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Abstract 

Presidential Executive Order 13717 (EO 13717), Establishing a Federal Earthquake Risk 
Management Standard, encourages federal agencies to ”enhance resilience...[to] future 
earthquakes” by evaluating and retroftting existing federal buildings based on current exist-
ing building codes. However, while guidance on evaluation and retroft practices is readily 
available, a standard approach to estimating retroft costs does not exist. Moreover, the 
absence of easily obtainable estimates can make retrofts prohibitive for decision-makers. 

This paper develops a cost-estimating methodology for seismic retrofts that (1) cap-
tures the essential factors that drive seismic retroft costs, such as building construction and 
square footage; and (2) is reproducible using data available to decision-makers. 

The methodology builds on FEMA 156 and 157, Typical Costs for Seismic Rehabilita-
tion of Existing Buildings, Volumes 1 and 2. A series of regression models is ft to the data 
used for the FEMA reports, with the models varying in the level of data required; e.g., a 
decision-maker may not have information on building construction for each asset in their 
inventory. Thus, the trade-off from estimating retroft costs subject to data limitations can 
be quantifed in terms of prediction error, providing decision-makers with a set of options 
for estimating costs together with a measure of predictive performance. We fnd that a 
simple model, in terms of data requirements, can deliver reliable predictions. 

Key words 

Building economics; earthquake risk reduction; retroft; resilience. 
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Disclaimer 

The policy of the National Institute of Standards and Technology is to use metric units in 
all its published materials. Because this report is intended for the U.S. construction indus-
try that uses U.S. customary units, it is more practical and less confusing to include U.S. 
customary units as well as metric units. Measurement values in this report are therefore 
stated in metric units frst, followed by the corresponding values in U.S. customary units 
within parentheses. 

Certain commercial entities, equipment, or materials may be identifed in this docu-
ment to describe an experimental procedure or concept adequately. Such identifcation is 
not intended to imply recommendation or endorsement by the National Institute of Stan-
dards and Technology, nor is it intended to imply that the entities, materials, or equipment 
are necessarily the best available for the purpose. 
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1. Introduction 

Presidential Executive Order 13717 (EO 13717), Establishing a Federal Earthquake Risk 
Management Standard, encourages federal agencies to ”enhance resilience...[to] future 
earthquakes” by evaluating and retroftting existing federal buildings based on current exist-
ing building codes1 However, while guidance on evaluation and retroft practices is readily 
available (e.g., ASCE/SEI 41-13 [2] and FEMA 547 [3]), a standard approach to estimating 
retroft costs does not exist. Moreover, the absence of easily obtainable estimates can make 
retrofts prohibitive for decision-makers. 

In this report, we develop a cost-estimating methodology for seismic retrofts that (1) 
captures the essential factors that drive seismic retroft costs, such as building construction 
and square footage; and (2) is reproducible using data available to decision-makers. 

Our methodology builds on FEMA 156 [4] and 157 [5], Typical Costs for Seismic Reha-
bilitation of Existing Buildings, Volumes 1 and 2, respectively—hereafter FEMA 156/157. 
We ft a series of regression models to the data used for the FEMA reports, with the mod-
els varying in the level of data required; e.g., a decision-maker may not have information 
on building construction for each asset in their inventory, or the decision-maker may have 
an expectation for duration of construction. In this way, we can quantify the trade-off (in 
terms of prediction error) from estimating retroft costs subject to data availability, provid-
ing decision-makers with a set of options for estimating costs together with a measure of 
predictive performance. We fnd that a simple model, in terms of data requirements, can 
deliver reliable cost predictions. 

Although we develop the methodology in order to estimate retroft costs for federal 
buildings, our approach is generalizable to any building inventory and can assist decision-
makers in prioritizing seismic mitigation strategies. 

1.1 Seismic Risk to Federally Owned and Leased Buildings 

Signifcant earthquake risk—the potential for damage from an earthquake—threatens fed-
eral buildings and, consequently, a functioning federal government. To get a picture of 
seismic risk to federal buildings, Fig. 1 maps peak ground acceleration ( pga) with a 10 % 
probability of exceedance in 50 years for the continental United States.2 

Figure 2 maps the concentration of federally owned and leased buildings in the conti-
nental United States. Note the overlap of high building density with high seismic hazard in 
many parts of the country, particularly in the west coast. 

Table 1 provides a more detailed picture of seismic risk to federal buildings. The table 
presents summaries of seismic hazard ( pga, as discussed above), as well as total number of 
buildings and total area by agency.3 

1Typically the International Existing Building Code (IEBC). 
2We discuss the use of this measure to capture seismic hazard (seismicity) in Section 2.1. 
3Federal building data in Fig. 2 and Table 1 is based on 130 819 buildings from the Federal Real Property 
(FRPP) for Fiscal Year 2015 (FY15). See https://www.realpropertyprofle.gov/FRPPMS for more informa-
tion. 
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Fig. 1. Peak ground acceleration (pga) with a 10 % probability of exceedance in 50 years for the continental United States (Source: USGS). 
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Fig. 2. Federal building density map for the United States. Black dots represent buildings (Source: FRPP). 
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4 

Table 1. Hazard, buildings, and area by agency (Source: FRPP). 

Reporting agency Mean pga: %g Max pga: %g Number of buildings Area: 1000 sq ft (sq m) 

Department of Homeland Security 9.11 80 9563 52 258 (4855) 
Department of Energy 9.09 60 10 682 115 430 (10 723) 
Tennessee Valley Authority 8.88 60 2442 28 317 (2631) 
Department of Agriculture 8.31 80 24 193 56 657 (5263) 
National Aeronautics And Space Administration 8.29 80 2700 47 202 (4385) 

Federal Communications Commission 8.18 40 47 108 (10) 
Department of the Interior 7.59 80 43 127 103 228 (9590) 
Environmental Protection Agency 6.91 30 172 4215 (392) 
Department of Commerce 6.67 60 614 8937 (830) 
Department of Labor 6.67 60 2371 25 464 (2366) 

Department of Veterans Affairs 6.17 60 7970 170 361 (15 827) 
Department of the Treasury 5.93 60 106 6371 (592) 
Department of Transportation 5.90 80 11 088 25 733 (2391) 
General Services Administration 5.64 60 8628 427 270 (39 693) 
Broadcasting Board of Governors 5.60 15 30 137 (13) 

Department of Justice 5.30 40 3879 70 434 (6543) 
National Archives and Records Administration 4.70 30 27 4910 (456) 
National Science Foundation 3.35 30 208 1274 (118) 
Department of Health and Human Services 2.99 25 2790 35 738 (3320) 
Department of State 2.59 30 140 1437 (133) 

Smithsonian Institution 2.58 5 25 1595 (148) 
Offce of Personnel Management 2.50 3 4 75 (7) 
DC Court Services & Offender Supervision Agency 2.00 2 10 239 (22) 
John F. Kennedy Center for the Performing Arts 2.00 2 1 1500 (139) 
United States Holocaust Memorial Council (Holocaust Museum) 2.00 2 2 320 (30) 
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1.2 Existing Literature and Alternative Methodologies 

The most obvious approach to estimating retroft costs is to hire an consulting engineering 
or construction frm with the appropriate expertise. In principle, a decision-maker can 
obtain better estimates with access to better data. In particular, if a decision-maker has 
the time and money, an engineering consulting frm can provide precise estimates for each 
building in his inventory. 

For a federal agency with hundreds, if not thousands, of buildings in its inventory, 
this is time consuming and prohibitively costly. Absent the availability of such primary 
data, a decision-maker who wants to estimate retroft costs must rely on secondary data. 
Unfortunately, secondary data on seismic retroft costs are not readily available, either for 
free or for purchase through a vendor. 

The existing literature on estimating seismic retroft costs refects these inherent data 
challenges. The literature itself is fairly small, relying on a handful of datasets collected 
specifcally for research. These few data sets offer the most realistic option for using sec-
ondary data to estimate seismic retroft costs. Methodologically, the papers largely predict 
retroft costs using some form of regression analysis. 

FEMA 156/157 [4, 5] introduce three alternative methodologies for estimating retroft 
cost, the most sophisticated being a linear regression model. The methodologies are applied 
to a unique database collected specifcally for the reports. In Section 2.1, we discuss the 
data in more detail. 

The FEMA 156/157 data appears to be the only large database of seismic retroft costs 
for the United States that is readily available. Lew [6], for instance, applies the FEMA 
methodology to estimate retroft costs for ten existing buildings owned by FEMA. Note 
that the application of this methodology implicitly depends on the FEMA 156/157 data, as 
the cost estimates are obtained using the regression coeffcients from the original report. 

In a series of papers, Jafarzadeh et al. [7–9] collect and analyze a database on retroft 
costs for 158 public schools in Iran. Jafarzadeh et al. [9] provides the associated data (in 
the appendix), as well as a detailed discussion of the data collection effort and a description 
of the data. 

Jafarzadeh et al. [7] analyzes the data using standard linear regression techniques, while 
Jafarzadeh et al. [8] applies artifcial neural networks to predicting costs, a non-parametric 
regression approach. The main objective of the papers is to explore which predictors matter 
most for retroft cost (the former) and the parameterizations that are likely to minimize 
prediction error (the latter). 

More recently, Nasrazdani et al. [10] collected their own database of 167 school retrofts 
in Iran. The authors use Bayesian linear regression in order to predict retroft costs. The 
main result is that the increase in lateral strength, together with pre-retroft building value, 
are the most important predictors of retroft cost. 

Chen and Huang [11] analyze retroft costs and duration for schools in Taiwan. The 
authors also compare linear regression to neural networks. Note that, unlike the papers by 
Jafarzadeh et al., these are retrofts that occur due to reconstruction following earthquake 
damage. 

5 
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Hopkins and Stuart [12] adopt a different methodological approach, with a very dif-
ferent goal. They analyze data on buildings throughout New Zealand in order to conduct 
a beneft-cost analysis. To this extent, they collect data on buildings, including seismicity 
and foor area, and compute retroft costs based on an undisclosed formula (likely based on 
typical engineering assessments). Thus, retroft costs are essentially taken as given and the 
objective is to use them as inputs in computing a beneft-cost ratio. 

The main takeaways from the existing literature are that the data used is either: (1) not 
available to the public; or (2) not applicable to construction practices in the United States. 
The central motivation for using the FEMA 156/157 data is that it is a very detailed data 
set of cost estimates, compiled from engineering consulting frms, for a large inventory of 
buildings, and is available to the public. Moreover, the data is most applicable to federal 
buildings as a majority of the buildings built in the United States. 

Updating the FEMA 156/157 data is desirable, but would be a tremendous effort. Thus, 
we propose that a decision-maker can use this data, together with the approach developed 
in this report, in order to easily obtain retroft cost estimates. Our approach, introduced 
in Section 2.3, relies on this data and builds upon the FEMA 156/157 methodology. Our 
methodology is designed to be: 

1. Plausible, in the sense that the model captures the essential elements of the cost to 
seismically retroft an existing building; 

2. Tractable, in the sense that both data and computational requirements are reason-
able, and thus, e.g., a decision-maker at a federal agency can use the approach; 

3. Generalizable, in the sense that the approach applies to non-federal buildings as 
well. 

Short of collecting primary data, we believe this offers a reasonable alternative for obtaining 
retroft cost estimates. 

1.3 Applying the Methodology to Federal Buildings 

In a forthcoming report, we apply the methodology developed in this report to estimating 
retroft costs for federally owned and leased buildings. The objective is to obtain cost esti-
mates for each reporting agency in the FRPP data in order to provide federal agencies with 
some guidance for retroft decisions. Federal agencies can directly apply our methodology 
themselves and potentially obtain more accurate estimates. 

6 
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2. Cost Estimation: Methodology 

Retroft costs vary with a building’s unique characteristics; e.g., building construction type, 
age, and location. Collecting such data is time consuming and expensive, and it is un-
likely to be collected for large building inventories unless done so specifcally for a large 
construction project such as a seismic retroft. 

In attempting to predict retroft costs, the most natural approach is to use information 
on past retroft projects. However, such data is diffcult to come by, especially data that 
includes details on building characteristics. 

Fortunately, a reliable source for such cost estimates exists. FEMA 156 [4], published 
in 1994, and FEMA 157 [5], published in 1995, provide both a methodology for estimating 
seismic retroft costs and an extensive database of retroft costs. 

2.1 The FEMA 156/157 Retroft Cost Data 

FEMA 156/157 [4, 5] update a 1988 FEMA report on the seismic rehabilitation of existing 
buildings. The frst edition introduced a simple methodology for estimating retroft costs, 
based on a sample of cost estimates for 614 buildings. However, as noted in FEMA 156 [4], 
“most of the original data points were derived from rather limited studies.” For instance, the 
data predominantly consisted of unreinforced masonry (URM) buildings, which are known 
to be at much higher risk than other building types. 

The second edition not only expands the methodology, but also improves the quality of 
the data on which the analysis is based. This is accomplished in two ways: 

• The collection of a larger sample (2088 cost estimates); 

• A quality control process for the data collection. 

Moreover, signifcant advances in retroft construction are cited in the intervening period, 
highlighting the importance of updating data on retroft costs. 

The cost estimates collected for FEMA 156/157 [4, 5] represent actual or estimated 
(“by an experienced design professional”) retroft project costs for buildings in the United 
States and Canada. The data collected includes a detailed survey of building characteristics 
(e.g., age, location, and building type). Importantly, the data is “validated” through follow-
ups with survey respondents, and assigned a quality control rating (or “quality factor”) 
to ensure that each response is “objective and reliable.” Cost estimates with low quality 
control ratings are removed from the database, with the intent to improve the overall quality 
of the data. 

In addition to building characteristics, retroft costs are infuenced by two other, im-
portant factors: building seismicity, the level of seismic hazard exposure; and performance 
objective, building anticipated performance in a seismic event. 

Building seismicity is assigned using a map featured in the the 1991 edition of the 
NEHRP Recommended Provisions for the Development of Regulations of New Buildings 
[13]. Based on our examination of the map as reproduced in FEMA 156 [4], the measure 
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of seismicity used in the report appears to be “Effective Peak Acceleration” (EPA), devel-
oped in the report Applied Technology Council (1978) (ATC-3), a measure loosely related 
to peak ground acceleration.4 The FEMA model, discussed in Section 2.2, depends on 
four seismicity categories based on EPA: Low (L), Medium (M), High (H), and Very High 
(VH).5 In Section 2.1.1, we discuss how seismicity can be updated using current USGS 
seismic hazard maps. 

The performance objective categories represented in the FEMA data are, as defned in 
FEMA 156 [4]: 

• Life Safety (LS): Allows for unrepairable damage as long as life is not jeopardized 
and egress routes are not blocked. 

• Damage Control (DC): Protects some feature or function of the building beyond 
life-safety, such as protecting building contents or preventing the release of toxic 
material. 

• Immediate Occupancy (IO): Allows only minimal post-earthquake damage and dis-
ruption, with some nonstructural repairs and cleanup done while the building remains 
occupied and safe. 

The loose defnitions provided in FEMA 156 [4] suggest that DC is equivalent to LS plus 
nonstructural improvements, and would more likely coincide with current defnitions of LS 
(e.g., in RP-8 [1]. In Section 3, we compare retroft cost estimates for each performance 
objective. 

A version of the data used in FEMA 156/157 is available online through FEMA’s Seis-
mic Rehabilitation Cost Estimator (SRCE),6 a web-based app for estimating retroft costs 
that is no longer maintained. 

The most important discrepancy between the SRCE data and the data cited in FEMA 
156/157 [4, 5] is that the data on occupancy class (whether a building is an offce or a 
warehouse, for instance) is missing. This is an important component of the FEMA model, 
as discussed in Section 2.2. 

Several other, less consequential, discrepancies are worth noting. First, the SRCE data 
is normalized to 1993 US dollars (USD) for typical construction costs in California. In 
contrast, FEMA 156/157 normalize the data using typical construction costs in Missouri, in 
1993 USD. This is not critical to our results, but we do caution strict comparisons between 
the original FEMA 156/157 results and our replication attempt in Section 3.1. 

4We were unable to obtain the 1991 NEHRP report. The map published in FEMA 156 [4] defnes seismicity 
based on a coeffcient, Aa, and states that the map was “prepared by Applied Technology Council.” A visit to 
https://earthquake.usgs.gov/hazards/learn/technical.php reveals that the Aa coeffcient originates in ATC-3, 
and quotes ATC-3, stating that Aa coeffcients “do not at present have precise defnitions in physical terms.” 

5In particular, FEMA 156/157 [4, 5] and the ATC-3 map of EPA suggest each building is assigned a zone, 
ranging from zone 1 (EPA < 0.05) through zone 7 (EPA >= 0.4), with zones and 1 and 2 belonging to L; 
zones 3 and 4 belonging to M; zones 5 and 6 belonging to H; and zone 7 being VH. See Fig. 10. 

6https://www.fema.gov/media-library/assets/documents/30220 
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Another discrepancy is that a fourth performance category appears in the SRCE data: 
Risk Reduction (RR). Based on the sample survey presented in the Appendix of FEMA 
156 [4], this category is defned as “rehabilitating parts or portions of a structure with-
out considering the entire structure for life-safety or greater performance.” Thus, RR is 
weaker than LS and is not relevant to estimating current retroft costs. Moreover, RR is not 
discussed in the reports and accounts for only 0.031 % of the data. 

Finally, the SRCE data consists of 1978 observations, compared to 2088 in the original 
reports. While it does not appear to be a substantial loss of data in absolute terms, it does 
represent a 5 % loss of data relative to the original report. Nevertheless, the SRCE data 
provides a tremendous amount of information and thus offers a reasonable starting point 
for estimating retroft costs based on secondary data. 

In order to provide a picture of the SRCE data, summary statistics for some of the 
key variables are shown in Tables 2 and 3. Table 2 summarizes the data on cost (structural 
construction cost in USD per square foot), age (in years), area (in thousands of square feet), 
and stories (above ground plus below ground stories, if any). Note, in particular, the large 
variation in costs per square foot. The table also includes summary statistics for building 
height (in feet), duration of retroft construction (in months), and peak ground acceleration 
(in %g where g is the acceleration of gravity),7 which we discuss in Section 2.3. 

Table 2. Summary statistics for SRCE data: cost and select building characteristics (N = 1083). 

Stat Cost: USD/sq ft (sq m) Age: years Area: 1000 sq ft (sq m) Stories 

Min 0.3 (3.1) 0 0.2 (0) 1 
Mean 29.7 (320.1) 44 64.8 (6) 3 
Median 16 (172.4) 40 25 (2.3) 2 
Max 1011.4 (10887) 153 1430.3 (132.9) 38 
Std dev 47.3 (509) 22 109.1 (10.1) 3 

Table 3 summarizes the other two variables that are critical to estimating retroft costs: 
building seismicity, as defned in ATC-3 and discussed above, and the performance objec-
tives of LS, DC, and IO. The table presents the frequencies of each seismicity-performance 
objective pair. Note that the data used in Tables 2 and 3 exclude those observations with 
performance objective RR. 

Descriptive statistics for other characteristics, including building type, as well as other 
information from FEMA 156/157, can be found in Appendix 4.2. 

2.1.1 Using the FEMA Data to Estimate Current Retroft Costs 

Our methodology, discussed in Section 2.3, is based on ftting a series of regression models 
on a subset of the SRCE data (the “training” step) and estimating the associated prediction 

7The acceleration of gravity is 9.8(m/s2). See https://earthquake.usgs.gov/learn/glossary/ for a complete def-
inition of g. 
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Table 3. Proportions of each seismicity-performance objective pair in the SRCE data (N = 1083). 

LS DC IO 

L 0.009 0.038 0.021 
M 0.026 0.100 0.048 
H 0.160 0.026 0.020 
VH 0.371 0.112 0.069 

error on the rest of the data (the “testing” step). Minimizing prediction error in the testing 
step depends on having a good training data set. 

Although the SRCE data is the most realistic option for training a model to predict 
retroft costs for the United States, the data is rather dated.8 Updating the database would 
be arduous. Nevertheless, with proper adjustments the data can provide reasonable cost 
estimates. 

In order to estimate current retroft costs, two considerations are the adjustment of costs 
to current dollars and the adjustment of seimisicy to refect current seismic hazards. 

Cost adjustment. The SRCE data includes raw costs, as well as time and location 
adjustment factors. The time factor normalizes costs to 1993 USD. The location factor 
normalizes costs to California construction costs, to account for regional differences in 
construction and materials costs. 

Time adjustment factors in FEMA 156/157 [4, 5] are based on the Engineering News 
Record (ENR) 20-city average Building Construction Index (BCI).9 Location adjustment 
factors are constructed from the Means Construction Guide, another index of construction 
costs.10 

Since the SRCE cost data is already normalized to a single state, we create an annual 
California BCI by averaging the BCI for Los Angeles and San Francisco. Given costs (per 
square foot) in California for 1993, CCA,1993, the average construction cost in the United 
States for 2016 is: 

BCIUS,2016CUS,2016 = CCA,1993 (1)
BCICA,1993 

where BCICA,1993 is the California BCI for 1993 and BCIUS,2016 is the 20-city average BCI 
for 2016. Thus, we normalize costs to be average national costs in 2016 USD. 

Seismicity adjustment. The ATC-3 map based on EPA is outdated. Moreover, if a 
decision-maker wants to make predictions for a specifc building inventory, it is diffcult to 
assign seismicity based on this map. 

8Only 9.45 % of the buildings are Canadian. 
9ENR’s BCI is an index that tracks labor costs and the costs of three construction components (steel, cement, 
and limber) in each of twenty cities in the United States. See http://www.enr.com/economics/faq for more. 

10The Means Construction Guide, now called the RSMeans Construction Cost Index, tracks construction 
costs in 150 cities. Location adjustment factors are computed by averaging city indexes at the state level. 
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Given that EPA is correlated with peak ground acceleration, using current seismic haz-
ard maps based on the latter is a reasonable way to assign seismicity to a building. We focus 
on peak ground acceleration with a 10 % probability of exceedance in 50 years (pga), be-
cause it appears most closely related to EPA, but a user can choose whatever measure they 
like. The objective is to have some criteria for distinguishing high seismic-hazard buildings 
from low seismic-hazard buildings. 

Given approximate location information (e.g., address or latitude and longitude), as-
signing pga using current USGS seismic hazard maps is fairly straightforward. 

Location information, however, may be imprecise or missing altogether. In order to 
assign seismicity, it is worth exploring a suitable aggregate measure. For instance, if we 
know the building’s county (and state), we can assign the building some measure of county-
level seismicity. 

We propose using a population weighted-average. The motivation for using a popu-
lation weighted-average is that population density is a proxy for building density, which 
increases seismic risk by increasing exposure to the hazard. Of course, a decision-maker 
may reject this assumption, and a simple average may suffce. As mentioned earlier, the 
goal is to distinguish buildings that face high seismic hazard from those that face low seis-
mic hazard. 

Suppose we have population information at the Census tract level. If we overlay our pga 
map on a Census tract map, the Census tracts will be split according to the pga contours 
(that is, the contours in Fig. 1). Then given population information for each tract, we 
compute a weighted average of pga at the desired level (e.g., county), using the population 
in each sub-tract as weights for the pga. 

Figure 3 maps county-level pga, weighted by 2010 Census tract population, for the 
continental United States. The seismic hazard map is the same as the one in Fig. 1, based 
on the 2014 USGS long-term model. 

2.1.2 The FEMA 156/157 “Super Database” 

In order to leverage the quality of information in the data, the analyses in FEMA 156/157 
[4, 5] are based on a synthetic data set derived from the original database. The result is 
a “super database” consisting of 83 000 observations. The quality control ratings in the 
original data are used as weights in simulating new cost samples. 

The main motivation for creating a synthetic data set appears to be to increase the 
sample size, with the intent of increasing the quality of the observed cost estimates. On the 
surface, the procedure bears some similarity to standard re-sampling techniques such as the 
bootstrap, except that it is applied before the analysis.11 

11The procedure is referred to as a generic “Monte Carlo Simulation” in FEMA 156/157 [4, 5]. 
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Fig. 3. County-level pga, weighted by 2010 Census tract population. 
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Note, however, that by design the synthetic data may be highly correlated and lead 
to overftting in the training step based on the over-representation of “high quality” cost 
estimates.12 In Section 3.2, we provide empirical results that suggest overftting is a real 
concern. Thus, our main results are based on the original raw data. 

2.2 The FEMA 156/157 Linear Regression Methodology 

FEMA 156/157 [4, 5] present three methods for estimating costs, differing in the amount 
of information needed to compute estimates (and thus in their general applicability). 

• Option 1: mean cost by building type; 

• Option 2: mean cost by building type, conditional on performance objective and 
seismicity; 

• Option 3: linear regression (predicting the conditional mean). 

FEMA 156 also provide a clear defnition of cost as being “mean structural cost of the 
seismic rehabilitation of a building...and does not include the cost of replacing architectural 
fnishes” ([4], page 1-3). 

The most general method (their “Option 3”) is based on the following linear regression 
model. The structural cost per square foot, C, of retroftting a particular building, condi-
tional on observable building characteristics and target seismic performance category (the 
performance objective), is log-normally distributed. That is, ln(C) is a linear function of 
observable (and unobservable) characteristics: 

ln(C)sp = α + ζsp + β1 ln(Area)+ β2 ln(Age)+ β3 ln(Stories) 
(2)

+ β4(Occupancy class)+ β5(Occupancy condition)+ ε 

where s denotes the seismicity of the building, p denotes the performance objective of the 
retroft, and ε is the unobserved error term with normal distribution, ε N(0,σ2). 

The term ζsp is the combined fxed effect (interaction) of seismicity and performance. 
The FEMA base model considers the interaction between seismicity and performance ob-
jective, but not their individual effects. This captures the possibility that, for instance, the 
expected cost to retroft for life safety is higher the larger the seismic risk. The parameters 
of interest are thus {α,ζsp,β1, . . . ,β5}. 

The model given in equation (2) is ftted separately by building group, b. The 15 build-
ing construction types in the data are assigned to one of eight building groups, as shown in 
the Appendix, Fig. 11—presumably based on similarities.13 

The main motivation for this approach is to allow all coeffcients to vary by building 
group, b. Another advantage of this approach is that it does not make assumptions about 

12Overftting refers to the situation in which a trained model does a very good job of explaining the observed 
(training) data (e.g., in terms of prediction error), but does very poorly in explaining new data. 

13Strictly speaking, all three methods in FEMA 156/157 [4, 5] use building group rather than type. 
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the relationship between building groups; that is, no assumption is made on the relationship 
between εb and εb0 for b 6= b0 .14 

Note the additional predictors in equation (2). Occupancy class describes the primary 
building use (e.g., offce, warehouse, or hospital). Occupancy condition is defned as fol-
lows: 

• In-place (IP): work is scheduled around normal hours of occupancy; 

• Temporarily removed (TR): occupants are moved to another room in building during 
construction; and 

• Vacant (V ): building completely vacated during construction. 

Completely vacating the building is the most expensive option, while leaving occupants 
in-place is the lowest cost option. 

A natural question is whether it is necessary for any, let alone all, coeffcients to vary by 
building group. While this modeling approach does not make as strong assumptions about 
the error term as does pooling the data (perhaps with a fxed effect γb for building group), 
it does fail to capture potential “clustering” or other structure between groups. Moreover, 
it is likely that at least some effects are common across building groups (e.g., the effect of 
age on project cost). In the next section, we explore variations on the FEMA base model. 

2.3 Extending the FEMA 156/157 Model 

If we accept the premise that the FEMA model is a reasonable benchmark, given the paucity 
of retroft cost estimates and data, it is natural to ask if we can do better. Thus, we evaluate 
whether a better performing predictive model can be obtained. The metric we will use to 
compare our models to the FEMA model is prediction error (that is, the Mean Squared 
Error of predictions on our test set). See 3.1 for more details. 

Note that occupancy class is missing in the SRCE data, as discussed in Section 2.1. 
Thus, our version of the benchmark FEMA model, which we will call the base model, is: 

ln(C)sp = α + ζsp + β1 ln(Area)+ β2 ln(Age) 
(3)

+ β3 ln(Stories)+ β4(Occupancy condition)+ ε 

where equation (3) is estimated separately for each building group b. 
Given the discussion in the previous section, we consider whether it is necessary to 

vary all slopes and coeffcients by building group. We estimate a single model with build-
ing group fxed effects, rather than ftting separate regressions for each building group. 
Moreover, we include individual seismicity and performance objective fxed effects, ηs and 
δp, in addition to their interaction, ζsp ≡ ηs × δp. Finally, it is worth noting that the SRCE 
data includes information on a building’s historical status. The Historic Status Indicator is 

14Fitting separate regressions is equivalent to ftting a single regression in which each variable is interacted 
with the building group, b. 
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used to designate whether a retroft requires ”special consideration...for preserving historic 
character of the building” (FEMA 157 [5], pp. 38). 

Thus, the main model we propose is: 

ln(C)s,p,b = α + ηs + δp + ζsp + γb + β1 ln(Area)+ β2 ln(Age) 
+ β3 ln(Stories)+ β4(Occupancy condition) (4) 
+ β5(Historic)+ ε 

The main motivation for including the Historic indicator is that retrofts of historic buildings 
are likely to be very different, and more expensive, than retrofts of non-historic indicators. 
Our main model thus acknowledges these potential differences. 

In addition to the Historic indicator, the SRCE data includes a wealth of additional 
information. It is worth asking whether any other factors are important for predicting costs. 

One potential extension to the model given in equation (4) is to include information on 
building height, measured in feet (see Table 2): 

ln(C)s,p,b = α + ηs + δp + ζsp + γb + β1 ln(Area)+ β2 ln(Age) 
+ β3 ln(Stories)+ β4(Occupancy condition) (5) 
+ β5(Historic)+ β6 ln(Height)+ ε 

Another possibility is to use information on the duration of retroft construction. Thus, 
another alternative to (4) is: 

ln(C)s,p,b = α + ηs + δp + ζsp + γb + β1 ln(Area)+ β2 ln(Age) 
+ β3 ln(Stories)+ β4(Occupancy condition) (6) 
+ β5(Historic)+ β6 ln(Duration)+ ε 

Table 2 summarizes duration, given in months. 
Alternatively, suppose a decision-maker has information on past retroft costs. Such 

lagged costs could prove an important predictor for current costs. Given the SRCE data’s 
limited sample size, we consider a very simple lag, defned as the average of retroft costs 
for the previous year: 

∑ j∈N−1 ln(Cj)
lag(C) ≡ 

|N−1| 

where N−1 is the set of all observations in the year before C. Then another extension is the 
following: 

ln(C)s,p,b = α + ηs + δp + ζsp + γb + β1 ln(Area)+ β2 ln(Age) 
+ β3 ln(Stories)+ β4(Occupancy condition) (7) 
+ β5(Historic)+ β6(lag(C)) + ε 
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Finally, we consider training our model using our updated defnition of seismicity. In 
particular, following the discussion in Section 2.1.1, we use peak ground acceleration, pga, 
with a 10 % probability of exceedance in 50 years as our measure of seicmicity. 

Since the SRCE data only provides location to the county level, we use county-level 
pga, weighted by population. Thus, a third extension using pga is given below: 

ln(C)s,p,b = α + �ZZ ζsp + γb + β1 ln(Area)+ β2 ln(Age)η�s + δp + 
��C @ 

+ β3 ln(Stories)+ β4(Occupancy condition) (8) 

+ β5(Historic)+ β6(pga)+ ε 

A key difference between using the measure of seismicity given in the FEMA data and our 
county-level pga is that the latter is a continuous predictor rather than categorical. Thus, 
the question of interest regarding the model in equation (8) is whether a fner measure of 
seismicity improves prediction. 

2.4 Summary of the General Methodological Approach 

This section provides both a summary of the methodology, as discussed above, as well as 
a preview of the application of this methodology in Section 3. 

• We train a series of linear regression models, given by equations (3)–(8), on a subset 
of the SRCE data (the “training” step). 

• We estimate prediction error (MSE of predictions) on the test set (the SRCE data that 
is not used for training) (the “testing” step). 

• We compare prediction error for our proposed models to the benchmark FEMA 
model. 

In addition, we explore how data limitations (e.g., no information on building type) affect 
prediction error in Section 3.4. 

Note that the training and test sets do not include those observations with performance 
objective RR. In addition, since long-term USGS maps for pga are only available for the 
continental United States, we exclude the US Virgin Islands and territories (no buildings in 
the SRCE data are in Alaska or Hawaii).15 Finally, cost predictions based on the training 
data will be for 1993 USD in Missouri. To update costs to 2016 USD, simply multiply the 
cost per square foot by BCIUS,2016. 

15In Section 3, we use the hold-out Canadian data as another test set. 
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3. Cost Estimation: Main Results 

Before presenting the main results, we attempt to replicate the FEMA 156/157 [4, 5] results 
in order to have a baseline for comparison. The results are presented in Section 3.1. Note 
that the replication is performed on the full synthetic data set so that results are as close to 
comparable as possible. 

Section 3.2 then compares prediction error from training a model on the synthetic data 
to prediction error obtained from training on the raw data. The results suggest that training 
on the synthetic data leads to overftting: that is, the model only does well in terms of 
prediction error on the synthetic data it is trained on (i.e., good in-sample performance but 
poor out-of-sample performance). This is likely because the re-sampling approach used to 
generate the synthetic data leads to highly correlated observations. 

In Section 3.3, we present the results of training the models proposed in Section 2.3. 
The results demonstrate that ftting separate regressions based on building group is worse, 
in terms of prediction error, than ftting a single regression with suitable fxed effects. We 
also illustrate how data limitations (e.g., no information on building type) affect prediction 
error in Section 3.4. 

3.1 FEMA 156/157 Replication Results 

FEMA 157 [5] presents a detailed description of the “super database” construction. A dia-
gram from FEMA 157 that summarizes the steps is shown in Fig. 12 in the Appendix. The 
main idea is to use the quality factors for each observation to construct both a sampling dis-
tribution and to determine the number of samples drawn from the distribution.16 Samples 
are drawn so that each building group, seismicity, and performance objective are roughly 
equally represented in the synthetic data. 

Note that only costs are sampled; building characteristics remain fxed. Thus, for ex-
ample, if building i has a quality factor of 10, then 100 cost samples are drawn from the 
sampling distribution based on building i, with each of the 100 samples having the same 
building characteristics as building i. 

We attempt to replicate the original FEMA 156/157 results, using the base model given 
in equation (3), on our synthetic data set. The original regression results from FEMA 
156/157 are presented in the Appendix, Fig. 13. Replication results are presented in the 
Appendix, Tables 11 and 12, with standard errors in parentheses. Note that the coeffcient 
estimates are not identical, but for the most part coincide with the original results in terms 
of magnitude and sign.17 Moreover, one might be tempted to simply use the benchmark 
FEMA model after examining the high statistical signifcance of almost all coeffcient esti-
mates. 

16In particular, a log-normal sampling distribution is used, with mean equal to the observed cost and coeff-
cient of variation decreasing with the quality factor. Number of samples increase linearly with the quality 
factor. See Chapter 4, FEMA 157 [5]. 

17Recall that occupancy class is missing, in addition to the differences with respect to the location adjustment 
and the sample size of the raw data. 
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3.2 Prediction Error and Overftting on the Synthetic Data 

Statistical signifcance, however, does not tell the whole story. If the objective is to obtain 
reliable predictions, a natural metric is prediction error. In this section, we explore the 
possibility that the base model is overftting the synthetic data by comparing prediction 
errors on both the raw and synthetic data. In addition, we compare prediction error for the 
base and main models on each data set. 

We randomly split our raw and synthetic data sets into two subsets:18 

• a training set of size n for ftting the model (i.e., estimating the coeffcients); and 

• a test set of size m for estimating prediction error. 

We defne prediction error as the Mean Squared Error (MSE) of predictions, 

m 
MSE ≡ 

1
∑(ŷi− yi)

2 , (9)
n i=1 

where yi ≡ ln(Ci), i = 1, . . . ,m, is the true (log) cost in our training set of size m, and 
ŷi, i = 1, . . . ,m, are the associated predictions based on a model ft to the training set. 

The key to estimating prediction error is that the test set simulates “new data,” as the 
data has not been seen by the model used for estimating the coeffcients. If we expect 
the synthetic data to be a reliable proxy for data generated from the true data generating 
process, then prediction error should not differ substantially between the raw and synthetic 
data. Thus, the main question with respect to overftting is whether prediction error behaves 
differently on the raw data than it does on the synthetic data. 

To get a sense of the base model’s relative performance, we compare prediction error 
for the base model to that for our main model, equation (4). Thus, we train the base and 
main models on training sets derived from either the raw or the synthetic data, and estimate 
prediction errors based on the respective test sets. 

Table 4 shows the results of this experiment, together with the mean predicted and true 
(log) costs. Figures 4–6 provide more detail. 

Table 4. MSE of predictions, raw vs synthetic data. 

Data Model MSE Predicted (log) cost Actual (log) cost 

raw base 1.06 2.77 2.72 
raw main 1.01 2.76 2.72 
synthetic 
synthetic 

base 
main 

0.69 
1.08 

2.95 
2.96 

2.96 
2.96 

18The synthetic data, sample size Ns = 75 000, is split as 60 % training and 40 % testing. Given the signif-
cantly smaller sample size of the raw data, Nr = 1716, the raw split is 75 % training and 25 % testing. 

18 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1973



synthetic

raw

0 2 4 6

0 2 4 6

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

Actual (log) cost

P
re

di
ct

io
n 

er
ro

r

Model base main

Fig. 4. Prediction error across true values (vertical line is the true mean), for raw and synthetic 
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Fig. 6. Prediction error distributions. Midline of box is median and labeled point is the MSE. 
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The results reveal that the base model only outperforms the main model on the synthetic 
data. If we had accepted the coeffcient estimates from the replication exercise, and simply 
compared prediction errors for the base and main models on the synthetic data, we would 
conclude that the FEMA model is better. For instance, in Fig. 4, we see that both models, on 
each data set, achieve a fairly low prediction error around the true mean. On the other hand, 
the base model dominates the main model in terms of prediction error on the synthetic data. 

However, the sizable difference in prediction error between the two models disappears 
when we train our models on the raw data. As Figures 4 and 5 show, predictions further 
from the mean are sometimes much worse when we use the base model. 

Figure 6 illustrate the prediction error distributions. The boxes represent the lower and 
upper quartiles, with the midline representing the median. The mean (i.e., the MSE) is also 
shown. The main observation is that the distributions of prediction error for both models 
are more disperse on the synthetic data. 

Comparing prediction error on another hold-out set reveals an even starker contrast. 
Recall that we are training our models on data for buildings within the contiguous United 
States. In particular, we omit the FEMA data on Canadian buildings. Thus, evaluating 
predictions on this set of Canadian buildings provides a stronger test of predictive power 
as the data is, in a very real sense, truly different from the training data. Table 5 shows 
how much worse the base model performs relative to the main model on both the raw and 
synthetic datasets.19 

Table 5. MSE of predictions for Canadian data, from training on raw vs synthetic data. 

Data Model MSE Predicted (log) cost Actual (log) cost 

raw base 2.507 2.98 2.81 
raw main 0.709 2.65 2.81 
synthetic 
synthetic 

base 
main 

2.432 
0.993 

3.19 
2.85 

2.81 
2.81 

Together with Table 4, these results suggest that the base model is overftting on the 
synthetic data. Thus, we caution against using the synthetic data method in FEMA 156/157 
[4, 5]. Moreover, the relative performance of the main model on the raw data suggests that 
training models separately by building group is unnecessary. Next, we explore whether our 
proposed extensions can reduce prediction error even further. 

3.3 Predicting Cost Using the Main Model and Its Extensions 

We consider each of the extensions discussed in Section 2.3, equations (5)–(8), in addition 
to the main model given in equation (4). Each model is trained on the raw training set and 

19The hold-out Canada data constitutes 187 observations. 
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prediction errors are estimated on both the raw test set and the hold-out Canadian test set.20 

We also consider a model without the interaction between the seismicity and performance 
objective fxed effects, ζs,p ≡ ηs × δp. 

Table 6 presents prediction error for each model, relative to the base model. The test 
error is estimated on the raw test set. Note that each model outperforms the base model, in 
terms of reducing prediction error. 

Table 6. MSE relative to base model. 

Model MSE Relative Error 

duration model; equation (6) 0.925 -13.05 % 
pga model; equation (8) 0.997 -6.22 % 
main model; equation (4) 1.013 -4.77 % 
lag model; equation (7) 1.017 -4.35 % 
no interactions model 1.029 -3.2 % 
height model; equation (5) 1.044 -1.81 % 

The main model provides a reduction in prediction error of over 4 % relative to the base 
model. Note that omitting the interaction between seismicity and performance, ζsp, still 
reduces prediction error by 3 % relative to the base model. However, the lower MSE of the 
main model suggests that the interaction is important for prediction. 

The height model, the worst performer, still reduces prediction error by a little less than 
2 %. Nevertheless, the results suggest that adding height to the main model as in equation 
(5) does not improve–and may actually hurt–prediction. 

While the lag reduces prediction error relative to the base model, it is outperformed by 
the main model–though not by much. In choosing between the main model in equation 
(4) and the lag model in equation (7), an important consideration is the availability of data 
on past retroft costs. Given the relative data demands of the models, the simplicity of the 
main model makes it the more attractive alternative. 

The model in equation (8) that uses pga (see Section 2.1.1), a continuous measure of 
seismicity, reduces prediction error by over 6 % relative to the base model, outperforming 
the main model. This is encouraging for a decision-maker looking to apply this methodol-
ogy to his own data, since it is reasonable that the decision-maker would use current USGS 
seismic hazard data for assigning seismicity. 

The best performing model includes information on duration of the retroft, as given 
in equation (6). The improvement relative to the base model is remarkable at 13 %, far 

20The raw data is randomly split as: 75 % for training and 25 % for testing. Given the restrictions discussed 
in Section 2.4 (the exclusion of US territories and performance objective RR) the raw data sample size is 
N = 1716, and the split results in n = 1287 training samples and m = 429 test samples. Note that certain 
observations are missing age, occupancy condition, or historic indicator, so the actual degrees of freedom 
are much lower. Given the missing data (and excluding buildings with age equal to zero), the true training 
size is n = 812. 
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outperforming the main model. That the length of construction is an important predictor of 
cost is perhaps not too surprising in hindsight. Moreover, in applying the methodology a 
decision-maker does not have to collect data on duration, but may instead produce a range 
of estimates parameterized by duration. Thus, in terms of data demands, the duration model 
retains the simplicity of the main model while potentially improving prediction. 

We also estimate prediction error on the hold-out Canada data, as shown in Table 7. 
Note that the ordering is very different. The duration model is now the worst performer, 
while the model without interaction term ζsp is the best. Nevertheless, all of the models 
outperform the base model on the Canadian data.21 The main model, with MSE almost 
identical to the model with no interaction term, still stands out for its predictive perfor-
mance, relative simplicity, and data demands. 

Table 7. MSE relative to base model on Canada data. 

Model MSE Relative Error 

no interactions model 0.701 -72.04 % 
main model 0.709 -71.74 % 
lag model 0.729 -70.93 % 
height model 0.831 -66.84 % 
duration model 1.572 -37.3 % 

3.4 How Data Limitations Affect Prediction Error 

It may not always be possible to collect all of the relevant building characteristics to train 
the models from Section 2.3. A decision-maker may not have the time or resources to col-
lect the relevant data, while a researcher may not have access to all of the data. Information 
on building type, for instance, may be particularly diffcult to obtain. 

In this section, we explore how such data limitations affect prediction error. For the 
sake of illustration, we consider the following scenarios: 

• We do not have information on building type (or group); 

• We do not have information on building age; 

• We do not have information on number of stories. 

In addition, we consider combinations of these scenarios.22 

21Note that the pga model is not tested on the Canada data, since we use pga for the United States. 
22Rather than exploring all possible data limitations, we assume that building area and historic status are 

basic building characteristics that should be easy to obtain. A similar exercise may be performed on these 
characteristics. 
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We train the main model, equation (4), subject to these data limitations. For example, 
with no building age, the model is: 

XXXXXXln(C)s,p,g = α + ηs + δp + ζsp + γg + β1 ln(Area)+ ������
β2 ln(Age) 

+ β3 ln(Stories)+ β4(Occupancy condition) (10) 
+ β5(Historic)+ ε 

Table 8 presents the prediction error of these models, relative to the main model with 
no data limitations. 

Table 8. MSE subject to data limitations, relative to main model. 

Model MSE Relative Error 

No age 1.00 -1.2 % 
No age, stories 1.02 0.36 % 
No stories 1.02 0.42 % 
No building group 1.07 5.46 % 
No age, stories, building group 1.10 8.8 % 

For the most part, training the main model, equation (4), subject to data limitations 
leads to an increase in prediction error. This is perhaps not too surprising, and suggests that 
the main model is the best alternative to the FEMA model. 

The model with no stories yields a higher prediction error than the main model without 
data limitations, though not by much. Interestingly, the main model with no age informa-
tion performs better than the main model, though only by about 1 %. Thus, if we have no 
information on age or stories, the increase in prediction error is almost negligible. 

As expected, our predictive performance is penalized without information on building 
type. The model without building group increases prediction error by about 5.5 %, a sig-
nifcant loss in predictive ability. Without information on age, stories, or building group, 
we see an almost 9 % increase in prediction error. 

Figures 7 and 8 illustrate the relative trade-off in prediction error from excluding age 
and stories, which are only marginally important, and excluding building group, which 
appears to be more important. In particular, note the discrepancy from the main model in 
Fig. 8 away from the mean. On the other hand, prediction errors are fairly close across the 
range of true values when we only exclude age and stories, as seen in Fig. 7. 

The preceding results, together with the results in Section 3.3, suggest that the main 
model given by equation (4) provides the most reasonable option for estimating retroft 
costs. 
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Fig. 7. Prediction errorm with and without age, stories (vertical line is the true mean). 
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Fig. 8. Prediction error with and without building group (vertical line is the true mean). 
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4. Conclusion 

We present a methodology for estimating retroft costs that builds on the methodology 
developed in FEMA 156 [4] and 157 [5]. Our approach uses the data collected for the 
FEMA reports to train a series of regression models, varying in their data requirements. In 
a forthcoming report, we apply this methodology to obtain retroft cost estimates for federal 
buildings. 

Estimates of prediction error allow comparison across models. The results suggest that 
a simple modifcation to the FEMA base model—equation (3)—can improve prediction 
in many applications. In particular, our main model—equation (4)—is a single regression 
with building group fxed effects, in contrast to ftting the base model separately for each 
building group, that also includes an indicator for whether a building is deemed historical. 
Our results suggest that this model yields a lower prediction error than the FEMA base 
model. 

Prediction error estimates also allow us to quantify the penalty for data limitations. 
For instance, information on building type seems to be important for prediction, while 
information on building age does not. Thus, information on building type appears to be 
crucial for accurate cost predictions. 

One result of particular interest for researchers or decision-makers interested in us-
ing the FEMA data is that models should be trained on the raw data itself and not on a 
synthetic data set generated from the raw data using the approach in FEMA 156/157 (see 
Section 2.1.2 for details). Our results suggest that using the synthetic data may lead to 
overftting: models trained on the synthetic data may produce good in-sample predictions 
but poor out-of-sample predictions, and so cannot be be expected to perform well on new 
data. The FEMA base model is a striking example of this pitfall, as shown in Section 3.2. 

4.1 Limitations 

Our results should be taken with caution. The major caveat is that the FEMA data used 
for training our models is outdated. Adjusting cost estimates using the BCI, as suggested 
in Section 2.1.1, is a suitable, though imperfect fx. Access to more recent data on seismic 
retroft costs should improve the models’ predictions. However, given the relative scarcity 
of data—especially for the United States—training models on the FEMA data provides a 
sensible starting point. 

This limitation highlights the importance of sharing cost data. Our results suggest that 
retroft cost information that includes a building’s area, historical status, seismicity, and 
type, in addition to the retroft performance objective and occupancy condition, would be 
suffcient for updating the retroft cost database. Data shared in this way should not com-
promise sensitive or private information. 
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4.2 Guidance and Future Directions 

We focus on structural construction costs. The FEMA data also includes non-construction 
costs (e.g., permits, fees, and relocation costs). These could easily be added to structural 
retroft estimates ex post. However, this approach does not help with predictions of total 
cost for new data. 

An alternative approach is to train a (potentially new) set of models to predict total cost 
costs. The models may differ from ours, as the predictors of total cost may differ from 
those for structural costs. In particular, building characteristics may be poor predictors of 
non-construction costs. We explore models for total costs in future work. 

More importantly, our focus on construction costs ignores indirect costs, such as loss 
of productivity during a retroft. Construction projects may also impose externalities on 
neighbors, in the form of noise or disruption to traffc. Nevertheless, obtaining reasonable 
construction cost estimates is an important frst step. In future work, we attempt to quantify 
direct and indirect costs of seismic retrofts. 

Finally, cost estimates provide important information to decision-makers, but may not 
help in making decisions. Given a range of estimates, how does a decision-maker prioritize 
buildings in his inventory for retroft? Should the decision-maker only retroft the most 
vulnerable buildings? How does a decision-maker choose between LS and IO? We examine 
decision-making protocols, using our estimates as input data, in future work. 
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Appendix A: Supplemental Materials 

This Appendix includes the following supplemental materials: 

• Supplemental information from FEMA 156/157 and additional descriptive statistics 
for SRCE data. 

• Replication results and coeffcient estimates for trained models from Section 2.3. 

Supplemental Information: FEMA 156/157 and SRCE data 

Figure 9 presents the original defnition for the seismicity-performance objective interac-
tion term (S-P) used in FEMA 156/157. We only use these terms in the replication. See 
Section 3.1. 

The ATC-3 seismicity map, based on Effective Peak Acceleration (EPA), used in FEMA 
156/157, is shown in Fig. 10. Note that the EPA coeffcient, Aa, is binned into seven 
categories, corresponding to the seven seismicity “zones” in the SRCE data. See the second 
footnote in Section 2.3 for a description of the seismicity categories and zones. 

Figure 11, from FEMA 156, provides a description of the building types represented in 
the FEMA 156/157 data. The SRCE data refects these building types. Note that FEMA 
178, the source for the building type defnitions, has since been updated and now includes 
16 rather than 15 types; see FEMA 547 [3]. 

Table 9 provides a summary of the building groups and models represented in the SRCE 
data. Note the prevalence of Unreinforced Masonry (URM) buildings in the data. 

Table 10 provides additional summary statistics for the SRCE data. Specifcally, the 
table summarizes the predictors used in the extensions of the main model discussed in 
Section 2.3: construction duration (in months), building height (in feet and meters), and 
pga as defned in Section 2.1.1. 

Finally, Fig. 12, from FEMA 157, illustrates the step-by-step process for creating the 
synthetic data set (the “Super Database”) from the raw data. Section 2.1.2 provides more 
details. 

Coeffcient Estimates: Replication and Training 

Figure 13 presents the original coeffcient estimates from FEMA 156/157. The variables 
Cc,X1, . . . ,X6 are the constant, area, age, stories, seismicity-performance (S-P) interaction, 
occupancy class, and occupancy condition, respectively. Replication results are shown in 
Tables 11 and 12. See Section 3.1 for discussion. 

For sake of completeness, we also present coeffcient estimates for the models presented 
in Section 2.3 and trained in Section 3.3. The models are trained on the raw test set. 
Standard errors are given in parentheses. 
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Fig. 9. Seismicity-performance objective interaction term in FEMA 156/157 (Source: FEMA 156). 
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Fig. 10. ATC-3 seismicity map (Source: FEMA 156). 
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Fig. 11. Building groups and associated building types (Source: FEMA 156). 
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Table 9. Building groups and types in SRCE data. 

Building Group Model Count Percentage 

1 URM 572 33.33 % 

2 
W1 

W2 

52 

52 

3.03 % 

3.03 % 

3 
PC1 

RM1 

55 

57 

3.21 % 

3.32 % 

C1 108 6.29 % 
4 

C3 264 15.38 % 

5 S1 78 4.55 % 

S2 32 1.86 % 
6 

S3 16 0.93 % 

7 S5 110 6.41 % 

C2 258 15.03 % 

PC2 14 0.82 % 

8 RM2 11 0.64 % 

S4 37 2.16 % 

Table 10. Summary statistics for SRCE data: building characteristics used in extended models (N 
= 1083). 

Stat Duration: months Height: ft (m) pga: %g 

Min 1 8 (2.4) 1.0 
Mean 9 45.2 (13.8) 27.9 
Median 6 30 (9.1) 36.6 
Max 60 444 (135.3) 58.5 
Std dev 8 41.5 (12.6) 15.1 
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Fig. 12. Super Database Algorithm (Source: FEMA 157). 
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Fig. 13. Original regression results (Source: FEMA 157). 
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Table 11. Replication results: building groups 1 - 4 

Dependent variable: 

Cost per sf 

BG 1 BG 2 BG 3 BG 4 

Area −0.137∗∗∗ (0.010) 
Age −20.500∗∗∗ (0.856) 
Stories −0.026 (0.022) 
Occup: Temp removed −0.862∗∗∗ (0.024) 
Occup: In-place −1.350∗∗∗ (0.029) 
S-P 2 −0.074∗ (0.042) 
S-P 3 0.451∗∗∗ (0.043) 
S-P 4 −0.743∗∗∗ (0.043) 
S-P 5 −0.201∗∗∗ (0.048) 
S-P 6 −0.200∗∗∗ (0.044) 
S-P 7 −0.400∗∗∗ (0.042) 
S-P 8 0.813∗∗∗ (0.041) 
S-P 9 0.692∗∗∗ (0.046) 
S-P 10 0.254∗∗∗ (0.042) 
S-P 11 0.986∗∗∗ (0.046) 
S-P 12 1.780∗∗∗ (0.042) 
Constant 160.000∗∗∗ (6.480) 

0.354∗∗∗ (0.014) 
−38.200∗∗∗ (0.871) 
−0.057∗ (0.031) 
−0.015 (0.027) 
0.597∗∗∗ (0.040) 

−0.822∗∗∗ (0.041) 
−1.540∗∗∗ (0.048) 
−0.109∗∗∗ (0.041) 
1.900∗∗∗ (0.047) 
0.311∗∗∗ (0.041) 

−0.946∗∗∗ (0.042) 
1.610∗∗∗ (0.045) 

288.000∗∗∗ (6.570) 

−0.116∗∗∗ (0.009) 
−64.000∗∗∗ (2.540) 

0.904∗∗∗ (0.027) 
−0.114∗∗∗ (0.027) 
−0.208∗∗∗ (0.032) 

0.778∗∗∗ (0.038) 
0.922∗∗∗ (0.035) 
1.280∗∗∗ (0.050) 

0.893∗∗∗ (0.040) 
1.050∗∗∗ (0.036) 

1.720∗∗∗ (0.047) 

1.710∗∗∗ (0.039) 
488.000∗∗∗ (19.300) 

−0.126∗∗∗ (0.011) 
−16.000∗∗∗ (1.190) 

0.105∗∗∗ (0.018) 
−1.000∗∗∗ (0.026) 
−1.420∗∗∗ (0.031) 

−0.179∗∗∗ (0.043) 
0.206∗∗∗ (0.044) 
−0.044 (0.046) 
−0.284∗∗∗ (0.048) 
0.895∗∗∗ (0.048) 
0.238∗∗∗ (0.047) 
1.170∗∗∗ (0.050) 
−0.046 (0.049) 
0.649∗∗∗ (0.047) 
0.956∗∗∗ (0.046) 

126.000∗∗∗ (8.990) 

Observations 12 000 8 000 8 000 11 000 
R2 0.497 0.561 0.563 0.340 
Adjusted R2 0.496 0.560 0.562 0.339 
Notes: ∗∗∗Signifcant at the 1 percent level. 

∗∗Signifcant at the 5 percent level. 
∗Signifcant at the 10 percent level. 
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Table 12. Replication results: building groups 5 - 8 

Dependent variable: 

Cost per sf 

BG 5 BG 6 BG 7 BG 8 

Area −0.651∗∗∗ (0.009) 
Age −0.091 (1.300) 
Stories 0.342∗∗∗ (0.013) 
Occup: Temp removed 0.304∗∗∗ (0.032) 
Occup: In-place 0.079∗∗ (0.038) 
S-P 2 
S-P 3 −0.269∗∗∗ (0.042) 
S-P 4 −0.003 (0.038) 
S-P 5 
S-P 6 2.510∗∗∗ (0.040) 
S-P 7 −0.467∗∗∗ (0.042) 
S-P 8 −0.230∗∗∗ (0.036) 
S-P 9 
S-P 10 2.000∗∗∗ (0.040) 
S-P 11 0.727∗∗∗ (0.047) 
S-P 12 −0.022 (0.040) 
Constant 10.200 (9.840) 

−0.872∗∗∗ (0.015) 
41.500∗∗∗ (1.840) 
−0.571∗∗∗ (0.026) 
0.223∗∗∗ (0.076) 

0.027 (0.065) 

−0.715∗∗∗ (0.033) 

−0.694∗∗∗ (0.045) 

0.240∗∗∗ (0.053) 

2.920∗∗∗ (0.100) 

−1.460∗∗∗ (0.044) 
−304.000∗∗∗ (14.000) 

−0.057∗∗∗ (0.008) 
−27.900∗∗∗ (0.849) 

0.214∗∗∗ (0.015) 
0.172∗∗∗ (0.017) 
−0.088∗∗ (0.036) 
−0.123∗∗∗ (0.029) 
−0.682∗∗∗ (0.029) 
−0.360∗∗∗ (0.029) 
1.630∗∗∗ (0.048) 
−1.240∗∗∗ (0.036) 
−0.355∗∗∗ (0.030) 
1.270∗∗∗ (0.032) 
0.323∗∗∗ (0.027) 
−0.285∗∗∗ (0.028) 

0.336∗∗∗ (0.029) 
215.000∗∗∗ (6.420) 

0.063∗∗∗ (0.015) 
−48.400∗∗∗ (1.580) 

0.035 (0.023) 
−0.352∗∗∗ (0.033) 
−1.240∗∗∗ (0.038) 

−0.768∗∗∗ (0.046) 
−0.330∗∗∗ (0.047) 
−0.591∗∗∗ (0.047) 
0.601∗∗∗ (0.052) 
0.560∗∗∗ (0.053) 
−0.050 (0.048) 
0.450∗∗∗ (0.052) 

−3.350∗∗∗ (0.050) 
0.148∗∗∗ (0.047) 

369.000∗∗∗ (11.900) 

Observations 9 000 6 000 11 000 10 000 
R2 0.625 0.596 0.689 0.515 
Adjusted R2 0.624 0.595 0.688 0.514 
Notes: ∗∗∗Signifcant at the 1 percent level. 

∗∗Signifcant at the 5 percent level. 
∗Signifcant at the 10 percent level. 
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Table 13. Coeffcient estimates from training main model and variations 

40 

Dependent variable: 

Cost per sf 

no interactions main height pga duration lag 

Area −0.170∗∗∗ (0.038) −0.164∗∗∗ (0.038) −0.264∗∗∗ (0.050) −0.164∗∗∗ (0.038) −0.441∗∗∗ (0.076) −0.164∗∗∗ (0.038) 
Age −3.500 (4.590) −6.080 (4.680) −4.990 (5.790) −2.690 (4.510) −10.400 (8.820) −6.120 (4.680) 
Stories 0.303∗∗∗ (0.068) 0.306∗∗∗ (0.068) 0.041 (0.124) 0.307∗∗∗ (0.067) 0.122 (0.122) 0.303∗∗∗ (0.068) 
Occupancy: TR −0.326∗∗∗ (0.095) −0.308∗∗∗ (0.096) −0.267∗∗ (0.110) −0.318∗∗∗ (0.094) −0.268∗ (0.151) −0.304∗∗∗ (0.096) 
Occupancy: IP −0.986∗∗∗ (0.117) −0.947∗∗∗ (0.119) −0.995∗∗∗ (0.136) −0.989∗∗∗ (0.116) −0.594∗∗∗ (0.173) −0.948∗∗∗ (0.119) 
Seismicity: M −0.278 (0.177) −0.064 (0.404) −0.043 (0.425) −0.488 (0.681) −0.054 (0.405) 
Seismicity: H 0.002 (0.193) −0.038 (0.337) 0.141 (0.355) −0.064 (0.493) −0.049 (0.338) 
Seismicity: VH 0.055 (0.165) −0.132 (0.322) −0.260 (0.327) −0.390 (0.399) −0.132 (0.322) 
Performance: DC 0.267∗∗∗ (0.103) 0.040 (0.371) −0.182 (0.423) 0.272∗∗∗ (0.097) −0.019 (0.517) 0.070 (0.373) 
Performance: IO 0.685∗∗∗ (0.112) 0.635 (0.479) 0.683 (0.525) 0.653∗∗∗ (0.107) 0.462 (0.624) 0.657 (0.480) 
BG: 2 −0.110 (0.174) −0.129 (0.174) −0.310 (0.228) −0.155 (0.174) 0.447 (0.345) −0.123 (0.174) 
BG: 3 −0.123 (0.190) −0.139 (0.191) −0.074 (0.221) −0.150 (0.189) 1.200∗∗∗ (0.346) −0.134 (0.191) 
BG: 4 0.306∗∗ (0.137) 0.326∗∗ (0.139) 0.487∗∗∗ (0.178) 0.278∗∗ (0.136) 1.220∗∗∗ (0.267) 0.324∗∗ (0.140) 
BG: 5 0.389∗ (0.205) 0.330 (0.208) 0.336 (0.237) 0.322 (0.205) 1.410∗∗∗ (0.450) 0.335 (0.208) 
BG: 6 −0.661∗∗∗ (0.254) −0.668∗∗∗ (0.254) −0.684∗∗ (0.288) −0.730∗∗∗ (0.254) 0.826 (0.624) −0.664∗∗∗ (0.254) 
BG: 7 0.534∗∗∗ (0.175) 0.505∗∗∗ (0.177) 0.547∗∗ (0.233) 0.525∗∗∗ (0.174) 0.762∗ (0.456) 0.498∗∗∗ (0.177) 
BG: 8 0.170 (0.140) 0.145 (0.141) 0.313∗ (0.168) 0.139 (0.140) 1.150∗∗∗ (0.256) 0.137 (0.142) 
Historic 1.040∗∗∗ (0.150) 0.975∗∗∗ (0.153) 0.922∗∗∗ (0.180) 1.040∗∗∗ (0.149) 0.934∗∗∗ (0.243) 0.981∗∗∗ (0.153) 
Height 0.475∗∗∗ (0.156) 
Duration 0.931∗∗∗ (0.108) 
Lag 0.074 (0.101) 
M x DC −0.095 (0.464) 0.407 (0.580) 0.872 (0.885) −0.121 (0.466) 
H x DC −0.127 (0.484) 0.246 (0.643) −0.741 (1.130) −0.135 (0.485) 
VH x DC 0.325 (0.395) 0.630 (0.446) 0.331 (0.543) 0.291 (0.398) 
M x IO −0.512 (0.560) −0.604 (0.636) −0.365 (0.926) −0.534 (0.561) 
V x IO −0.336 (0.581) 0.386 (0.766) −0.515 (0.875) −0.317 (0.582) 
VH x IO 0.271 (0.500) 0.253 (0.550) 0.099 (0.687) 0.243 (0.501) 
pga 0.009∗∗∗ (0.003) 
Constant 30.800 (34.700) 50.400 (35.400) 41.700 (43.800) 24.300 (34.100) 83.800 (66.600) 50.400 (35.400) 

Observations 812 812 579 812 257 812 
R2 0.313 0.321 0.384 0.316 0.572 0.321 
Adjusted R2 0.298 0.300 0.356 0.302 0.525 0.300 
Notes: ∗∗∗Signifcant at the 1 percent level. 

∗∗Signifcant at the 5 percent level. 
∗Signifcant at the 10 percent level. 
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