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The Influence of Realism on Congestion in Network Simulations 

 

C. Dabrowski and K. Mills  

{cdabrowski, kmills}@nist.gov 

 

Abstract. Many researchers have used simulation to investigate the spread of congestion 

in networks. These researchers often find that congestion can be modeled as a percolation 

process, spreading slowly under increasing load until a critical point. After the critical 

point, congestion spreads quickly throughout the entire network. The researchers also 

identify various measureable signals that arise around the critical point. These findings 

appear quite promising as a theoretical basis for monitoring regimes that network 

operators could deploy to warn of impending congestion collapse. Yet questions surround 

the extant research because the findings arise from models that are quite abstract. Such 

models bear little resemblance to networks deployed based on modern technology. 

We explore these questions by examining the influence of realism on the spread 

of congestion in network simulations. We begin with an abstract network simulation, 

taken from the literature, and add elements of realism in various combinations, 

culminating with a high-fidelity simulation, also taken from the literature. By comparing 

patterns of congestion among combinations, we make four main contributions. First, we 

illustrate that congestion spread in abstract network models differs significantly from 

spread in realistic models. Second, we show that models investigating network 

congestion must include specific elements of realism before acceptable engineering 

findings can be established. Third, we identify the influence of specific elements of 

realism on congestion in network simulations. Finally, we demonstrate an effective 

means to compare congestion patterns among network simulations comprising diverse 

configurations. We hope our contributions lead to better understanding of the influence of 

realism on congestion in network simulations, and to improved dialog throughout the 

diverse community of researchers who rely on network simulations. 
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1. Introduction 

 

In the past decade or so, the science of complex networks has matured to the point 

where one can rigorously study the mathematical structure of many classes of 

probabilistic graphs (e.g., from random to scale-free), as well as dynamic processes 

moving within such graphs. Network science, which is quite general, has been used to 

study food webs, social networks, information networks, electric grids, communication 

networks, traffic networks, metabolic networks, protein and genetic networks, epidemic 

spreading, and even brain networks. The diversity of networks studied attests to the 

generality and power of the mathematics that underlie network science.  

Typically, significant levels of abstraction are adopted in order to model real 

networks using techniques (including graph theory [1] and percolation theory [2]) 

available from network science. Sometimes, researchers disagree on the applicability of 

such abstractions to the real networks under study. For example, after positing that the 

Internet has a scale-free topology, Albert, Jeong and Barabasi [3] used network science to 

demonstrate that the Internet is vulnerable to attacks that strategically remove highly 

connected nodes, which might represent large interconnection points in selected 

geographical areas. They also demonstrated that a scale-free topology, such as the 

Internet, is resilient to random failures. Based on these studies, Albert et al. described the 

Internet as “robust yet fragile”. In a later study, Doyle et al. [4] took exception to the 

findings of the Albert team, pointing out that many classes of topology could be 

represented as scale-free graphs, but that not all such classes could be deployed on the 

Internet, due to specific technological constraints. In particular, router-based 

communication networks are designed to serve users who inhabit the network edge, 

where high-degree vertices will thus be found. Further, communication networks are 

designed so that traffic entering at network edges can be carried efficiently across the 

backbone to corresponding edges, yielding high throughput. Doyle et al. labeled such 

topologies as HOTnets: highly optimized networks with organized tolerance and 

tradeoffs. Further, they argued that HOTnet topologies are robust to attacks against high-

degree nodes; as such attacks would remove edge nodes. On the other hand, HOTnets are 

fragile to failures at low-degree core nodes, which are required to carry transit traffic 

between network edges. The main point raised by Doyle et al. is that probabilistic graph 

models of networks might prove too abstract to represent constraints present in the 

topologies of real communication networks. 

The debate between the Albert and Doyle teams shows a tension that exists when 

the powerful abstractions of network science are applied to study real networks. How can 

one be sure that chosen abstractions adequately embody key properties of a network 

under study? This general question motivates the work reported in this Technical Note. 

Here, though, our focus is on the spread of congestion within a network topology, rather 

than on vulnerability to failures and attack. 

Many researchers [5-14] have used simulation to investigate congestion spread in 

network topologies. These researchers often find congestion can be modeled as a 

percolation process on a graph, spreading slowly under increasing load until a critical 

point. After the critical point congestion spreads quickly throughout the entire network. 

The researchers also identified various measureable signals that arise around the critical 

point. These developments appear quite promising as a theoretical basis for monitoring 
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regimes that network operators could deploy to warn of impending congestion collapse. 

Despite showing promise, questions surround the extant research. The network models 

are quite abstract, bearing little resemblance to communication networks deployed based 

on modern technology. 

To explore the adequacy of abstract models, we examine the influence of realism 

on congestion spread in network simulations. We do not focus on the adequacy of the 

topological model, as the Doyle team did. Instead, we use the same fundamental graph 

for all of our simulations. Our chosen graph was adapted from the network topology of an 

unnamed Internet service provider. Using this HOTnet topology, we focus on subsidiary 

technological traits: relative speed of nodes, propagation delays, bounds on packet 

queues, distribution of traffic sources and sinks, correlation among packet injections, and 

regulation of transmission rates. These traits are fundamental to real, deployed 

communication networks; yet studies based on abstract models often adopt unrealistic 

assumptions about such traits.  

We begin with an abstract network model, taken from the literature [14], and add 

elements of realism in various combinations, culminating with a high-fidelity model, also 

taken from the literature [15]. By comparing patterns of congestion among combinations, 

we explore a number of questions: Does spreading congestion in abstract network models 

mirror spreading congestion in realistic models? How do particular elements of realism 

influence congestion spread? Are any elements of realism essential to capture in models 

of network congestion? Are some elements of realism unnecessary? What measures of 

congestion can be insightful across a diverse set of network models? 

We make four main contributions. First, we illustrate that congestion spread in 

abstract network models differs significantly from congestion spread in realistic models. 

Second, we show that models investigating network congestion must include specific 

elements of realism before acceptable engineering findings can be established. Third, we 

identify the influence of specific elements of realism on congestion spread. Finally, we 

demonstrate an effective means to compare congestion patterns among network 

simulations comprising diverse configurations. We hope our contributions lead to better 

understanding of the influence of realism on congestion in network simulations, and to 

improved dialog throughout the diverse community of researchers who rely on network 

simulations.         

The remainder of this Technical Note is organized into six main sections. 

  

 Section 2 reviews related work where researchers use abstract models to 

investigate congestion spread in network simulations. Our review shows the scope 

of extant research, and highlights some of the promising findings regarding 

signals that arise near a critical point. 
 

 Section 3 describes three simulation models relevant to our experiment. One 

model, EGM [14], named from initials of the authors (Echenique, Gomez-

Gardenes and Moreno), is the baseline for the most abstract simulation we use. A 

second model, MesoNet [15], is the baseline for the most realistic simulation that 

we use. Previously, MesoNet was used [16] to compare eight congestion-control 

algorithms designed to replace the standard transmission-control protocol (TCP) 

deployed throughout today’s Internet. A third model, which we designate as 
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FxNS (or Flexible Network Simulator), extends the EGM model so that elements 

of realism, extracted from MesoNet, can be included selectively, i.e., turned 

on/off in various combinations. We define a set of configurations that are valid 

combinations of FxNS realism elements. We use FxNS for all simulations in our 

experiment; thus the EGM and MesoNet models define the extremal 

configurations of FxNS. When no elements of realism are selected, FxNS behaves 

like EGM. When all elements of realism are selected, FxNS behaves like 

MesoNet. 

 

 Section 4 details our experiment design. We identify input parameters associated 

with each realism element extracted from MesoNet. We provide values for those 

parameters when the corresponding realism elements are enabled and disabled. 

For input parameters that are always enabled, we assign fixed values. We also 

identify and define the two parameters that vary during our experiment. Next, we 

define the four responses that we measure. Finally, in Sec. 4, we describe two 

forms of self-adaptation, congestion and time-step, which we implemented into 

FxNS in order to limit consumption of computation cycles and memory.  

 

 Section 5 displays our results as graphs of each response for each configuration at 

each packet-injection rate. 

 

 Section 6 gives our analysis of the results, and discusses our findings. 

 

 Section 7 gives our conclusions and directions for future work. 
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2. Related Work 

Graph theory [1] provides a framework for rigorous mathematical understanding 

of complex networks, which can be represented as a set of nodes connected through a 

collection of links. Graph theory provides a foundation for generating graphs through 

various random processes, which can lead to differing structures, such as random, small-

world, and scale-free networks. Graph theory also provides measures that characterize the 

structure of networks. Such measures include: (1) node degree, degree distributions and 

correlations; (2) centrality, diameter and betweeness; (3) clustering, motifs and 

community structures; and (4) graph spectra. Researchers have applied graph theory to 

generate artificial networks and to study their structural properties. Researchers have also 

characterized both manmade and natural networks, using measures provided by graph 

theory. Graph theory has been extended to include concepts from percolation theory. 

Percolation theory [2] enables the study of dynamic processes in spatial frames, 

such as finite-element grids, which can be represented through graphs. Originally, graph 

theorists applied percolation theory to study the dynamic properties of graph formation 

when generated via random processes. The main finding was that there exists a critical 

point in the probability of creating links in a graph. Below the critical point a graph 

remains fragmented into self-connected subcomponents. Above the critical point a graph 

quickly becomes highly connected, forming what is known as a giant connected 

component (GCC), ultimately spanning all nodes. More recently, researchers have 

applied percolation theory to investigate dynamic processes that spread among nodes 

within a preexisting network. Such dynamic processes include cascading failures in 

electrical grids, evolution of disease epidemics, and expansion of forest fires. Of 

particular interest for this Technical Note is the use of percolation theory to study 

congestion spread in communication networks. 

 

2.1 Similarities and Variations among Previous Studies 

 

Studies [5-14] investigating congestion spread in communication networks paint a 

similar picture. Every study found spreading congestion to be associated with a critical 

load. Prior to the critical load, congestion was relatively benign. After the critical load, 

congestion spread quickly throughout the entire network. Further, the studies found a 

critical load to exist in a wide range of randomly generated topologies (and one real 

topology), routing schemes, and distribution of packet injectors. In addition, the studies 

identified various measures that could be used to reflect congestion state in a network. 

Several studies found measures that changed rapidly as congestion approaches critical 

load. This suggests that: (1) congestion spread is a percolation process, (2) networks 

designed to achieve high throughput operate relatively near critical load, (3) congestion 

collapse occurs quickly in networks that exceed critical load, and (4) measurable signals 

appear as congestion approaches critical load. If these points are true, then it should prove 

possible to build monitoring regimes to signal operators when a network nears critical 

load. 

Though each study showed similar findings, the abstract models had variations 

along four dimensions: topology, traffic sources/sinks, routers and congestion measures. 

Researchers used either deterministic or probabilistic topologies. The most popular 

deterministic topology was a square lattice, either open [8, 13] or folded into a toroid [5-
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7, 9, 11]. Rykalova et al. [12] also used a ring. Echenique et al. [14] used a real topology 

taken from the Internet autonomous system map, circa 2001. Arrowsmith et al. [7] started 

with a square lattice and then generated triangular and hexagonal depleted lattices by 

probabilistically removing links. Other researchers used random processes to generate 

topologies: Erdős–Rényi [11], exponential [10], scale-free [10-11], or small-world [11]. 

Within a topology, researchers used either deterministic or probabilistic processes 

to place sources, sinks and routers. The most popular approach was to allow every node 

to be a packet source and sink, as well as a router [9-12, 14]. Sarkar et al. [13] restricted 

sources and sinks to the network edge, while Mukherjee and Manna [8] placed sources at 

the top edge of a lattice and sinks at the bottom edge. Other researchers [5-7] assigned 

nodes to be a source/sink or router with a biased coin flip. All surveyed studies generated 

loads by having sources inject individual packets, where each packet is destined for a 

randomly selected sink. The most popular strategy [5-9, 12-13] was for each source to 

generate a packet per time step (p/ts) with a specified probability. A few studies [10-11, 

14] generated a fixed number of p/ts and randomly assigned the packets to sources. One 

study [10] had a constant density option to ensure a fixed number of packets remained in 

transit. 

In all models surveyed, router nodes queue packets arriving from sources and then 

forward them at an assigned rate to the next hop along some path toward the sink. 

Differences appeared with respect to queue discipline, next-hop selection and forwarding 

rate. The most popular [5-9, 11-12, 14] queue discipline was unbounded first-in, first-out 

(FIFO) queues. One study [10] used bounded last-in, first-out (LIFO) queues. One study 

[13] used bounded FIFO queues, where the oldest packet was dropped when a packet 

arrived at a full queue. Most studies [5-8, 12, 13] selected next hop based on shortest-path 

first (SPF) in hops. Ties were broken either by shortest queue length [5-6, 13], link usage 

[7] or tossing a fair coin [8, 12]. One study [9] selected next hop with the choice among 

three different SPF metrics: hops, queue length, or their sum. Two studies [11, 13] used 

SPF based on a weighted sum of hops and queue length. One study [10] used guided 

random walk to select next hops. In most studies [5-7, 10, 13-14] each router forwards 

one p/ts. In two studies [9, 12] each router forwards one p/ts for each queue. One study 

[8] has each router forward a batch of packets at each time step. One study [11] assigns 

routers variable forwarding rates using any of three options: (1) node degree, (2) node 

betweeness or (3) node betweeness divided by number of nodes in the topology. 

The surveyed research used various measures of network congestion, and often 

multiple measures per study. Congestion measures included: one-way packet latency [5-

6, 8, 10]; packets delivered (i.e., aggregate throughput) [5-7]; queue lengths [6-8, 10]; 

packets in the network [9, 11-12, 14]; and packet drop rate [13]. Various studies analyzed 

the measures as time series, proportions, or variances. 

 
2.2 Detailed Summaries of Previous Studies 

Sole and Valverde [5] studied congestion spread in a square lattice, where each 

node has four nearest neighbors, and periodic boundary conditions close the lattice into a 

toroid. Nodes are designated randomly as one of two types: host (probability p=0.08) or 

router (probability 1-p). Hosts can generate and consume packets, while both hosts and 

routers can store-and-forward packets. Each node contains a queue of unbounded length. 

At each time step a host creates a packet with probability λ. Another host is selected 
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randomly (uniform probability) as the packet’s destination, and the packet is appended to 

the end of the forwarding queue within the creating host. At each time step each host and 

router also removes a packet (if present) from the front of its queue and then selects 

which outgoing link is best, relative to the packet’s destination, and forwards the packet. 

The selection process considers both shortest path and congestion: select the neighbor 

nearest the destination, but in case of ties prefer the neighbor with shortest queue. Sole 

and Valverde experiment with lattices of two sizes: 32x32 and 256x256. They plot one-

way packet delay and number of packets delivered (i.e., throughput) within three 

different measurement intervals.  In the smaller lattice, they find a critical load (λc = 0.2).  

They show that as load passes λc packet delay increases quickly and the number of 

delivered packets falls gradually. In the larger lattice they find similar behavior, but the 

critical load shifts (λc = 0.055). They conclude that information transfer is maximal at the 

critical load, but unpredictability in delays is also maximal, as measured by increased 

variance. They argue that their model captures some essential properties of the Internet, 

and go on to suggest that the Internet might self-organize into a critical state, where both 

efficiency and unpredictability are maximal. 

Woolf et al. [6] started from the study of Sole and Valverde, but introduced an 

option for long-range dependence (LRD) in packet generation. LRD ensures that packet 

arrivals are correlated for periods of time. Absent LRD, packet arrivals are independent. 

Woolf et al. argue that LRD more accurately reflects user behavior on the Internet. They 

experiment with a 32x32 lattice (p = 0.16) and, like Sole and Valverde, find a critical 

load (λc = 0.39) after which queue lengths and packet delays increase dramatically and 

throughput collapses. The main effect of LRD is to increase packet delays prior to the 

critical load. This stands to reason, since LRD increases variance in the packet-injection 

rate. Woolf et al. suggest that limiting queue lengths could control congestion. They 

experiment with bounds of 10, 100 and 1000 packets. Here, bounding queue lengths 

means that a host may not inject packets into a full queue, which serves to cap the 

maximum load that can be placed on the network. In such cases, they find that packet 

delays still increase as load approaches λc, but delays and throughput level off at the 

maximum load. 

Arrowsmith et al. [7] conducted follow-on to the Woolf study. Here, in addition to 

a square lattice, topologies include depleted lattices of two types: hexagonal and 

triangular. Depleted lattices are created by probabilistically removing links from a square 

lattice. The researchers claim this is an intermediate step toward studying other irregular 

(randomly generated) networks, such as scale-free topologies. When forwarding packets, 

the next router is chosen based on shortest path; ties are broken with a random choice. All 

queues are unbounded. Arrowsmith et al. find many of the same behaviors reported in the 

Woolf study. They also show that critical load shifts with topology, occurring earlier in 

the hexagonal grid than in the sparser triangular grid. In general, Arrowsmith et al. 

conclude that critical load increases with the sparseness of topology. They also report that 

measures of queue length are indicative of congestion state in all three topologies, while 

measures of throughput are not as indicative. 

Mukherjee and Manna [8] studied congestion in square lattices that are not folded 

into a toroid. They study lattices that are 8x8, 64x64 and 128x128. Here, packets are 

injected into nodes at the top edge of the lattice and then flow downward through the 

lattice toward nodes at the bottom edge, where they are consumed. In this study, packets 
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are injected with a probability (ρ) at each top-edge node at each time step. Packets are 

queued (unbounded length) in nodes, and at each time step a maximum of m packets are 

forwarded FIFO in bulk to one of two (randomly chosen) neighbors. This setup creates a 

system where λc = ρ = m.  They measure load, defined as the aggregate number of 

packets queued in the system, at each time step. The system transitions to a congested 

state when ρ > m. Mukherjee and Manna show the distribution of packet-delays to be 

lognormal (heavy-tailed) and the power spectrum of the queue-length time series to 

exhibit 1/f-like noise for measurement intervals spanning three orders of magnitude, 

which they assert is similar to Internet traffic. As with previous studies, Mukherjee and 

Manna find that queues and packet delays grow quickly as load passes λc, and variance in 

packet delays also increases. 

Lawniczak et al. [9] studied congestion spread in a 16x16 lattice, not folded into a 

toroid, where each node is both a source/sink and router. Here, each node has two FIFO 

unbounded queues: incoming and outgoing.  Each simulation runs for 8000 time steps. At 

each time step the model takes five actions: (1) update routing tables, (2) create 

(probability λ) and forward packets, (3) process incoming queues, (4) evaluate network 

state, and (5) update simulated time. They measure the number of packets in transit, 

while comparing the effects of three different SPF routing algorithms: (1) hops, (2) queue 

lengths, and (3) sum of hops and queue lengths. The Lawniczak study finds that critical 

load varies with the routing algorithm: λc = 0.045 for SPF hops and λc = 0.085 when 

queue lengths are considered.  This implies that congestion-based routing can handle 

somewhat more load, but they also found that such routing increases correlation in the 

number of packets in transit. 

Tadic et al. [10] studied congestion in two randomly generated irregular 

topologies: (1) a correlated cyclic (i.e., highly clustered) scale-free network and (2) an 

uncorrelated homogeneous (i.e., weakly clustered) exponential network. Both topologies 

were generated randomly using schemes developed by graph theorists. The generating 

processes allowed the topologies to consist of self-connected subcomponents, rather than 

a fully connected graph. To account for this, choice of packet destinations ensured that 

each packet could flow within a single subcomponent. The routing strategy used is 

somewhat unorthodox. If a packet’s destination is in the nearest neighborhood, then the 

packet is delivered. If the destination is in the next-nearest neighborhood, then the packet 

moves in that direction. Otherwise, the packet moves randomly. This amounts to a guided 

random walk. Packet generation could take either of two forms: constant density or 

constant rate. For constant density, ρ packets are always in flight, and a new packet is 

created for each packet that reaches its destination. For constant rate (similar to all other 

studies we survey), a fixed number r of packets are created each time step. The Tadic 

study limits queue lengths to 1000 packets, but adopts an unorthodox LIFO queuing 

discipline, where the last packet to be queued is forwarded first. The study measures one-

way packet delays and queue lengths. In the case of constant-rate traffic, Tadic and 

colleagues (like previous studies) find that there is a critical load, after which congestion 

grows quickly. They conclude that the scale-free topology has a lower critical load than 

the exponential topology. 

Wang et al. [11] extended investigation into the influence of topology on 

congestion spread. They used graph-theoretic schemes to randomly generate three 

different topologies: (1) Erdős–Rényi random, (2) Strogatz small-world, and (3) Holme-
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Kim scale-free with tunable clustering. All nodes in each topology can generate, consume 

and forward packets, which are stored in unbounded FIFO queues. At each time step, r 

packets are generated with randomly chosen sources and sinks, and each node forwards ci 

packets toward their destination. To set ci the study uses three different approaches: (1) ci 

= ki, (2) ci = bi and (3) ci = bi/n, where ki is the degree of node i, bi is the betweeness of 

node i, and n is the number of nodes. If the next node is the destination, then a packet is 

consumed. Otherwise the next node is chosen according to an equation where parameter 

α provides a weighting between (α = 1) SPF based on hops (so-called congestion-blind 

routing) and (0 ≤ α < 1) SPF based on a combination of hops and queue length (so-called 

congestion-aware routing). Congestion is measured by proportion of packets in the 

network, and a critical load is identified as rc. With α = 0.8 Wang et al. compare phase-
transition behavior between free-flowing and congested states for various 
combinations of topology and node-forwarding capacity. 

Rykalova et al. [12] investigated congestion in two topologies: a bi-directional 

ring and a toroidal square lattice. Each node is a source/sink and router. For the ring, each 

node has two queues: one per direction. For the lattice, each node has four queues: one 

per neighbor. All queue lengths are assumed to be unbounded. At each time step each 

node generates a packet for each queue with probability λ. The destination of each packet 

is chosen randomly (uniform probability). Packets are forwarded (at the rate of one per 

queue per time step) to a next node following a SPF hops scheme, where ties are decided 

by tossing a fair coin. For each topology, the Rykalova team finds a critical load, and 

shows that, as critical load approaches, the number of messages in the network transitions 

to a highly correlated state. This finding holds for ring and lattice. 

Sarkar et al. [13] model a communication network using techniques inspired by 

statistical mechanics, which include critical phenomena and phase transitions. While 

other studies showed existence of critical points in network load and transition from free-

flowing to congested states, the Sarkar team attempts to relate such findings to statistical 

mechanics, which is used by some physicists to model thermodynamic systems. Their 

goal is to develop a control regime based on measuring analogs to thermodynamic 

parameters, e.g., temperature, pressure, and order parameter. They classify phase 

transitions into: (1) first order, where the order parameter changes discontinuously and 

(2) second order, where the order parameter varies continuously during a transition, but 

the derivative at the critical value is discontinuous. They suggest that by identifying an 

approaching critical point, control decisions can be taken to move a congesting network 

toward a more stable free-flowing state. To demonstrate their argument, they model a 

(non-toroidal) square lattice, where sources and sinks are limited to boundary nodes that 

populate the edges of the grid. All internal nodes act only as routers. All nodes have finite 

queue lengths. At each time step each boundary node creates a packet with probability λ. 

Packet destination is chosen randomly (source can be destination). Each node forwards 

one packet from the head of its FIFO queue at each time step. Next nodes are chosen 

using SPF in hops, but ties are broken based on shorter queue length. When a packet 

arrives at a full queue, the oldest packet is dropped. The study uses normalized packet-

drop rate as the order parameter. The study identifies a critical load (λc), and proposes a 

control scheme based on centralized measurement. The scheme leads to computation and 

dissemination of a global packet-transmission probability distribution, which in effect 

implements a priority-based queue discipline. The study also identifies significant future 
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work that includes: validation of the theoretical results in more complex and realistic 

network scenarios, investigation of the effects of topology, analysis of convergence and 

stability properties of the control scheme, and moving toward a distributed measurement 

and control scheme. 

A study [14] by Echenique, Gomez-Gardenes and Moreno (hereafter EGM) 

applies many of the concepts covered above, but in the context of a real communication 

network topology, consisting of 11 174 nodes, taken from the Internet autonomous 

systems (AS) map circa 2001. The AS topology, though real, is somewhat ill-suited for 

studying congestion spread. Each node in the AS topology actually represents a lower-

level topology that is not included. The AS topology, which allows Internet service 

providers (ISPs) to interconnect, evolves from business and policy relationships, whereas 

the lower-level topology of each ISP network is designed based on engineering principals 

[4] to ensure efficient transfer of packets among customers. For this reason, studying 

congestion spread in an ISP topology appears more suitable. EGM measured the degree-

distribution of the AS map, which shows a scale-free topology that exhibits a -2.2 slope 

on a log-log plot of degree distribution vs. frequency. Each node in the topology is a 

source/sink and router. At each time step p packets are injected, with the source and 

destination chosen randomly (uniform). Each node forwards one p/ts from the head of its 

unbounded FIFO queue. The routing scheme is the same as that used by Wang et al. [11]. 

If the next node is the destination, the packet is consumed. Otherwise the next node is 

chosen according to an equation where parameter h provides a weighting between SPF 

based on hops (h = 1) and SPF based on a mixture (h < 1) of hops and queue length 

(congestion-aware routing). The lower h, the more that queue length is considered. Like 

Wang et al., EGM measures congestion through the proportion (ρ) of injected packets in 

the network. EGM find that critical loads (pc) exist, but shift with the routing scheme. 

When h = 1, they find a second-order phase transition, where congestion begins 

increasing at a lower value of pc but increases more gradually. For various values of h < 

1, they find first-order phase transitions. Lower values of h lead to higher values of pc and 

to a greater increase in congestion at the phase transition. 

 

2.3 Questions Arising from Previous Studies 

 

Uncertainty arises because previous studies used models that are quite abstract, 

bearing an unknown relationship to real communication networks. To judge the degree of 

abstraction, consider MesoNet [15], a realistic model of an ISP network. While concise 

(requiring only 20 parameters), MesoNet can represent such elements of realism as: 

network configuration (topology, router speeds, propagation delays and buffer sizes), 

distribution and operation of sources and receivers, user behavior (think time, patience 

and transfer sizes), congestion-control protocols, and simulation and measurement 

controls. After conducting sensitivity analyses of MesoNet, Mills et al. [16] used the 

simulator to compare various proposed congestion-control algorithms. In October 2008, 

the Mills team presented results to engineers for an ISP that provided MesoNet with a 

topology. In May 2009, they presented results to the congestion-control working group 

within the Internet Research Task Force. In March 2010, they presented further results to 

engineers attending the Internet Engineering Task Force. Both researchers and practicing 
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network engineers found MesoNet acceptably realistic for comparing congestion-control 

algorithms. 

When comparing MesoNet to more abstract network models, one finds several 

differences. First, MesoNet provides higher levels of realism with respect to engineering 

factors present in deployed communication networks based on modern Internet 

technology. And the reasons why various features were included or excluded in MesoNet 

are documented. Second, MesoNet was subjected to sensitivity analyses in order to 

understand how variation in parameters changed model behavior. Third, MesoNet and 

related simulation results were presented to network researchers and practicing network 

engineers in order to obtain feedback. Abstract network models used to study congestion 

spread were not subjected to the same level of scrutiny as MesoNet. The studies we 

surveyed give little rationale for including or excluding particular features in the models 

used. They did not describe sensitivity analyses conducted on the models, or report 

outreach activities to obtain feedback from network researchers and engineers. 

Though many studies have been conducted, no one seems to know what level of 

realism should be required in simulations that study congestion in communication 

networks. This uncertainty leads to the questions that motivate the research reported in 

the remainder of this Technical Note: Do abstract models include too little realism? Do 

models like MesoNet include unnecessary realism? How do elements of realism 

influence the spread of congestion in network simulations? Are some elements of realism 

essential? Can some elements of realism be ignored?  
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3. Models 

 

We conducted an experiment (see Sec. 4) with a simulation model that we call 

FxNS (Flexible Network Simulator). FxNS starts from the base of an abstract model 

(EGM) developed by Echenique, Gomez-Gardenes and Moreno [14]. We added to EGM 

a set of seven realism elements, which we took from MesoNet [15]. We implemented the 

seven realism elements as optional within FxNS. Since each of the realism elements can 

be enabled or disabled, FxNS could support (27 =) 128 configurations. However, as we 

explain in Sec. 3.3, we chose to respect some dependencies among the realism elements. 

This means FxNS supports only 34 of the 128 configurations that would be possible if 

realism elements were independent. FxNS can be configured to behave as EGM (the most 

abstract model), as MesoNet (the most realistic model), and any of 32 valid combinations 

of realism elements intermediate between EGM and MesoNet. 

In Sec. 3.1 we describe the abstract EGM model [14]. EGM used their model to 

study congestion behavior in a realistic 11 174-node topology, which is a snapshot of the 

Internet autonomous system (AS) topology circa 2001. We motivate our selection of the 

EGM model. We recap congestion spreading behaviors found by EGM. 

In Sec. 3.2 we describe MesoNet, including its complete set of 20 parameters 

spread among five categories. For 18 MesoNet parameters we define fixed values that we 

adopted for use within FxNS during our experiment. For four of those parameters, as we 

explain below, we selected values that amount to eliminating them from FxNS. The 

remaining two MesoNet parameters are variable within our experiment, though both are 

determined by a single EGM parameter: packet-injection rate (p).  

In Sec. 3.3 we define our mapping from MesoNet parameters to FxNS realism 

elements. We also identify dependencies we adopted between FxNS realism elements and 

we give justifications for adopting those dependencies. Finally, we detail our technique 

for labeling FxNS configurations, and then list the 34 valid FxNS configurations. 

In Appendix A we provide simulation results demonstrating that FxNS correctly 

implements both the EGM and MesoNet models. Using FxNS with all realism elements 

disabled, we replicate EGM results [14] for the 11 174-node topology, which we obtained 

from the original developers of EGM. We then replace this large topology with a smaller 

(218-node) topology taken from MesoNet, and demonstrate that our FxNS 

implementation of the EGM model produces the same fundamental behaviors as 

exhibited for the larger topology. To verify that our FxNS implementation of MesoNet 

realism elements is correct, we compare simulation results from MesoNet against results 

from FxNS when all realism elements are enabled and p ranges up to 5000. 

 

3.1 Abstract EGM Model 

 

As reported in the literature [14] the EGM model evaluated the spread of 

congestion in an 11 174-node topology taken from a 2001 snapshot of the Internet AS 

topology collected by the Oregon Route Views project. We obtained the topology 

directly from the creators of EGM. Figure 1 shows a visual representation of the 

topology, created by Sandy Ressler, a colleague in our laboratory. The colors, which have 

no semantic meaning, represent an attempt by the layout algorithm to assign nodes to 

clusters. The Echenique team claims that the topology is scale free, as the probability (Pk) 
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a node has degree k approximately equals  k -ϒ, with ϒ = 2.2. To verify that claim, we 

plotted (Fig. 2) the node degree (x axis) against the frequency (y axis) on a log-log scale. 

The claim seems approximately correct. 

 

 

Figure 1. Visualization (courtesy Sandy Ressler) of an 11 174-node Internet AS topology 

provided by Enchenique et al. [14] 

 
Figure 2. Log-Log plot of node degree (x axis) vs. frequency (y axis) of 11 174-node AS 

topology 
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In the EGM model, p packets are injected at each time step with the source node 

for each packet chosen randomly (uniform), and also with the destination node (which 

cannot be the source) chosen randomly (uniform). Injected packets are placed at the end 

of the source node’s FIFO packet queue, which can be of infinite length. After injecting 

packets at a time step, each node can also remove one packet from the front of its queue 

and forward it to a next-hop node. If a next hop is the packet’s destination, then the 

packet is removed from the system (i.e., delivered); otherwise the next hop is chosen as 

the neighboring node i with minimum δi as defined in eq. 1: 

 

                                                                                                                                                                                                                                                      (1) 

 

where i is the index of a node’s neighbor, di is the minimum number of hops to the 

packet’s destination via i, and ci is the queue length of i. When h = 1 the routing amounts 

to shortest path in hops. When h < 1, routing is said to be congestion aware, as packets 

may follow routes that can be longer in hops, but shorter in total delay incurred due to 

packet queuing. The lower the value of h the more congestion aware the routing becomes. 

Should h = 0 then routing becomes fully congestion aware. 

The EGM model measures congestion as ρ, the ratio of packet outflow to packet 

inflow. The specific measure is defined in eq. 2: 

 

                                                                                                                                   (2) 

 

 

where A is the aggregate number of packets queued in the network, t is time, τ is the 

measurement interval size, and p is the packet injection rate. 

Echenique et al. [14] used their model to explore effects of various degrees of 

congestion-aware routing as p increases. In general, they found that, under shortest-path 

routing by hops (h = 1), congestion ρ undergoes a second-order phase transition as p 

passes a critical load, while under various degrees of congestion-aware routing (h set to 

0.95, 0.75 and 0.5) ρ undergoes a first-order phase transition as p passes critical load. 

Using congestion-aware routing postponed the phase transition: the more congestion-

aware was the routing the higher the critical load, at the cost of a bigger step size at the 

transition. The reason behind this behavior is easy to see: as congestion develops, 

congestion-aware routing allows alternate routes to be exploited. Once those alternate 

routes congest, the system has no room to adapt to increasing load, and so congestion 

increases rapidly. 

 

3.2 Realistic MesoNet Model 

 

MesoNet provides a reasonably realistic model of a TCP/IP (Transmission 

Control Protocol and Internet Protocol) network, requiring only 20 parameters spread 

across five categories, as shown in Table 1. One category defines the network 

configuration, including such engineering details as: topology, propagation delay on 

backbone links, forwarding speed of network routers and size of buffers in routers. A 

second category defines the number and distribution of sources and sinks, and the speed 

with which they can generate and consume packets. A third category defines user traits: 
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think time, patience, Web-browsing file sizes, and file sizes for larger traffic types. Users 

may also inject temporary increased load to create spatiotemporal congestion or long-

lived flows. The fourth category encompasses parameters that define congestion-control 

regimes used within the network, including: congestion-control algorithm, initial 

congestion window, and initial slow-start threshold. The fifth category defines 

measurement-interval size, simulation duration, and initial startup pattern for sources. 

Below, we explain the parameters further. Note that Table 1 also shows mapping of 

MesoNet parameters to FxNS realism factors. We cover that mapping in Sec. 3.3. 

 

Table 1. MesoNet parameters organized in five categories 

 

 

3.2.1 Network Configuration 

 

A network configuration requires a topology (x1) of routers and links, as shown 

for example in Fig. 3, adapted from the topology of a modern ISP. MesoNet supports 

topologies with up to three hierarchical router tiers: backbone routers (A-P in Fig. 3), 

point of presence (PoP) routers (A1-P2) and access routers (A1a-P2g). To model 

Category ID Name 

Specific 

FxNS Realism Factor 

Network 

x1 topology 

18% 

NC (Node Classes) 

x2 propagation delay 

14% 

DE (Propagation Delay) 

x3 network speed VS (Variable Speed) 

x4 buffer provisioning PD (Packet Dropping) 

Sources & Sinks 

x5 number sources/sinks 

SR (Sources & Receivers) x6 source distribution 

x7 sink distribution 

x8 source/sink speed VS (Variable Speed) 

Users 

x9 think time p (Injection Rate) 

x10 patience n/a 

x11 web object file sizes FL (Flows) 

x12 larger file sizes 

n/a x13 localized congestion 

x14 long-lived flows 

Congestion Control 

x15 control algorithm 
TCP (Transmission Control  

          Protocol) 
x16 initial cwnd 

x17 fsst and sst 

Simulation Control 

x18 measurement interval fixed 

x19 simulation duration fixed 

x20 startup pattern p (Injection Rate) 
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heterogeneity in network access, MesoNet allows three types of access routers: D-class 

(e.g., red nodes in Fig. 3, which connect directly to backbone routers), F-class (e.g., 40 

green nodes) and N-class (e.g., 122 small gray nodes). Classifying access routers enables 

different speeds to be assigned. As discussed later, sources and receivers compose a 

fourth tier distributed below access routers. Packets flowing between a source-receiver 

pair follow a single ingress/egress path between an access router and a top-tier backbone 

router. Propagation delays on backbone links are an intrinsic property of the topology, 

which also specifies paths taken by packets flowing among backbone routers. Parameter 

x2 can scale down (e.g., x2 = 0.5) or up (e.g., x2 = 2) propagation delays on all backbone 

links. In our experiments, when the propagation-delay realism factor is enabled, we use 

intrinsic delays for backbone links in the topology, and we set x2 to 1. 

 

 
Figure 3.  Three-tier topology with 16 backbone routers (A-P), 32 point-of-presence 

routers (A1-P2) and 170 access routers (A1a-P2g) - 8 red and 40 green access routers 

may operate at higher speeds than remaining access routers 

MesoNet assigns transmission speeds to routers. Each backbone (BB) router 

multiplexes packet forwarding from a single buffer shared among all attached links, 

while point-of-presence (PoP) and access (A) routers have two buffers each, one heading 

toward the backbone and one heading from the backbone. PoP and access routers 

alternate forwarding between each of the two buffers. Because MesoNet packets have no 

size, router speeds are assigned in units of packets/time step (p/ts). Six parameters, shown 

in Table 2 col. 1, define the speeds of all router classes (col. 3), using relationships shown 
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in col. 4. Note that every defined relationship includes parameter s1. By assigning values 

to the remaining parameters, e.g., as in col. 2, one can establish reasonable engineering 

relationships among the speeds of the router classes. Then, by equating s1 with model 

parameter x3, speeds of all routers in a topology can be scaled appropriately simply by 

changing the value of x3, as shown in col. 5, which indicates the speed of each router 

class in p/ts when x3 = 40 p/ts. We use these values in our experiment whenever the 

variable-speed realism factor is enabled. 

 

Table 2. Relationships among router classes used to scale speeds 

 
 

To provision router buffers, MesoNet allows size (in packets) to be selected using 

any of four algorithms. In our experiments, when queue lengths are finite, we compute 

buffer size using one of those algorithms: RTT × capacity. We fix RTT = 250 ts and 

select capacity by router class from the values shown in col. 5 of Table 2. MesoNet 

discards packets arriving at a full buffer. 

 

3.2.2 Sources and Receivers 

 

MesoNet requires that a fourth tier of sources and receivers be created and then 

distributed under access routers. Sources equate to computers that have information of 

interest to receivers. MesoNet includes a variable, baseSources, which is the target 

number of sources to locate under each access router. MesoNet fixes the number of 

receivers to be four times baseSources. MesoNet parameter x5 serves as a multiplier to 

scale the number of sources and receivers. For example, given that baseSources = 100 

and x5 = 3, then 300 sources and 1200 receivers would be attached to each access router 

– so the topology in Fig. 3, which has 170 access routers, would contain 51 000 sources 

and 204 000 receivers. These totals are only approximate because MesoNet allows the 

distribution of sources and receivers to be adjusted, as discussed next. 

Recall that access routers come in three classes, as shown in Table 3 col. 1. The 

precise number of sources under access routers of each type can be adjusted by assigning 

the probability, probNs, a source is under an N-class router and the probability, probNsf, 

a source is under an F-class router. The probability a source is under a D-class router is 

then 1 – (probNS + probNsf). For example, if each router class has a target of 300 

sources, then the total number of sources below three routers, one of each class, will be (3 

× 300 =) 900. Assigning values to probNs and probNsf would reapportion sources by 

router class. Similarly, assigning values to probNr and probNrf would reapportion 
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receivers. In our experiments, when the sources-and-receivers realism element is enabled, 

we use the fixed values shown in the caption for Table 3. 

 

Table 3. Sample computation of number and distribution of sources and receivers given 

the topology shown in Fig. 3 and baseSources = 100, x5 = 3, probNS = 0.34, probNsf = 

0.33, probNr = 0.34, probNfr = 0.33 

 
 

Each source periodically transfers a flow of packets, after randomly selecting a 

receiver. The location of a source-receiver pair influences the characteristics of the path 

for a packet flow. Table 3 col. 9 lists six possible flow classes. Table 3, col. 10 shows the 

proportion of flows in each class, assuming parameter values shown in the caption. 

Sources and receivers can transfer packets to/from the network at some maximum 

speed. MesoNet includes two settings: Hbase and Hfast, which specify a number of p/ts. 

Parameter x8 specifies the probability that a source or receiver connects at a speed of 

Hfast. In our experiment, whenever the variable-speed realism element is enabled, we fix 

Hbase to 0.2, Hfast to 2, and x8 to ½. 

 

3.2.3 User Behavior 

 

MesoNet models users as periodically active sources that cycle between thinking 

and sending. A source selects a random thinking time from an exponential distribution 

with a mean given by parameter x9. Upon expiration, the source enters a sending state, 

where a flow of packets is transmitted to a randomly selected receiver. Once all packets 

are acknowledged, the source selects a new random thinking time. In MesoNet, flows 

may be associated with end-users who have finite patience or with programs that have 

infinite patience. Parameter x10 specifies the probability a source has finite patience. In 

our experiments, think time is replaced by packet-injection rate (p) and all users have 

infinite patience. 

When sending, a source selects a Pareto-distributed flow size (in packets) with 

shape α and mean λ (MesoNet parameter x11). In our experiments, when flows are 

enabled, we select flow sizes with α = 1.5 and λ = 350 packets. MesoNet also allows 

sources to transmit larger files. Parameter x12 can be a set to specify those sizes. 

MesoNet also supports simulation of spatiotemporal congestion (x13) and specific long-

lived (x14) file transfers. FxNS does not implement these larger flow-size options. 

 

3.2.4 Congestion Control Protocols 

 

A congestion-control algorithm allows a source to adapt its transmission rate 

Class routers srcs/router #srcs % srcs rcvrs/router #rcvrs % rcvrs Flows %

N 122 306 37 332 72.4 1224 149 328 72.4
NN 52.4

FN 33.3

F 40 297 11 880 23.0 1188 47 520 23.0
FF 5.3

DN 6.7

D 8 297 2376 4.6 1188 9504 4.6
DF 2.1

DD 0.2
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based on perceived congestion. Parameter x15 specifies probabilities that a specific 

congestion-control algorithm is assigned to any source. In our experiments, sources 

implement only the TCP congestion-control algorithm. In outline: TCP [16] probes 

(during initial slow start) for available transmission capacity by first sending a few 

packets and then increases the rate quickly as acknowledgments arrive. Upon packet loss, 

TCP switches to congestion avoidance, reducing transmission rate by 50 % and then 

increasing the rate slowly on subsequent acknowledgments. 

TCP has parameters that control its behavior. Upon connecting, a source first 

sends a specified number of packets, known as the initial congestion window (x16). As 

acknowledgments arrive from the receiver, the source increases the cwnd exponentially. 

Absent any losses, a source switches to a logarithmic increase in cwnd after reaching a 

first slow-start threshold (fsst). If the cwnd increases to a second slow start threshold (sst) 

without loss, then the source switches to congestion avoidance, where cwnd increases 

linearly. The fsst and sst comprise MesoNet parameter x17. While moving through slow 

start, a source switches immediately to congestion avoidance upon the first lost packet. In 

our experiments we set initial cwnd to 2, fsst to 100, and sst to 230/2. 

 

3.2.5 Simulation and Measurement Control 

 

MesoNet samples system state at periodic intervals of size M ts (x18). Parameter 

x19 is the number (MI) of measurement intervals to be sampled. Simulation duration is M 

× MI ts. In our experiments we set M = 200 ts and MI = 1000, and so each simulation 

executes for 200 000 ts. MesoNet parameter (x20) defines a startup distribution for 

sources, allowing load to be present at simulation onset. In our experiments, packet-

injection rate (p) determines the startup pattern of sources.  

 

3.3 Factored FxNS Model 

 

We factored MesoNet into seven realism elements and then inserted them into 

FxNS. Section 3.3.1 describes each element. Section 3.3.2 identifies and justifies 

dependencies among the elements.  Section 3.3.3 defines a coding scheme to label FxNS 

configurations, which are combinations of realism elements, and lists 34 configurations 

that respect identified dependencies. 

 

3.3.1 FxNS Factors 

 

Table 1 Col. 4 shows how MesoNet parameters map to FxNS realism elements. 

Each element can be enabled or disabled. Below, for each element, we describe the 

mapping and the effect of enabling and disabling. 

NC: Given a topology, such as Fig. 3, enabling node classification (NC) implies 

routers are tagged as backbone, PoP, or access. Enabling NC restricts packet injection to 

occur only at access routers, i.e., the network edge. When NC is disabled routers are 

homogeneous and packets may be injected at any router. 

DE: When propagation delay (DE) is enabled, each backbone link in the core of 

the topology is assigned a propagation delay consistent with physics and with the 
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geographic placement of the routers on each end of the link. When DE is disabled, 

backbone links exhibit no propagation delays. 

VS: When variable speed (VS) is enabled, routers are assigned packet-forwarding 

rates that vary with router class (i.e., backbone, PoP and access) and subclass (i.e., 

directly-connected, fast or normal) for access routers. These rates are assigned with an 

engineering relationship that allows higher-level routers to accommodate packets from 

connected lower-level routers. Here, we assign the rates shown in Table 2. In addition, 

when VS is enabled and the topology includes source and receiver nodes (see SR below) 

then those nodes are assigned rates that vary with node type: basic (0.2 p/ts) or fast (2 

p/ts). When both VS and SR are enabled, we randomly assign (unbiased coin flip) types 

to sources and receivers. When VS is disabled, all routers have identical forwarding rate. 

Here we assign 9 p/ts, which is the weighted average rate of routers in our topology when 

VS is enabled. When SR is enabled but VS is disabled we assign rates of 9 p/ts to sources 

and receivers. 

PD: When packet dropping (PD) is enabled FIFO buffers are assigned a finite 

size, computed as 250 ts × router forwarding rate.  Packets arriving at a full buffer are 

discarded. When PD is disabled buffers have infinite capacity, and packets are never 

discarded. 

SR: When sources and receivers (SR) are enabled we include a fourth tier, not 

shown in Fig. 3, of sources and receivers under access routers. Table 3 gives the number 

and distribution of sources and receivers. Here, we create 51 588 sources and 206 352 

receivers uniformly distributed under each subclass of access router. Enabling SR 

expands our topology from 218 nodes to 258 158 nodes. Enabling SR restricts packet 

injection to occur only at sources, and packet removal to occur only at receivers. In fact, 

enabling SR leads to creation of an independent packet-injection process for each source. 

When SR is disabled our topology is limited to the 218 nodes shown in Fig. 3. Further, 

packets are injected from a single injection process within each router. 

FL: With flows (FL) enabled, packets are injected as related streams. The packet- 

injection process is altered to represent arrival of packet streams rather than individual 

packets. Each source waits for an arrival time, selects and connects to a receiver, selects a 

flow size, injects packets at whatever rate is appropriate, and then waits for a next arrival 

time. This cycle continues throughput a given simulation. The size of each packet stream 

is selected from a Pareto distribution with mean of 350 packets and shape of 1.5. 

Individual packets in a stream are injected at the rate of the injecting node, but not subject 

to any congestion-control restrictions unless TCP is enabled (see below). As we explain 

below, the injection rate p and mean flow size are used to prorate flow arrivals so as to 

create equivalent packet-injection loads for a given p whether FL is enabled or disabled. 

Enabling FL also activates a flow-connection process. Before injecting any data packets, 

the source and receiver in a flow must exchange connection request and accept packets. 

A retry procedure is implemented, with exponential back off. The FL retry procedure 

uses the same parameters normally adopted for real Internet TCP flows. If a source sends 

three connection requests without receiving any connection accept from a receiver within 

a prescribed time, then the flow is aborted and the source waits for its next arrival time. 

When FL is disabled packet injection occurs without considering streams, stream sizes, or 

connection/retry. 
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TCP: When TCP is enabled the rate of packet flow in each stream is regulated 

with congestion-control procedures. At stream onset slow-start procedures are activated. 

The number of packets defined by the initial cwnd is injected at whatever rate is possible 

for the source. As acknowledgments are returned from the receiver, the number of 

packets that can be sent increases exponentially until fsst, after which the increase is 

logarithmic until sst. If cwnd reaches sst, then congestion-avoidance procedures are 

activated and cwnd increase becomes linear. Upon first packet loss, cwnd is cut in half 

and congestion-avoidance procedures are activated. If no acknowledgments are received 

within a prescribed time, the cwnd is cut in half and the sst is set to that value. 

Subsequently, slow-start procedures are activated. Once each data segment has been 

acknowledged, the flow is terminated and the source waits for a next arrival time. When 

TCP is disabled and FL is enabled, after a source and receiver connect, the source injects 

the stream of packets into the network at the rate assigned to the source (i.e., there is no 

congestion control and no packet acknowledgment). 

Simulation Duration: FxNS implements MesoNet’s measurement-interval size 

(M) and simulation duration (MI). Here we fix M to be 200 ts and we fix MI to be 1000. 

As a result, simulation durations in our experiments are fixed to (M × MI =) 200 000 ts. 

But, as explained in Sec. 4.4, when PD is disabled, simulation duration can self-adapt to a 

smaller value in order to prevent exceeding the memory available on a hosting computer. 

Packet-Injection Rate: FxNS subsumes two MesoNet parameters (think time 

and startup pattern) with packet-injection rate (p). MesoNet simulates flows that arrive 

after a think time expires. When FL is enabled FxNS replaces think time with an arrival 

process that computes the probability P(n, t) that a flow arrives at injection source n at 

time step t. Specifically, P(n, t) = p/(N × f), where N is the number of potential injection 

sources and f is the average flow size in packets. Rather than implement a separate startup 

pattern for arrivals, FxNS simply lets P(n, t) dictate the startup pattern. 

Routing: One final issue concerns routing, i.e., selecting a next-hop router when 

forwarding packets. MesoNet assumes offline route computation, and expects a resulting 

forwarding table to be present in each router. For most routers in the topology shown in 

Fig. 3, next-hop forwarding is obvious, since there is a single link to each neighbor. For 

16 routers (i.e., the backbone) alternate routes are possible. We computed forwarding 

tables with Dijkstra’s Shortest-Path First (SPF) algorithm [17], using propagation delay 

as the metric. 

Excluded MesoNet Functions: FxNS provides no implementation for MesoNet 

parameters: x10, x12, x13 and x14. While inducing selected spatiotemporal congestion 

(x13) and long-lived flows (x14) seems appropriate for experiments comparing 

congestion-control algorithms, such special features add little value for our experiments. 

Though we could include various larger transfer sizes (x12) in our experiments, we 

decided to omit this feature because we wanted to compare the influence of having 

streams of related packets (i.e., flows) against independent packet injections. If we 

simulated various flow sizes, then we would need to find some mapping to independent 

packet injection. Such a mapping would require adjusting p in the absence of FL to 

compensate for variations in average flow sizes when FL is enabled. We already needed 

to relate a given p to average flow size when FL is enabled. We determined that adding 

variations in average flow size would create an undesirable complication. Finally, we 

assumed each user has infinite patience (x10), which eliminated user patience as a factor. 



21 

 

We took this decision because user patience makes sense only when TCP is enabled. 

Since we could not formulate an analog to user patience when TCP is disabled, we 

decided to eliminate user patience as a factor in FxNS. 

 

3.3.2 Dependencies among FxNS Factors 

 

We determined implementing all seven realism elements as independent FxNS 

factors would prove infeasible. Instead, we identified seven dependencies among the 

factors, as illustrated in Fig. 4. Next we explain and justify these dependencies. 

 

 
 

Figure 4. Dependencies among FxNS factors 

The abstract EGM model is the root of our dependency tree. One can easily add 

finite queues (PD) to such a model. In addition, one can readily assign node classes (NC) 

to the topology included in such a model. Since variable speeds (VS) are assigned to 

nodes of different classes, node classes must be included in order to facilitate VS. 

Similarly, since propagation delays (DE) are assigned only to backbone links, we need to 

be able to distinguish such links. Backbone links connect two backbone routers, which 

requires that nodes be classified, creating a dependency on NC. 

While sources and receivers might be included as a second tier under a flat 

topology, i.e., without node classification, we decided to restrict the use of sources and 

receivers to be a fourth tier under access routers. We took this decision for convenience, 

allowing us to eliminate 24 configurations that we would otherwise need to simulate. 

Given our decision SR requires the use of node classes. 

Enabling flows (FL) considers packets injected as a stream between a source and 

receiver. Without the presence of SR, there would be no obvious way to identify a related 

stream of packets, unless we significantly complicated the packet-injection process 
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typically used by routers in EGM. For example, for p packets injected at each time step 

we would need to assign the packets not only to a source router but also to a “flow” 

within that router. To make such an assignment, a “flow” would need to exist already or 

else would have to be created as a new “flow.” We could select a source and sink for 

each packet, determine if a packet traversed between them before. If so, then we could 

assign the packet to an existing “flow.” If not, we could assign the packet to a new 

“flow.” In either case, we would simply be implementing a packet-injection process with 

superfluous logic glued on. Further, such an approach would not allow us to decide when 

a “flow” ends. Our other option would have been to initiate a flow arrival and connection 

process under routers. In that case, we would need to decide how many flow arrival 

processes would be operating under each router. Given these issues, we simply decided 

that FL requires SR. 

TCP regulates the rate of packet transmission within a stream of related packets, 

retransmitting those that are not received, and deciding when all packets in the stream 

have been delivered successfully. These steps cannot be taken without a flow. Thus TCP 

requires FL. 

 

3.3.3 Numbering Valid FxNS Configurations 

 

We label FxNS configurations using a numbering scheme based on binary 

encoding, as shown in Fig 5. Each optional factor is assigned a position in a seven-bit 

vector, from most (bit 7) to least (bit 1) significant. Factors are assigned to bit positions 

from the bottom of the dependency tree and moving upward, with TCP assigned to bit 

position 7 and FL to bit position 6 and so on to PD, which is assigned to bit position 1.  

When a selected factor is enabled its bit position is set to one, and set to zero when 

disabled. The resultant bit vector can be converted to a decimal value, which is the 

configuration number. For example, Fig. 5 shows the encoding when NC+VS+SR+FL 

are enabled, which translates to decimal 54. So that configuration is designated C54. 

 

 
 

Figure 5. Numerical encoding scheme for FxNS configurations – and one example 
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Respecting the dependencies shown in Fig. 4, we identified 34 valid FxNS 

configurations. Table 4 defines those configurations and gives the configuration number, 

both in sequence (1-34) and in numerical encoding (C0-C127). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Seq# Config TCP FL SR DE VS NC PD

1 C0 0 0 0 0 0 0 0

2 C1 0 0 0 0 0 0 1

3 C2 0 0 0 0 0 1 0

4 C3 0 0 0 0 0 1 1

5 C6 0 0 0 0 1 1 0

6 C7 0 0 0 0 1 1 1

7 C10 0 0 0 1 0 1 0

8 C11 0 0 0 1 0 1 1

9 C14 0 0 0 1 1 1 0

10 C15 0 0 0 1 1 1 1

11 C18 0 0 1 0 0 1 0

12 C19 0 0 1 0 0 1 1

13 C22 0 0 1 0 1 1 0

14 C23 0 0 1 0 1 1 1

15 C26 0 0 1 1 0 1 0

16 C27 0 0 1 1 0 1 1

17 C30 0 0 1 1 1 1 0

18 C31 0 0 1 1 1 1 1

19 C50 0 1 1 0 0 1 0

20 C51 0 1 1 0 0 1 1

21 C54 0 1 1 0 1 1 0

22 C55 0 1 1 0 1 1 1

23 C58 0 1 1 1 0 1 0

24 C59 0 1 1 1 0 1 1

25 C62 0 1 1 1 1 1 0

26 C63 0 1 1 1 1 1 1

27 C114 1 1 1 0 0 1 0

28 C115 1 1 1 0 0 1 1

29 C118 1 1 1 0 1 1 0

30 C119 1 1 1 0 1 1 1

31 C122 1 1 1 1 0 1 0

32 C123 1 1 1 1 0 1 1

33 C126 1 1 1 1 1 1 0

34 C127 1 1 1 1 1 1 1

Table 4. Set of FxNS configurations simulated 
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4. Experiment Design 

 

We designed an experiment to explore the influence of FxNS realism factors on 

global congestion behavior in a simulated network. Below, we first identify (Sec. 4.1) 

fixed input parameters used across all our simulations. Next we specify (Sec. 4.2) 

parameters varied from simulation to simulation. Third we define (Sec. 4.3) four 

responses measured for our simulations. We chose responses that can apply across all 34 

configurations that we simulate. Finally, we discuss (Sec. 4.4) the fact that our 

simulations could individually self-adapt in two dimensions: (1) number of p values 

simulated and (2) number of time steps simulated for each p value. 

 

4.1 Fixed Input Parameters 

 

We use the same 218-node topology (recall Fig. 3) in all simulations. We adapted 

this topology from that of an Internet service provider. Because the topology core spans 

the continental United States and allows choice of routes, we used Dijkstra’s SPF 

algorithm [17] to compute next hops for core nodes based on propagation delays. Routing 

to and from core nodes consists of single paths with obvious next hops. This approach 

creates a fixed forwarding table for each node. We used this forwarding table for all 

simulations. Packets are forwarded based on SPF propagation delays in the core and 

based on SPF hops toward and away from the core. Note that propagation delays are used 

to compute SPF next hops in the core regardless of whether DE is enabled or disabled. 

Thus disabling DE causes packets to experience no propagation delays in the core even 

though packets are forwarded based on SPF propagation delays. 

We also fixed the measurement interval (M) to 200 time steps and executed each 

simulation for 1000 M. This means that each simulation executes for 200 000 ts. There 

might be some situations, e.g., where p is large and packet dropping (PD) is disabled, 

requiring excessive memory usage by our simulations. In such cases, as explained in Sec. 

4.4, our simulations self-adapt to execute a lower number of time steps in order to limit 

memory usage. 

 

4.2 Variable Input Parameters 

 

We varied only two parameters: (1) packet-injection rate p and (2) configuration 

(as identified in Table 4). For each configuration, we varied p up to 2500 in increments of 

10. This means that we planned 250 simulations for each configuration, or (250 × 34 =) 

8500 simulations in all. However, as explained in Sec. 4.4, simulations of individual 

configurations could self-adapt so that when extreme congestion appears at successive 

values of p then simulations terminate for the configuration. This saves computation time 

because once a configuration demonstrates extreme congestion for several increasing 

values of p then the configuration continues to exhibit congestion as p increases further. 

Each configuration simulated entails a combination of enabled and disabled FxNS 

realism factors. For each realism factor, as shown in Table 5, we selected one set of 

parameter values when enabled and a different set when disabled. 
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Table 5. Parameter values when each FxNS realism factor is enabled or disabled 

 Enabled Disabled 

PD buffers = 250×router speed buffers = ∞ 

NC 

3-tier 218-node topology as in Fig. 3 –

routers labeled as core, PoP, D-class, 

F-class or N-class 

flat 218-node topology as in Fig. A2 –

with router classes unlabeled 

VS 

core 80 p/ts; PoP 10 p/ts; D-class 10 

p/ts; F-class 2 p/ts; N-class 1 p/ts; fast 

source/sink 2 p/ts; normal source/sink 

0.2 p/ts   

all routers and sources/sinks 9 p/ts 

DE core links have propagation delays  no propagation delays 

SR 

51 588 sources and 206 352 sinks 

deployed uniformly below access 

routers 

no sources or sinks deployed 

FL 

transfers are packet streams: sized 

randomly from Pareto distribution 

(mean 350, shape 1.5) – streams set up 

with TCP connection procedures 

transfers are individual packets 

TCP 

packet transmission regulated by TCP 

congestion-control including slow-

start (initial cwnd = 2 fsst=100  sst = 

230/2) and congestion avoidance 

packet transmissions not regulated by 

congestion-control 

 

4.3 Responses 

 

Given the wide range of configurations simulated in our experiment, we were 

constrained to choose (and define) responses comparable across all configurations: from 

most abstract to realistic. This prevented us, for example, from comparing behavior based 

on flows, since many configurations did not use flows. Despite this constraint we also 

desired to measure a range of behaviors, rather than limit ourselves to a single response. 

We determined that across all configurations two measurable concepts exist: graphs and 

packets. We found that we could use these simple concepts to measure: congestion spread 

(χ), connectivity breakdown (α), packet delivery (π) and packet latency (δ). For each 

configuration we simulated, we plotted each of these responses (y axis) against increasing 

packet-injection rate (x axis), forming a vector per configuration per response. Thus 

simulating each configuration results in four vectors, each defined by a set of (x: injection 

rate, y: response value) pairs. We define each response below. 

 

4.3.1 Congestion Spread 

 

To measure congestion spread, we adapt an approach from percolation theory, 

combined with graph theory. Our approach is inspired by the concept of giant connected 
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component (GCC). In graph-theory, the GCC is defined [1] as a large, connected 

subgraph with size on the same order as the number of nodes in the graph, i.e., the GCC 

includes nearly all nodes. Percolation theory [2] further mystifies the concept by stating 

that percolation can occur only on infinite graphs, and thus the GCC must approach an 

infinite number of nodes. 

We take an empirical approach that replaces the GCC with the largest self-

connected subgraph (LSS). We work with a finite graph of up to about a quarter million 

nodes. So, according to percolation theory, percolation cannot be said to occur, even 

when the LSS consists of all quarter million nodes. Readers should bear in mind our use 

of the LSS as a substitute for the GCC. Readers should also note that we consider 

percolation to be observed whenever the LSS contains all nodes within a topology.   

General Approach: We label each node as congested, cutoff or uncongested. 

Here, a node is considered cutoff when it connects only to congested neighbors. We then 

compute self-connected subgraphs of nodes that are labeled either as congested or cutoff. 

We declare the largest such subgraph to be the LSS of isolated nodes. The proportion (χ) 

of network nodes in the LSS of isolated nodes can range between 0 (no congested nodes) 

and 1 (all nodes are either congested or cutoff). We plot χ to represent the spread of 

congestion throughout the network. Below we define the details more precisely. 

Congested Node: Let Qi,d be the count of packets waiting for transmission in 

direction d  (up or down or only) at node i. Node i is congested if Qi,d ≥ QT. Note that 

when NC is disabled all routers have only one queue (d=only). When NC is enabled, 

backbone routers have only one queue (d=only), while other router types have two 

queues (d=down and up). We label a router as congested if any queue within the router 

contains QT or more packets. Here, we set QT = 250 × forwarding speed × 0.7. Note that 

forwarding speed is half the router speed for PoP and access routers. Forwarding speed is 

the router speed for backbone routers. 

Cutoff Node: Given a graph with n nodes, an adjacency matrix A contains rows 

and columns labeled with vertices (1 to n). A link exists between two nodes i and j when 

ai,j = 1 in A. For the same graph, a vector C represents the congestion state of each vertex, 

where a congested node is denoted by ci = 1 and an uncongested node is denoted by ci = 

0. For any node ci in C that is not congested (i.e., ci = 0), then that node is cutoff if 

 

                                                                                                                                                                                                                                                                                       (3) 

 

 

i.e., all its surrounding neighbors (not including sources and receivers) are congested. 

Largest Self-Connected Subgraph (LSS) of isolated nodes: We define the LSS 

of nodes that are congested or cutoff, including any sources and receivers under such 

nodes, as the LSS of isolated nodes. Effectively, if sources and receivers connect to the 

network through a congested or cutoff node, then we also label those sources and 

receivers as isolated nodes. 

Proportion of nodes in the LSS of isolated nodes: Let GN be the set of all nodes 

in a graph G, let Gχ be the set of nodes in the LSS of isolated nodes in G, where Gχ ⊆ 

GN. Then χ = |Gχ|/|GN| is the proportion of nodes in G that are in the LSS of isolated 

nodes. 
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Proportion of nodes in the LSS of congested nodes: In Appendix B, we 

consider the LSS for congested nodes (γ) only. Let Gγ be the set of nodes in the LSS of 

congested nodes in G, where Gγ ⊆ GN. Then γ = | Gγ|/|GN| is the proportion of nodes in G 

that are in the LSS of congested nodes. As shown in Appendix B, the results for γ are 

similar to the results for χ. 

 

4.3.2 Connectivity Breakdown 

 

 We use a similar approach to measure the breakdown of network connectivity. 

Here we label nodes as congested, cutoff or uncongested, using the definitions given 

above, and then we compute self-connected subgraphs of nodes that are labeled as 

uncongested. We declare the largest such subgraph to be the LSS of reachable nodes. The 

proportion (α) of network nodes in the LSS of reachable nodes can range between 0 (no 

uncongested nodes) and 1 (all nodes uncongested). We plot α to represent the breakdown 

in network connectivity as α falls from 1 to 0. While in some cases α is the inverse of χ, 

an inverse relationship does not always hold. For that reason we report both α and χ. 

Assuming the definitions given above, we define residual details below. 

Largest Self-Connected Subgraph (LSS) of reachable nodes: We define the 

largest self-connected subgraph of nodes that are uncongested, including any sources and 

receivers under such nodes, as the LSS of reachable nodes. The network is fully 

connected when this GCC contains all nodes in the network. 

Proportion of nodes in the LSS of reachable nodes: Let GN be the set of all 

nodes in a graph G, let Gα be the set of nodes in the LSS of reachable nodes in G, where 

Gα ⊆ GN. Then α = |Gα|/|GN| is the proportion of nodes in G that are in the LSS of 

reachable nodes. 

 

4.3.3 Packets Delivered 

 

Packets injected into a network will meet one of three fates: be delivered, be 

queued, or be discarded. We consider a network as effective when all packets are 

delivered and useless when no packets are delivered. Based on this reasoning, we 

measure the proportion (π) of injected packets that are delivered during a simulation. The 

proportion of packets delivered (π) can range between 0 (no packets delivered) and 1 (all 

packets delivered). Next, we more precisely define this measure.  

Let ae be the aggregate number of packets injected into the network over the 

course of a simulation, i.e., over the time span t = 1…e, as defined by eq. 4. 

 

                                                                           (4) 

 

Let qe be the aggregate number of packets queued in all buffers over all network nodes at 

time step e, i.e., the end of a simulation, as defined by eq. 5. 

 

                                                                                                                               (5) 

 

Let bi,d be the maximum number of packets that can be queued in node i for transmission 

in direction d. When packet dropping is not used bi,d = ∞. For a given node i, an arriving 
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packet will be dropped when, for any direction d, Q𝑖,d = bi,d, i.e., there is no room for the 

packet. Let be denote the aggregate number of packets dropped by all network nodes from 

all queues over the course of a simulation, i.e., over the time span t = 1…e. 

The proportion of packets queued (ρ) then is ρ = qe/ae, and the proportion of 

packets dropped (x) is x = be/ae. The proportion of packets delivered (π) then is π = 1 – ρ 

– x. This estimates the probability that a packet will be delivered. When PD is disabled x 

= 0. When PD is enabled, ρ→ε, where ε is a small, fixed, upper bound, established by the 

aggregation of buffer sizes across all nodes. Thus for disabled PD π = 1 – ρ, and for 

enabled PD π = 1 – ε – x. This implies that 1 – ρ = 1 – ε – x, and so ρ = x + ε. Since ε is 

relatively small, x ≈ ρ. So when PD is enabled, π is driven by x; otherwise by ρ. So 

regardless of the state of PD, π reasonably measures effectiveness of packet delivery. 

 

4.3.4 Packet Latency 

 

While a network that delivers a high proportion of injected packets can be 

considered effective, that same network can be considered inefficient if excessive time is 

required to move packets from point of injection to point of extraction. To assess 

efficiency for delivered packets (i.e., packets in π) we measure the average one-way delay 

(Δ), which will be longer as queues are larger and shorter as queues are smaller. As we 

describe below, we scale Δ to be average delay (δ) within the interval [0...1]. Next we 

precisely define Δ and its scaling to δ. 

Let Pπ be the set of packets injected into the network that reach the intended  

destination. Let si be the creation time of the ith packet and let di be the delivery time of 

ith packet. Then average one-way packet delay (Δ) is defined by eq. 6. 

 

 

                                                                                                                               (6) 

 

Let ∆c,p be the average one-way delay for configuration c and packet injection rate 

p.  Let ∆MIN be the minimum ∆c,p over all configurations and packet injection rates, and 

∆MAX be the maximum ∆c,p over all configurations and packet injection rates. Then scaled 

average delay (δ) is defined by eq. 7. 

 

                                                                                                                               (7)  

 

4.4 Simulation Self-adaptations 

 

Simulating 34 configurations over 250 packet-injection rates (p), where each 

simulation covers 200 000 time steps, requires significant computation. In addition, 

simulations without packet dropping can require excessive memory usage, especially at 

higher values of p. To address these issues, we implemented two forms of self-adaptation 

within FxNS: congestion self-adaption and time-step self-adaptation. 

First, we allowed FxNS to examine the history of simulated congestion spread. 

For a given configuration, when congestion spreads through all nodes for three 

successive values of p then FxNS terminates simulations for the configuration. In our 

experiment, the earliest any configuration terminated under congestion self-adaption was 
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after p passed 790. This saved computation time because once a configuration 

demonstrates extreme congestion for several increasing values of p then the configuration 

will continue to exhibit congestion as p increases further. Curtailing simulation of heavily 

congesting configurations did not cause information loss, as response variables for higher 

values of p can be extrapolated easily. 

Second, we allowed FxNS to examine memory usage by individual simulation 

runs. When memory usage exceeded a specified threshold, subsequent FxNS simulation 

runs for the same configuration terminated prior to executing all 200 000 time steps. But 

FxNS continued to simulate subsequent values of p. Without time-step self-adaptation 

FxNS simulations could consume too much memory. In our experiment, time-step self-

adaptation occurred in configurations with PD disabled, and for values of p greater than 

250. No simulation executed fewer than 41 400 time steps. Time-step self-adaptation was 

triggered only in cases where packet queues were large, and so congestion extreme. 

Curtailing a data point early under such conditions did not lead to significant information 

loss, as affected configurations had already congested sufficiently to yield insightful 

results.  
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5. Results 

 

Below we plot results for each of the four responses: congestion spread (χ), 

breakdown in network connectivity (α), and both effectiveness (π) and efficiency (δ) of 

packet delivery. Each result covers 34 configurations with p ranging up to 2500. Here, we 

plot together all 34 configurations for each response. This enables comparison of 

similarities and differences among configurations. Larger plots for each response-

configuration pair are available elsewhere [18]. 

Figure 6 shows 34 plots of χ (y axis) vs. p (x axis), one for each FxNS 

configuration. These plots show how much congestion spreads in the network for the 

given combinations of realism factors. Figure 7 shows similar plots, but for α. These plots 

show how connectivity breaks down in the network for given combinations of realism 

factors. Figure 8 shows the proportion of packets delivered (π) varying with p for each of 

the 34 FxNS configurations. Figure 9 shows the scaled average one-way delay (δ) of 

delivered packets varying with p for each of the 34 FxNS configurations.  
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Figure 6. Proportion of nodes in LSS of isolated (χ) nodes for 34 FxNS configurations 
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Figure 7. Proportion of nodes in LSS of reachable nodes (α) for 34 FxNS configurations 
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Figure 8. Proportion of packets delivered (π) for 34 FxNS configurations  



34 

 

 

 

Figure 9. Scaled average latency of delivered packets (δ) for 34 FxNS configurations 



35 

 

6. Discussion 

 

The plots shown in Figs. 6-9 illustrate differences in global congestion behavior 

among various simulated FxNS configurations. The plots also suggest that patterns of 

similarity exist among subsets of the configurations. Here, we explore these differences 

and similarities, aiming to draw some conclusions about the influence of realism on 

congestion in network simulations. We begin, in Sec. 6.1, by comparing plots between 

the most abstract (C0) and realistic (C127) configurations. 

Subsequently, for each response, we examine similarities and differences among 

all configurations. We do this by transforming each of the 34 plots for a given response to 

a vector and then hierarchically clustering configurations based on the squared Euclidean 

distances between the vectors. Some of the vectors are shorter than others because FxNS 

implements congestion self-adaptation, which terminated affected configurations before 

reaching p = 2500. In such cases, we filled the missing vector elements with extrapolated 

results. For the LSS of isolated nodes, discussed in Sec. 6.2, we filled the missing 

elements with ones. For the LSS of reachable nodes, discussed in Sec. 6.3, and the 

proportion of packets delivered, discussed in Sec. 6.4, we filled the missing elements 

with zeros. For average one-way delay of delivered packets, discussed in Sec. 6.5, we 

filled the missing elements with data points along a linear trend line. We summarize our 

overall findings in Sec. 6.6. 

 

6.1 Most Abstract vs. Most Realistic 

 

Figure 10 contains four subplots comparing congestion behavior between the 

most abstract (C0) and realistic (C127) configurations. The subplots compare: congestion 

spread (χ), connectivity breakdown (α), packets delivered (π), and latency (δ) for 

delivered packets. We restrict the subplots to the range p ≤ 2000 because FxNS 

terminated simulations of configuration C0 early, due to congestion self-adaptation. We 

discuss each subplot in turn. 

Congestion Spread (χ): For configuration C0 congestion spreads quickly with 

increasing packet-injection rate, encompassing all nodes by the time p reaches 500. For 

configuration C127, congestion spread remains low over the entire range of packet 

injection rates, even out to p = 2500 (not shown). This difference has two main causes. 

First, all nodes in configuration C0 operate at the same speed. This means that backbone 

nodes become overwhelmed with congestion, which then spreads outward to the network 

edge. In configuration C127 router nodes are engineered with varying, hierarchical 

speeds, so higher tiers can handle the packet inflow rate from lower tiers. Second, 

configuration C0 does not monitor and adapt to congestion, while configuration C127, 

which implements TCP, measures congestion and adapts the rate of packet inflow 

accordingly. 

Connectivity Breakdown (α): Network connectivity breaks down rather quickly 

for both configuration C0 and C127, reaching a relatively low level before p reaches 500. 

Even so, there are two main differences in the subplot: C127 decays more slowly than C0 

and C127 asymptotes at a higher level of network connectivity than C0, which drops to 

zero after p passes 500. C127 decays more slowly because TCP adapts packet injection 

based on measured congestion. C127 asymptotes at a higher level because variable router 
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speeds restrict congestion to the network edge. The network core remains uncongested 

and intact. Connectivity breaks down completely for C0 because the network core 

becomes congested and then congestion spreads to the edge, consuming all nodes. 

 

Figure 10. Comparison of congestion spread (χ), connectivity breakdown (α), packets 

delivered (π), and packet latency (δ) for the most abstract (C0) and most realistic (C127) 

FxNS configurations 

 

 Packets Delivered (π): For C0 the proportion of packets delivered drops steeply, 

reaching nearly zero as p passes 1000. For C127 the proportion of packets delivered 

drops only modestly with increasing p, stabilizing near 80 %. This large difference arises 

from a combination of two factors: TCP and packet dropping. C0 does not adapt packet 

injection based on measured congestion and does not discard packets. With increasing p, 

this leads to a large and growing backlog of packets in all network nodes. C127, which 

implements TCP and packet dropping, adapts packet injection based on measured 

congestion and also discards packets when router buffers fill. As a result, undelivered 

packets for C127 encompass those that are discarded, and the number of packets that 

must be discarded is limited by the rate adaptation of TCP. 

Packet Latency (δ): For C127 the latency of delivered packets remains low even 

as p increases to and beyond 2000. This occurs because packet dropping limits the size of 

router queues, so delivered packets are not delayed very long. For C0, which does not 

implement packet dropping, packet latency climbs steeply with increasing p, reaching an 

apex before decaying gradually. The reason for the steep climb is that packet queues 

become jammed, which drives up packet latency. The reason for the gradual decay is that 

latencies are recorded only for delivered packets. At high values of p, C0 delivers 
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relatively few packets, and those packets necessarily transit routes where queues are not 

jammed. Even with such decay, packet latency for C0 remains significantly higher than 

for C127. 

The foregoing discussion contains explanations for the differences in the subplots 

in Fig. 10. Some of those explanations are informed by results from the clustering 

analyses that follow in Secs. 6.2-6.5. Other explanations, relating to the progression of 

congestion within the network topology, are informed by a visualization of the spread of 

congestion. FxNS can export the ending congestion state for each configuration and 

simulated value of p. Phillip Gough, a researcher from Australia’s Commonwealth 

Scientific and Industrial Research Organization, devised and implemented an interactive, 

multidimensional visualization that allowed us to examine the spread of congestion in the 

network topology for all configurations and values of p. Figure 11 shows a screenshot 

from that visualization. An interactive version, using data from our experiment, is 

available elsewhere [19]. 

 

   
Figure 11. Screenshot from dynamic visualization (courtesy Phillip Gough) of node status 

with increasing p for 34 FxNS configurations in a 218-node topology 

 

The visualization contains three main windows. The network topology is shown 

in the upper left-hand window. Routers are shown as circles and links as line segments 

between circles. Router classes (backbone, point-of-presence and D-, F- and N-class 

access) are distinguished by color. Occupancy status (congested, cutoff and uncongested) 

is indicated by a colored outline around each router. Two smaller, but optional, circles 

within each router represent queue sizes, coded by color. Color keys are provided in the 

visualization. 

Immediately below the topology is a stacked bar graph, where each cell represents 

a specific value of p, from 1 (left) to an upper bound (right). Each cell also indicates the 

proportion of routers that are uncongested (light color), congested (medium color) and 

cutoff (dark color) for the relevant value of p. The right-hand window shows a strip for 

each of the 34 FxNS configurations. Each strip contains 218 cells, each representing a 
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router. The cells are arranged in vertical columns, where each column displays routers in 

a particular class. Each cell is color coded with the occupancy status of the related router 

at a selected value of p. 

The user can select a configuration in the right-hand window. The selected 

configuration is indicated by a green dot. Selecting a specific configuration changes the 

color coding of the topology and the related stacked bar graph to match the congestion 

state for the configuration. Selecting a cell on the stacked bar graph adjusts the 

congestion state of the topology to the related value of p. Selecting a p value also adjusts 

the congestion state of all configurations on the right-hand window to reflect that p value. 

The user can step through various p values, while watching changes in congestion within 

the displayed topology. Alternatively, the user can step through various p values while 

using the right-hand window to compare congestion patterns among all configurations. 

These are the tools that allowed us to explain some differences (above) when comparing 

congestion evolution between configurations C0 and C127. These tools also allowed us 

to see similarities and differences among congestion patterns in various configurations. 

 

6.2 Congestion Spread 

 

Figure 12 shows a hierarchical clustering among the vectors in Fig. 6, which 

plotted the proportion of nodes in the LSS of isolated nodes for the 34 FxNS 

configurations. The x-axis of Fig. 12 is labeled with sequential configuration numbers 

from Table 4. The y-axis reports squared Euclidean distance between the vectors 

comprising each configuration. 

Figure 12. Clustering of LSS of isolated nodes (χ) based on Squared Euclidean Distance 
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The clustering plot indicates two main groupings, separated by a large distance. 

The left-hand group contains configurations that enabled variable router speeds (VS) or 

TCP or both. Configurations in this group correspond to those that show little congestion 

spread. The right-hand group contains configurations that did not enable VS and did not 

enable TCP. Configurations in this group correspond to those that showed congestion 

spreading throughout the network topology. Note the most abstract configuration, C0 

(sequence number 1), appears in the congested group, while the most realistic 

configuration, C127 (sequence number 34), appears in the uncongested group. The 

reasons why VS and TCP have these effects were explained above in Sec. 6.1. Most 

network models surveyed [5-14] in Sec. 2 are quite similar to configuration C0, while 

real networks are modeled [15-16] more like configuration C127. This is evidence that 

many previous studies report congestion spread unlikely to appear in real networks. 

 

6.3 Connectivity Breakdown 

 

Figure 13 shows a hierarchical clustering among vectors in Fig. 7, which plotted 

the proportion of nodes in the LSS of reachable nodes for the 34 FxNS configurations. 

Note that distances among the clusters in Fig. 13 are much smaller than those seen among 

clusters in Fig. 12. This reflects the fact that breakdown in network connectivity is more 

similar among configurations than congestion spread. Breakdown in network 

connectivity occurs in cases where subgraphs of the topology are disconnected (due to 

congestion) from other subgraphs. As load increases network connectivity breaks down 

even in cases where congestion does not necessarily spread widely. The studies we 

surveyed [5-14] address spreading network congestion but do not address breakdown of 

network connectivity. This aspect of network congestion seems important and should be 

examined in future studies. 

We labeled Fig. 13 to indicate factors in common among various groupings of 

FxNS configurations. While the groupings are not as clear as those shown in Fig. 12, our 

labeling reflects presence and absence of VS and TCP, which have significant influence 

on breakdown in network connectivity. Note that C0 falls into a grouping with VS 

disabled, while C127 falls into a grouping with TCP enabled. From the earlier discussion 

(Sec. 6.1) recall that TCP slows breakdown in network connectivity. Also recall that, 

when coupled with TCP, VS ensures the network core remains uncongested and intact. 

Among configurations with VS disabled, the leftmost grouping of configurations 

(sequence numbers 3, 4, 7, 8, 11, 12, 15 and 16) in Fig. 13 reach complete breakdown in 

network connectivity sooner than other configurations with VS disabled. These 

configurations have NC enabled, which means that packet injection occurs at the network 

edge, thus packets flow in a concentrated fashion to and through the network core. This 

differs from configurations C0 and C1 (sequence numbers 1 and 2), where packet 

injection can occur at any node, thus fewer packets flow across the network core. 

Sequence numbers 19, 20, 23 and 24 represent configurations with sources and receivers 

and flows enabled. These configurations reach complete breakdown in connectivity later 

than those in the leftmost group. Sequence numbers 20 and 24 represent configurations 

with packet dropping enabled. Here, complete breakdown in connectivity is postponed 
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beyond that for 19 and 23. Overall, most configurations with VS disabled lost network 

connectivity quickly and completely. 

 

 

 
Figure 13. Clustering of LSS reachable nodes (α) based on Squared Euclidean Distance 

 

Configurations with VS enabled but with TCP disabled can also experience 

complete breakdown in network connectivity, but the process takes somewhat higher 

packet-injection rates because more pressure must be applied from the network edges 

before the core can congest. Such behavior arises for configurations (C22, C23, C30, 

C31, C54, C55, C62, and C63) with SR (sources and receivers) enabled. Enabling SR 

allows more pressure to be applied from the network edge because more potential packet-

injection sources reside there. When flows are enabled the decay in network connectivity 

slows somewhat. When further enabling packet dropping, the decay slows even more. 

In configurations that enable VS and disable TCP and SR (e.g., C6, C7, C14 and 

C15), the network core remains uncongested and intact. With TCP enabled and VS 

disabled (C114, C115, C122 and C123), congestion builds in the core and oscillates in 

PoP routers, but the access routers remain uncongested. With both TCP and VS enabled 

(C118, C119, C126 and C127), congestion stays mainly within access routers, oscillating 

inward toward PoP routers. Overall, configurations with VS enabled retained 

connectivity in the network core. These results provide evidence that VS plays a key role 

in limiting the breakdown of network connectivity to the edge, allowing the network core 

to remain uncongested and intact. 
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6.4 Packets Delivered 

 

Figure 14 shows a hierarchical clustering among the vectors in Fig. 8, which 

plotted the proportion of packets delivered for the 34 FxNS configurations. The 

clustering plot indicates two main groupings, separated by a large distance. The leftmost 

group contains configurations with TCP disabled, while the rightmost group contains 

configurations with TCP enabled. TCP measures the congestion state of the network and 

adapts packet-injection rate accordingly. This improves significantly the likelihood that 

an injected packet will reach its intended destination. Disabling TCP increases the 

likelihood that an injected packet will be queued or discarded. 

 

 
Figure 14. Clustering of packet delivery effectiveness (π) based on Squared Euclidean 

Distance 

 

When TCP is enabled packet dropping (PD) has a secondary influence on the 

likelihood of packet delivery. Disabling packet dropping ensures that injected packets are 

never discarded, thus packets will eventually be delivered successfully. The buildup of 

packet queues, though, can delay delivery of data and acknowledgment packets, leading 

to timeouts and subsequently to lower throughput, as TCP significantly reduces packet-

injection rate. Enabling packet dropping means that some packets will be discarded 

because router buffers are full. Our results found about a 20 % loss rate at high loads. 

With packet dropping enabled, TCP does not need to reduce as significantly the packet-

injection rate, thus throughputs remain higher, while the likelihood of delivery decreases. 

When TCP is disabled variable router speed (VS) has a secondary influence on 

likelihood of packet delivery. Absence of VS allows packet queues to build more widely 
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among nodes throughout a network topology. This means that packets are more likely to 

be queued or discarded (depending on the setting for packet dropping) when they arrive 

at a router. Where packets are queued, the queue length of any router is likely to be long 

and packet-delivery delays increase significantly. In either case, the likelihood of packet 

delivery quickly approaches zero. When VS is enabled packet queues build in access 

routers at the network edge. This reduces the number of nodes in the network where 

packets can be dropped or queued. In such cases, the likelihood of packet delivery 

approaches zero at a slower rate. 

 

6.5 Packet Latency 

 

Figure 15 shows a hierarchical clustering among vectors in Fig. 9, which plotted 

scaled average latency of delivered packets for the 34 FxNS configurations. We labeled 

Fig. 15 to indicate factors in common among various groupings of FxNS configurations. 

The leftmost half of the configurations have packet dropping (PD) enabled, while the 

rightmost half have PD disabled. When PD is enabled, successfully delivered packets 

experience very little queuing delay, thus the average latency is quite low. When PD is 

disabled packet queues can become quite large with increasing load, thus average latency 

increases. As discussed earlier in Sec. 6.1, the increase in delay reaches an apex and then 

declines gradually because only successfully delivered packets have one-way delays. At 

higher loads, successfully delivered packets experience smaller queues, or else they could 

not be successfully delivered during the simulation duration. 

 
 

Figure 15. Clustering of packet delivery efficiency (δ) based on Squared Euclidean 

Distance 



43 

 

 

Some secondary factors influence packet latency when PD is disabled. Enabling 

TCP allows rate adaptation, thus buildup of large queues is less likely, as TCP slows 

packet injection when congestion appears. This significantly reduces delay experienced 

by successfully delivered packets. Enabling VS restricts large packet queues to routers at 

the network edge, which means that successfully delivered packets will have fewer large 

queues to transit through. Disabling VS allows large packet queues to form at any router 

in the topology, which means that successfully delivered packets will have to transit 

through more large queues. 

 

6.6 Overall Findings 

 

Our abstract and realistic network models exhibited very different congestion 

behaviors. Under increasing load, the abstract model (C0) congested quickly and 

completely, while the realistic model (C127) did not exhibit widespread congestion even 

under heavy load. The realistic model exhibited congestion only at network edges, while 

the backbone remained uncongested and intact. Both the abstract and realistic network 

models lost connectivity quickly under increasing load, but the realistic model lost 

connectivity less rapidly. Congestion in the abstract model spread from the network core 

toward the edges, leading to zero reachable nodes, while the realistic model ensured that 

nodes in the network core remained reachable. Further, increasing load led the abstract 

model to successfully deliver below 1 % of injected packets, while the realistic model 

delivered about 80 % of injected packets, even under high loads. Similarly, increasing 

load caused packet delays to spike quickly for the abstract model, while packet delays 

remained very low for the realistic model. Based on these findings, we conclude that the 

decade of studies we surveyed [5-14] cannot be relied upon as guides to congestion 

spread in the Internet. We reach this conclusion because the studies contain models very 

similar to our abstract model. 

Our clustering analyses show the critical importance of modeling TCP, the 

congestion-control protocol used in over 90 % of flows transiting the modern Internet. In 

our study, congestion monitoring and rate adaptation provided by TCP was responsible 

for limiting the spread of congestion and the breakdown in network connectivity, 

especially when combined with correctly modeled variable router speeds.  The rate 

adaptation provided by TCP was also a primary factor to increase successful delivery of 

packets under increasing network load. The rate adaptation provided by TCP was a 

secondary factor ensuring low latency among successfully delivered packets. None of the 

studies we surveyed [5-14] modeled TCP. 

Our clustering analyses show the critical importance of modeling variable speeds 

among router tiers, engineered to ensure that higher tiers provide adequate throughput at 

the maximum possible input rate from lower tier routers. Modeling variable router speeds 

was a primary factor responsible for accurately simulating congestion spread and the 

breakdown of network connectivity. In addition, modeling variable router speeds had 

secondary influence on the degree of successful packet delivery and the latency for 

successfully delivered packets. Only one [11] study we surveyed modeled variable speeds 

among routers. Even in that case router speeds were not varied hierarchically. 
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Our clustering analyses show the importance of modeling packet dropping in 

order to obtain accurate measures of packet latency. Packet dropping ensures that FIFO 

buffers in routers limit queuing delays experienced by successfully delivered packets. 

Three [6, 10, 13] of the studies we surveyed modeled finite buffers, but one [10] modeled 

buffers as last-in first-out, another [6] used full buffers only to restrict packet injections 

rather than to drop arriving packets, and the other [13] discards the oldest packet to make 

room for the newest. Most of the studies [5, 7, 8, 11, 12, 14] we surveyed assumed 

infinite packet queues and then measured the resulting buildup of packets in the network 

as a signal of rising congestion. The real Internet uses finite, FIFO, drop-tail buffers, 

which discard packets arriving at full queues. None of the studies we surveyed used finite 

FIFO drop-tail queues. 

Our clustering analyses showed propagation delays in the backbone were 

unimportant to model. While this appears true for networks spanning the continental 

United States (as ours did), propagation delays could become important when modeling a 

global network or a network containing links transiting satellite hops. Certainly, 

propagation delay would be important to model when considering inter-planetary 

networks. In our model, delays due to queuing dominated delays due to propagation. In 

reverse situations, propagation delay would be important to model. 

A decade of simulation studies [5-14] investigated congestion spread in network 

topologies, often finding that congestion can be modeled as a percolation process on a 

graph, spreading slowly under increasing load until a critical point, after which 

congestion spreads astonishingly quickly throughout the entire network. Those same 

studies identified various measurable signals that arise around the critical point. Such 

signals might facilitate prediction of the onset of widespread congestion. 

We compared behavior among a range of simulated network models, with various 

realism elements, ranging from very abstract (C0) to very realistic (C127). Our findings 

call into question the validity of previous studies [e.g., 5-14] that were based on abstract 

models that closely resemble C0. Those abstract models omitted TCP and variable router 

speeds, which are key elements responsible for shaping congestion spread in the modern 

Internet. Findings based on such abstract models provide little information about 

congestion behavior in the Internet. 
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7. Conclusions and Future Work 

 

Over the past decade or so, many studies used simulation to investigate 

congestion spread in networks. Those studies often find that congestion can be modeled 

as a percolation process, spreading slowly under increasing load until a critical point. 

After the critical point, congestion spreads quickly throughout the entire network. Those 

same studies identified various measureable signals that arise around the critical point, 

which might allow one to predict onset of widespread congestion. These developments 

appear quite promising as a theoretical basis for monitoring regimes that network 

operators could deploy to warn of impending congestion collapse. Yet questions surround 

the studies, as the network models are quite abstract, bearing little resemblance to 

networks deployed based on modern technology. We explored these questions by 

examining the influence of realism on the spread of congestion in network simulations. 

We began with an abstract network simulation, taken from the literature, and 

added elements of realism in various combinations, culminating with a high-fidelity 

simulation, also taken from the literature. From this study, we draw four main 

conclusions. First, we conclude that congestion spread in realistic network models differs 

significantly from spread in more abstract models. Even under heavy loads, realistic 

models limit the spread of congestion to the network edge, and retain connectivity in the 

network core. Further, realistic models deliver packets relatively successfully, and bound 

one-way packet latency to low values. None of these properties hold for abstract models 

used in the studies that we surveyed. Second, we conclude that models investigating 

network congestion must include TCP, along with hierarchically varied router speeds, 

before acceptable engineering findings can be established. In addition, where reasonable 

estimates of packet delivery and latency are required, packet dropping should be modeled 

with drop-tail FIFO queues. None of the studies we surveyed modeled TCP or 

hierarchically varied router speeds or drop-tail FIFO queues. Third, we conclude that 

modeling TCP is largely responsible for limiting congestion spread, for slowing decay of 

network connectivity, and for increasing probability of packet delivery. Further, 

hierarchically varied router speeds play a key role to ensure that the network core remains 

uncongested and intact, and packet dropping plays a key role to limit latency. Finally, we 

conclude that, using only graphs and packets, one can effectively visualize and compare 

global congestion behavior among a widely varied set of network models. We 

demonstrated an effective means to do so using: 2D plots, hierarchical clustering, and 

interactive multidimensional visualization. 

Based on our findings, we conclude that the decade of studies we surveyed cannot 

be relied upon as guides to congestion spread in the Internet. We reach this conclusion 

because the studies contain models very similar to our abstract model. We doubt that the 

signals identified in those studies will actually appear on the Internet. We infer that the 

previously reported findings provide little information about congestion behavior in the 

Internet. We hope our study leads to better understanding of the influence of realism on 

congestion in network simulations, and to improved dialog throughout the diverse 

community of researchers who rely on network simulations. 

We envision future work in three general directions. First, further research should 

explore our findings with respect to a collection of ISP-like topologies. While we believe 

our findings will hold, it appears prudent to verify that. Additionally, one could attempt 
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to expand the scope of our topologies to include multiple ISPs interconnected as a 

collection of autonomous systems. A second direction for further research is to consider 

whether random failures in the network core, coupled with alternate routing, could lead to 

cascading congestion that might consume the entire network. If such failure scenarios can 

be created plausibly, then one could determine if those scenarios might be modeled as a 

percolation process, spreading slowly under increasing (failure-induced) load until a 

critical point, after which the failure cascade spreads quickly throughout the entire 

network. Third, if such percolation processes can be identified, then one could seek 

precursor signals arising around the critical point. If such precursor signals exist, then 

they might serve as the basis for early warning of failure-induced congestion collapse. In 

this case, the theoretical findings from the earlier studies could be repurposed to solve a 

problem that might actually arise in a modern communications network. In addition, the 

general theory of percolation on a graph might provide a suitable basis to model 

macroscopic behavior in complex information systems other than the Internet. 
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Appendix A. Verification of FxNS Implementation of EGM and MesoNet 

 

To verify that FxNS correctly implements EGM and the seven MesoNet realism 

elements, we compared results from FxNS against both EGM and MesoNet. We 

compared EGM results against FxNS results when all realism elements are disabled. We 

compared MesoNet results against FxNS results when all realism elements are enabled. 

Below, we document these comparisons.   

 

A.1 Verification of EGM 

 

We used FxNS, with all realism elements disabled, to repeat experiments of the 

Echenique team. Here we plot (Fig. A1) only two values of h (1 and 0.85) as p ranges 

from 1 to 30. Our plot shows the same behavior reported by EGM. When h = 1 

congestion undergoes a second-order phase transition (starting at p = 2). When h = 0.85 

congestion undergoes a first-order phase transition (starting at p = 9).  

 

 
Figure A1. Results from our replication of simulations by Enchenique et al. [14] 

Next, we investigated whether this phase-transition behavior also exists with a 

smaller topology, adapted from an ISP. Figure A2 shows the ISP topology, which 

consists of only 218 nodes. This is the same topology given in Fig. 3, but with node 

classification removed. We repeated our simulations using this topology.  

We plot the outcome in Fig. A3. As with the AS topology, when h = 1 a second-

order phase transition occurs and when h = 0.85 the phase transition is first-order. In the 

case of the smaller topology the onset of congestion begins around p = 2 regardless of the 

value of h. These results indicate that we can use this topology for our experiments 

without losing the main behavior of the EGM model. 
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Figure A2. 218-node topology adapted from an Internet service provider 

 

 
Figure A3. Results from FxNS simulations (no realism) within 218-node topology 
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A.2 Verification of MesoNet 

 

We compared simulation results from MesoNet against FxNS with all realism 

elements enabled. We fixed FxNS parameters associated with realism elements to values 

identified in the enabled column of Table 5. We set MesoNet parameters to the same 

values. For both MesoNet and FxNS, we simulated packet-injection rates (p) from 1 to 

5000. For each data point, we simulated 600 000 ts. We compare results with respect to 

seven orthogonal response dimensions that MesoNet exhibits [20]. The plots demonstrate 

that we correctly implemented MesoNet realism elements into FxNS. 

 

 
Figure A4. Aggregate packet throughput in the last 300 000 ts simulated by MesoNet 

Figure A4 plots, for each injection rate, the aggregate number of packets delivered 

from the network (i.e., total throughput) in the last 300 000 ts of each simulation. These 

results are from MesoNet. Figure A5 shows the same results from FxNS. Note that both 

simulations show throughput increasing rapidly with p until reaching a maximum, just 

below 18 million packets. Thus FxNS mirrors the throughput behavior of MesoNet. Also 

of note: both models reach a maximum that does not increase with p. This occurs because 

the number of sources is fixed and once all sources are active, only so many packets can 

move through the network, and TCP adapts transmission rates to match perceived 

network capacity. This result indicates that when a network model is quite realistic, then 

maximum throughput is bounded and the network regulates itself to achieve that bound. 
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Figure A5. Aggregate packet throughput in the last 300 000 ts simulated by FxNS 

Figure A6 plots, for each injection rate, the number of flows completed (i.e., 

aggregate flow throughput) by MesoNet in the last 300 000 ts of each simulation. Figure 

A7 gives the results for FxNS simulations. Both plots show flow completions increasing 

rapidly with p until reaching a maximum, which occurs at about 42 000 flows. 

Figure A8 shows retransmission rate for TCP data segments for each injection 

rate simulated by MesoNet. A higher proportion or retransmissions denotes more trouble 

delivering packets, typically because packets or their acknowledgements are discarded or 

unduly delayed due to queue buildup. Figure A9 shows retransmission rate for FxNS 

simulations. Both plots show retransmission rate increasing rapidly, and perhaps heading 

to some maximum. While the rate of MesoNet is somewhat higher (around 42.5 %) than 

for FxNS (around 40 %), both curves have similar shape. The FxNS plot appears to be 

still rising, while the MesoNet curve appears to be leveling off. This suggests that the 

MesoNet queues can become somewhat more occupied than FxNS queues. Overall, 

though, retransmission rate appears reasonably similar between MesoNet and FxNS. 
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Figure A6. Aggregate flows completed in the last 300 000 ts simulated by MesoNet 

 
Figure A7. Aggregate flows completed in the last 300 000 ts simulated by FxNS 
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Figure A8. Retransmission rate for TCP data segments simulated by MesoNet 

 
Figure A9. Retransmission rate for TCP data segments simulated by FxNS 
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Figure A10 plots average smoothed round-trip time (SRTT). SRTT is a measured 

estimate of average round-trip delay between sources and receivers. SRTT largely 

reflects queuing delays. Figure A11 shows the same plot for FxNS simulations. The 

shape of the curves agrees, and both approach a maximum. The SRTT plots suggest that 

MesoNet creates somewhat more congestion, as reflected by queue lengths, than FxNS. 

 
Figure A10. Average smoothed round-trip time simulated by MesoNet 

Figure A12 reports, as simulated by MesoNet, average-per flow throughput for 

completed flows in three different classes. DD flows have highest throughput, as they 

transit speedy access routers that are directly connected to backbone routers. Such flows 

experience relatively little congestion, and so average throughput remains high, though 

somewhat variable, even as packet-injection rate increases to very high values. On the 

other hand, NN flows, which must transit the slowest access routers, see their average 

throughputs plummet quickly as p increases. The FF flows, which transit access routers 

that are a bit faster than normal, show a slower decline in average throughput as p 

increases. Further, once the network congests, FF flows achieve about seven p/ts, while 

NN flows achieve about 2/3 a p/ts. Figure A13 shows the same information plotted from 

FxNS simulations. The results are similar to the MesoNet results. 

Though not included in essential MesoNet responses [20], we decided to also 

compare MesoNet and FxNS on the number of flows that could be completed in each of 

three classes (DD, FF, and NN). Figure A14 shows the results from MesoNet simulations 

and Fig. A15 plots the results from FxNS simulations. The shapes of the curves are 

similar for equivalent flow classes, and maximum rate of flow completions is quite close. 
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Figure A11. Average smoothed round-trip time simulated by FxNS 

 
Figure A12. Average per-flow throughput for completed flows in three classes, as 

simulated by MesoNet 
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Figure A13. Average per-flow throughput for completed flows in three classes, as 

simulated by FxNS 

 
Figure A14. Completed flows in three classes, as simulated by MesoNet 
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Figure A15. Completed flows in three classes, as simulated by FxNS 

 

Overall, simulation results for MesoNet and FxNS are similar for the eight responses we 

compared. The shapes of plots for each response are aligned. For most responses, 

quantitative values from FxNS are quite close to those from MesoNet. MesoNet 

apparently creates a bit more congestion, which appears as larger packet queues. Due to 

this, MesoNet retransmission rates and SRTTs are somewhat higher at high packet-

injection rates. The comparison of simulation results leads us to conclude that FxNS 

correctly implements MesoNet realism factors. 
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Appendix B. LSS Congested Nodes 

 

Recall that Fig. 6 showed 34 plots of χ (y axis) vs. p (x axis), one for each FxNS 

configuration. Here, χ is the proportion of nodes in the LSS of isolated nodes, i.e., nodes 

that were both congested and cutoff. Most of the studies we surveyed focused only on 

congested nodes. We could also have measured congestion spread using only the LSS of 

congested nodes, i.e., ignoring cutoff nodes. 

Figure B1 shows 34 plots of γ (y axis) vs. p (x axis), one for each FxNS 

configuration. Here, γ is the proportion of nodes in the LSS of congested nodes. 

Comparing plots in Fig. B1 against plots in Fig. 6 illustrates that for configurations that 

percolate (i.e., where χ and γ reach 1), the LSS of isolated nodes spreads more quickly at 

low injection rates (p) than does the LSS of congested nodes. In most cases, percolation 

for the LSS of congested nodes happens suddenly at higher values of p. Despite these 

differences, the same underlying factors determine whether or not congestion spreads 

widely. We discuss this next. 

Figure B2 clusters vectors from Fig. B1. Comparing Figure B2 against Fig. 12, 

which shows clustering of the LSS of isolated nodes, confirms the same underlying 

factors. Figure B1 and Fig. 12 both show large distances between two main clusters: one 

where configurations enabled TCP or VS or both and another where configurations 

disabled both TCP and VS. This evidence supports our findings that both variable router 

speeds and TCP influence congestion spread. Variable router speeds influence congestion 

spread by limiting congestion to the network edge. TCP influences congestion spread by 

detecting congestion and reducing packet-injection rate accordingly. TCP and variable 

router speeds are critical to model in any simulation that intends to produce congestion 

patterns consistent with those in communication networks based on modern Internet 

technology.  
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Figure B1. Proportion of nodes in LSS of congested nodes (γ) for 3 FxNS configurations 
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Figure B2. Clustering of LSS congested nodes (γ) based on Squared Euclidean Distance 

 


