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Abstract 

The set of software metrics introduced by Maurice H. Halstead in the 1970s has seen much scrutiny and 
not infrequent criticism. This article takes a fresh look at these metrics using quantity calculus (the 
algebra of units) and a new approach to dimensionless units. In this way, it is possible to assign units 
to the major Halstead metrics in a manner that is logically consistent. However, Halstead’s repurposing 
of counts of software attributes as counts of unobservable mental events leads to a less plausible, more 
confusing set of metrics for coding e�ort than for software attributes. 

1 Introduction 

Elements of Software Science by Maurice H. Halstead [1] is one of the most notable works in the history of 
software measurement. Published in 1977, it positioned Halstead among the pioneers of the discipline that 
soon blossomed. 

However, there has been strong criticism of both Halstead’s theoretical work and of the experimental studies 
that ostensibly validated it. Sadly, Halstead passed away in January 1979 without responding to these 
questions and controversies. 

The domain of physical science that is most applicable to Halstead’s work is metrology, the science of mea-
surement. The International Vocabulary of Metrology (VIM) [2] formally defnes metrology terms including 
quantity, quantity dimension, and measurement unit. A shortened, informal summary of the terms used in 
this paper is provided in Table 1. 

Table 1: Short introduction to relevant terms. 

Term Source Summary 
quantity 

unit 

dimension 

dimensionless unit 

counting unit 

[2] 

[2] 

[2] 

[3] 

[3] 

Property of a phenomenon, body, or substance, that can be expressed as the 
product of a number and a unit of measurement. 
Real scalar quantity with which any other quantity of the same kind can be 
compared. 
Expression of the dependence of a quantity on the base quantities of a system of 
quantities; for example, given the meter as the base quantity of length (L) and 
the second as the base quantity of time (T), a velocity would have dimension 
LT−1 and be expressible in the unit m/s. 
Unit that is regarded as a specialization of the unit 1, having no dependence on 
any of the seven base quantities of the International System of Units (SI) [4]. 
Dimensionless unit with which a count of a particular kind of entity or event 
can be compared. 

Recently, this computer scientist revisited Halstead’s metrics with the goal of identifying the dimensions or 
units of each defned quantity using the interpretation of dimensionless units appearing in Ref. [3]. The 
exercise proved to be unexpectedly fruitful. Once counting units have been assigned to the input quantities, 
the units of the derived quantities are unambiguously determined. The result could be described as a 
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rationalization of Halstead’s system. However, this process revealed that Chapter 8 of Halstead’s book 
implicitly introduces a parallel set of metrics that are numerically equal to the originals but expressed in less 
plausible units. 

The validity of the metrics is neither demonstrated nor refuted by this analysis. It merely sheds new light 
on the original defnitions, which may then refect upon the fndings of experimental studies. 

The remainder of this article proceeds as follows. Section 2 reviews related work and background. Section 3 
provides the rationalized defnitions and discussion of the metrics themselves. Section 4 identifes problems 
and concerns that the rationalization did not fx, followed by conclusions in Section 5. 

2 Related work 

Elements of Software Science has accumulated over 900 citations spanning four decades [5]. Most references 
to it are in the course of surveying or applying other software metrics. Like McCabe [6], it is part of the 
canon that must be mentioned. 

Halstead’s last writings on the subject [7, 8] surveyed contemporaneous e�orts at empirical validation. How-
ever, later reviewers Hamer and Frewin found that those experiments were poorly designed and inadequate 
to support the conclusions reached [9]. They also found that the majority of the theoretical assertions in 
Software Science “represent neither natural laws nor useful engineering approximations.” 

Shen, Conte, and Dunsmore, in an article with a similar “Software Science Revisited: . . . ” title, summarized 
and added to the criticism of the underlying theory that had emerged by the early 1980s [10]. 

Last but not least, Al-Qutaish and Abran (hereafter abbreviated “A2”) performed an analysis of Halstead’s 
metrics with particular attention to units and concluded that they have design faws [11].1 The fndings 
most relevant to this article are the following: 

• The units of length (N) and vocabulary (�) are “occurrences of tokens” and “distinct tokens” respec-
tively, where “token” is the superordinate concept of both Halstead’s “operator” and “operand.” 

• For volume (V ), potential volume (V �), e�ort (E), and programming time (T ), there is “no relation-
ship” between the units of the input quantities and the units that Halstead claimed for the metrics. 
They are combinations of disparate quantities that yield results whose units are unclear. 

• Program level (L) is a ratio of two quantities of the same kind. However, the estimated program level 
(L̂) is another combination of disparate quantities for which “the exact meaning is again a riddle.” 

• The scale types (referring to Stevens’ taxonomy [13]) of most of Halstead’s metrics are unclear. 

3 Rationalization 

3.1 Input quantities 

The input quantities for metrics to be defned in the following subsections are listed in Table 2. They consist 
of fve variables and a constant. 

The quantities N1, N2, �1, and �2 are conceptually straightforward counts of entities in source code, dis-
tinguished only by the type of entity counted and by whether duplicates are included or excluded from the 
count. While determining exactly how to enumerate these entities in a wide variety of programming lan-
guages is not as obvious as Halstead thought it would be [14, 15], the theory can proceed on the assumption 
that such counts are obtainable. 

1An abbreviated version of the 2005 conference paper by Al-Qutaish and Abran was included as Chapter 7 of Abran’s 2010 
book, Software Metrics and Software Metrology [12]. 
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Name Symbol Defnition Unit 
Total operators 

Unique operator count 
Total operands 

Unique operand count 
Potential operand count 

Stroud number 

N1 

�1 

N2 

�2 

�� 2 

S 

“Total usage of all of the operators” 
“Number of unique or distinct operators” 
“Total usage of all of the operands” 
“Number of unique or distinct operands” 
“Number of conceptually unique arguments and results (or input 
and output parameters) required by a given algorithm” 
18 

operator 
operator 
operand 
operand 
operand 

mop/s 

In A2’s analysis, the units of N1 and �1 are deemed to be “occurrences of operators” and “distinct operators” 
respectively, and likewise for the operand counts. We instead fnd that the counting units are merely operators 
and operands, and the domain of the count belongs in the defnition of the quantity. 

The “potential operand count” �� is considerably more diÿcult to defne than the other counts. Halstead 2 
used the adjective “potential” in the sense of best possible, so the concept behind �2 

� was to determine the 
lower bound on the number of inputs and outputs that would be required by an ideal implementation of an 
operation, one that has no unnecessary data fows. Halstead wrote, “��, for small algorithms at least, should 2 
represent the number of di�erent input/output parameters.” However nuanced the scope of the counting 
might be, the entities counted would seem to be operands in Halstead’s model. 

Finally, the constant S, although named after John M. Stroud, was assigned a value by Halstead himself. 
Stroud stated an opinion that “There are approximately ten moments of psychological time for every second 
of physical time, though there may be more; as many as twenty or less, as few as fve.” Halstead identifed 
this concept with the average number of “elementary discriminations” that a coder would make per second 
and assigned the value 18 based on the ft of his model to a sample consisting of twelve machine-language 
programs [8, 16]. For reasons that will come out in Section 3.5, we replace elementary discrimination with 
a more general term, mental operation (mop). 

3.2 Vocabulary size and program length 

The simplest of the derived quantities are vocabulary size (�) and program length (N). Each of these is the 
sum of two di�erent counts. Following the model of Ref. [3], the unit of such a sum is a generalization of 
the units of its input quantities. Shen et al., A2, and Zuse [10, 11, 17] each used the name “token” for the 
superordinate concept. For consistency, we will retain that name, but we again remove the “occurrences” 
and “distinct” qualifers from the unit expressions, as this information is included in the descriptions of the 
quantities. The outcome is shown in Table 3. 

Table 3: Vocabulary size and program length. 

Name Symbol Defnition Unit 
Vocabulary size 
Program length 

� 
N 

�1 + �2 

N1 + N2 

token 
token 

3.3 Program volume 

The next quantity is program volume (V , Table 4). An explanation of this quantity was given in 1978 by 
Fitzsimmons and Love [16]: “For each of the N elements of a program, log2 � bits must be specifed to choose 
one of the operators or operands for that element. Thus V measures the number of bits required to specify 
a program.” This of course ignores the possibility of a reduction due to data compression or an expansion 
due to discretization of the number of bits, but the intended binary encoding of tokens is clear. 

A2’s fnding that the units of Halstead’s metrics are mysterious follows not only from the di�erent treatment 
of unique versus total counts, but also from a divergent interpretation of the logarithmic functions. They 
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Name Symbol Defnition Unit 
Program volume V N log2 � bit 

0V N log2 � mop 

credited an email discussion with Richard Peterson of Drexel University when explaining that “In general, 
in engineering applications we do not take the logarithm of a dimensioned number, only of dimensionless 
quantities.” They then attempted to calculate the logarithm of a length quantity using only mathematical 
principles. 

Rationalizing the logarithmic function instead requires the use of an encoding principle that is widely applied 
in computer science, as it was by the explanation in Ref. [16]. The unit of V can then be derived from the 
units of its two terms, N and log2 �: 

bit 
token × ! bit.

token 

Instead of program volume, V would be more accurately described as the length of a binary encoding of 
the program. Given this rationalization of V as a straightforward size metric, a correlation between V and 
source lines of code (as was reported in Ref. [18] and other sources) should surprise no one. 

The confusion about V possibly being a count of mental comparisons rather than bits was created in Chap-
ter 8 of Ref. [1]. There, Halstead introduced a model of mental processes in which the number of mental 
comparisons (mc) needed for a coder to write a program happened to be N log2 � (N tokens times log2 � 
mental comparisons per token, on the theory that each token was selected through a process akin to binary 
search).2 Though numerically equal to the value of V expressed in bits, this is a di�erent kind of quantity, 
and it was incorrect to confate it with V . To remedy the confusion, we assign a new symbol (V 0) to the 
second, parallel quantity. (Subsequent “parallel” defnitions inferred from Chapter 8 will follow this conven-
tion of adding a prime to the original symbol.) Similar to the treatment of S, we replace mental comparison 
with mental operation. 

3.4 Potential volume 

Halstead uses “potential” in the sense of hypothetical ideal or optimal value; e.g., “the most succinct form 
in which an algorithm could ever be expressed” in any programming language that one might construct. 

�As an input to the calculation of potential volume (V , Table 5), Halstead derives potential vocabulary (��) 
in a form similar to �. The potential operand count (��), introduced in Table 2, requires a determination 2 
of conceptual uniqueness. The potential operator count, on the other hand, was found to be equal to 2 by 
reasoning that the lower bound for any algorithm is one operator for the name of the function and another 
to serve as an assignment or grouping symbol [1, p. 20]. 

Halstead argued that in the bounding case, neither operators nor operands would need repetition; thus the 
total operators and operands used equal the unique counts: N� = �1 

� , N� = ��, and N� = ��. The derivation 1 2 2 
of V � then can be completed similar to that of V , multiplying a number of tokens by a number of bits per 
token to yield a number of bits. 

A2 observes in a footnote that Halstead provides no objective evidence that the hypothetical implementation 
described is indeed minimal. However, this is a separate matter from rationalizing the quantities that were 
provided. 

2Coulter found Halstead’s model to be unsupported by cognitive psychology [19]. 
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Name Symbol Defnition Unit 
Potential operator count 

Potential vocabulary 
Potential length 
Potential volume 

�� 1 
�� 

N� 

�V

2 
2 + �� 2 

�� 

�� log2 �
� 

operator 
token 
token 
bit 

3.5 Program level and approximated program level 

The “level” in Halstead’s program level (L, Table 6) metric is used in the sense that it has in the phrases 
high-level language and low-level language. Derived as the ratio of potential volume to program volume, it 
refects the phenomenon that programs written in low-level languages are generally longer than equivalent 
programs written in high-level languages. However, it is a measurement of the program artifact, not the 
language. With both V and V � being measured in bits, L is a ratio of two quantities of the same kind. 

An approximation to L (L̂) is provided for use when V � cannot be determined. To be precise, it avoids the 
need for �� as an input. Unfortunately, when dimensionless units are preserved, we fnd that L̂ is a di�erent 2 
kind of quantity than the L that it ostensibly approximates: 

� �2operator operand token bit · ! ; ? . 
operator operand token bit

So, L̂ would be better described as a surrogate for L than an approximation to it. 

Table 6: Program level. 

Name Symbol Defnition Unit 

Program level 

Approximated program level 

L 

L̂ 

�V

V 
2 �2 

�1 N2 

bit 
bit 

operator operand 
operator · operand 

As a side note, based on an equation that appears in Fenton and Pfeeger [20, p. 251] and in Ref. [21],
ˆA2 fnds that L = L and from this deduces a series of unfortunate conclusions. Having found no basis for 

the asserted equality in Halstead’s book, we believe the cited equation to be apocryphal, an error that was 
introduced in Ref. [20] (or possibly the frst edition of the book) and then propagated from Ref. [20] to 
Ref. [21]. The cited equation was removed from the third edition (Fenton and Bieman), which defers to 
Ref. [12] for detailed evaluation of Halstead’s metrics [22, pp. 345–346]. 

Now, as with V , a second quantity is confated with L in [1, Ch. 8], but this one is not so easy to rationalize. 
Halstead wrote: 

Each mental comparison requires a number of elementary mental discriminations, where this 
number is a measure of the diÿculty of the task. From the results of Chapter 5, it follows that 
program level L is the reciprocal of program diÿculty. 

Since the original L is defned as V � , we postulate that this new, parallel interpretation of L, which we call V 
0�L0 (Table 7), should be defned as V 0� , with V being another parallel quantity introduced in analogous V 0 

fashion. 

If the above quotation is taken at face value, it seems that L0, unlike L, is not a ratio of two quantities of 
the same kind. If increasing diÿculty means an increase in the ratio of elementary mental discriminations 
(emd) to mental comparisons (mc), it follows that its reciprocal, L0, must have the unit mc/emd. But L0’s 

0�denominator, V 0, was previously defned to have the unit mc, not emd. To reach the intended result, V
would need to have the unit mc2/emd. How this would arise, given the input quantities and its defnition, 
is a mystery. 
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At this point it might seem that a more plausible rationalization is to defne V 0 as a count of elementary 
mental discriminations instead of mental comparisons and allow V 0� to take on the role of the smaller count 
of mental comparisons. However, this leads to a contradiction later on, in the defnition of e�ort (E). 

While it sheds no light on the defnitions of elementary mental discriminations and mental comparisons, A2 
made the reasonable assumption that V 0� ought to have the same unit as V 0, i.e., mental comparisons. If we 
run with this assumption, we discard any distinction that Halstead was trying to make between two di�erent 
mental operations, but we achieve internal consistency of the metrics. This appears to be the least worst 
option for rationalizing Chapter 8, and this is why we have substituted mental operation (mop) for both 
elementary mental discrimination (emd) and mental comparison (mc) in all of the a�ected metrics. 

Table 7: Program level reinterpreted (parallel defnitions). 

Name Symbol Defnition Unit 
0�V

L0 

�� log2 �
� 

0�V
0V

mop 

mop 
mop 

3.6 E�ort 

Halstead described the e�ort metric (Table 8) as “the total number of elementary mental discriminations E 
required to generate a given program.” 

If we retain the original units that were determined by the derivation of each quantity, we fnd that E, like 
V , is a number of bits. It is a greater number of bits than V , since it is scaled up by the reciprocal of the 
bit ratio L. But this is not the result that Halstead intended. 

Introducing E0 analogous to the previous defnitions leads to a quantity expressed in mental operations. 

Table 8: E�ort. 

Name Symbol Defnition Unit 

E�ort E 

E0 

V 

L 
0V

L0 

bit 

mop 

3.7 Estimated implementation time 

Having determined E, S is then used as the constant of proportionality to convert it to a quantity of time. 
The result is estimated implementation time (T , sometimes written T̂ ; Table 9). 

To obtain the intended result, it is necessary to use the parallel quantity E0 rather than E. 

Table 9: Estimated implementation time. 

Name Symbol Defnition Unit 

Estimated implementation time T 
E0 

S 
s 

4 Residual issues 

In the preceding sections, we had some success in rationalizing some of Halstead’s metrics by analyzing 
them from the perspective of quantities and units. However, there are additional problems that cannot be 
addressed with this approach. In this section we list them. 
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Count 1

SI unit 1

Event Entity

token bit

operator operand

mop

mc emd

Figure 1: Dimensionless units referred to in this article. 

The di�erence between a mental comparison and an elementary mental discrimination is not clearly explained; 
neither is it explained why the ratio of the counts of these di�erent mental operations should be numerically 
equal to L, the ratio of potential volume to program volume. 

Use of the mental operation unit (mop) in place of both mental comparison (mc) and elementary mental 
0�discrimination (emd) in order to obtain a plausible form for V is a step backward towards treating all 

dimensionless quantities as if they were mutually comparable. The generalization of operands and operators 
to tokens was reasoned and deliberate; the generalization of mental comparisons and elementary mental 
discriminations to mental operations was instead a forced retreat from the more specifc expressions that 
Halstead may have intended. 

As A2 observed, all of Halstead’s metrics depend on reproducible counting of operators and operands. This 
reproducibility cannot be achieved through the kind of analysis done in this report, nor indeed from any 
analysis that is not part of a measurement standard. The consensus and coordination that are essential 
to established physical metrology are equally necessary to achieve reproducible measurements of these non-
physical quantities. 

The constant S characterizes the rate of unobservable mental events based on a theoretical model of human 
thought process. Its value was chosen to obtain the best ft of Halstead’s model to a sample of data and was 
then used forevermore with no associated uncertainty. Both the accuracy of the value of S and the validity 
of the model to which it is a parameter remain questionable. 

Potential volume depends on two questionable inputs. First, the potential operand count (��) requires a 2 
determination of conceptual uniqueness for which no objective procedure has been supplied. Second, the 
value of �� rests on the questionable assumption that a function must be named. A lambda expression 1 
might still require an operator that takes the place of the naming, but the programming language BASIC 
(for example) allows a whole program to implement a single function without any introduction. 

5 Conclusion 

This exercise has shown that it is possible to assign units to the major Halstead metrics in a manner 
that is logically consistent. The type system of dimensionless units that was constructed according to the 
interpretation of Ref. [3] is shown in Figure 1. The only other unit referenced was the second, as defned in 
the International System of Units (SI) [4]. 
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As rationalized, all of the metrics produce results that are on a ratio scale. However, Halstead’s repurposing 
of counts of software attributes as counts of unobservable mental events leads to a less plausible, more 
confusing set of metrics for coding e�ort than for software attributes. 

Although software science has not developed in the way that Halstead envisioned, if software metrics are 
shown to satisfy the rules of quantity calculus (the algebra of units) instead of only intuition, it is progress. 
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