
NIST Technical Note 1994 

Calibration of Dynamic Pressure 
in a Tubing System and 

Optimized Design of Tube Configuration: 
A Numerical and Experimental Study 

Matthew Kovarek 
Luke Amatucci 
Keith A. Gillis 

Florian A. Potra 
James Ratino 
Marc Levitan 

DongHun Yeo 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.1994 



 

NIST Technical Note 1994 
 
 
 

Calibration of Dynamic Pressure  
in a Tubing System and  

Optimized Design of Tube Configuration: 
A Numerical and Experimental Study 

 
Matthew Kovarek 

Department of Chemical Engineering 
University of Maryland, Baltimore County, Baltimore, MD 21250 

Luke Amatucci 
Department of Aerospace Engineering 

University of Maryland, College Park, MD 20742 
Keith A. Gillis 

Physical Measurement Laboratory 
National Institute of Standards and Technology, Gaithersburg, MD 20899-8360 

Florian A. Potra 
Information Technology Laboratory 

National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 
James Ratino 
Marc Levitan 

DongHun Yeo 
Engineering Laboratory 

National Institute of Standards and Technology, Gaithersburg, MD 20899-8611 
 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.1994 

 
June 2018 

 
 
 
 
 
 
 
 
 

U.S. Department of Commerce  
Wilbur L. Ross, Jr., Secretary 

 
National Institute of Standards and Technology  

Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology    



Certain commercial entities, equipment, or materials may be identified in this 
 document in order to describe an experimental procedure or concept adequately. 

Such identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that the 
entities, materials, or equipment are necessarily the best available for the purpose. 

National Institute of Standards and Technology Technical Note 1994 
Natl. Inst. Stand. Technol. Tech. Note 1994, 67 pages (June 2018) 

CODEN: NTNOEF 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.1994



 

i 

 

DISCLAIMER 

(1) The policy of the NIST is to use the International System of Units in its technical 
communications. In this document however, works of authors outside NIST are cited which 
describe measurements in certain non-SI units. Thus, it is more practical to include the non-SI unit 
measurements from these references. 

(2) Certain trade names or company products or procedures may be mentioned in the text to specify 
adequately the experimental procedure or equipment used. In no case does such identification 
imply recommendation or endorsement by the National Institute of Standards and Technology, nor 
does it imply that the products or procedures are the best available for the purpose. 
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ABSTRACT 

Accurate prediction of aerodynamic pressures on buildings is a key factor in the estimation of wind 
loads. Analytical and numerical approaches to the estimation of pressures on buildings have 
limited capabilities. The experimental approach faces a challenge: pressures on building models 
cannot be directly measured by pressure sensors. Rather, a tubing system connecting the model to 
the sensor is required. Owing to acoustic and visco-thermal effects associated with the fluid action 
on the system’s thin, circular tubes, the pressure waves propagating inside the tubes cause the 
pressure fluctuations being measured to experience amplitude changes and phases shift that depend 
upon the fluctuations’ frequencies. It is therefore necessary to develop a correction procedure for 
converting the distorted pressure data measured by transducers into pressures that differ 
insignificantly from the actual aerodynamic pressures on the model.   

To address this issue, a review was performed of topics related to the aspects of Navier-Stokes 
equations, thermodynamic effects, wave propagation, and mass and energy conservation as applied 
to sinusoidal air motions in cylindrical tubing systems, and a MATLAB-based program, called 
CalibPress (version 1.0), was developed to calibrate the amplitude change and phase lag in tubing 
configurations used in wind tunnel testing. To validate the requisite amplitude ratio and phase lag 
transfer functions, we employed an experimental method using a function generator, a speaker 
system, and a theoretical method based on the lumped-element transmission line model.  

The parameters accounted for in CalibPress include not only tube dimensions of tube length and 
inner diameters, but also air properties including temperature, atmospheric pressure, and relative 
humidity. The program uses the visco-thermal parameters of air accurately calculated from the 
REFPROP program. The results showed that the atmospheric pressure and temperature can 
influence significantly the pressures measured in a tubing system. 

An optimization design procedure of the tubing system consisting of two tubes and one restrictor 
was developed for minimization of tubing effects on pressure measurements. 

 

Keywords: Calibration; optimization; pressure measurements; transfer functions; tubing system; 
wind tunnel experiment. 
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 INTRODUCTION  

Accurate prediction of aerodynamic pressures on buildings is a key factor in the estimation of 
wind loads. Analytical and numerical approaches to the estimation of pressures on buildings 
have limited capabilities. The experimental approach faces a challenge: pressures on building 
models cannot be directly measured by pressure sensors. Rather, a tubing system connecting 
the model to the sensor is required. Owing to acoustic and visco-thermal effects associated 
with the fluid action on the system’s thin, circular tubes, the pressure waves propagating inside 
the tubes cause the pressure fluctuations being measured to experience amplitude changes and 
phases shift that depend upon the fluctuations’ frequencies. It is therefore necessary to develop 
a correction procedure for converting the distorted pressure data measured by transducers into 
pressures that differ insignificantly from the actual aerodynamic pressures on the model.   

To address this issue, a review was performed of topics related to the aspects of Navier-Stokes 
equations, thermodynamic effects, wave propagation, and mass and energy conservation as 
applied to sinusoidal air motions in cylindrical tubing systems, and a MATLAB-based 
program, called CalibPress (version 1.0) was developed to calibrate the amplitude change and 
phase lag in tubing configurations used in wind tunnel testing. To validate the requisite 
amplitude ratio and phase lag transfer functions, an experimental device was designed and 
built using a function generator and a speaker. In addition, the validation accounted for phase 
changes due to the measuring sequence in a multi-channel pressure scanner.  

The report contains the following chapters: Introduction, Characteristics of pressures 
measured by using tubing systems, Program development, Experimental measurements and 
comparisons, Parameters affecting measured pressures, Optimization of tubing systems, and 
Conclusions.  
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 CHARACTERISTICS OF PRESSURES MEASURED BY TUBING 
SYSTEMS 

2.1 Tubing System 
Due to the shape and placement of models used in wind tunnel experiments, pressure sensors 
cannot typically be directly connected to pressure taps placed on the models. A tubing system 
is required to transmit the pressure waves from the pressure taps to the sensors. The pressures 
measured by the sensors through a tubing system are not equal to the pressures at the taps 
located on the surface of the model. To develop the requisite correction it is necessary to 
model the behavior of the fluid inside the confined tubing system.  

A simple three-dimensional tubing system consisting of three tubes and two volumes is shown 
in Figure 2.1. 

 

 

Figure 2.1. Three-dimensional representation of a system with three tubes and two volumes. 

 

2.2 Effects of Tubing System on Pressure Measurement 

2.2.1 Amplitude distortion 

The amplitudes of pressure waves that propagate within a tubing system experience 
frequency-dependent distortions affected by the lengths and diameters of the tubes, and by air 
properties such as the atmospheric pressure, air temperature, speed of sound, specific heat at 
constant pressures and at constant temperature, and relative humidity. The description of the 
air motion in tubing systems can be obtained from the Navier-Stokes equations, the equation 
of continuity, the equation of state, and the energy conservation equation.   

Tube 3 

Tube  1 

Tube 2 

Volume 1 

Volume 2 
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Figure 2.2 illustrates a hypothetical tubing system with N tubes and N volumes. Pressure pN 
represents the original pressure of interest and p1 is the pressure propagated through circular 
Tube N-1 to Tube 1 with intermediate hypothetical transducers with Volume N-1 to Volume 
1.  

 

Figure 2.2 Representation a tube system of N tubes and N volumes. 

 

For the tubing system shown in Figure 2.2, a recursion formula for the ratio of pressure at j to 
pressure at j-1 (Bergh and Tijdeman 1965) can be described as: 

for j = 1 

1

1 1
1 1 1 1 1 1 1
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    (2.1b) 

where 

Dt,j = the thermal diffusivity in the definition of βj 

Jη (x)  = Bessel function of the first kind of order η 

Pr  = Prandtl number 

      2
, , ,t j t j jV r Lπ=  Volume of tube j with length Lj and diameter rt,j 

𝑉𝑉𝑗𝑗 = Volume of Transducer j 

c  =  Speed of sound 

Volume 1Volume j

Tube j

pN+1 pN pj+1 p1pj pj-1
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 γ = Ratio of specific heat 

 σj = Dimensionless increase in Transducer j due to diaphragm deflection 

0

2

( )
,

( )
j

j
j j

J
c n J

αω γθ
α

=  Reduced frequency of Tube j  

 ρ = Density of air 

 ω = Angular frequency of pressure wave. 

 

One difference between Eqs. 2.1 and its counterpart in Bergh and Tijdeman (1965) used in 
this study is the value of the polytropic parameter (kp). While the earlier study assumed it to 
be a constant equal to the specific heat ratio, in this study the polytropic parameter is assumed 
to be a function on which details are given in Appendix B, with lower and upper bounds equal 
to 1 and to the specific heat ratio (i.e., approximately 1.4), respectively. For details see 
Appendix B. Figure 2.3 shows an example of the polytropic parameter in a simple tubing 
system as a function of frequency. Our study shows that the difference between the pressure 
ratios obtained by assuming the validity of the two assumptions regarding both calculations 
of the polytropic parameter is less than a few percent. Note that the equation of the polytropic 
parameter used in Eqs. 2.1 is identical to Eq. B.16. 

The amplitude ratio of the original pressure pN to the distorted pressure p1 measured by the 
pressure transducer via the tubing system can be calculated as  
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Figure 2.3 Polytropic parameter. 

 

 

2.2.2 Phase lag 

In addition to the amplitude, the phase angle of the pressures is also changed. The phase lag 
between p1 and pN, 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙, can be calculated as 

1 1 1
lag 1 1

1 1

Im( )tan
Re( )

N
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N

p p
p p

φ φ φ − +
+

+

 
= − =  

 
  

 

(2.2) 

where 𝜙𝜙𝑁𝑁 is the phase angle of the original pressure data pN and 𝜙𝜙1 is the phase angle of the 
pressure data p1 measured by the pressure transducer 1 (Figure 2.2). Re(x) and Im(x) are the 
real part and the imaginary part of x, respectively. 

 

 

  

 

 

 

 

Upper bound (adiabatic)

  

 

 

 

 

  

Lower bound (isothermal)

kp 
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2.2.3 Helmholtz Resonance 

The Helmholtz resonance phenomenon consists of the vibration of a volume of gas near the 
open hole of a container filled with that gas. The vibration is due to the spring-like behavior 
of the gas inside the container. The Helmholtz resonance frequency, fH, in a tubing system 
consisting of a single tube and transducer is estimated by the following equation (Elson and 
Soedel 1972) 

 

 𝑓𝑓𝐻𝐻 =
𝑐𝑐

2𝜋𝜋𝐿𝐿𝑡𝑡
1
√𝑅𝑅

  (2.3) 

where 

c  =  Speed of sound [m/s] 

Lt = Length of tube sytem [m] 

       R  =  Vtran/Vtube    (Ratio of transducer volume to tube volume). 

 

The tubing system should be designed so that the Helmholtz frequency is much higher than 
the highest frequency of the pressures to be measured. The resonance frequency will increase 
when the tube diameter increases but its length decreases. This consideration should be taken 
into account when designing the tubing/transducer system or attempting to utilize the 
equations introduced in Sections 2.2.1 and 2.2.2.  

The effects of the Helmholtz resonance on the transfer functions will be more noticeable for 
tubes with larger diameters and smaller volume of transducers. From a preliminary 
investigation on the tubing system used in this study, the Helmholtz resonant phenomenon is 
significantly reduced by inherent damping of tubes with small diameters (i.e., 0.86 mm and 
1.36 mm). 

 
______________________________________________________________________________________________________ 

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.TN

.1994



7 

 

 PROGRAM DEVELOPMENT 

A MATLAB GUI (graphical user interface)-based program called CalibPress (version 1.0), 
was developed for calculations based on the recursion formulas of Eqs. 2.1 to 2.3 and the real 
time visualization of results. The program requires inputting the primary parameters (lengths 
and diameters of the tubes, ambient temperature, and atmospheric pressure). For accurate 
predictions in a wide range of experimental conditions, it is also necessary to obtain physical 
properties of air over a range of temperatures and pressures. The secondary parameters needed 
for the recursion formulas are density, viscosity, thermal conductivity, constant pressure heat 
capacity, constant volume heat capacity, and the speed of sound in air. The program has 
options for determining the secondary parameters by the REFPROP program (Lemmon and 
Huber 2015) or by user input. The relative humidity of real air can be also calculated by the 
REFPROP or the ASTM Wexler method (ASTM 2015) or determined by user input.  

Once all parameters are provided, the program can generate transfer functions for the 
amplitude ratio and phase lag as functions of pressure fluctuating frequency, based on Eq. 2.2 
and Eq. 2.3, respectively, for a tubing system of up to 10 tubes and 10 transducer volumes, by 
executing the “Plot” button shown at the bottom of the program GUI. The transfer functions 
can also be saved in the format which can be read by MATLAB or EXCEL software. A tubing 
system with one restrictor can be designed aiming at minimizing the difference between the 
highest and the lowest value of amplitude ratios. 

This GUI-based program consists of six pages: 1) Program Information, 2) Tube Dimensions, 
3) Physical Parameters, 4) Relative Humidity Calculator, 5) Optimization, and 6) Further 
Information. At each page a general information menu is created to outline the overall 
procedures of the program.  The user can call this drop-down menu, which is located next to 
the save drop-down menu at the top of the program. The program starts by executing 
‘dynamic_pressure.m.’  
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3.1 Program Page One: Program Information 
Once the MATLAB script ‘dynamic_pressure.m’ is executed, Page One appears on the screen 
as seen in Figure 3.1. This provides a general overview of the program including all the 
additional submenus. By changing items in the navigation menu, Page One can be shifted into 
another page mentioned in the following sections.  

 

 

 

Figure 3.1 Screen-shot of GUI for a single tube/volume system. 
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3.2 Program Page Two: Tube Dimensions 
Page Two deals with the input information on tubes for up to a ten tube/volume tubing system. 
The input consists of: i) the lengths and diameters of tubes and ii) the volumes of the 
transducers, as shown in Figure 3.2. The tube connected to a pressure transducer is assigned 
to “Tube Section 1.” The volume of the associated transducer is given to “Transducer 
Volume” in “Tube Section 1.” If only one transducer is used at the end of Tube 1, the volumes 
of the transducers other than Tube 1 should be zero. The dimensions are in mm. 

 

 

 

Figure 3.2 Screen-shot of GUI for input of number and dimensions of tube sections. 
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3.3 Program Page Three: Physical Parameters 
Page Three, as shown in Figure 3.3, contains inputs of i) primary parameters: mean 
atmospheric pressure, ambient temperature, maximum frequency of pressure fluctuations of 
interest and the transducer volume expansion factor (σ in Eqs. 2.1), and ii) secondary 
parameters: thermal diffusivity, density and viscosity of air, isobaric heat capacity (cp), 
isochoric heat capacity (cv), speed of sound, and thermal conductivity. These secondary 
parameters can be calculated from the given primary parameters by REFPROP (Lemmon and 
Huber 2015). Alternatively, when the secondary parameters described above are available 
from experiments or REFPROP is not available, they can be determined by the user input. In 
this case, inputs for mean atmospheric pressure and ambient temperature will be inactivated. 
The transducer volume expansion factor could be assumed to be zero unless it is accurately 
obtained from experiments. Once the primary and secondary parameters are determined, the 
program can calculate the heat capacity ratio, the polytropic parameter, and the Prandtl 
number, which are also needed to calculate transfer functions for the amplitude ratios and 
phase lags of the pressure fluctuations (see Eq. 2.1). The polytropic parameters of the tubes 
are visualized in a graph shown at the bottom left of the page. 

 

 

 

Figure 3.3 Screen-shot of GUI for input of physical parameters. 
  

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1994



11 

 

3.4 Program Page Four: Relative Humidity Calculator 
Page Four considers the relative humidity of air (Figure 3.4), which is calculated by 
REFPROP (Lemmon and Huber 2015) or the ASTM Wexler method (ASTM 2015) if users 
provide wet and dry bulb temperatures, or can be specified by the user input. Regardless of 
whether REFPROP is available, the ASTM Wexler method can calculate the relative humidity 
by the procedure summarized in Appendix A. Note that the button “Retrieve Data” can bring 
the input values of atmospheric pressure and ambient pressure from Page Two. 

  

 

 

 

Figure 3.4 Screen-shot of relative humidity calculator. 
  

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1994



12 

 

3.5 Program Page Five: Optimization 
The program can achieve the design of a tubing system that consists of two tubes (Tubes 1 
and 5 in Fig. 3.5), one restrictor that consists of Tubes 2 to 4, a pressure tap (Tube 6), and a 
pressure hole in the model wall (Tube 7). Tube 1 is a tube connecting a transducer (i.e., a 
pressure scanner) to one end of the restrictor, and Tube 5 is a tube connecting the pressure tap 
to the other end of the restrictor. Once a user specifies (1) the diameters of Tubes 1 and 5, (2) 
the diameters and the lengths of Tubes 2, 4, 6, and 7, (3) the lower and upper bounds of 
varying parameters (i.e., the lengths of Tubes 1 and 5 and their total length, and the diameter 
and length of Tube 3), the program calculates the optimized values of the varying parameters 
for minimizing the objective function (Eq. 6.1), written in red, by executing “Optimize” 
button (see Fig. 3.6). The details of the optimization procedure are summarized in Section 
6.1. The selected tubing configuration can be transferred to Page Dimensions by clicking 
“Send to Tube Dimensions.” Note that the all environmental information for the calculation 
of the transfer functions (shown in Pages “Physical Parameters” and “Relative Humidity 
Calculator”) should be specified in advance for optimizing the tubing system.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Configuration of a tubing system for optimization procedure. 
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Figure 3.6 Screen-shot of optimization. 
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 EXPERIMENTAL MEASUREMENTS AND COMPARISONS 

For the validation of the theoretical results, two tubes of different lengths were tested to 
measure the effects of the tubing system on the amplification or attenuation of pressure 
amplitudes and the shift of phase angle. Pressure time history data were generated across a 
wide range of pressure fluctuation frequencies by a wave generator. Based on the measured 
data, transfer functions for amplitude ratio and phase lag were created to calibrate the pressure 
data received from the pressure transducer through a tubing system.   

4.1 Experimental Setup 
An experimental device was developed for measurements of fluctuating pressures through 
tubing systems. As shown Figures 4.1 and 4.2, the device consists of (1) a wave function 
generator, (2) a wooden box including an air-tight room covered by a subwoofer speaker and 
a 30-mm thick acrylic plate, (3) six pressure taps through which air pressure can be transferred 
to tubing systems, (4) urethane tubes with inner diameters 0.86 mm and 1.37 mm, and (5) a 
pressure measurement system composed of a DSM4000 data-acquisition module and two 
ZOC33 miniature pressure scanners manufactured by Scanivalve. The pressure data were 
recorded on the hard drive using LabVIEW software by communicating with DSM4000 
through an Ethernet connection.  

The procedures for generating and measuring a sinusoidal pressure fluctuation with a specific 
frequency are as follows. A wave function generator sends a sinusoidal signal with a chosen 
frequency to a subwoofer attached to a wooden box. The speaker converts the sinusoidal 
electric signal with the specified frequency to a sinusoidal air pressure wave with the same 
frequency within the confined space consisting of the speaker and the acrylic plate. The 
pressure fluctuations are transferred to pressure taps connected to a tubing system. The air 
pressure signals on pressure taps connected to the one end of the tubing system are measured 
by the pressure measurement system connected to the system’s other end. When fluctuating 
pressures are transferred through the tubing system, the amplitudes and phase angles of the 
pressure signals are distorted while the fluctuating frequency is unchanged. Thus, a calibration 
procedure for dynamic pressures measured via a tubing system is required, as shown in the 
following section. 
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Figure 4.1. An experimental device for fluctuating pressure generation. 

 

 

 

Figure 4.2. Experimental setup for data generation. 
  

           ZOC33 module 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1994



16 

 

4.2 Calibration Procedure 
It was noted earlier that, as a pressure transducer cannot be directly attached to a pressure tap, 
a tubing system is employed for pressure measurement. As a result, the measured pressure 
data are distorted by a tubing system consisting of at least one tube. Depending upon the 
frequencies of the pressure signals, the amplitude and phase angles of the signals can be 
significantly changed.  To address this problem, transfer functions for amplitude ratio and 
phase lag as functions of frequency are developed by using two different tubing systems. One 
system has a tube of very short length (e.g., usually less than 10 mm to 20 mm) for reference 
pressure signals. The other system consists of at least one long tube that will be used for 
experiments. For a given range of frequencies of interest, sinusoidal pressure signals 
corresponding to each frequency in increments of, say, 2 Hz are measured through the two 
tubing systems. At each frequency, amplitudes and phase angles of the measured pressure 
signals are calculated using the FFT (Fast Fourier Transform) algorithm in which the signals 
in the time domain, p, are converted to signals in the frequency domain, P(nk), corresponding 
to the kth frequency, as shown below (Mathworks 2016). 

 
𝑃𝑃(𝑘𝑘) = �𝑝𝑝(𝑗𝑗)𝑊𝑊𝑁𝑁

(𝑗𝑗−1)(𝑘𝑘−1)
𝑁𝑁

𝑗𝑗=1

 (4.1) 

where 

𝑁𝑁 = Number of samples 

𝑊𝑊𝑁𝑁 = 𝑒𝑒(−2𝜋𝜋𝜋𝜋)/𝑁𝑁 = Complex 𝑁𝑁th root of unity. 
 

The single-sided amplitude and phase angle at the k-th frequency, 𝑛𝑛𝑘𝑘, are then computed using 
the equations shown below: 

 
𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑘𝑘) =

2
𝐿𝐿
∗ |𝑃𝑃(𝑛𝑛𝑘𝑘)| 

(4.2) 

 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑘𝑘) = tan−1(𝑃𝑃(𝑛𝑛𝑘𝑘)) (4.3) 

where 𝐿𝐿 = length of signal. 

 

The amplitude ratio of the two measured presure signals is then computed by dividing the 
amplitude of the long tube data for experiemntal use by the short reference tube data (Eq. 4.4).   

 
𝐴𝐴(𝑛𝑛𝑘𝑘) =

𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑘𝑘)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑘𝑘)𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
  (4.4) 
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The phase lag from the long tube to the short tube can be calculated as the difference between 
the phase angles of the long tube and the short tube. If pressures are measured through 
multiple channels, additional phase lag can be generated by the method used to  record 
pressures in the multi-channel transducer. In the system used in this study, pressures in 64 
channels are recorded from the 1st channel to the 64th channel in order, which generates phase 
differences if the pressures in all channels are simultaneously taken into account. Equation 
4.5 describes the phase lag due to the tubing system and the multi-channel measurement.  

 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛𝑘𝑘) = 𝜙𝜙(𝑛𝑛𝑘𝑘)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜙𝜙(𝑛𝑛𝑘𝑘)𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − ∆𝜙𝜙(𝑛𝑛𝑘𝑘)𝑐𝑐ℎ  
  (4.5) 

where ∆𝜙𝜙(𝑛𝑛𝑘𝑘)𝑐𝑐ℎ = (2π ∆ch nk)/(64 ns); ∆𝑐𝑐ℎ  is the difference between the number of the 
channel of interest and the number of the reference channel chosen from the total of 64 
channels, ns is the sampling frequency for pressure measurement. Based on the phase lags and 
the amplitude ratios over a chosen frequency range, two transfer functions can be generated 
for correcting signals. 

 

4.3 Signal Correction Procedure 
Let an experiment for pressure measurement be conducted by using the long tube. Because 
the measured pressure data are distorted by the tubing system, they need to be corrected by 
using the transfer functions obtained in the previous section. The first step for the signal 
correction procedure is to convert the pressure data from the time domain to the frequency 
domain. The measured pressure data in the frequency domain have a wide range of frequency 
components with distorted amplitudes and phase angles. Through the transfer functions, the 
amplitudes and phase angles can be corrected with respect to frequency. The requisite time-
domain pressure data from which the tubing effects have been largely eliminated can be 
obtained by applying the discrete IFFT (Inverse Fast Fourier Transform) algorithm to the 
corrected amplitudes and phase angles (Mathworks 2016): 

 𝑝𝑝(𝑗𝑗) = �
1
𝑁𝑁
��𝑃𝑃(𝑛𝑛𝑘𝑘)𝑊𝑊𝑁𝑁

−(𝑗𝑗−1)(𝑘𝑘−1).
𝑁𝑁

𝑘𝑘=1

 (4.6) 
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4.4 Case Study 
A case study was considered wherein transfer functions obtained by the program developed 
in this study were validated experimentally. As described in Table 4.1, two types of tubing 
system were employed. The first system consisted of two long tubes with different diameters, 
connected by an adaptor (total length 350 mm, including the adaptor). The second system 
consisted of two short tubes, also connected by an adaptor (total length 70 mm, including the 
adaptor).  

 

Table 4.1. Tubing configuration used for case study 

  Pressure 
tap Tube Adaptor Tube 

Long 
Tube 

Length [mm] 33 144 15 15 145.5 

Inner Diameter 
[mm] 0.889 1.37 0.991 0.635 0.86 

Reference 
Tube 

Length [mm] 33 2 15 15 3.5 
Inner Diameter 

[mm] 0.889 1.37 0.991 0.635 0.86 

 

The tests were carried out over a frequency range of 30 Hz to 300Hz, determined by the 
frequency range of the speaker (27 Hz to 500 Hz) used in the experimental device, and the 
maximum sampling frequency (625 Hz) for pressure recording using the pressure 
measurement system. For data collection we started with the generated frequency at 30 Hz 
and increased the frequency by 2 Hz after each scan until we reached 300 Hz. We ran the 
pressure scanner at a sampling rate of 625 Hz and therefore kept the frequencies below the 
Nyquist frequency of 317.5 Hz (i.e., 625 Hz/2). The duration of each scan of the transducer 
was 30 s, and the time interval between consecutive scans was 30 s to allow stabilization of 
the pressure fluctuations with the changed frequency. 

The collected data was then analyzed using the FFT to develop experimental transfer 
functions for the amplitude ratio and the phase lag. Theoretical transfer functions of the long 
tube and the reference tube were calculated using the program. To compare with the 
experimental transfer functions, the numerical transfer functions from two tubing systems 
were converted to one set of transfer functions for amplitude ratio and phase lag by dividing 
the amplitude ratio transfer functions for the long tube by its counterpart for the reference 
tube, and by subtracting the phase lag of the reference tube from the phase lag of the long 
tube, respectively. This set of transfer functions is equivalent to the transfer functions yielded 
by the experiment. The comparison between the theoretical and the experimental data  is then 
performed as shown in the following section. 
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4.5 Comparison of Theoretical and Experimental Data 
Figure 4.3 shows that the differences between the experimental and numerical transfer 
functions are small. Note that the experiment data in the figure are the average values in three 
trials. 

 

Figure 4.3. Experimental comparison to theoretical prediction for the behavior in the tubing systems.  

 

Figure 4.4 shows errors between experimental and numerical data. The upper plot presents 
relative errors of amplitude ratios obtained in experimental and numerical approaches. The 
error bar at each frequency indicates the standard deviation of three experimental results 
above and below their average. As shown in the plot, the errors within the frequency range of 
interest are less than ± 3%. The lower plot uses absolute errors of phase lag between both 
approaches, since the differences of phase angle in trigonometric functions play an important 
role. The errors are less than approximately 6 degrees while they decrease at low frequencies. 
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Figure 4.4. Errors in amplitude ratios (top) and phase lags (bottom) between numerical and 
experimental approach. 

 

4.6 Comparison of Data from Two Theoretical Models 
For validation of the theoretical model used in this study, a lumped-element transmission line 
model is employed. The model is based on acoustic propagation in tubes. For details see 
Appendix B. The study assumes 20℃ dry air of nitrogen in a 1 m long tube whose diameter 
is 0.86 mm under atmospheric pressure of 101325 Pa. 

Figure 4.5 shows relative errors of amplitude ratios and absolute errors of phase lags from 
two theoretical models used in the study and described in Appendix, respectively. The plots 
show at most approximately 1% relative error in amplitude ratios and 0.4 degree absolute 
error in phase lag, which confirms again that the program developed in this study can 
provide an accurate calibration procedure for fluctuating pressure measured via a tubing 
system. 
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Figure 4.5. Errors in amplitude ratios (top) and phase lags (bottom) between two theoretical models 
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 PARAMETERS AFFECTING MEASURED PRESSURES 

5.1 Effects of Tube Lengths 
Effects of tube lengths on transfer functions were examined in a simple system of one tube 
and one volume of 14.093 mm3, as shown in Figure 5.1. 

 

Figure 5.1. Tube system of one tube and one volume 

 

Figure 5.2 shows the effects of varying the length of a tube from 0.1 m to 1.1 m. As expected, 
the shortest tube length gives the best performance with amplification increasing up to 1.4 at 
300 Hz. The tube lengths up to 0.3 m result in an increase of the maximum amplitude ratio at 
higher frequencies. The tube lengths of 0.5 m and longer tend to reduce the maximum value 
and to attenuate the amplitudes. All variables other than the length were kept constant. These 
variables are listed in Table 5.1. 
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Figure 5.2. Effect of the variation of tube length 

 

 

Table 5.1. Properties of tube system seen in Figure 5.2 

   
Tube Diameter 0.86 mm 
Temperature 20 ℃ 

Pressure 101325 Pa 
Relative Humidity 0 % 
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5.2 Effect of Tube Diameters 
The effect of the variation of the tube diameter was explored for the case where the tube length 
was 0.5 m. The diameter was varied from 0.1 mm to 1.1 mm. Figure 5.3 illustrates the effect 
of these variations. Smaller diameter tubes cause excessive amplitude attenuation, while large 
diameter tubes cause signal amplification. The constant variables for this test are shown in 
Table 5.2.  

 

 

Figure 5.3. Effect of variation of tube diameter. So which diameter would one choose? 

 

Table 5.2. Properties of tube system seen in Figure 5.3 

   
Tube Length 500 mm 
Temperature 20 ℃ 

Pressure 101325 Pa 
Relative Humidity 0 % 
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5.3 Effects of Temperature, Atmospheric Pressures, and Humidity 
The effects of temperature and pressure variation were also examined. The variation of these 
properties will affect the secondary variables that are calculated through the use of the 
Equation of State. First, the effects of temperature were considered. The temperature was 
varied form 15 ˚C to 40 ˚C. The effects are shown in Figure 5.4. The trend for these variations 
show that lower temperatures yield augmented amplitude responses. These tests were 
performed with the constant variables shown in Table 5.3. 

 

   

Figure 5.4. Effects of the variation of temperature. 

 

Table 5.3. Properties of tube system seen in Figure 5.4 

   
Tube Length 500 mm 

Tube Diameter 0.86 mm 
Pressure 101325 Pa 

Relative Humidity 0 % 
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Figure 5.5 shows the effects of atmospheric pressure on the transfer functions.  It is seen that 
higher atmospheric pressures increase the amplitudes more strongly than lower pressures do. 
The properties of the tube system used in this case are summarized in Table 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Effects of atmospheric pressure. 

 

Table 5.4. Properties of tube system seen in Figure 5.5 

   
Tube Length 500 mm 

Tube Diameter 0.86 mm 
Temperature 20 ℃ 

Relative Humidity 0 % 
 

Effects of relative humidity were also investigated. The results show that the effects of 
relative humidity are less than 1 % between relative humidity of 0 % and 50 %, in the case 
of the simple system with 500 mm length and 0.86 mm. The temperature and pressures used 
in the study were 20 °C and 101325 Pa. 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1994



27 

 

 OPTIMIZATION OF TUBING SYSTEMS 

6.1 Minimization of Tubing Effects on Pressure Measurements  
Once the numerical approach was approved for its performance after validation with the 
experimental results, a tubing system can be designed by the program to obtain a better 
transfer function. It is widely known that a restrictor significantly reduces the tubing effects. 
Thus we investigated the configuration of a tubing system including a restrictor to minimize 
the acoustic and visco-thermal effects of the fluid media, as well as the effects of the boundary 
layer and the tubing material structure and dimensions. An extensive work on the optimization 
was performed by Holmes and Lewis (1987a; 1987b). From the work of Irwin et al. (1979), 
it was found that for tubing systems of up to two feet in length, which showed small phase 
distortion, pressure regulation remained well managed by the use of a restrictor. As the tubing 
system in this situation was much less than two feet, it was decided to make use of a restrictor. 
From comparisons with experiment it was found that the recursion formula (Eq. 2.3) predicted 
very accurately the behavior of the fluid inside the confines of a tubing system. However, due 
to the uniqueness of each situation, no simple solution existed for the use of the requisite 
restrictor. With this limitation in mind, it was decided to modify the program to allow for the 
optimization of the dimensions of the tubing system. In this study a MATLAB optimization 
function, fmincon, was used. This function allows for minimization of constrained functions 
using selected algorithms. To obtain the optimized configuration for minimization of tube 
effects on the transfer functions, the objective function was set as shown in Eq. 6.1. This 
function uses the pressure amplitude ratio data from each iteration of the program and 
performs a search to identify the maximum and minimum values. The absolute value of the 
difference was used as the objective. The constraints were imposed upon the tubing system 
were related to the model construction, the available tubes, and the pressure transducer itself.   

 The following objective function fOBJ is employed in this study: 

 max
2

0

min ( ) ( 1)
n

OBJ pf W n R dn
 

= − 
  

∫  (6.1) 

 

where 

Rp = Amplitude ratio of pressure data as a function of frequency (defined in Eq. 2.1) 

W(n) = Weight function as a function of frequency. 

 

The weight function has two options: unity or hyperbolic tangential function values between 
0 and 1, over the frequency range: 
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 (6.2) 

While the former function has the same weight over the frequency range, the latter enables to 
provide more weight in a low frequency range than in a higher frequency range by controlling 
the threshold frequency, nc whose weight value is, for example, 0.5 as shown in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Weight function with threshold frequency of 150 Hz. 
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6.2 Model Size and Configuration Limitations 
The limitations of the wind tunnel model need to be considered in order to determine the 
dimensions of the tube system, fittings, and transducer for a single pressure tap. Figure 6.2 
shows the geometry of the rectangular cylinder model to be used in wind tunnel testing.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Cross-section of a square cylinder model  
(the circles shows the positions of pressure taps). 

 

The tap placement on the four faces of the cylinder is summarized in Table 6.1. 

Table 6.1. Outer cylinder tap information 

Windward wall 9/row x 10 rows = 90 
Upper Wall 10/row x 10 rows = 100 

Leeward Wall 9/row x 10 rows = 90 
Lower Wall 10/row x 10 rows = 100 
Sum of Taps 380 

 

Figure 6.3 illustrates the placement of the pressure transducer array and other interior features 
of the model. 
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Brass tube 
(Length = 13 mm, O.D. = 1.5875 mm (0.0625 in), 
I.D.= 8.899 mm (0.035 in))

Hole diameter = 0.7874 mm (0.031 in)

Plexiglass (6 mm ~ 9 mm thickness)

13 mm

2 mm

Outside of the model

Inside of the model

4 mm ~ 7 mm

 

Figure 6.3 Upper cross-section of model. 

 

Figure 6.4 shows details of pressure taps installed on the plexiglass wall of the model. To 
keep the tap length constant (i.e., 13 mm), the embedded lengths of the tap in the plexiglass 
walls vary depending on the thickness of the wall. Holes from the outside wall surface to the 
pressure taps are 2 mm in length and 0.787 mm in diameter. Aerodynamic pressures propagate 
through the hole and the pressure tap and subsequently to a pressure sensor of the pressure 
scanner. 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 A section of the model wall showing a pressure tap. 
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Due to the different diameters of the pressure tap on the model and the sensor tap of the 
pressure scanner, the minimum number of tube sections is three, counting a fitting tube (i.e., 
a reducer or an adaptor) from the pressure tap to the pressure transducer. Thus, the unknown 
values in the tubing system are the lengths of Tubes 1 and 2, as shown in Table 6.2. It was 
assumed that tests would be performed for the possible range of temperature in a wind tunnel 
facility (i.e., 15˚C to 28˚C) and atmosphere pressure of 101325 Pa with a relative humidity of 
40%.   

 

Table 6.2. Constants and unknown values of tubing system of six components 

Variable Measured Dimension Value Unit 
Transducer Volume 14.093 mm3 

Tube 1 
Interior Diameter 0.86 mm 

Length unknown mm 

Fitting-Tube 1 side 
Interior Diameter 0.635 mm 

Length 15.0 mm 

Fitting-Tube 2 side 
Diameter 0.9906 mm 
Length 15.0 mm 

Tube 2 
Diameter 1.37 mm 
Length unknown mm 

Tap Adapter 
Diameter 0.889 mm 
Length 13.0 mm 

Tap 
Diameter 0.7874 mm 
Length 2.0 mm 

 

The optimization calculations resulted in the following: 200 mm long Tube 1 and 100 mm 
long Tube 2 for the best performance of the tubing system 2 (Table 6.3). As shown in Figure 
6.4, the optimized objective function yielded a value of 1.6804. 

 

Table 6.3. Optimized values of tube lengths 

Variable Measured Dimension Value Units 
Tube 1 Length 200 mm 
Tube 2 Length 100 mm 

. 
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Figure 6.5 Plot of amplitude ratio and phase lag for the simple tubing configuration. 

 

For better performance of transfer functions in a tubing system, it was suggested that a 
restrictor be installed in the middle of the reducer. This restrictor fitting was expected to 
attenuate the amplitude change and yield a value of amplitude ratio that is consistently close 
to unity. The configuration of this tubing system is described in Table 6.4. In addition to 
unknown lengths of Tubes 1 and 2, the inner diameter and the length of the restrictor need to 
be determined in this optimization problem. The optimized values for the unknowns are 
shown in Table 6.5. As shown in Figure 6.6, the performance of transfer functions is 
significantly improved in comparison with the performance of the earlier simple tubing 
system. The optimized objective value for this tubing system was smaller by two orders of 
magnitude than for the system without a restrictor. The value of the amplitude ratio can be 
seen to be close to unity and the phase angle is linear throughout the progression of the signal.   
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Table 6.4. Constants and unknown values of tubing system of seven components 

Variable Measured 
Dimension Value Units 

Transducer Volume 14.093 mm3 

Tube 1 
(URTH-040) 

Interior Diameter 0.864 mm 
Length unknown mm 

Fitting-Tube 1 side 
Interior Diameter 0.762 mm 

Length 14.0 mm 

Fitting-Restrictor 
Interior Diameter unknown mm 

Length unknown mm 

Fitting-Tube 2 side 
Diameter 0.9906 mm 
Length 14.2 mm 

Tube 2 
(URTH-063) 

Diameter 1.372 mm 
Length unknown mm 

Tap Adapter 
Diameter 0.889 mm 
Length 13.0 mm 

Tap 
Diameter 0.7874 mm 
Length 2.0 mm 

 

 

Table 6.5.Optimized values of tube lengths and diameter 

Variable Measured Dimension Value Units 
Tube 1 

(URTH-040) Length 176.7 mm 

Fitting-Restrictor 
Interior Diameter 0.2233 mm 

Length 2.9 mm 
Tube 2 

(URTH-063) Length 141.5 mm 
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Figure 6.6 Plot of amplitude ratio and phase lag for the tubing configuration with a restrictor. 
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The performance of the tubing system with a restrictor was investigated for the possible range 
of temperature in a wind tunnel facility (i.e., 15˚C to 28˚C). As shown in Figure 6.7, the 
change in transfer functions is negligible over this temperature range.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 6.7 Plot over a range of temperatures from 15 ˚C to 28˚C with mean value restrictor data. 
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6.3 Experiments of Performance in the Designed Tubing System with a 
Restrictor 
Figure 6.8 shows a restrictor built for experiments, based on the design of the optimized tubing 
system mentioned in the previous section (Tables 6.4-5). For an experimental investigation of 
the performance in the tubing system, the restrictor was connected to the fluctuating pressure-
generating device explained in Section 4.1. A fluctuating pressure signal generated by a 
speaker was measured in the pressure scanner through the designed tubing system and a short 
reference tubing system shown in Table 4.1. Figure 6.9 shows the transfer functions of 
amplitude ratios and phase angle differences for dynamic pressures between the designed tube 
and the reference tube as a function of frequency of fluctuating pressure signals. The solid 
line represents numerical results calculated by the program developed in this study. The 
circles denote experimental results averaged from five tests and the error bars from the circles 
illustrate their positive and negative standard deviations, which are not clearly shown due to 
the small values. The differences of less than 3 % between both experiment and program 
confirm that the designed tubing system with a restrictor will significantly reduce the tubing 
effects on measurement of fluctuating pressure signals in pressure-measuring experiments 
using a tubing system. 

 

 

Figure 6.8 Restrictor built for experiments. 
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(a) Amplitude ratios 

 

 

 

(b) Phase angle differences 

 

Figure 6.9 Comparison of transfer functions from experimental and numerical data 
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 CONCLUSIONS 

For accurate measurements of pressures on a building model in wind tunnel tests, we 
developed numerical and experimental approaches to calibrate the pressure data measured via 
a tubing system. The numerical approach employed the Navier-Stokes Equations, expressions 
for thermodynamic behavior and wave propagation, and mass and energy conservation 
equations for a sinusoidal motion of air in a cylindrical tubing system. We developed a 
MATLAB-based program CalibPress (version 1.0) to calculate the transfer functions for 
amplitude ratios and phase lags as functions of the frequency of pressure fluctuations in a 
given tubing configuration. The program also used REFPROP software developed by NIST 
to obtain the requisite air properties.  

To validate the theoretical model used in the program developed in this study, two methods 
were employed: an experimental method using a function generator, a speaker system, and a 
theoretical method based on the lumped-element transmission line model. The results 
obtained by both methods showed that the program developed in this study can achieve an 
accurate calibration. 

Effects of parameter values on measured pressures were investigated. The parameters used in 
this study include not only tube dimensions (i.e., tube length and inner diameters) but also air 
properties (i.e., temperature, atmospheric pressure, and relative humidity). The results showed 
that the environmental parameters of atmospheric pressure and temperature can influence 
significantly the pressures measured in a tubing system, which should be corrected for the 
accurate pressure measurement. A forthcoming study will be devoted to the effect on the 
pressure data of (i) the phase angle change due to the tubing system, and (ii) the environmental 
parameters, including the atmospheric pressure and the air temperature.  

An optimization design procedure of a typical tubing system was developed for designed and 
tested for minimization of tubing effects on pressure measurements. 

 

  

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1994



39 

 

REFERENCES 

ASTM (2015). Standard Test Method for Measuring Humidity with a Psychrometer (the 
Measurement of Wet- and Dry-Bulb Temperatures), E337-15, ASTM International, 
West Conshohocken, PA. 

 
Bergh, H. and Tijdeman, H. (1965). Theoretical and experimental results for the dynamic 

response of pressure measuring systems. Rep. NLR-TR F.238. 
 
Elson, J.P. and Soedel, W. (1972). "Criteria for the design of pressure transducer adapter 

systems." International Compressor Engineering Conference. 390-394. 

Holmes, J. D., and Lewis, R. E. (1987a). "Optimization of dynamic-pressure-measurement 
systems. I. Single point measurements." Journal of Wind Engineering and Industrial 
Aerodynamics, 25(3), 249-273. 

Holmes, J. D., and Lewis, R. E. (1987b). "Optimization of dynamic-pressure-measurement 
systems. II. Parallel tube-manifold systems." Journal of Wind Engineering and 
Industrial Aerodynamics, 25(3), 275-290. 

Irwin, H. P. A. H., Cooper, K. R., and Girard, R. (1979). "Correction of distortion effects 
caused by tubing systems in measurements of fluctuating pressures." Journal of Wind 
Engineering and Industrial Aerodynamics, 5(1), 93-107. 

Lemmon, E. W. and Huber, M. L. (2015). NIST Reference Fluid Thermodynamic and 
Transport Properties Database (REFPROP): Version 9.1., National Institute of 
Standards and Technology, http://www.nist.gov/srd/nist23.cfm. 

Mathworks (2016). "MATLAB, version 9.1.0 (R2016b)." Natick, MA, USA. 

 

 

 

 

 

 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1994

http://www.nist.gov/srd/nist23.cfm


A-1 

 

APPENDIX A 

DETERMINATION OF RELATIVE HUMIDITY IN HUMID AIR 

Once the expressions for the calculation of the dry air properties are defined, a method is needed 
to accurately estimate the amount of water vapor in the air. Relative humidity can be translated 
into mole fraction of water vapor in the air, which is relatively easy to measure. However, 
REFPROP only has a built-in value for dry air consisting of Nitrogen, Oxygen, and Argon. For 
the case of humid air, the program also accounts for Carbon Dioxide in addition to the three main 
components, as shown in Table A.1. 

 

Table.A.1. Composition of air assumed in the program 

Component Mole Fraction 

Nitrogen 0.7812 

Oxygen 0.2096 

Argon 0.0092 

Carbon Dioxide 0.000383 

Total 1.0000 

 

In most cases air cannot be treated as a completely dry gas. It typically contains a certain amount 
of water vapor, called the absolute humidity. 

The relative humidity can be defined using mole fractions or pressures of water vapor and saturated 
water vapor under the ideal gas assumption 1:   

 RH =
𝑥𝑥𝐻𝐻2𝑂𝑂
𝑥𝑥𝑠𝑠𝐻𝐻2𝑂𝑂

=
𝑝𝑝𝑎𝑎,𝐻𝐻2𝑂𝑂

𝑝𝑝𝑠𝑠,𝐻𝐻2𝑂𝑂
  (A.1) 

                                                 

1 Perry, Robert H., Don W. Green, and James O. Maloney (1984). Perry's Chemical Engineers' Handbook. 8th ed. New York: 
McGraw-Hill. 
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where 

𝑥𝑥𝐻𝐻2𝑂𝑂 = the mole fraction of water vapor 

𝑥𝑥𝑠𝑠𝐻𝐻2𝑂𝑂 = the mole fraction of saturated water vapor 
𝑝𝑝𝑎𝑎,𝐻𝐻2𝑂𝑂 = the partial pressure of water vapor 
𝑝𝑝𝑠𝑠,𝐻𝐻2𝑂𝑂 = the pressure of saturated water vapor. 

 

This ratio can be also related to the mole fraction of water vapor through the following relationship: 

 𝑥𝑥𝐻𝐻2𝑂𝑂 =
𝑛𝑛𝐻𝐻2𝑂𝑂
𝑛𝑛𝑇𝑇

=
𝑝𝑝𝑎𝑎,𝐻𝐻2𝑂𝑂

𝑝𝑝𝑇𝑇
 (A.2) 

where 

𝑛𝑛𝐻𝐻2𝑂𝑂 = the number of moles of water vapor 

𝑛𝑛𝑇𝑇 = the total number of moles in mixture 
𝑝𝑝𝑇𝑇 = the total atmospheric pressure. 

 
Because the interaction between real gas molecules increase a small amount of the saturated vapor 
pressure in air, an enhanced factor f(p,T) is adopted to correct the mole fraction of saturated water 
vapor (Eqs. A.1 and A.2) as described below:  

 𝑥𝑥𝑠𝑠𝑠𝑠2𝑂𝑂 = 𝑓𝑓(𝑝𝑝,𝑇𝑇)
𝑝𝑝𝑠𝑠,𝐻𝐻2𝑂𝑂

𝑝𝑝𝑇𝑇
 (A.3) 

where the enhanced factor f (p,T) is a function of ambient pressure p and temperature T 2. 

 
𝑓𝑓(𝑝𝑝,𝑇𝑇) = 𝑒𝑒�𝜉𝜉1�1− 

𝑝𝑝𝑠𝑠,𝐻𝐻2𝑂𝑂
𝑝𝑝𝑇𝑇

�+𝜉𝜉2�
𝑝𝑝𝑠𝑠,𝐻𝐻2𝑂𝑂
𝑝𝑝𝑇𝑇

−1��.  (A.4) 

                                                 

2 Tsilingiris, P. T. (2008). "Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C." 
Energy Conversion and Management, 49(5), 1098-1110.  
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In the equation above 

𝜉𝜉1 = �𝐴𝐴𝑖𝑖  𝑇𝑇𝑖𝑖
3

𝑖𝑖=0

 

𝜉𝜉2 = exp��𝐵𝐵𝑖𝑖 𝑇𝑇𝑖𝑖
3

𝑖𝑖=0

� 

𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 = numerical fitting constants for water. 
 

A simple and relatively accurate method to measure relative humidity is included in ASTM E337-
15 3based on psychrometric hygrometry. Equation (A.5) can calculate the relative humidity 
measured with a psychrometer under the assumption that the barometer pressure is equal to 101325 
Pa. This will determine the value of relative humidity to within a 95% confidence level 3: 

 
𝑅𝑅𝐻𝐻𝑜𝑜 =

𝑝𝑝𝑠𝑠,𝑇𝑇𝑤𝑤 − 𝐴𝐴 𝑝𝑝𝑇𝑇(𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑤𝑤)
𝑝𝑝𝑠𝑠,𝑇𝑇𝑑𝑑

 (A.5) 

where 

𝑝𝑝𝑠𝑠,𝑇𝑇𝑤𝑤 = the saturation vapor pressure at the wet bulb temperature (in hPa; see Eq. A.8) 

𝐴𝐴 = the psychrometer coefficient = 0.00066(1+0.00115 Tw) (in K-1) 
𝑇𝑇𝑑𝑑 = the dry bulb temperature (in Celsius degrees) 
𝑇𝑇𝑤𝑤 = the wet bulb temperature (in Celsius degrees) 
𝑝𝑝𝑠𝑠,𝑇𝑇𝑑𝑑 = the saturation vapor pressure at the dry bulb temperature (in hPa; see Eq. A.9). 

 

In Equation (A5) the saturation vapor pressures of pure water vapor over a plane surface of water 
at the web-bulb temperature Tw and the dry-bulb temperature Td are calculated as follows 4: 

               ( ) ( )
6

2
, , 7

0
[or ] exp 273.15  [or ] ln 273.15  [or ]i

s Tw s Td i w d w d
i

p p g T T g T T−

=

 
= + + + 

 
∑          (A.6) 

where the coefficients of six terms for the polynomial portion and the additional term before the 
natural logarithm are shown in the following table. 

                                                 

3 ASTM (2015). Standard Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb 
Temperatures), E337-15, ASTM International, West Conshohocken, PA. 

4 Wexler, A. (1976). "Vapor Pressure Formulation for Water in Range 0 to 100 °C." Journal of Research of the National Bureau 
of Standards-A. Physics and Chemistry, 80A(5 and 6), 775-785. 
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Table.A.2. Values for the coefficients in Eq. A.6. 

Coefficient Value 

g0 −0.29912729 × 104 

g1 −0.60170128 × 104 

g2 0.1887643854 × 102 

g3 −0.28354721 × 10−1 

g4 0.17838301 × 10−4 

g5 −0.84150417 × 10−9 

g6 0.44412543 × 10−12 

g7 0.2858487 × 101 

 

For considering effects of ambient pressure deviation from the standard atmospheric pressure 
(101325 Pa) on the relative humidity, the correction based on ASTM E337-155 is used to Eq. (A.5): 

 𝑅𝑅𝑅𝑅 = 𝑅𝑅𝐻𝐻𝑜𝑜 + 𝐵𝐵(𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑤𝑤)(101325 − 𝑝𝑝)  (A.7) 

where 

𝐵𝐵 = the correction factor for relative humidity due to atmospheric pressure deviation 
𝑝𝑝 = the measured atmospheric pressure [Pa] 

 

This correction allows for deviations from atmospheric pressure up to approximately 30%.  This 
method is applicable from 5 ˚C to 50 ˚C, still within the experimental bounds.  The values for the 

                                                 

5 ASTM (2015). Standard Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb 
Temperatures), E337-15, ASTM International, West Conshohocken, PA. 
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correction factor, B, at a measured dry bulb temperature can be calculated by using interpolation 
from Table X4.1 in the ASTM standard (see Figure A.1):   

 

Figure A.1. Correction factor (B) from Table X4.1 in ASTM E337-15. 

 

An example calculation is presented in two cases to illustrate the calculation of the relative 
humidity of air under atmospheric pressure above and below 101325 Pa.    

 

Example 1. 

Assuming that the ambient temperature is Td = 20 ˚C, the ambient atmospheric pressure P = 90000 
Pa and the wet bulb temperature Tw = 18.9˚C, the relative humidity of the air can be calculated  
(Eq. A.7): 

( ) ( )( ),

,

RH
100

 0.9053 

s Tw st d w d w st

s Td

p AP T T B T T p p
p

− − − −
= +

=

 

where  

The saturation pressure of water vapor at the wet-bulb temperature Tw is (Eq. A.6)   

( ) ( )
6

2
, 7

0
exp 273.15 ln 273.15 2183.9 [Pa]i

s Tw i w w
i

p g T g T−

=

 
= + + + = 

 
∑  

The psychrometric coefficient is: 

( )46.60 10 1 0.00115 0.000668wA T−= × + =  
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The saturation pressure of water vapor at the ambient temperature Td is (Eq. A.10): 

( ) ( )
6

2
, 7

0
exp 273.15 ln 273.15 2338.5 [Pa]i

s Td i d d
i

p g T g T−

=

 
= + + + = 

 
∑  

The correction factor B at Td = 20 ˚C (Figure A.1) is: 

B = 2.8695 × 10-5 

The standard atmospheric pressure is: 

pst = 101325 [Pa]. 

Note: The relative humidity in the program using REFPROP is 0.905356. 

 

Example 2. 

Assuming that the ambient temperature is Td = 31 ˚C, the ambient atmospheric pressure is P = 
131722 Pa and the wet bulb temperature is Tw = 16.9˚C, the relative humidity of the air can be 
calculated below (Eq. A.7): 

( ) ( )( ),

,

RH
100

0.1502 

s Tw st d w d w st

s Td

p AP T T B T T p p
p

− − − −
= +

=

 

where  

The saturation pressure of water vapor at the wet-bulb temperature Tw is (Eq. A.6) 

( ) ( )
6

2
, 7

0
exp 273.15 ln 273.15 1925.5 [Pa]i

s Tw i w w
i

p g T g T−

=

 
= + + + = 

 
∑  

The psychrometric coefficient is: 

( )46.60 10 1 0.00115 0.000673wA T−= × + =  

The saturation pressure of water vapor at the ambient temperature Td (Eq. A.6) is: 

( ) ( )
6

2
, 7

0
exp 273.15 ln 273.15 4495.0 [Pa]i

s Td i d d
i

p g T g T−

=

 
= + + + = 

 
∑  

The correction factor B at Td = 31 ˚C (Figure A.1) is: 

B = 1.5000 × 10-5 
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The standard atmospheric pressure is: 

pst = 101325 [Pa]. 

Note: The relative humidity in the program using REFPROP is 0.150369. 

 

The results in the two examples show that both the REFPROP and the ASTM standard methods 
can calculate the relative humidity of air to within differences of less than about 0.001%. 
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APPENDIX B. 

LUMPED-ELEMENT TRANSMISSION LINE MODEL FOR ACOUSTIC 

PROPAGATION IN TUBES 

The theory of acoustic waves in gas-filled tubes was first proposed by Kirchhoff 1 and describes 

the coupling between acoustic, thermal, and vorticity waves. Kirchhoff’s original paper included 

the solution for the specific case of a tube with circular cross section. A modern formulation of 

Kirchhoff’s theory in the low-frequency limit, generally attributed to Crandall 2, is analogous to 

the theory of plane wave propagation in lossy electromagnetic transmission lines. The solution 

outlined here is a lumped-element model for a finite-length transmission line that uses a  

T-network 3 to represent the distributed impedances so that the acoustic pressure p and acoustic 

volume velocity U can be determined using standard circuit analysis; the model is valid for 

acoustic wave propagation in a system of circular tubes below the cutoff frequency for transverse 

modes, i.e., 1 84.jka < , where k is the wavenumber ( k cω= ), and aj is the largest tube radius. 

We implicitly assume i te ω  time dependence ( 1i = − ).  Here we neglect end effects due to the 

radiation impedance and non-planar waves at the ends of tube sections that result in small 

effective-length corrections and additional energy loss. End effects can be included by the addition 

of a series impedance Zend at each junction. (See Gillis et al.4, for example.) 

Lossy propagation of acoustic waves in a gas-filled cylindrical tube with cross-sectional area A 

have a characteristic impedance Z0 and propagate in the ± z (axial) direction with a z-dependence 

proportional to ze±Γ  where Γ is the propagation parameter.  Z0 and Γ are given by   

                                                 

1 Kirchhoff, G. (1868). “Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung,” Ann. Phys. Chem. 134, 177; 

English translation ‘‘On the influence of heat conduction in a gas on sound propagation,’’ in Benchmark Papers in Acoustics: 

Physical Acoustics, edited by R. B. Lindsay (Dowden, Hutchinson, & Ross, Stroudsburg, Pennsylvania, 1974), p. 7. 

2 Crandall, I. B. (1927). Theory of Vibrating Systems and Sound. Van Nostrand, New York, pp. 229–241. 

3 Mawardi, O.K. (1949) “On the propagation of sound waves in narrow conduits,” J. Acoust. Soc. Am. 21, 482–486. 

4 Gillis, K.A., Mehl, J.B., and Moldover, M.R. (2003). “Theory of the Greenspan viscometer,” J. Acoust. Soc. Am. 114, 166–173 
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( ) ( )

( )
0

1 11 ,
11 1 1

t

vt v

FcZ ik
A FF F

γρ

γ

+ −
= Γ =

− + − − 
 .  (B.1) 

In Eq. (B.1), the gas properties are the mass density ρ, the speed of sound c, and the heat capacity 

ratio γ = CP/CV. The attenuation of the acoustic waves occurs near the tube wall due to thermal 

conduction and viscous shear. Energy loss due to thermal conduction is included in the circular 

loss function Ft given by 

 ( )
( )

( )1

0

2
1

κ
κ δ

κ κ
= = −,t

t t t
t t

J a
F i

aJ a
  (B.2) 

where Jm is the mth order Bessel function, 2t tDδ ω=  is the thermal penetration length, Dt is the 

thermal diffusivity, and a is the tube radius.  Energy loss due to viscosity is included in the function 

Fv which is identical to Eq. (B.2) but with δt replaced by the viscous penetration length 

2v vDδ ω= , where Dv is the viscous diffusivity (kinematic viscosity). 

The equivalent circuit for acoustic waves in a tube with length L, radius a, and terminated with an 

impedance ZL is shown in Fig. A1. Sound enters the tube at the left end (z = 0) where the acoustic 

input impedance that the wave “sees” is Zin; the wave propagates down the length of the tube, 

where (at z = L) the tube is terminated by the acoustic load impedance ZL; a portion of the wave 

reflects back and the rest is transmitted or dissipated. The load impedance could be, for example, 

Zin ⇒ 

Uin 
Z1 

Z2 

pin 
Z1 

pL 

ZL 

Figure B.1  T-network equivalent circuit for acoustic wave 
propagation in a finite-length cylindrical tube. 

pin 

L 

ZL 

UL 
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another section of tubing, a chamber, or a transducer.  The impedances Z1 and Z2 in the T-network 

are functions of Z0 and Γ, namely 

 ( ) ( )
01

1 0 22tanh ,
sinh

ZZ Z L Z
L

= Γ =
Γ

 . (B.3) 

Analysis of the circuit in Fig. B.1 and Eq. (B.3) gives, after some manipulation, the important 

results for the input impedance 

 
( )
( )

L 0
in 0

0 L

tanh
tanh

Z Z LZ Z
Z Z L

+ Γ
=

+ Γ
 , (B.4) 

the volume velocities 

 in L
in L

in L

,p pU U
Z Z

= =  , (B.5) 

and the transfer function 

 ( ) ( ) ( ) ( )0in in L

L L 0 L

1 tanh cosh 1 tanh coshZp Z Z L L L L
p Z Z Z

  = + Γ Γ = + Γ Γ  
  

 . (B.6) 

These results can be cast into matrix form 

 
( ) ( )

( ) ( )

in L
0

in L
0

1 Γ Γ    =        Γ Γ 

cosh sinh

sinh cosh

L LU U
Z

p p
Z L L

  (B.7) 

which, together with the boundary conditions in Eq. (B.5), contains the results in Eqs. (B.4) and 

(B.6).  The matrix formulation simplifies the analysis of systems with multiple sections of tubing 

with different lengths or radii. In general, each section will have its own propagation constant and 

characteristic impedance because the loss functions are dependent on the tube radius.  However, 

the gas properties, the frequency ω, and the wavenumber k are necessarily the same throughout 

the system. 
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The model for the multiple tube system represented in Fig. 2.2 has the equivalent circuit for the jth 

and (j+1)th sections shown in Fig. B.2. The jth section has a tube (length Lj, diameter 2aj) and a 

transducer volume (VTj).  Because the length of the transducer volume is considered to be much 

smaller than the wavelength of sound, the acoustic inertance and the viscous loss described by the 

series impedance Z1 for the transducer volume is negligible compared to the acoustic compliance 

and the thermal loss described by the parallel impedance Z2.  Thus, the transducer impedance ZT,j 

appears as a parallel impedance in Fig. B.2. 

The transfer function 1j jp p−  from Fig. B.2 is 

 ( ) ( ) ( )
( ) ( )1 0 0 1

1 1
1 1 0 1

, ,

, ,

sinh
cosh sinh cosh

sinh
j jj j j j

j j j j j j
j T j j j j j

Lp Z Z p
L L L

p Z L Z p
− +

+ +
+ + +

Γ  
= Γ + Γ + Γ − Γ  

  (B.8) 

which follows from the node equation for volume velocity 1,T j j jU U U +′= − , the input impedance 

to section j+1, Zin,j+1 

 
( ) ( )

( ) ( )
0 1 1 1 1

in 1 0 1
0 1 1 1 1

1 , ,
, ,

, ,

tanh

tanh
j L j j j

j j
j L j j j

Z Z L
Z Z

Z Z L
+ + + +

+ +
+ + + +

+ Γ
=

+ Γ
 , (B.9) 

and the transfer function for section j+1 [Eq. (B.6)] to eliminate ZL,j+1.  For a system with N 

sections, the complete transfer function is 

 
1

11 1in in 1

11 2

−
−− −

=

 
= = × 

 
∏...
N

jN N

jN N j N

pp pp p p
p p p p p p

  (B.10) 

with 1j jp p−  given by Eq. (B.8) for j ≠N and 

 ( ) ( ) 01 ,

,

cosh sinh NN
N N N N

N T N

Zp
L L

p Z
− = Γ + Γ .  (B.11) 

Uj 
Z1,j 

Z2,j 

Z1,j 
pj+1 

U′j+1 

pj-1 

ZT,j Z2,j+1 

Z1,j+1 Z1,j+1 

ZT,j+1 

pj 

Uj+1 U′j 

Zin,j+1  
⇒ 

UT,j UT,j+1 

Fig. B.2   Equivalent circuit for sections j and j+1 of the system in Fig. 2.2. 

ZL,j+1  
⇒ 
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Equation (B.8) is equivalent to Eq. 2.1 with the identifications 

 j jϑ →Γ   (B.12a) 

 
( )1 1 ,

j
t j

n
F

γ
γ

→
+ −

  (B.12b) 

 ( )1j j vi aα δ→ −   (B.12c) 
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0

2

1
1 ,

j

j v j

J

J F

α

α
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−
  (B.12d) 
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t j j j j j j

t j j j j j j

V L J J Z

V L J J Z

ϑ α α

ϑ α α
+ + +

+ + +

→   (B.12e) 

Transducer impedance 

In many instances we can model a transducer’s impedance as a compliant volume VT of gas with 

surface area ST. At frequencies below any resonances of the transducer volume, but δt is still much 

smaller than any dimension of the transducer volume, the impedance is approximately 5 

 
( )( ) ( )

2

T
T T T

1
1 1 1 2

ρ
ω γ δ

≈
+ − −  t

c
Z

i V i S V
 . (B.13) 

Equation (B.13) must be modified if δt is comparable to a dimension ℓ of the volume. In the low 

frequency limit, the gas expansion/compression is isothermal instead of adiabatic, therefore the 

quantity in the square bracket in Eq. (B.13) should approach γ as δt increases above about 0.1ℓ, 

but it does not. The general relationship between the pressure change δp and the density change 

δρ is sometimes described in terms of a “polytropic parameter” kp such that 2δ δρ γ= pp c k  where 

kp varies from 1 for isothermal expansion to γ for adiabatic expansion. (See Fig. B.3.) Thus, the 

modified impedance for a transducer volume becomes  

 
( )

2 2

T
T T ,T

1
1 1

p

t

kc cZ
i V i V F
ρ ρ
ω γ ω γ

= =
 + − 

 , (B.14) 

                                                 

5 F.B. Daniels, “Acoustical impedance of enclosures,” J. Acoust. Soc. Am. 19, 569-570 (1947). 
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where kp is a complex-valued, frequency-dependent polytropic parameter and Ft,T is thermal loss 

function for the transducer volume. Since the wavelength of sound is significantly longer than any 

dimension of the volume, we anticipate that Ft,T is not strongly geometry dependent. 

For a spherical volume with radius b, the calculated low-frequency impedance 6 is 

 
( )

2

T,sphere
T sphere

1
1 1

ρ
ω γ

=
+ −  ,t

c
Z

i V F
 , (B.15a) 

where ( ) ( )sphere 2 2

3 1 1β β β δ
β

= − ≡ +  , coth ,t tF b b i
b

.  (B.15b) 

ZT,sphere form Eq. (B.15a) has the correct limiting behavior for δt → 0, i.e. Ft,sphere ≈ (1−i)Sδt /(2V) 

→ 0 and the correct limiting behavior as δt approaches and exceeds b (Ft,sphere →1). Thus, the 

polytropic parameter for a spherical volume is 

 
( )

,sphere

,sphere,sphere

 for 0 (adiabatic)

1 for 1 (isothermal)1 1
t

p
tt

F
k

FF

γγ
γ

→= →  →+ − 
 . (B.16) 

                                                 

6 F.B. Daniels, “Acoustical impedance of enclosures,” J. Acoust. Soc. Am. 19, 569 (1947). 

Figure B.3  (solid curves) The “effective” polytropic constant used in the approximation in Eq. (B.13).  
This approximation predicts the correct high-frequency (adiabatic) limit (kp → γ), but it does not predict 
the correct low-frequency (isothermal) limit.  (dashed curves) The polytropic constant for a spherical 
geometry (Eqs. B.15a - 16) has the correct low-and high-frequency limits. 
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The effect on the calculated dynamic pressure ratio of various approximations to the polytropic 

constant is shown in Fig. B.4.   

Cylindrical volumes are problematic when estimating the low-frequency impedance from a 

summation of side and endplate admittances. At the corners, the side and endplate boundary layers 

overlap resulting in an overestimate of the boundary layer’s effect. When δt is small compared to 

the dimensions, this overestimate is negligible and Eq. (B.13) is obtained; however when δt is 

large, this summation gives the wrong isothermal limit. Fortunately, the surface area-to-volume 

ratio for a cylindrical volume whose length L equals its diameter 2a is S/V = 3/a, which is the same 

ratio as a sphere with the same radius, b = a. Thus, the impedance of a right, equilateral cylindrical 

volume with radius a has the same limiting behavior, to O(δt/a) at high frequency and to O(a/δt) 

at low frequency, as a spherical enclosure with the same radius.  Furthermore, we propose that the 

Figure B.4  (Top) The calculated dynamic pressure ratio |PT/P0| changes by 0.1 % to 0.2 % when 
the approximation [Eq. (B.14)] for the polytropic constant is used instead of the exact form for 
a spherical volume [Eq. (B.16)].  (Bottom) When the polytropic constant is approximated as a 
constant (kp = γ), the calculated dynamic pressure changes by about 1 %. 
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differences between the impedances at intermediate frequencies are small enough to be ignored.  

Therefore, we approximate the impedance of a cylindrical transducer volume (that is nearly 

equilateral) using Eq. (B.15a) for a sphere with the same S/V, i.e. b = 3V/S and Ft,T ≈ Ft,sphere. With 

this approximation, the impedance will have the correct limiting behavior in the adiabatic and 

isothermal limits.  

Because impedances can get very large, it is sometimes desirable to work with dimensionless 

admittances (reciprocal of impedance) for numerical computation. We define a specific 

characteristic admittance for tube j with cross sectional area Aj = π aj
2
 

 ( ) ( )0
0

1 1 1ρ γ≡ = + − −  , , ,
,

j t j v j
j j

c
y F F

A Z
  (B.17) 

In Eqs. (B.8) and (B.9), each section of tube has a different diameter, so the specific admittances 

must be scaled by the appropriate areas.  In terms of specific admittances, Eqs. (B.8) and (B.11)  

become 

( ) ( ) ( )
( ) ( )1 1 0 1 1

1 1
0 1 1 0

− + + +
+ +

+ +

Γ  
= Γ + Γ + Γ − Γ  

, ,

, ,

sinh
cosh sinh cosh

sinh
j jj T j j j j

j j j j j j
j j j j j j j

Lp y A y p
L L L

p y L A y p
  (B.18) 

 ( ) ( )1

0

− = Γ + Γ ,

,

cosh sinh T NN
N N N N

N N

yp
L L

p y
  (B.19) 

 ( )T
T sphere

T

1 1ρ γ≡ = + −  
,

,
,

j
, j j t

j j j

Vc
y ikL F

A Z V
  (B.20) 

where we define the volume of the jth tube as Vj = AjLj with area Aj and length Lj. 

Tube resonances 

Resonances in the tubes are usually undesirable. If the system of tubes is used in a probe 

microphone with the load impedance ZL due to a transducer, then the response function must be 

corrected for the presence of resonances in the tube in order to obtain an accurate measurement of 

pin. Resonances occur when in L 0=p p  (or L in →∞p p ) in complex-frequency space.  The zeros 

of Eq. (B.6) or (B.10) are a set of complex frequencies = +n̂ n nf f ig  for which fn is the resonance 

frequency and gn is the half-width. 
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For a simple system with just one tube and one volume, the transfer function Eq. (B.10) simplifies 

to 

 ( ) ( )in T

L 0

1 = + Γ Γ 
 

tanh cosh
p y

L L
p y

  (B.21) 

and the condition for resonance becomes 

 ( )T

0

1 0+ Γ =tanh
y

L
y

  (B.22) 

or, after substituting from Eqs. (B.1), (B.17), and (B.20), we have 

 ( ) ( ) ( )
( )

tube

T sphere

1 1 11 1
1 1 1

γγ
γ

  + − − + −  =  − + −  ,

ˆ ˆtan t vt

v t

F FF V
kL kL

F V F
 . (B.23) 

In Eq. (B.23), k̂  represents the complex-valued wavenumber that solves Eq. (B.22).  For a 

Helmholtz mode to exist, H 1<<k̂ L  and therefore tube T<<V V . In this case we can expand the 

tangent, keeping the first-order term, and solve for k 

 
( )H

T sphere

1
1 1γ

−
≈

+ − ,

ˆ v

t

FA
k

V L F
  (B.24) 

Additionally, if δv and δt are small, then (using 2π =ˆ ˆf kc )  

 ( ) ( )( ) T
H H H

T T

1 1 1 1
2 2 4

δ δγ
π

 = + ≈ − − − − −  
ˆ v tSc A
f f ig i i

V L a V
  (B.25) 

Therefore, 

 ( ) ( )T T
H H

T T T T

1 1 1
2 2 4 2 2 4

δ δ δ δγ γ
π π

   ≈ − − − ≈ + −      
,v t v tS Sc A c A

f g
V L a V V L a V

  (B.26) 

to lowest order in δv and δt.  If tube TV V<< , then the Helmholtz mode described above will be the 

lowest frequency mode. On the other hand, if tube TV V>> , then the lowest frequency mode will 

likely be a mode of the tube.  

According to Eq. (B.23), if 1tube TV V >> , we expect the solution for kL to be just below 2π . 

Let ( )1 1 1
1

t

v

F
F

γ
∆

+ −
= +

−
  (B.27) 
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 ( )[ ] ( ) ( )
( )( ) ( )

1 1 1
1

1 1 1 2
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T T t T

F FV
kL kL

V i S V

γ
∆

γ δ
+ − −  + =

+ − −
  (B.28) 

Assume 1∆ <<   

 ( ) ( )( ) ( )1 1 1 1 1
2 2 2 2

ˆ t vT

tube

V
kL i i

V a a
δ δπ πε γ = − ≈ − − − − − − 

 
  (B.29) 

In this limit, we see that the lowest resonance is a quarter-wave mode of the tube with 

 ( ) ( )T

tube

1 1 1
4 2 2 4 2 2

δ δ δ δγ γ   ≈ − − − − ≈ − +     
,t v t v

r r

c V c
f g

L V a a L a a
  (B.30) 

In the lumped element model, this limit is equivalent to T 0>>Z Z  (or T 0<<y y  ).  

 0 tubeT

0 T T

1
= ≈

y VZ
Z y ikL V

  (B.31) 

Near the lowest mode, 1kL  , the tube is terminated by a high impedance thereby forming a 

quarter-wave resonator in the tube. At sufficiently high frequency tube T>> /kL V V , the impedance 

ratio goes to zero and the tube becomes a half-wave resonator.   

Finally, sound waves propagating down a long tube are damped out over a characteristic distance 

called the attenuation length la. The attenuation length is the distance over which the pressure 

amplitude is attenuated to 1/e of its initial value. For a wave traveling in the +z-direction in a long 

tube, the acoustic pressure is ( ) ( )[ ]{ }∝ − Γ + Γexp Re Imp i z , so the attenuation length is  

 
( )
1

=
ΓReal  . (B.32) 

A wave that is propagating in a tube that is significantly longer than la will be damped out before 

it reaches the end of the tube. Note that la is frequency dependent: it gets shorter as the frequency 

is increased, i.e., the wave is damped over a shorter distance. 
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