NIST Technical Note 1914

2015 Location-Based Services R&D Summit

Harris Feldman Tracy McElvaney

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.TN.1914

NIST Technical Note 1914

2015 Location-Based Services R&D Summit

Harris Feldman Corner Alliance Washington, DC

Tracy McElvaney Public Safety Communications Research Division Advanced Communications Research Group

> This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.TN.1914

> > April 2016

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1914 Natl. Inst. Stand. Technol. Tech. Note 1914, 12 pages (April 2016) CODEN: NTNOEF

> This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.TN.1914

Minimum 2015 Location-Based Services R&D Summit PSCR

PURPOSE

The Public Safety Communications Research Program (PSCR) convened over 80 stakeholders at the Department of Commerce Labs, Boulder, CO campus to build on the findings presented in the 2015 Location-Based Services R&D Roadmap Report. The Location-Based Services (LBS) Summit – held October 21-22, 2015 – intended to socialize the roadmap with a broader stakeholder base and determine the core technology challenges inhibiting public safety's effective and expanded use of LBS in daily operations.

The Summit identified clearly defined LBS technology gaps, prioritized capabilities, and specific problem statements that could be addressed using NIST R&D funds.

Workshop Results

Attendees were instructed to identify and prioritize the most pressing technology gaps limiting the use of LBS in public safety today. Gaps were prioritized based on PSCR's investment criteria developed in close collaboration with FirstNet and the PSAC.

Using the investment criteria above, Summit attendees identified the following six gaps as the highest priority LBS R&D investment areas for PSCR to consider as it transitions into LBS Program planning and execution:

- ✓ 3D Geolocation
- 🗸 Mapping
- \bigcirc
- ✓ LBS Interoperability
- LBS Power Consumption
- ✓ Standardization of LBS Capabilities
- ✓ Location-Enabled Wearable Devices

Attendees developed problem statements for each LBS R&D topic area

Attendee Developed Problem Statements

3D Geolocation

Inability to precisely and persistently locate public safety persons and assets in order to locate responders in trouble and manage public safety personnel & assets in real-time.

First responders need to obtain the civic address/coordinates of the public safety personnel and asset location, plus additional information such as floor, suite, apartment, or other information needed to adequately identify the location of the first responder and/or assets.

Information includes: Indoor, outdoor, 3D location, latitude, longitude, altitude, and other pertinent geolocation data.

Solutions need to account for public safety reliability and resiliency requirements.

Mapping

Lack of a nationwide interoperable 'base map' providing for collaboration that includes: Uniform, interoperable base layer; Survey level accuracy; Multi-organization collaboration; Interoperable access; Credentialing/User-profile; 2D & 3D; Indoor and outdoor locations.

Lack of capability to capture and integrate data into 'base map'.

LBS Interoperability

Lack of interface interoperability between applications, devices, positioning, mapping, and location information sharing. There needs to be a uniform way to read in and display maps.

Need for interoperable wearables and sensors.

Need a framework for testing and certification (software development kit/location toolkit).

LBS Power Consumption

Intelligent LBS chip and application management is not driven by use case, role, situational awareness, status, etc.

LBS today are too reliant on GPS which has a variety of cons (including significant power consumption) and needs to be augmented by other LBS technologies.

No clear understanding of the power consumption of various LBS technologies.

Maps are not cached on public safety devices, which increases power consumption.

Persistent reliance on visual LBS user interfaces drains power.

Standardization of LBS Capabilities

As location based services evolve and are used by public safety, a uniform, interoperable, and secure framework needs to exist to ensure that the location information available is accessible and consumable by public safety (or shared with others as appropriate).

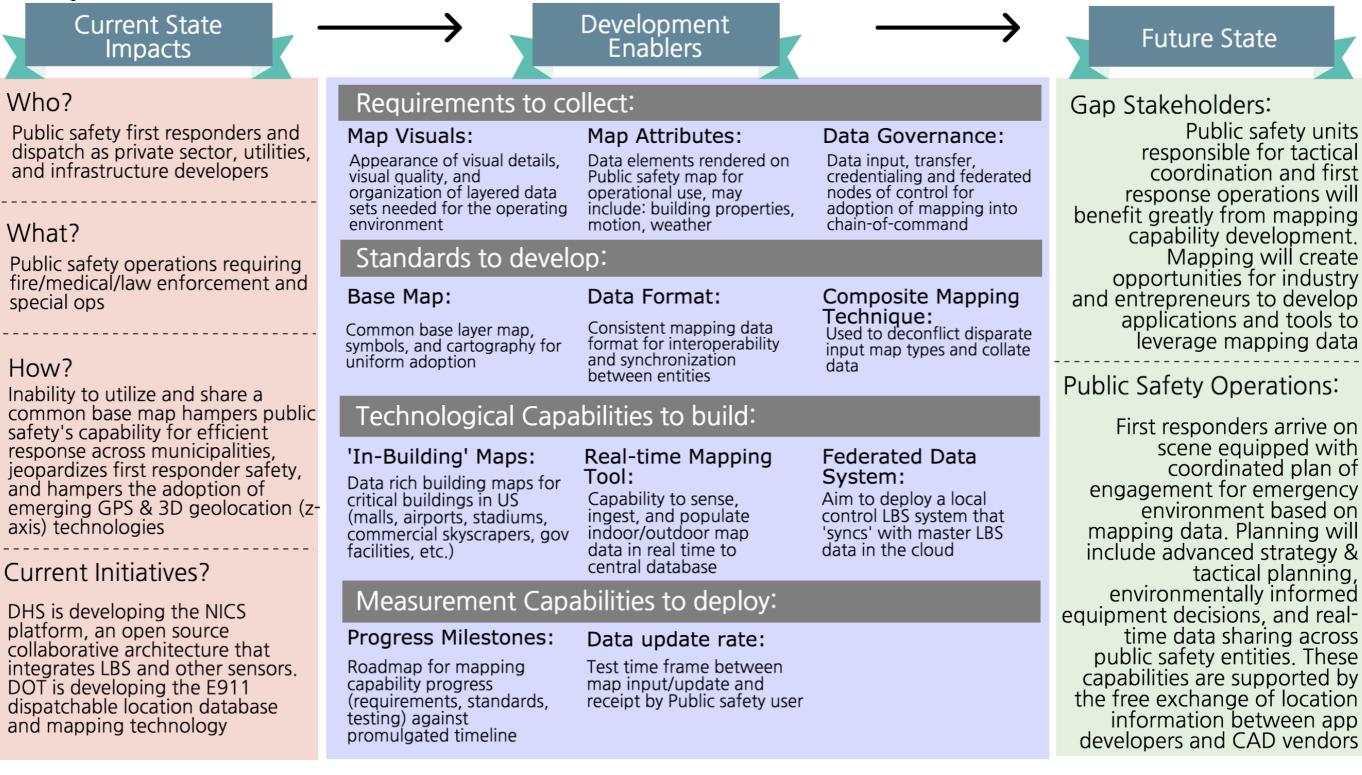
Location-Enabled Wearable Devices

Location-enabled wearable devices or sensors are not currently designed to operate in all environmental conditions and are not designed to meet a tiered set of public safety specific requirements which address ruggedization, usability, operability, redundancy, mapping data, on/off network, user/command interfaces, and positional capabilities.

GAP: 3D Geolocation

Inability to precisely and persistently locate public safety persons and assets in order to locate responders in trouble and manage public safety personnel and assets in real-time.

Summary: First responders need to obtain the civic address/coordinates of the public safety personnel and asset location, plus additional information such as floor, suite, apartment, or other information needed to adequately identify the location of the first responder and/or assets. Information includes: indoor, outdoor, 3D location, latitude, longitude, altitude, and other pertinent geo-location data. Solutions need to account for public safety reliability and resiliency requirements.


Current State Impacts	\rightarrow	Development Enablers	\longrightarrow	Future State
Who? Public safety entities and first responder functions: law enforcement/Fire/EMS, search & rescue, emergency management, and command & control	Requirements to co Location Accuracy: Allowable levels of location uncertainty across X, Y, Z axis & associated required confidence levels	Signal Specs: Baseline performance levels for LBS signals including bandwidth, data rate, and immunity to noise	Data Refresh Rate: Operational requirement for LBS data refresh time intervals, referred to as 'Delta t'	Gap Stakeholders: Public safety units responsible for tactical coordination and/or logistics and event planning will
What? Public safety activities requiring rapid response and/or detailed planning: incident management, disaster planning, rapid response	Standards to develo Signal Structure: WiFi/BT/UWB signal designed for positioning use (in addition to coverage & speed)	Dop: Location Data Format: Data format standard for interoperability between units or devices	X, Y, Z Axis Minimum Operating Standards: Define guidelines for public safety geolocation accuracy, update rate, and latency	benefit greatly from 3D geolocation capability development. Anticipate primarily servicing elements with a first response element Public Safety Operations:
How? Current gap prevents deployment of LBS appsrestricting location to general proximity, preventing public safety officials from locating assets by z-axis	Technological capa Composite Geolocation: Decipher location from multi-sourced data including, GPS, OTDOA, WiFi, LTE-U, Bluetooth, etc.	Pressure Sensor Compensation: Incorporate real-time barometric pressure variation to support z- axis accuracy	Capability Enhancement: Further develop existing capabilities: GPS/GNSS, TOA, OTDOA, AoA, RSS & models	First responders arrive on scene equipped with real- time environmental & contextual site intelligence (building, floor, room & method of approach data) based on X,Y & Z location- based services data broadcast
Current Initiatives? Operational need and Federal guidance (FCC 4th Report & Order) have spawned Industry activity in the space: barometric-based z-axis capability, sensor data for indoor location	Measurement capa X,Y,Z Precision Metrics: Measure key geolocation metrics: DOP, time-to-fix, delta t: refresh	3D Geolocation Test Bed: Environment to test measurement methods simulating: indoor, outdoor, impairments, geometric dilution of precision conditions	3D System Calibration: Precision reference measurement system for 3D LBS & assess accuracy across devices/systems	from critical assets. Data enables complete situational awareness, coordinated search & rescue, and avoidance of dangerous environments including fire flow & friendly fire
Technic	al Barriers		Potential D	Disruptors
 (1) Hardware (battery life, rug power) (2) Network (coverage, spect (3) Sensor performance 		sing 2	spectrum) (2) Increased device lo	(commercial users saturate bading due to advanced pace development of devices

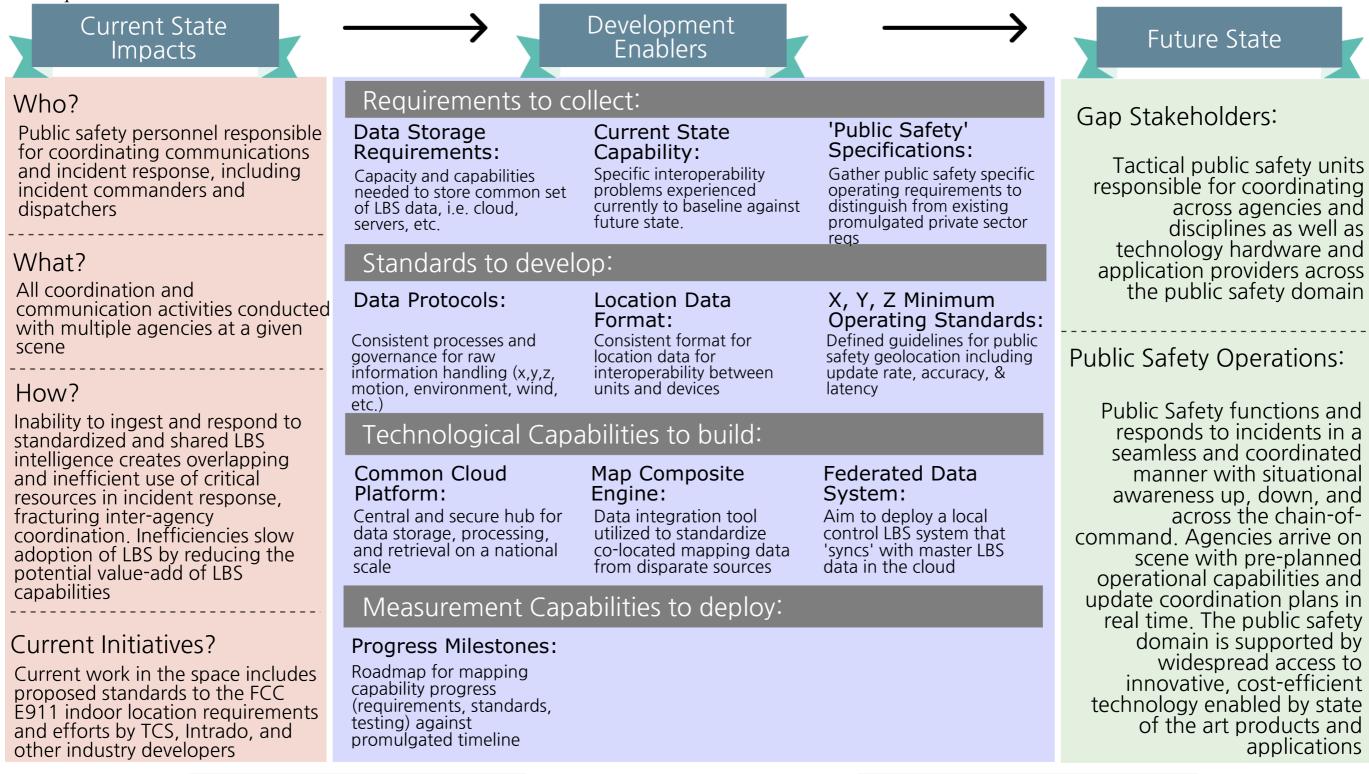
GAP: Mapping

Public Safety lacks a nationwide interoperable 'base map' to provide cross-agency collaboration and data input

Summary: Interoperable 'base map' needs to include: Uniform, interoperable base layer; Survey level accuracy; Multi-organization collaboration; Interoperable access; Credentialing/User-profile; 2D & 3D; Indoor and outdoor locations. Lack of capability to capture and integrate data into base map.

Technical Barriers

 Base map standardization: Jurisdictional specific data may be in disparate formats and/or not have sharing capability
 Scope of mapping: Compilation of raw data, map images, continuous update will be immensely time intensive
 Indoor mapping tool: Low-cost solution needed to 'map' indoors Potential Disruptors


(1) Virtual reality(2) Smaller, smarter hardware, cameras and sensors

GAP: LBS Interoperability

There exists a lack of interoperability between LBS applications, devices, positioning, mapping, and information sharing.

Summary: First responders require a common, interoperable LBS framework moving from data collection (wearables & sensors) to display devices to mapping and logistical planning. Public safety requires a framework for testing and certification (software development kit/location toolkit) to enable development.

Technical Barriers

- (1) Proprietary solutions; sophisticated but lack incentives to share information
- (2) Computational complexity; disparate data forms and chart data
 (3) Lack of interoperability between networks; inability for wifi, Bluetooth, LTE to handoff communications in-buildings

Potential Disruptors

(1) Closed or proprietary solution fails to evolve:
public safety becomes 'locked in' to solution that is
surpassed by emerging technologies
(2) Proliferation of technology: development of
incompatible solutions

GAP: LBS Power Consumption

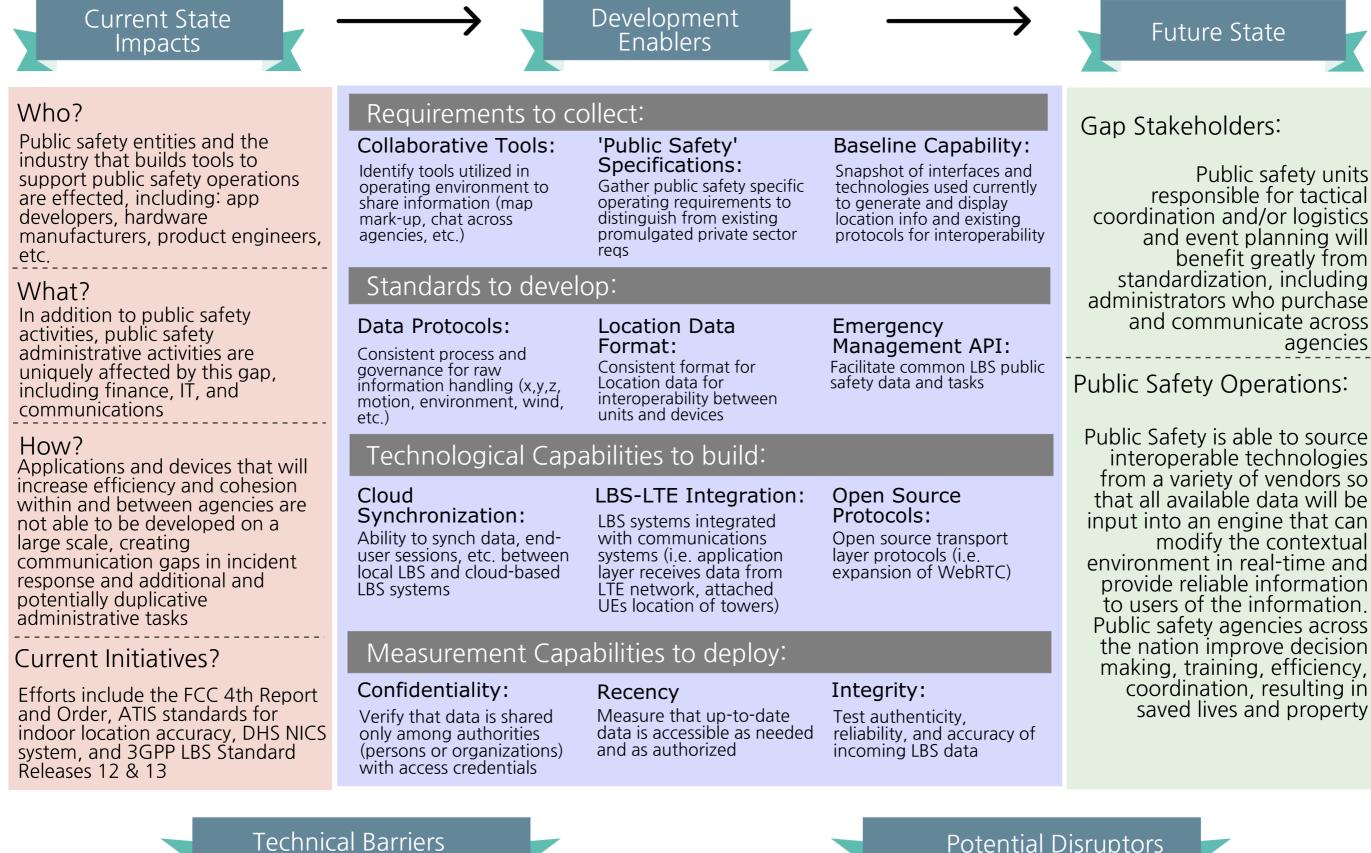
Current technologies delivering relevant positioning data and location based services to mobile users drain battery at an unsustainable rate, impeding adoption of LBS for public safety

Summary: Intelligent LBS chip and application management is not driven by use case, role, situational awareness, status. etc. LBS today are too reliant on GPS which has a variety of cons (including significant power consumption) and needs to be augmented by other LBS technologies. Maps today are not cached on public safety devices, which forces reliance on the network, increasing power consumption. Persistent reliance on visual LBS user interfaces drains power. There is a lack of practical alternatives to power intensive visual LBS user interfaces.

Current State Impacts	\rightarrow	Development Enablers	\longrightarrow	Future State
Who? Public safety personnel that currently use or would benefit	Requirements to co Power/charge Metrics:	ollect: Operating Conditions:	Hardware Properties:	Gap Stakeholders:
from LBS data on a mobile device include law enforcement/Fire/EMS, and secondary responders	Identify number of battery life hours per charge, time required to recharge full battery	Environment in which battery is operable, i.e. temperature, pressure, humidity, water resistance, etc.	Dimensions and weight required for operating in the field environment.	Public safety officers who rely on wireless technology to perform duty functions. Vendor and application
	Standards to develo	op:		development community will
What? Public safety operations impacted by this gap include search, rescue and recover, incident command,	Power Consumption: Develop a 'rate of use' protocol to serve as a	Localization Systems: Standard for indoor localization systems installed in buildings that do not require	Cloud/Local Handoff: Protocol for handoff between cloud based maps and core memory stored	benefit from increased demand for high-performing technology and applications
command & control functions	benchmark for Public Safety market devices	public safety infrastructure and equipment	maps	Public Safety Operations:
How?	Technological Capa	abilities to build:		Public safety is able to move
High power consumption levels result in shortened battery life on devices utilizing LBS and contribute to limited adoption of LBS capabilities	Power Management Application: LBS app for public safety smart phones that manages and optimizes battery life across device	Wireless Charging: Over the air power sharing and charging for public safety smart phones and LBS devices	Dynamic Prioritization: Ability to detect mission critical environment and prioritize communications and LBS applications in real time	from mission to mission seamlessly with a single device leveraging all value- add data and functions from the device simultaneously. Officers suffer from no gaps in performance or accuracy
Current Initiatives?	Measurement Capa	abilities to deploy:		due to battery and/or power. Officers may rely on apps and
Industry is leading battery life innovation including developing apps to reduce power consumption. Apple is working on doubling battery life in its next generation of handsets	Power Consumption: Uniform system to measure power consumption by function and by application	Usage Testing: Measure delta between power model simulations and actual operational environment testing	Indoor Localization Testing: Localization systems tested in large buildings using different construction materials, various modes of mobility, etc.	devices in more situations due to improved device stamina

Technical Barriers

(1) Form factor limitations(2) Battery technology (does not follow Moore's Law)


Potential Disruptors

(1) Emerging LBS technologies consumption may outpace rate of battery performance improvement

GAP: Standardization of LBS Capabilities

Location information is not available, accessible, consumable, or sharable within and across public safety agencies due to a lack of a uniform, interoperable, and secure framework for LBS

(1) Proprietary technology: currently built by vendors, may be difficult to migrate to standard (2) Diverse system types: complicates standardization effort

Potential Disruptors

(1) Internet of Things (commercial users saturate spectrum) (2) Advanced mapping capability

GAP: Location-Enabled Wearable Devices

Location-enabled wearable devices and/or sensors are not currently designed to or capable of operating in all environmental conditions

Summary: Devices and/or sensors are not designed to meet a tiered set of public safety specific requirements which address ruggedization, usability, operability, redundancy, mapping data, on/off network, user/command interfaces, and positional capabilities.

Current State Impacts	\rightarrow	Development Enablers	\longrightarrow	Future State
Who? Public safety officers in the operational environment and their associated command and control elements What? Public safety operational activities are affected as well as entities who	Requirements to co Mission Critical Data: Group of data sets that will be required for live feedback to the user in the field: location data, biometrics, video, etc. Standards to develo	Operating Conditions: Environment in which device i operable, i.e. temperature, pressure, humidity, water resistance, etc.	, ,	Gap Stakeholders: Public safety officers in ther operational environment as well as private users, DoD, and workers in the chemical, utility, and manufacturing industries' plant workers.
require live data and intelligence to effectively execute the mission. Also affected are administrative/logistic planning elements who rely on a common and total picture of the operating environment. How?	Measurement Units: Consistent terminology for describing impact, smoke/particle resistance, etc.	Internet of Things Protocol: Protocols and data formats for Internet of Things specific to public safety wearable devices.	Standards Integration: Need to blend/incorporate existing standards sets for IoT/M2M (OneM2M and public safety communications standards)	Public Safety Operations: On-body sensors gather critical data points from the
The lack of LBS wearable devices limits LBS from acting as a functional resource in the field. Operational officers lack live data and intelligence and command and control elements lack the intelligence to best deploy and protect public safety resources.	Technological Capa Beacon System: Use of range/azimuth as tool to find users in areas that have no network access/coverage Measurement Capa	Relative Positioning: Positioning calculations using public safety vehicles	IoT Sensors: Physical sensors that can operate in public safety environment, sense and categorize data, and transmit data to networks	person and/or robot and the environment. This keeps the user safe through live alerts & 3D situational awareness and provides better tactical coordination through a total view of the operating environment at mission command and control.
Current Initiatives? DHS is currently conducting a 'First Responder Wearables' research project	Mobility: Mobility of deployed devices needs to be measured for uncertainty	bilities to deploy.		command and control.
Technic	al Barriers		Potential D	Disruptors

- Radio interference between devices
- (2) Thermal and high temperature effects on electronics
 (3) Size of devices and wearables
 (4) Battery life for wearables

(1) Wireless technology that allows non-rugged devices to sit in safe places (inside gear, inside vehicle)

Acronyms Used

TOATime of ArrivalUEUser EquipmentUWBUltra-wideband
