
 
 

NIST Technical Note 1942 
 
 

 Implementation of Errors-in-
Variables Regression and Monte Carlo 

Uncertainty Evaluation into Force 
Calibration Reporting at NIST 

 
  

Thomas W. Bartel 
 
 
 
 
 
 
 
 
 
 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.1942 

 
 
 
 
 

 
 
 



 

NIST Technical Note 1942 
 
 

Implementation of Errors-in- 
Variables Regression and Monte Carlo 

Uncertainty Evaluation into Force 
Calibration Reporting at NIST 

 
 
 

Thomas W. Bartel  
Quantum Measurement Division  

Physical Measurement Laboratory  
 
 
 
  

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.TN.1942 

 
 
 

November 2016 
 

 
 
 
 
 
 
 
 
 

 
 

U.S. Department of Commerce 
Penny Pritzker, Secretary 

 
National Institute of Standards and Technology 

Willie May, Under Secretary of Commerce for Standards and Technology and Director   



 

 
Certain commercial entities, equipment, or materials may be identified in this 

 document in order to describe an experimental procedure or concept adequately. 
Such identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that the 
entities, materials, or equipment are necessarily the best available for the purpose.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

National Institute of Standards and Technology Technical Note 1942  
Natl. Inst. Stand. Technol. Tech. Note 1942, 11 pages (November 2016)  

CODEN: NTNOEF 
 

This publication is available free of charge from:  
https://doi.org/10.6028/NIST.TN.1942 

 
 
 
 
  
 



This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.1942 

i

Abstract 

The National Institute of Standards and Technology (NIST) is commencing the 
implementation of certain statistical procedures, namely errors-in-variables regression and 
Monte Carlo uncertainty evaluation, into the data analysis and reporting for the force 
calibration service provided by the NIST Physical Measurement Laboratory (PML).  This 
document is intended to serve as an overview of these procedures to the users of NIST’s 
force calibration service, by presenting computational details of the analyses and introducing 
the corresponding format for the force calibration report. 
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1.  Introduction 

The calibration service for force measuring instruments provided by NIST follows 
procedures specified by documentary standards such as ASTM E 74-13a [1] and 
ISO 376:2011(E) [2].  The traditional analysis of force calibration data at NIST, and the 
associated uncertainty, have been described previously [3].  Implicit in this analysis, which 
employs ordinary least squares regression to fit the calibration data to a polynomial equation, 
is the assumption that the uncertainties in the calibrated forces applied to the transducer are 
small relative to other uncertainties contributed by the transducer and indicating system.  
This assumption has been challenged by recent refinements in transducer technology; thus, 
for modern transducers designed for high precision force metrology, it is no longer 
appropriate to ignore the uncertainties in the applied forces during the regression analysis. 

A more appropriate regression method, termed errors-in-variables (EIV), together with a 
Monte Carlo-based uncertainty analysis that serves as a tractable companion for EIV 
regression, has been explored recently at NIST [4].  This exploration has motivated an effort 
to incorporate, in a practical manner, these new statistical methods into NIST’s analysis and 
reporting for force calibrations.  A workable procedure is now at hand for conducting the 
necessary calculations on a routine basis and incorporating the results into the official report 
for NIST force calibrations. 

The statistical foundation and justification for EIV regression, accompanied by Monte Carlo 
uncertainty analysis, has been well described for application to force calibration data [4], and 
need not be repeated here.  It is necessary, however, to introduce the force community to 
NIST’s impending implementation of these procedures in the routine processing of force 
calibrations.  Because of the adherence of NIST’s traditional analysis to documentary 
standards, the new analysis methods are not being forwarded as replacements to the current 
methods; rather, the existing results will still be regarded as the “official” results of 
calibration and the new results will be reported in parallel in the form of a report supplement.  
For the near future, this supplement will emphasize a comparison between the traditional and 
new methods for the particular transducer calibration being reported.  It is anticipated that, as 
the force community becomes accustomed to obtaining this comparison for ongoing 
calibrations, the relevant documentary standards committees will consider approval of the 
new methods as replacements. 

 

2.  Computational Details 

The statistical algorithms, which have been described previously [4] for conducting the EIV 
and Monte Carlo evaluations, are implemented in the R environment for statistical computing 
and graphics [5].  The traditional force calibration analysis and reporting at NIST is 
conducted with the worksheet software operating under Microsoft Excel.  Excel is also used 
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for recently developed computations that estimate the true forces being applied to the 
transducer, by accounting for the vertical gradient of the acceleration due to gravity over a set 
of deadweights, and by calculating the air density for each applied weight using real-time 
measurements of atmospheric pressure, temperature, and humidity.  These Excel workbooks 
have been adapted to create an input worksheet for access by the R-code, which then is 
executed separately.  When finished, the R-code leaves its results in an output worksheet for 
subsequent use by Excel to generate the EIV report supplement. 

The Monte Carlo evaluations involve computationally intensive R-code algorithms 
performing several thousand uncertainty simulations, and can require twenty minutes to 
execute on a moderate Windows desktop computer containing a 6-core processor.  Since 
these simulations can be conducted in parallel, one way to reduce this execution time is to 
make use of a virtual computing environment to define an effective processor with a much 
greater number of cores, enabling massively parallel processing.  The R system has proved to 
work well with such virtual computing, such as that offered by Amazon Web Services under 
the name High Performance Computing1. 

 

3.  Report Supplement for EIV and Monte Carlo Methods 

This section highlights the elements of the revision to the Report of Calibration currently 
generated for each force transducer submitted to NIST for calibration.  The revision takes the 
form of a supplement which is attached to the traditional, currently official report.  Since the 
official report tabulates all of the transducer response data to the applied calibration forces, as 
well as the deviations of each data point from the calibration function derived by means of 
ordinary least-squares regression, the new supplement does not repeat this information.  
Instead, the supplement emphasizes a comparison between the results of the ordinary least-
squares (OLS) and errors-in-variables (EIV) regressions for the calibration function.  In 
addition, it presents a graphical comparison between the uncertainty interval obtained from 
the traditional uncertainty analysis accompanying the OLS regression (as detailed in [3]) and 
the uncertainty bands yielded by the Monte Carlo evaluation associated with the EIV 
regression. 

The supplement first presents, in tabular form, the polynomial coefficients for the calibration 
function derived from OLS regression (which constitute the currently official result from the 
Report of Calibration) and the corresponding coefficients derived from EIV regression for a 
polynomial of the same order.  The tabulation also lists the transducer responses predicted 

                                                 
1 Certain commercial equipment, instruments, or materials are identified in this article in order to describe the 
experimental procedure adequately.  Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the 
materials or equipment identified are necessarily the best available for the purpose. 
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from the calibration function by OLS regression with the responses predicted by means of 
EIV regression, for each nominal applied force (where the term “nominal” relates to the 
target forces that the deadweight masses were adjusted to achieve during the mass 
determination phase of the machine construction).  The differences between the responses 
predicted by the OLS and EIV regressions are also included. 

An example of this tabulation is shown in Figure 1, for a force transducer having a capacity 
of 266.89 kN (60 klbf), which exhibits exceptional control of its sensitivity to orientation 
within the deadweight force standard machine.  The regressions are carried out for a third-
order polynomial, and the standard deviation of the residuals of the measured responses from 
the predicted calibration functions are shown (having relative values of 8.54 x 10-6 for OLS 
and 9.14 x 10-6 for EIV, where these values are relative to the transducer response at the 
maximum applied force). 
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Figure 1.  EIV and OLS results compared in tabular form 

 

Whereas Figure 1 lists the differences between the transducer responses predicted by the EIV 
and OLS regressions for a set of discrete force points, the difference between the two 
polynomials is represented by a smooth curve.  Figure 2 shows this curve for the example of 
Figure 1.  Such a curve is provided in the EIV supplement to accompany the report for force 
transducer calibrations conducted at NIST.  The scale for each axis in Figure 2 is given in 
relative units –the relative applied force in percent of the maximum calibration force applied 
to the transducer, and the relative difference between the predicted transducer responses from 
the EIV and OLS regressions expressed as 10-6 of the response at maximum applied force.  

Response = 

Coefficients OLS EIV

A 3.394627E-05 3.569805E-05

B 1.509145E-05 1.509143E-05
C 1.035176E-13 1.037273E-13
D -2.603816E-19 -2.625509E-19

3.440554E-05  = OLS standard deviation of residuals in response units (8.54 x 0.0001 %)

3.683544E-05  = EIV standard deviation of residuals in response units (9.14 x 0.0001 %)

The coefficients of the following equation, determined by the OLS and EIV analyses, are tabulated 
below.  The units for force (N) and response are the same as shown in the table above.  The standard 
deviation is computed from the difference between the measured responses and the fitted equation.

EIV - OLS Comparison Table for Compression Mode

A + B(force) + C(force)² + D(force)³

Nominal
Force: F

(N)

OLS
predicted
response:
R1 = f1(F)

EIV
predicted
response:
R2 = f2(F)

R2 - R1

(response units)

R2 - R1
relative to 

response at max. 
force

(0.0001 %)

13344.66 0.201442 0.201444 0.000002 0.374
26689.33 0.402883 0.402885 0.000001 0.324
53378.66 0.805851 0.805852 0.000001 0.227
80067.99 1.208906 1.208906 0.000000 0.080

106757.32 1.612020 1.612019 -0.000001 -0.176
133446.65 2.015162 2.015160 -0.000002 -0.604
160135.98 2.418304 2.418299 -0.000005 -1.264
186825.31 2.821414 2.821405 -0.000009 -2.219
213514.64 3.224465 3.224450 -0.000014 -3.530
240203.97 3.627425 3.627403 -0.000021 -5.257
266893.30 4.030265 4.030235 -0.000030 -7.463
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For the example shown here, the maximum response difference has a relative value of about -
7.5 x 10-6 at the upper end of the force range.  While the maximum response difference can 
occur elsewhere within the range, it has been seen to be within 10 x 10-6 for data sets 
currently examined. 

 

 

Figure 2.  Difference between EIV and OLS calibration functions in graphical form 

 

Figure 3 presents the deviations, or residuals, between the measured response at every 
applied force point and the corresponding responses predicted from the EIV and OLS 
regressions, for the force calibration example shown in Figure 1.  Figure 3, which is included 
in the EIV supplement, is analogous to the deviations plot for OLS regression which appears 
in the Report of Calibration, and thus is familiar to the customers who receive these reports.  
The axis scales are given in the same relative values described for Figure 2.  The OLS 
residuals (open circles in Figure 3) represent the same values appearing in the deviations plot 
of the report, but without the connecting lines joining the points for each run – where a run is 
one cycle through the sequence of force points (eleven in this case), with three runs seen here 
representing three repetitions of this sequence performed at angular orientation intervals of 
120 ° about the vertical axis of the deadweight machine. 
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Figure 3.  Calibration function residuals with uncertainty bands 

 

In addition to providing the difference between the EIV and OLS regressions in a graphical 
form that is familiar to the users of NIST’s force calibration service, Figure 3 compares the 
uncertainty interval from the traditional analysis with uncertainty bands yielded by the Monte 
Carlo evaluation conducted for the EIV regression.  The expanded uncertainty interval, 
conservatively derived from a conventional uncertainty propagation as described in Ref. [3] 
and reported in each Report of Calibration, is shown in Figure 3 by horizontal dashed blue 
lines.  Superimposed are the uncertainty bands, shown in red, from the Monte Carlo 
computation described in detail in Ref. [4].  The solid red lines depict, for the calibration 
function derived from EIV regression, the confidence bands for a coverage probability of 
0.95.  These bands are often termed the 95 % confidence bands or 95 % coverage bands; they 
enclose the area that is considered to contain the true calibration function with a confidence 
level of 95 %.  Thus they indicate how well the estimated calibration function, assumed to 
have the form of a polynomial of chosen order and fitted to the calibration data by means of 
EIV regression, represents the true function relating the transducer’s response to the applied 
force.  These confidence bands correspond to the horizontal interval described earlier for the 
conventional uncertainty propagation. 
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The dashed red lines in Figure 3 depict the corresponding “prediction bands”, which enclose 
the area that would be estimated to contain, based on the derived calibration function with 
95 % confidence, the values of the transducer response that would be obtained from future 
measurements if conducted under the same conditions used for the calibration measurement 
data.  The prediction bands incorporate both the uncertainty of the calibration function 
derived from EIV regression as well as the variability in the individual measurement points 
of the calibration data set over which the EIV regression was performed.  Thus these bands, 
which are necessarily wider than the 95 % confidence bands, represent the region where new 
individual measurement points, if conducted, may be expected to fall. 

The EIV supplement also provides the plot shown in Figure 4, depicting two additional 
uncertainty bands calculated by the Monte Carlo method, which are associated with the 
measurement function of the transducer.  The identification of the 95 % confidence and 
prediction bands shown here are the same as described above for the EIV regression 
calibration function. The measurement function is calculated by the R-code from the inverse 
of the EIV calibration function and thus yields force as a function of transducer response.  
The following section provides additional guidance for determination of the measurement 
function by the user. 

 

 

Figure 4.  Measurement function uncertainty bands 
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4.  Measurement Function Determination 

The NIST force calibration service is directed toward characterizing the transducers being 
submitted for calibration.  Thus calibrated forces are applied to a transducer, the transducer’s 
responses to these forces are measured, and an equation, termed the calibration function, is 
derived from a regression method that gives the best estimate possible of the transducer 
response as a function of the applied force.  The user of this calibration service, upon return 
of the calibrated force transducer and its calibration function provided by NIST, needs to 
perform the reverse procedure:  apply an unknown force to the transducer, measure the 
transducer’s response to this force, and make use of a measurement function to determine the 
value of the force that was applied.  The measurement function gives the best estimate of the 
applied force as a function of the measured transducer response. 

Historically NIST has provided only the calibration function, and not the measurement 
function.  The user of the transducer is left with the task of obtaining the measurement 
function, by determining the inverse of the calibration function.  In the past the calibration 
function was usually provided as a 2nd order polynomial, and the user could readily employ 
the quadratic equation to find the root, and thus the inverse, of the calibration function to 
obtain the force for a given measured transducer response.  Increasingly complex closed-
form expressions are available for the roots of 3rd and 4th order polynomial equations, but not 
for orders greater than four; thus polynomials of order three or higher are generally addressed 
by some numerical iterative root-solving procedure. 

It is attractive to consider the derivation of the measurement function directly from the 
calibration data set, by employing a regression process to fit some function, such as a 
polynomial, to the data to provide the applied force as a function of the measured response.  
Performing this process with OLS regression would be implicitly invalid, because that would 
ascribe all of the measurement uncertainty to the applied forces and none to the measured 
responses (which incorporate the complications of transducer characteristics such as the 
sensitivity to orientation relative to the mechanism for applying the forces).  However, EIV 
regression (performed with the abscissas and ordinates reversed from the process used for the 
calibration function) would not have this objection, since it correctly accounts for 
uncertainties along both axes. 

Acknowledging that the inverse of a polynomial is not a polynomial, it is realized that either 
the calibration function or the measurement function, but not both, can be a true polynomial.  
Thus, the use of polynomials for both functions would have the result that a force value, used 
as input to the calibration function to determine response, would not exactly agree with the 
force yielded by the measurement function when input with that response.  It may, however, 
be possible to approximate the measurement function as a polynomial that would yield a 



This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.1942 

 

 
 

9 

(force, response) pair that agrees with the corresponding pair yielded by the calibration 
function to a desired, specified precision, for forces within the range of the calibration. 

The inverse of the calculation function can be approximated to any desired precision by 
means of tables with interpolation or by root-solving iteration methods.  The final page of the 
EIV Supplement to the Report of Force Calibration presents such a table, containing sixty 
force values uniformly spaced over the range of calibration, with the EIV predicted response 
that is calculated from the calibration function for each force.  The user of the calibration 
service can, of course, readily generate a table of much finer increments. 

Computer applications to solve for the roots of the calibration function are available that 
employ mathematical algorithms for numerical analysis.  An example is given below of such 
a construction for MS Excel using the Newton-Raphson method that can be readily 
implemented for polynomials up to 5th order as encountered in force calibrations.  Both the 
Setup Section and the Iteration Table that are shown below are incorporated into a single 
Excel worksheet of convenient length.  The user inputs are:  the coefficients A through F of 
the calibration function determined by the EIV regression; the specified transducer response 
(denoted as rset in the example below) for which the user wants to know the applied force; 
and the desired relative tolerance in the calculated force.  All other values are calculated by 
formulas with internal Excel functions. 

The algorithm assumes the transducer response to be monotonically increasing (or 
decreasing) over the calibration range, so that the roots to the calibration function are single-
valued.  The Newton-Raphson method employs the principle that the extrapolation of the 
tangent to the function y(x) , denoted below as y = fEIV(x) - rset , to the y=0 axis for an 
iteration starting value xa , yields a better approximation xb to the true root of y(x) . The 
Iteration Table shown below provides for twenty iterations, giving the automatically 
calculated values of xa and xb for each iteration; this number of iterations is more than 
sufficient for force transducers encountered in normal practice. 

The calculation illustrated here is conducted for one value at a time; the user gives one input 
value (response), and the worksheet returns one answer (force).  The user can repeat the 
process for new input values, one at a time.  A separate worksheet can be combined with the 
worksheet shown below, employing a macro to implement a short "Do...Loop", to readily 
enable multiple calculations to be automatically conducted from an input table that provides 
any arbitrary set of measured responses; by referencing the worksheet shown below, the 
macro yields the corresponding applied forces without additional user intervention. 
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4.00000000

1.1146029E+05

4.0053089E+00

1.00E-12

3

111312.614079

-1.307E-16

4.00000000

coefficient A
(intercept)

coefficient B
(1st order term)

coefficient C
(2nd order term)

coefficient D
(3rd order term)

coefficient E
(4th order term)

coefficient F
(5th order term)

5.0748811E-05 3.5886764E-05 7.2177090E-13 -2.6416476E-18 0.0000000E+00 0.0000000E+00

intercept
coefficient for
1st order term

coefficient for
2nd order term

coefficient for
3rd order term

coefficient for
4th order term

coefficient for
5th order term

-3.9999493E+00 3.5886764E-05 7.2177090E-13 -2.6416476E-18 0.0000000E+00 0.0000000E+00

intercept
coefficient for
1st order term

coefficient for
2nd order term

coefficient for
3rd order term

coefficient for
4th order term

coefficient for
5th order term

3.5886764E-05 1.4435418E-12 -7.9249427E-18 0.0000000E+00 0.0000000E+00

relative force change (ending - beginning) for the iteration reaching tolerance, from iteration table

number of iterations necessary to reach tolerance (calculated from iteration table)

xroot , the calculated value of the force for which the calibration function will return the response 
rset ;  this is the ANSWER

r = fEIV(xroot) , the response calculated from the calibration function for the force xroot; this should 
be equal to the specified response rset

desired relative tolerance in calculated force (iterations are sufficient when improvement reaches 
tolerance)

r0, the calculated response from calibration function for force x0 (mV/V or other response unit)

x0 , the initial estimate of the force for response rset , from linear extrapolation (force unit)

rset, the specified response (mV/V or other response unit); this is the INPUT VALUE

Calibration Function, r = fEIV(x), from EIV computation by R-code, where x = applied force,
 r = transducer response.  Thus r = A + Bx + Cx2 + Dx3 + Ex4 + Fx5

Function from which root is calculated, y = f(x), where f(x) = fEIV(x) - rset

Thus y = f(x) = (A - rset) + Bx + Cx2 + Dx3 + Ex4 + Fx5 

The problem is to find the root, (xroot), of y = f(x) = 0

Derivative Function y' = f'(x) = B + 2Cx + 3Dx2 + 4Ex3 + 5Fx4

Setup for Calculation of Measurement Function (Inverse of Calibration Function)
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Iteration 
no. xa f(xa) f'(xa) xb

relative force 
change

(xb - xa)/xb

calculated 
response
r = feiv(xb) (r - rset)/rset

iterations 
achieving 
tolerance
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17 1.1131261408E+05 -9.4542429E-17 3.5949255E-05 1.1131261408E+05 0.000E+00 4.0000000000E+00 -1.11E-16 *
18 1.1131261408E+05 -9.4542429E-17 3.5949255E-05 1.1131261408E+05 0.000E+00 4.0000000000E+00 -1.11E-16 *
19 1.1131261408E+05 -9.4542429E-17 3.5949255E-05 1.1131261408E+05 0.000E+00 4.0000000000E+00 -1.11E-16 *
20 1.1131261408E+05 -9.4542429E-17 3.5949255E-05 1.1131261408E+05 0.000E+00 4.0000000000E+00 -1.11E-16 *

For each iteration below, xa is the starting value, xb is the new value :  xb = xa - f(xa)/f'(xa) ;  xb should approach xroot

Iteration Table for Calculation of Measurement Function
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