceptible Proportion = - = 0.25) combination. 

Figure 9 is a main effects plot–the most important tool for ascertaining the relative 
importance of the 3 factors under study: The horizontal axis gives the 3 factors under study 
along with the 2 levels for each factor. The vertical axis is the mean number of iterations-
to-saturation for each of the 2 levels of the 3 factors under study. 
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It is noteworthy that for a given factor, the (simple) vertical distance (=difference) be-
tween the means for the 2 levels on a main effects plot is identical to the least squares 
estimate of the factor effect. Steep lines imply important factors; shallow lines indicate 
less-important factors. The annotation under the plot lines for each factor are estimated 
(least squares factor effect), the relative (to the grand mean) factor effect, and the cumula-
tive distribution function of the ANOVA F distribution for testing factor statistical signif-
cance (values in excess of 95% imply signifcance). 

From the main effects plot, we conclude– 

1. In this case, factor X3 (Scanning Rate) is seen to be the most important factor with an 
estimated effect of 5.25 that is, Y 0 = the number of iterations-to-saturation is reduced 
on the average by 5.25 iterations as X3 proceeds from a front plane Scanning Rate 
value of 10 to a back plane Scanning Rate value of 50. Note that this least square 
estimate of 5.25 for the X3 effect is identical to the average of the 4 local differences: 
12-6 = 6, 15-7 = 8, 8-5 = 3, 9-5=4. Relatively speaking, this average difference of 
5.25 is quite large (compared to the global average of all the 8 values (=7.375)); The 
relative effect is (5.25/7.375) × 100 = 71% as noted on the plot. Finally, this 5.25 
effect size turns out to be statisticaly signifcant (via the usual one-way ANOVA) and 
hence is highlighted in red. 

2. Factor X2 (Susceptible Proportion) is the next most important factor. On the average, 
as X2 proceeds from a bottom plane Susceptible Proportion value of .25 to a top plane 
value of .75, the Y 0 = number of iterations-to-saturation decreases by 3.25 (44%). 
While large, this result is not statistically signifcant. 

3. Finally factor X1 (Population Size) is the least important factor on the average, as 
Y 0 goes from left plane to Population Size of 64K to right plane Population Size 
of 128K, the number of iterations-to-saturation increases by (only) 1.25 iterations 
(17%) and is not statistically signifcant. 

6.2 Local Modeling 

The next step in the modeling process is to create a set of 8 narrow-domain (= fi(t)) func-
tions f1 to f8 (that is, each function fi is valid only for a single (X1,X2,X3) combination 
and thus only for a single vertex in the design-matrix cube). It will be seen that each of 
these 8 functions produces a high-accuracy ft (as a function of t) at its particular design 
point and local environments. 

For guidance as to the particular admissible functional forms for each member of this 
set of 8, we make note the similar shape of all 8 sigmoid curves in Figures 5, 6 and 7, 
namely they are: 

1. Monotonically increasing, with 
2. a well defned lower plateau, and 
3. a well defned upper plateau. 

17 



______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2035
Fig. 9. Main Effects Plot 
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6.2.1 Choice of Local Model 

Mathematically, a large class of functions meet the monotonicity and plateau criteria. The 
most obvious set of admissible functions is the set of probability-theory cumulative dis-
tribution functions (cdf’s). Further, since such cdfs exist for a variety of distributions 
(e.g., uniform, logistic, Cauchy, exponential, lognormal, gamma, Weibull) and distribu-
tional shapes (symmetric and skewed), there is a rich set of possible functions that may 
serve as a good basis for our local modeling problem. 

One particular choice is the classic logistic cdf (cumulative distribution function) L(t) : 

1 
y = L(t, µ̂, σ̂) = (9)t−µ̂

1+ e σ̂

As desired, this function is a dual-plateau, monotonically increasing function; it has 
vertical limits (0,1). 

6.2.2 Local Model Fitting 

In ftting this kernel logistic function to each of the 8 available domain-defnition data sets 
for the response Y (t) = Cumulative number of infected hosts through iteration t (see Table 
4 and Figure 4), it is clear that the location and scale parameters (µ and σ , respectively) 
will vary from case to case, but it will be seen that is of no consequence and will be accom-
modated in a later step. Also, since the classic logistic model ranges vertically from 0 to 
1, but the observed data (see Figure 4) ranges vertically from [0,pN] where N = the factor 
X1( Population Size setting), and p = the factor X2 (Susceptible Proportion setting), then 
the following modifed logistic function was ft for each case of the 8 cases: 

fi(t) = fi (t, µ̂i, σ̂i,X1i,X2i) = fi(t, µ̂i, σ̂i,Ni, pi) 

1 (10)
= 1+(Ni pi− 1) × i = 1,2, . . . ,8.−(t−µ̂i) 

σ̂i1+ e 

where Ni = X1 and pi = X2 are fxed for each run out of the 8. 

This 8 logistic fts are shown in Figure 10. In Figure 10, the circles are the raw data; the 
solid lines are the predicted values from the least square ft of the logistic models. Note the 
uniform excellence of the 8 logistic fts as seen visually from Figure 10 and as quantifed 
(see plot legend) by the small Residual Standard Deviations. The Residual SD is formally 
defned as– s 

∑(deviations o f raw and model − based predicted values)2 
sres = (11)

n− p 

where n = the number of observations (here = 8), and where p = the number of ftted 
parameters per ft (here = 2; µi and σi). 
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Fig. 10. Data and ftted logistic model for Y (t) = Cumulative number of infected hosts for each of 
the eight (X1,X2,X3) cases 
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A perfect ft in which (for all the iterations) the logistic predicted values equaled the 
observed data would yield sres = 0. In all 8 cases, sres is relatively small. For example, sres 
for Case 1 = 172.65 which (when compared to the mean response) yields a relative sres of 
(only) 2.16% via the formula– 

residual standard deviation 
rel(sres) = 100 × (12)

mean response 

In none of the 8 cases does the relative sres exceed 4%. 

Finally, the logistic ft for each case yields its own best ft values for location and scale 
parameters µi and σi. The sres, µi and σi values are all given in the legend within each plot. 
All of the quantitative information for these 8 local fts can be summarized in Table 5. 

Table 5. Logistic Location and Scale estimates for the 8 data sets 

Run Id X1 X2 X3 N p r µ̂i σ̂i ResSD Rel(resSD)% 
1 -1 -1 -1 64000 0.25 10 7.3639 .6225 172.1523 2.15 
2 +1 -1 -1 128000 0.25 10 8.2761 .6279 335.1314 2.09 
3 -1 +1 -1 64000 0.75 10 4.9136 .3528 903.6795 3.77 
4 +1 +1 -1 128000 0.75 10 5.3048 .3142 833.4942 1.74 
5 -1 -1 +1 64000 0.25 50 3.5421 .2863 65.6193 0.82 
6 +1 -1 +1 128000 0.25 50 4.0032 .2749 507.4677 3.17 
7 -1 +1 +1 64000 0.75 50 2.8373 .2332 194.2945 0.81 
8 +1 +1 +1 128000 0.75 50 3.0605 .1825 693.7248 1.45 

The frst column is the design Run Id (1 to 8); columns 2,3 and 4 are the coded factor 
settings (-1 and +1); columns 5,6 and 7 are the uncoded (=original) factor settings; columns 
8 and 9 are the least square estimates for µi(location) and σi(scale) respectively; columns 
10 and 11 are the residual standard deviations and the relative residual standard deviations. 

6.2.3 Local Model Validation 

We note that from Table 5 that the logistic model provides an excellent ft of the response 
Y (= cumulative number of infected hosts at iteration t) for each (and every) one of the 8 
domain-defnition design cases, and for each iteration within each case. Considering that 
the response ranges from (0 to 64000) and (0 to 128000), a residual standard deviation sres 
value less than 1000 would be generally deemed as excellent. In our case, from column 
10 of Table 5, it is seen that of the residual standard deviations sres are all less than 1000. 
Further, the 8 relative residual standard deviation rel(sres) are all seen to be universally 
small–each being less than 4%, and 4 out of 8 cases being less than 2%. We conclude, 
therefore, that each of the 8 localized ftted models–for 8 fxed (Population Size, Suscepti-
ble Proportion, Scanning Rate) combinations–predicts the number of infected hosts with a 
relatively high degree of accuracy. 
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6.3 Global Modeling 

6.3.1 Choice of Global Model 

Global Model for Y (t): Our choice for a global model will be an extension of the choice for 
the local model. Since each of the 8 local data traces are dual-plateau and monotonically 
increasing, and since the logistic model L(t, µ,σ) in (10 and 11) serves as a good ft for 
each with only the location and scale parameter estimates differing from one data-domain 
(X1,X2,X3) condition to the next, then our choice for the global model will be this same 
general logistic model L(t, µ,σ) but with derived sub-models functionally relating µ and 
σ to each of the 3 data domain variables. In short, our global model from (10) for the 
response Y (t) = the cumulative number of infected host is thus: 

Y (t) = f (t,X1,X2,X3) 
= 1+(Np− 1)L(t, µ,σ) 

(13) 
= 1+(X1X2− 1)L(t, µ,σ) 

= 1+(X1X2− 1)L(t, µ(X1,X2,X3),σ(X1,X2,X3)) 

Global Model for Y 0: From this global model for the primary response trace Y (t) = 
f (t,X1,X2,X3)) we could also infer a global model for the second response (Y 0 = number 
of iterations-to-saturation). Such an approach for Y 0 would be both valid and reasonable. 
Alternatively, a simpler global model for Y 0 may be obtained by starting with eight in-
stances of data (12,15,8,9,6,7,5,5–as given in the last column of Table 4 and the 23 cube 
plot of Figure 8) and then using a direct model consisting of 

Y 0(X1,X2,X3) = b0 + 0.5[b1X1 + b2X2 + b3X3 + 

b12X1X2 + b13X1X3 + b23X2X3 + (14) 
b123X1X2X3] 

This fexible 8-parameter empirical model has the important property that it will in fact 
ft any observed 8 (= 23) cube data points exactly, and so a perfect-ft (zero-error) model 
will always result. In particular, it is seen directly from the bottom of Figure 8 that the 
ftted global model for Y 0 = number of iterations-to-saturation is 

Y 0(X1,X2,X3) = 7.5+ 0.5[(1)X1 + (−3.5)X2 + (−5.5)X3 + 

(−0.5)X1X2 + (−0.5)X1X3 + (2)X2X3 + (15) 
(0)X1X2X3] 

This Y 0 perfect-ft model at the 8 data points is an excellent starting point. The ftted 
model reaffrms the relative importance of the X3 (= Scan Rate) Factor (with |effect| = 5.5), 
and the X2 (= Susceptible Proportion) Factor (with |effect| = 3.5), and adds previously-
unknown information about a modest X2X3 (= Susceptible Proportion × Scan Rate) inter-
action (with |effect| = 2). 
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6.3.2 Global Model Fitting 

Global Model for Y(t): For the initial response Y (t) = cumulative number of infected hosts 
(at time t), we are thus left with the task of ftting the global model as presented in equation 
(13). This seeks to synthesize and expand the local models from being not just a function of 
the iteration t, but also a function of the 3 individual factors: Population Size, Susceptible 
Proportion and Scanning Rate. Our proposed methodology is to analytically consider the 8 
location estimates and the 8 scale estimates from the 8 local fts for Y (t) in the same fashion 
that we just considered the 8 iterations-to-saturation data for Y 0, namely, as 8 values on a 
23 cube, and then ft these 8 values via a 23 perfect-ft empirical model. Specifcally, we 
will model the location and scale estimates µ̂ and σ̂ as functions of the domain-defnition 
factors X1,X2 and X3: 

• µ̂ = g1(X1,X2,X3) = g1 (Population Size, Susceptible Proportion, Scanning Rate) 
• σ̂ = g2(X1,X2,X3) = g2 (Population Size, Susceptible Proportion, Scanning Rate) 

and then compute least squares estimates for needed parameters in these 2 models. 

To this end we frst form a 23 factorial design cube representation of µ̂ and σ̂ (= column 
8 and 9 of Table 5) as a function of the three underlying factors. This is shown in Figure 11 
for µ̂: 
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Fig. 11. The least square location estimates µ̂ as a function of the Population Size, Susceptible 
Proportion and Scanning Rate 
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From classic 23 full factorial sensitivity analysis methodology, we carry out least squares 
estimation of factor and interaction effects and form the ranked list of factors affecting the 
values of µ̂: 

Table 6. Ranked list of factors affecting location estimate µ̂

Factor or Interaction Effect Estimate 
X3 -3.10375 
X2 -1.76720 
X23 0.94350 
X1 0.49695 
X12 -0.18970 
X13 -0.15475 
X123 0.07080 

Note the domination by factors X3 (Scanning Rate) and X2 (Susceptible Proportion) 
and the relative unimportance of factor X1 (Population Size). This ranking of X3 followed 
by X2 is not unexpected since it is identical to that seen in Main Effects Plot (Figure 9) for 
the response Y 0 = Number of iterations-to-saturation. 

More importantly, however, our approach again draws on the previously-discussed fact 
that for the modeling of 23 full factorial designs, an empirical additive model exists in-
volving the mean, the 3 main effects, the 3 2-term interactions, and the 1 estimated 3-term 
interaction, and this model has the remarkable quality that it provides an exact ft to any 8 
data points are. Thus (from the bottom of Figure 11) the perfect-ft empirical model for µ̂
= g1 (X1,X2,X3) for the 8 µ̂ values at hand is 

µ̂ = g1(X1,X2,X3) 
= 4.912575 + 0.5[(0.49695)X1 + (−1.7672)X2 + 

(16)
(−3.10375)X3 + (−0.1897)X1X2 + (−0.15475)X1X3 + 

(0.9435)X2X3 + (0.0708)X1X2X3] 

The effect estimates of Table 6 of course carry into the prediction equation itself as 
coeffcients. This ftted model perfectly predicts the 8 nodal µ̂i values with the net effect 
that no error is added to the already-seen (Table 6) small relative errors (less than 4%) for 
each of the 8 local models. 

In a similar fashion, we repeat the above procedure for the 8 σ̂ values presented in 
column 9 of Table 6. The cube plot is shown in Figure 12. Note that the cube plot (happens) 
to yield effect estimates σ̂ (Table 7) with the same ordering as the µ̂ values of Table 6 and 
the Y 0 (= number of iterations-to-saturation) values of Figure 8. The desired prediction 
equation for σ̂ is shown in equation 17. 
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X23  Effect: 0.1095
X123 Effect: 0.0012

Model:   Y  =  0.3618  +  0.5 * (-0.0238*X1  +  -0.1822*X2  +  -0.2351*X3  +
-0.0208*X1*X2  +  -0.0072*X1*X3  +  0.1095*X2*X3  +  0.0012*X1*X2*X3)
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Sensitivity Analysis & Modeling of Synthetic Worm Generators for Enterprise Networks
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2-Factor Model-Based Predicted Value at Center Point = 0.3618

Fig. 12. The least square location estimates σ̂ as a function of the Population Size, Susceptible 
Proportion and Scanning Rate 

σ̂ = g2 (X1,X2,X3) 

= 0.3617875 + 0.5 [(−0.023825)X1 + (−0.182225)X2 + 
(17)

(−0.235125)X3 + (−0.020825)X1X2 + (−0.007225)X1X3 + 

(0.109475)X2X3 + (0.001175)X1X2X3] 

Table 7. Ranked list of factors affecting scale estimate σ̂

Factor or Interaction Effect Estimate 
X3 -0.23513 
X2 -0.18223 
X23 0.10948 
X1 -0.02383 
X12 -0.02083 
X13 -0.00723 
X123 0.00118 
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Synthesizing all in the previous, our fnal general prediction equation relating Y (t) = 
number of infected hosts to (iteration t , Population Size X1, Susceptible Proportion X2, 
Scanning Rate X3) becomes 

1
Y (t) = f (t,X1,X2,X3) = (Np− 1)( )t−µ̂

1+ e σ̂

= (X1X2−−1) L(t, µ̂, σ̂) 

1 (18)
= (X1X2−−1)( )t−µ̂

1+ e σ̂

1 
= (X1X2− 1)( )t−g1(X1,X2,X3) 

g2(X1,X2,X3)1+ e 

where L(t, µ̂, σ̂) is given by (9), µ̂ = g1(X1,X2,X3) is given by (16) and σ̂ = 
g2(X1,X2,X3) is given by (17). 

Since the µ̂ and σ̂ sub-models are perfect-fts and hence add nothing to the error, then 
the total prediction error across the observed iteration values t and the 8 domain defnition 
design points (X1,X2,X3) of this global model is identical to that of Table 5, namely less 
than 4% for all 8 data cases. 

6.3.3 Global Model Validation 

We now address the questions as to how well the models predict at test points other than the 
8 23 cube “training points” utilized in the model construction. There are two test scenarios: 

1. Extrapolatary, in which a test point is chosen outside the 23 training cube conditions; 
2. Interpolatory, in which a test point is chosen within the 23 training cube. 

Extrapolation: Extrapolation in general is always a more challenging test problem and 
has varying degrees of success–depending on the problem and the model. Providing bounds 
on extrapolation error is beyond the scope of the paper (and will not be considered further). 

Interpolation: Contrary to extrapolation, one would expect a model to (at least) do well 
for internal test points. By nature of the ftting process and the model perfect-ft property 
at the nodal points, we would expect test points in the immediate vicinity of the 8 nodal 
points to predict extremely well. In that light, it may be argued that the most challenging 
internal test point is the value maximally far away from all of the 8 cube points, namely the 
center point. In the original, 23 design, the real values X1: (64000 and 128000), X2: (.25 
and .75), and X3: (10 and 50) were coded each as -1 and +1. The center point will thus be 
(X1,X2,X3) = (96000,.50,30) and will be coded as (0,0,0). 

It is good experiment design practice (to assist in testing statistical signifcance) to 
include replication somewhere in the design, and so we shall incorporate them at the center 
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point. To provide tighter critical values, we recommend a minimum of ni = 3 replicates. 
Such replicates were run and values for Y (t) = number of infected hosts at at iteration t 
were generated. The time t was extended for as long as necessary until saturation was 
achieved. Our expanded version of the data in Table 4 thus becomes Table 8 below: 

Table 8. Expanded Design and Data (k = 3 factors, n = 8+ 3 runs) 

Run # X1 
Pop. Size 

Factors 
X2 

Susc. Prop. 
X3 

Scan. Rate 

Response Y 
(Cumulative Number of Infected Hosts 
in each iteration) 

Response Y 0 

(Minimum number of 
iterations-to-saturation) 

1 -1(64K) -1(.25) -1(10) 
1,3,44,158,1890,5556,11684,15279,15935, 
15997,16000 

12 

2 +1(128K) -1(.25) -1(10) 
1,3,10,32,110,375,1306,4264,12107,24240, 
30842,31880,31988,31999,32000. 

15 

3 -1(64K) +1(.75) -1(10) 1,7,64,554,4468,26323,47667,48000 8 
4 +1(128K) +1(.75) -1(10) 1,6,50,427,3571,26065,86856,95987,96000 9 
5 -1(64K) -1(.25) +1(50) 1,12,162,2093,13306,16000 6 
6 +1(128K) -1(.75) +1(50) 1,10,120,1610,15749,31956,32000 7 
7 -1(64K) +1(.25) +1(50) 1,36,1374,32031,48000 5 
8 +1(128K) +1(.25) +1(50) 1,36,1353,40084,96000 5 
9 0(96K) 0(.50) 0(30) 1,16,246,3792,34501,48000 6 
10 0(96K) 0(0.5) 0(30) 1,15,249,3769,34407,48000 6 
11 0(96K) 0(0.5) 0(30) 1,16,235,3678,34004,48000 6 

For cross-validation purposes, for the response Y (t) = number of infected hosts, we 
shall utilize our global equation to generate a predicted value curve at the center point. Sim-
ilarly, for the response Y 0 = number of iterations-to-saturation, we shall utilize our global 
equation (18) to generate a predicted value at the center point. Comparing the predicted 
curve with the triplicated center point data traces (and the predicted iterations number to the 
observed saturation numbers) allows us to qualify the quality of the ft at this high-leverage 
interpolatory test point. 

Case 1: Center-point Prediction for Y (t) = Cumulative Number of Infected Hosts 
Applying the node-based prediction equation at the center point (0,0,0) and making use of 
the fact that µ̂(0,0,0) = 4.91270 is simply the mean value (= 4.91270) in (16), and σ̂ (0,0,0) 
= 0.361787 is the mean value in (17), the center point equation for Y (t) thus simplifes to: 

Y (t) = f (t,X1,X2,X3) = f (t,0,0,0) = 1+(Np− 1)L(t, µ̂, σ̂)( )
1 

= 1+(X1X2− 1) −(t−µ̂)

1+ e σ̂ (19)( )
1 

= 1+ ((96000)(0.5) − 1) −(t−4.91270)
1+ e 0.361787 

To determine the prediction error at the center point, let us examine in detail one of the 
three center-point rows (9, 10 and 11) of Table 9. We shall here use row 9 of Table 8. 
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Figure 13 graphically presents the data for row 9, and Table 9 presents the error 
calculations. 

Fig. 13. Center-Point–Test Data vs. Predicted Values 

Table 9. Global-Model center-point predicted values and residuals for Y (t) 

Iteration 
t 

Test Data 
Y 

Predicted Values 
Ypred 

Residuals 
Y −Ypred 

Relative Residuals 
(in %) 

1 1 1.9646 -0.9646 -96.460 
2 16 16.2984 -0.2984 -1.865 
3 246 242.5504 +3.4496 +1.402 
4 3792 3566.2831 +225.7169 +5.952 
5 34501 26882.0975 +7618.9025 +22.083 
6 48000 45735.1991 +2264.8009 +4.719 
7 48000 47850.6337 +149.3663 +0.311 
8 48000 47990.5571 +9.4429 +0.197 
9 48000 47999.4047 +0.5953 +0.001 
10 48000 47999.9625 +0.0375 +0.000 
11 48000 47999.9976 +0.0024 +0.000 
12 48000 47999.9999 +0.0001 +0.000 
13 48000 48000.0000 0.0000 0.000 

This global model for Y (t) does well for the early iterations: 1.9646 vs. 1 for t = 1 
iteration, 16.2984 vs. 16 for t = 2, and 242.5504 vs. 242 for t = 3. It does poorest in 
transition: 3566.2831 vs. 3792 (= 6.0% error) at t = 4 iterations, 26882.0975 vs. 34501 
(= 22.1% error) at t = 5. The model does well in approaching saturation: 45735.1991 vs. 
48000 (= 4.7% error) at t = 6 iterations, 47850.6337 vs. 48000 (= 0.3% error) at t = 7, and 
error ≤ 0.2% for t ≥ 8, with fnal exact convergence at t = 13. Based on the observed 6 
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iterations-to-saturation, the Y (t) ft as a whole has a relative residual standard deviation of 
9.66%. 

Regarding Y 0, the global model’s predicted number of infected hosts tends to under-
estimate the observed number of infected hosts, and so the model’s predicted number of 
iterations-to-saturation = will necessarily be longer than the observed value of 6 iterations-
to-saturation. In fact the global model yields an exact 48000 (accurate to 4 decimal places) 
number of iterations-to-saturation at 13 iterations, but more realistically 10 iterations suf-
fce (rounded to the closest integer of 48000), and 7 iterations is in practice adequate with 
an error of about 150 hosts relative to 48000 (= 0.3% error). 

In summary although the global model’s Y (t) prediction at the center point is poorer 
(9.66%) than at the 8 nodal points (0.81% to 3.77%), this residual standard deviation error 
rate is still quite good, and the generality and extensibility of the approach is a statistical 
virtue in that it provides accurate predictions of the number of infected hosts across a much 
broader range of worm-infection scenarios. Further, the purpose of the manuscript was 
to introduce and describe a general methodology that addresses and opens modeling that 
would not otherwise be available. Having achieved that, we note that minor modifcations 
of the proposed method can (and will) signifcantly improve the prediction accuracy for 
interpolation. 

In particular, for simplicity we have described the entire methodology using the data 
(= number of infected hosts) in its raw form. To address this interpolation issue of poorer 
center-point prediction accuracy, we point out that one may proftably redo the entire anal-
ysis in transformed units. To be precise (though beyond the scope of this paper) it may be 
shown that repeating the entire analysis in optimaly-transformed units, such as square-roots 
or logs or inverses. will have the desired effect of eliminating the large X2X3 interaction, 
and thus make the response surface planar as opposed to hyperbolic. Such planarity would 
certainly have the net effect of reducing the center-point predictive error of 9.77%, which 
results from the un-transformed raw units analysis. The bottom line is that the observed 
poorer performance is due not to the general methodology being proposed, but due to the 
units in which the data analysis is being carried out. Transformed or not, the methodology 
remains the same. For brevity, we shall illustrate below the benefts of transforming the data 
by making use of the simpler secondary response Y 0 = number of iterations-to-saturation. 

Case 2: Center-point Prediction for Y 0 = Number of iterations-to-saturation As dis-
cussed at the end of section 6.3.1, to assess center point prediction for the derived model: 
Y 0 = number of iterations-to-saturation, a more direct alternate approach may be used than 
relying on the explicit Y (t) = number of infected hosts model. For Y 0, the observed num-
ber of iterations-to-saturation may be recorded as a response unto itself and analyzed unto 
itself. This was done already in Figure 8 and a derived direct, non-logistic, exact-ft, em-
pirical model may be utilized based on classic analysis of 23 factorial experiments. Such a 
model was derived at the end of section 6.3.1 and is given by equation 15. 

Evaluating equation (15) at the center point (0,0,0) causes all terms to vanish and yields 
the center point iterations-to-saturation as simply the mean value, namely, 
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Y 0(X1,X2,X3) = Y 0(0,0,0) = 7.5 (20) 

Hence based on observed number of iterations to saturation in the training set’s 8 nodal 
points, the predicted number of iterations-to-saturation is 7.5. The true value (from the 
rightmost column of the last row of Table 8) is 6. The error of prediction is thus 7.5− 6 = 
1.5 iterations. Though close, this is larger than desirable. 

The cause of the prediction error is readily seen in Figure 14, which is a contour plot of 
the two most important factors X2 and X3. 

Fig. 14. Raw Data Y 0: Contour plot of two most important factors: X3 and X2. Note the 
curvature–thus indicating the existence of an X2X3 interaction term, which in turn yields more 
complicated (and less-precise) center-point predictions 

Note the pronounced curvature of the contour line, which is a manifestation of an X2X3 
interaction. Note also that these contour lines were derived from an analysis of the four cor-
ner points. With such a strong interaction, it is near-impossible to reliably infer the center-
point (or other interpolated nearby values) predictions based on corner-point data/behavior. 

On the other hand, with the corrective action recommended above for the Y (t) global 
model, this 1.5-unit discrepancy may (even with the same general approach) be reduced by 
an appropriate transformation of the data. Though again beyond the scope of this paper, it 
may be shown that for this Y 0 data, a re-execution of the recommended methodology with 
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the transformed data: 
1

T (Y 0) = √ 
Y 0 

(21) 

yields a center point prediction of 6.57, while the transformation. 

1
T (Y 0) = 

Y 
(22) 

yields an even better center point prediction of 6.2 iterations (which rounds to 6 
iterations)–agreeing with the 6 iterations-to-saturation observed in the test data. 

Fig. 15. Transformed Data Y 0 = 1/Y 0: Contour plot of two most important factors: X3 and X2. 
Note the relative lack of curvature–thus indicating a reduction in the effect of the X2X3 cross 
product terms, which in turn yields more stable (and more accurate) center point predictions 

The net effect of the transformation is to remove/reduce the interaction/cross-product 
term in the model. The result is that the response surface becomes linear rather than having 
cross-product-induced curvature. Such linearity typically results in a simpler response sur-
face and more accurate predictions–for both interpolation and extrapolation. To illustrate 
this effect of the transformation, note Figure 15, which is a contour plot of the same two 

1most important factors, but with transformed units T (Y 0) = Y 0 . 
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6.4 Global Models with 4+ factors 

This section deals with the problem of how to make use of the developed three-factor model 
methodology and how to extend that to additional factors. In particular, how can the two 
level cube based methodology be extended to include Table 1’s additional factors X4, X5 
and X6: 

6.4.1 4-Term Global Model for Y (t): Including X4 (Number of Initial Infected Hosts) 

The global model for Y (t) for three factors, as given in equation 15, is 

Y (t) = f (t,X1,X2,X3) = 1+(X1X2–1)L(t, µ̂(X1,X2,X3), σ̂(X1,X2,X3)) (23) 

where µ̂ is given in equation 16 and σ̂ is given in equation 17. 

This model assumes that Y (1) = 1, that is, the number of initial infected hosts is unity. In 
the event that the number of initial infected hosts is not one but rather is a variable X4 unto 
itself, then the range of the response Y (t) will no longer be [1,Np], but rather [X4, Np] = 
[X4, X1X2]. Given that, and given the independent two-stage nature of the methodology’s 
local and then global ftting, then the eight local fts fi(t)= fi(t,X1,X2,X3,X4) will still 
involve the logistic model, but with slightly altered X1,X2,X3,X4. 

In particular, the 8 local logistic fts will now have the form– 

fi(t,X1,X2,X3,X4) = X4+ (X1X2–X4)L(t, µ̂i, σ̂i) (24) 

and the synthesized global ft for Y (t) also has similar form– 

f (t,X1,X2,X3,X4) = X4+ (X1X2–X4)L(t, µ̂(X1,X2,X3), σ̂(X1,X2,X3)) (25) 

where µ̂ and σ̂ are given in equations 16 and 17, respectively. 

6.4.2 6-Term Global Model: Including X4, X5 and X6 (Number of Initial Infected 
Hosts, Death Rate, and Patching Rate) 

The methodology for the six-factor case will be the same as the original three-factor case, 
but will have two sampling options—one involving n = 32 runs, and the other with n = 16 
runs. Either is admissible; pros and cons are discussed, and the fnal choice is dictated by 
the maximum number n of runs affordable based on time and cost constraints. 

This k = 6 factor general worm propagation model may thus be ft in a highly effcient 
fashion: “costing” only n = 16 runs. If affordable, the (k = 6 , n = 32) 25 full factorial 
design is recommended, but if not affordable, the (k = 6 , n = 16) 25−1 orthogonal frac-
tional factorial design is an excellent and highly-affordable alternate recommendation for 
the worm-propagation modeling case. 
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25 Full Factorial Design (k = 5, n = 32): Since X4 may be simply folded into the three 
factor model, then the full six factor generalized model will be folded into a fve factor 
model. The default experiment design for the fve-factor model is a 25 full factorial, and so 
the global model will emanate from the 25 = 32 localized models fi: 

fi(t,X1,X2,X4) = X4+(X1X2–X4)L(t, µi,σi) i = 1,2, ...,32 (26) 

where each localized logistic model L is a function of fve factors: (X1,X2,X3,X5,X6). 
Note how the term X4 appears in a partitioned fashion—up front, but not involved in any 
of the logistic sub-functions. 

For the fve factors (X1,X2,X3,X5,X6), the data for the logistic fts would by default 
come from 25 = 32 number-of-infected-hosts data traces collected over the 32 fxed settings 
from a 25 full factorial experiment design. These 32 logistic fts yield high-precision pre-
dicted values at each iteration t within the 32 localized data traces. Further, these 32 local 
logistic fts would yield 32 (µ̂i , σ̂i) pairs of estimated values for the logistic parameter 
values µi and σi. 

As before, these 32 estimated µ̂i and σ̂i values may themselves be envisioned as nodal 
values on a fve-dimensional hypercube, and hence µ and σ are functionally related to X1, 
X2, X3, X5 and X6: 

µ̂i = µ̂i (X1,X2,X3,X5,X6),and 
(27)

σ̂i = σ̂i (X1,X2,X3,X5,X6) 

Many fve-factor functions may be utilized to model these relationships, but of particu-
lar note is the fve-factor 32-term model consisting of 

1. a constant 
2. 5 main effects, 10 2-term interactions, 10 3-term interactions 
3. 5 4-term interactions, and 1 5-term interaction. 

This model has the property that the resulting least squares ft of the 32 coeffcients of 
the model match perfectly (zero error) the 32 input values µi and σi. The resulting (n = 32) 
global model for Y (t) = number of infected hosts thus becomes 

Y (t) = f (t,X1,X2,X3,X4,X5,X6) 
(28) 

= X4+(X1X2− X4) L(t, µ̂i(X1,X2,X3,X5,X6), σ̂i(X1,X2,X3,X5,X6)) 

This k = 6 factor general worm propagation model may thus be ft in a highly effcient 
fashion: “costing” only n= 32 runs. If this is affordable, then this (k = 6, n= 32) modeling 
procedure is recommended. It has the property that it has high-precision predicted values 
at the 32 nodal points. 
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25−1 Orthogonal Fractional Factorial Design (k = 5, n = 16): If n= 32 runs is too ex-
pensive, then an effcient lower cost alternative is readily available. In particular, an excel-
lent alternative to the 25 full factorial design is a 25−1 orthogonal fractional factorial design 
which still examines k = 5 factors, but requires only n = 25−1 = 16 runs. The canonical 
design matrix is shown in Table 10. 

Table 10. 25−1 Orthogonal Fractional Factorial Design (k = 5 factors, n = 16 runs) 

X1 X2 X3 X4 X5 
-1 -1 -1 -1 +1 
+1 -1 -1 -1 -1 
-1 +1 -1 -1 -1 
+1 +1 -1 -1 +1 
-1 -1 +1 -1 -1 
+1 -1 +1 -1 +1 
-1 +1 +1 -1 +1 
+1 +1 +1 -1 -1 
-1 -1 -1 +1 -1 
+1 -1 -1 +1 +1 
-1 +1 -1 +1 +1 
+1 +1 -1 +1 -1 
-1 -1 +1 +1 +1 
+1 -1 +1 +1 -1 
-1 +1 +1 +1 -1 
+1 +1 +1 +1 +1 

This 16-run design is balanced (even column has half -1 and half +1) and is orthogonal 
(every pair of columns has a quarter (-1,-1), a quarter (-1,+1), a quarter (+1,-1), and a 
quarter(-1,+1)). The design has excellent statistical estimation properties (minimal bias 
and uncertainty for effect and interaction estimates). Note that the selected 16 points are a 
judicious subset of a 32-run 25 full factor design–this 25−1 design will result in 16 sampled 
points and hence 16 unsampled points (from the 32-run full factorial). 

Note that these 16 runs are only eight runs more expensive than the (k = 3, n = 8) 
full factorial design that we originally utilized for the examination of the k = 3 factors X1, 
X2 and X3. Thus for twice the effort (n = 8 to 16 runs), we have developed a modeling 
methodology encompassing twice the number of factors in worm-space: k = 3 to 6 factors. 

In particular, the above 25−1 experiment design will be utilized and so only 25−1 = 16 
localized models fi will be needed. 

fi(t,X1,X2,X4) = X4+(X1X2−−X4) L(t, µ̂i, σ̂i) i = 1,2, . . . ,16. (29) 
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The training data for the logistic fts would come from 16 number-of-infected-hosts data 
traces collected over 16 fxed settings from the specifed 25−1 fractional factorial experi-
ment design. These 16 logistic fts yield high-precision predicted values at each iteration t 
within the 16 localized data traces. The orthogonal design assures that 16 training points 
are selected in a balanced and comprehensive fashion over the 5-space, thus these 16 points 
serve as high leverage data points to compensate for the 16 data points not sampled (rela-
tive to the full (= 32 run) factorial design). These 16 points have enough balance to help 
assure high precision, but also have enough coverage to assure minimal bias. 

In addition to the 16 prediction traces that result, the 16 local logistic fts would yield 
16 (µ̂i, σ̂i) pairs of estimated values for the logistic parameter values µi and σi. As before, 
these estimated µ̂i and σ̂i values may themselves be envisioned as nodal values on a 5-
dimensional hypercube, and hence are functionally related to X1,X2,X3,X5, and X6: 

µ̂ = µ̂(X1,X2,X3,X5,X6),and 
(30)

σ̂ = σ̂(X1,X2,X3,X5,X6) 

To model these µ and σ , functional relationships, the fve-factor 32-term model con-
sisting of 

• a constant + 
• 5 main effects, 10 2-term interactions, 10 3-term interactions + 
• 5 4-term interactions, and 1 5-term interaction, 

is still powerfully relevant, but with 16 values as input, the ftting task of estimating 32 
values (coeffcients) as output seems—on the face of it—impossible. In practice, however, 
the ftting is eminently possible with the imposition of a reasonable assumption namely, 
that all of the dominant causalty is from main effects and two-term interactions, and the 
three-term (and higher) interactions are relatively unimportant (i.e., near zero). It is our 
experience that such an assumption is appropriate in most scientifc and engineering 
applications, with this worm-propagation modeling problem being seen as no different. 

The good news is that regardless of the assumption’s validity, the predicted values that 
result from the µi and σi ftting process will in fact match exactly the ftted data points at 
the 16 data points, and since such points are balanced in coverage across the fve factors, the 
prediction model should yield excellent prediction values at the remaining 16 unsampled 
data points from the 25 hypercube. In the event that some higher-order interactions are in 
truth large, then again the 16 sampled points will still have a perfect-ft, but the predicted 
values at the 16 unsampled points will have higher error (compared to a 32-run 25 full-
factorial sampling plan). 

In summary, this (k = 5, n = 16) design and modeling procedure has the property that 
the least squares ft of the 16 coeffcients of the empirical models are such that the subse-
quent predicted values match perfectly (zero-error) the 16 input values µi and σi. As before 
with the 32-point case, the resulting n = 16-point global model for the Y (t) = number of 
infected hosts response is identical in form, namely, 
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Y (t) = f (t,X1,X2,X3,X4,X5,X6) 
(31) 

= X4+(X1X2–X4)L(t, µ̂(X1,X2,X3,X5,X6), σ̂(X1,X2,X3,X5,X6)) 

This k = 6 factor general worm propagation model may thus be ft in a highly eff-
cient fashion: “costing” only n = 32 runs. If affordable, the (k = 6, n = 32) design is 
recommended, but if not affordable, the (k = 6, n = 16) design is an excellent and highly-
affordable alternate recommendation for the worm-propagation modeling case. 

Refning the Global Model 

As with the k = 3 case, the global model Y (t) be further improved by 

1. Collecting triplicated data at the coded center point (0,0,0,0,0,0) for all 6 factors. 
√ 

2. Transforming the response (i.e., T (Y ) = 1 / Y ) and reanalyzing–with the net affect 
that an interaction term is eliminated, linearity is imposed, and prediction accuracy 
is improved for the center point in particular and for other interpolation points in 
general. 

Single Versus Multiple Replications 

Note that for all three of the two-level experiment-design cases discussed above: the 
23, the 25, and the 25−1, only a single data trace was generated at each of the (8, 16 and 
32) nodal points, respectively. This single sampling was done to simplify the exposition 
of the proposed two-stage (local, then global) modeling methodology. In practice (and if 
affordable), then at each training set nodal point, it is good statistical practice to generate 
multiple (= replicated) infected-hosts traces (at differing seed values) so as to more closely 
mimic random fuctuations existent in reality. In such case, an additional component of 
error will be introduced having to do with induced error due to replication. In our worm-
modeling case, such induced error is relatively small. In short, some replication would 
assist in gaining insight into the magnitude of run-to-run variation intrinsic in our process. 
On the other hand, regardless of the size of replication error, it in no way detracts for the 
utility of the recommended modeling technique described above. If replication is available, 
then all of the individual replicated data values would be used in the individual logistic fts, 
but then an average number of iterations-to-saturation would be computed and used for the 
exact-ftting process of the estimated µi and σi. 

7. Conclusion 

This paper demonstrated an extensible, simulator-based/data-based methodology for de-
veloping a high-precision global model for local-scanning computer worms propagating in 
networks. The methodology involved both experiment design and analysis components. 
Two responses were considered: 
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Y (t) = the number of infected hosts and 
Y 0 = the number of interactions to saturation. 

The model initially included k = 3 factors, which are known to infuence worm 
propagation: 

1. X1: size of the address space (Population Size), 
2. X2: size of the susceptible host sub-population (Susceptible Proportion), and 
3. X3: worm scanning rate (Scanning Rate), 

The initial (k = 3-factor) model construction was done as follows: 

1. Construct a generic algorithm capable of generating simulated worm-infection data 
(Number of Infected Hosts vs Iteration Id) for a given (Population Size, Susceptible 
Proportion, Scanning Rate) combination. 

2. Simulate experimental (training set) infection data for a sampled, small number (in 
our case, 8) of representative (Population Size, Susceptible Proportion, Scanning 
Rate) combinations. 

3. Carry out 8 high-precision fts (based on the logistic model)—one ft for each of the 
8 factor combinations. 

4. Carry out local goodness of ft tests. The 8 ftted local logistic models were all high-
precision, with all residual standard deviations < 4%. 

5. Note the estimated logistic model location µ̂i and the scale parameters σ̂i across the 
8 factor combinations. 

6. Fit a perfect-ft empirical model to these parameters across the three-factor space. 
7. Synthesize the eight local models and the two parametric models into a single high-

precision global model. 
8. Carry out global model training-set goodness-of-ft tests. Since ftting the parameter 

values contributed no additional error, then the global model was seen to ft the Y (t) 
training set with error from 1.5% to 4% over all observed iteration data, and was 
seen to ft the Y 0 = iterations-to-saturation perfectly over the eight data-domain nodal 
points. 

9. Carry out global model test-set interpolatory goodness-of-ft tests. For the raw re-
sponse data, the model prediction was slightly high: 7.5 iterations-to-saturation com-
pared to true value of 6 iterations. An appropriate transformation solved the problem: 
for the transformed (1/Y 0) data, the model predicted 6.2 iterations. 

10. Extend the model to k = 6 factors, via a complete (n = 32) 25 full factorial design or 
a more effcient (n = 16) 25−1 orthogonal fractional factorial design. 

The paper also demonstrated sensitivity analysis as part of the proposed methodology 
discussion to gain insight into the relative importance of the various factors (and interac-
tions). For the simple k = 3 factor case, it was seen that the rank of factor importance 
was 
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1. X3 (Scanning Rate), followed by 
2. X2 (Susceptible Proportion) and the 
3. X3X2 (Scanning Rate)(Susceptible Proportion) interaction. 

with factor X1 (Population Size) seen to be of lesser importance. 
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