

NIST Technical Note 1905

The Influence of Realism on

Congestion in Network Simulations

Christopher Dabrowski

Kevin Mills

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.TN.1905

NIST Technical Note 1905

The Influence of Realism on

Congestion in Network Simulations

Christopher Dabrowski

Kevin Mills

Advanced Network Technologies Division

Information Technology Laboratory

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.TN.1905

January 2016

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1905

Natl. Inst. Stand. Technol. Tech. Note 1901, 62 pages (January 2016)

http://dx.doi.org/10.6028/NIST.TN.1905
CODEN: NTNOEF

ii

The Influence of Realism on Congestion in Network Simulations

C. Dabrowski and K. Mills

{cdabrowski, kmills}@nist.gov

Abstract. Many researchers have used simulation to investigate the spread of congestion

in networks. These researchers often find that congestion can be modeled as a percolation

process, spreading slowly under increasing load until a critical point. After the critical

point, congestion spreads quickly throughout the entire network. The researchers also

identify various measureable signals that arise around the critical point. These findings

appear quite promising as a theoretical basis for monitoring regimes that network

operators could deploy to warn of impending congestion collapse. Yet questions surround

the extant research because the findings arise from models that are quite abstract. Such

models bear little resemblance to networks deployed based on modern technology.

We explore these questions by examining the influence of realism on the spread

of congestion in network simulations. We begin with an abstract network simulation,

taken from the literature, and add elements of realism in various combinations,

culminating with a high-fidelity simulation, also taken from the literature. By comparing

patterns of congestion among combinations, we make four main contributions. First, we

illustrate that congestion spread in abstract network models differs significantly from

spread in realistic models. Second, we show that models investigating network

congestion must include specific elements of realism before acceptable engineering

findings can be established. Third, we identify the influence of specific elements of

realism on congestion in network simulations. Finally, we demonstrate an effective

means to compare congestion patterns among network simulations comprising diverse

configurations. We hope our contributions lead to better understanding of the influence of

realism on congestion in network simulations, and to improved dialog throughout the

diverse community of researchers who rely on network simulations.

Keywords: congestion, criticality, networks, percolation, simulation

mailto:cdabrowski,%20kmills%7d@nist.gov

iii

Table of Contents

1. Introduction---1

2. Related Work---4

2.1 Similarities and Variations among Previous Studies------------------------------4

2.2 Detailed Summaries of Previous Studies---5

2.3 Questions Arising from Previous Studies--9

3. Models---11

3.1 Abstract EGM Model---11

3.2 Realistic MesoNet Model--13

3.2.1 Network Configuration---14

3.2.2 Sources and Receivers--16

3.2.3 User Behavior--17

3.2.4 Congestion Control Protocols--17

3.2.5 Simulation and Measurement Control------------------------------------18

3.3 Factored FxNS Model--18

3.3.1 FxNS Factors---18

 3.3.2 Dependencies among FxNS Factors------------------------------------21

 3.3.3 Numbering Valid FxNS Configurations--------------------------------22

4. Experiment Design---24

4.1 Fixed Input Parameters--24

4.2 Variable Input Parameters--24

4.3 Responses---25

4.3.1 Congestion Spread --25

4.3.2 Connectivity Breakdown ---27

iv

4.3.3 Packets Delivered--27

4.3.4 Packet Latency--28

4.4 Simulation Self-adaptations--28

5. Results---30

6. Discussion---35

6.1 Most Abstract vs. Most Realistic--35

6.2 Congestion Spread --38

6.3 Connectivity Breakdown --39

6.4 Packets Delivered---41

6.5 Packet Latency---42

6.6 Overall Findings---43

7. Conclusions and Future Work--45

8. Acknowledgments--47

References---48

 Appendix A. Verification of FxNS Implementation of EGM and MesoNet------------50

 A.1 Verification of EGM--50

 A.2 Verification of MesoNet---52

Appendix B. LSS Congested Nodes---60

v

List of Tables

Table 1. MesoNet parameters organized in five categories ----------------------------------14

Table 2. Relationships among router classes used to scale speeds --------------------------16

Table 3. Sample computation of number and distribution of sources

 and receivers given the topology shown in Fig. 3 and

 baseSources = 100, x5 = 3, probNS = 0.34, probNsf = 0.33,

 probNr = 0.34, probNfr = 0.33--17

Table 4. Set of FxNS configurations simulated---23

Table 5. Parameter values when each FxNS

 realism factor is enabled or disabled---36

vi

List of Figures

Figure 1. Visualization (courtesy Sandy Ressler) of an 11 174-node Internet

 AS topology provided by Enchenique et al.---12

Figure 2. Log-Log plot of node degree (x axis) vs. frequency (y axis) of

 11 174-node AS topology ---12

Figure 3. Three-tier topology with 16 backbone routers (A-P), 32 point-of-presence

 routers (A1-P2) and 170 access routers (A1a-P2g) - 8 red and

 40 green access routers may operate at higher speeds

 than remaining access routers---15

Figure 4. Dependencies among FxNS factors---21

Figure 5. Numerical encoding scheme for FxNS configurations –

 and one example---22

Figure 6. Proportion of nodes in LSS of isolated nodes (χ) for

 34 FxNS configurations--31

Figure 7. Proportion of nodes in LSS of reachable nodes (α) for

 34 FxNS configurations--32

Figure 8. Proportion of packets delivered (π) for 34 FxNS configurations-----------------33

Figure 9. Scaled average latency of delivered packets (δ) for

 34 FxNS configurations--34

Figure 10. Comparison of congestion spread (χ), connectivity breakdown (α),

 packets delivered (π), and packet latency (δ) for the most abstract

 (C0) and most realistic (C127) FxNS configurations-----------------------------36

Figure 11. Screenshot from dynamic visualization (courtesy Phillip Gough)

 of node status with increasing p for 34 FxNS configurations

 in 218-node topology---37

Figure 12. Clustering of LSS isolated nodes (χ) based on

 Squared Euclidean Distance --38

Figure 13. Clustering of LSS reachable nodes (α) based on

 Squared Euclidean Distance --40

Figure 14. Clustering of packet delivery effectiveness (π) based on

 Squared Euclidean Distance --41

vii

Figure 15. Clustering of packet delivery efficiency (δ) based on

 Squared Euclidean Distance --42

Figure A1. Results from our replication of simulations by

 Enchenique et al. --50

Figure A2. 218-node topology adapted from an Internet service provider -----------------51

Figure A3. Results from FxNS simulations (no realism) within

 218-node topology ---51

Figure A4. Aggregate packet throughput in the last 300 000 ts simulated by MesoNet--52

Figure A5. Aggregate packet throughput in the last 300 000 ts simulated by FxNS------53

Figure A6. Aggregate flows completed in the last 300 000 ts simulated by MesoNet----54

Figure A7. Aggregate flows completed in the last 300 000 ts simulated by FxNS--------54

Figure A8. Retransmission rate for TCP data segments simulated by MesoNet-----------55

Figure A9. Retransmission rate for TCP data segments simulated by FxNS---------------55

Figure A10. Average smoothed round-trip time simulated by MesoNet--------------------56

Figure A11. Average smoothed round-trip time simulated by FxNS------------------------57

Figure A12. Average per-flow throughput for completed flows in three classes,

 as simulated by MesoNet---57

Figure A13. Average per-flow throughput for completed flows in three classes,

 as simulated by FxNS---58

Figure A14. Completed flows in three classes, as simulated by MesoNet------------------58

Figure A15. Completed flows in three classes, as simulated by FxNS----------------------59

Figure B1. Proportion of nodes in LSS of congested nodes (γ) for

 34 FxNS configurations--61

Figure B2. Clustering of LSS congested nodes (γ) on

 Squared Euclidean Distance --62

1

1. Introduction

In the past decade or so, the science of complex networks has matured to the point

where one can rigorously study the mathematical structure of many classes of

probabilistic graphs (e.g., from random to scale-free), as well as dynamic processes

moving within such graphs. Network science, which is quite general, has been used to

study food webs, social networks, information networks, electric grids, communication

networks, traffic networks, metabolic networks, protein and genetic networks, epidemic

spreading, and even brain networks. The diversity of networks studied attests to the

generality and power of the mathematics that underlie network science.

Typically, significant levels of abstraction are adopted in order to model real

networks using techniques (including graph theory [1] and percolation theory [2])

available from network science. Sometimes, researchers disagree on the applicability of

such abstractions to the real networks under study. For example, after positing that the

Internet has a scale-free topology, Albert, Jeong and Barabasi [3] used network science to

demonstrate that the Internet is vulnerable to attacks that strategically remove highly

connected nodes, which might represent large interconnection points in selected

geographical areas. They also demonstrated that a scale-free topology, such as the

Internet, is resilient to random failures. Based on these studies, Albert et al. described the

Internet as “robust yet fragile”. In a later study, Doyle et al. [4] took exception to the

findings of the Albert team, pointing out that many classes of topology could be

represented as scale-free graphs, but that not all such classes could be deployed on the

Internet, due to specific technological constraints. In particular, router-based

communication networks are designed to serve users who inhabit the network edge,

where high-degree vertices will thus be found. Further, communication networks are

designed so that traffic entering at network edges can be carried efficiently across the

backbone to corresponding edges, yielding high throughput. Doyle et al. labeled such

topologies as HOTnets: highly optimized networks with organized tolerance and

tradeoffs. Further, they argued that HOTnet topologies are robust to attacks against high-

degree nodes; as such attacks would remove edge nodes. On the other hand, HOTnets are

fragile to failures at low-degree core nodes, which are required to carry transit traffic

between network edges. The main point raised by Doyle et al. is that probabilistic graph

models of networks might prove too abstract to represent constraints present in the

topologies of real communication networks.

The debate between the Albert and Doyle teams shows a tension that exists when

the powerful abstractions of network science are applied to study real networks. How can

one be sure that chosen abstractions adequately embody key properties of a network

under study? This general question motivates the work reported in this Technical Note.

Here, though, our focus is on the spread of congestion within a network topology, rather

than on vulnerability to failures and attack.

Many researchers [5-14] have used simulation to investigate congestion spread in

network topologies. These researchers often find congestion can be modeled as a

percolation process on a graph, spreading slowly under increasing load until a critical

point. After the critical point congestion spreads quickly throughout the entire network.

The researchers also identified various measureable signals that arise around the critical

point. These developments appear quite promising as a theoretical basis for monitoring

2

regimes that network operators could deploy to warn of impending congestion collapse.

Despite showing promise, questions surround the extant research. The network models

are quite abstract, bearing little resemblance to communication networks deployed based

on modern technology.

To explore the adequacy of abstract models, we examine the influence of realism

on congestion spread in network simulations. We do not focus on the adequacy of the

topological model, as the Doyle team did. Instead, we use the same fundamental graph

for all of our simulations. Our chosen graph was adapted from the network topology of an

unnamed Internet service provider. Using this HOTnet topology, we focus on subsidiary

technological traits: relative speed of nodes, propagation delays, bounds on packet

queues, distribution of traffic sources and sinks, correlation among packet injections, and

regulation of transmission rates. These traits are fundamental to real, deployed

communication networks; yet studies based on abstract models often adopt unrealistic

assumptions about such traits.

We begin with an abstract network model, taken from the literature [14], and add

elements of realism in various combinations, culminating with a high-fidelity model, also

taken from the literature [15]. By comparing patterns of congestion among combinations,

we explore a number of questions: Does spreading congestion in abstract network models

mirror spreading congestion in realistic models? How do particular elements of realism

influence congestion spread? Are any elements of realism essential to capture in models

of network congestion? Are some elements of realism unnecessary? What measures of

congestion can be insightful across a diverse set of network models?

We make four main contributions. First, we illustrate that congestion spread in

abstract network models differs significantly from congestion spread in realistic models.

Second, we show that models investigating network congestion must include specific

elements of realism before acceptable engineering findings can be established. Third, we

identify the influence of specific elements of realism on congestion spread. Finally, we

demonstrate an effective means to compare congestion patterns among network

simulations comprising diverse configurations. We hope our contributions lead to better

understanding of the influence of realism on congestion in network simulations, and to

improved dialog throughout the diverse community of researchers who rely on network

simulations.

The remainder of this Technical Note is organized into six main sections.

 Section 2 reviews related work where researchers use abstract models to

investigate congestion spread in network simulations. Our review shows the scope

of extant research, and highlights some of the promising findings regarding

signals that arise near a critical point.

 Section 3 describes three simulation models relevant to our experiment. One

model, EGM [14], named from initials of the authors (Echenique, Gomez-

Gardenes and Moreno), is the baseline for the most abstract simulation we use. A

second model, MesoNet [15], is the baseline for the most realistic simulation that

we use. Previously, MesoNet was used [16] to compare eight congestion-control

algorithms designed to replace the standard transmission-control protocol (TCP)

deployed throughout today’s Internet. A third model, which we designate as

3

FxNS (or Flexible Network Simulator), extends the EGM model so that elements

of realism, extracted from MesoNet, can be included selectively, i.e., turned

on/off in various combinations. We define a set of configurations that are valid

combinations of FxNS realism elements. We use FxNS for all simulations in our

experiment; thus the EGM and MesoNet models define the extremal

configurations of FxNS. When no elements of realism are selected, FxNS behaves

like EGM. When all elements of realism are selected, FxNS behaves like

MesoNet.

 Section 4 details our experiment design. We identify input parameters associated

with each realism element extracted from MesoNet. We provide values for those

parameters when the corresponding realism elements are enabled and disabled.

For input parameters that are always enabled, we assign fixed values. We also

identify and define the two parameters that vary during our experiment. Next, we

define the four responses that we measure. Finally, in Sec. 4, we describe two

forms of self-adaptation, congestion and time-step, which we implemented into

FxNS in order to limit consumption of computation cycles and memory.

 Section 5 displays our results as graphs of each response for each configuration at

each packet-injection rate.

 Section 6 gives our analysis of the results, and discusses our findings.

 Section 7 gives our conclusions and directions for future work.

4

2. Related Work

Graph theory [1] provides a framework for rigorous mathematical understanding

of complex networks, which can be represented as a set of nodes connected through a

collection of links. Graph theory provides a foundation for generating graphs through

various random processes, which can lead to differing structures, such as random, small-

world, and scale-free networks. Graph theory also provides measures that characterize the

structure of networks. Such measures include: (1) node degree, degree distributions and

correlations; (2) centrality, diameter and betweeness; (3) clustering, motifs and

community structures; and (4) graph spectra. Researchers have applied graph theory to

generate artificial networks and to study their structural properties. Researchers have also

characterized both manmade and natural networks, using measures provided by graph

theory. Graph theory has been extended to include concepts from percolation theory.

Percolation theory [2] enables the study of dynamic processes in spatial frames,

such as finite-element grids, which can be represented through graphs. Originally, graph

theorists applied percolation theory to study the dynamic properties of graph formation

when generated via random processes. The main finding was that there exists a critical

point in the probability of creating links in a graph. Below the critical point a graph

remains fragmented into self-connected subcomponents. Above the critical point a graph

quickly becomes highly connected, forming what is known as a giant connected

component (GCC), ultimately spanning all nodes. More recently, researchers have

applied percolation theory to investigate dynamic processes that spread among nodes

within a preexisting network. Such dynamic processes include cascading failures in

electrical grids, evolution of disease epidemics, and expansion of forest fires. Of

particular interest for this Technical Note is the use of percolation theory to study

congestion spread in communication networks.

2.1 Similarities and Variations among Previous Studies

Studies [5-14] investigating congestion spread in communication networks paint a

similar picture. Every study found spreading congestion to be associated with a critical

load. Prior to the critical load, congestion was relatively benign. After the critical load,

congestion spread quickly throughout the entire network. Further, the studies found a

critical load to exist in a wide range of randomly generated topologies (and one real

topology), routing schemes, and distribution of packet injectors. In addition, the studies

identified various measures that could be used to reflect congestion state in a network.

Several studies found measures that changed rapidly as congestion approaches critical

load. This suggests that: (1) congestion spread is a percolation process, (2) networks

designed to achieve high throughput operate relatively near critical load, (3) congestion

collapse occurs quickly in networks that exceed critical load, and (4) measurable signals

appear as congestion approaches critical load. If these points are true, then it should prove

possible to build monitoring regimes to signal operators when a network nears critical

load.

Though each study showed similar findings, the abstract models had variations

along four dimensions: topology, traffic sources/sinks, routers and congestion measures.

Researchers used either deterministic or probabilistic topologies. The most popular

deterministic topology was a square lattice, either open [8, 13] or folded into a toroid [5-

5

7, 9, 11]. Rykalova et al. [12] also used a ring. Echenique et al. [14] used a real topology

taken from the Internet autonomous system map, circa 2001. Arrowsmith et al. [7] started

with a square lattice and then generated triangular and hexagonal depleted lattices by

probabilistically removing links. Other researchers used random processes to generate

topologies: Erdős–Rényi [11], exponential [10], scale-free [10-11], or small-world [11].

Within a topology, researchers used either deterministic or probabilistic processes

to place sources, sinks and routers. The most popular approach was to allow every node

to be a packet source and sink, as well as a router [9-12, 14]. Sarkar et al. [13] restricted

sources and sinks to the network edge, while Mukherjee and Manna [8] placed sources at

the top edge of a lattice and sinks at the bottom edge. Other researchers [5-7] assigned

nodes to be a source/sink or router with a biased coin flip. All surveyed studies generated

loads by having sources inject individual packets, where each packet is destined for a

randomly selected sink. The most popular strategy [5-9, 12-13] was for each source to

generate a packet per time step (p/ts) with a specified probability. A few studies [10-11,

14] generated a fixed number of p/ts and randomly assigned the packets to sources. One

study [10] had a constant density option to ensure a fixed number of packets remained in

transit.

In all models surveyed, router nodes queue packets arriving from sources and then

forward them at an assigned rate to the next hop along some path toward the sink.

Differences appeared with respect to queue discipline, next-hop selection and forwarding

rate. The most popular [5-9, 11-12, 14] queue discipline was unbounded first-in, first-out

(FIFO) queues. One study [10] used bounded last-in, first-out (LIFO) queues. One study

[13] used bounded FIFO queues, where the oldest packet was dropped when a packet

arrived at a full queue. Most studies [5-8, 12, 13] selected next hop based on shortest-path

first (SPF) in hops. Ties were broken either by shortest queue length [5-6, 13], link usage

[7] or tossing a fair coin [8, 12]. One study [9] selected next hop with the choice among

three different SPF metrics: hops, queue length, or their sum. Two studies [11, 13] used

SPF based on a weighted sum of hops and queue length. One study [10] used guided

random walk to select next hops. In most studies [5-7, 10, 13-14] each router forwards

one p/ts. In two studies [9, 12] each router forwards one p/ts for each queue. One study

[8] has each router forward a batch of packets at each time step. One study [11] assigns

routers variable forwarding rates using any of three options: (1) node degree, (2) node

betweeness or (3) node betweeness divided by number of nodes in the topology.

The surveyed research used various measures of network congestion, and often

multiple measures per study. Congestion measures included: one-way packet latency [5-

6, 8, 10]; packets delivered (i.e., aggregate throughput) [5-7]; queue lengths [6-8, 10];

packets in the network [9, 11-12, 14]; and packet drop rate [13]. Various studies analyzed

the measures as time series, proportions, or variances.

2.2 Detailed Summaries of Previous Studies

Sole and Valverde [5] studied congestion spread in a square lattice, where each

node has four nearest neighbors, and periodic boundary conditions close the lattice into a

toroid. Nodes are designated randomly as one of two types: host (probability p=0.08) or

router (probability 1-p). Hosts can generate and consume packets, while both hosts and

routers can store-and-forward packets. Each node contains a queue of unbounded length.

At each time step a host creates a packet with probability λ. Another host is selected

6

randomly (uniform probability) as the packet’s destination, and the packet is appended to

the end of the forwarding queue within the creating host. At each time step each host and

router also removes a packet (if present) from the front of its queue and then selects

which outgoing link is best, relative to the packet’s destination, and forwards the packet.

The selection process considers both shortest path and congestion: select the neighbor

nearest the destination, but in case of ties prefer the neighbor with shortest queue. Sole

and Valverde experiment with lattices of two sizes: 32x32 and 256x256. They plot one-

way packet delay and number of packets delivered (i.e., throughput) within three

different measurement intervals. In the smaller lattice, they find a critical load (λc = 0.2).

They show that as load passes λc packet delay increases quickly and the number of

delivered packets falls gradually. In the larger lattice they find similar behavior, but the

critical load shifts (λc = 0.055). They conclude that information transfer is maximal at the

critical load, but unpredictability in delays is also maximal, as measured by increased

variance. They argue that their model captures some essential properties of the Internet,

and go on to suggest that the Internet might self-organize into a critical state, where both

efficiency and unpredictability are maximal.

Woolf et al. [6] started from the study of Sole and Valverde, but introduced an

option for long-range dependence (LRD) in packet generation. LRD ensures that packet

arrivals are correlated for periods of time. Absent LRD, packet arrivals are independent.

Woolf et al. argue that LRD more accurately reflects user behavior on the Internet. They

experiment with a 32x32 lattice (p = 0.16) and, like Sole and Valverde, find a critical

load (λc = 0.39) after which queue lengths and packet delays increase dramatically and

throughput collapses. The main effect of LRD is to increase packet delays prior to the

critical load. This stands to reason, since LRD increases variance in the packet-injection

rate. Woolf et al. suggest that limiting queue lengths could control congestion. They

experiment with bounds of 10, 100 and 1000 packets. Here, bounding queue lengths

means that a host may not inject packets into a full queue, which serves to cap the

maximum load that can be placed on the network. In such cases, they find that packet

delays still increase as load approaches λc, but delays and throughput level off at the

maximum load.

Arrowsmith et al. [7] conducted follow-on to the Woolf study. Here, in addition to

a square lattice, topologies include depleted lattices of two types: hexagonal and

triangular. Depleted lattices are created by probabilistically removing links from a square

lattice. The researchers claim this is an intermediate step toward studying other irregular

(randomly generated) networks, such as scale-free topologies. When forwarding packets,

the next router is chosen based on shortest path; ties are broken with a random choice. All

queues are unbounded. Arrowsmith et al. find many of the same behaviors reported in the

Woolf study. They also show that critical load shifts with topology, occurring earlier in

the hexagonal grid than in the sparser triangular grid. In general, Arrowsmith et al.

conclude that critical load increases with the sparseness of topology. They also report that

measures of queue length are indicative of congestion state in all three topologies, while

measures of throughput are not as indicative.

Mukherjee and Manna [8] studied congestion in square lattices that are not folded

into a toroid. They study lattices that are 8x8, 64x64 and 128x128. Here, packets are

injected into nodes at the top edge of the lattice and then flow downward through the

lattice toward nodes at the bottom edge, where they are consumed. In this study, packets

7

are injected with a probability (ρ) at each top-edge node at each time step. Packets are

queued (unbounded length) in nodes, and at each time step a maximum of m packets are

forwarded FIFO in bulk to one of two (randomly chosen) neighbors. This setup creates a

system where λc = ρ = m. They measure load, defined as the aggregate number of

packets queued in the system, at each time step. The system transitions to a congested

state when ρ > m. Mukherjee and Manna show the distribution of packet-delays to be

lognormal (heavy-tailed) and the power spectrum of the queue-length time series to

exhibit 1/f-like noise for measurement intervals spanning three orders of magnitude,

which they assert is similar to Internet traffic. As with previous studies, Mukherjee and

Manna find that queues and packet delays grow quickly as load passes λc, and variance in

packet delays also increases.

Lawniczak et al. [9] studied congestion spread in a 16x16 lattice, not folded into a

toroid, where each node is both a source/sink and router. Here, each node has two FIFO

unbounded queues: incoming and outgoing. Each simulation runs for 8000 time steps. At

each time step the model takes five actions: (1) update routing tables, (2) create

(probability λ) and forward packets, (3) process incoming queues, (4) evaluate network

state, and (5) update simulated time. They measure the number of packets in transit,

while comparing the effects of three different SPF routing algorithms: (1) hops, (2) queue

lengths, and (3) sum of hops and queue lengths. The Lawniczak study finds that critical

load varies with the routing algorithm: λc = 0.045 for SPF hops and λc = 0.085 when

queue lengths are considered. This implies that congestion-based routing can handle

somewhat more load, but they also found that such routing increases correlation in the

number of packets in transit.

Tadic et al. [10] studied congestion in two randomly generated irregular

topologies: (1) a correlated cyclic (i.e., highly clustered) scale-free network and (2) an

uncorrelated homogeneous (i.e., weakly clustered) exponential network. Both topologies

were generated randomly using schemes developed by graph theorists. The generating

processes allowed the topologies to consist of self-connected subcomponents, rather than

a fully connected graph. To account for this, choice of packet destinations ensured that

each packet could flow within a single subcomponent. The routing strategy used is

somewhat unorthodox. If a packet’s destination is in the nearest neighborhood, then the

packet is delivered. If the destination is in the next-nearest neighborhood, then the packet

moves in that direction. Otherwise, the packet moves randomly. This amounts to a guided

random walk. Packet generation could take either of two forms: constant density or

constant rate. For constant density, ρ packets are always in flight, and a new packet is

created for each packet that reaches its destination. For constant rate (similar to all other

studies we survey), a fixed number r of packets are created each time step. The Tadic

study limits queue lengths to 1000 packets, but adopts an unorthodox LIFO queuing

discipline, where the last packet to be queued is forwarded first. The study measures one-

way packet delays and queue lengths. In the case of constant-rate traffic, Tadic and

colleagues (like previous studies) find that there is a critical load, after which congestion

grows quickly. They conclude that the scale-free topology has a lower critical load than

the exponential topology.

Wang et al. [11] extended investigation into the influence of topology on

congestion spread. They used graph-theoretic schemes to randomly generate three

different topologies: (1) Erdős–Rényi random, (2) Strogatz small-world, and (3) Holme-

8

Kim scale-free with tunable clustering. All nodes in each topology can generate, consume

and forward packets, which are stored in unbounded FIFO queues. At each time step, r

packets are generated with randomly chosen sources and sinks, and each node forwards ci

packets toward their destination. To set ci the study uses three different approaches: (1) ci

= ki, (2) ci = bi and (3) ci = bi/n, where ki is the degree of node i, bi is the betweeness of

node i, and n is the number of nodes. If the next node is the destination, then a packet is

consumed. Otherwise the next node is chosen according to an equation where parameter

α provides a weighting between (α = 1) SPF based on hops (so-called congestion-blind

routing) and (0 ≤ α < 1) SPF based on a combination of hops and queue length (so-called

congestion-aware routing). Congestion is measured by proportion of packets in the

network, and a critical load is identified as rc. With α = 0.8 Wang et al. compare phase-
transition behavior between free-flowing and congested states for various
combinations of topology and node-forwarding capacity.

Rykalova et al. [12] investigated congestion in two topologies: a bi-directional

ring and a toroidal square lattice. Each node is a source/sink and router. For the ring, each

node has two queues: one per direction. For the lattice, each node has four queues: one

per neighbor. All queue lengths are assumed to be unbounded. At each time step each

node generates a packet for each queue with probability λ. The destination of each packet

is chosen randomly (uniform probability). Packets are forwarded (at the rate of one per

queue per time step) to a next node following a SPF hops scheme, where ties are decided

by tossing a fair coin. For each topology, the Rykalova team finds a critical load, and

shows that, as critical load approaches, the number of messages in the network transitions

to a highly correlated state. This finding holds for ring and lattice.

Sarkar et al. [13] model a communication network using techniques inspired by

statistical mechanics, which include critical phenomena and phase transitions. While

other studies showed existence of critical points in network load and transition from free-

flowing to congested states, the Sarkar team attempts to relate such findings to statistical

mechanics, which is used by some physicists to model thermodynamic systems. Their

goal is to develop a control regime based on measuring analogs to thermodynamic

parameters, e.g., temperature, pressure, and order parameter. They classify phase

transitions into: (1) first order, where the order parameter changes discontinuously and

(2) second order, where the order parameter varies continuously during a transition, but

the derivative at the critical value is discontinuous. They suggest that by identifying an

approaching critical point, control decisions can be taken to move a congesting network

toward a more stable free-flowing state. To demonstrate their argument, they model a

(non-toroidal) square lattice, where sources and sinks are limited to boundary nodes that

populate the edges of the grid. All internal nodes act only as routers. All nodes have finite

queue lengths. At each time step each boundary node creates a packet with probability λ.

Packet destination is chosen randomly (source can be destination). Each node forwards

one packet from the head of its FIFO queue at each time step. Next nodes are chosen

using SPF in hops, but ties are broken based on shorter queue length. When a packet

arrives at a full queue, the oldest packet is dropped. The study uses normalized packet-

drop rate as the order parameter. The study identifies a critical load (λc), and proposes a

control scheme based on centralized measurement. The scheme leads to computation and

dissemination of a global packet-transmission probability distribution, which in effect

implements a priority-based queue discipline. The study also identifies significant future

9

work that includes: validation of the theoretical results in more complex and realistic

network scenarios, investigation of the effects of topology, analysis of convergence and

stability properties of the control scheme, and moving toward a distributed measurement

and control scheme.

A study [14] by Echenique, Gomez-Gardenes and Moreno (hereafter EGM)

applies many of the concepts covered above, but in the context of a real communication

network topology, consisting of 11 174 nodes, taken from the Internet autonomous

systems (AS) map circa 2001. The AS topology, though real, is somewhat ill-suited for

studying congestion spread. Each node in the AS topology actually represents a lower-

level topology that is not included. The AS topology, which allows Internet service

providers (ISPs) to interconnect, evolves from business and policy relationships, whereas

the lower-level topology of each ISP network is designed based on engineering principals

[4] to ensure efficient transfer of packets among customers. For this reason, studying

congestion spread in an ISP topology appears more suitable. EGM measured the degree-

distribution of the AS map, which shows a scale-free topology that exhibits a -2.2 slope

on a log-log plot of degree distribution vs. frequency. Each node in the topology is a

source/sink and router. At each time step p packets are injected, with the source and

destination chosen randomly (uniform). Each node forwards one p/ts from the head of its

unbounded FIFO queue. The routing scheme is the same as that used by Wang et al. [11].

If the next node is the destination, the packet is consumed. Otherwise the next node is

chosen according to an equation where parameter h provides a weighting between SPF

based on hops (h = 1) and SPF based on a mixture (h < 1) of hops and queue length

(congestion-aware routing). The lower h, the more that queue length is considered. Like

Wang et al., EGM measures congestion through the proportion (ρ) of injected packets in

the network. EGM find that critical loads (pc) exist, but shift with the routing scheme.

When h = 1, they find a second-order phase transition, where congestion begins

increasing at a lower value of pc but increases more gradually. For various values of h <

1, they find first-order phase transitions. Lower values of h lead to higher values of pc and

to a greater increase in congestion at the phase transition.

2.3 Questions Arising from Previous Studies

Uncertainty arises because previous studies used models that are quite abstract,

bearing an unknown relationship to real communication networks. To judge the degree of

abstraction, consider MesoNet [15], a realistic model of an ISP network. While concise

(requiring only 20 parameters), MesoNet can represent such elements of realism as:

network configuration (topology, router speeds, propagation delays and buffer sizes),

distribution and operation of sources and receivers, user behavior (think time, patience

and transfer sizes), congestion-control protocols, and simulation and measurement

controls. After conducting sensitivity analyses of MesoNet, Mills et al. [16] used the

simulator to compare various proposed congestion-control algorithms. In October 2008,

the Mills team presented results to engineers for an ISP that provided MesoNet with a

topology. In May 2009, they presented results to the congestion-control working group

within the Internet Research Task Force. In March 2010, they presented further results to

engineers attending the Internet Engineering Task Force. Both researchers and practicing

10

network engineers found MesoNet acceptably realistic for comparing congestion-control

algorithms.

When comparing MesoNet to more abstract network models, one finds several

differences. First, MesoNet provides higher levels of realism with respect to engineering

factors present in deployed communication networks based on modern Internet

technology. And the reasons why various features were included or excluded in MesoNet

are documented. Second, MesoNet was subjected to sensitivity analyses in order to

understand how variation in parameters changed model behavior. Third, MesoNet and

related simulation results were presented to network researchers and practicing network

engineers in order to obtain feedback. Abstract network models used to study congestion

spread were not subjected to the same level of scrutiny as MesoNet. The studies we

surveyed give little rationale for including or excluding particular features in the models

used. They did not describe sensitivity analyses conducted on the models, or report

outreach activities to obtain feedback from network researchers and engineers.

Though many studies have been conducted, no one seems to know what level of

realism should be required in simulations that study congestion in communication

networks. This uncertainty leads to the questions that motivate the research reported in

the remainder of this Technical Note: Do abstract models include too little realism? Do

models like MesoNet include unnecessary realism? How do elements of realism

influence the spread of congestion in network simulations? Are some elements of realism

essential? Can some elements of realism be ignored?

11

3. Models

We conducted an experiment (see Sec. 4) with a simulation model that we call

FxNS (Flexible Network Simulator). FxNS starts from the base of an abstract model

(EGM) developed by Echenique, Gomez-Gardenes and Moreno [14]. We added to EGM

a set of seven realism elements, which we took from MesoNet [15]. We implemented the

seven realism elements as optional within FxNS. Since each of the realism elements can

be enabled or disabled, FxNS could support (27 =) 128 configurations. However, as we

explain in Sec. 3.3, we chose to respect some dependencies among the realism elements.

This means FxNS supports only 34 of the 128 configurations that would be possible if

realism elements were independent. FxNS can be configured to behave as EGM (the most

abstract model), as MesoNet (the most realistic model), and any of 32 valid combinations

of realism elements intermediate between EGM and MesoNet.

In Sec. 3.1 we describe the abstract EGM model [14]. EGM used their model to

study congestion behavior in a realistic 11 174-node topology, which is a snapshot of the

Internet autonomous system (AS) topology circa 2001. We motivate our selection of the

EGM model. We recap congestion spreading behaviors found by EGM.

In Sec. 3.2 we describe MesoNet, including its complete set of 20 parameters

spread among five categories. For 18 MesoNet parameters we define fixed values that we

adopted for use within FxNS during our experiment. For four of those parameters, as we

explain below, we selected values that amount to eliminating them from FxNS. The

remaining two MesoNet parameters are variable within our experiment, though both are

determined by a single EGM parameter: packet-injection rate (p).

In Sec. 3.3 we define our mapping from MesoNet parameters to FxNS realism

elements. We also identify dependencies we adopted between FxNS realism elements and

we give justifications for adopting those dependencies. Finally, we detail our technique

for labeling FxNS configurations, and then list the 34 valid FxNS configurations.

In Appendix A we provide simulation results demonstrating that FxNS correctly

implements both the EGM and MesoNet models. Using FxNS with all realism elements

disabled, we replicate EGM results [14] for the 11 174-node topology, which we obtained

from the original developers of EGM. We then replace this large topology with a smaller

(218-node) topology taken from MesoNet, and demonstrate that our FxNS

implementation of the EGM model produces the same fundamental behaviors as

exhibited for the larger topology. To verify that our FxNS implementation of MesoNet

realism elements is correct, we compare simulation results from MesoNet against results

from FxNS when all realism elements are enabled and p ranges up to 5000.

3.1 Abstract EGM Model

As reported in the literature [14] the EGM model evaluated the spread of

congestion in an 11 174-node topology taken from a 2001 snapshot of the Internet AS

topology collected by the Oregon Route Views project. We obtained the topology

directly from the creators of EGM. Figure 1 shows a visual representation of the

topology, created by Sandy Ressler, a colleague in our laboratory. The colors, which have

no semantic meaning, represent an attempt by the layout algorithm to assign nodes to

clusters. The Echenique team claims that the topology is scale free, as the probability (Pk)

12

a node has degree k approximately equals k -ϒ, with ϒ = 2.2. To verify that claim, we

plotted (Fig. 2) the node degree (x axis) against the frequency (y axis) on a log-log scale.

The claim seems approximately correct.

Figure 1. Visualization (courtesy Sandy Ressler) of an 11 174-node Internet AS topology

provided by Enchenique et al. [14]

Figure 2. Log-Log plot of node degree (x axis) vs. frequency (y axis) of 11 174-node AS

topology

13

In the EGM model, p packets are injected at each time step with the source node

for each packet chosen randomly (uniform), and also with the destination node (which

cannot be the source) chosen randomly (uniform). Injected packets are placed at the end

of the source node’s FIFO packet queue, which can be of infinite length. After injecting

packets at a time step, each node can also remove one packet from the front of its queue

and forward it to a next-hop node. If a next hop is the packet’s destination, then the

packet is removed from the system (i.e., delivered); otherwise the next hop is chosen as

the neighboring node i with minimum δi as defined in eq. 1:

 (1)

where i is the index of a node’s neighbor, di is the minimum number of hops to the

packet’s destination via i, and ci is the queue length of i. When h = 1 the routing amounts

to shortest path in hops. When h < 1, routing is said to be congestion aware, as packets

may follow routes that can be longer in hops, but shorter in total delay incurred due to

packet queuing. The lower the value of h the more congestion aware the routing becomes.

Should h = 0 then routing becomes fully congestion aware.

The EGM model measures congestion as ρ, the ratio of packet outflow to packet

inflow. The specific measure is defined in eq. 2:

 (2)

where A is the aggregate number of packets queued in the network, t is time, τ is the

measurement interval size, and p is the packet injection rate.

Echenique et al. [14] used their model to explore effects of various degrees of

congestion-aware routing as p increases. In general, they found that, under shortest-path

routing by hops (h = 1), congestion ρ undergoes a second-order phase transition as p

passes a critical load, while under various degrees of congestion-aware routing (h set to

0.95, 0.75 and 0.5) ρ undergoes a first-order phase transition as p passes critical load.

Using congestion-aware routing postponed the phase transition: the more congestion-

aware was the routing the higher the critical load, at the cost of a bigger step size at the

transition. The reason behind this behavior is easy to see: as congestion develops,

congestion-aware routing allows alternate routes to be exploited. Once those alternate

routes congest, the system has no room to adapt to increasing load, and so congestion

increases rapidly.

3.2 Realistic MesoNet Model

MesoNet provides a reasonably realistic model of a TCP/IP (Transmission

Control Protocol and Internet Protocol) network, requiring only 20 parameters spread

across five categories, as shown in Table 1. One category defines the network

configuration, including such engineering details as: topology, propagation delay on

backbone links, forwarding speed of network routers and size of buffers in routers. A

second category defines the number and distribution of sources and sinks, and the speed

with which they can generate and consume packets. A third category defines user traits:

14

think time, patience, Web-browsing file sizes, and file sizes for larger traffic types. Users

may also inject temporary increased load to create spatiotemporal congestion or long-

lived flows. The fourth category encompasses parameters that define congestion-control

regimes used within the network, including: congestion-control algorithm, initial

congestion window, and initial slow-start threshold. The fifth category defines

measurement-interval size, simulation duration, and initial startup pattern for sources.

Below, we explain the parameters further. Note that Table 1 also shows mapping of

MesoNet parameters to FxNS realism factors. We cover that mapping in Sec. 3.3.

Table 1. MesoNet parameters organized in five categories

3.2.1 Network Configuration

A network configuration requires a topology (x1) of routers and links, as shown

for example in Fig. 3, adapted from the topology of a modern ISP. MesoNet supports

topologies with up to three hierarchical router tiers: backbone routers (A-P in Fig. 3),

point of presence (PoP) routers (A1-P2) and access routers (A1a-P2g). To model

Category ID Name

Specific

FxNS Realism Factor

Network

x1 topology

18%

NC (Node Classes)

x2 propagation delay

14%

DE (Propagation Delay)

x3 network speed VS (Variable Speed)

x4 buffer provisioning PD (Packet Dropping)

Sources & Sinks

x5 number sources/sinks

SR (Sources & Receivers) x6 source distribution

x7 sink distribution

x8 source/sink speed VS (Variable Speed)

Users

x9 think time p (Injection Rate)

x10 patience n/a

x11 web object file sizes FL (Flows)

x12 larger file sizes

n/a x13 localized congestion

x14 long-lived flows

Congestion Control

x15 control algorithm
TCP (Transmission Control

 Protocol)
x16 initial cwnd

x17 fsst and sst

Simulation Control

x18 measurement interval fixed

x19 simulation duration fixed

x20 startup pattern p (Injection Rate)

15

heterogeneity in network access, MesoNet allows three types of access routers: D-class

(e.g., red nodes in Fig. 3, which connect directly to backbone routers), F-class (e.g., 40

green nodes) and N-class (e.g., 122 small gray nodes). Classifying access routers enables

different speeds to be assigned. As discussed later, sources and receivers compose a

fourth tier distributed below access routers. Packets flowing between a source-receiver

pair follow a single ingress/egress path between an access router and a top-tier backbone

router. Propagation delays on backbone links are an intrinsic property of the topology,

which also specifies paths taken by packets flowing among backbone routers. Parameter

x2 can scale down (e.g., x2 = 0.5) or up (e.g., x2 = 2) propagation delays on all backbone

links. In our experiments, when the propagation-delay realism factor is enabled, we use

intrinsic delays for backbone links in the topology, and we set x2 to 1.

Figure 3. Three-tier topology with 16 backbone routers (A-P), 32 point-of-presence

routers (A1-P2) and 170 access routers (A1a-P2g) - 8 red and 40 green access routers

may operate at higher speeds than remaining access routers

MesoNet assigns transmission speeds to routers. Each backbone (BB) router

multiplexes packet forwarding from a single buffer shared among all attached links,

while point-of-presence (PoP) and access (A) routers have two buffers each, one heading

toward the backbone and one heading from the backbone. PoP and access routers

alternate forwarding between each of the two buffers. Because MesoNet packets have no

size, router speeds are assigned in units of packets/time step (p/ts). Six parameters, shown

in Table 2 col. 1, define the speeds of all router classes (col. 3), using relationships shown

A

C

D

E

G

F

J

K

M

P

B

L

N

O

A1

A1b

A1c

A1a

A2b A2c

A2a

C1

C1b

C1c

C1a

C2

 C2b
C2c

C2a

H2b

H2c

H2a

H1

H1bH1c

H1a

E1

 E1b

E1c

E1a

E2b
E2c

E2a

H1d

H1e

H1f

H2f
H2e

H2d

G1b

G1c

G1a

G1e
G1d

G2b G2c

G2a

G2e

G2dG1f

G2f
P1 P2

P1a

P1b

P1c

P1d

P2a

P2b
P2c P2d

P2e

P2f

P2g

K1

K2

K0a

K1a

K1b

K1c K1d

K2a K2b

K2c

K2d

L2

L1

L1a L1b
L1c

L1d

L2a

L2b

L2c

L2d

 L0a

L0b

J1

J2

 J1a

J1b J1c
J1d

J1e

J1f

J2a

J2b

J2c

J2d
J2e J2f

N1a
N1b

N1c

N1d

N1e

N1f
N2

N2a

N2b
N2c N2d

N2e

N2f

M2b

M2c
M2d M2e

M2f

M2

M2g

M2a

M1a

M1

M1b

M1c

M1d
M1e M1f M1g

 O0a

O1a
O1b

O1c
O1c

O1

O2a

O2

O2b O2c O2d

O2e

O2f

O2g

I2

 I2a

I1

II0a

I1a

I1b I1c I1d

I2g

I2f

I2e

I2dI2cI2b

F2

F2a

F1

F1a

F1b F1c F1d

F2g F2f

F2d

F2c

F2b

F0a

F2e

D2

 D2a

D1

D1a

D1b

D1c D1d

D2g

D2f

D2dD2cD2b

D2e

D0a

B0a
B1

B1a

B1b

B1c B1d

B2

B2a

B2b

B2c
B2d

B2e

B2f

B2g

H

G1 G2

E2

H2

A2

N1

16

in col. 4. Note that every defined relationship includes parameter s1. By assigning values

to the remaining parameters, e.g., as in col. 2, one can establish reasonable engineering

relationships among the speeds of the router classes. Then, by equating s1 with model

parameter x3, speeds of all routers in a topology can be scaled appropriately simply by

changing the value of x3, as shown in col. 5, which indicates the speed of each router

class in p/ts when x3 = 40 p/ts. We use these values in our experiment whenever the

variable-speed realism factor is enabled.

Table 2. Relationships among router classes used to scale speeds

To provision router buffers, MesoNet allows size (in packets) to be selected using

any of four algorithms. In our experiments, when queue lengths are finite, we compute

buffer size using one of those algorithms: RTT × capacity. We fix RTT = 250 ts and

select capacity by router class from the values shown in col. 5 of Table 2. MesoNet

discards packets arriving at a full buffer.

3.2.2 Sources and Receivers

MesoNet requires that a fourth tier of sources and receivers be created and then

distributed under access routers. Sources equate to computers that have information of

interest to receivers. MesoNet includes a variable, baseSources, which is the target

number of sources to locate under each access router. MesoNet fixes the number of

receivers to be four times baseSources. MesoNet parameter x5 serves as a multiplier to

scale the number of sources and receivers. For example, given that baseSources = 100

and x5 = 3, then 300 sources and 1200 receivers would be attached to each access router

– so the topology in Fig. 3, which has 170 access routers, would contain 51 000 sources

and 204 000 receivers. These totals are only approximate because MesoNet allows the

distribution of sources and receivers to be adjusted, as discussed next.

Recall that access routers come in three classes, as shown in Table 3 col. 1. The

precise number of sources under access routers of each type can be adjusted by assigning

the probability, probNs, a source is under an N-class router and the probability, probNsf,

a source is under an F-class router. The probability a source is under a D-class router is

then 1 – (probNS + probNsf). For example, if each router class has a target of 300

sources, then the total number of sources below three routers, one of each class, will be (3

× 300 =) 900. Assigning values to probNs and probNsf would reapportion sources by

router class. Similarly, assigning values to probNr and probNrf would reapportion

17

receivers. In our experiments, when the sources-and-receivers realism element is enabled,

we use the fixed values shown in the caption for Table 3.

Table 3. Sample computation of number and distribution of sources and receivers given

the topology shown in Fig. 3 and baseSources = 100, x5 = 3, probNS = 0.34, probNsf =

0.33, probNr = 0.34, probNfr = 0.33

Each source periodically transfers a flow of packets, after randomly selecting a

receiver. The location of a source-receiver pair influences the characteristics of the path

for a packet flow. Table 3 col. 9 lists six possible flow classes. Table 3, col. 10 shows the

proportion of flows in each class, assuming parameter values shown in the caption.

Sources and receivers can transfer packets to/from the network at some maximum

speed. MesoNet includes two settings: Hbase and Hfast, which specify a number of p/ts.

Parameter x8 specifies the probability that a source or receiver connects at a speed of

Hfast. In our experiment, whenever the variable-speed realism element is enabled, we fix

Hbase to 0.2, Hfast to 2, and x8 to ½.

3.2.3 User Behavior

MesoNet models users as periodically active sources that cycle between thinking

and sending. A source selects a random thinking time from an exponential distribution

with a mean given by parameter x9. Upon expiration, the source enters a sending state,

where a flow of packets is transmitted to a randomly selected receiver. Once all packets

are acknowledged, the source selects a new random thinking time. In MesoNet, flows

may be associated with end-users who have finite patience or with programs that have

infinite patience. Parameter x10 specifies the probability a source has finite patience. In

our experiments, think time is replaced by packet-injection rate (p) and all users have

infinite patience.

When sending, a source selects a Pareto-distributed flow size (in packets) with

shape α and mean λ (MesoNet parameter x11). In our experiments, when flows are

enabled, we select flow sizes with α = 1.5 and λ = 350 packets. MesoNet also allows

sources to transmit larger files. Parameter x12 can be a set to specify those sizes.

MesoNet also supports simulation of spatiotemporal congestion (x13) and specific long-

lived (x14) file transfers. FxNS does not implement these larger flow-size options.

3.2.4 Congestion Control Protocols

A congestion-control algorithm allows a source to adapt its transmission rate

Class routers srcs/router #srcs % srcs rcvrs/router #rcvrs % rcvrs Flows %

N 122 306 37 332 72.4 1224 149 328 72.4
NN 52.4

FN 33.3

F 40 297 11 880 23.0 1188 47 520 23.0
FF 5.3

DN 6.7

D 8 297 2376 4.6 1188 9504 4.6
DF 2.1

DD 0.2

18

based on perceived congestion. Parameter x15 specifies probabilities that a specific

congestion-control algorithm is assigned to any source. In our experiments, sources

implement only the TCP congestion-control algorithm. In outline: TCP [16] probes

(during initial slow start) for available transmission capacity by first sending a few

packets and then increases the rate quickly as acknowledgments arrive. Upon packet loss,

TCP switches to congestion avoidance, reducing transmission rate by 50 % and then

increasing the rate slowly on subsequent acknowledgments.

TCP has parameters that control its behavior. Upon connecting, a source first

sends a specified number of packets, known as the initial congestion window (x16). As

acknowledgments arrive from the receiver, the source increases the cwnd exponentially.

Absent any losses, a source switches to a logarithmic increase in cwnd after reaching a

first slow-start threshold (fsst). If the cwnd increases to a second slow start threshold (sst)

without loss, then the source switches to congestion avoidance, where cwnd increases

linearly. The fsst and sst comprise MesoNet parameter x17. While moving through slow

start, a source switches immediately to congestion avoidance upon the first lost packet. In

our experiments we set initial cwnd to 2, fsst to 100, and sst to 230/2.

3.2.5 Simulation and Measurement Control

MesoNet samples system state at periodic intervals of size M ts (x18). Parameter

x19 is the number (MI) of measurement intervals to be sampled. Simulation duration is M

× MI ts. In our experiments we set M = 200 ts and MI = 1000, and so each simulation

executes for 200 000 ts. MesoNet parameter (x20) defines a startup distribution for

sources, allowing load to be present at simulation onset. In our experiments, packet-

injection rate (p) determines the startup pattern of sources.

3.3 Factored FxNS Model

We factored MesoNet into seven realism elements and then inserted them into

FxNS. Section 3.3.1 describes each element. Section 3.3.2 identifies and justifies

dependencies among the elements. Section 3.3.3 defines a coding scheme to label FxNS

configurations, which are combinations of realism elements, and lists 34 configurations

that respect identified dependencies.

3.3.1 FxNS Factors

Table 1 Col. 4 shows how MesoNet parameters map to FxNS realism elements.

Each element can be enabled or disabled. Below, for each element, we describe the

mapping and the effect of enabling and disabling.

NC: Given a topology, such as Fig. 3, enabling node classification (NC) implies

routers are tagged as backbone, PoP, or access. Enabling NC restricts packet injection to

occur only at access routers, i.e., the network edge. When NC is disabled routers are

homogeneous and packets may be injected at any router.

DE: When propagation delay (DE) is enabled, each backbone link in the core of

the topology is assigned a propagation delay consistent with physics and with the

19

geographic placement of the routers on each end of the link. When DE is disabled,

backbone links exhibit no propagation delays.

VS: When variable speed (VS) is enabled, routers are assigned packet-forwarding

rates that vary with router class (i.e., backbone, PoP and access) and subclass (i.e.,

directly-connected, fast or normal) for access routers. These rates are assigned with an

engineering relationship that allows higher-level routers to accommodate packets from

connected lower-level routers. Here, we assign the rates shown in Table 2. In addition,

when VS is enabled and the topology includes source and receiver nodes (see SR below)

then those nodes are assigned rates that vary with node type: basic (0.2 p/ts) or fast (2

p/ts). When both VS and SR are enabled, we randomly assign (unbiased coin flip) types

to sources and receivers. When VS is disabled, all routers have identical forwarding rate.

Here we assign 9 p/ts, which is the weighted average rate of routers in our topology when

VS is enabled. When SR is enabled but VS is disabled we assign rates of 9 p/ts to sources

and receivers.

PD: When packet dropping (PD) is enabled FIFO buffers are assigned a finite

size, computed as 250 ts × router forwarding rate. Packets arriving at a full buffer are

discarded. When PD is disabled buffers have infinite capacity, and packets are never

discarded.

SR: When sources and receivers (SR) are enabled we include a fourth tier, not

shown in Fig. 3, of sources and receivers under access routers. Table 3 gives the number

and distribution of sources and receivers. Here, we create 51 588 sources and 206 352

receivers uniformly distributed under each subclass of access router. Enabling SR

expands our topology from 218 nodes to 258 158 nodes. Enabling SR restricts packet

injection to occur only at sources, and packet removal to occur only at receivers. In fact,

enabling SR leads to creation of an independent packet-injection process for each source.

When SR is disabled our topology is limited to the 218 nodes shown in Fig. 3. Further,

packets are injected from a single injection process within each router.

FL: With flows (FL) enabled, packets are injected as related streams. The packet-

injection process is altered to represent arrival of packet streams rather than individual

packets. Each source waits for an arrival time, selects and connects to a receiver, selects a

flow size, injects packets at whatever rate is appropriate, and then waits for a next arrival

time. This cycle continues throughput a given simulation. The size of each packet stream

is selected from a Pareto distribution with mean of 350 packets and shape of 1.5.

Individual packets in a stream are injected at the rate of the injecting node, but not subject

to any congestion-control restrictions unless TCP is enabled (see below). As we explain

below, the injection rate p and mean flow size are used to prorate flow arrivals so as to

create equivalent packet-injection loads for a given p whether FL is enabled or disabled.

Enabling FL also activates a flow-connection process. Before injecting any data packets,

the source and receiver in a flow must exchange connection request and accept packets.

A retry procedure is implemented, with exponential back off. The FL retry procedure

uses the same parameters normally adopted for real Internet TCP flows. If a source sends

three connection requests without receiving any connection accept from a receiver within

a prescribed time, then the flow is aborted and the source waits for its next arrival time.

When FL is disabled packet injection occurs without considering streams, stream sizes, or

connection/retry.

20

TCP: When TCP is enabled the rate of packet flow in each stream is regulated

with congestion-control procedures. At stream onset slow-start procedures are activated.

The number of packets defined by the initial cwnd is injected at whatever rate is possible

for the source. As acknowledgments are returned from the receiver, the number of

packets that can be sent increases exponentially until fsst, after which the increase is

logarithmic until sst. If cwnd reaches sst, then congestion-avoidance procedures are

activated and cwnd increase becomes linear. Upon first packet loss, cwnd is cut in half

and congestion-avoidance procedures are activated. If no acknowledgments are received

within a prescribed time, the cwnd is cut in half and the sst is set to that value.

Subsequently, slow-start procedures are activated. Once each data segment has been

acknowledged, the flow is terminated and the source waits for a next arrival time. When

TCP is disabled and FL is enabled, after a source and receiver connect, the source injects

the stream of packets into the network at the rate assigned to the source (i.e., there is no

congestion control and no packet acknowledgment).

Simulation Duration: FxNS implements MesoNet’s measurement-interval size

(M) and simulation duration (MI). Here we fix M to be 200 ts and we fix MI to be 1000.

As a result, simulation durations in our experiments are fixed to (M × MI =) 200 000 ts.

But, as explained in Sec. 4.4, when PD is disabled, simulation duration can self-adapt to a

smaller value in order to prevent exceeding the memory available on a hosting computer.

Packet-Injection Rate: FxNS subsumes two MesoNet parameters (think time

and startup pattern) with packet-injection rate (p). MesoNet simulates flows that arrive

after a think time expires. When FL is enabled FxNS replaces think time with an arrival

process that computes the probability P(n, t) that a flow arrives at injection source n at

time step t. Specifically, P(n, t) = p/(N × f), where N is the number of potential injection

sources and f is the average flow size in packets. Rather than implement a separate startup

pattern for arrivals, FxNS simply lets P(n, t) dictate the startup pattern.

Routing: One final issue concerns routing, i.e., selecting a next-hop router when

forwarding packets. MesoNet assumes offline route computation, and expects a resulting

forwarding table to be present in each router. For most routers in the topology shown in

Fig. 3, next-hop forwarding is obvious, since there is a single link to each neighbor. For

16 routers (i.e., the backbone) alternate routes are possible. We computed forwarding

tables with Dijkstra’s Shortest-Path First (SPF) algorithm [17], using propagation delay

as the metric.

Excluded MesoNet Functions: FxNS provides no implementation for MesoNet

parameters: x10, x12, x13 and x14. While inducing selected spatiotemporal congestion

(x13) and long-lived flows (x14) seems appropriate for experiments comparing

congestion-control algorithms, such special features add little value for our experiments.

Though we could include various larger transfer sizes (x12) in our experiments, we

decided to omit this feature because we wanted to compare the influence of having

streams of related packets (i.e., flows) against independent packet injections. If we

simulated various flow sizes, then we would need to find some mapping to independent

packet injection. Such a mapping would require adjusting p in the absence of FL to

compensate for variations in average flow sizes when FL is enabled. We already needed

to relate a given p to average flow size when FL is enabled. We determined that adding

variations in average flow size would create an undesirable complication. Finally, we

assumed each user has infinite patience (x10), which eliminated user patience as a factor.

21

We took this decision because user patience makes sense only when TCP is enabled.

Since we could not formulate an analog to user patience when TCP is disabled, we

decided to eliminate user patience as a factor in FxNS.

3.3.2 Dependencies among FxNS Factors

We determined implementing all seven realism elements as independent FxNS

factors would prove infeasible. Instead, we identified seven dependencies among the

factors, as illustrated in Fig. 4. Next we explain and justify these dependencies.

Figure 4. Dependencies among FxNS factors

The abstract EGM model is the root of our dependency tree. One can easily add

finite queues (PD) to such a model. In addition, one can readily assign node classes (NC)

to the topology included in such a model. Since variable speeds (VS) are assigned to

nodes of different classes, node classes must be included in order to facilitate VS.

Similarly, since propagation delays (DE) are assigned only to backbone links, we need to

be able to distinguish such links. Backbone links connect two backbone routers, which

requires that nodes be classified, creating a dependency on NC.

While sources and receivers might be included as a second tier under a flat

topology, i.e., without node classification, we decided to restrict the use of sources and

receivers to be a fourth tier under access routers. We took this decision for convenience,

allowing us to eliminate 24 configurations that we would otherwise need to simulate.

Given our decision SR requires the use of node classes.

Enabling flows (FL) considers packets injected as a stream between a source and

receiver. Without the presence of SR, there would be no obvious way to identify a related

stream of packets, unless we significantly complicated the packet-injection process

22

typically used by routers in EGM. For example, for p packets injected at each time step

we would need to assign the packets not only to a source router but also to a “flow”

within that router. To make such an assignment, a “flow” would need to exist already or

else would have to be created as a new “flow.” We could select a source and sink for

each packet, determine if a packet traversed between them before. If so, then we could

assign the packet to an existing “flow.” If not, we could assign the packet to a new

“flow.” In either case, we would simply be implementing a packet-injection process with

superfluous logic glued on. Further, such an approach would not allow us to decide when

a “flow” ends. Our other option would have been to initiate a flow arrival and connection

process under routers. In that case, we would need to decide how many flow arrival

processes would be operating under each router. Given these issues, we simply decided

that FL requires SR.

TCP regulates the rate of packet transmission within a stream of related packets,

retransmitting those that are not received, and deciding when all packets in the stream

have been delivered successfully. These steps cannot be taken without a flow. Thus TCP

requires FL.

3.3.3 Numbering Valid FxNS Configurations

We label FxNS configurations using a numbering scheme based on binary

encoding, as shown in Fig 5. Each optional factor is assigned a position in a seven-bit

vector, from most (bit 7) to least (bit 1) significant. Factors are assigned to bit positions

from the bottom of the dependency tree and moving upward, with TCP assigned to bit

position 7 and FL to bit position 6 and so on to PD, which is assigned to bit position 1.

When a selected factor is enabled its bit position is set to one, and set to zero when

disabled. The resultant bit vector can be converted to a decimal value, which is the

configuration number. For example, Fig. 5 shows the encoding when NC+VS+SR+FL

are enabled, which translates to decimal 54. So that configuration is designated C54.

Figure 5. Numerical encoding scheme for FxNS configurations – and one example

23

Respecting the dependencies shown in Fig. 4, we identified 34 valid FxNS

configurations. Table 4 defines those configurations and gives the configuration number,

both in sequence (1-34) and in numerical encoding (C0-C127).

Seq# Config TCP FL SR DE VS NC PD

1 C0 0 0 0 0 0 0 0

2 C1 0 0 0 0 0 0 1

3 C2 0 0 0 0 0 1 0

4 C3 0 0 0 0 0 1 1

5 C6 0 0 0 0 1 1 0

6 C7 0 0 0 0 1 1 1

7 C10 0 0 0 1 0 1 0

8 C11 0 0 0 1 0 1 1

9 C14 0 0 0 1 1 1 0

10 C15 0 0 0 1 1 1 1

11 C18 0 0 1 0 0 1 0

12 C19 0 0 1 0 0 1 1

13 C22 0 0 1 0 1 1 0

14 C23 0 0 1 0 1 1 1

15 C26 0 0 1 1 0 1 0

16 C27 0 0 1 1 0 1 1

17 C30 0 0 1 1 1 1 0

18 C31 0 0 1 1 1 1 1

19 C50 0 1 1 0 0 1 0

20 C51 0 1 1 0 0 1 1

21 C54 0 1 1 0 1 1 0

22 C55 0 1 1 0 1 1 1

23 C58 0 1 1 1 0 1 0

24 C59 0 1 1 1 0 1 1

25 C62 0 1 1 1 1 1 0

26 C63 0 1 1 1 1 1 1

27 C114 1 1 1 0 0 1 0

28 C115 1 1 1 0 0 1 1

29 C118 1 1 1 0 1 1 0

30 C119 1 1 1 0 1 1 1

31 C122 1 1 1 1 0 1 0

32 C123 1 1 1 1 0 1 1

33 C126 1 1 1 1 1 1 0

34 C127 1 1 1 1 1 1 1

Table 4. Set of FxNS configurations simulated

24

4. Experiment Design

We designed an experiment to explore the influence of FxNS realism factors on

global congestion behavior in a simulated network. Below, we first identify (Sec. 4.1)

fixed input parameters used across all our simulations. Next we specify (Sec. 4.2)

parameters varied from simulation to simulation. Third we define (Sec. 4.3) four

responses measured for our simulations. We chose responses that can apply across all 34

configurations that we simulate. Finally, we discuss (Sec. 4.4) the fact that our

simulations could individually self-adapt in two dimensions: (1) number of p values

simulated and (2) number of time steps simulated for each p value.

4.1 Fixed Input Parameters

We use the same 218-node topology (recall Fig. 3) in all simulations. We adapted

this topology from that of an Internet service provider. Because the topology core spans

the continental United States and allows choice of routes, we used Dijkstra’s SPF

algorithm [17] to compute next hops for core nodes based on propagation delays. Routing

to and from core nodes consists of single paths with obvious next hops. This approach

creates a fixed forwarding table for each node. We used this forwarding table for all

simulations. Packets are forwarded based on SPF propagation delays in the core and

based on SPF hops toward and away from the core. Note that propagation delays are used

to compute SPF next hops in the core regardless of whether DE is enabled or disabled.

Thus disabling DE causes packets to experience no propagation delays in the core even

though packets are forwarded based on SPF propagation delays.

We also fixed the measurement interval (M) to 200 time steps and executed each

simulation for 1000 M. This means that each simulation executes for 200 000 ts. There

might be some situations, e.g., where p is large and packet dropping (PD) is disabled,

requiring excessive memory usage by our simulations. In such cases, as explained in Sec.

4.4, our simulations self-adapt to execute a lower number of time steps in order to limit

memory usage.

4.2 Variable Input Parameters

We varied only two parameters: (1) packet-injection rate p and (2) configuration

(as identified in Table 4). For each configuration, we varied p up to 2500 in increments of

10. This means that we planned 250 simulations for each configuration, or (250 × 34 =)

8500 simulations in all. However, as explained in Sec. 4.4, simulations of individual

configurations could self-adapt so that when extreme congestion appears at successive

values of p then simulations terminate for the configuration. This saves computation time

because once a configuration demonstrates extreme congestion for several increasing

values of p then the configuration continues to exhibit congestion as p increases further.

Each configuration simulated entails a combination of enabled and disabled FxNS

realism factors. For each realism factor, as shown in Table 5, we selected one set of

parameter values when enabled and a different set when disabled.

25

Table 5. Parameter values when each FxNS realism factor is enabled or disabled

 Enabled Disabled

PD buffers = 250×router speed buffers = ∞

NC

3-tier 218-node topology as in Fig. 3 –

routers labeled as core, PoP, D-class,

F-class or N-class

flat 218-node topology as in Fig. A2 –

with router classes unlabeled

VS

core 80 p/ts; PoP 10 p/ts; D-class 10

p/ts; F-class 2 p/ts; N-class 1 p/ts; fast

source/sink 2 p/ts; normal source/sink

0.2 p/ts

all routers and sources/sinks 9 p/ts

DE core links have propagation delays no propagation delays

SR

51 588 sources and 206 352 sinks

deployed uniformly below access

routers

no sources or sinks deployed

FL

transfers are packet streams: sized

randomly from Pareto distribution

(mean 350, shape 1.5) – streams set up

with TCP connection procedures

transfers are individual packets

TCP

packet transmission regulated by TCP

congestion-control including slow-

start (initial cwnd = 2 fsst=100 sst =

230/2) and congestion avoidance

packet transmissions not regulated by

congestion-control

4.3 Responses

Given the wide range of configurations simulated in our experiment, we were

constrained to choose (and define) responses comparable across all configurations: from

most abstract to realistic. This prevented us, for example, from comparing behavior based

on flows, since many configurations did not use flows. Despite this constraint we also

desired to measure a range of behaviors, rather than limit ourselves to a single response.

We determined that across all configurations two measurable concepts exist: graphs and

packets. We found that we could use these simple concepts to measure: congestion spread

(χ), connectivity breakdown (α), packet delivery (π) and packet latency (δ). For each

configuration we simulated, we plotted each of these responses (y axis) against increasing

packet-injection rate (x axis), forming a vector per configuration per response. Thus

simulating each configuration results in four vectors, each defined by a set of (x: injection

rate, y: response value) pairs. We define each response below.

4.3.1 Congestion Spread

To measure congestion spread, we adapt an approach from percolation theory,

combined with graph theory. Our approach is inspired by the concept of giant connected

26

component (GCC). In graph-theory, the GCC is defined [1] as a large, connected

subgraph with size on the same order as the number of nodes in the graph, i.e., the GCC

includes nearly all nodes. Percolation theory [2] further mystifies the concept by stating

that percolation can occur only on infinite graphs, and thus the GCC must approach an

infinite number of nodes.

We take an empirical approach that replaces the GCC with the largest self-

connected subgraph (LSS). We work with a finite graph of up to about a quarter million

nodes. So, according to percolation theory, percolation cannot be said to occur, even

when the LSS consists of all quarter million nodes. Readers should bear in mind our use

of the LSS as a substitute for the GCC. Readers should also note that we consider

percolation to be observed whenever the LSS contains all nodes within a topology.

General Approach: We label each node as congested, cutoff or uncongested.

Here, a node is considered cutoff when it connects only to congested neighbors. We then

compute self-connected subgraphs of nodes that are labeled either as congested or cutoff.

We declare the largest such subgraph to be the LSS of isolated nodes. The proportion (χ)

of network nodes in the LSS of isolated nodes can range between 0 (no congested nodes)

and 1 (all nodes are either congested or cutoff). We plot χ to represent the spread of

congestion throughout the network. Below we define the details more precisely.

Congested Node: Let Qi,d be the count of packets waiting for transmission in

direction d (up or down or only) at node i. Node i is congested if Qi,d ≥ QT. Note that

when NC is disabled all routers have only one queue (d=only). When NC is enabled,

backbone routers have only one queue (d=only), while other router types have two

queues (d=down and up). We label a router as congested if any queue within the router

contains QT or more packets. Here, we set QT = 250 × forwarding speed × 0.7. Note that

forwarding speed is half the router speed for PoP and access routers. Forwarding speed is

the router speed for backbone routers.

Cutoff Node: Given a graph with n nodes, an adjacency matrix A contains rows

and columns labeled with vertices (1 to n). A link exists between two nodes i and j when

ai,j = 1 in A. For the same graph, a vector C represents the congestion state of each vertex,

where a congested node is denoted by ci = 1 and an uncongested node is denoted by ci =

0. For any node ci in C that is not congested (i.e., ci = 0), then that node is cutoff if

 (3)

i.e., all its surrounding neighbors (not including sources and receivers) are congested.

Largest Self-Connected Subgraph (LSS) of isolated nodes: We define the LSS

of nodes that are congested or cutoff, including any sources and receivers under such

nodes, as the LSS of isolated nodes. Effectively, if sources and receivers connect to the

network through a congested or cutoff node, then we also label those sources and

receivers as isolated nodes.

Proportion of nodes in the LSS of isolated nodes: Let GN be the set of all nodes

in a graph G, let Gχ be the set of nodes in the LSS of isolated nodes in G, where Gχ ⊆

GN. Then χ = |Gχ|/|GN| is the proportion of nodes in G that are in the LSS of isolated

nodes.

27

Proportion of nodes in the LSS of congested nodes: In Appendix B, we

consider the LSS for congested nodes (γ) only. Let Gγ be the set of nodes in the LSS of

congested nodes in G, where Gγ ⊆ GN. Then γ = | Gγ|/|GN| is the proportion of nodes in G

that are in the LSS of congested nodes. As shown in Appendix B, the results for γ are

similar to the results for χ.

4.3.2 Connectivity Breakdown

 We use a similar approach to measure the breakdown of network connectivity.

Here we label nodes as congested, cutoff or uncongested, using the definitions given

above, and then we compute self-connected subgraphs of nodes that are labeled as

uncongested. We declare the largest such subgraph to be the LSS of reachable nodes. The

proportion (α) of network nodes in the LSS of reachable nodes can range between 0 (no

uncongested nodes) and 1 (all nodes uncongested). We plot α to represent the breakdown

in network connectivity as α falls from 1 to 0. While in some cases α is the inverse of χ,

an inverse relationship does not always hold. For that reason we report both α and χ.

Assuming the definitions given above, we define residual details below.

Largest Self-Connected Subgraph (LSS) of reachable nodes: We define the

largest self-connected subgraph of nodes that are uncongested, including any sources and

receivers under such nodes, as the LSS of reachable nodes. The network is fully

connected when this GCC contains all nodes in the network.

Proportion of nodes in the LSS of reachable nodes: Let GN be the set of all

nodes in a graph G, let Gα be the set of nodes in the LSS of reachable nodes in G, where

Gα ⊆ GN. Then α = |Gα|/|GN| is the proportion of nodes in G that are in the LSS of

reachable nodes.

4.3.3 Packets Delivered

Packets injected into a network will meet one of three fates: be delivered, be

queued, or be discarded. We consider a network as effective when all packets are

delivered and useless when no packets are delivered. Based on this reasoning, we

measure the proportion (π) of injected packets that are delivered during a simulation. The

proportion of packets delivered (π) can range between 0 (no packets delivered) and 1 (all

packets delivered). Next, we more precisely define this measure.

Let ae be the aggregate number of packets injected into the network over the

course of a simulation, i.e., over the time span t = 1…e, as defined by eq. 4.

 (4)

Let qe be the aggregate number of packets queued in all buffers over all network nodes at

time step e, i.e., the end of a simulation, as defined by eq. 5.

 (5)

Let bi,d be the maximum number of packets that can be queued in node i for transmission

in direction d. When packet dropping is not used bi,d = ∞. For a given node i, an arriving

28

packet will be dropped when, for any direction d, Q𝑖,d = bi,d, i.e., there is no room for the

packet. Let be denote the aggregate number of packets dropped by all network nodes from

all queues over the course of a simulation, i.e., over the time span t = 1…e.

The proportion of packets queued (ρ) then is ρ = qe/ae, and the proportion of

packets dropped (x) is x = be/ae. The proportion of packets delivered (π) then is π = 1 – ρ

– x. This estimates the probability that a packet will be delivered. When PD is disabled x

= 0. When PD is enabled, ρ→ε, where ε is a small, fixed, upper bound, established by the

aggregation of buffer sizes across all nodes. Thus for disabled PD π = 1 – ρ, and for

enabled PD π = 1 – ε – x. This implies that 1 – ρ = 1 – ε – x, and so ρ = x + ε. Since ε is

relatively small, x ≈ ρ. So when PD is enabled, π is driven by x; otherwise by ρ. So

regardless of the state of PD, π reasonably measures effectiveness of packet delivery.

4.3.4 Packet Latency

While a network that delivers a high proportion of injected packets can be

considered effective, that same network can be considered inefficient if excessive time is

required to move packets from point of injection to point of extraction. To assess

efficiency for delivered packets (i.e., packets in π) we measure the average one-way delay

(Δ), which will be longer as queues are larger and shorter as queues are smaller. As we

describe below, we scale Δ to be average delay (δ) within the interval [0...1]. Next we

precisely define Δ and its scaling to δ.

Let Pπ be the set of packets injected into the network that reach the intended

destination. Let si be the creation time of the ith packet and let di be the delivery time of

ith packet. Then average one-way packet delay (Δ) is defined by eq. 6.

 (6)

Let ∆c,p be the average one-way delay for configuration c and packet injection rate

p. Let ∆MIN be the minimum ∆c,p over all configurations and packet injection rates, and

∆MAX be the maximum ∆c,p over all configurations and packet injection rates. Then scaled

average delay (δ) is defined by eq. 7.

 (7)

4.4 Simulation Self-adaptations

Simulating 34 configurations over 250 packet-injection rates (p), where each

simulation covers 200 000 time steps, requires significant computation. In addition,

simulations without packet dropping can require excessive memory usage, especially at

higher values of p. To address these issues, we implemented two forms of self-adaptation

within FxNS: congestion self-adaption and time-step self-adaptation.

First, we allowed FxNS to examine the history of simulated congestion spread.

For a given configuration, when congestion spreads through all nodes for three

successive values of p then FxNS terminates simulations for the configuration. In our

experiment, the earliest any configuration terminated under congestion self-adaption was

29

after p passed 790. This saved computation time because once a configuration

demonstrates extreme congestion for several increasing values of p then the configuration

will continue to exhibit congestion as p increases further. Curtailing simulation of heavily

congesting configurations did not cause information loss, as response variables for higher

values of p can be extrapolated easily.

Second, we allowed FxNS to examine memory usage by individual simulation

runs. When memory usage exceeded a specified threshold, subsequent FxNS simulation

runs for the same configuration terminated prior to executing all 200 000 time steps. But

FxNS continued to simulate subsequent values of p. Without time-step self-adaptation

FxNS simulations could consume too much memory. In our experiment, time-step self-

adaptation occurred in configurations with PD disabled, and for values of p greater than

250. No simulation executed fewer than 41 400 time steps. Time-step self-adaptation was

triggered only in cases where packet queues were large, and so congestion extreme.

Curtailing a data point early under such conditions did not lead to significant information

loss, as affected configurations had already congested sufficiently to yield insightful

results.

30

5. Results

Below we plot results for each of the four responses: congestion spread (χ),

breakdown in network connectivity (α), and both effectiveness (π) and efficiency (δ) of

packet delivery. Each result covers 34 configurations with p ranging up to 2500. Here, we

plot together all 34 configurations for each response. This enables comparison of

similarities and differences among configurations. Larger plots for each response-

configuration pair are available elsewhere [18].

Figure 6 shows 34 plots of χ (y axis) vs. p (x axis), one for each FxNS

configuration. These plots show how much congestion spreads in the network for the

given combinations of realism factors. Figure 7 shows similar plots, but for α. These plots

show how connectivity breaks down in the network for given combinations of realism

factors. Figure 8 shows the proportion of packets delivered (π) varying with p for each of

the 34 FxNS configurations. Figure 9 shows the scaled average one-way delay (δ) of

delivered packets varying with p for each of the 34 FxNS configurations.

31

Figure 6. Proportion of nodes in LSS of isolated (χ) nodes for 34 FxNS configurations

32

Figure 7. Proportion of nodes in LSS of reachable nodes (α) for 34 FxNS configurations

33

Figure 8. Proportion of packets delivered (π) for 34 FxNS configurations

34

Figure 9. Scaled average latency of delivered packets (δ) for 34 FxNS configurations

35

6. Discussion

The plots shown in Figs. 6-9 illustrate differences in global congestion behavior

among various simulated FxNS configurations. The plots also suggest that patterns of

similarity exist among subsets of the configurations. Here, we explore these differences

and similarities, aiming to draw some conclusions about the influence of realism on

congestion in network simulations. We begin, in Sec. 6.1, by comparing plots between

the most abstract (C0) and realistic (C127) configurations.

Subsequently, for each response, we examine similarities and differences among

all configurations. We do this by transforming each of the 34 plots for a given response to

a vector and then hierarchically clustering configurations based on the squared Euclidean

distances between the vectors. Some of the vectors are shorter than others because FxNS

implements congestion self-adaptation, which terminated affected configurations before

reaching p = 2500. In such cases, we filled the missing vector elements with extrapolated

results. For the LSS of isolated nodes, discussed in Sec. 6.2, we filled the missing

elements with ones. For the LSS of reachable nodes, discussed in Sec. 6.3, and the

proportion of packets delivered, discussed in Sec. 6.4, we filled the missing elements

with zeros. For average one-way delay of delivered packets, discussed in Sec. 6.5, we

filled the missing elements with data points along a linear trend line. We summarize our

overall findings in Sec. 6.6.

6.1 Most Abstract vs. Most Realistic

Figure 10 contains four subplots comparing congestion behavior between the

most abstract (C0) and realistic (C127) configurations. The subplots compare: congestion

spread (χ), connectivity breakdown (α), packets delivered (π), and latency (δ) for

delivered packets. We restrict the subplots to the range p ≤ 2000 because FxNS

terminated simulations of configuration C0 early, due to congestion self-adaptation. We

discuss each subplot in turn.

Congestion Spread (χ): For configuration C0 congestion spreads quickly with

increasing packet-injection rate, encompassing all nodes by the time p reaches 500. For

configuration C127, congestion spread remains low over the entire range of packet

injection rates, even out to p = 2500 (not shown). This difference has two main causes.

First, all nodes in configuration C0 operate at the same speed. This means that backbone

nodes become overwhelmed with congestion, which then spreads outward to the network

edge. In configuration C127 router nodes are engineered with varying, hierarchical

speeds, so higher tiers can handle the packet inflow rate from lower tiers. Second,

configuration C0 does not monitor and adapt to congestion, while configuration C127,

which implements TCP, measures congestion and adapts the rate of packet inflow

accordingly.

Connectivity Breakdown (α): Network connectivity breaks down rather quickly

for both configuration C0 and C127, reaching a relatively low level before p reaches 500.

Even so, there are two main differences in the subplot: C127 decays more slowly than C0

and C127 asymptotes at a higher level of network connectivity than C0, which drops to

zero after p passes 500. C127 decays more slowly because TCP adapts packet injection

based on measured congestion. C127 asymptotes at a higher level because variable router

36

speeds restrict congestion to the network edge. The network core remains uncongested

and intact. Connectivity breaks down completely for C0 because the network core

becomes congested and then congestion spreads to the edge, consuming all nodes.

Figure 10. Comparison of congestion spread (χ), connectivity breakdown (α), packets

delivered (π), and packet latency (δ) for the most abstract (C0) and most realistic (C127)

FxNS configurations

 Packets Delivered (π): For C0 the proportion of packets delivered drops steeply,

reaching nearly zero as p passes 1000. For C127 the proportion of packets delivered

drops only modestly with increasing p, stabilizing near 80 %. This large difference arises

from a combination of two factors: TCP and packet dropping. C0 does not adapt packet

injection based on measured congestion and does not discard packets. With increasing p,

this leads to a large and growing backlog of packets in all network nodes. C127, which

implements TCP and packet dropping, adapts packet injection based on measured

congestion and also discards packets when router buffers fill. As a result, undelivered

packets for C127 encompass those that are discarded, and the number of packets that

must be discarded is limited by the rate adaptation of TCP.

Packet Latency (δ): For C127 the latency of delivered packets remains low even

as p increases to and beyond 2000. This occurs because packet dropping limits the size of

router queues, so delivered packets are not delayed very long. For C0, which does not

implement packet dropping, packet latency climbs steeply with increasing p, reaching an

apex before decaying gradually. The reason for the steep climb is that packet queues

become jammed, which drives up packet latency. The reason for the gradual decay is that

latencies are recorded only for delivered packets. At high values of p, C0 delivers

37

relatively few packets, and those packets necessarily transit routes where queues are not

jammed. Even with such decay, packet latency for C0 remains significantly higher than

for C127.

The foregoing discussion contains explanations for the differences in the subplots

in Fig. 10. Some of those explanations are informed by results from the clustering

analyses that follow in Secs. 6.2-6.5. Other explanations, relating to the progression of

congestion within the network topology, are informed by a visualization of the spread of

congestion. FxNS can export the ending congestion state for each configuration and

simulated value of p. Phillip Gough, a researcher from Australia’s Commonwealth

Scientific and Industrial Research Organization, devised and implemented an interactive,

multidimensional visualization that allowed us to examine the spread of congestion in the

network topology for all configurations and values of p. Figure 11 shows a screenshot

from that visualization. An interactive version, using data from our experiment, is

available elsewhere [19].

Figure 11. Screenshot from dynamic visualization (courtesy Phillip Gough) of node status

with increasing p for 34 FxNS configurations in a 218-node topology

The visualization contains three main windows. The network topology is shown

in the upper left-hand window. Routers are shown as circles and links as line segments

between circles. Router classes (backbone, point-of-presence and D-, F- and N-class

access) are distinguished by color. Occupancy status (congested, cutoff and uncongested)

is indicated by a colored outline around each router. Two smaller, but optional, circles

within each router represent queue sizes, coded by color. Color keys are provided in the

visualization.

Immediately below the topology is a stacked bar graph, where each cell represents

a specific value of p, from 1 (left) to an upper bound (right). Each cell also indicates the

proportion of routers that are uncongested (light color), congested (medium color) and

cutoff (dark color) for the relevant value of p. The right-hand window shows a strip for

each of the 34 FxNS configurations. Each strip contains 218 cells, each representing a

38

router. The cells are arranged in vertical columns, where each column displays routers in

a particular class. Each cell is color coded with the occupancy status of the related router

at a selected value of p.

The user can select a configuration in the right-hand window. The selected

configuration is indicated by a green dot. Selecting a specific configuration changes the

color coding of the topology and the related stacked bar graph to match the congestion

state for the configuration. Selecting a cell on the stacked bar graph adjusts the

congestion state of the topology to the related value of p. Selecting a p value also adjusts

the congestion state of all configurations on the right-hand window to reflect that p value.

The user can step through various p values, while watching changes in congestion within

the displayed topology. Alternatively, the user can step through various p values while

using the right-hand window to compare congestion patterns among all configurations.

These are the tools that allowed us to explain some differences (above) when comparing

congestion evolution between configurations C0 and C127. These tools also allowed us

to see similarities and differences among congestion patterns in various configurations.

6.2 Congestion Spread

Figure 12 shows a hierarchical clustering among the vectors in Fig. 6, which

plotted the proportion of nodes in the LSS of isolated nodes for the 34 FxNS

configurations. The x-axis of Fig. 12 is labeled with sequential configuration numbers

from Table 4. The y-axis reports squared Euclidean distance between the vectors

comprising each configuration.

Figure 12. Clustering of LSS of isolated nodes (χ) based on Squared Euclidean Distance

39

The clustering plot indicates two main groupings, separated by a large distance.

The left-hand group contains configurations that enabled variable router speeds (VS) or

TCP or both. Configurations in this group correspond to those that show little congestion

spread. The right-hand group contains configurations that did not enable VS and did not

enable TCP. Configurations in this group correspond to those that showed congestion

spreading throughout the network topology. Note the most abstract configuration, C0

(sequence number 1), appears in the congested group, while the most realistic

configuration, C127 (sequence number 34), appears in the uncongested group. The

reasons why VS and TCP have these effects were explained above in Sec. 6.1. Most

network models surveyed [5-14] in Sec. 2 are quite similar to configuration C0, while

real networks are modeled [15-16] more like configuration C127. This is evidence that

many previous studies report congestion spread unlikely to appear in real networks.

6.3 Connectivity Breakdown

Figure 13 shows a hierarchical clustering among vectors in Fig. 7, which plotted

the proportion of nodes in the LSS of reachable nodes for the 34 FxNS configurations.

Note that distances among the clusters in Fig. 13 are much smaller than those seen among

clusters in Fig. 12. This reflects the fact that breakdown in network connectivity is more

similar among configurations than congestion spread. Breakdown in network

connectivity occurs in cases where subgraphs of the topology are disconnected (due to

congestion) from other subgraphs. As load increases network connectivity breaks down

even in cases where congestion does not necessarily spread widely. The studies we

surveyed [5-14] address spreading network congestion but do not address breakdown of

network connectivity. This aspect of network congestion seems important and should be

examined in future studies.

We labeled Fig. 13 to indicate factors in common among various groupings of

FxNS configurations. While the groupings are not as clear as those shown in Fig. 12, our

labeling reflects presence and absence of VS and TCP, which have significant influence

on breakdown in network connectivity. Note that C0 falls into a grouping with VS

disabled, while C127 falls into a grouping with TCP enabled. From the earlier discussion

(Sec. 6.1) recall that TCP slows breakdown in network connectivity. Also recall that,

when coupled with TCP, VS ensures the network core remains uncongested and intact.

Among configurations with VS disabled, the leftmost grouping of configurations

(sequence numbers 3, 4, 7, 8, 11, 12, 15 and 16) in Fig. 13 reach complete breakdown in

network connectivity sooner than other configurations with VS disabled. These

configurations have NC enabled, which means that packet injection occurs at the network

edge, thus packets flow in a concentrated fashion to and through the network core. This

differs from configurations C0 and C1 (sequence numbers 1 and 2), where packet

injection can occur at any node, thus fewer packets flow across the network core.

Sequence numbers 19, 20, 23 and 24 represent configurations with sources and receivers

and flows enabled. These configurations reach complete breakdown in connectivity later

than those in the leftmost group. Sequence numbers 20 and 24 represent configurations

with packet dropping enabled. Here, complete breakdown in connectivity is postponed

40

beyond that for 19 and 23. Overall, most configurations with VS disabled lost network

connectivity quickly and completely.

Figure 13. Clustering of LSS reachable nodes (α) based on Squared Euclidean Distance

Configurations with VS enabled but with TCP disabled can also experience

complete breakdown in network connectivity, but the process takes somewhat higher

packet-injection rates because more pressure must be applied from the network edges

before the core can congest. Such behavior arises for configurations (C22, C23, C30,

C31, C54, C55, C62, and C63) with SR (sources and receivers) enabled. Enabling SR

allows more pressure to be applied from the network edge because more potential packet-

injection sources reside there. When flows are enabled the decay in network connectivity

slows somewhat. When further enabling packet dropping, the decay slows even more.

In configurations that enable VS and disable TCP and SR (e.g., C6, C7, C14 and

C15), the network core remains uncongested and intact. With TCP enabled and VS

disabled (C114, C115, C122 and C123), congestion builds in the core and oscillates in

PoP routers, but the access routers remain uncongested. With both TCP and VS enabled

(C118, C119, C126 and C127), congestion stays mainly within access routers, oscillating

inward toward PoP routers. Overall, configurations with VS enabled retained

connectivity in the network core. These results provide evidence that VS plays a key role

in limiting the breakdown of network connectivity to the edge, allowing the network core

to remain uncongested and intact.

41

6.4 Packets Delivered

Figure 14 shows a hierarchical clustering among the vectors in Fig. 8, which

plotted the proportion of packets delivered for the 34 FxNS configurations. The

clustering plot indicates two main groupings, separated by a large distance. The leftmost

group contains configurations with TCP disabled, while the rightmost group contains

configurations with TCP enabled. TCP measures the congestion state of the network and

adapts packet-injection rate accordingly. This improves significantly the likelihood that

an injected packet will reach its intended destination. Disabling TCP increases the

likelihood that an injected packet will be queued or discarded.

Figure 14. Clustering of packet delivery effectiveness (π) based on Squared Euclidean

Distance

When TCP is enabled packet dropping (PD) has a secondary influence on the

likelihood of packet delivery. Disabling packet dropping ensures that injected packets are

never discarded, thus packets will eventually be delivered successfully. The buildup of

packet queues, though, can delay delivery of data and acknowledgment packets, leading

to timeouts and subsequently to lower throughput, as TCP significantly reduces packet-

injection rate. Enabling packet dropping means that some packets will be discarded

because router buffers are full. Our results found about a 20 % loss rate at high loads.

With packet dropping enabled, TCP does not need to reduce as significantly the packet-

injection rate, thus throughputs remain higher, while the likelihood of delivery decreases.

When TCP is disabled variable router speed (VS) has a secondary influence on

likelihood of packet delivery. Absence of VS allows packet queues to build more widely

42

among nodes throughout a network topology. This means that packets are more likely to

be queued or discarded (depending on the setting for packet dropping) when they arrive

at a router. Where packets are queued, the queue length of any router is likely to be long

and packet-delivery delays increase significantly. In either case, the likelihood of packet

delivery quickly approaches zero. When VS is enabled packet queues build in access

routers at the network edge. This reduces the number of nodes in the network where

packets can be dropped or queued. In such cases, the likelihood of packet delivery

approaches zero at a slower rate.

6.5 Packet Latency

Figure 15 shows a hierarchical clustering among vectors in Fig. 9, which plotted

scaled average latency of delivered packets for the 34 FxNS configurations. We labeled

Fig. 15 to indicate factors in common among various groupings of FxNS configurations.

The leftmost half of the configurations have packet dropping (PD) enabled, while the

rightmost half have PD disabled. When PD is enabled, successfully delivered packets

experience very little queuing delay, thus the average latency is quite low. When PD is

disabled packet queues can become quite large with increasing load, thus average latency

increases. As discussed earlier in Sec. 6.1, the increase in delay reaches an apex and then

declines gradually because only successfully delivered packets have one-way delays. At

higher loads, successfully delivered packets experience smaller queues, or else they could

not be successfully delivered during the simulation duration.

Figure 15. Clustering of packet delivery efficiency (δ) based on Squared Euclidean

Distance

43

Some secondary factors influence packet latency when PD is disabled. Enabling

TCP allows rate adaptation, thus buildup of large queues is less likely, as TCP slows

packet injection when congestion appears. This significantly reduces delay experienced

by successfully delivered packets. Enabling VS restricts large packet queues to routers at

the network edge, which means that successfully delivered packets will have fewer large

queues to transit through. Disabling VS allows large packet queues to form at any router

in the topology, which means that successfully delivered packets will have to transit

through more large queues.

6.6 Overall Findings

Our abstract and realistic network models exhibited very different congestion

behaviors. Under increasing load, the abstract model (C0) congested quickly and

completely, while the realistic model (C127) did not exhibit widespread congestion even

under heavy load. The realistic model exhibited congestion only at network edges, while

the backbone remained uncongested and intact. Both the abstract and realistic network

models lost connectivity quickly under increasing load, but the realistic model lost

connectivity less rapidly. Congestion in the abstract model spread from the network core

toward the edges, leading to zero reachable nodes, while the realistic model ensured that

nodes in the network core remained reachable. Further, increasing load led the abstract

model to successfully deliver below 1 % of injected packets, while the realistic model

delivered about 80 % of injected packets, even under high loads. Similarly, increasing

load caused packet delays to spike quickly for the abstract model, while packet delays

remained very low for the realistic model. Based on these findings, we conclude that the

decade of studies we surveyed [5-14] cannot be relied upon as guides to congestion

spread in the Internet. We reach this conclusion because the studies contain models very

similar to our abstract model.

Our clustering analyses show the critical importance of modeling TCP, the

congestion-control protocol used in over 90 % of flows transiting the modern Internet. In

our study, congestion monitoring and rate adaptation provided by TCP was responsible

for limiting the spread of congestion and the breakdown in network connectivity,

especially when combined with correctly modeled variable router speeds. The rate

adaptation provided by TCP was also a primary factor to increase successful delivery of

packets under increasing network load. The rate adaptation provided by TCP was a

secondary factor ensuring low latency among successfully delivered packets. None of the

studies we surveyed [5-14] modeled TCP.

Our clustering analyses show the critical importance of modeling variable speeds

among router tiers, engineered to ensure that higher tiers provide adequate throughput at

the maximum possible input rate from lower tier routers. Modeling variable router speeds

was a primary factor responsible for accurately simulating congestion spread and the

breakdown of network connectivity. In addition, modeling variable router speeds had

secondary influence on the degree of successful packet delivery and the latency for

successfully delivered packets. Only one [11] study we surveyed modeled variable speeds

among routers. Even in that case router speeds were not varied hierarchically.

44

Our clustering analyses show the importance of modeling packet dropping in

order to obtain accurate measures of packet latency. Packet dropping ensures that FIFO

buffers in routers limit queuing delays experienced by successfully delivered packets.

Three [6, 10, 13] of the studies we surveyed modeled finite buffers, but one [10] modeled

buffers as last-in first-out, another [6] used full buffers only to restrict packet injections

rather than to drop arriving packets, and the other [13] discards the oldest packet to make

room for the newest. Most of the studies [5, 7, 8, 11, 12, 14] we surveyed assumed

infinite packet queues and then measured the resulting buildup of packets in the network

as a signal of rising congestion. The real Internet uses finite, FIFO, drop-tail buffers,

which discard packets arriving at full queues. None of the studies we surveyed used finite

FIFO drop-tail queues.

Our clustering analyses showed propagation delays in the backbone were

unimportant to model. While this appears true for networks spanning the continental

United States (as ours did), propagation delays could become important when modeling a

global network or a network containing links transiting satellite hops. Certainly,

propagation delay would be important to model when considering inter-planetary

networks. In our model, delays due to queuing dominated delays due to propagation. In

reverse situations, propagation delay would be important to model.

A decade of simulation studies [5-14] investigated congestion spread in network

topologies, often finding that congestion can be modeled as a percolation process on a

graph, spreading slowly under increasing load until a critical point, after which

congestion spreads astonishingly quickly throughout the entire network. Those same

studies identified various measurable signals that arise around the critical point. Such

signals might facilitate prediction of the onset of widespread congestion.

We compared behavior among a range of simulated network models, with various

realism elements, ranging from very abstract (C0) to very realistic (C127). Our findings

call into question the validity of previous studies [e.g., 5-14] that were based on abstract

models that closely resemble C0. Those abstract models omitted TCP and variable router

speeds, which are key elements responsible for shaping congestion spread in the modern

Internet. Findings based on such abstract models provide little information about

congestion behavior in the Internet.

45

7. Conclusions and Future Work

Over the past decade or so, many studies used simulation to investigate

congestion spread in networks. Those studies often find that congestion can be modeled

as a percolation process, spreading slowly under increasing load until a critical point.

After the critical point, congestion spreads quickly throughout the entire network. Those

same studies identified various measureable signals that arise around the critical point,

which might allow one to predict onset of widespread congestion. These developments

appear quite promising as a theoretical basis for monitoring regimes that network

operators could deploy to warn of impending congestion collapse. Yet questions surround

the studies, as the network models are quite abstract, bearing little resemblance to

networks deployed based on modern technology. We explored these questions by

examining the influence of realism on the spread of congestion in network simulations.

We began with an abstract network simulation, taken from the literature, and

added elements of realism in various combinations, culminating with a high-fidelity

simulation, also taken from the literature. From this study, we draw four main

conclusions. First, we conclude that congestion spread in realistic network models differs

significantly from spread in more abstract models. Even under heavy loads, realistic

models limit the spread of congestion to the network edge, and retain connectivity in the

network core. Further, realistic models deliver packets relatively successfully, and bound

one-way packet latency to low values. None of these properties hold for abstract models

used in the studies that we surveyed. Second, we conclude that models investigating

network congestion must include TCP, along with hierarchically varied router speeds,

before acceptable engineering findings can be established. In addition, where reasonable

estimates of packet delivery and latency are required, packet dropping should be modeled

with drop-tail FIFO queues. None of the studies we surveyed modeled TCP or

hierarchically varied router speeds or drop-tail FIFO queues. Third, we conclude that

modeling TCP is largely responsible for limiting congestion spread, for slowing decay of

network connectivity, and for increasing probability of packet delivery. Further,

hierarchically varied router speeds play a key role to ensure that the network core remains

uncongested and intact, and packet dropping plays a key role to limit latency. Finally, we

conclude that, using only graphs and packets, one can effectively visualize and compare

global congestion behavior among a widely varied set of network models. We

demonstrated an effective means to do so using: 2D plots, hierarchical clustering, and

interactive multidimensional visualization.

Based on our findings, we conclude that the decade of studies we surveyed cannot

be relied upon as guides to congestion spread in the Internet. We reach this conclusion

because the studies contain models very similar to our abstract model. We doubt that the

signals identified in those studies will actually appear on the Internet. We infer that the

previously reported findings provide little information about congestion behavior in the

Internet. We hope our study leads to better understanding of the influence of realism on

congestion in network simulations, and to improved dialog throughout the diverse

community of researchers who rely on network simulations.

We envision future work in three general directions. First, further research should

explore our findings with respect to a collection of ISP-like topologies. While we believe

our findings will hold, it appears prudent to verify that. Additionally, one could attempt

46

to expand the scope of our topologies to include multiple ISPs interconnected as a

collection of autonomous systems. A second direction for further research is to consider

whether random failures in the network core, coupled with alternate routing, could lead to

cascading congestion that might consume the entire network. If such failure scenarios can

be created plausibly, then one could determine if those scenarios might be modeled as a

percolation process, spreading slowly under increasing (failure-induced) load until a

critical point, after which the failure cascade spreads quickly throughout the entire

network. Third, if such percolation processes can be identified, then one could seek

precursor signals arising around the critical point. If such precursor signals exist, then

they might serve as the basis for early warning of failure-induced congestion collapse. In

this case, the theoretical findings from the earlier studies could be repurposed to solve a

problem that might actually arise in a modern communications network. In addition, the

general theory of percolation on a graph might provide a suitable basis to model

macroscopic behavior in complex information systems other than the Internet.

47

8. Acknowledgments

We appreciate financial support and encouragement provided by our laboratory

management. The technical staff benefit greatly from management’s visionary thinking.

We thank researchers who, over the past decade or so, studied applicability of

graph theory and percolation theory to macroscopic congestion in communication

networks. Their studies provided an interesting intellectual glimpse into how monitoring

regimes might raise early warning of impending congestion collapse. Their work inspired

us to plan a program of research to explore the practicality of the ideas in real networks.

Our current study embodies an initial plank in that program.

We also thank Phillip Gough of the Commonwealth Scientific and Industrial

Research Organization. Phil’s brilliant interactive multidimensional visualization enabled

us to explore the details of congestion spread in our simulated topology. We were quite

lucky that Phil’s six-month stay as a visiting researcher at the National Institute of

Standards and Technology overlapped with our work, and that our colleague Sandy

Ressler put us in contact with Phil.

We also appreciate Phil’s willingness to review our manuscript and provide

suggestions for improvement. Similarly, we benefited from review and suggestions

provided by colleague Guo Yang, who recently joined our research group from Bell

Labs. And prior to conducting the study, we were fortunate to get advice from colleague

Jim Filliben, who reviewed our experiment design.

48

References

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex

networks: structure and dynamics, in Physics Reports, Vol. 424, 2006, pp. 175-308.

http://dx.doi.org/10.1016/j.physrep.2005.10.009

[2] D. Stauffer and A. Aharony, Introduction to percolation theory: revised second

edition, Taylor & Francis, 1994, 182 pages.

http://dx.doi.org/10.1016/S0378-4371(00)00536-7

[3] R. Albert, H. Jeong and A.-L. Barabasi, Error and attack tolerance of complex

networks, in Nature, Vol. 406, 2000, pp. 378-382.

http://dx.doi.org/10.1038/35019019

[4] J. Doyle, D. Alderson, L. Li, S. Low, M. Rougan, S. Shalunov, R. Tanaka and W.

Willinger, The “robust yet fragile” nature of the internet, in Proceedings of the National

Academy of Sciences, Vol. 102, No. 41, 2005, pp. 14497-14502.

http://dx.doi.org/10.1073/pnas.0501426102

[5] R. Solé and S. Valverde, Information transfer and phase transitions in a model of

internet traffic, in Physica A, Vol. 289, 2001, pp. 595-605.

http://dx.doi.org/10.1016/S0378-4371(00)00536-7

[6] M. Woolf, D. Arrowsmith, R. Mondragon and J. Pitts, Optimization and phase

transitions in a chaotic model of data traffic, in Phys Rev E, Vol. 66, 2002, 046106.

http://dx.doi.org/10.1103/PhysRevE.66.046106

[7] D. Arrowsmith, R. Mondragon, J. Pitts and M. Woolf, Phase transitions in packet

traffic on regular networks: a comparison of source types and topologies, Report 08,

ISSN 1103-467X, Institut Mittag-Leffler, 2004, 8 pages.

https://www.mittag-leffler.se/preprints/files/IML-0405f-08.pdf

[8] G. Mukherjee and S. Manna, Phase transition in a directed traffic flow network, in

Phys Rev E, Vol. 71, No. 6, 2005, 066108.

http://dx.doi.org/10.1103/PhysRevE.71.066108

[9] A. Lawniczak, P. Lio, S. Xie and J. Xu, Study of packet traffic fluctuations near phase

transition point from free flow to congestion in data network model, in Proceedings of

Canadian Conference on Electrical and Computer Engineering, 360-363, April 22-26,

2007, pp. 360-363.

http://dx.doi.org/10.1109/CCECE.2007.93

[10] B. Tadic, G. Rodgers and S. Thurner, Transport on complex networks: flow,

jamming and optimization, in the International Journal of Bifurcation and Chaos, Vol. 17,

No. 7, 2007, pp. 2363-2385.

http://dx.doi.org/10.1142/S0218127407018452

http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/S0378-4371(00)00536-7
http://dx.doi.org/10.1016/S0378-4371(00)00536-7
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1073/pnas.0501426102
http://dx.doi.org/10.1073/pnas.0501426102
http://dx.doi.org/10.1016/S0378-4371(00)00536-7
http://dx.doi.org/10.1016/S0378-4371(00)00536-7

49

[11] D. Wang, N. Cai, Y. Jing and S. Zhang, Phase transition in complex networks, in

Proceedings of the American Control Conference, June 10-12, 2009, pp. 3310-3313.

http://dx.doi.org/10.1109/ACC.2009.5159994

[12] Y. Rykalova, L. Levitan and R. Browe, Critical phenomena in discrete-time

interconnection networks, in Physica A, Vol. 389, 2010, pp. 5259-5278.

http://dx.doi.org/10.1016/j.physa.2010.06.045

[13] S. Sarkar, K. Mukherjee, A. Ray, A. Srivastav and T. Wettergren, Statistical

mechanics-inspired modeling of heterogeneous packet transmission in communication

networks, in IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,

Vol. 42, No. 4, August 2012, pp. 1083-1094.

http://dx.doi.org/10.1109/TSMCB.2012.2186611

[14] P. Echenique, J. Gomez-Gardenes and Y. Moreno, Dynamics of jamming transitions

in complex networks, in Europhys Lett, Vol. 71, No. 2, 2005, 325.

http://dx.doi.org/10.1209/epl/i2005-10080-8

[15] K. Mills, E. Schwartz and J. Yuan, How to model a TCP/IP network using only 20

parameters, in Proceedings of the 2010 Winter Simulation Conference Dec. 5-8, 2010,

pp. 849-860.

http://dx.doi.org/10.1109/WSC.2010.5679106

[16] K. Mills, J. Filliben, D. Cho, E. Schwartz and D. Genin, Study of proposed internet

congestion control algorithms, NIST Special Publication 500-282, May 2010, 534 pages.

http://www.nist.gov/itl/antd/upload/NIST-SP-500-282.pdf

[17] E. Dijkstra, A note on two problems in connexion with graphs, Numerische

mathematik, Vol. 1, No. 1, 1959, pp. 269-271.

[18] C. Dabrowski and K. Mills, FxNS Response Graphs and Cluster Analyses, October

2015, 147 pages.

http://www.nist.gov/itl/antd/upload/FxNSgraphs.pdf

[19] P. Gough, Interactive Multidimensional Visualization of FxNS Simulation Results,

October 2015.

http://tinyurl.com/payglq6

[20] K. Mills and J. Filliben, Comparison of two dimension-reduction methods for

network simulation models, Journal of Research of the National Institute of Standards

and Technology, 116-5, September-October 2011, pp. 771-783.

http://dx.doi.org/10.6028/jres.116.020

http://dx.doi.org/10.1016/j.physa.2010.06.045
http://dx.doi.org/10.1109/TSMCB.2012.2186611
http://dx.doi.org/10.1209/epl/i2005-10080-8
http://dx.doi.org/10.1109/WSC.2010.5679106
http://www.nist.gov/itl/antd/upload/NIST-SP-500-282.pdf
http://www.nist.gov/itl/antd/upload/FxNSgraphs.pdf
http://tinyurl.com/payglq6
http://dx.doi.org/10.6028/jres.116.020

50

Appendix A. Verification of FxNS Implementation of EGM and MesoNet

To verify that FxNS correctly implements EGM and the seven MesoNet realism

elements, we compared results from FxNS against both EGM and MesoNet. We

compared EGM results against FxNS results when all realism elements are disabled. We

compared MesoNet results against FxNS results when all realism elements are enabled.

Below, we document these comparisons.

A.1 Verification of EGM

We used FxNS, with all realism elements disabled, to repeat experiments of the

Echenique team. Here we plot (Fig. A1) only two values of h (1 and 0.85) as p ranges

from 1 to 30. Our plot shows the same behavior reported by EGM. When h = 1

congestion undergoes a second-order phase transition (starting at p = 2). When h = 0.85

congestion undergoes a first-order phase transition (starting at p = 9).

Figure A1. Results from our replication of simulations by Enchenique et al. [14]

Next, we investigated whether this phase-transition behavior also exists with a

smaller topology, adapted from an ISP. Figure A2 shows the ISP topology, which

consists of only 218 nodes. This is the same topology given in Fig. 3, but with node

classification removed. We repeated our simulations using this topology.

We plot the outcome in Fig. A3. As with the AS topology, when h = 1 a second-

order phase transition occurs and when h = 0.85 the phase transition is first-order. In the

case of the smaller topology the onset of congestion begins around p = 2 regardless of the

value of h. These results indicate that we can use this topology for our experiments

without losing the main behavior of the EGM model.

51

Figure A2. 218-node topology adapted from an Internet service provider

Figure A3. Results from FxNS simulations (no realism) within 218-node topology

A

C

D

E

G

F

J

K

M

P

B

L

N

O

A1

A1b

A1c

A1a

A2b A2c

A2a

C1

C1b

C1c

C1a

C2

 C2b
C2c

C2a

H2b

H2c

H2a

H1

H1bH1c

H1a

E1

 E1b

E1c

E1a

E2b
E2c

E2a

H1d

H1e

H1f

H2f
H2e

H2d

G1b

G1c

G1a

G1e
G1d

G2b G2c

G2a

G2e

G2dG1f

G2f
P1 P2

P1a

P1b

P1c

P1d

P2a

P2b
P2c P2d

P2e

P2f

P2g

K1

K2

K0a

K1a

K1b

K1c K1d

K2a K2b

K2c

K2d

L2

L1

L1a L1b
L1c

L1d

L2a

L2b

L2c

L2d

 L0a

L0b

J1

J2

 J1a

J1b J1c
J1d

J1e

J1f

J2a

J2b

J2c

J2d
J2e J2f

N1a
N1b

N1c

N1d

N1e

N1f
N2

N2a

N2b
N2c N2d

N2e

N2f

M2b

M2c
M2d M2e

M2f

M2

M2g

M2a

M1a

M1

M1b

M1c

M1d
M1e M1f M1g

 O0a

O1a
O1b

O1c
O1c

O1

O2a

O2

O2b O2c O2d

O2e

O2f

O2g

I2

 I2a

I1

II0a

I1a

I1b I1c I1d

I2g

I2f

I2e

I2dI2cI2b

F2

F2a

F1

F1a

F1b F1c F1d

F2g F2f

F2d

F2c

F2b

F0a

F2e

D2

 D2a

D1

D1a

D1b

D1c D1d

D2g

D2f

D2dD2cD2b

D2e

D0a

B0a
B1

B1a

B1b

B1c B1d

B2

B2a

B2b

B2c
B2d

B2e

B2f

B2g

H

G1 G2

E2

H2

A2

N1

52

A.2 Verification of MesoNet

We compared simulation results from MesoNet against FxNS with all realism

elements enabled. We fixed FxNS parameters associated with realism elements to values

identified in the enabled column of Table 5. We set MesoNet parameters to the same

values. For both MesoNet and FxNS, we simulated packet-injection rates (p) from 1 to

5000. For each data point, we simulated 600 000 ts. We compare results with respect to

seven orthogonal response dimensions that MesoNet exhibits [20]. The plots demonstrate

that we correctly implemented MesoNet realism elements into FxNS.

Figure A4. Aggregate packet throughput in the last 300 000 ts simulated by MesoNet

Figure A4 plots, for each injection rate, the aggregate number of packets delivered

from the network (i.e., total throughput) in the last 300 000 ts of each simulation. These

results are from MesoNet. Figure A5 shows the same results from FxNS. Note that both

simulations show throughput increasing rapidly with p until reaching a maximum, just

below 18 million packets. Thus FxNS mirrors the throughput behavior of MesoNet. Also

of note: both models reach a maximum that does not increase with p. This occurs because

the number of sources is fixed and once all sources are active, only so many packets can

move through the network, and TCP adapts transmission rates to match perceived

network capacity. This result indicates that when a network model is quite realistic, then

maximum throughput is bounded and the network regulates itself to achieve that bound.

53

Figure A5. Aggregate packet throughput in the last 300 000 ts simulated by FxNS

Figure A6 plots, for each injection rate, the number of flows completed (i.e.,

aggregate flow throughput) by MesoNet in the last 300 000 ts of each simulation. Figure

A7 gives the results for FxNS simulations. Both plots show flow completions increasing

rapidly with p until reaching a maximum, which occurs at about 42 000 flows.

Figure A8 shows retransmission rate for TCP data segments for each injection

rate simulated by MesoNet. A higher proportion or retransmissions denotes more trouble

delivering packets, typically because packets or their acknowledgements are discarded or

unduly delayed due to queue buildup. Figure A9 shows retransmission rate for FxNS

simulations. Both plots show retransmission rate increasing rapidly, and perhaps heading

to some maximum. While the rate of MesoNet is somewhat higher (around 42.5 %) than

for FxNS (around 40 %), both curves have similar shape. The FxNS plot appears to be

still rising, while the MesoNet curve appears to be leveling off. This suggests that the

MesoNet queues can become somewhat more occupied than FxNS queues. Overall,

though, retransmission rate appears reasonably similar between MesoNet and FxNS.

54

Figure A6. Aggregate flows completed in the last 300 000 ts simulated by MesoNet

Figure A7. Aggregate flows completed in the last 300 000 ts simulated by FxNS

55

Figure A8. Retransmission rate for TCP data segments simulated by MesoNet

Figure A9. Retransmission rate for TCP data segments simulated by FxNS

56

Figure A10 plots average smoothed round-trip time (SRTT). SRTT is a measured

estimate of average round-trip delay between sources and receivers. SRTT largely

reflects queuing delays. Figure A11 shows the same plot for FxNS simulations. The

shape of the curves agrees, and both approach a maximum. The SRTT plots suggest that

MesoNet creates somewhat more congestion, as reflected by queue lengths, than FxNS.

Figure A10. Average smoothed round-trip time simulated by MesoNet

Figure A12 reports, as simulated by MesoNet, average-per flow throughput for

completed flows in three different classes. DD flows have highest throughput, as they

transit speedy access routers that are directly connected to backbone routers. Such flows

experience relatively little congestion, and so average throughput remains high, though

somewhat variable, even as packet-injection rate increases to very high values. On the

other hand, NN flows, which must transit the slowest access routers, see their average

throughputs plummet quickly as p increases. The FF flows, which transit access routers

that are a bit faster than normal, show a slower decline in average throughput as p

increases. Further, once the network congests, FF flows achieve about seven p/ts, while

NN flows achieve about 2/3 a p/ts. Figure A13 shows the same information plotted from

FxNS simulations. The results are similar to the MesoNet results.

Though not included in essential MesoNet responses [20], we decided to also

compare MesoNet and FxNS on the number of flows that could be completed in each of

three classes (DD, FF, and NN). Figure A14 shows the results from MesoNet simulations

and Fig. A15 plots the results from FxNS simulations. The shapes of the curves are

similar for equivalent flow classes, and maximum rate of flow completions is quite close.

57

Figure A11. Average smoothed round-trip time simulated by FxNS

Figure A12. Average per-flow throughput for completed flows in three classes, as

simulated by MesoNet

58

Figure A13. Average per-flow throughput for completed flows in three classes, as

simulated by FxNS

Figure A14. Completed flows in three classes, as simulated by MesoNet

59

Figure A15. Completed flows in three classes, as simulated by FxNS

Overall, simulation results for MesoNet and FxNS are similar for the eight responses we

compared. The shapes of plots for each response are aligned. For most responses,

quantitative values from FxNS are quite close to those from MesoNet. MesoNet

apparently creates a bit more congestion, which appears as larger packet queues. Due to

this, MesoNet retransmission rates and SRTTs are somewhat higher at high packet-

injection rates. The comparison of simulation results leads us to conclude that FxNS

correctly implements MesoNet realism factors.

60

Appendix B. LSS Congested Nodes

Recall that Fig. 6 showed 34 plots of χ (y axis) vs. p (x axis), one for each FxNS

configuration. Here, χ is the proportion of nodes in the LSS of isolated nodes, i.e., nodes

that were both congested and cutoff. Most of the studies we surveyed focused only on

congested nodes. We could also have measured congestion spread using only the LSS of

congested nodes, i.e., ignoring cutoff nodes.

Figure B1 shows 34 plots of γ (y axis) vs. p (x axis), one for each FxNS

configuration. Here, γ is the proportion of nodes in the LSS of congested nodes.

Comparing plots in Fig. B1 against plots in Fig. 6 illustrates that for configurations that

percolate (i.e., where χ and γ reach 1), the LSS of isolated nodes spreads more quickly at

low injection rates (p) than does the LSS of congested nodes. In most cases, percolation

for the LSS of congested nodes happens suddenly at higher values of p. Despite these

differences, the same underlying factors determine whether or not congestion spreads

widely. We discuss this next.

Figure B2 clusters vectors from Fig. B1. Comparing Figure B2 against Fig. 12,

which shows clustering of the LSS of isolated nodes, confirms the same underlying

factors. Figure B1 and Fig. 12 both show large distances between two main clusters: one

where configurations enabled TCP or VS or both and another where configurations

disabled both TCP and VS. This evidence supports our findings that both variable router

speeds and TCP influence congestion spread. Variable router speeds influence congestion

spread by limiting congestion to the network edge. TCP influences congestion spread by

detecting congestion and reducing packet-injection rate accordingly. TCP and variable

router speeds are critical to model in any simulation that intends to produce congestion

patterns consistent with those in communication networks based on modern Internet

technology.

61

Figure B1. Proportion of nodes in LSS of congested nodes (γ) for 3 FxNS configurations

62

Figure B2. Clustering of LSS congested nodes (γ) based on Squared Euclidean Distance

