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Orientation 
Measurement is an informative assignment of value to quantitative or qualitative properties
involving comparison with a standard (§2). Property values that are imperfectly known are
modeled as random variables whose probability distributions describe states of knowledge
about their true values (§3). 
Procedure 

(1) Measurand & Measurement Model. Define the measurand (property intended to be 
measured, §2), and formulate the measurement model (§4) that relates the value of the
measurand (output) to the values of inputs (quantitative or qualitative) that determine
or influence its value. Measurement models may be: 

∙ Measurement equations (§6) that express the measurand as a function of inputs
for which estimates and uncertainty evaluations are available (Example E3); 

∙ Observation equations (§7) that express the measurand as a function of the pa
rameters of the probability distributions of the inputs (Examples E2 and E14). 

(2) Inputs. Observe or estimate values for the inputs, and characterize associated uncer
tainties in ways that are fit for purpose: at a minimum, by standard uncertainties or
similar summary characterizations; ideally, by assigning fully specified probability dis
tributions to them, taking correlations between them into account (§5). 

(3) Uncertainty Evaluation. Select either a bottom-up approach starting from an uncer
tainty budget (or, uncertainty analysis), as in TN1297 and in the GUM, or a top-down
approach, say, involving a proficiency test (§3f). The former typically uses a measure
ment equation, the latter an observation equation. 
(3a) If the measurement model is a measurement equation, and 

∙	 The inputs and the output are scalar (that is, real-valued) quantities: use the NIST 
Uncertainty Machine (NUM, uncertainty.nist.gov) (§6); 

∙	 The inputs are scalar quantities and the output is a vectorial quantity: use the results
of the Monte Carlo method produced by the NUM as illustrated in Example E15, and
reduce them using suitable statistical analysis software (§6); 

∙	 Either the output or some of the inputs are qualitative: use a custom version of the
Monte Carlo method (Example E6).

(3b) If the measurement model is an observation equation: use an appropriate statistical method,
ideally selected and applied in collaboration with a statistician (§7). 

(4) Measurement Result. Provide an estimate of the measurand and report an evaluation
of the associated uncertainty, comprising one or more of the following (§8): 

∙	 Standard uncertainty (for scalar measurands), or an analogous summary of the dispersion
of values that are attributable to the measurand (for non-scalar measurands); 

∙	 Coverage region: set of possible values for the measurand that, with specified probability,
is believed to include the true value of the measurand; 

∙	 Probability distribution for the value of the measurand, characterized either analytically
(exactly or approximately) or by a suitably large sample drawn from it. 
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Deoxyribonucleic acid 
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MCMC 

Guide to the expression of uncertainty in measurement
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GUM Supplement 2
(Joint Committee for Guides in Metrology, 2011) 
Inductively coupled plasma mass spectrometry 

Inductively coupled plasma optical emission spectrometry 

Information Technology Laboratory, NIST 
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Measurement Quality Assurance 

National Institute of Standards and Technology 
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Ordinary least squares 
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Statistical Engineering Division (ITL, NIST) 
International System of Units (BIPM, 2006) 
NIST Standard Reference Material 

TN1297 

VIM 

NIST Technical Note 1297 (Taylor and Kuyatt, 1994) 
International vocabulary of metrology
(Joint Committee for Guides in Metrology, 2008c) 
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Purpose & Scope 

This document is intended to serve as a succinct guide to evaluating and expressing the
uncertainty of NIST measurement results, for NIST scientists, engineers, and technicians
who make measurements and use measurement results, and also for our external partners
— customers, collaborators, and stakeholders. It supplements but does not replace TN1297,
whose guidance and techniques may continue to be used when they are fit for purpose and
there is no compelling reason to question their applicability.
The reader should have some familiarity with the relevant concepts and methods, in particu
lar as described in TN1297 and in the 1995 version of the GUM. The complete novice should 
first read the Beginner’s Guide to Uncertainty of Measurement (Bell, 1999), which is freely 
available on the World Wide Web. 
Since the approximation to standard uncertainty presented as Equation (10) in the GUM was 
originally introduced and used by Gauss (1823), this Simple Guide refers to it, and to the 
generalized versions thereof that appear as Equations (13) in the GUM and (A-3) in TN1297, 
as Gauss’s formula. 
The availability of the NIST Uncertainty Machine (NUM) as a service in the World Wide 
Web (uncertainty.nist.gov) (Lafarge and Possolo, 2015) greatly facilitates the applica
tion of the conventional formulas for uncertainty propagation, and also the application of the
Monte Carlo method that is used for the same purpose. The NUM can reproduce the results 
of all the examples in TN1297 and in the GUM. 
The scope of this Simple Guide, however, is much broader than the scope of both TN1297 and 
the GUM, because it attempts to address several of the uncertainty evaluation challenges that
have arisen at NIST since the ’90s, for example to include molecular biology, greenhouse
gases and climate science measurements, and forensic science.
This Simple Guide also expands the scope of TN1297 by recognizing observation equa
tions (that is, statistical models) as measurement models. These models are indispensable
to reduce data from key comparisons (Example E10), to combine measurement results for
the same measurand obtained by different methods (Example E12), and to characterize the
uncertainty of calibration and analysis functions used in the measurement of force (Exam
ple E32), temperature (Example E7), or composition of gas mixtures (Examples E17, E18).
Johnson et al. (1994), Johnson et al. (1995), Johnson and Kotz (1972), and Johnson et al.
(2005) review all the probability distributions mentioned in this Simple Guide, but the Wiki
pedia may be a more convenient, easily accessible reference for them (Wikipedia, 2015)
than those authoritative references. 
The Examples are an essential complement of the sections in this Simple Guide: they are
generally arranged in order of increasing complexity of the problem, and of decreasing level
of detail that is provided. Complete details, however, are fully documented and illustrated in
the R code that is offered separately, as supplementary material. Examples E1–E8 illustrate
basic techniques that address many common needs. Metrologists interested in the combi
nation of measurement results obtained either by different methods or laboratories may find
Examples E10, E12, E21, E23, and E30 useful. 
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General Concerns 

Some metrologists are concerned with the meaning of probabilistic statements (for example,
that specify coverage intervals), and with the related question of whether Bayesian or other
statistical methods are best suited for the evaluation of measurement uncertainty.
Bayesian methods should be employed when there is information about the measurand or
about the measurement procedure that either originates outside of or predates the measure
ment experiment, and that should be combined with the information provided by fresh exper
imental data. A few of the examples in this Simple Guide use Bayesian methods (including
Examples E19, E10, E25, E22, and E34). The application of Bayesian methods typically is
challenging, and often requires collaboration with a statistician or applied mathematician.
O’Hagan (2014) argues persuasively that only a subjective interpretation of probability, re
flecting a state of knowledge (either of an individual scientist or of a scientific community),
seems capable of addressing all aspects of measurement comprehensively. Since sources 
of measurement uncertainty attributable to volatile (or, “random”) effects cloud states of
knowledge about measurands, their contributions can be captured in state-of-knowledge dis
tributions just as well as other contributions to measurement uncertainty.
The subjective interpretation of probability is typically associated with the Bayesian choice
that portrays probability as quantification of degrees of belief (Lindley, 2006; Robert, 2007).
The term “belief” and derivative terms are used repeatedly in this Simple Guide. It is gen
erally understood as “a dispositional psychological state in virtue of which a person will
assent to a proposition under certain conditions” (Moser, 1999). Propositional knowledge,
reflected in statements like “mercury is a metal”, entails belief. Schwitzgebel (2015) dis
cusses the meaning of belief, and Huber and Schmidt-Petri (2009) review degrees of belief.
Questions are often asked about whether it is meaningful to qualify uncertainty evaluations
with uncertainties of a higher order, or whether uncertainty evaluations already incorporate
all levels of uncertainty. A typical example concerns the average of n observations obtained 
under conditions of repeatability and modeled as outcomes of independent random variables
with the same mean µ and the same standard deviation (, both unknown a priori. 
The standard uncertainty that is often associated with such average as estimate of µ equals 
s∕
√

n, where s denotes the standard deviation of the observations. However, it is common
√knowledge that, especially for small sample sizes, s∕ n is a rather unreliable evaluation of 

u(µ) because there is considerable uncertainty associated with s as estimate of (. But then 
should we not be compelled to consider the uncertainty of that uncertainty evaluation, and
so on ad infinitum, as if climbing “a long staircase from the near foreground to the misty
heights” (Mosteller and Tukey, 1977, Page 2)?
The answer, in this case, with the additional assumption that the observations are like a
sample from a Gaussian distribution, is that a (suitably rescaled and shifted) Student’s t 
distribution shortcuts that staircase (Mosteller and Tukey, 1977, 1A) and in fact captures
all the shades of uncertainty under consideration, thus fully characterizing the uncertainty
associated with the average as estimate of the true mean. Interestingly, this shortcut to
that infinite regress is obtained under both frequentist (sampling-theoretic) and Bayesian
paradigms for statistical inference.
Questions about the uncertainty of uncertainty pertain to the philosophy of measurement
uncertainty, or to epistemology in general (Steup, 2014), and neither to the evaluation nor 
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to the expression of measurement uncertainty. Therefore, they lie outside the scope of this
Simple Guide. 
The following two, more practical questions, also arise often: (a) Are there any better repre
sentations of uncertainty than probability distributions? (b) Is there uncertainty associated
with a representation of measurement uncertainty? Concerning (a), Lindley (1987) argues
forcefully “that probability is the only sensible description of uncertainty and is adequate
for all problems involving uncertainty.” Aven et al. (2014) discuss differing views. And
concerning (b): model uncertainty (Clyde and George, 2004), and ambiguous or incom
plete summarization of the dispersion of values of a probability distribution, are potential
sources of uncertainty affecting particular representations or expressions of measurement
uncertainty. 

Nomenclature and Notation 

Many models discussed throughout this Simple Guide are qualified as being “reasonable”.
This suggests that most modelers with relevant substantive expertise are likely a priori to 
entertain those models as possibly useful and potentially accurate descriptions of the phe
nomena of interest, even if, upon close and critical examination, they are subsequently found
to be unfit for the purpose they were intended to serve. Similarly, some models are deemed
to be “tenable”, and are then used, when there is no compelling reason to look for better al
ternatives: this is often the case only because the data are too scarce to reveal the inadequacy
of the models. 
And when we say that two models (for example, two probability distributions) are “compa
rably acceptable”, or serve “comparably well” as descriptions of a phenomenon or pattern of
variability, we mean that commonly used statistical tests or model selection criteria would
fail to find a (statistically) significant difference between their performance, or that any dif
ference that might be found would be substantively inconsequential.
If e denotes the true value of a scalar quantity that is the object of measurement, for example
the temperature of a thermal bath, and we wish to distinguish an estimate of it from its true
but unknown value, then we may write ê = 23.7 ◦C, for example, to indicate that 23.7 ◦C 
is an estimate, and not necessarily the true value. When it is not important to make this
distinction, or when the nature of the value in question is obvious from the context, no
diacritical mark is used to distinguish estimate from true value.
However, in all cases we write u(e) to denote the associated standard uncertainty because
the uncertainty is about the true value of the measurand, not about the specific value that
will have been measured for it. To recognize the measurement procedure involved, or
generally the context in which the measurement was made, which obviously influence the
associated uncertainty, a descriptive subscript may be used. For example uALEPH,DR (mw ) 
= 0.051 GeV∕c2 denotes the standard uncertainty associated with the mass of the W boson
measured by the ALEPH collaboration via direct reconstruction, where c denotes the speed
of light in vacuum (The ALEPH Collaboration et al., 2013, Table 7.2) (Example E30). Ex
panded uncertainties usually are qualified with the corresponding coverage probability as a
subscript, as in Example E18, U95 %(c) = 0.40 µmol∕mol. 
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Methods Illustrated in Examples 

E1 — WEIGHING. Linear measurement equation, scalar inputs and output, Gauss’s formula,
Monte Carlo method, analytical evaluation of standard uncertainty.
 
E2 — SURFACE TEMPERATURE. Observation equation, scalar inputs and output, Gaussian

errors, maximum likelihood estimation, nonparametric coverage interval.
 
E3 — FALLING BALL VISCOMETER. Non-linear measurement equation, scalar inputs and

output, Gauss’s formula, Monte Carlo method, asymmetric coverage interval and its propa
gation using gamma approximation.
 
E4 — PITOT TUBE. Non-linear measurement equation, scalar inputs and output, Gauss’s
formula, Monte Carlo method, asymmetric coverage interval.
 
E5 — GAUGE BLOCKS. Linear measurement equation, scalar inputs and output, Gauss’s

formula, Monte Carlo method, symmetric coverage interval.
 
E6 — DNA SEQUENCING. Qualitative (categorical) inputs, qualitative and quantitative out
puts, quality scores, custom Monte Carlo method, entropy. 
E7 — THERMISTOR CALIBRATION. Observation equation for calibration, analysis of variance
for model selection, polynomial calibration function and its mathematical inverse (analysis
function) for value assignment, roots of cubic equation, Monte Carlo method, simultaneous
coverage intervals for analysis function. 
E8 — MOLECULAR WEIGHT OF CARBON DIOXIDE. Linear measurement equation, scalar inputs
and output, Gauss’s formula, Monte Carlo method, analytical characterization of probability
distribution of output quantity, trapezoidal distribution of output quantity. 
E9 — CADMIUM CALIBRATION STANDARD. Non-linear measurement equation, scalar inputs
and output, Gauss’s formula, relative uncertainty, Monte Carlo method, asymmetric cover
age interval. 
E10 — PCB IN SEDIMENT. Observation equation for key comparison, laboratory random
effects model, scalar inputs and output, DerSimonian-Laird procedure, parametric statistical
bootstrap, Bayesian statistical procedure, Markov Chain Monte Carlo, unilateral degrees of
equivalence. 
E11 — MICROWAVE STEP ATTENUATOR. Linear measurement equation, scalar inputs and
output, beta (arcsine) distribution for input, non-Gaussian distribution of output quantity,
Monte Carlo method, bimodal distribution of output quantity, surprising smallest 68 % cov
erage region. 
E12 — TIN STANDARD SOLUTION. Scalar inputs and output, observation equation, ran
dom effects model, average, weighted average, DerSimonian-Laird procedure, consensus
value, Knapp-Hartung adjustment, Welch-Satterthwaite approximation, parametric statisti
cal bootstrap, lognormal model for the estimate of the between-laboratory variance, uncer
tainty component for long-term stability. 
E13 — THERMAL EXPANSION COEFFICIENT. Non-linear measurement equation, scalar inputs 
and output, Gaussian or Student’s t distributions for inputs, Gauss’s formula, Monte Carlo 
method. 
E14 — CHARACTERISTIC STRENGTH OF ALUMINA. Observation equation with exponential
distributed errors, scalar inputs and output, maximum likelihood estimation of parameters of 
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Weibull distribution, measurands are either scale parameter of this distribution, or a known
function of its scale and shape parameters.
 
E15 — VOLTAGE REFLECTION COEFFICIENT. Nonlinear measurement equation, complex-

valued inputs and output, Monte Carlo method using the NUM, graphical representations of
 
measurement uncertainty.
 
E16 — OXYGEN ISOTOPES. System of simultaneous observation equations, regression atten
uation, errors-in-variables model, Deming regression, non-parametric statistical bootstrap

for uncertainty evaluation, statistical comparison of the slopes of two regression lines.
 
E17 — GAS ANALYSIS. Errors-in-variables regression, calibration and analysis functions,
model selection criterion, parametric statistical bootstrap.
 
E18 — SULFUR DIOXIDE IN NITROGEN. Errors-in-variables regression considering that some

Type A evaluations are based on small numbers of degrees of freedom, model selection,

analysis function, value assignment of amount fraction of sulfur dioxide to individual cylin
ders, Type B evaluation of uncertainty component attributable to long-term instability, para
metric statistical bootstrap.
 
E19 — THROMBOLYSIS. Comparison of two medical treatments, observation equation, binary

inputs, scalar output (log-odds ratio), approximate uncertainty evaluation for log-odds ratio,

elicitation of expert knowledge and its encapsulation in a probability distribution, Bayes’s

rule, comparison of Bayesian and sampling-theoretic (frequentist) coverage intervals.
 
E20 — THERMAL BATH. Observation equation with correlated scalar inputs and scalar output,

Gaussian auto-regressive moving average (ARMA) time series, model selection, maximum
 
likelihood estimation.
 
E21 — NEWTONIAN CONSTANT OF GRAVITATION. Observation equation, laboratory random

effects model, scalar inputs and output, maximum likelihood estimation with correlated data,

parametric statistical bootstrap.
 
E22 — COPPER IN WHOLEMEAL FLOUR. Observation equation, non-Gaussian data, statistical
test for Gaussian shape, robust statistical method, Bayesian approach to robustness. 
E23 — TRITIUM HALF-LIFE. Observation equation, scalar inputs and output, meta-analysis,
consensus value, random effects model, DerSimonian-Laird procedure, propagating uncer
tainty associated with between-laboratory differences, Monte Carlo uncertainty evaluation. 
E24 — LEUKOCYTES. Observation equation, inputs and outputs are counts (non-negative in
tegers), multinomial model for counts, incorporation of uncertainty component attributable
to lack of repeatability either in root sum of squares, or by application of the Monte Carlo
method. 
E25 — YEAST CELLS. Observation equation, inputs are counts (non-negative integers), scalar
output, Poisson distribution for observed counts, Jeffreys’s prior distribution, Bayes’s rule,
analytical posterior probability density, Bayesian coverage interval. 
E26 — REFRACTIVE INDEX. Alternative models (non-linear measurement equation, and ob
servation equation) applied to the same data, Edlén’s formula, maximum likelihood estima
tion, Monte Carlo method. 
E27 — BALLISTIC LIMIT OF BODY ARMOR. Quantitative and qualitative inputs, scalar output,
observation equation, logistic regression for penetration probability, measurement equation
for ballistic limit, Monte Carlo method. 
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E28 — ATOMIC IONIZATION ENERGY. Local-density-functional calculations, observation
equation, mixed effects model, coverage intervals for variance components. 
E29 — FORENSIC GLASS FRAGMENTS. Qualitative (categorical) measurand, observation
equation (mixture discriminant analysis), entropy as uncertainty evaluation for categorical
measurand, predictive performance of classifier, cross-validation. 
E30 — MASS OF W BOSON. Observation equation, laboratory random effects model, scalar
inputs and output, DerSimonian-Laird procedure, Knapp-Hartung correction, parametric
statistical bootstrap, lognormal model for uncertainty associated with between-laboratory
variance, effective number of degrees of freedom associated with laboratory-specific stan
dard uncertainties. 
E31 — MILK FAT. Comparing two different measurement methods graphically, Bland-
Altman plot, limits of agreement.
 
E32 — LOAD CELL CALIBRATION. Errors-in-variables regression fitted by non-linear, weighted

least squares via numerical optimization, calibration and analysis functions, uncertainty

evaluation by application of parametric statistical bootstrap.
 
E33 — ATOMIC WEIGHT OF HYDROGEN. Non-linear measurement equation, Monte Carlo

method, uniform and Gaussian distributions for inputs, statistical test comparing two mea
sured values.
 
E34 — ATMOSPHERIC CARBON DIOXIDE. Functional measurand, observation equation, treed

Gaussian process, Bayesian procedure to estimate measurand and to evaluate associated

uncertainty, simultaneous coverage band for functional measurand.
 
E35 — COLORADO URANIUM. Functional measurand, multiple alternative observation equa
tions (local regression, kriging, generalized additive model, multi-resolution Gaussian pro
cess model), model uncertainty, model averaging, non-parametric statistical bootstrap.
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Sections 

1 Grandfathering 

(1a) All uncertainty evaluations published as part of measurement results produced in the
delivery of NIST measurement services (reference materials, calibrations, and
interlaboratory studies that NIST has participated in, including key comparisons)
remain valid and need not be redone. 

(1b) The conventional procedures for uncertainty evaluation that are described in TN1297 
and in the original version of the GUM may continue to be used going forward when
they are fit for purpose and there is no compelling reason to question their
applicability. 

NOTE 1.1 When the need arises to revise an uncertainty evaluation produced originally according
to TN1297 or to the GUM, suitable alternative procedures illustrated in this Simple Guide 
should be used. 

NOTE 1.2 When the results produced by the NUM using Gauss’s formula and the Monte Carlo
method disagree substantially, then the quality of the approximations underlying
Equation (10) in the GUM or Equation (A-3) in TN1297 is questionable, and the Monte 
Carlo results should be preferred. 

NOTE 1.3 If the function f that appears in the conventional measurement equation is markedly
nonlinear in a neighborhood of the estimates of the input quantities that is small by
comparison with their standard uncertainties, then Equation (10) in the GUM or 
Equation (A-3) in TN1297 may fail to produce a sufficiently accurate approximation to
the standard uncertainty of the output quantity, and the Monte Carlo method of the GUM
Supplements 1 (GUM-S1) or 2 (GUM-S2) should be used instead. 

NOTE 1.4 If the probability distribution of the output quantity demonstrably deviates markedly
from Gaussian or Student’s t, then the conventional guidance for the selection of 
coverage factors (GUM Clauses G.2.3 and G.3.2; TN1297 Subsections 6.2–6.4), may not
apply, and coverage intervals or other regions (in particular for multivariate measurands)
should be derived from samples drawn from the probability distribution of the
measurand by a suitable version of the Monte Carlo method. The NUM computes several
of these exact, Monte Carlo intervals for scalar measurands and for the components of
vectorial measurands. 

2 Measurement is understood in a much wider sense than is contemplated in the current 
version of the International vocabulary of metrology (VIM), and is in general agreement
with the definitions suggested by Nicholas and White (2001), White (2011), and Mari and
Carbone (2012), to address the evolving needs of measurement science: 

Measurement is an experimental or computational process that, by comparison
with a standard, produces an estimate of the true value of a property of a ma
terial or virtual object or collection of objects, or of a process, event, or series
of events, together with an evaluation of the uncertainty associated with that
estimate, and intended for use in support of decision-making. 

NOTE 2.1 The property intended to be measured (measurand) may be qualitative (for example, the
identity of the nucleobase at a particular location of a strand of DNA), or quantitative (for 
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example, the mass concentration of 25-hydroxyvitamin D3 in NIST SRM 972a, Level 1, 
whose certified value is 28.8 ng mL−1). The measurand may also be an ordinal property
(for example, the Rockwell C hardness of a material), or a function whose values may be
quantitative (for example, relating the response of a force transducer to an applied force)
or qualitative (for example, the provenance of a glass fragment determined in a forensic
investigation). 

NOTE 2.2 A measurement standard is a realization or embodiment of the definition of a quantity,
including a statement of the value of the quantity and the associated measurement
uncertainty (VIM 5.1). This realization may be provided by a measuring system 
(VIM 3.2), a material measure (VIM 3.6), or a reference material (VIM 5.13). The
aforementioned “comparison with a standard” may be direct (for example, using a
comparator for the dimensions of gauge blocks), or indirect, via a calibrated instrument
(for example, using a force transducer that has been calibrated at NIST). 

NOTE 2.3 Measured values are estimates of true values (Ellison and Williams, 2012, F.2.1). An
instance of a property has many conceivable values. Whether it has exactly one or more
than one true value depends on how the property is defined. The VIM 2.11 defines true 
value of a property as any value of the property that is consistent with the definition of
the property (Ehrlich, 2014). 

EXAMPLE: The speed of light in vacuum, and the mass of the sun both have
many conceivable values: any positive number of meters per second for the
former, and any positive number of kilograms for the latter. The speed of
light in vacuum has exactly one true value because one and only one value is
consistent with its definition in the SI. The mass of the sun is constantly
changing. Even at a particular instant, the mass of the sun depends on how
much of its atmosphere is included in its definition. 

NOTE 2.4 The VIM 5.1 defines measurement standard as a “realization of the definition of a given
quantity, with stated value and associated measurement uncertainty, used as a reference”,
and reference value (5.18) as a “value used as a basis for comparison with values of
quantities of the same kind.” 

NOTE 2.5 The evaluation of measurement uncertainty (§3) is an essential part of measurement
because it delineates a boundary for the reliability (or trustworthiness) of the assignment
of a value (estimate) to the measurand, and suggests the extent to which the measurement
result conveys the same information for different users in different places and at different
times (Mari and Carbone, 2012). For this reason, a measurement result comprises both
an estimate of the measurand and an evaluation of the associated uncertainty. 

NOTE 2.6 White (2011) explains that the intention to influence an action or to make a decision “is
an important reminder that measurements have a purpose that impacts on the definition
of the measurand (fitness for purpose), and that a decision carries a risk of being
incorrect due to uncertainty in the measurements, and a decision implies a comparison
against pre-established performance criteria, a pre-existing measurement scale, and the
need for metrological traceability.” 

EXAMPLE: The decision-making that measurement supports may arise in
any area of science, medicine, economy, policy, or law. The U.S. Code of
Federal Regulations (36 C.F.R. §4.23) stipulates that operating or being in
actual physical control of a motor vehicle in Federal lands under the
administration of the National Park Service is prohibited while the blood
alcohol concentration (BAC) is 0.08 grams or more of alcohol per 100
milliliters of blood. A person found guilty of violating this provision will be 

NIST TECHNICAL NOTE 1900 13 ∕ 103 



punished by a fine or by imprisonment not exceeding 6 months, or both
(U.S. 36 C.F.R. §1.3(a)). Gullberg (2012) discusses a case where a person’s
BAC is measured in duplicate with results of 0.082 g∕dL and 0.083 g∕dL,
but where an uncertainty analysis leads to the conclusion that the probability
is only 77 % of the person’s BAC actually exceeding the statutory limit. 

NOTE 2.7 The term “analyte” is often used in analytical chemistry to identify the substance that is
the object of measurement. Since a substance generally has several properties, the
measurand is the particular property of the analyte that is intended to be measured: for
example, the analyte may be sodium, and the measurand the urine sodium concentration
(White and Farrance, 2004). 

NOTE 2.8 There may be some unresolvable ambiguity in the definition of the measurand. For
example, immunoassays are often used to measure the concentration of vitamin D in
serum, using some antibody targeting the relevant forms of the vitamin (cholecalciferol,
ergocalciferol, or both). However, the extent of the competition between the vitamin
capture antibody and the protein that the vitamin binds to is a source of uncertainty that
in some cases may cast some doubt on what a particular immunoassay actually measures
(Tai et al., 2010; Farrell et al., 2012). In such cases we speak of definitional uncertainty 
(VIM 2.27), which should be evaluated and propagated as one component of
measurement uncertainty whenever it makes a significant contribution to the uncertainty
of the result, just like any other uncertainty component. 

3 Measurement uncertainty is the doubt about the true value of the measurand that re
mains after making a measurement. Measurement uncertainty is described fully and quan
titatively by a probability distribution on the set of values of the measurand. At a minimum,
it may be described summarily and approximately by a quantitative indication of the disper
sion (or scatter) of such distribution. 

(3a) Measurement uncertainty implies that multiple values of the measurand may be
consistent with the knowledge available about its true value, derived from
observations made during measurement and possibly also from pre-existing
knowledge: the more dispersed those multiple values, the greater the measurement
uncertainty (cf. VIM 2.26). 

(3b) A probability distribution (on the set of possible values of the measurand) provides a
complete characterization of measurement uncertainty (Thompson, 2011; O’Hagan,
2014). Since it depicts a state of knowledge, this probability distribution is a
subjective construct that expresses how firmly a metrologist believes she knows the
measurand’s true value, and characterizes how the degree of her belief varies over the
set of possible values of the measurand (Ehrlich, 2014, 3.6.1). Typically, different
metrologists will claim different measurement uncertainties when measuring the
same measurand, possibly even when they obtain the same reading using the same
measuring device (because their a priori states of knowledge about the true value of 
the measurand may be different). 

(3c) For scalar measurands, measurement uncertainty may be summarized by the standard
deviation (standard uncertainty) of the corresponding probability distribution, or by
similar indications of dispersion (for example, the median absolute deviation from
the median). A set of selected quantiles of this distribution provides a more detailed 
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summarization than the standard uncertainty. For vectorial and more general
measurands, suitable generalizations of these summaries may be used. For nominal
(or, categorical) properties, the entropy of the corresponding probability distribution
is one of several possible summary descriptions of measurement uncertainty. None
of these summaries, however, characterizes measurement uncertainty completely,
each expressing only some particular attributes of the dispersion of the underlying
probability distribution of the measurand. 

(3d) The plurality of values of the measurand that are consistent with the observations
made during measurement may reflect sampling variability or lack of repeatability,
and it may also reflect contributions from other sources of uncertainty that may not
be expressed in the scatter of the experimental data. 

EXAMPLE: When determining the equilibrium temperature of a thermal bath,
repeated readings of a thermometer immersed in the bath typically differ from
one another owing to uncontrolled and volatile effects, like convection caused by
imperfect insulation, which at times drive the measured temperature above its
equilibrium value, and at other times does the opposite. However, imperfect
calibration of the thermometer will shift all the readings up or down by some
unknown amount. 
EXAMPLE: Dark current will make the photon flux measured using a
charge-coupled device (CCD) appear larger than its true value because the counts
generated by the signal are added to the counts generated by dark current. The
counts generated by dark current and by the signal both also include counts that
represent volatile contributions (Poisson “noise”).
The convection effects in the first example, and the Poisson “noise” in the second,
are instances of volatile effects. The imperfect calibration of the thermometer in
the first example, and the average number of dark current counts that accumulate
in each pixel of the CCD per unit of time, are instances of persistent effects,
which typically do not manifest themselves in the scatter of readings obtained
under conditions of repeatability (VIM 2.20), merely shifting all the readings up 
or down, yet by unknown amounts. 

(3e) In everyday usage, uncertainty and error are different concepts, the former conveying
a sense of doubt, the latter suggesting a mistake. Measurement uncertainty and
measurement error are similarly different concepts. Measurement uncertainty, as
defined above, is a particular kind of uncertainty, hence it is generally consistent with
how uncertainty is perceived in everyday usage. But measurement error is not
necessarily the consequence of a mistake: instead, it is defined as the difference or
distance between a measured value and the corresponding true value (VIM 2.16).
When the true value is known (or at least known with negligible uncertainty),
measurement error becomes knowable, and can be corrected for. 

EXAMPLE: If 114 V, 212 V, 117 V, 121 V, and 113 V are reported as replicated
readings, made in the course of a single day, of the voltage in the same wall outlet
in a U.S. residence, then the second value likely is a recording mistake
attributable to the transposition of its first two digits, while the dispersion of the
others reflects the combined effect of normal fluctuations of the true voltage and
of measurement uncertainty. 
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EXAMPLE: When no photons are allowed to reach a CCD, the true value of the
photon flux from any external signal is zero and the bias attributable to dark
current is estimated by the counts that accumulate under such conditions. 

(3f) Bottom-up uncertainty evaluations involve (i) the complete enumeration of all
relevant sources of uncertainty, (ii) a description of their interplay and of how they
influence the uncertainty of the result, often depicted in a cause-and-effect diagram
(Ellison and Williams, 2012, Appendix D)), and (iii) the characterization of the
contributions they make to the uncertainty of the result. These elements are often
summarized in an uncertainty budget (Note 5.4). Top-down uncertainty evaluations,
including interlaboratory studies and comparisons with a standard, provide
evaluations of measurement uncertainty without requiring or relying on a prior
identification and characterization of the contributing sources of uncertainty
(Examples E12, E10, E21). Still other modalities may be employed (Wallace, 2010). 

NOTE 3.1 Uncertainty is the absence of certainty, and certainty is either a mental state of belief that
is incontrovertible for the holder of the belief (like, “I am certain that my eldest son was
born in the month of February”), or a logical necessity (like, “I am certain that 426 389 
is a prime number”). Being the opposite of an absolute, uncertainty comes by degrees,
and measurement uncertainty, which is a kind of uncertainty, is the degree of separation
between a state of knowledge achieved by measurement, and the generally unattainable
state of complete and perfect knowledge of the object of measurement. 

NOTE 3.2 Since measurement is performed to increase knowledge of the measurand, but typically
falls short of achieving complete and perfect knowledge of it, measurement uncertainty
may be characterized figuratively as the fog of doubt obfuscating the true value of the
measurand that measurement fails to lift. 

In most empirical sciences, the penumbra is at first prominent, and becomes 
less important and thinner as the accuracy of physical measurement is 
increased. In mechanics, for example, the penumbra is at first like a thick 
obscuring veil at the stage where we measure forces only by our muscular 
sensations, and gradually is attenuated, as the precision of measurements 
increases. — Bridgman (1927, Page 36), quoted by Luce (1996) 

NOTE 3.3 Bell (1999, Page 1) points out that, to characterize the margin of doubt that remains
about the value of a measurand following measurement, we need to answer two
questions: ‘How big is the margin?’ and ‘How bad is the doubt?’ In this conformity,
and for a scalar measurand for example, it is insufficient to specify just the standard
measurement uncertainty without implicitly or explicitly conveying the strength of the
belief that the true value of the measurand lies within one or two standard uncertainties 
of the measured value. 

EXAMPLE: The certificate for NIST SRM 972a states explicitly that, with
probability 95 %, the mass concentration of 25-hydroxyvitamin D3 in Level 
1 of the material lies within the interval 28.8 ngmL−1 ± 1.1 ng mL−1. 

NOTE 3.4 A probability distribution is a mathematical object that may be visualized by analogy
with a distribution of mass in a region of space. For example, the Preliminary Reference
Earth Model (PREM) (Dziewonski and Anderson, 1981) describes how the earth’s mass
density varies with the radial distance to the center of the earth. Once this mass density
is integrated over the layered spherical shells entertained in PREM that correspond to the 
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main regions in the interior of the earth, we conclude that about 1.3 % of the earth’s mass
is in the solid inner core, 31 % is in the liquid outer core, 67 % is in the mantle, and 0.7 %
is in the crust. 

NOTE 3.5 The evaluation of measurement uncertainty is part of the process of measurement quality
assurance (MQA). It is NIST policy to maintain and ensure the quality of NIST
measurement services (NIST Directive P5400.00, November 20, 2012) by means of a
quality management system described in the NIST Quality Manual 
(www.nist.gov/qualitysystem). In particular, this policy requires that measured
values be accompanied by quantitative statements of associated uncertainties. 

NOTE 3.6 According to the NASA Measurement Quality Assurance Handbook, “MQA addresses 
the need for making correct decisions based on measurement results and offers the
means to limit the probability of incorrect decisions to acceptable levels. This
probability is termed measurement decision risk” (NASA, 2010, Annex 4). Examples of
such incorrect decisions include placing a mechanical part in use that is out-of-tolerance,
or removing from use a part that, as measured, was found to be out-of-tolerance when in
fact it complies with the tolerance requirements. ANSI/NCSL Z540.3 “prescribes
requirements for a calibration system to control the accuracy of the measuring and test
equipment used to ensure that products and services comply with prescribed
requirements” (ANSI/NCSL, 2013). 

NOTE 3.7 Calibration (VIM 2.39) is a procedure that establishes a relation between values of a
property realized in measurement standards, and indications provided by measuring
devices, or property values of artifacts or material specimens, taking into account the
measurement uncertainties of the participating standards, devices, artifacts, or
specimens. For a measuring device, this relation is usually described by means of a
calibration function that maps values of the property realized in the standards, to
indications produced by the device being calibrated. However, to use a calibrated device
in practice, the (mathematical) inverse of the calibration function is required, which
takes an indication produced by the device as input, and produces an estimate of the
property of interest as output (Examples E5, E7, E9, E17, E18, and E32). 

4 Measurement models describe the relationship between the value of the measurand 
(output) and the values of qualitative or quantitative properties (inputs) that determine or
influence its value. Measurement models may be measurement equations or observation
equations (that is, statistical models). 

(4a) A measurement equation expresses the measurand as a function of a set of input
variables for which estimates and uncertainty evaluations are available. 

EXAMPLE: The dynamic viscosity µM = µC[(PB − PM)∕(PB − PC)](tM∕tC) of a 
solution is expressed as a function of the mass density (PB) and travel times (tM, 
tC) of a ball made to fall through the solution and through a calibration liquid,
and of the mass densities of the solution (PM) and of the calibration liquid (PC)
(Example E3). 

(4b) An observation equation (or, statistical model) expresses the measurand as a known
function of the parameters of the probability distribution of the inputs. 

EXAMPLE: The characteristic strength of alumina is the scale parameter of the
Weibull distribution that models the sampling variability of the rupture stress of
alumina coupons under flexure (Example E14). 
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NOTE 4.1 Typically, measurement equations are used in bottom-up uncertainty evaluations, and
observation equations are used in top-down uncertainty evaluations (3f). 

NOTE 4.2 In general, an observation equation expresses each observed value of an input quantity as
a known function of the true value of the measurand and of one or more nuisance 
random variables that represent measurement errors (3e), in such a way that the true
value of the measurand appears as a parameter in the probability distribution of the input
quantities. (Cf. transduction equation in Giordani and Mari (2012, Equation (2)).) 

EXAMPLE: The observation equation in the example under (4b), for the
rupture stress s of alumina coupons, may be written explicitly as 
log s = log (C + (1∕a) log E, where (C (which is the measurand) denotes the 
characteristic strength of the material, and E denotes measurement error 
modeled as an exponentially distributed random variable. The mean rupture
stress (another possible measurand), is a known function of both parameters, 
a and (C (Example E14). 

NOTE 4.3 The following three types of observation equations (or, statistical models) arise often in
practice. They may be applicable only to suitably re-expressed data (for example, to the
logarithms of the observations, rather than to the observations themselves). 

(i)	 Additive Measurement Error Model. Each observation x = g(y) + E is the sum 
of a known function g of the true value y of the measurand and of a random 
variable E that represents measurement error (3e). The measurement errors
corresponding to different observations may be correlated (Example E20) or
uncorrelated (Examples E2 and E14), and they may be Gaussian (Example E2) or
not (Examples E22 and E14). 

In some cases, both the measured value and the measurement error are
known to be positive, and the typical size (but not the exact value) of the
measurement error is known to be proportional to the true value of the
measurand. The additive measurement error model may then apply to
the logarithms of the measured values. 

(ii)	 Random Effects Model. The value xi = y + Ai + Ei measured by laboratory i, or 
using measurement method i, is equal to the true value y of the measurand, plus the 
value Ai of a random variable representing a laboratory or method effect, plus the 
value Ei of a random variable representing measurement error, for i = 1, … , m
laboratories or methods. This generic model has many specific variants, and can be
fitted to data in any one of many different ways (Brockwell and Gordon, 2001; Iyer
et al., 2004). This model should be used when combining measurement results
obtained by different laboratories, including interlaboratory studies and key
comparisons, (Examples E10 and E21) or by different measurement methods
(Example E12), because it recognizes and evaluates explicitly the component of
uncertainty that is attributable to differences between laboratories or methods, the
so-called dark uncertainty (Thompson and Ellison, 2011). 

(iii)	 Regression Model. The measurand y is a function relating corresponding values
of two quantities at least one of which is corrupted by measurement error
(Examples E7, E17, E18, E32, and E34), for example when y is a third-degree
polynomial and the amount-of-substance fraction of a gaseous species in a mixture
is given by x = y(r) + E, where r denotes an instrumental indication and the 
random variable E denotes measurement error. Many calibrations involve the
determination of such function y using methods of statistical regression analysis 
(Examples E7, E32). 
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NOTE 4.4 In many cases, several alternative statistical models may reasonably be entertained that
relate the observations to the true value of the measurand. Even when a criterion is used 
to select the “best” model, the fact remains that there is model uncertainty, which should
be characterized, evaluated, and propagated to the uncertainty associated with the
estimate of the measurand, typically using Monte Carlo or Bayesian methods. At a
minimum, the sensitivity of the results to model choice should be evaluated (7c). 

EXAMPLE: Examples E17 and E18 illustrate the construction of a gas
analysis function that takes as input an instrumental indication, and produces
as output an estimate of the amount-of-substance fraction of an analyte: in
many applications, this function is often assumed to be a polynomial but
there is uncertainty about its degree, which is a form of model uncertainty. 

NOTE 4.5 The probability distribution that is used to describe the variability of the experimental
data generally is but one of several, comparably acceptable alternatives that could be
entertained for the data: this plurality is a manifestation of model uncertainty (Clyde and
George, 2004). 

EXAMPLE: In Example E14, the natural variability of the rupture stress of
alumina coupons may be described comparably well by lognormal or by
Weibull probability distributions. And in Example E2 an extreme value
distribution may be as tenable a model as the Gaussian distribution that is
entertained there. 

5 Uncertainty evaluations for inputs to measurement models are often classified into 
Type A or Type B depending on how they are performed: 

∙ Type A evaluations involve the application of statistical methods to experimental data,
consistently with a measurement model; 

∙ Type B evaluations involve the elicitation of expert knowledge (from a single expert or
from a group of experts, also from authoritative sources including calibration certifi
cates, certified reference materials, and technical publications) and its distillation into
probability distributions (or summaries thereof that are fit for purpose) that describe
states of knowledge about the true values of the inputs. 

(5a) The GUM defines Type B evaluations more broadly than above, to comprise any that
are not derived from “repeated observations”. In particular, even if the pool of
information that the evaluation draws from consists of “previous measurement data”,
the GUM still classifies it as of Type B, apparently weighing more heavily the
“previous” than the “data”. Even though the definition above does not specify what
the expert knowledge may have been derived from, by insisting on “elicitation” it
suggests that the source is (subjective) knowledge. When this knowledge is drawn
from a group of experts, the resulting probability distribution will have to capture not
only the vagueness of each expert’s knowledge, but also the diversity of opinions
expressed by the experts (Baddeley et al., 2004; Curtis and Wood, 2004; O’Hagan
et al., 2006). 

(5b) The purpose of the Type A and Type B classification is to indicate the two different 
ways of evaluating uncertainty components and is for convenience of discussion 
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only; the classification is not meant to indicate that there is any difference in the 
nature of the components resulting from the two types of evaluation. Both types of 
evaluation are based on probability distributions — GUM 3.3.4. 
Unfortunately, this purpose is often ignored, and the classification into types is often
erroneously interpreted as suggesting one of more of the following: (i) Type A
evaluations and Type B evaluations are not comparably reliable; (ii) Type A
evaluations are for uncertainty components attributable to “random” effects; (iii)
Type B evaluations are for uncertainty components attributable to “systematic”
effects. 
Therefore, rather than using a classification that is much too often misunderstood or
misapplied, we recommend that the original source of the uncertainty evaluation be
stated explicitly, and described with a level of detail fit for the purpose that the
evaluation is intended to serve: experimental data (even if more than one step
removed from the immediate source of the uncertainty evaluation), meta-analysis
(Cooper et al., 2009), literature survey, expert opinion, or mere guess. 

EXAMPLE: When the user of NIST SRM 1d (Wise and Watters, 2005b) extracts
from the corresponding certificate the expanded uncertainty, 0.16 %, associated
with the mass fraction, 52.85 %, of CaO in the material (argillaceous limestone),
according to the GUM this expanded uncertainty becomes the result of a Type B
evaluation for the user of the certificate even though it rests entirely on a
statistical analysis of experimental data obtained by multiple laboratories using
different analytical methods. 

(5c) Irrespective of their provenance and of how they are evaluated, uncertainty
components should all be treated alike and combined on an equal footing, which is
how TN1297, the GUM, and the NUM treat them. Characterizing them via fully
specified probability distributions (or via samples from these distributions) facilitates
such uniform treatment, in particular when both quantitative and qualitative inputs
together determine the value of the measurand. 

(5d) Classifying the methods used to evaluate uncertainty according to how they operate
is certainly easier and less controversial than classifying the sources or components
of uncertainty according to their nature. For example, declaring that an uncertainty
component is either random or systematic involves a judgment about its essence and
presupposes that there is a widely accepted, common understanding of the meaning
of these terms. Both the GUM and TN1297 appropriately eschew the use of these 
qualifiers, and this Simple Guide reaffirms the undesirability of their use. 

The nature of an uncertainty component is conditioned by the use made of the 
corresponding quantity, that is, on how that quantity appears in the mathematical 
model that describes the measurement process. When the corresponding quantity 
is used in a different way, a “random” component may become a “systematic” 
component and vice versa. Thus the terms “random uncertainty” and 
“systematic uncertainty” can be misleading when generally applied 
— TN1297, Subsection 2.3 (Pages 1–2). 

(5e) For purposes of uncertainty evaluation, in particular considering the flexibility 
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afforded by Monte Carlo methods, it is preferable to classify uncertainty components
according to the behavior of their effects, as either persistent or volatile. 

EXAMPLE: When calibrating a force transducer, the orientation of the transducer
relative to the loading platens of the deadweight machine is a persistent effect
because a change in such orientation may shift the transducer’s response up or
down at all set-points of the applied force, by unknown and possibly variable
amounts, but all in the same direction (Bartel, 2005, Figure 5). 

(5f) Uncertainty evaluations should produce, at a minimum, estimates and standard
uncertainties of all the inputs when these are scalar quantities, or suitable proxies of
the standard uncertainties for other measurands. Ideally, however, these evaluations
should produce fully specified probability distributions (or samples from such
distributions) for the inputs. 

(5g) Both types of measurement models (measurement equations and observation
equations) involve input variables whose values must be estimated and whose
associated uncertainties must be characterized. 

EXAMPLE: In Example E11 the uncertainty associated with the output is
evaluated using a bottom-up approach. The measurement model is a
measurement equation. Some of its inputs are outputs of measurement models
used previously, and the associated uncertainties were evaluated using Type A
methods. Other inputs had their uncertainties evaluated by Type B methods.
EXAMPLE: In Example E10 the measurement model is an observation equation,
and the uncertainty associated with the output is evaluated using a top-down
approach. The inputs are measured values, associated uncertainties, and the
numbers of degrees of freedom that these uncertainties are based on. 

(5h) In the absence of compelling reason to do otherwise, (univariate or multivariate)
Gaussian probability distributions may be assigned to quantitative inputs (but refer to
(5i) next for an important exception). Under this modeling choice, and in many cases,
it is likely that Gauss’s formula and the Monte Carlo method will lead to similar
evaluations of standard uncertainty for scalar measurands specified by measurement
equations. Discrete uniform distributions (which assign the same probability to all
possible values) may be appropriate for qualitative inputs, but typically other choices
will be preferable. 

(5i) If the measurement model is a measurement equation involving a ratio, it is
inadvisable to assign a Gaussian distribution to any variable that appears in the
denominator because this induces an infinite variance for the ratio. If the variable is 
positive and its coefficient of variation (ratio of standard uncertainty to mean value of
the variable) is small, say, no larger than 5 %, then a lognormal distribution with the
same mean and standard deviation is a convenient alternative that avoids the problem
of infinite variance. 

(5j) Automatic methods for assignment of distributions to inputs (for example, “rules”
based on maximum entropy considerations) should be avoided. In all cases, the
choice should be the result of deliberate model selection exercises, informed by
specific knowledge about the inputs, and taking into account the pattern of dispersion 
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apparent in relevant experimental data. The advice that the GUM (3.4.8) offers is 
particularly relevant here: that any framework for assessing uncertainty cannot 
substitute for critical thinking, intellectual honesty and professional skill. The 
evaluation of uncertainty is neither a routine task nor a purely mathematical one; it 
depends on detailed knowledge of the nature of the measurand and of the 
measurement. 

(i) If the range of the values that a scalar input quantity may possibly take is bounded, then
a suitably rescaled and shifted beta distribution (which includes the rectangular
distribution as a special case), a triangular distribution, or a trapezoidal distribution may
be a suitable model for the input quantity.

(ii) First principles considerations from the substantive area of application may suggest
non-Gaussian distributions (Example E11).

(iii) Student’s t, Laplace, and hyperbolic distributions are suitable candidates for situations
where large deviations from the center of the distribution are more likely than under a
Gaussian model. 

(iv) Lognormal, gamma, Pareto, Weibull, and generalized extreme value distributions are
candidate models for scalar quantities known to be positive and such that values larger
than the median are more likely than values smaller than the median.

(v) Distributions for vectorial (multivariate) quantities may be assembled from models for
the distributions of the components of the vector, together with the correlations between
them, using copulas (Possolo, 2010), even though doing so requires making
assumptions whose adequacy may be difficult to judge in practice.

(vi) Several discrete distributions may be useful to express states of knowledge about
qualitative inputs. In many cases, the probability distribution that best describes the
metrologist’s state of knowledge about the true value of a qualitative property will not
belong to any particular family of distributions (Example E6). In some cases a uniform
discrete distribution (that is, a distribution that assigns the same probability to each of a
finite set of values) is appropriate, Example E29). The binomial (Example E27),
multinomial (Example E24), negative binomial, and Poisson (Example E25)
distributions are commonly used.

(vii) Since Type A evaluations typically involve fitting a probability model to data obtained
under conditions of repeatability (VIM 2.20), the selection of a probability model, which
may be a mixture of simpler models (Benaglia et al., 2009), should follow standard best
practices for model selection (Burnham and Anderson, 2002) and for the verification of
model adequacy, ideally applied in collaboration with a statistician or applied
mathematician. 

NOTE 5.1 Possolo and Elster (2014) explain how to perform Type A and Type B evaluations, and
illustrate them with examples. 

NOTE 5.2 O’Hagan et al. (2006) provide detailed guidance about how to elicit expert knowledge
and distill it into probability distributions. The European Food Safety Authority has
endorsed these methods of elicitation for use in uncertainty quantification associated
with dietary exposure to pesticide residues (European Food Safety Authority, 2012).
O’Hagan (2014) discusses elicitation for metrological applications. Baddeley et al.
(2004) provide examples of elicitation in the earth sciences. Example E19 describes an
instance of elicitation. 

NOTE 5.3 In many cases, informal elicitations suffice: for example, when the metrologist believes
that a symmetrical triangular distribution with a particular mean and range describes his 
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state of knowledge about an input quantity sufficiently accurately for the intended
purpose (say, because the number of significant digits required for the results do not
warrant the effort of eliciting a shifted and scaled beta distribution instead). The
Sheffield Elicitation Framework (SHELF) (O’Hagan, 2012), and the MATCH 
Uncertainty Elicitation Tool (Morris et al., 2014) facilitate a structured approach to 
elicitation: optics.eee.nottingham.ac.uk/match/uncertainty.php. 

NOTE 5.4 The results of uncertainty evaluations for inputs that are used in a bottom-up evaluation
of measurement uncertainty, should be summarized by listing the identified sources of
uncertainty believed to contribute significantly to the uncertainty associated with the
measurand, and by characterizing each uncertainty contribution. (This summary is
commonly called an uncertainty budget, or an uncertainty analysis.) At a minimum,
such characterization involves specifying the standard uncertainty for scalar measurands,
or its analog for measurands of other types. Ideally, however, a probability distribution
should be specified that fully describes the contribution that the source makes to the
measurement uncertainty. 

EXAMPLE: Sources of uncertainty (uncertainty budget, or uncertainty
analysis) for the gravimetric determination of the mass fraction of mercury
in NIST SRM 1641e (Mercury in Water), adapted from Butler and Molloy
(2014, Table 1), where “DF” denotes the number of degrees of freedom that
the standard uncertainty is based on, and “MODEL” specifies the probability 
model suggested for use in the NUM. The Student t distribution has 12.5 
degrees of freedom, computed using the Welch-Satterthwaite formula as
described in TN1297 (B.3) and in the GUM (G.4), and it is shifted and
rescaled to have mean and standard deviation equal to the estimate and
standard uncertainty listed for W3133. The measurement equation is W1641e 
= m3133W3133mspike ∕(mspiking solnm1641e). 

INPUT ESTIMATE STD. UNC. DF MODEL 

1.0024 g 0.0008 g ∞ Gaussianm3133 
W3133 9.954 × 106 ng∕g 0.024 × 106 ng∕g 12.5 Student t 

mspiking soln 51.0541 g 0.0008 g ∞ Gaussian 
mspike 26.0290 g 0.0008 g ∞ Gaussian 
m1641e 50 050.6 g 0.1 g ∞ Gaussian 

Uncertainty evaluation for measurands defined by measurement equations 

(6a) If the inputs are quantitative and the output is a scalar quantity, then use the NUM 

(Lafarge and Possolo, 2015), available on the World Wide Web at 
uncertainty.nist.gov, with user’s manual at 
uncertainty.nist.gov/NISTUncertaintyMachine-UserManual.pdf. 
NOTE 6.1 The NUM implements both the Monte Carlo method described in the GUM-S1, and

the conventional Gauss’s formula for uncertainty propagation, Equations (A-3) in
TN1297 and (13) in the GUM, possibly including correlations, which the NUM 

applies using a copula (Possolo, 2010). 
NOTE 6.2 The NUM requires that probability distributions be assigned to all input quantities. 

(6b) When the Monte Carlo method and the conventional Gauss’s formula for uncertainty
propagation produce results that are significantly different (judged considering the
purpose of the uncertainty evaluation), then the results from the Monte Carlo method
are preferred. 
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(6c) If the inputs are quantitative and the output is a vectorial quantity, then use the Monte
Carlo method, as illustrated in Example E15. 

(6d) If some of the inputs are qualitative, or the output is neither a scalar nor a vectorial
quantity, then employ a custom Monte Carlo method, ideally selected and applied in
collaboration with a statistician or applied mathematician. 

EXAMPLES: Examples E6, E27, and E29 illustrate how uncertainty may be
propagated when some of the inputs or the output are qualitative, and
Examples E17, E18, E32 and E34 do likewise for a functional measurand. 

7 Uncertainty evaluation for measurands defined by observation equations starts from 
the realization that observation equations are statistical models where the measurand appears
either as a parameter of a probability distribution, or as a known function of parameters of
a probability distribution. These parameters need to be estimated from experimental data,
possibly together with other relevant information, and the uncertainty evaluation typically
is a by-product of the statistical exercise of fitting the model to the data. 

EXAMPLE: In Example E14, one measurand is the characteristic strength of alumina,
which appears as the scale parameter of a Weibull distribution. This parameter is esti
mated by the method of maximum likelihood, which produces not only an estimate of
this scale parameter, but also an approximate evaluation of the associated uncertainty.
Another measurand is the mean rupture stress, which is a known function of both the
scale and shape parameters of that Weibull distribution. 

(7a) Observation equations are typically called for when multiple observations of the
value of the same property are made under conditions of repeatability (VIM 2.20), or
when multiple measurements are made of the same measurand (for example, in an
interlaboratory study), and the goal is to combine those observations or these
measurement results. 

EXAMPLES: Examples E2, E20, and E14 involve multiple observations made
under conditions of repeatability. In Examples E12, E10, and E21, the same
measurand has been measured by different laboratories or by different methods. 

(7b) In all cases, the adequacy of the model to the data must be validated. For example,
when fitting a regression model (Note 4.3) we should examine plots of residuals
(differences between observed and fitted values) against fitted values to determine
whether any residual structure is apparent that the model failed to capture (Fox and
Weisberg, 2011, Chapter 6). QQ-plots (Wilk and Gnanadesikan, 1968) of the
residuals should also be examined, to detect possibly significant inconsistencies with
the assumption made about the probability distribution of the residuals. 

(7c) The sensitivity of the conclusions to the modeling assumptions, and model
uncertainty in particular, should be evaluated by comparing results corresponding to
different but similarly plausible models for the data (Clyde and George, 2004). 

EXAMPLE: Example E35 illustrates the evaluation of model uncertainty and
uncertainty reduction by model averaging. 
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(7d) The statistical methods preferred in applications involving observation equations are
likelihood-based, including maximum likelihood estimation and Bayesian procedures
(DeGroot and Schervish, 2011; Wasserman, 2004), but ad hoc methods may be 
employed for special purposes (Example E22). 

EXAMPLES: Examples E2, E14, E17, E18, E20 and E27 illustrate maximum
likelihood estimation and the corresponding evaluation of measurement
uncertainty. Examples E19, E10, E22, E25, and E34 employ Bayesian
procedures to estimate the measurand and to evaluate the associated
measurement uncertainty. 

(7e) When a Bayesian statistical procedure is employed to blend preexisting knowledge
about the measurand or about the measurement procedure, with fresh experimental
data, a so-called prior probability distribution must be assigned to the measurand that
encapsulates that preexisting knowledge. In general, this distribution should be the
result of a deliberate elicitation exercise that captures genuine prior knowledge (cf. 
Notes 5.2 and 5.3) rather than the result of applying formal rules (Kass and
Wasserman, 1996). 

(7f) In those rare cases where there is no credible a priori knowledge about the
measurand but it is still desirable to employ a Bayesian procedure, then a so-called
(non-informative) reference prior (Bernardo and Smith, 2007) may be used 
(Example E25). 

8 Express measurement uncertainty in a manner that is fit for purpose. In most cases,
specifying a set of values of the measurand believed to include its true value with 95 %
probability (95 % coverage region) suffices as expression of measurement uncertainty. 

(8a) When the result of an evaluation of measurement uncertainty is intended for use in
subsequent uncertainty propagation exercises involving Monte Carlo methods, then
the expression of measurement uncertainty should be a fully specified probability
distribution for the measurand, or a sufficiently large sample drawn from a probability
distribution that describes the state of knowledge about the measurand. 

(8b) The techniques described in the GUM and in TN1297 produce approximate coverage 
intervals for scalar measurands. TN1297 (6.5) indicates that, by convention, the
expanded uncertainty should be twice the standard uncertainty. This is motivated by
the fact that, in many cases, a coverage interval of the form y ± 2u(y), where u(y)
denotes the standard uncertainty associated with y, achieves approximately 95 %
coverage probability even when the probability distribution of the measurand is
markedly skewed (that is, has one tail longer or heavier than the other) (Freedman,
2009). 
However, TN1297 (Appendix B) also discusses when and how coverage intervals of 
the form y ± ku(y), with coverage factors k other than 2, may or should be used. 
Since the NUM implements the Monte Carlo method of the GUM-S1, it provides exact 
coverage intervals that will be symmetrical relative to y if symmetric intervals are 
requested, but that otherwise need not be symmetrical. 
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(8c) Coverage intervals or regions need not be symmetrical relative to the estimate of the
measurand, and often the shortest or otherwise smallest such interval or region will
not be symmetrical, especially when the measurand is constrained to be non-negative
or to lie in a bounded region (Examples E3, E11, E19, E10, E25). In particular,
unless explicitly instructed to produce symmetrical intervals, the NUM will often 
produce asymmetrical coverage intervals for scalar measurands. 

EXAMPLE: Asymmetric intervals are commonly used in nuclear physics. For
example, Hosmer et al. (2010) reports the result of measuring the half-life of
80Cu as 170+110 

−50 
ms. 

(8d) An asymmetric coverage interval (for a scalar measurand) is defined by two numbers, 
Uy

−(y) and Uy
+(y) such that the interval from y − Uy

−(y) to y + Uy
+(y) is believed to 

include the true value of the measurand with a specified probability y (which must be 
stated explicitly), typically 95 %. 

(8e) When a symmetrical coverage interval with coverage probability 0 < y < 1 is desired 
for a scalar measurand (that is, an interval whose end-points are equidistant from the
estimate of the measurand and that includes the true value of the measurand with 
probability y), and the uncertainty evaluation was done using the Monte Carlo
method, then determining such interval involves finding a positive number Uy (y)
such that the interval y ± Uy (y) includes a proportion y of the values in the Monte 
Carlo sample, and leaves out the remaining 1 − y proportion of the same sample. In
such cases, the corresponding coverage factor is computed after the fact (post hoc) as 
k = Uy (y)∕u(y), where u(y) denotes the standard uncertainty associated with y,
typically the standard deviation of the Monte Carlo sample that has been drawn from
the probability distribution of y (Example E18). 
NOTE 8.1 When it is desired to propagate the uncertainty expressed in an asymmetric

coverage interval while preserving the asymmetry, a Monte Carlo method should
be used, as illustrated in Example E3. For example, if the coverage probability is 
y , then samples should be drawn from a probability distribution whose median (or,
alternatively, whose mean) is equal to y and otherwise is such that it assigns 
probability y to the interval from y − Uy

−(y) to y + Uy
+(y). In addition, this

distribution should be generally consistent with the state of knowledge about the
measurand. 

NOTE 8.2 To propagate the uncertainty expressed in an asymmetric interval glossing over the
asymmetry, define an approximate, effective standard uncertainty 
u(y) = (U− (y) + U+ (y))∕4, and use it in subsequent uncertainty propagation95% 95%exercises. Audi et al. (2012, Appendix A) and Barlow (2003) describe other
symmetrization techniques. 
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Examples 

E1 Weighing. The mass mP of a powder in a plastic container is measured using a single-
pan electronic balance whose performance is comparable to the Mettler-Toledo XSE104
analytical balance, by taking the following steps: 
(1) Determine the mass cR,1 of a reference container that is nominally identical to the con

tainer with the powder, and contains a weight of mass 25 g, believed to be about half-way
between the masses of the container with the powder and of the empty container; 

(2) Determine the mass cE of an empty container nominally identical to the container with 
the powder; 

(3) Determine the mass cP of the container with the powder; 
(4) Determine the mass cR,2 of the same reference container with the same weight inside

that was weighed in the first step. 

This procedure is a variant of weighing by differences, except that two nominally identical
containers are being compared (one with the powder, the other empty), instead of weighing
the same container before and after filling with the powder.
Notice that the weighing procedure involves three distinct, nominally identical containers.
The container with the 25 g weight is weighed twice. Since the containers are weighed with
tightly fitting lids on, and assuming that they all displace essentially the same volume of air
and that the density of air remained essentially constant in the course of the weighings, there
is no need for buoyancy corrections.
The masses of the nominally identical (empty) containers are known to have standard un
certainty 0.005 g. According to the manufacturer’s specifications, the uncertainty of the
weighings produced by the balance includes contributions from four sources of uncertainty
related to the balance’s performance attributes: readability (uB = 0.1 mg), repeatability 
(uR = 0.1 mg), deviation from linearity (uL = 0.2 mg), and eccentricity (uT = 0.3 mg),
where the values between parentheses are the corresponding standard uncertainties.
The measurement equation is mP = cP − cE − (cR,2 − cR,1): it expresses the output quantity 
mP as a linear combination of the input quantities, which appear on the right-hand side. The
second term on the right-hand side, cR,2 − cR,1, the difference of the two weighings of the
reference container, is intended to correct for temporal drift of the balance (Davidson et al.,
2004, 3.2).
The uncertainties associated with the input quantities may be propagated to the output quan
tity in any one of at least three different ways: a method from the theory of probability, the
method of the GUM (and of TN1297), or the Monte Carlo method of the GUM-S1. 
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Probability Theory. The variance (squared standard deviation) of a sum or difference of un
correlated random variables is equal to the sum of the variances of these random variables.
Assuming that the weighings are uncorrelated, we have u2(mP) = u2(cP)+ u2(cE)+ u2(cR,2 − 
cR,1) exactly. Below it will become clear why we evaluate the uncertainty associated with the
difference cR,2 − cR,1 instead of the uncertainties associated with cR,2 and cR,1 individually.
We model these quantities as random variables because there is some uncertainty about their
true values, and this Simple Guide takes the position that all property values that are known
incompletely or imperfectly are modeled as random variables whose probability distribu
tions describe the metrologist’s state of knowledge about their true values (cf. “Orientation” 
on Page 1).
Now we make the additional assumption that the “errors” that affect each weighing and that
are attributable to lack of readability and repeatability, and to deviations from linearity and
eccentricity of the balance, also are uncorrelated. In these circumstances, u2(cP) = u2(cE)

2 2 2 2= 0.0052g2 +uB + uR + uL + uT = (0.005015)2g2. 
Concerning u2(cR,2 − cR,1): since cR,2 − cR,1 is the difference between two weighings of the
same container with the same weight inside, neither the uncertainty associated with the mass
of the container, nor the uncertainty associated with the mass of the weight that it has inside,

2 2 2contribute to the uncertainty of the difference. Therefore, u2(cR,2 − cR,1) = 2(uB +uR +u
2+uT) = (0.0005477)2g2. Only the performance characteristics of the balance contribute toL 

this uncertainty. The factor 2 is there because two weighings were made.

If the results of the four weighings are cP = 53.768 g, cE = 3.436 g, cR,1 = 3.428 g, and
 
cR,2 = 3.476 g, we conclude that mP = 50.284 g with associated standard uncertainty
 
u(mP) = ((0.005015)2 + (0.005015)2 + (0.0005477)2)½g = 0.0071 g.
 
If we assume further that the input quantities are Gaussian random variables, a result from
probability theory (the sum of independent Gaussian random variables is a Gaussian random
variable), implies that the uncertainty associated with mP is described fully by a Gaussian 
distribution with mean 50.284 g and standard deviation u(mP) = 0.007 g, hence the interval 
mP ±1.96u(mP), which ranges from 50.270 g to 50.298 g, is a 95 % coverage interval for mP. 
(The coverage factor 1.96 is the 97.5th percentile of a Gaussian distribution with mean 0
and standard deviation 1, to achieve 95 % coverage: in practice it is often rounded to 2.) 
GUM & Monte Carlo. To use the NUM we regard the output quantity y = mP as a function of 
three input quantities: x1 = cP, x2 = cE and x3 = cR,2 − cR,1, with x1 = 53.768 g, u(x1) = 
0.005 015 g, x2 = 3.436 g, u(x1) = 0.005 015 g, x3 = 0.048 g, and u(x3) = 0.000 547 7 g. 
When Gaussian distributions are assigned to these three inputs, with means and standard
deviations set equal to these estimates and standard uncertainties, both sets of results (GUM 

and Monte Carlo) produced by the NUM reproduce the results above.
In this case, because the output quantity is a linear combination of the input quantities, the
approximation to u(mP) that the NUM produces when using Gauss’s formula (Equation (A-3) 
of TN1297 and Equation (13) in the GUM) is exact.
The Monte Carlo method may well be the most intuitive way of propagating uncertainties.

∗ ∗It involves drawing one value x from the distribution of the first input, one value x from 1 2∗the distribution of the second input, one value x from the distribution of the third input, 3
∗ ∗ ∗ ∗and then computing a value y = x −x −x from the distribution of the output. Repeating1 2 3this process many times produces a sample from the probability distribution of mP, whose 
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standard deviation is the evaluation of u(mP) according to the Monte Carlo method described 
by Morgan and Henrion (1992) and in the GUM-S1.
 
Since 95 % of the sample values lay between 50.270 g and 50.298 g, these are the endpoints
 
of a 95 % coverage interval for the true value of mP. Exhibit 1 shows a smooth histogram of
 
these values, and also depicts the estimate of mP and this coverage interval.
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E2 Surface Temperature. Exhibit 2 lists and depicts the values of the daily maximum
temperature that were observed on twenty-two (non-consecutive) days of the month of May,
2012, using a traditional mercury-in-glass “maximum” thermometer located in the Steven
son shelter in the NIST campus that lies closest to interstate highway I-270. 

DAY 1 2 3 4 7 8 9 10 11 14 15 
t∕◦C 18.75 28.25 25.75 28.00 28.50 20.75 21.00 22.75 18.50 27.25 20.75 

DAY 16 17 18 21 22 23 24 25 29 30 31 
t∕◦C 26.50 28.00 23.25 28.00 21.75 26.00 26.50 28.00 33.25 32.00 29.50 
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Exhibit 2: Values of daily maximum temperature measured during the month of May,
2012, using a mercury-in-glass “maximum” thermometer mounted inside a Stevenson shel
ter compliant with World Meteorological Organization guidelines (World Meteorological
Organization, 2008, Chapter 2), deployed in the NIST Gaithersburg campus. 

The average t = 25.59 ◦C of these readings is a commonly used estimate of the daily max
imum temperature r during that month. The adequacy of this choice is contingent on the 

NIST TECHNICAL NOTE 1900 29 ∕ 103 



definition of r and on a model that explains the relationship between the thermometer read
ings and r. 
The daily maximum temperature r in the month of May, 2012, in this Stevenson shelter, may
be defined as the mean of the thirty-one true daily maxima of that month in that shelter. The
daily maximum ti read on day 1 ⩽ i ⩽ 31 typically deviates from r owing to several effects, 
some of them persistent, affecting all the observations similarly, others volatile. Among the
persistent effects there is possibly imperfect calibration of the thermometer. Examples of 
volatile effects include operator reading errors.
If Ei denotes the combined result of such effects, then ti = r + Ei where Ei denotes a random 
variable with mean 0, for i = 1, … , m, where m = 22 denotes the number of days in which
the thermometer was read. This so-called measurement error model (Freedman et al., 2007)
may be specialized further by assuming that E1, . . . , E are modeled independent randomm
variables with the same Gaussian distribution with mean 0 and standard deviation (. In
 
these circumstances, the {ti} will be like a sample from a Gaussian distribution with mean
 
r and standard deviation ( (both unknown).

The assumption of independence may obviously be questioned, but with such scant data it

is difficult to evaluate its adequacy (Example E20 describes a situation where dependence

is obvious and is taken into account). The assumption of Gaussian shape may be evaluated

using a statistical test. For example, in this case the test suggested by Anderson and Darling

(1952) offers no reason to doubt the adequacy of this assumption. However, because the

dataset is quite small, the test may have little power to detect a violation of the assumption.

The equation, ti = r +Ei, that links the data to the measurand, together with the assumptions

made about the quantities that figure in it, is the observation equation. The measurand r is
 
a parameter (the mean in this case) of the probability distribution being entertained for the

observations.
 
Adoption of this model still does not imply that r should be estimated by the average of

the observations — some additional criterion is needed. In this case, several well-known

and widely used criteria do lead to the average as “optimal” choice in one sense or another:

these include maximum likelihood, some forms of Bayesian estimation, and minimum mean

squared error.

The associated uncertainty depends on the sources of uncertainty that are recognized, and

on how their individual contributions are evaluated.
 
One potential source of uncertainty is model selection: in fact, and as already mentioned, a

model that allows for temporal correlations between the observations may very well afford

a more faithful representation of the variability in the data than the model above. However,

with as few observations as are available in this case, it would be difficult to justify adopting

such a model.
 
The {Ei} capture three sources of uncertainty: natural variability of temperature from day

to day, variability attributable to differences in the time of day when the thermometer was

read, and the components of uncertainty associated with the calibration of the thermometer

and with reading the scale inscribed on the thermometer.

Assuming that the calibration uncertainty is negligible by comparison with the other uncer
tainty components, and that no other significant sources of uncertainty are in play, then the

common end-point of several alternative analyses is a scaled and shifted Student’s t distri-
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bution as full characterization of the uncertainty associated with r. 
For example, proceeding as in the GUM (4.2.3, 4.4.3, G.3.2), the average of the m = 22 
daily readings is t̄ = 25.6 ◦C, and the standard deviation is s = 4.1 ◦C. Therefore, the 

√standard uncertainty associated with the average is u(r) = s∕ m = 0.872 ◦C. The coverage 
factor for 95 % coverage probability is k = 2.08, which is the 97.5th percentile of Student’s 
t distribution with 21 degrees of freedom. In this conformity, the shortest 95 % coverage
interval is t̄ ± ks∕

√ 
n = (23.8 ◦C, 27.4 ◦C). 

A coverage interval may also be built that does not depend on the assumption that the data
are like a sample from a Gaussian distribution. The procedure developed by Frank Wilcoxon
in 1945 produces an interval ranging from 23.6 ◦C to 27.6 ◦C (Wilcoxon, 1945; Hollander
and Wolfe, 1999). The wider interval is the price one pays for no longer relying on any
specific assumption about the distribution of the data. 
E3 Falling Ball Viscometer. The dynamic viscosity µM of a solution of sodium hydrox
ide in water at 20 ◦C, is measured using a boron silica glass ball of mass density PB = 
2217 kg∕m3. The measurement equation is µM = µC [(PB − PM) ∕(PB − PC)] (tM∕tC), where 
µC = 4.63 mPa s, PC = 810 kg∕m3, and tC = 36.6 s denote the viscosity, mass density, and 
ball travel time for the calibration liquid, and PM = 1180 kg∕m3 and tM = 61 s denote the 
mass density and ball travel time for the sodium hydroxide solution (Exhibit 3).
If the input quantities are modeled as independent Gaussian random variables with means
equal to their assigned values, and standard deviations equal to their associated standard
uncertainties u(µC) = 0.01µC, u(PB) = u(PC) = u(PM) = 0.5 kg∕m3, u(tC) = 0.15tC, and 
u(tM) = 0.10tM, then the Monte Carlo method of the GUM-S1 as implemented in the NUM 

produces: µM = 5.82 mPa s and u(µM) = 1.11 mPa s. The interval from 4.05 mPa s to 
8.39 mPa s is an approximate 95 % coverage interval for µM, which happens to be asymmetric 
relative to the measured value. 
Note that several of the standard uncertainties quoted may be unrealistically large for state-
of-the-art laboratory practices, in particular for the ball travel times. These values have
been selected to enhance several features of the results that otherwise might not stand out as
clearly and that should be noted.
If the estimates of the input quantities had been substituted into the measurement equation as
the GUM suggests, the resulting estimate of µM would have been 5.69 mPa s. And if the con
ventional formula for uncertainty propagation (Equation (A-3) of TN1297 and Equation (13) 
in the GUM), which also is implemented in the NUM, had been used to evaluate u(µM), then 
the result would have been 1.11 mPa s. 
Interestingly, the evaluation of u(µM) is identical to the evaluation produced by the Monte
Carlo method, but the estimates of the measurand produced by one and by the other differ.
Exhibit 3 shows that the coverage interval given above differs from the interval correspond
ing to the prescription in Clause 6.2.1 of the GUM (estimate of the output quantity plus or
minus twice the standard measurement uncertainty evaluated using the approximate propa
gation of error formula). The difference is attributable to the skewness (or, asymmetry) of
the distribution of the measurand, with a right tail that is longer (or, heavier) than the left
tail. 
If the Monte Carlo sample were no longer available, and the results of the uncertainty evalu
ation had been expressed only by specifying the asymmetrical 95 % coverage interval given 
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above, ranging from 4.05 mPa s to 8.39 mPa s, and there was a need to propagate this uncer
tainty further, then the guidance offered in (8c) may be implemented as follows: 

∙ Find a gamma probability distribution whose median equals the measured value, 5.82 mPa s,
and otherwise is such that it assigns probability 95 % to the interval from 4.05 mPa s 
to 8.39 mPa s; 

∙ Draw a sufficiently large sample from this distribution to be used in the subsequent
Monte Carlo uncertainty propagation exercise. 

Finding such gamma probability distribution can be accomplished by numerical minimiza
tion of the function that at a and p takes the value (Fa,p(8.39) − Fa,p(4.05) − 0.95)2 + 
(Fa,p(5.82) − 0.5)2, where Fa,p denotes the cumulative probability distribution function of
the gamma distribution with shape a and scale p. One solution of this minimization problem 
is â = 29.48 and p̂ = 0.1997 mPa s. The corresponding probability density is depicted in 
Exhibit 3. 
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Exhibit 3: HAAKE™ falling ball viscometer from Thermo Fisher Scientific, Inc., (left
panel), and probability density (right panel) corresponding to a Monte Carlo sample of
size 1 × 106, also showing 95 % coverage intervals for the value of the dynamic viscosity
of the liquid, one corresponding to the prescription in Clause 6.2.1 of the GUM, the other
whose endpoints are the 2.5th and 97.5th percentiles of the Monte Carlo sample. The thin
(blue) curve is the probability density of the gamma distribution with median equal to the
estimate of the measurand, and 2.5th and 97.5th percentiles equal to the corresponding
percentiles of the Monte Carlo sample. 

E4 Pitot Tube. The pioneering work of Kline and McClintock (1953) predates the GUM 

by more than forty years but already includes all the key concepts elaborated in the GUM: 
(i) recognition that “in most engineering experiments it is not practical to estimate all of the
uncertainties of observation by repetition”; (ii) measurement uncertainty should be charac
terized probabilistically; (iii) errors of different kinds (in particular “fixed” and “accidental”
errors) should be described in the same manner, that is, via probability distributions that
characterize uncertainty (“uncertainty distributions”), and should receive equal treatment;
(iv) intervals qualified by odds (of including the true value of the measurand) are useful
summaries of uncertainty distributions; and (v) uncertainty propagation, from inputs to out
put, may be carried out approximately using the formula introduced by Gauss (1823) that
became Equation (10) in the GUM. 
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A typical Pitot tube used to measure airspeed has an orifice facing directly into the air flow
to measure total pressure, and at least one orifice whose surface normal is orthogonal to the
flow to measure static pressure (Exhibit 4). Airspeed v is determined by the difference Δ 
between the total and static pressures, and by the mass density P of air, according to the 

√measurement equation v = 2Δ∕P. Since P is usually estimated by application of the ideal 
√gas law, the measurement equation becomes v = 2ΔR T ∕p, where p and T denote the air s

pressure and temperature, and R = 287.058 J kg−1 K−1 is the specific gas constant for dry s
air. 

Exhibit 4: Pitot tube mounted on a helicopter 
(Zátonyi Sándor, en.wikipedia.org/wiki/ 
Pitot_tube) showing one large, forward-facing,
circular orifice to measure total pressure, and several
small circular orifices behind a trim ring, to measure
static pressure. 

Kline and McClintock (1953) illustrate the method to evaluate the uncertainty associated
with v in a case where Δ = 1.993 kPa was measured with a U-tube manometer, p = 
101.4 kPa was measured with a Bourdon gage, and T = 292.8K was measured with a 
mercury-in-glass thermometer. The expanded uncertainties (which they characterize as
95 % coverage intervals by saying that they are defined “with odds of 20 to 1”) were U95 %(Δ) = 
0.025 kPa, U95 %(p) = 2.1 kPa, and U95 %(T ) = 0.11 K. (The original treatment disregards 
the uncertainty component affecting R that is attributable to lack of knowledge about the s
actual humidity of air.)
Taking the corresponding standard uncertainties as one half of these expanded uncertainties,
the NUM produces v = 40.64 m∕s and u(v) = 0.25 m∕s according to both Gauss’s formula
and the Monte Carlo method (for which the input variables were modeled as Gaussian ran
dom variables). An approximate 95 % coverage interval defined as v ± 2u(v) ranges from 
40.15 m∕s to 41.14 m∕s. Its counterpart based on the results of the Monte Carlo method,
with endpoints given by the 2.5th and 97.5th percentiles of a sample of size 1 × 106 drawn 
from the distribution of v, ranges from 40.17 m∕s to 41.13 m∕s. 
E5 Gauge Blocks. Exhibit 5 shows a single-probe mechanical comparator used to mea
sure dimensions of gauge blocks by comparison with dimensions of master blocks, as de
scribed by Doiron and Beers (1995, Section 5.4).
The measurement involves: (i) obtaining the readings x and r that the comparator produces
when presented with the block that is the target of measurement and with a reference block
of the same nominal length, (ii) applying a correction for the difference in deformation be
tween the two blocks that is caused by the force that the probe makes while in contact with
their surfaces, (iii) applying a correction that accounts for the difference between the ther
mal expansion coefficients of the blocks and also for the difference between the ambient
temperature and the reference temperature of 20 ◦C, and (iv) characterizing and propagating 
the uncertainties associated with the inputs.
The measurement equation is L = L + (x − r) + (8 − 8 ) + L(a − a )(t − 20) (Doiron x r x r r x
and Beers, 1995, Equation (5.4)), where L and L denote the lengths of the measured and x r 
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Accessories

2239296 Thermometer with Two Precision Probes
An electronic thermometer with platinum-resistance probes that
the comparator can read directly.  Includes a serial cable, serial-to-
USB converter, calibrated probes, and a block for staging one of
the probes on a heat sink.  One probe fits in the hole provided in
the platen for monitoring the measurement temperature.

Mahr Federal provides calibration services for dimensional standards,
including gage blocks, master rings and discs, surface roughness
specimens, roundness master balls, and other reference masters.  In
the unique Precision Measurement Center temperatures are con-
trolled to within 0.1°F (0.05°C) and strict process control is followed
to achieve extremely low uncertainties in the measurement process.
The measurement processes in the PMC have been accredited to
ISO 17025 by NVLAP (Lab Code #20605-0) and the scope of this

Mahr Federal Inc.  1144 Eddy Street   Providence, RI 02905
Customer Resource Center: 1-800-343-2050  Internet: www.mahr.com

Upgrades for Older Comparators

Older Model 130B-24 and 130B-16 comparators
may be upgradable to the current design level or
any one of several other levels:
� Complete system upgrades including full factory

reconditioning, replacement of electronics and
addition of a computer.

� Mechanical upgrade only - 130B-24 platen
replaced by a new platen which incorporates the
gage block positioner.  This can be accomplished
on site.

� Software upgrade only.  Add the capability to
handle the tolerance grades of the ASME B89.1.9-
2002 standard to your existing 130B-24.

Contact Mahr Federal for a quotation on the
upgrade level you wish to achieve.

accreditation can be viewed at Mahr Federal's web site
(www.mahr.com).

Gage Block Master sets can be calibrated to uncertainties as low as
2.0µ" (0.050µm) by sending them to:

Repair and Calibration Department, Mahr Federal Inc.,
1139 Eddy Street, Providence, RI  02905

Calibration Services

2240602 Gage Block Measurement Accessories Kit
This Kit includes all of the helpful tools for moving gage blocks,
preparing them for measurement, and maintaining the gage block
comparator.  The kit includes:  forceps, tongs, brush, blower, cham-
ois, deburring stone, optical flat, vacuum pick-up, load tester, hex
wrenches, and rust inhibiting grease.

A
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  0

5/
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Exhibit 5: Version of the Mahr-Federal comparator
model 130B-24 used by the Dimensional Metrology
Group (Semiconductor and Dimensional Metrology
Division, Physical Measurement Laboratory, NIST)
for the mechanical comparison of dimensions of gauge
blocks. 

reference blocks, 8 and 8 denote the elastic deformations induced by the force that thex r
probe exerts upon the surfaces of the blocks, L denotes the common nominal length of the 
blocks, a and a denote their thermal expansion coefficients, and t denotes the temperaturer x
of the environment that the blocks are assumed to be in thermal equilibrium with during
measurement. 
A tungsten carbide block of nominal length L = 50 mm was measured using a steel block
of the same nominal length as reference, whose actual length was L = 50.000 60 mm. The r
comparator readings were x = 1.25 × 10−3 mm for the tungsten carbide block, and r = 
1.06 × 10−3 mm for the reference steel block (Doiron and Beers, 1995, 5.3.1, Example 1).
The corresponding thermal expansion coefficients were a = 6 × 10−6 ◦C−1 and a = x r 
11.5 × 10−6 ◦C−1. The contact deformations, corresponding to a force of 0.75 N applied
by the probe onto the surface of the blocks, are estimated as 8 = 0.08 × 10−3 mm for the x
block being measured, and 8 = 0.14 × 10−3 mm and for the reference block (Doiron andr
Beers, 1995, Table 3.4). The ambient temperature was t = 20.4 ◦C.
 
Therefore, L = 50.00060 + (1.25 − 1.06) × 10−3 + (0.08 − 0.14) × 10−3 +50× (11.5 − 6) ×
 x 
10−6 × (20.4−20) = 50.000 84 mm. The associated uncertainty is evaluated by propagating
the contributions recognized in Exhibit 6.
Doiron and Stoup (1997) point out that the uncertainty associated with the coefficient of
thermal expansion depends on the length of the block because in steel blocks at least, the
value of the coefficient varies between the ends of the blocks (where the steel has been
hardened), and their central portions (which remain unhardened).
For the NUM to be able to recognize the contributions that scale calibration (S), instrument 
geometry (I), and artifact geometry (A) make to the overall measurement uncertainty, input
quantities need be introduced explicitly whose estimated values are zero but whose standard
uncertainties are as listed in Exhibit 6. In consequence, the measurement equation becomes 
L = L +(x−r)+(8 −8 )+L(a −a )(t−20)+S+I+A where S, I , and A are estimated as x r x r r x
0, with u(S) = 0.002 × 10−3 mm, u(I) = 0.002 × 10−3 mm, and u(A) = 0.008 × 10−3 mm.
 
The nominal length L of the blocks is treated as a known constant.
 
Application of Gauss’s formula as implemented in the NUM produces the estimate L =
 x 
50.000 84 mm and u(L ) = 1.6 × 10−5 mm. For the Monte Carlo method, L , x, r, S, I ,x r
and A are modeled as Gaussian random variables with means and standard deviations set 
equal to their estimates and standard uncertainties; a , a , and t are modeled as random x r
variables with uniform (or, rectangular) distributions; and 8 and 8 are modeled as random x r
variables with Gaussian distributions truncated at zero. These random variables are assumed 
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SOURCE STANDARD UNCERTAINTY (k = 1) 
Master Gauge Calibration 0.012 × 10−3 mm + (L × 0.08 × 10−9)
Reproducibility 0.004 × 10−3 mm + (L × 0.12 × 10−9)
Coeff. of Thermal Expansion L × 0.20 × 10−9 

Thermal Gradients L × 0.17 × 10−9 

Contact Deformation 0.002 × 10−3 mm 
Scale Calibration 0.002 × 10−3 mm 
Instrument Geometry 0.002 × 10−3 mm 
Artifact Geometry 0.008 × 10−3 mm 

Exhibit 6: Uncertainty budget as specified by Doiron and Stoup (1997, Table 6), except
for the coefficient of thermal expansion, whose standard uncertainty is as listed in Doiron
and Beers (1995, Table 4.3), where L denotes the nominal length of the block, expressed 
in millimeter. 

to be mutually independent.
A sample of size 106 drawn from the probability distribution of L had mean 50.000 84 mm x
and standard deviation u(L ) = 1.6 × 10−5 mm. A 95 % symmetrical coverage interval x
for the true value of L , computed directly from the Monte Carlo sample, ranges from x
50.000 81 mm to 50.000 87 mm. The corresponding expanded uncertainty is U95 %(L ) = x
3.1 × 10−5 mm. 
E6 DNA Sequencing. The first measurand e to be considered is a finite sequence of let
ters that represent the identities of the nucleobases (A for adenine, C for cytosine, G for
guanine, and T thymine) along a fragment of a strand of deoxyribonucleic acid (DNA). The 
sequencing procedure yields an estimate of this measurand, say

ê = (TTTTTATAATTGGTTAATCATTTTTTTTTAATTTTT). 
Some sequencing techniques compute the probability of the nucleobase at any given location
being A, C, G, or T, and then assign to the location the nucleobase that has the highest
probability. These probabilities are often represented by integer quality scores. For example, 
the line for location 7 in Exhibit 8 lists the scores assigned to the four bases: Q(A) = −14, 
Q(C) = −10, Q(G) = −12, and Q(T) = 6. The larger the score, the greater the confidence
in the corresponding base as being the correct assignment to that location: T in this case.
These scores are of the form Q = −10 log10(e∕(1 − e)), where e denotes the probability of
error if the corresponding base is assigned to the location. For location 7, Q(A) = −14,
which means that the odds against A at this location are o = e∕(1 − e) = 101.4 = 25, or, 
equivalently, that the probability of A at this location is Pr(A) = 1∕(1 + o) = 0.04. 
Therefore, the quadruplet (Pr(A), Pr(C), Pr(G), Pr(T)) associated with each location is a 
probability distribution over the set of possible values {A, C, G, T}. These probability dis
tributions (one for each location) characterize measurement uncertainty fully, and also sug
gest which nucleobase should be assigned to each location. For example, for location 7,
Pr(A) = 0.04, Pr(C) = 0.09, Pr(G) = 0.06, and Pr(T) = 0.81, and T was identity assigned 
to this location because it has the largest probability.
The implied dispersion of values (of the nominal property that is the identity of the base) may 
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be summarized by the entropy of this distribution, H = − Pr(A) log Pr(A)−Pr(C) log Pr(C)− 
Pr(G) log Pr(G) − Pr(T) log Pr(T). For example, for location 5 the entropy is 0.07, while for
location 7 it is 0.69, consistently with the perception that the distribution is much more con
centrated for the former than for the latter. The values of H are listed in Exhibit 8, but they 
are not otherwise used in this example.
The uncertainty associated with each base call may be propagated to derivative quantities.
Consider, as our second measurand, the Damerau-Levenshtein distance D(e, r) (Damerau, 
1964; Levenshtein, 1966) between the measurand e and the following target sequence, which 
could be a known gene that e is being compared against: 

r = (GGATTTTATTATAAATGGGTATACAATTTTTAAAATTTT). 
Since D(e, r) is the minimum number of insertions, deletions, or substitutions of a single
character, or transpositions of two adjacent characters that are needed to transform one string
into the other, e and r may very well have different lengths, as they do in this case. D(e, r)
is estimated as D(ê, r) = 13, where D is evaluated using function stringdist defined in 
the R package of the same name (van der Loo, 2014). Exhibit 7 describes the 13 steps that
lead from ê to r. 

ê TTT TTATAATTGGTTAATCATTTTTTTTTAATTTTT 

1 G TTT TTATAATTGGTTAATCATTTTTTTTTAATTTTT 

2 GG TTT TTATAATTGGTTAATCATTTTTTTTTAATTTTT 

3 GGA TTT TTATAATTGGTTAATCATTTTTTTTTAATTTTT 

4 GGATTTT TTATAATTGGTTAATCATTTTTTTTTAATTTTT 

5 GGATTTTATTATAATTGGTTAATCATTTTTTTTTAATTTTT 

6 GGATTTTATTATAAATGGTTAATCATTTTTTTTTAATTTTT 

7 GGATTTTATTATAAATGGGTAATCATTTTTTTTTAATTTTT 

8 GGATTTTATTATAAATGGGTATACATTTTTTTTTAATTTTT 

9 GGATTTTATTATAAATGGGTATACA TTTTTTTTAATTTTT 

10 GGATTTTATTATAAATGGGTATACA TTTTTTTAATTTTT 

11 GGATTTTATTATAAATGGGTATACA ATTTTTTAATTTTT 

12 GGATTTTATTATAAATGGGTATACA ATTTTTAAATTTTT 

13 GGATTTTATTATAAATGGGTATACA ATTTTTAAAATTTT r 

Exhibit 7: Sequence of 13 steps (insertions, deletions, substitutions, or transpositions of
two adjacent characters) that transform ê into r. 

To characterize the associated uncertainty, employ the Monte Carlo method: 
1. Select a suitably large sample size K; 
2. For each k = 1, … , K , and for each row of Exhibit 8, draw a letter from {A, C, G, T}

∗using the probabilities in the same line, finally to obtain a string e whose characters krepresent the nucleobases assigned to the thirty-six locations; 
∗ ∗3. The distances D(e1 
, r), . . . , D(eK , r) are a sample from the distribution of D(e, r). 

Exhibit 9 shows an estimate of the probability density of D(e, r) based on a sample of size 
K = 1 × 105, and it shows that D(e, r) = 15 is the value with highest probability, not the
value (13) that was measured. In fact, the sample has average 15.2 and standard deviation 
u(D(e, r)) = 1.4, and a 95 % coverage interval for D(e, r) ranges from 13 to 18. 
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LOC Q(A) Q(C) Q(G) Q(T) BASE Pr(A) Pr(C) Pr(G) Pr(T) H 

1
2
3
4
5 

−40 
−40 
−40 
−21 
−40 

−40 
−40 
−40 
−3 
−19 

−40 
−40 
−2 
−40 
−40 

40 
40 
2 
3 

19 

T
T
T
T
T 

0.00
0.00
0.00
0.01
0.00 

0.00
0.00
0.00
0.33
0.01 

0.00
0.00
0.39
0.00
0.00 

1.00
1.00
0.61
0.66
0.99 

0.00
0.00
0.67
0.68
0.07 

6
7
8
9

10 

5 
−14 
40 
9 

−13 

−40 
−10 
−40 
−9 
−8 

−18 
−12 
−40 
−40 
−40 

−5 
6 

−40 
−36 

6 

A
T
A
A
T 

0.75
0.04
1.00
0.89
0.05 

0.00
0.09
0.00
0.11
0.14 

0.02
0.06
0.00
0.00
0.00 

0.24
0.81
0.00
0.00
0.81 

0.62
0.69
0.00
0.35
0.60 

11
12
13
14
15 

−40 
−1 
−10 
−10 
−25 

−40 
−40 
−30 
−6 
−30 

−40 
1 
8 

−4 
−40 

40 
−32 
−13 
−1 
24 

T
G
G
T
T 

0.00
0.44
0.09
0.09
0.00 

0.00
0.00
0.00
0.20
0.00 

0.00
0.56
0.86
0.28
0.00 

1.00
0.00
0.05
0.43
1.00 

0.00
0.69
0.50
1.26
0.03 

16
17
18
19
20 

40 
12 

−25 
−15 
12 

−40 
−14 
−40 
12 

−16 

−40 
−18 
−12 
−36 
−40 

−40 
−34 
11 

−15 
−14 

A
A
T
C
A 

1.00
0.95
0.00
0.03
0.94 

0.00
0.04
0.00
0.94
0.02 

0.00
0.02
0.06
0.00
0.00 

0.00
0.00
0.94
0.03
0.04 

0.00
0.25
0.26
0.27
0.27 

21
22
23
24
25 

−28 
−15 
−40 
−5 
−24 

−22 
−29 
−2 
−10 
−20 

−40 
−11 
−40 
−40 
−10 

21 
9 
2 
3 

10 

T
T
T
T
T 

0.00
0.03
0.00
0.24
0.00 

0.01
0.00
0.39
0.09
0.01 

0.00
0.07
0.00
0.00
0.09 

0.99
0.89
0.61
0.67
0.90 

0.05
0.41
0.67
0.83
0.37 

26
27
28
29
30 

−40 
−40 
−39 
−40 

1 

−31 
−40 
−40 
−40 
−6 

−40 
−40 
−24 
−40 
−14 

31 
40 
23 
40 
−6 

T
T
T
T
A 

0.00
0.00
0.00
0.00
0.56 

0.00
0.00
0.00
0.00
0.20 

0.00
0.00
0.00
0.00
0.04 

1.00
1.00
1.00
1.00
0.20 

0.01
0.00
0.03
0.00
1.10 

31
32
33
34
35 

2 
−8 
−1 
−29 
−40 

−11 
−40 
−19 
−38 
−40 

−26 
−40 
−11 
−40 
−40 

−4 
8 

−1 
29 
40 

A
T
T
T
T 

0.63
0.14
0.46
0.00
0.00 

0.08
0.00
0.01
0.00
0.00 

0.00
0.00
0.08
0.00
0.00 

0.29
0.86
0.46
1.00
1.00 

0.86
0.40
0.97
0.01
0.00 

36 −40 −40 −40 40 T 0.00 0.00 0.00 1.00 0.00 

Exhibit 8: DNA sequencing results from example prb and seq data files distributed with 
the ShortRead Bioconductor package for R (Morgan et al., 2009). Each line pertains to 
a location (LOC) in the sequence. Q(A), Q(C), Q(G), and Q(T) are the quality scores, 
and Pr(A), Pr(C), Pr(G), and Pr(T) are the corresponding probabilities. The values of the
entropy of these discrete distributions are listed under H . 
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get sequence r, derived from a sample of 
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sured value was 13. 
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E7 Thermistor Calibration. Whetstone et al. (1989) employed thermistor probes to mea
sure the temperature of flowing water and of the atmosphere surrounding a weighing appa
ratus used to measure coefficients of discharge of orifice plates. These thermistors were
calibrated by comparison with a platinum resistance thermometer (PRT) that had previously
been calibrated by the Pressure and Temperature Division of what was then the National
Bureau of Standards. 
Calibration Data. Exhibit 10 lists the data used for the calibration of thermistor 775008 
(Whetstone et al., 1989, Table 17), which comprise readings taken simultaneously with the
thermistor and the PRT immersed in a thermostatically controlled bath filled with mineral 
oil. 

Temperature / ◦C 

PRT 20.91 25.42 30.50 34.96 40.23 34.93 30.05 25.03 20.87 16.41 16.40 39.34
 

THERMISTOR 20.85 25.52 30.70 35.22 40.47 35.18 30.25 25.10 20.81 16.23 16.22 39.56
 

Exhibit 10: Values of temperature of a thermostatically controlled bath measured simul
taneously by a calibrated PRT and by thermistor 775008 (Whetstone et al., 1989, Table 17). 

In many cases, there is a legal requirement for the calibration (Note 3.7) to characterize how
the device being calibrated responds to the inputs that it is designed for. Here this means
characterizing how the thermistor responds when immersed in a medium at the tempera
ture indicated by the PRT that acts as a reference: we call the function that maps values of
temperature indicated by the PRT to values of temperature indicated by the thermistor, the 
calibration function. 
In practice, the thermistor will be used to measure the temperature of the medium it is im
mersed in and in thermal equilibrium with. This is done by reading the temperature that the
thermistor produces, and then applying a function to it that produces a calibrated, measured
temperature. This function is called the analysis function. 
Calibration and Analysis Functions. The calibration and analysis functions often are math
ematical inverses of one another. In this case, we will first build a function c (calibration 
function) that expresses the indication I produced by the thermistor as a function of the tem
perature T measured by the PRT, I = c(T ). But then, for practical use, we will require the 
inverse of this function, l = c−1 (analysis function), which maps the thermistor’s reading
into a traceable value of temperature, T = l(I). 
The nomenclature calibration function ( c) and analysis function (l = c−1) is used in ISO
(2001) (Examples E17 and E18). The former characterizes how the thermistor responds to
conditions that are essentially known (the temperature of the bath as measured by the PRT),
while the latter predicts the true value of the temperature given a reading produced by the
thermistor. The name measurement function may be a better name for the analysis function
in a general context, but unfortunately it conflicts with how it is often used for the functions
that appear in measurement equations.
The question may naturally be asked of why not build l directly, given that it is the function
needed to use the thermistor in practice, instead of determining c first, and then inverting it 
to obtain l . 
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One of the reasons has been indicated above already: the legal requirement for characteriz
ing how the device being calibrated responds to known inputs. Another reason is that this
more circuitous route, sometimes called inverse regression (Osborne, 1991), can be followed
using conventional regression methods, instead of requiring more specialized software. (Ex
amples E17 and E18 illustrate how the analysis function may be built directly.)
Both the indications provided by the thermistor and by the PRT are affected by errors. De
termining a relationship between them involves finding a curve that minimizes the apparent
errors and expresses one indication as a function of the other. In this case, and as will be
seen shortly, the errors affecting the indications I provided by the thermistor are about 8
times larger than the errors affecting the temperatures T measured by the PRT. If the curve 
in question is to minimize deviations of the points (T , I) from it, and these deviations are 
measured either along the axis of temperatures T or along the axis of indications I , then it
stands to reason that the curve should minimize the larger deviations, which in this case are
between observed and predicted values of I . 
In these circumstances, the statistical model underlying ordinary least squares regression is
the observation equation Ij = c(Tj ) + Ej , where j = 1, … , n = 12 identifies the set point at 
which temperature Tj was measured by the PRT during calibration, and the corresponding 
indication Ij was read off the thermistor, Ej denotes the error affecting Ij , and Tj is assumed 
known without error, or at least known up to an error that is negligible by comparison with 
Ej . 
Model Selection and Fit. The calibration function c will be a polynomial of low degree, and
it will be fitted to the data by ordinary least squares, which is optimal (in several senses of
“optimality”) if the {Ej } are like a sample from a Gaussian distribution with mean 0.
The degree of the polynomial was selected by comparing polynomials of degrees from 1
to 6, using analysis of variance techniques (Chambers, 1991) that suggested a polynomial
of the 3rd degree as representing the best compromise between goodness-of-fit and model
parsimony: Ij = p0 + p1Tj + p2Tj 

2 + p3T 3 + Ej for j = 1, … , n. 
The least squares estimates of the coefficients are p̂0 = −0.2785 ◦C, p̂1 = 0.9722 ◦C−1, p̂2 = 
0.002 773 ◦C−2, and p̂3 = −4.404 × 10−5 ◦C−3. (These differ from the corresponding values
in Whetstone et al. (1989, Table 18) because the latter pertain to a polynomial of the 3rd
degree fitted to the {Tj } as a function of the {Ij }). All except the intercept p̂0 are statistically 
significantly different from 0.
Conventional graphical diagnostics — plot of residuals {Êj } against fitted values {Îj }, and
QQ-plot of the residuals — reveal no obvious inadequacy of the model to these data. This
calibration is valid for thermistor indications in the range 16.22 ◦C ⩽ I ⩽ 40.47 ◦C. 
Analysis Function. To find the calibrated value of temperature that corresponds to a reading 
I made by the thermistor involves solving the following equation for T : p̂0+ p̂1T + p̂2T 2+ 
p̂3T 3 = I . Of the three solutions (generally complex numbers) that this equation will have,
we select the one whose imaginary part is essentially equal to 0, and whose real part is
between 16 ◦C and 40 ◦C, which is the calibration range. 
For example, if I = 27.68 ◦C, computing l(I) involves solving the cubic equation −0.2785+ 
0.9722T + 0.002773T 2− 0.00004404T 3 = 27.68. Of the three roots of this equation, 
27.54 ◦C, −135.14 ◦C, and 170.57 ◦C, only the first is within the calibration range.
Exhibit 11 depicts the calibration and analysis functions, and also the expanded uncertainties 
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associated with estimates of the temperature that the analysis function produces, evaluated
as explained below. 
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Exhibit 11: LEFT PANEL: Calibration function that produces the indication I = c(T ) that 
the thermistor is expected to produce when the PRT indicates that the temperature is T . 
CENTER PANEL: Analysis function that produces the value T = l(I) of temperature that 
corresponds to an indication I produced by the thermistor. The calibration and analysis 
functions, c and l = c−1, appear to be identical only because I and T have the same units 
of measurement and corresponding values are numerically close to one another, and both
functions are approximately linear over the ranges depicted. RIGHT PANEL: Simultaneous 
coverage envelopes for T , with coverage probabilities 68 % (dotted blue lines) and 95 % 
(solid red lines). 

Uncertainty Evaluation. Whetstone et al. (1989, Page 62) reports that the standard uncer
tainty associated with the values of temperature measured by the PRT is uPRT (T ) = 0.0015 ◦C,
and points out that extension cables used to connect the thermistor probe to the location
where the indications were read also are a source of uncertainty with standard uncertainty 
uCABLE (T ) = 0.01 ◦C. These, and the contributions from the residuals {Êj }, will be propa
gated using the Monte Carlo method, by taking the following steps: 

( )½21. Compute r = (̂2 + uCABLE(T ) = 0.016 ◦C, where (̂ = 0.012 ◦C is the estimate of 
the standard deviation of the residuals {Êj } corresponding to the polynomial fit for the 
calibration function. 

2. Let e1, . . . , e denote a set of m = 100 values of indication values for the thermistor m
equispaced from 16.22 ◦C to 40.47 ◦C (these are the values at which the inverse of the
calibration function will be evaluated for purposes of display as in Exhibit 11). 

3. Choose a suitably large integer K (in this example K = 10 000), and then for k = 
1, … , K: 
(a) Draw T1,k, . . . , Tn,k independently from n = 12 Gaussian distributions with means 

T1, . . . , T (the values of temperature measured by the PRT) and standard deviations n
all equal to uPRT (T ). 

(b) Draw I1,k, . . . , In,k independently from n = 12 Gaussian distributions with means 

Î1, . . . , Î (the thermistor indications predicted by the calibration function c at the n
values of temperature measured by the PRT) and standard deviations all equal to r. 
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∗(c) Determine the polynomial of the third degree c by least squares that expresses the k 
{Ij,k ∶ j = 1, … , n} as a function of the {Tj,k ∶ j = 1, … , n}. 

∗(d) For each i = 1, … , m, compute T ∗ = l̂∗(ei), where l∗ denotes the inverse of c .i,k k k kThis step involves solving a cubic equation for each i, and determining the suitable 
root to assign to T ∗ .i,k

4. Determine coverage intervals, depicted in Exhibit 11, for all values of i = 1, … , m simul
taneously, applying the method described by Davison and Hinkley (1997, Section 4.2.4)
and implemented in R function envelope (Canty and Ripley, 2013b), using the data in 
the m × K array with the {T ∗ }.i,k

E8 Molecular weight of carbon dioxide. The relative molecular mass (or, molecular 
weight) of carbon dioxide is Mr(CO2) = Ar(C) + 2Ar(O), where Ar(C) and Ar(O) denote 
the relative atomic masses (or, atomic weights) of carbon and oxygen.
The standard atomic weights of carbon and oxygen are intervals that describe the diversity
of isotopic compositions of these elements in normal materials: Ar(C) = [12.0096, 12.0116]
and Ar(O) = [15.999 03, 15.999 77] (Wieser et al., 2013).
The Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the Interna
tional Union of Pure and Applied Chemistry (IUPAC), defines normal material for a partic
ular element, as any terrestrial material that “is a reasonably possible source for this element
or its compounds in commerce, for industry or science; the material is not itself studied for
some extraordinary anomaly and its isotopic composition has not been modified significantly
in a geologically brief period” (Peiser et al., 1984).
If A∗ r (C) and A∗ r (O) denote independent random variables with uniform (or, rectangular)
distributions over those intervals, then their mean values are 12.0106 and 15.9994 (which 
are the midpoints of the intervals), and their standard deviations are u(Ar(C)) = 0.0006 and 
u(Ar(O)) = 0.0002 (the standard deviation of a uniform distribution equals the length of the
interval where the distribution is concentrated, divided by 

√ 
12).

Therefore, 12.0106 + 2(15.9994) = 44.0094 is an estimate of Mr(CO2). Neglecting the 
diminutive correlation between A∗ r (C) and A∗ r (O) that is induced by the implied normaliza
tion relative to the atomic mass of 12C, Mr(CO2) is a linear combination of two uncorrelated 
random variables. 
According to a result of probability theory, the variance of Mr(CO2) is equal to the variance 
of Ar(C) plus 4 times the variance of Ar(O): u2(Mr(CO2)) = u2(Ar(C)) + 4u2(Ar(O)) = 
(0.0006)2 + 4(0.0002)2 = (0.000721)2. Therefore, u(Mr(CO2)) = 0.0007. If either the 
Monte Carlo method used in Example E1, or the conventional error propagation formula of
the GUM were used, the same results would have been obtained. 
In this case it is also possible to derive analytically not only the standard uncertainty u(Mr(CO2)),but the whole probability distribution that characterizes the uncertainty associated with the
molecular weight of CO2. 
In fact, Mr ∗(CO2) = A∗ r (C) + 2Ar ∗(O) is a random variable with a symmetrical trapezoidal
distribution with the mean and standard deviation given above, and whose probability den
sity is depicted in Exhibit 12 (Killmann and von Collani, 2001). Using this fact, exact cov
erage intervals can be computed: for example, [44.0080, 44.0108] is the shortest 95 % cov
erage interval for the molecular weight of carbon dioxide. 
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Exhibit 12: Trapezoidal probability density that characterizes the uncertainty associated
with the molecular weight of carbon dioxide, assuming that the atomic weights of carbon
and oxygen are independent random variables distributed uniformly over the corresponding
standard atomic weight intervals. The shaded region comprises 95 % of the area under
the trapezoid, and its footprint on the horizontal axis is the shortest, exact 95 % coverage
interval. 

E9 Cadmium Calibration Standard. A calibration standard for atomic absorption spec
troscopy is prepared by adding a mass m of cadmium, with purity P , to an acidic solvent 
to obtain a solution of volume V (Ellison and Williams, 2012, Example A1). The mea
surement equation expresses the concentration of cadmium as cCd = 1000mP∕V . The 
input quantities have the following values and standard uncertainties: m = 100.28 mg, 
u(m) = 0.05 mg; P = 0.9999, u(P ) = 0.000 058; V = 100.0 mL, u(V ) = 0.07 mL. There
fore, cCd = 1002.7 mg∕L. 
If the goal is simply to compute an approximation to u(cCd), and given that the input quanti
ties are combined using multiplications and divisions only, then, according to the GUM 5.1.6,
the squared relative uncertainty of cCd is approximately equal to the sum of the squared rela
tive uncertainties of the input quantities, (u(cCd)∕cCd)2 ≈ (u(m)∕m)2 +(u(P )∕P )2 +(u(V )∕V )2,
hence u(cCd) ≈ 0.9 mg∕L. The NUM reproduces this result.
In the absence of specific additional information about these quantities, to apply the Monte
Carlo method we may assume that the corresponding random variables have Gaussian dis
tributions with the means and standard deviations equal to the values and standard uncer
tainties given above. In these circumstances, the Monte Carlo method as implemented in
the NUM produces results practically identical to those listed above.
The results are still the same if the models described in Ellison and Williams (2012, Exam
ple A1) for P (uniform distribution between 0.9998 and 1) and for V (symmetrical triangu
lar distribution with mean 100 mL and standard deviation 0.7 mL) are used instead. A 95 % 
coverage interval based on a Monte Carlo sample of size 106 ranges from 1001.0 mg∕L to 
1004.4 mg∕L. 
E10 PCB in Sediment. Key Comparison CCQM–K25 was carried out to compare the
results of the determination of the mass fractions of five different polychlorinated biphenyl 
(PCB) congeners in sediment (Schantz and Wise, 2004). Exhibit 13 lists and depicts the
selected results for PCB 28 (2, 4, 4’-trichlorobiphenyl). The analysis of measurement re
sults produced independently by different laboratories is often described as meta-analysis 
(Higgins et al., 2009; Rukhin, 2013). 

NIST TECHNICAL NOTE 1900 42 ∕ 103 

http:u(V)=0.07
http:u(m)=0.05


The measurement model is an observation equation: a laboratory random effects model
(Toman and Possolo, 2009, 2010), which represents the value of mass fraction measured
by each laboratory as Wj = µ + Aj + Ej for j = 1, … , n, where n = 6 is the number of 
laboratories, µ denotes the measurand that is estimated by the consensus value, A1, … , An
are the laboratory effects (assumed to be a sample from a Gaussian distribution with mean 0
and standard deviation r), and E1, … , E represent measurement errors (also assumed to ben
outcomes of Gaussian random variables with mean 0 and standard deviations (1, . . . , ( ).n

The data are the measured values {Wj }, the associated standard uncertainties {uj }, and the 
numbers of degrees of freedom {�j } that these standard uncertainties are based on. If the 
data were only the {Wj } it would not be possible to distinguish the laboratory effects {Aj }
from the measurement errors {Ej }. As it is, we know that the absolute values of the {Ej } are 
generally comparable to the {uj }, and conclude that any “excess variance” the {Wj } may 
exhibit is attributable to the {Aj }, comparable to r in absolute value. 
DerSimonian-Laird Procedure. The standard deviation r, of the laboratory effects, may be
estimated in any one of several different ways. DerSimonian and Laird (1986) suggested the
procedure most widely used in meta-analysis to fit this type of model: it is implemented in
function rma defined in R package metafor (Viechtbauer, 2010). 
The fact that the estimate of r is about three times larger than the median of the {uj }, in
dicates that there is a source of uncertainty that has not been recognized by the participat
ing laboratories, hence is not captured in their stated uncertainties. Thompson and Ellison
(2011) call the contribution from such unrecognized source dark uncertainty, and in this case
it is very substantial. The random effects model provides the technical machinery necessary
to recognize and propagate this contribution.
The corresponding estimate of the measurand is µ̂ = 33.6 ng∕g. The same function rma 
also evaluates u(µ) as 0.75 ng∕g, and produces a 95 % coverage interval for µ ranging from 
32.3 ng∕g to 34.9 ng∕g. 
An alternative, possibly more refined uncertainty evaluation that recognizes the limited
numbers of degrees of freedom that the {uj } are based on, employs the parametric sta
tistical bootstrap (Efron and Tibshirani, 1993), and produces u(µ) = 0.74 ng∕g, as well as 
an approximate 95 % coverage interval ranging from 32.1 ng∕g to 35.1 ng∕g. 
Bayesian Procedure. Both evaluations of uncertainty just discussed are over-optimistic be
cause implicitly they regard an evaluation of the inter-laboratory variability r that is based 
on five degrees of freedom only (since six laboratories are involved) as if it were based on
infinitely many.
A Bayesian treatment can remedy this defect and recognize and propagate this source of
uncertainty properly. The distinctive traits of a Bayesian treatment are these: (i) all quantities
whose values are unknown are modeled as non-observable random variables, and data are
modeled as observed values of random variables; (ii) estimates and uncertainty evaluations
for unknown quantity values are derived from the conditional probability distribution of the
unknowns given the data (the so-called posterior distribution).
Enacting (i) involves specifying probability distributions for all the quantities in play (un
knowns as well as data), and (ii) involves application of Bayes’s rule, typically via Markov
Chain Monte Carlo sampling that produces an arbitrarily large sample from the posterior
distribution (Gelman et al., 2013). Carrying this out successfully requires familiarity with 
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probability models and with their selection for the intended purpose, and also with suitable,
specialized software for statistical computing. The results reported below were obtained
using function metrop defined in R package mcmc (Geyer and Johnson, 2014).
The prior distributions selected for the Bayesian analysis were these: µ has an (improper) 
uniform distribution over the set of its possible values; r and the {(j } have half-Cauchy
distributions, the former with scale 15, the latter with scale 10, as suggested by Gelman
(2006); the {Aj } are Gaussian with mean 0 and standard deviation r. The data are modeled 
as follows: the {Wj } are Gaussian with mean {µ+Aj } and variances {(2}; and the {�ju ∕(2}j j jare chi-squared with {�j } degrees of freedom.

The estimate of the consensus value µ is the mean of the corresponding posterior distribu
tion, 33.6 ng∕g, and the standard deviation of the same distribution is u(µ) = 0.99 ng∕g,

which is substantially larger than the over-optimistic evaluation given above. A correspond
ing 95 % probability interval ranges from 31.5 ng∕g to 35.5 ng∕g.
 
Degrees of Equivalence. The Bayesian treatment greatly facilitates the characterization of the
 
unilateral degrees of equivalence (DoE), which comprise the estimates of the {Aj } and the
 
associated uncertainties {u(Aj )}, depicted in Exhibit 14.
 

LAB Wj ∕(ng∕g) uj ∕(ng∕g) �j LAB Wj ∕(ng∕g) uj ∕(ng∕g) �j 

IRMM 34.30 1.03 60.0 NIST 32.42 0.29 2.0 

KRISS 32.90 0.69 4.0 NMIJ 31.90 0.40 13.0 

NARL 34.53 0.83 18.0 NRC 35.80 0.38 60.0 
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Exhibit 13: Measured values Wj of the mass fraction (ng∕g) of PCB 28 in the sample, 
standard uncertainties uj , and numbers of degrees of freedom �j that these standard un
certainties are based on, in CCQM–K25. Each large (blue) dot represents the value Wjmeasured by a participating laboratory; the thick, vertical line segment depicts Wj ± uj ;and the thin, vertical line segment depicts the corresponding uncertainty including the con

2tribution from dark uncertainty, Wj ±
(

r2+u
)½. The thick, horizontal (brown) line marks j

the consensus value µ̂, and the shaded (light-brown) band around it represents µ̂ ± u(µ). 

E11 Microwave Step Attenuator. When a microwave signal is sent from a source to a
load and their impedances are mismatched, some power is lost owing to reflections of the
signal (Agilent, 2011). An attenuator (Exhibit 15) may then be used for impedance match
ing. Consider the following measurement model for the attenuation applied by a microwave 
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Exhibit 14: Bayesian posterior probability density of the consensus value (left panel), and
unilateral degrees of equivalence (right panel). The red dot in the left panel marks the esti
mate of the consensus value, and the thin, bell-shaped, red curve is a Gaussian probability
density with the same mean and standard deviation as the posterior density, showing that
the posterior distribution has markedly heavier tails than the Gaussian approximation. The
vertical line segments in the right panel correspond to 95 % probability intervals for the
values of the degrees of equivalence, whose estimates are indicated by the blue dots. 

coaxial attenuator (EA Laboratory Committee, 2013, Example S7): 
LX = LS + 8LS + 8LD + 8LM + 8LK + 8Lib − 8Lia + 8L0b − 8L0a. 

Exhibit 15: Coaxial step attenuator from Fairview
Microwave Inc. (Allen, Texas) model SA3730N,
performs attenuation from 0 dB to 30 dB in 1 dB 
steps for signals with frequency up to 3 GHz. The 
device is about 12 cm long and 7 cm tall. The large 
black knob controls attenuation in 10 dB steps, and 
the small black knob controls it in 1 dB steps. 

The measurement serves to calibrate a microwave step attenuator using an attenuation mea
suring system containing a calibrated step attenuator which acts as the attenuation reference,
and an analog null detector that is used to indicate the balance condition. The measurement
method involves the determination of the attenuation between matched source and matched 
load. In this case the attenuator to be calibrated can be switched between nominal settings
of 0 dB and 30 dB and it is this incremental loss that is determined in the calibration process 
(EA Laboratory Committee, 2013, S7.1).
The output is the attenuation Lx of the attenuator to be calibrated, and the inputs are as
follows (with estimates and uncertainties listed in Exhibit 16): 

∙ LS = Lib − Lia: difference in attenuation with the attenuator to be calibrated set at 
30 dB (Lib) and at 0 dB (Lia); 

∙ 8LS: correction obtained from the calibration of the reference attenuator; 
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∙ 8LD: change in the attenuation of the reference attenuator since its last calibration
due to drift; 

∙ 8LM: correction due to mismatch loss; 
∙ 8LK: correction for signal leakage between input and output of the attenuator to be

calibrated, due to imperfect isolation; 
∙ 8Lia, 8Lib: corrections to account for the limited resolution of the reference detector 

at the 0 dB and the 30 dB settings; 
∙ 8L0a, 8L0b: corrections to account for the limited resolution of the null detector at 

the 0 dB and at the 30 dB settings. 
LS is estimated by the average, 30.0402 dB, of four observations of the attenuation dif
ference aforementioned: 30.033 dB, 30.058 dB, 30.018 dB, and 30.052 dB. The standard 
uncertainty associated with that average is 0.0091 dB, given by the standard deviation of 
those four observations divided by 

√ 
4, in accordance with Equation (A-5) of TN1297. 

EA Laboratory Committee (2013, Example S7) does not explain whether these repeated
measurements were made after disconnecting the attenuators and then reconnecting them, or
not. This is an important omission because connector repeatability actually is the dominant
error in most microwave measurements. 
Assuming that the perturbations expressed in the dispersion of these replicated readings
are small, and considering that they are expressed in a logarithmic scale (decibel), we will
proceed to model these four replicates as a sample from a Gaussian distribution. In these cir
cumstances LS is modeled as a Student t3 random variable shifted to have mean 30.0402 dB 
and rescaled to have standard deviation 0.0091 dB. 
Harris and Warner (1981) have shown that, under certain conditions, a U-shaped (arcsine)
distribution is a suitable model for mismatch uncertainty, which derives from incomplete
knowledge of the phase of the reflection coefficients of the source and load impedances, and
of their interconnection. In this conformity, 8LM is modeled as a beta random variable with 
both parameters equal to ½, shifted to have mean 0, and rescaled to have standard devia
tion 0.02 dB. Exhibit 16 shows that the corresponding source of uncertainty makes a large
contribution to measurement uncertainty, which is typical for microwave power transfers
(Lymer, 2008). 
8LD could be comparably well modeled using either a Gaussian or an arcsine distribution,
the latter being the more conservative choice that we have adopted. 
8LK is also modeled using a beta random variable with both parameters equal to ½, shifted 
to have mean 0, and rescaled to range between −0.003 dB and 0.003 dB. Such distribution 
has standard deviation 0.0021 dB (EA Laboratory Committee (2013, S7.12) lists 0.0017 dB 
instead, which is consistent with a rectangular distribution with the same range, but not with
a U-shaped distribution that the same EA Laboratory Committee (2013, S7.12) indicates 
8LK should have).
The Monte Carlo method of the GUM-S1 yields a distribution for the output quantity LX
that is markedly non-Gaussian (Exhibit 17), even though it is a linear combination of nine
independent random variables: a situation that many users of the GUM would feel confident 
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QUANTITY ESTIMATE (dB) STD. UNC. (dB) MODEL 

LS 30.0402 0.0091 Student t3 
8LS 0.0030 0.0025 Rectangular 
8LD 0.0000 0.0014 Arcsine (U-shaped) 
8LM 0.0000 0.0200 Arcsine (U-shaped) 
8LK 0.0000 0.0021 Arcsine (U-shaped) 
8Lia 0.0000 0.0003 Rectangular 
8Lib 0.0000 0.0003 Rectangular 
8L0a 0.0000 0.0020 Gaussian 
8L0b 0.0000 0.0020 Gaussian 

Exhibit 16: Estimates, standard uncertainties, and probability distributions for the input
quantities that determine the value of the attenuation LX of a microwave step attenuator. 
The arcsine distribution is a beta distribution with mean ½ and standard deviation 1∕ 

√ 
8,

which here is re-scaled and shifted to reproduce the ranges and means of the corresponding
random variables. 

should give rise to a distribution close to Gaussian. The estimate of the output quantity is
30.043 dB, with associated standard uncertainty 0.0224 dB, which are the mean and standard 
deviation of a sample of size 1 × 107 drawn from the distribution of LX (which reproduce 
the results listed in EA Laboratory Committee (2013, S7.12)).
A 95 % coverage interval for the true value of LX ranges from 30.006 dB to 30.081 dB. The 
Monte Carlo sample may also be used to ascertain that the “conventional” 95 % coverage
interval, of the form LX ± 2u(LX), is conservative in this case, with effective coverage
probability 99 %. However, the “conventional” 68 % coverage interval, of the form LX ± 
u(LX), is too short, with effective coverage probability of only 61 %.
The bimodality of the distribution of the output quantity is attributable to the dominance of
the contribution that the uncertainty associated with 8LM makes to the uncertainty asso
ciated with LX: u2(8LM) amounts to almost 79 % of u2(LX). Not only is the distribution
markedly non-Gaussian, but the shortest 68 % coverage “interval” turns out to be a union of
two disjoint intervals, and does not even include the mean value of the distribution. 
E12 Tin Standard Solution. A calibration standard intended to be used for the determi
nation of tin was prepared gravimetrically by adding high-purity, assayed tin to an acidified
aqueous solution, to achieve a mass fraction of tin of Wa = 10.000 07 mg∕g with standard 
uncertainty u(Wa) = 0.010 004 77 mg∕g based on �a = 24 degrees of freedom. The de
termination of the same mass fraction using inductively coupled plasma optical emission
spectrometry (ICP-OES) yielded WI = 10.022 39 mg∕g with standard uncertainty u(WI ) = 
0.010 571 82 mg∕g based on �I = 28 degrees of freedom. In addition, the long-term (8
years) stability has been evaluated (Linsinger et al., 2001), and the associated uncertainty
component has standard uncertainty uS (W) = 0.005 823 008 mg∕g based on �S = 55 de
grees of freedom. 
Average. The most obvious combination of the two measurement results consists of aver
aging the measured values to obtain a = ½(Wa + WI ) = 10.011 mg∕g and computing 

uA(a) = ½(

u2(Wa) + u2(WI )
)½ = 0.007 mg∕g. Using a coverage factor k = 2 leads to an 

approximate 95 % coverage interval ranging from 9.997 mg∕g to 10.026 mg∕g. 
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Exhibit 17: The curve with two humps is the probability density of the attenuation LXapplied by a microwave coaxial attenuator. The diamond marks the mean value of the 
distribution: it is not included in the union of the two intervals indicated by the thick
horizontal line segments, which together define the shortest 68 % coverage region for the
true value of that attenuation. The bell-shaped dotted curve is the probability density of a
Gaussian distribution with the same mean and standard deviation as LX. 

Weighted Average. Alternatively, the weighted average with weights inversely proportional
to the squared standard uncertainties is 

√

√

√

√


Wa WI+ 1
u2(W u2(WI )) 
= 10.011 mg∕g, and u (a) = w = 0.011 mg∕g.
 aa =
 w 1 

u2(W
1 1 

u2(WI ) u2(W
1 

u2(WI )
+
 +


) a)a

An approximate 95 % coverage interval a ±2u (a) ranges from 9.996 mg∕g to 10.025 mg∕g.w w 

GUM. Both uA(a) and u (a) ignore the fact that the standard measurement uncertainties forw
the two measurement methods are based on small numbers of degrees of freedom. If the
choice is made to combine the two measured values according to the measurement equation 
a = ½(W + WI ) as considered above, then the GUM G.6.4 suggests that the coverage factor a 
k, for a 95 % coverage interval of the form a±ku (a), should take into account the numbers w
of degrees of freedom that u(W ) and u(WI ) are based on. a

This is accomplished by selecting k to be the 97.5th percentile of the Student’s t distribution 
with 

� ∗ =


(
 )2 u2(W ) + u2(WI )a = 51.76
 
u4(Wa) + u

4(WI ) 
a �I 

√ 

degrees of freedom, according to the Welch-Satterthwaite formula (Miller, 1986, Page 61).
The corresponding interval ranges from 9.997 mg∕g to 10.026 mg∕g. 
Monte Carlo Method. To employ the Monte Carlo method of the GUM-S1, note that if �a
denotes a value drawn from a Student’s t distribution with � degrees of freedom, then a 

x = W + u(W )� (� − 2)∕�a a a a a a.
 
By the same token, y = WI + u(WI )�I
distribution of WI , where �I 

√

is like a drawing from the probability distribution of W
(�I − 2)∕�I is like a drawing from the probability 

denotes a value drawn from Student’s t distribution with �I
degrees of freedom. 
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Repeating both drawings a sufficiently large number K of times, we may then form K repli
cates of the output quantity as aS,1 = ½(x1 + y1), . . . , aS,K = ½(xK + yK ), whose standard 
deviation is an evaluation of uS (a), and whose 2.5th and 97.5th percentiles are the end-points
of a 95,% coverage interval. With K = 107, we obtained uS (a) = 0.007 mg∕g and a 95 % 
coverage interval ranging from 9.997 mg∕g to 10.026 mg∕g. 
Consensus. Finally, we consider a method of data reduction that blends the gravimetric and 
ICP-OES measurement results into a consensus estimate of the mass fraction of tin taking
into account the difference between the values measured by the two methods. This method
is currently used to assign a value, and to characterize the associated uncertainty, for NIST
Standard Reference Materials that are single element solutions intended for use in spectrom
etry.
This approach is widely used in meta-analysis in medicine, where we seek to combine in
formation from multiple, independent studies of a particular therapy or surgical procedure
(Hedges and Olkin, 1985), and more generally to combine information from multiple sources
about the same measurand (Gaver et al., 1992).
The measurement model is a set of two observation equations: W = w + A + E anda a a 
WI = w + AI + EI , where Aa and AI denote method effects specific to the gravimetry and 
to ICP-OES, and E and EI represent measurement errors.a 

This is the simplest version of the measurement model used in several examples in this
Simple Guide: E10, E21, E23, and E12: a linear, Gaussian random effects model. The
model is linear because the quantities on the right-hand side of the observation equations are
added. The model is Gaussian because the method (random) effects A and AI are modeled a
as values of independent Gaussian random variables with mean 0 and the same standard
deviation r, and the measurement errors E and EI are modeled as values of independenta
Gaussian random variables with mean 0 and standard deviations equal to u(W ) and u(WI ).a

Application of the most widely used procedure to fit such random effects model (DerSi
monian and Laird, 1986), as implemented in function rma defined in R package metafor 
(Viechtbauer, 2010), produces 10.011 mg∕g as consensus estimate. 
The corresponding uncertainty evaluation may be done using a conventional approximation
implemented in that same R function rma, or the parametric statistical bootstrap (Efron and
Tibshirani, 1993), which is a version of the Monte Carlo method of the GUM-S1. R function 
rma (including the adjustment suggested by Knapp and Hartung (2003)) produces uD(a) = 
0.011 mg∕g, and a 95 % coverage interval that ranges from 9.869 mg∕g to 10.153 mg∕g. 
The Monte Carlo evaluation of the uncertainty associated with the DerSimonian-Laird esti
mate involved the following steps. 
1. Model the state of knowledge about r2 as an outcome of a random variable with a lognor

mal distribution with mean equal to the estimate r̂2 = 0.000 143 161 8(mg∕g)2 produced 
by R function rma, and with standard deviation set equal to the estimate of the standard 
error of r̂2, 0.000 352 268 2(mg∕g)2, computed by the same function as explained by 
Viechtbauer (2007). 

2. Select a sufficiently large integer K and then repeat the following steps for k = 1, … , K: 
2(a) Draw a value r from the lognormal probability distribution associated with r2;k 
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2(b) Draw a value v from a chi-squared distribution with � degrees of freedom, and aa,k 
( 2 

)½;compute (a,k = � u2(W )∕va a a,k
2(c) Draw a value v from a chi-squared distribution with �I degrees of freedom, and I,k 
( )½;2compute (I,k = �Iu2(WI )∕vI,k

(d) Draw Aa,k and AI,k from a Gaussian distribution with mean 0 and standard deviation 
rk; 

(e) Draw Ea,k from a Gaussian distribution with mean 0 and standard deviation (a,k; 
(f) Draw EI,k from a Gaussian distribution with mean 0 and standard deviation (I,k; 
(g) Compute Wa,k = ŵ +Aa,k +Ea,k, and WI,k = ŵ +AI,k +EI,k; 
(h) Compute the DerSimonian-Laird estimate W∗ of w based on (Wa,k, (a,k) and (WI,k, (I,k).k 

A Monte Carlo sample {W∗} of size K = 50 000 drawn from the distribution of the mass kfraction of tin as just described had standard deviation u�(a) = 0.012 825 58 mg∕g. A 
95 % coverage interval derived from the Monte Carlo sample ranges from 9.986 075 mg∕g 
to 10.035 862 mg∕g. 
Exhibit 18 shows the measurement results and the probability density for the measurand
obtained by application of the Monte Carlo method to the DerSimonian-Laird consensus
procedure. Exhibit 19 summarizes the results from the several different approaches dis
cussed above. 
E13 Thermal Expansion Coefficient. The thermal expansion coefficient of a copper bar 
is given by the measurement equation a = (L1 − L0)∕(L0(T1 − T0)), as a function of the 
lengths L0 = 1.4999 m and L1 = 1.5021 m that were measured at temperatures T0 = 
288.15 K and T1 = 373.10 K. The corresponding standard uncertainties are u(L0) = 0.0001 m, 
u(L1) = 0.0002 m, u(T0) = 0.02 K, and u(T1) = 0.05 K. 
Gaussian Inputs. In the absence of information about the provenance of these estimates and
uncertainty evaluations, we assign Gaussian distributions to them, with means equal to
the estimates, and standard deviations equal to the standard uncertainties, and apply the
NUM. Gauss’s formula and the Monte Carlo method yield the same estimate and stan
dard uncertainty for the thermal expansion coefficient: â = 1.73 × 10−5 K−1, and u(a) = 
0.18 × 10−5 K−1. 
A 95 % coverage interval for a can be derived from the Monte Carlo sample drawn from
the probability distribution of the measurand, by selecting the 2.5th and 97.5th percentiles
of the sample (of size 1 × 107) as end-points: (1.38 × 10−5 K−1 , 2.07 × 10−5 K−1). A 99 % 
coverage interval built similarly ranges from 1.27 × 10−5 K−1 to 2.18 × 10−5 K−1. 
Student Inputs. Now suppose that the estimates of the lengths and of the temperatures each
is an average of four observations made under conditions of repeatability (VIM 2.20), and
the corresponding standard uncertainties are the standard errors of these averages (Type A
evaluations obtained by application of Equation (A-5) of TN1297).
In these circumstances, it may be more appropriate to assign Student t distributions with 3 
degrees of freedom to all the inputs, shifted and scaled to have means and standard deviations
equal to the corresponding estimates and standard uncertainties. The reason is this: if x and 
s denote the average and standard deviation of a sample of size m drawn from a Gaussian 
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Exhibit 18: The left panel shows an estimate of the probability density of the consen
sus value, which fully characterizes measurement uncertainty. The consensus value ŵ is 
indicated by a large red dot. The pink area comprises 95 % of the area under the curve:
its footprint on the horizontal axis is the corresponding coverage interval. The right panel
shows the measurement results for the two methods used, gravimetry and ICP-OES, where
the large red dots indicate the measured values, the thick, vertical blue lines indicate the
corresponding standard measurement uncertainties, and the tiny thin lines that extend the
thick lines indicate the contributions from dark uncertainty (between-methods uncertainty
component (Thompson and Ellison, 2011)). The pink rectangle represents ŵ ± U95 %(w),where U95 %(w) denotes the expanded uncertainty corresponding to the specified coverage 
probability. 

√distribution with unknown mean µ and unknown standard deviation (, then (x−µ)∕(s∕ m)
has a Student’s t distribution with m −1 degrees of freedom (DeGroot and Schervish, 2011, 
Theorem 8.4.2).
Both â and u(a) still have the same values as when the inputs are assigned Gaussian distri
butions, but the coverage intervals differ from those given above: the 95 % coverage interval
constructed as described above ranges from 1.40 × 10−5 K−1 to 2.05 × 10−5 K−1, and the 
99 % coverage interval ranges from 1.15 × 10−5 K−1 to 2.30 × 10−5 K−1. 
Exhibit 20 shows the probability densities of the measurand that correspond to the two dif
ferent modeling assumptions for the inputs. When these are modeled as Student’s t3 random 
variables, the distribution of the measurand is more concentrated around the mean, but also
has heavier tails than when they are modeled as Gaussian random variables. This fact helps
explain why the 95 % interval corresponding to the Student inputs is shorter than its coun
terpart for the Gaussian inputs, and that the opposite is true for the 99 % interval. 
E14 Characteristic Strength of Alumina. Quinn and Quinn (2010) observed the follow
ing values of stress (expressed in MPa) when m = 32 specimens of alumina ruptured in a
flexure test: 265, 272, 283, 309, 311, 320, 323, 324, 326, 334, 337, 351, 361, 366, 375, 380,
384, 389, 390, 390, 391, 392, 396, 396, 396, 396, 398, 403, 404, 429, 430, 435. 
An adequate statistical model (observation equation) describes the data as outcomes of in-
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APPROACH ESTIMATE STD. UNC. 95 % COV. INT. 
AVE 10.011 0.007 (9.997, 10.026)
WAVE 10.011 0.007 (9.996, 10.025)
GUM 10.011 0.007 (9.997, 10.026)
GUM-S1 10.011 0.007 (9.997, 10.026)
DL 10.011 0.011 (9.869, 10.153)
DL-B 10.011 0.013 (9.986, 10.036) 

Exhibit 19: Estimate of the mass fraction of tin in a standard solution based on two inde
pendent measurement results, obtained as a simple average (AVE), as a weighted average
(WAVE), using the methods of the GUM and of the GUM-S1, and the consensus procedure
(DL) suggested by DerSimonian and Laird (1986), as well as the same procedure but with
uncertainty evaluation via the parametric statistical bootstrap (DL-B). All the values in the
table are expressed in mg∕g. 
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Exhibit 20: Estimates of the probability density
of the thermal expansion coefficient assuming that
the inputs have Student’s t3 distributions, shifted
and rescaled to reproduce their estimated val
ues and associated standard uncertainties (dashed,
thin red line), or Gaussian distributions (solid,
thick blue line). The solid, thin cyan line that
essentially tracks the blue line, is the probability
density of a Gaussian distribution with the same
mean and standard deviation as the measurand. 

dependent random variables with the same Weibull distribution with shape a and scale (C. 
A lognormal distribution would also be an acceptable model, but the Weibull is preferable
according the Bayesian Information Criterion (BIC) (Burnham and Anderson, 2002).
The Weibull model may be characterized by saying that the rupture stress S of an alumina 
coupon is such that log S = log (C + (1∕a) log Z, where Z denotes a measurement error 
assumed to have an exponential distribution with mean 1. Both the scale parameter (C and 
the shape parameter a need to be estimated from the data. 
The measurand is (C, also called the characteristic strength of the material. Several differ
ent methods may be employed to estimate the shape and scale parameters. The maximum
likelihood estimates are the values that maximize the logarithm of the likelihood function,
which in this case takes the form 

m m ( )a
∑ ∑ 

t(a, (C) = m log a − ma log (C + (a − 1) log si −	 
xi ,
(Ci=1 i=1 

where s1, … , s denote the rupture stresses listed above. m 
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The maximum-likelihood estimates, determined by numerical optimization, are â = 10.1 
and (̂C = 383 MPa. The associated standard uncertainties are u(a) = 1.4 and u((C) = 
7.1 MPa approximately. These approximations are derived from the curvature of the log-
likelihood function t at its maximum, according to the theory of the method (Wasserman,
2004). An approximate 95 % coverage interval for the characteristic strength ranges from
369 MPa to 398 MPa. The maximum likelihood estimates, the associated uncertainties, and
this coverage interval, were computed using facilities of R package bbmle (Bolker and R 
Development Core Team, 2014).
Next consider a different measurand: the mean value � of the rupture stress. It is estimated 
as �̂ = (̂CΓ(1 + 1∕â) = 365 MPa, where “Γ” denotes the gamma function (Askey and Roy, 
2010). The equation � = (CΓ(1+1∕a) is a measurement equation in its own right: since the
maximum-likelihood calculation above provides approximations not only for the standard
uncertainties associated with (C and with a, but also for their correlation coefficient (0.31), 
the NUM may then be used to find u(�) ≈ 8MPa. 
The parametric statistical bootstrap (Monte Carlo method of the GUM-S1 and GUM-S2)
(Efron and Tibshirani, 1993) may be used to evaluate the uncertainty associated with the
pair (â, ̂(C) and with �̂. This is accomplished by first selecting a large number K of repli
cates to be generated for the quantities of interest (in this case, K = 10 000). Next, for each 
k = 1, … , K , a sample of size m = 32 is drawn from a Weibull distribution with shape â

∗and scale (̂C, and the corresponding maximum likelihood estimates ak and (C
∗ 
,k, and �k

∗, are
computed in the same manner as for the original data. Finally, the resulting replicates are
summarized as in Exhibit 21. 

α

σ C
M

P
a

6 8 10 12 14

36
5

37
5

38
5

39
5

 0.002 

 0.004 

 0.006 

 0.008 

 0.01 

340 360 380 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

η MPa

P
ro

ba
bi

lit
y 

D
en

si
ty

●

Exhibit 21: The left panel shows an estimate of the joint probability density of the max
imum likelihood estimates of the scale and shape parameters of the Weibull distribution
used to model the sampling variability of the alumina rupture stress. The right panel shows
an estimate of the probability density of the mean rupture stress. The (pink) shaded area
under the curve comprises 95 % of the total area under the curve, hence its projection onto
the horizontal axis, marked by a thick, horizontal (red) line segment, is a 95 % coverage
interval for � that ranges from 349 MPa to 379 MPa. The large (blue) dot marks the mean 
of the Monte Carlo sample, 365 MPa. 
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E15 Voltage Reflection Coefficient. Tsui et al. (2012) consider the voltage reflection co
efficient Γ = S22 − S12S23∕S13 of a microwave power splitter, defined as a function of el
ements of the corresponding three-port scattering matrix (S-parameters). Exhibit 22 repro
duces the measurement results for the S-parameters listed in Tsui et al. (2012, Table 5). Since
the S-parameters (input quantities) are complex-valued, so is Γ (output quantity). Therefore,
in this example the measurement model is a measurement equation with a vector-valued out
put quantity (ℜ(Γ), ℑ(Γ)) whose components are the real and imaginary parts of Γ. 
The S-parameters are assumed to be independent, complex-valued random variables. The
modulus and argument of each S-parameter are modeled as independent Gaussian random
variables with mean and standard deviation equal to the value and standard uncertainty listed
in Exhibit 22. 
Application of the Monte Carlo method involves drawing samples of size K from the prob
ability distributions of the four S-parameters, and using corresponding values from these
samples to compute K replicates of Γ, which may then be summarized as in Exhibit 23 to
characterize the associated uncertainty.
Since the real and imaginary parts of Γ both may be written as functions of the same eight
input variables (which are the moduli and arguments of the S-parameters), the NUM may
be used to generate “coupled” samples of the real and imaginary parts by treating them as
elements of a vector-valued measurand. 
It is also possible to incorporate correlations between the S-parameters, as well as correla
tions between the modulus and argument of any of the S-parameters, by specifying a suitable
correlation matrix and applying it via one of the copulas (Possolo, 2010) that is available in
the NUM. 
Once the Monte Carlo samples produced by the NUM will have been saved, they may be
imported into any statistical computing application to compute suitable summaries of the
joint distribution of the real and imaginary parts of Γ, for example as depicted in Exhibit 23. 
The estimate of ℜ(Γ) is 0.0074 and u(ℜ(Γ)) = 0.0050. The estimate of ℑ(Γ) is 0.0031 and 
u(ℑ(Γ)) = 0.0045. The correlation between ℜ(Γ) and ℑ(Γ) is 0.0323. 

Mod(S) u(Mod(S)) Arg(S) u(Arg(S))
 

S22 0.24776 0.00337 4.88683 0.01392 

S12 0.49935 0.00340 4.78595 0.00835 

S23 0.24971 0.00170 4.85989 0.00842 

S13 0.49952 0.00340 4.79054 0.00835 

Exhibit 22: S-parameters expressed in polar form, and associated standard uncertainties, 
with Arg(S) and u(Arg(S)) expressed in radians. 

E16 Oxygen Isotopes. Exhibit 24 reproduces the values of 817O and of 818O listed in 
Rumble et al. (2013, Table 2), which were determined in 24 samples of some of the oldest
rocks on earth, part of the Isua Greenstone Belt near Nuuk, in southwestern Greenland.
Delta values (Coplen, 2011) express relative differences of isotope ratios in a sample and in
a reference material, which for oxygen is the Vienna Standard Mean Ocean Water (VSMOW) 
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Exhibit 23: The left panel shows an estimate of the probability density of the joint distri
bution of the real and imaginary parts of Γ, and the right panel shows its counterpart for 
the modulus and argument of Γ. The solid curves outline 95 % (2() coverage regions, and 
the dashed curves outline 68 % (1() coverage regions. 

817O / ‰ 5.24 6.02 3.92 4.29 5.66 7.32 2.52 5.34 2.57 6.11 1.23 0.97 

818O / ‰ 10.09 11.56 7.54 8.31 10.86 14.11 4.92 10.30 5.01 11.77 2.37 2.02 

817O / ‰ 1.10 5.23 1.45 3.42 2.85 3.32 7.13 5.17 6.87 5.65 6.57 2.50 

818O / ‰ 2.19 10.08 2.74 6.58 5.49 6.40 13.67 9.96 13.19 10.83 12.49 4.75 

Exhibit 24: Paired determinations of 817O and of 818O (expressed per mille) made on
samples of rocks from the Isua Greenstone Belt (Rumble et al., 2013, Table 2). 

maintained by the International Atomic Energy Agency (Martin and Gröning, 2009). For ex
ample, 817O = (R(17O∕16O)S−R(17O∕16O)VSMOW )∕R(17O∕16O)VSMOW , where R(17O∕16O)S
denotes the ratio of the numbers of atoms of 17O and of 16O in a sample, and R(17O∕16O)VSMOW 

= 379.9 × 10−6 (Wise and Watters, 2005a) is its counterpart for VSMOW. 
Meijer and Li (1998) consider the following model for the relationship between 817O and 
818O: log(1+817O) = log(1+K) +A log(1+818O), where K expresses the effect of imperfect 
calibration of the 817O scale to VSMOW (Meijer and Li, 1998, Page 362).
Exhibit 25 depicts the data listed in Exhibit 24, and a straight line fitted to the data by
Deming regression, which is an errors-in-variables (EIV) model that recognizes that both
sets of delta values have non-negligible and comparable measurement uncertainty (Adcock,
1878; Deming, 1943; Miller, 1981). The model was fitted to the data using function mcreg
defined in R package mcr (Manuilova et al., 2014). The corresponding observation equations 
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are as follows, for i = 1, … , 24: 
log(1 + Δ17,i) = log(1 + K) + A log(1 + Δ18,i), 

817Oi = Δ17,i + E17,i, 

818Oi = Δ18,i + E18,i, 

where Δ17,i and Δ18,i denote the true values of the delta values for sample i, and E17,i and 
E18,i denote the corresponding measurement errors. These errors are modeled as Gaussian
random variables with mean 0 and the same (unknown) standard deviation. 
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Exhibit 25: Straight line fitted by Deming re
gression to the paired determinations of 817O and 
of 818O made on samples of rocks from the Isua
Greenstone Belt (Rumble et al., 2013, Table 2).
The pink band is a 95 % simultaneous coverage
band for the line: its thickness (vertical cross-
section) has been magnified 25-fold. 

For the data in Exhibit 24, the slope of the Deming regression line is Â = 0.5253. The theory 
of ideal, equilibrium mass-dependent fractionation suggests that A = 0.53 (Matsuhisa et al., 
1978; Weston Jr., 1999; Young et al., 2002).
The slope of the ordinary least squares (OLS) fit shares the same first four significant digits
with the Deming regression slope in this case, because the data line up very closely to a
straight line to begin with. In general, when there are errors in both variables, OLS produces
an estimate of the slope whose absolute value is smaller than it should be — the so-called re
gression attenuation effect of ignoring the measurement uncertainty of the predictor, which 
is 818O in this case (Carroll et al., 2006).
The standard uncertainty associated with the slope of the Deming regression, based on a
bootstrap sample of size K = 100 000 was 0.0018. A 95 % coverage interval for its true 
value ranges from 0.5219 to 0.5289: these endpoints are the 2.5th and 97.5th percentiles of 
the bootstrap sample of the slope.
The uncertainty associated with the slope A was evaluated by application of the non-parametric
statistical bootstrap (Efron and Tibshirani, 1993), by repeating the following steps for k = 
1, … , K , where m = 24 denotes the number of determinations of paired delta values: 
1. Draw a sample of size m, uniformly at random and with replacement from the data 

{(817Oi, 818Oi) ∶ i = 1, … , m}, to obtain {(817Oi,k, 818Oi,k) ∶ i = 1, … , m} — meaning 
that the m pairs of measured delta values are equally likely to go into the sample, and that
any one of them may go into the sample more than once; 

NIST TECHNICAL NOTE 1900 56 ∕ 103 



2. Fit a Deming regression line to the {(817Oi,k, 818Oi,k) ∶ i = 1, … , m}, and obtain its 
slope A∗ .k

The standard uncertainty associated with A is the standard deviation of A∗
1, … , A∗ .K 

The estimate that Meijer and Li (1998) derived for A, from measurements they made on 
a collection of samples of natural waters, was 0.5281, with standard uncertainty 0.0015.

√

Since (0.5253 − 0.5281)∕ 0.00182 + 0.00152 = −1.2, and the probability is 23 % that a
Gaussian random variable with mean 0 and standard deviation 1 will deviate from 0 by this
much or more to either side of 0, we conclude that the estimate of A derived from the data 
in Exhibit 24 is statistically indistinguishable from the estimate obtained by Meijer and Li
(1998).
Considering that one of these estimates is derived from the rocks of the Isua Greenstone
Belt that are at least 4 billion years old, and that the other was derived from a collection
of contemporary natural waters, Rumble et al. (2013) suggest that “the homogenization of
oxygen isotopes required to produce such long-lived consistency was most easily established
by mixing in a terrestrial magma ocean.” It should be noted, however, that the exponent A has 
been found to vary, albeit slightly, among various isotope fractionation processes (Barkan
and Luz, 2011).
On the one hand, for the datasets considered by Meijer and Li (1998) and by Rumble et al.
(2013), the estimated values of the constant K in log(1+817O) = log(1+K) +A log(1+818O)
are very close to zero: they are 1.8 × 10−5 and −3.8 × 10−5, respectively. On the other hand, 
typical values of 818O (relative to VSMOW) range from −0.07 to 0.11. 
These facts imply that the simplified relation 817O = (1+818O)A −1 may be used to estimate 
the value of 817O that corresponds to a given value of 818O, when it is reasonable to assume
that there is equilibrium mass-dependent fractionation. Such estimate may be called for
when computing the atomic weight of oxygen in a material for which only the value of 
818O has been measured, or when correcting measured values of 813C in CO2 for the 17O 
interference, when the measurements are made using an isotope-ratio mass spectrometer
(Brand et al., 2010). 
E17 Gas Analysis. Example 2 of ISO (2001, B.2.2) describes the estimation of an analysis 
function a that, given an instrumental response r as input, produces a value x = a(r)
of the amount-of-substance fraction of nitrogen in a synthetic version of natural gas. In
this example, r denotes the indication produced by a thermal conductivity detector in a gas
chromatograph.
The measurand is the analysis function a, which is determined based on the values of the
amount fraction of nitrogen in a blank and in seven reference gas mixtures (standards), and
on the corresponding instrumental responses, taken together with the associated uncertain
ties, all listed in Exhibit 26. 
In ISO (2001, B.2.2), a is assumed to be a linear function that maps Pj (the true value of rj )
to �j = a + pPj (the true value of xj ), for j = 1, … , n, where n = 8 denotes the number of 
calibration data points. However, the uncertainty associated with the intercept a turns out 
to be about three times larger than the absolute value of the estimate of a, thus suggesting 
that the data are consistent with a = 0. 
A comparison of the two models for the analysis function, with and without intercept, via
a formal analysis of variance performed disregarding the uncertainties associated with the 
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instrumental responses (using R function anova), leads to the same conclusion: that the 
presence of a adds no value to the model. Therefore, in this example we use an analysis 
function a of the form �j = pPj . 
The true values {�j } of the amount-of-substance fractions, and the true values {Pj } of the 
corresponding instrumental responses, supposedly differ from their observed counterparts
{xj } and {rj } that are listed in Exhibit 26, owing to measurement errors. 

x u(x) r u(r) �̂ P̂ 


0.0015 0.00090 60 35.0 0.0015 61 

0.1888 0.00045 7786 135.7 0.1888 7774 

1.9900 0.00400 81700 36.7 1.9845 81711 

3.7960 0.03900 156200 223.2 3.7937 156202 

5.6770 0.01250 233300 137.2 5.6669 233329 

7.1180 0.01250 293000 245.5 7.1165 293014 

9.2100 0.02000 380600 125.1 9.2430 380569 

10.9000 0.02500 449700 321.8 10.9200 449619 

Exhibit 26: Amount-of-substance fraction x of nitrogen in a blank and in seven standards, 
corresponding instrumental responses r, and associated standard uncertainties u(x) and 
u(r), from ISO (2001, Table B.7), and estimates of their corresponding true values � (for 
x) and P (for r). The units for the amounts-of-substance fraction (x and �̂) and for u(x) are 
µmol∕mol. The instrumental responses (r and P̂) and u(r) are dimensionless. 

The measurement model for the analysis function comprises the following set of observation
equations: 

xj = �j + Ej, rj = Pj + 8j, �j = pPj, for j = 1, … , n, 

where the measurement errors E1, … , E and 81, … , 8 are assumed to be values of inden n
pendent Gaussian random variables, all with mean 0, the former with standard deviations 
u(x1), … , u(x ), and the latter with standard deviations u(r1), … , u(r ).n n

ISO (2001) suggests that the values to be assigned to the unknown parameters (which are
the slope p, and the true values P1, … , P of the instrumental responses) should be those n
that minimize 

n ( )2 ( )2
∑ xj − pPj rj − PjS(p, P1, … , P ) = + .n u(xj ) u(rj )j=1 

This choice corresponds to maximum likelihood estimation, under the implied assumption
that the standard uncertainties {u(xj )} and {u(rj )} are based on infinitely many degrees of
freedom. Guenther and Possolo (2011) suggest an alternative criterion to be used when
these numbers of degrees of freedom are finite and small, which often is the case.
The values of the arguments that minimize S(p, P1, … , P ) are found by numerical optimizan
tion under the constraints that neither the true instrumental responses nor the true amount
of-substance fractions can be negative, using the Nelder-Mead simplex algorithm (Nelder 
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and Mead, 1965) as implemented in function nloptr defined in the R package of the same 
name (Johnson, 2015; Ypma, 2014).
The estimate of the slope is p̂ = 2.428 724 × 10−5 µmol∕mol, and S( ̂ P1, … , ̂ ) = 6.16515p, ̂ Pn
(which is smaller than the corresponding value in ISO (2001, Page 26)). The estimates of
the true values {�j } and {Pj } are listed in the last two columns of Exhibit 26. 
The uncertainty evaluation is done by application of the Monte Carlo method by repeating
the following steps for k = 1, … , K for a sufficiently large integer K: 
1. Draw a sample value xj,k from a Gaussian distribution with mean �̂j and standard devi

ation u(xj ), for j = 1, … , n. 
2. Draw a sample value rj,k from a Gaussian distribution with mean P̂j and standard devi

ation u(rj ), for j = 1, … , n. 
∗3. Find the values p and P∗ , … , P∗ that minimize S(p, P1, … , P ) with {xj,k} and {rj,k}nk 1k nkplaying the roles of {xj } and {rj }. 

∗ ∗The standard deviation of the resulting K = 10 000 replicates of the slope, p1 
, . . . , p , was K 

u(p) = 2.3389 × 10−8 µmol∕mol, and a 95 % coverage interval for p ranges from 2.4242 × 10−5 

to 2.4334 × 10−5. The resulting probability densities of p and the {Pj } are depicted in Ex
hibit 27. 
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Exhibit 27: Estimates of the probability densities of p and of the {Pj} (thick blue lines),
and corresponding Gaussian probability densities with the same means and standard devi
ations (thin red lines). 

ISO (2001, Table B.8) gives instrumental responses for two gas mixtures whose amount
fractions of nitrogen are unknown. For r0 = 70 000, the analysis function estimated above 

∗produces �̂0 = 1.7001 µmol∕mol. The standard deviation of the K replicates {p r0} isk 

u(�0) = 0.0016 µmol∕mol. For the second mixture, with r0 = 370 000, we obtain �̂0 = 
8.9863 µmol∕mol and u(�0) = 0.0087 µmol∕mol. (Both standard uncertainties are smaller
than their counterparts listed in the fourth column of ISO (2001, Table B.8).) 
E18 Sulfur Dioxide in Nitrogen. NIST SRM 1693a Series M comprises ten 6 L (water 
volume) aluminum cylinders each containing about 0.85 m3 (30 ft3) at standard pressure and 
temperature, of a gas mixture with nominal amount fraction 50 µmol∕mol of sulfur dioxide 
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in nitrogen. The measuring instrument was a flow-through process analyzer with a pulsed
UV fluorescence SO2 detector (Thermo Scientific Model 43i-HL).
The measurement method used to assign values to the reference material in those ten cylin
ders involved (i) five primary standard gas mixtures (PSMs) with amount fractions of sulfur 
dioxide ranging from 40 µmol∕mol to 60 µmol∕mol, and (ii) a lot standard, which was a
cylinder different from those ten, filled with the same gas mixture. Every time an instru
mental indication was obtained either for a PSM or for one of the ten cylinders with the
reference material, an indication was also obtained for the lot standard, and a ratio of the
paired indications was computed.
Ten replicates of the ratio of instrumental indications were obtained for each of the five PSMs 
(Exhibit 28), and 21 replicates were obtained for each cylinder. Exhibit 30 shows boxplots
of the ratios for all ten cylinders with the reference material, and also depicts the amount
fractions and ratios for the standards, the associated uncertainties, and the analysis function
that was built as described below. Exhibit 29 lists the values of the ratio for cylinder C05. 

PSM r c u(c) PSM r c u(c) 

S101 1.2089772 60.139 0.020 S113 1.0078670 50.184 0.016 

S101 1.2075386 60.139 0.020 S113 1.0049105 50.184 0.016 

S101 1.2030812 60.139 0.020 S113 1.0035410 50.184 0.016 

S101 1.2029003 60.139 0.020 S113 1.0067675 50.184 0.016 

S101 1.2045783 60.139 0.020 S113 1.0005778 50.184 0.016 

S101 1.2051815 60.139 0.020 S097 0.8968898 44.685 0.016 

S101 1.2099296 60.139 0.020 S097 0.8964397 44.685 0.016 

S101 1.2047862 60.139 0.020 S097 0.8958959 44.685 0.016 

S101 1.2072764 60.139 0.020 S097 0.8941153 44.685 0.016 

S101 1.2061604 60.139 0.020 S097 0.8924992 44.685 0.016 

S119 1.1051102 55.120 0.018 S097 0.8958868 44.685 0.016 

S119 1.1060079 55.120 0.018 S097 0.8933692 44.685 0.016 

S119 1.1028368 55.120 0.018 S097 0.8968200 44.685 0.016 

S119 1.1047117 55.120 0.018 S097 0.8950815 44.685 0.016 

S119 1.1085506 55.120 0.018 S097 0.8957939 44.685 0.016 

S119 1.1063356 55.120 0.018 S117 0.7958206 39.862 0.015 

S119 1.1040592 55.120 0.018 S117 0.7958588 39.862 0.015 

S119 1.1028799 55.120 0.018 S117 0.7953195 39.862 0.015 

S119 1.1025448 55.120 0.018 S117 0.7944788 39.862 0.015 

S119 1.1023260 55.120 0.018 S117 0.7939727 39.862 0.015 

S113 1.0050900 50.184 0.016 S117 0.7986906 39.862 0.015 

S113 1.0046148 50.184 0.016 S117 0.7981194 39.862 0.015 

S113 1.0039825 50.184 0.016 S117 0.7953721 39.862 0.015 

S113 1.0033240 50.184 0.016 S117 0.8006621 39.862 0.015 

S113 1.0058559 50.184 0.016 S117 0.7970862 39.862 0.015 

Exhibit 28: For each replicate measurement of a PSM: the ratio r between the instrumental 
indications for the standard and for the lot standard, the amount fraction c of SO2 in the 
standard, and the associated standard uncertainty u(c). 
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r DAY r DAY r DAY 

0.9902957 1 0.9909091 2 0.9885518 3 

0.9905144 1 0.9917382 2 0.9922330 3 

0.9951852 1 0.9934188 2 0.9919730 4 

0.9927100 1 0.9895879 3 0.9915597 4 

0.9911975 1 0.9926954 3 0.9916772 4 

0.9921821 2 0.9912304 3 0.9944420 4 

0.9917024 2 0.9926593 3 0.9911971 4 

Exhibit 29: For each replicate measurement of the reference material in cylinder C05: 
the ratio r between the instrumental indications for the reference material and for the lot 
standard, and the day when the measurement was made. 
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Exhibit 30: Boxplots of the ratios of instrumental readings for each cylinder (left panel),
and amount fraction of SO2 in the PSMs (right panel). Each boxplot summarizes 21 ratios
determined for each cylinder under conditions of repeatability (VIM 2.20): the thick line
across the middle of each box indicates the median, and the bottom and top of the box
indicate the 25th and 75th percentiles of those ratios. Potential outlying ratios are indicated
with large (red) dots. The horizontal and vertical line segments in the right panel depict the
standard uncertainties associated with the ratios and with the amount fractions, magnified
50-fold. The sloping (green) line in the right panel is the graph of the analysis function. 
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The process used for value assignment comprised two steps: first, the data from the PSMs 
was used to build an analysis function that produced values of the amount fraction of sulfur
dioxide given a value of the ratio aforementioned; second, this function was applied to the
ratios pertaining to the 10 cylinders with the reference material. 
Analysis Function. The procedure used to build the analysis function was suggested by Guen
ther and Possolo (2011): it is a modification of the procedure described in ISO 6143 (ISO,
2001), which is the internationally recognized standard used to certify gaseous reference
materials. The procedure recognizes that the number of replicates of the ratios for the PSMs 
is modest (ten in this case), hence the Type A evaluations of the associated uncertainties,
obtained by application of Equation (A-5) of TN1297, are based on only 10−1 = 9 degrees 
of freedom. 
Before the analysis function can be built, a functional form needs to be chosen for it: ex
perience with these materials suggests that a polynomial of low degree affords an adequate
model. The choice of degree for this polynomial was guided by diagnostic plots of the resid
uals corresponding to candidate models, supplemented by consideration of the Bayesian 
Information Criterion (BIC) (Burnham and Anderson, 2002). In this case, this amounts to
selecting the polynomial of degree p − 1 for which S(p0, p1, P1, … , P ) + (m + p) log m is a m
minimum, where the function S is defined below.
 
The best model for the analysis function g turns out to be a first degree polynomial: g(r) =
 
p0 + p1r, which is depicted in the right panel of Exhibit 30. The coefficients p0 (intercept)
 
and p1 (slope) were not estimated by ordinary least squares, but as the values that minimize

the following criterion (Guenther and Possolo, 2011) that takes into account the fact that the

standard uncertainties of the ratios are based on a finite number of degrees of freedom:
 

m
[

( )2
∑ ci − (p0 + p1Pi) �i + 1 ( (ri − Pi)2 )]

S(p0, p1, P1, … , P ) = + log 1 + ,m 2u2(ci) 2 �iu2(ri)i=1 

where m = 5 is the number of PSMs, c1, . . . , c are the amount fractions of SO2 in the PSMs,m 
u(c1), . . . , u(c ) are the associated uncertainties, r1, . . . , r are the averages of the replicates m m
of the ratios obtained for each PSM and u(r1), . . . , u(r ) are the Type A evaluations of the m
associated uncertainties, �1, . . . , � are the numbers of degrees of freedom that the {u(ri)}m
are based on, and P1, . . . , P are the true values of the ratios. m 

The minimization procedure yields not only estimates of the intercept and slope of the anal
ysis function, but also estimates of the true values of the ratios, P1, . . . , P . This particularm
version of the more general criterion suggested by Guenther and Possolo (2011) is appropri
ate because the uncertainties associated with the amount fractions of SO2 in the PSMs may
be assumed to be based on large numbers of degrees of freedom, and only the uncertainties
associated with the ratios are based on small numbers of degrees of freedom. 
Uncertainty Evaluation. The uncertainty evaluation is performed by application of the Monte
Carlo method as follows. 

1. Choose a suitably large integer K (in this example K = 5000), and then for k = 
1, … , K: 
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(a) Simulate c1,k, . . . , cm,k as realized values of m independent Gaussian random
variables with means equal to the amount fractions of SO2 in the PSMs c1, . . . , 
c , and standard deviations equal to the corresponding standard uncertainties m
u(c1), . . . , u(c ), respectively. m

(b) Simulate W1,k, . . . , Wm,k as realized values of of m independent chi-squared ran
dom variables with �1, . . . , � degrees of freedom, respectively, and computem
perturbed versions of the standard uncertainties associated with r1, . . . , r asm

√ √ 
uk(r1) = u(r1) �1∕W1,k, . . . , uk(rm) = u(rm) �m∕Wm,k. 

(c) Simulate r1,k, . . . , rm,k as realized values of m independent Gaussian random 
variables with means r1, . . . , r , and standard deviations uk(r1), . . . , uk(r ),m m
respectively.

(d) Minimize the criterion S defined above, with the {ci,k}, {ri,k}, and {uk(ri)} in 
∗ ∗the roles of the {ci}, {ri}, and {u(ri)}. Let p , p , P∗ , . . . , P∗ denote the 0,k 1,k 1,k m,kvalues at which the minimum is achieved. 

Exhibit 31 depicts the probability densities of the Monte Carlo distributions
of the intercept and slope of the analysis function. However, in the next step

∗ ∗ ∗ ∗the Monte Carlo sample, (p0,1, p ), . . . , (p , p ), will be used directly. 1,1 0,K 1,K 

2. Suppose that r1, . . . , r denote replicated determinations of the ratio for a particularn
cylinder with the reference material, for example, the 21 replicates listed in Exhibit 29
for cylinder C05. Since the boxplot depicting the ratios for this cylinder (Exhibit 30)
suggests two potentially outlying values, these are set aside and not used in the next
step, hence n = 21 − 2 = 19. 

3. For each replicate j = 1, … , n of the ratio for cylinder C05, compute K Monte Carlo 
∗ ∗replicates of the corresponding amount fraction of SO2 as cj,1 = p0,1 + p1,1cj , . . . , 

∗ ∗ = p + p cj .cj,K 0,K 1,K 

4. Exhibit 31 shows the probability density of the nK = 19 × 5000 = 95 000 replicates 
of the amount fraction of SO2 that correspond to the ratios in Exhibit 29. The standard
deviation of this sample is an evaluation of u(c) = 0.12 µmol∕mol for cylinder C05. 

5. However, considering the use intended for this reference material, its long-term in
stability must also be recognized, and its effects incorporated in the uncertainty as
sessment. In this case, long-term instability is an important source of uncertainty,
with corresponding standard uncertainty of 0.19 µmol∕mol resulting from a Type B
evaluation. It was propagated using the Monte Carlo method by adding Gaussian per
turbations �j,1, . . . , �j,K to the Monte Carlo sample of amount fractions, for each repli
cate j = 1, … , n of the ratio of instrumental indications for cylinder C05, with mean 
0 µmol∕mol and standard deviation 0.19 µmol∕mol, finally to obtain xj,1 = cj,1 + �j,1, 
. . . , xj,K = cj,K + �j,K . 

6. The standard deviation of the {xj,k}, 0.20 µmol∕mol for this cylinder, was the evalua
tion of standard uncertainty. A 95 % coverage interval, built subject to the constraints
that it be symmetrical around the estimated amount fraction ĉ = 49.52 µmol∕mol,
ranges from 49.13 µmol∕mol to 49.91 µmol∕mol. The corresponding expanded un
certainty is U95 %(c) = 0.40 µmol∕mol, hence the effective (post hoc) coverage factor 
is k = 2. 
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Exhibit 31: Probability density estimates for the intercept p0 and slope p1 of the analysis 
function, based on a Monte Carlo sample of size K = 5000 (left and center panels). Proba
bility density estimate for the amount fraction of SO2 in cylinder C05, taking into account
uncertainty contributions from the calibration process and from long-term instability of
the material. The value assigned to the reference material in this cylinder is indicated by a
(red) dot, and the thick, horizontal (red) line segment represents a 95 % coverage interval
(right panel). 

E19 Thrombolysis. It is common medical practice to administer a drug that dissolves
blood clots (that is, stimulates thrombolysis) to patients who suffer a myocardial infarction
(“heart attack”). Exhibit 32 lists the results of a placebo-controlled randomized experiment
that was carried out in Scotland between December 1988 and December 1991, to measure
the decrease in the odds of death resulting from the administration of anistreplase (a throm
bolytic agent) immediately at a patient’s home rather than only upon arrival at the hospital
(GREAT Group, 1992). 

Group	 HOME HOSPITAL 

Outcome	 DEATH 13 23 

SURVIVAL 150 125 

Exhibit 32: Results of an experiment to measure the efficacy of early administration of
anistreplase in response to myocardial infarction. Patients were assigned at random, as if by
tossing a fair coin, to the HOME and HOSPITAL groups. The 163 patients in the HOME group
received the drug at home immediately upon diagnosis and the placebo at the hospital,
while the opposite was done for the 148 patients in the HOSPITAL group. The recorded 
deaths are those that occurred within three months of the infarction. 

The naive estimate of the probability of death for the early treatment (HOME group) is pE = 
13∕163, and the corresponding odds of death are oE = pE∕(1−pE) = 13∕150. Similarly, for 
the late treatment (HOSPITAL group), oL = 23∕125. The odds-ratio is OR = oE∕oL = 0.471,
and the log-odds ratio (which is the measurand) is e = log(OR) = −0.753. The fact that 
OR < 1 (or, e < 0) suggests that the early treatment reduces the odds of death.
The sampling distribution of the log-odds ratio is approximately Gaussian with variance 
u2(e) ≈ 1∕13 + 1∕23 + 1∕150 + 1∕125, hence u(e) ≈ 0.37 (Jewell, 2004, 7.1.2). Since 
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e∕u(e) = −2.05, and the probability is 2 % that a Gaussian random variable with mean 0
and variance 1 will take a value less than −2.05, the conventional conclusion is that the early
treatment reduces the odds of death significantly and substantially (by about ee −1 = 53%)
relative to the late treatment. 
Since this is a surprisingly large reduction in the odds of death, Pocock and Spiegelhalter
(1992) conjecture that “perhaps the Grampian region anistreplase trial was just lucky”. The
trial was terminated early, before the number of patients deemed necessary were recruited,
possibly when the results were particularly favorable and seemed to have established the 
improvement incontrovertibly. Maybe early administration of anistreplase might not have
appeared to have caused as striking an improvement if the study had been allowed to run its
course. 
Driven by this skepticism, Pocock and Spiegelhalter (1992) and Spiegelhalter et al. (2004,
Example 3.6) describe an alternative Bayesian analysis that takes into account the belief of
a senior cardiologist that a 15 % to 20 % reduction in mortality is highly plausible, while
no benefit or detriment, as well as a relative reduction of more than 40 %, both are rather
unlikely.
If this belief is described by a Gaussian distribution for the log-odds ratio whose central
95 % probability lies between log(1 − 0.4) = −0.51 and 0, then the corresponding prior 
distribution for e has mean e0 = −0.255 and standard deviation u(e0) = 0.13. 
Applying Bayes’s rule with this prior distribution and with the likelihood function corre
sponding to the aforementioned Gaussian sampling distribution for the log-odds ratio, leads
to a Gaussian posterior distribution for e (Spiegelhalter et al., 2004, Equation (3.15)) with 
mean 

e e0+ 
u2(e) u2(e0) 
1 1 

= −0.31, 
+ 

u2(e) u2(e0) 

which suggests a reduction in the odds of death by only e−0.311 − 1 = 27%. 
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Exhibit 33: Likelihood function, prior and posterior probability densities for the measure
ment of the relative effect of early versus late administration of a thrombolytic agent. 

Since the posterior distribution has standard deviation [1∕(1∕u2(e) + 1∕u2(e0))]½ = 0.123,
a 95 % Bayesian coverage interval (credible interval) for the reduction in the odds of death 
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ranges from 7 % to 42 %. Exhibit 33 depicts the prior density, the likelihood function, and
the posterior density, making clear that the data nudge the informative prior distribution
to the left (that is, toward smaller values of e) only slightly. The spread of the posterior
distribution is just a little smaller than the spread of the prior distribution, owing to the
considerable uncertainty in the results given the fairly small total number (36) of deaths.
The Bayesian coverage interval may be compared with the conventional (sampling-theoretic)
95 % confidence interval for the odds ratio that is based on unconditional maximum likeli
hood estimation and Wald’s Gaussian approximation, according to which the reduction in
the odds of death ranges from 26 % to 163 %. This interval reflects both the aforementioned,
possibly excessive optimism, and also the considerable uncertainty that again is attributable
to the small total number of deaths that occurred. (This interval was computed using func
tion oddsratio defined in R package epitools (Aragón, 2012).) 
E20 Thermal Bath. The readings listed and depicted in Exhibit 34 were taken every
minute with a thermocouple immersed in a thermal bath during a period of 100 min, to
characterize the state of thermal equilibrium and to estimate the mean temperature of the
bath. 
The observation equation ti = r + Ei + cti−1 + e1Ei−1 + e2Ei−2 models the sequence of 
observations as an auto-regressive, moving average (ARMA) time series, where the {Ei} are 
assumed to be independent and Gaussian with mean 0 and standard deviation (. 
Correlations between the {ti} arise because each reading of temperature depends on previous
readings and on the errors that affect them. This particular ARMA model was selected ac
cording to Akaike’s Information Criterion corrected for the finite length of the series (AICc)
(Burnham and Anderson, 2002).
The maximum-likelihood estimates of the parameters, obtained using R function arima, are 
r̂ = 50.1054 ◦C, ĉ = 0.8574, ê1 = −0.5114, ê2 = 0.3369, and (̂ = 0.002 ◦C. Furthermore, 
u(r) = 0.001 ◦C, which is about three times larger than the naive (and incorrect) evaluation
that would have been obtained had the auto-correlations been neglected.
The results suggest that the variability of the bath’s temperature includes a persistent pat
tern of oscillations, characterized by the auto-regressive parameter c, possibly driven by
imperfect insulation and convection. In addition, there are superimposed volatile effects,
characterized by the moving average parameters e1 and e2, and by the “innovations” stan
dard deviation (. 
E21 Newtonian Constant of Gravitation. Newton’s law of universal gravitation states
that two material objects attract each other with a force that is directly proportional to the
product of their masses and inversely proportional to the squared distance between them. a 
is the constant of proportionality: it was first measured by Cavendish (1798).
Mohr et al. (2012) explain that because there is no known quantitative theoretical relation
ship between a and the other fundamental constants, a consensus estimate of a depends
only on measurement results for a and not on measurement results for any of the other 
fundamental physical constants.
The value that the CODATA Task Group on Fundamental Constants recommends for a in 
the 2014 adjustment is 6.674 08 × 10−11 m3 kg−1 s−2, with associated standard uncertainty 
u(a) = 0.000 31 × 10−11 m3 kg−1 s−2 (physics.nist.gov/cuu/Constants). The rec
ommended value is a weighted average of the estimates of a listed in Exhibit 35, computed 
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Exhibit 34: Time series of temperature readings (expressed as deviations from 50 ◦C, all
positive) produced every minute by a thermocouple immersed in a thermal bath. The tem
poral order is from left to right in each row, and from top to bottom between rows. Data
kindly shared by Victor Eduardo Herrera Diaz (Centro de Metrología del Ejército Ecuato
riano, CMME, Quito, Ecuador) during an international workshop held at the Laboratorio 
Tecnológico del Uruguay (LATU, Montevideo, Uruguay) in March, 2013. 

similarly to the value recommended in the previous release (Mohr et al., 2012).
An alternative data reduction may be undertaken using methods that have been widely used
to combine the results of multiple studies, in particular in medicine, where such combina
tion is known as meta-analysis (Cooper et al., 2009). Usually, these studies are carried out
independently of one another, hence pooling the results broadens the evidentiary basis for
the conclusions at the same time as it reduces the associated uncertainty.
This alternative data reduction rests on an observation equation (statistical model) for the
measurement results which, for laboratory or experiment j, comprises an estimate xj of a 
and an evaluation uj of the associated standard uncertainty, for j = 1, … , n = 14. 
The statistical model expresses the value measured by laboratory j as xj = a+Aj +Ej , where 
Aj denotes an effect specific to the laboratory, and Ej denotes measurement error. Both the 
laboratory effects A1, … , A and the measurement errors e1, … , e are modeled as outcomes n n
of random variables with mean zero. The {Aj } all have the same standard deviation r, but 
the {Ej } may have different standard deviations {uj }. 
This model achieves consistency between the measured values by adding unknown labora
tory effects, {Aj }, to the measured values. The approach adopted by CODATA achieves the
same goal by applying a multiplicative factor (larger than 1) to the {uj }, thus reflecting the
belief that these standard uncertainties are too small given the dispersion of the measured
values and assuming that all laboratories are measuring the same quantity.
Because the laboratory effects are modeled as random variables, the measurement model is 
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a u(a) 
∕1 × 10−11 m3 kg−1 s−2 

NIST-82 6.672 482 0.000 428 

TRD-96 6.672 900 0.000 500 

LANL-97 6.673 984 0.000 695 

UWash-00 6.674 255 0.000 092 

BIPM-01 6.675 590 0.000 270 

UWup-02 

MSL-03 

6.674 220 

6.673 870 

0.000 980 

0.000 270 

HUST-05 6.672 220 0.000 870 

UZur-06 6.674 252 0.000 124 

HUST-09 6.673 490 0.000 180 

JILA-10 6.672 340 0.000 140 

BIPM-13 6.675 540 0.000 160 

ROSI-14 6.671 910 0.000 990 

UCI-14 6.674 350 0.000 126 

G (10−11m3kg−1s−2)

6.670 6.672 6.674 6.676 6.678

● NIST82

● TRD96

● LANL97

● UWash00

● BIPM01

● UWup02

● MSL03

● HUST05

● UZur06

● HUST09

● JILA10

● BIPM13

● ROSI14

● UCI14

CODATA−14
MLE

Exhibit 35: Values of a and u(a) used to determine the 2014 CODATA recommended 
value (David Newell, 2015, Personal Communication) (left panel). The measurement re
sults are depicted (right panel) in blue, with a dot indicating the measured value, and the
horizontal line segment representing the interval xj ± uj where xj denotes the value mea
sured by experiment j and uj denotes the associated uncertainty, for j = 1, … , n = 14. 
The 2014 CODATA recommended value and associated standard uncertainty, and their
counterparts obtained via maximum likelihood estimation, are depicted similarly. Obvi
ously, the 2014 CODATA recommended value and the maximum likelihood estimate are
statistically indistinguishable. 

called a random effects model. Mandel and Paule (1970), Mandel and Paule (1971), Rukhin
and Vangel (1998), Toman and Possolo (2009), and Toman and Possolo (2010) discuss the
use of models of this kind in measurement science, and Higgins et al. (2009) review them
in general. The random variables {Aj } and {Ej } are usually assumed to be Gaussian and 
independent, but neither assumption is necessary.
When this model is used to estimate the value of a in the context of the CODATA adjust
ment, correlations between some of the laboratory effects need to be taken into account. In
some applications, either the laboratory effects, or the measurement errors, or both, have
non-Gaussian distributions (Pinheiro et al., 2001; Rukhin and Possolo, 2011).
The model may be fitted to the data listed in Exhibit 35 using any one of several different
statistical procedures. For example, DerSimonian and Laird (1986) introduced one of the
more widely used procedures, and Toman (2007) describes a Bayesian procedure. The more
popular procedures assume that the laboratory effects and the errors are mutually indepen
dent. Since, in this case, the laboratory effects for NIST-82 and LANL-97 are correlated
with correlation coefficient 0.351, and the laboratory effects for HUST-05 and HUST-07
are correlated with correlation coefficient 0.234 (Mohr et al., 2012, Pages 1568–1569), the
more popular fitting procedures are not applicable here. 
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The method of maximum likelihood estimation may be used to fit the model to the data even
in the presence of such correlations. (Bayesian methods, and variants of the DerSimonian-
Laird procedure can do the same.) The general idea of maximum likelihood estimation is
to choose values for the quantities whose values are unknown (a and r in this case) that
maximize the probability density of the data. Application of this method requires that the
probability distribution of the random variables that the data are conceived as realized values
of, be modeled explicitly.
We assume that the joint probability distribution of the {xj } is multivariate Gaussian with n-
dimensional mean vector all of whose entries are equal to a (meaning that all the laboratories
indeed are measuring the same quantity, “on average”), and with covariance matrix S = 
U + V . Both U and V are n × n symmetric matrices. The entries of the main diagonal of 
U are all equal to r2, and the off-diagonal entries are all zero, except those that correspond
to the pairs of laboratories mentioned above: 0.351r2 or 0.234r2, respectively. V denotes a 

2diagonal matrix with the {u } in the main diagonal.j

The question may reasonably be asked of whether the stated correlations are to be taken at
face value, or whether there is some margin of doubt as to their values. If there is some
uncertainty associated with them, then this can be recognized at least during the evalua
tion of u(a) via the parametric statistical bootstrap by sampling from a suitably calibrated
probability distribution of Fisher’s �-transform of the correlation coefficient (Fisher, 1915, 
1921).
The probability density to be maximized with respect to a and r is 

−½(x − µ)⊤S−1(x − µ)f (x|a, r) = (2�)−n∕2
|S−1

|

½ exp 
{ } 

, 

where ⊤ denotes matrix transposition, x = (x1, … , x )⊤ µ = (a, … , a)⊤ are column vecn
tors, and S is as defined above, with inverse S−1, and |S−1

| denotes the determinant of its 
inverse. 
The maximization was done numerically, under the constraints that both a and r be non
negative, using function nloptr defined in the package of the same name for the R envi
ronment for statistical computing and graphics (Ypma, 2014; Johnson, 2015; R Core Team,
2015), using the “Subplex” algorithm (Rowan, 1990). According to the theory of maximum
likelihood estimation (Wasserman, 2004), the results of the optimization can also be used
to obtain an approximation for u(a). The quality of this approximation generally tends to 
increase with increasing number n of laboratories. 
Based on the data in Exhibit 35, and the modeling assumptions just described, the maximum
likelihood estimate of a is 6.673 81 × 10−11 m3 kg−1 s−2, with approximate associated stan
dard uncertainty u(a) = 0.000 31 × 10−11 m3 kg−1 s−2. This consensus value and standard 
uncertainty are depicted in the same Exhibit 35. Obviously, the maximum likelihood es
timate and the 2014 CODATA recommended value are statistically indistinguishable once
the corresponding associated uncertainties are taken into account.
The standard deviation r, of the laboratory effects A1, … , A , also is of scientific interestn
because it quantifies the extent of the disagreement between the values measured by the
different laboratories, above and beyond the differences that would be expected based only
on the stated laboratory-specific standard uncertainties {uj }. 
The maximum likelihood estimate of r is 0.001 021 5 × 10−11 m3 kg−1 s−2, which is 3.8 

NIST TECHNICAL NOTE 1900 69 ∕ 103 



times larger than the median of the {uj }, suggesting that there may be very substantial
sources of uncertainty still to be characterized that are responsible for that disagreement. 
E22 Copper in Wholemeal Flour. The Analytical Methods Committee (1989) of the
Royal Society of Chemistry lists the following determinations of the mass fraction of copper
(expressed in µg∕g) in wholemeal flour obtained under conditions of repeatability (VIM 2.20):
2.9, 3.1, 3.4, 3.4, 3.7, 3.7, 2.8, 2.5, 2.4, 2.4, 2.7, 2.2, 5.28, 3.37, 3.03, 3.03, 28.95, 3.77, 3.4,
2.2, 3.5, 3.6, 3.7, 3.7. 
This Committee recommended that a Huber M-estimator of location (Huber and Ronchetti,
2009) be used instead of the simple arithmetic average when the determinations do not ap
pear to be a sample from a Gaussian distribution, and indeed in this case the Anderson-
Darling test rejects the hypothesis of Gaussian shape (Anderson and Darling, 1952).
Function huberM defined in R package robustbase (Rousseeuw et al., 2012), implements a
robust alternative to the arithmetic average that yields both an estimate of that mass fraction
and an evaluation of the associated standard uncertainty. (Note that among the arguments
of the function huberM there is an adjustable parameter whose default value k = 1.5 may 
not be best in all cases.)
This function, applied with the default values of its arguments, produces 3.21 µg∕g as an 
estimate of the measurand, and standard uncertainty 0.14 µg∕g.
 
Since outliers may contain valuable information about the quantity of interest, it may be

preferable to model them explicitly instead of down-weighing them automatically.

Function BESTmcmc defined in R package BEST (Kruschke, 2013; Kruschke and Meredith,
2013) implements a model-based Bayesian alternative: the data are modeled as a sample
from a Student’s t distribution with � degrees of freedom, re-scaled to have standard devia
tion (, and shifted to have mean equal to the measurand, using minimally informative prior
distributions. 
This Bayesian model is similar to a model used by Possolo (2012), and effectively selects the
heaviness of the tails (quantified by �), of the sampling distribution for the data, in a data-
driven way. The corresponding posterior distribution for the mass fraction describes the
associated uncertainty fully: the mean of this distribution is an estimate of the measurand,
and its standard deviation is an evaluation of the associated standard uncertainty.
Function BESTmcmc, applied with the default values of its arguments, produces a posterior
distribution for the mass fraction whose mean and standard deviation are 3.22 µg∕g and 
0.15 µg∕g. (The posterior mean for � was 1.8, suggesting very heavy tails indeed — Ex
hibit 36.)
Compare these with the conventional average, 4.28 µg∕g, and standard error of the average 

s∕
√ 

m = 5.3∕ 
√ 
24 ≈ 1.08 µg∕g, where s denotes the standard deviation of the m = 24 

determinations. However, the results from the Bayesian analysis are in close agreement
with the results of the classical robust analysis using the Huber procedure discussed above.
Coverage intervals can also be derived from the posterior distribution: for example, the
interval ranging from 2.92 µg∕g to 3.51 µg∕g includes 95 % of the sample that BESTmcmc 
drew from the posterior distribution (via Markov Chain Monte Carlo sampling (Gelman
et al., 2013)), hence is an approximate 95 % coverage for the mass fraction of copper. 
E23 Tritium Half-Life. Lucas and Unterweger (2000, Table 2) list thirteen measurement 
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results for the half-life T½ of tritium, assembled as a result of a systematic review of the
literature, reproduced in Exhibit 37.

A consensus estimate of T½ may be produced based on the following observation equation

that expresses the value of the half-life measured in study j as Tj = T½ + Aj + Ej , where Aj

denotes an effect specific to study j, and Ej denotes measurement error, for j = 1, … , 13.
 
The study effects {Aj } and the measurement errors {Ej } are modeled as outcomes of inde
pendent Gaussian random variables, all with mean zero, the former with (unknown) stan
dard deviation r, and the latter with standard deviations equal to the corresponding standard
 
uncertainties {uj } (Exhibit 37), which are assumed known.

It is the presence of the {Aj } that gives this model its name, random effects model, and that
 
allows it to accommodate situations where the variability of the estimates {Tj } exceeds what
 
would be reasonable to expect in light of the associated uncertainties {uj }. As we shall see
 
below, such excess variability appears to be modest in this case.

This model may be fitted to the data in any one of several different ways. One of the most

popular fitting procedures was suggested by DerSimonian and Laird (1986), and it is imple
mented in function rma defined in R package metafor (Viechtbauer, 2010; R Core Team,
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Exhibit 37: LEFT PANEL: Measurement results for the half-life of tritium, where Tj de
notes the estimate of the half-life T½, and uj denotes the associated standard uncertainty, for 
j = 1, … , 13. RIGHT PANEL: The vertical (blue) line segments depict coverage intervals 
of the form Tj ± 2uj , and the (red) dots indicate the estimates of the half-life. 
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2015).
When rma is used including the optional adjustment suggested by Knapp and Hartung
(2003), it produces 4497 day as consensus estimate of the half-life of tritium with asso
ciated standard uncertainty 5 day. This measurement result is statistically indistinguishable
from the 4500 day, with associated standard uncertainty 8 day, recommended by Lucas and
Unterweger (2000).
Function rma also produced the estimate r̂ = 10 day of the standard deviation r of the study 
effects {Aj }. The heterogeneity metric I2, suggested by Higgins and Thompson (2002),
equals 35 %: this is the proportion of the total variability in the estimates of the study effects
{Âj } that is attributable to differences between them (that is, heterogeneity), above and be
yond study-specific measurement uncertainty. Therefore, there is modest heterogeneity in
this case. 
Lucas and Unterweger (2000) note that, in an evaluation such as they undertook, “the most
difficult problem is to evaluate the uncertainty associated with each measurement in a con
sistent way”. In other words, they are based on small, yet unspecified, numbers of degrees
of freedom. To address this problem, they performed their own evaluation of the standard
uncertainty associated with each measured value. If the original author’s evaluation was nei
ther larger than twice their evaluation, nor less than half as large, then they kept the original
author’s evaluation. Otherwise, they replaced the original author’s uj with theirs. 
Lucas and Unterweger (2000) also state: “We can not emphasize strongly enough that esti
mated uncertainties have large uncertainties”. Since the standard uncertainty u(T½) = 5 day
associated with the consensus value produced by the aforementioned DerSimonian-Laird
procedure involves the unrealistic assumption that the {uj } are based on infinitely many 
degrees of freedom, it may well be that u(T½) = 5 day is too optimistic.
In addition, the uncertainty associated with the estimate r̂ of the standard deviation of the 
study effects, which also figures in u(T½), may not have been taken fully into account. Both
issues may be addressed by performing a Monte Carlo evaluation of the uncertainty associ
ated with the consensus value instead of relying on formulas that rest on assumptions that
may be questionable.
To characterize the reliability of the study-specific uncertainties {uj }, we need an assessment
of the effective number of degrees of freedom associated with these standard uncertainties.
Suppose that the {uj } are all based on the same number � of degrees of freedom, that their 
common true value is (, and that they differ from one another (and from () owing to the 
vagaries of sampling only. Together with the assumption that the data are like outcomes
of Gaussian random variables, those suppositions imply that the {�u2∕(2} should be like a jsample from a chi-squared distribution with � degrees of freedom, whose variance is 2�. 

2Therefore, the variance of the {u ∕(2} should be 2∕�. If we estimate ( by the median of jthe {uj } listed in in Exhibit 37, and then compute a robust estimate (the square of R’s mad)
2of the variance of the ratios {u ∕(̂2}, we obtain 0.24, hence � = 2∕0.24 ≈ 8 is the effective jnumber of degrees of freedom.


The uncertainty associated with r̂ may be characterized using the following representation
 
of r̂2 (Searle et al., 2006, 3.6-vii):
 

((� + 1)r2 + (2)�2 (2�2 
n−1 n� r̂2 = max{0, − },

(n − 1)(� + 1) n(� + 1)� 
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where n = 13 denotes the number of studies, and �2 and �2 denote random variables n−1 n�with chi-squared distributions with n − 1 and n� degrees of freedom.

Alternatively, and possibly more accurately, the uncertainty associated with r̂ may be char
acterized by sampling from the probability distribution whose density is given in Equa
tion (9) of Biggerstaff and Tweedie (1997), or using their Equation (6) together with the

exact distribution of Cochran’s heterogeneity statistic Q derived by Biggerstaff and Jackson
 
(2008). These alternatives will not be pursued here.

To perform the Monte Carlo uncertainty evaluation repeat the following steps for k =
 
1, … , K , for a sufficiently large number of steps K:
 

21. Draw a sample value r from the sampling distribution of r̂2 specified above; k 

22. For each j = 1, … , n, compute (2 = �u2∕v where the {v2 } denote independent j,k j j,k j,kchi-squared random variables with � degrees of freedom; 
3. For each j = 1, … , n, draw a sample value Tj,k from a Gaussian distribution with mean 

T̂½ (the estimate of the half-life produced by the DerSimonian-Laird procedure), and
√ 

2standard deviation r + (2 ;k j,k

4. Apply the DerSimonian-Laird procedure to the {(Tj,k, (j,k)} to obtain an estimate T½
∗ 
,kof the half-life. 

The standard deviation of {T½
∗ 
,1, . . . , T½

∗ 
,K } is the Monte Carlo evaluation of the standard 

uncertainty associated with the DerSimonian-Laird estimate of the consensus value, taking
into account the fact that the study-specific standard uncertainties are based on only finitely
many degrees of freedom, and that the estimate r̂ of the standard deviation of the differences 
between studies is based on a fairly small number of degrees of freedom. 
With K = 106, that standard deviation turned out to be u(T½) = 4.991 day, while function 
rma produced u(T½) = 4.852 day. Even though the Monte Carlo evaluation produces a
slightly larger value, in this case the difference is inconsequential, both rounding to 5 day.
It is good to know that this uncertainty evaluation is not particularly sensitive to the choice 
of the effective number of degrees of freedom, �, associated with the {uj }: had it been 1 
instead of 8, then u(T½) would have grown to only 6 day. 
E24 Leukocytes. Measuring the number concentration of different types of white blood
cells (WBC) is one of the most common procedures performed in clinical laboratories. The
result is often based on the classification of 100 leukocytes into different types by micro
scopic examination. Fuentes-Arderiu and Dot-Bach (2009) report the counts listed in Ex
hibit 38, for a sample whose total number concentration of leukocytes was 3500 ∕µL. 
To evaluate the uncertainty associated with the count in each class we should take into
account the fact that an over-count in one class will induce an undercount in one or more 
of the other classes. Therefore, the counts should be modeled as outcomes of dependent
random variables. 
The multinomial probability distribution is one model capable of reproducing this behavior,
and once it has been fitted to the data it may be used to produce coverage intervals for the
proportions of leukocytes of the different types. The procedure proposed by Sison and Glaz 
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LEUKOCYTE COUNT cBE U95 % 95 % CI 
Exhibit 38: Number in each of seven classes Neutrophils 63 0.066 14.0 (49, 77) after classification of 100 leukocytes in a bloodLymphocytes 18 0.325 12.5 (5, 29) smear (COUNT), coefficient of variation (cBE)Monocytes 8 0.55 8.5 (0, 17) reflecting between-examiner reproducibility for

Eosinophils 4 0.688 5.0 (0, 10) each class as determined by Fuentes-Arderiu
Basophils 1 2.632 3.0 (0, 6) et al. (2007), expanded uncertainty computed
Myelocytes 1 1.325 2.0 (0, 4) using the Monte Carlo method (U95 %), and 95 % 

Metamyelocytes 5 0.696 6.5 (0, 13) coverage intervals for true counts. 

(1995), implemented in R function multinomialCI defined in package MultinomialCI 
(Villacorta, 2012), produces coverage intervals for those proportions with any specified cov
erage probability.
If, in particular, the function is used to produce 68 % coverage intervals, then one half of
the lengths of the resulting intervals may be interpreted as evaluations of the standard un
certainties uM associated with the proportions corresponding to the multinomial model. For
the proportion of neutrophils this interval ranges from 0.600 to 0.663, hence the standard
uncertainty associated with the number of neutrophils in a sample of 100 leukocytes is is
100(0.6627 − 0.6000)∕2 = 3.13. 
However, the other identified source of uncertainty, between-examiner reproducibility, also
must be taken into account. In a separate study, Fuentes-Arderiu et al. (2007) determined the
coefficients of variation (ratios of standard deviations to averages) for the different classes,
that are attributable to lack of reproducibility, also listed in Exhibit 38. For example, the
standard uncertainty uBE corresponding to this source for the number of neutrophils is 63 × 
0.066 = 4.16. 
The conventional way of combining the contributions from these two sources of uncertainty,
whose standard uncertainties are uM and uBE, is in root sum of squares, which for the num

√

ber of neutrophils would yield 3.132 + 4.162 = 5.21. This manner of combining these
contributions presupposes that deviations to either side of the true count are equally likely,
for each of these two sources of uncertainty. While this may be reasonable for counts that
are far away from 0 by comparison with the corresponding values of uM and uBE, it is quite 
unreasonable for counts like the 1 for basophils, for which uM equals 2.13 and uBE equals 
2.632. 
An alternative, more realistic evaluation will take into account the constraint captured in the
multinomial model: that the counts must add to 100, and that all counts must be greater than
or equal to 0 irrespective of how large the associated uncertainties may be.
The following Monte Carlo procedure is one way of implementing this alternative evalu
ation, and involves repeating the following steps a sufficiently large number K of times, 
where p = (63, 18, 8, 4, 1, 1, 5)∕100 is the vector of proportions of the different classes of 
leukocytes, and n = 7 denotes the number of classes, for k = 1, … , K: 
1. Draw a vector xk = (x1,k, … , xn,k) with n counts from the multinomial distribution de

termined by probabilities p and size 100. 
2. Draw a sample value bj,k from a Gaussian distribution with mean 0 and standard de-
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viation uBE,j , representing the measurement error corresponding to between-examiner
variability, for class j = 1, … , n. 

3. Compute sj,k = max(0, xj,k + bj,k), which forces the Monte Carlo sample count for class 
j to be non-negative, for j = 1, … , n; 

∗4. Define y as the value of sj,k∕(s1,k + ⋯ + sn,k) after rounding to the nearest integer. j,k 

Next, and for each class j = 1, … , n, compute one half of the difference between the 97.5th
∗ ∗and 2.5th percentiles of the Monte Carlo sample of values {yj,1, . . . , y } that have been j,K drawn from the distribution of the count for this class, to obtain approximate expanded un

certainties U95 %. The 2.5th and 97.5th percentiles (possibly rounded to the nearest integer)
are the end-points of 95 % coverage intervals for the true counts in the different classes (Ex
hibit 38). 
E25 Yeast Cells. William Sealy Gosset (Student) used a hemacytometer to count the num
ber of yeast cells in each of 400 square regions on a plate, arranged in a 20 × 20 grid whose 
total area was 1 mm2, and reported the results as the numbers of these regions that con
tained 0, 1, 2, . . . , yeast cells, as follows: (0, 0), (1, 20), (2, 43), (3, 53), (4, 86), (5, 70), 
(6, 54), (7, 37), (8, 18), (9, 10), (10, 5), (11, 2), (12, 2). For example, there were no regions
with no cells, twenty regions contained exactly one cell each, and forty-three regions con
tained exactly two cells each. The purpose is to estimate the mean number of yeast cells
per 0.0025 mm2 region, in preparations made similarly to this plate, as described by Student 
(1907).
The measurement model describes these counts �1, … , � as realized values of m = 400m
independent random variables with a common Poisson distribution with mean A, which is
the measurand. This model is commonly used to describe the variability of the number of
occurrences of an event that results from the cumulative effect of many improbable causes
(Feller, 1968, XI.6b), and it models acceptably well the dispersion of these data. In fact, the
sample mean (4.68) and the sample variance (4.46) of the observed counts are numerically
close as expected under the Poisson model, and a conventional chi-squared goodness-of-fit
test also supports the assumption of Poissonness.
A Bayesian estimate of A may be derived from a posterior distribution (Possolo and Toman,
2011) computed using the likelihood function corresponding to the Poisson model, and the
probability density suggested by Jeffreys (1961) that describes the absence of information

√about the value of A prior to the experiment. This density is proportional to 1∕ A. Since 
its integral from zero to infinity diverges, it is an improper prior probability density. How
ever, the corresponding posterior distribution is proper and its density, q, can be calculated 
explicitly by application of Bayes’s rule, where s = �1 + ⋯ + � = m�:m 

As exp(−Am) 1
√�1! … � ! s+½m A mq(A|�1, … , � ) = = As−½ exp(−Am).m +∞  s exp(− m) 1 Γ(s + ½)
√

d ∫0 �1! … � !m  

This is the probability density of a gamma distribution with shape m� + ½ and scale 1∕m, 
hence with mean Â = � + 1∕(2m) = 4.68 and standard deviation u(A) = 

√ 
�∕m + 1∕(2m2) 
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= 0.11. Exhibit 39 depicts the corresponding probability density, and a 95 % coverage
interval for A, ranging from 4.47 to 4.90. 
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Exhibit 39: Probability density of the
posterior distribution of A given the data,
and a 95 % coverage interval for A (mean
number of yeast cells per 0.0025 mm2 re
gion). 

E26 Refractive Index. A solid glass prism has been placed on the table of a refractometer
with the edge where its refracting faces meet parallel to the rotation axis of the table, and a
beam of monochromatic light has been made to traverse it on a plane perpendicular to that
axis (Exhibit 40).
As the prism is rotated, the angle between the direction of the beam when it enters the
prism and its direction when it exits the prism varies. When this deviation angle reaches its
minimum value at 8, the following relationship (measurement equation) holds between the
true values of the prism’s apex angle a, and of the refractive indexes nG and nA of the glass 
and of the air the prism is immersed in (Jenkins and White, 1976, §2.5): 

( )

sin a+
2 
8 

nG = nA ( ) . 
asin 2 

The only sources of uncertainty recognized and propagated in this example are: (i) lack of
repeatability of replicated determinations of the apex angle a and of the minimum devia
tion angle 8; and (ii) measurement uncertainty of the refractive index of the air, nA. The 
contributions from the two sources in (i) were evaluated using Type A methods, and the
contribution from (ii) was evaluated using a Type B method.
The refractive index of air was estimated using a modified Edlén’s formula (Edlén, 1966;
Stone and Zimmerman, 2011) as nA = 1.000 264 3, with standard measurement uncertainty 
u(nA) = 0.000 000 5 (Fraser and Watters, 2008, Table 2).
The six replicates of the minimum deviation angle �1, … , �6 were 38.661 169°, 38.661 051°, 
38.660 990°, 38.660 779°, 38.661 075°, and 38.661 153°. The sixteen replicates a1, … , a16
of the prism’s apex angle were: 
60.007 314° 60.007 169° 60.007 367° 60.006 969° 60.006 972° 60.006 586° 60.007 172° 60.007 017° 
60.006 533° 60.006 242° 60.006 358° 60.006 308° 60.006 369° 60.006 297° 60.005 806° 60.006 333° 

Measurement Equation. A conventional method to estimate the measurand consists of us
( )ing the measurement equation nG = nA sin (a + 8)∕2 ∕ sin(a∕2) with a = ā = (a1 + 

⋯ + a16)∕16, 8 = �̄  = (�1 + ⋯ + �6)∕6, and nA = 1.000 264 3. The choice of averages 
is validated by the fact that both the {ai} and the {�j } may be regarded as samples from
Gaussian distributions, based on the Shapiro-Wilk goodness-of-fit test (Shapiro and Wilk, 
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1965). Thus nG = 1.517 287, and the conventional formula for uncertainty propagation 
yields u(nG) = 0.000 002.
 
Measurement uncertainty can also be evaluated by application of the Monte Carlo method

of the GUM-S1, based on these assumptions:
 

(i) √ 
16(ā− a)∕s is like an outcome of a Student’s t random variable with 15 degrees of a

freedom, where s = 0.000 008 1° is the standard deviation of the sixteen {ai};a 

(ii) √ 
6(�̄  − 8)∕s� is like an outcome of a Student’s t random variable with 5 degrees of 

freedom, where s� = 0.000 002 5° is the standard deviation of the six {�j }. 
(iii) The {ai} and the {�j } are independent. 
This evaluation reproduces the single significant digit given above for u(nG). In addition, it
also provides a sample drawn from the distribution of the measurand whose 2.5th and 97.5th
percentiles are the endpoints of the following 95 % coverage interval for the true value of
the refractive index: (1.517 284, 1.517 290). Exhibit 40 shows an estimate of the probability
density of the distribution of the measurand. 
Observation Equations. Yet another method to estimate the measurand and to evaluate the 
associated uncertainty is based on the following observation equations (which are to be un
derstood modulo 360° because they involve angles): ai = a + ri, for i = 1, … , 16, and �j = 
H(�G, �A, a) + sj, for j = 1, … , 6. The {ri} and the {sj } denote non-observable measure
ment errors, and the function H is defined by H(�G, �A, a) = 2 arcsin(�G sin(a∕2)∕�A) − a. 
The specification of this statistical model is completed by assuming that the {ri} and the 
{sj } are like outcomes of independent, Gaussian random variables, all with mean zero, the
former with standard deviation ( , the latter with standard deviation (8.a

This model may be fitted by the method of maximum likelihood, which in this case involves
solving a constrained non-linear optimization problem. Employing the Nelder-Mead method
(Nelder and Mead, 1965) yields the estimate n̂G = 1.517 287, which is identical to the
estimate derived from the approach based on the measurement equation. The Monte Carlo
evaluation consistent with these observation equations is the so-called parametric statistical
bootstrap (Efron and Tibshirani, 1993), and its results reproduce the values indicated above
both for the standard uncertainty and for the 95 % coverage interval. 
E27 Ballistic Limit of Body Armor. The ballistic limit v50 of a particular type of bullet
proof vest for a particular type of bullet is the velocity at which the bullet penetrates the
vest with 50 % probability. To measure v50, several bullets of different velocities are fired at
identical vests under standardized conditions, for example as specified by OLES (2008), and
for each of them the result is recorded as a binary (nominal) outcome indicating whether the
vest stopped the bullet or not. The input variables are bullet velocity and this binary outcome.
These are the results of a particular test conducted at NIST (Mauchant et al., 2011) that in
volved firing m = 15 bullets at several identical vests: (374.5, 0), (415, 1), (407, 1), (387.5, 1), 
(372.5, 0), (399.5, 1), (391, 0), (408.5, 0), (427, 0), (446, 1), (441, 1), (422, 0), (432, 0), (451, 1), 
(443, 1). The first value in each pair is the bullet velocity (expressed in m∕s), and the second 
indicates whether the bullet did (1) or did not (0) penetrate the vest.
A possible measurement model for v50 involves an observation equation and a measurement
equation. The observation equation in turn comprises two parts. This first part is a Bernoulli 
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Exhibit 40: LEFT PANEL: Cross-section of a triangular prism of apex angle a, standing
on a plane parallel to the plane of the figure, and the path of a monochromatic light beam
that enters the prism from the left and exits it on the right, in the process undergoing a
total deviation 8. RIGHT PANEL: Estimate of the probability density that characterizes the
measurement uncertainty of the refractive index of the glass. The (blue) dot marks the
average of the Monte Carlo sample of size K = 106. Since the lightly shaded (pink) region
comprises 95 % of the area under the curve, the thick, horizontal (red) line indicates a 95 %
coverage interval for the measurand. 

model for bullet penetration, which states that the results from different shots are like the
outcomes of independent tosses of different coins, the coin corresponding to a bullet of
velocity v having probability (v) of “heads”, denoting penetration. The second part is a
logistic regression model for these probabilities, log( (v)∕(1 − (v))) = a + pv, where a 
and p are parameters to be estimated. The measurement equation is v50 = −a∕p. 
Fitting the model to the data above by the method of maximum likelihood produces â = 
−14.5 and p̂ = 0.035 34 s∕m, hence ̂ = −â∕p̂ = 410 m∕s. Exhibit 41 depicts the datav50
and the fitted logistic regression function. The maximum likelihood procedure also provides
evaluations of the standard uncertainties and covariance for ̂a and p̂. Application of the NUM 

then yields u(v50) = 16m∕s. 
A parametric statistical bootstrap (Efron and Tibshirani, 1993) could be used instead for the
uncertainty evaluation. The idea is to simulate values of binary random variables �1, … , �m
to synthesize data (v1, �1), . . . , (v , � ), where v1 = 374.5 m∕s, . . . , v = 443 m∕s are keptm m m
fixed at the actual bullet velocities achieved in the experiment, and to use these simulated
data to produce an estimate of the ballistic limit. �i has a Bernoulli probability distribution 
with probability of “success” (that is, penetration) ̂(vi) such that log(̂(vi)∕[1 − ̂(vi)]) = 
̂ pvia + ̂ , for i = 1, … , m. 
Repeating this process a large number K = 10 000 of times produces a sample of estimates
that may be used to characterize the associated uncertainty. Since v50 = −a∕p is a ratio,
and some of the Monte Carlo sample values for the denominator may be very close to 0,
the corresponding sample drawn from the probability distribution of v50 may include values
that lie very far from its center. For this reason, we use the scaled median absolute deviation
from the median (mad) to obtain an estimate of the standard deviation of that distribution
that is robust to such extreme values: u(v50) = 17m∕s. A 95 % coverage interval for v50
ranged from 360 m∕s to 460 m∕s. 
E28 Atomic Ionization Energy. NIST Standard Reference Database 141 (Kotochigova 
et al., 2011) includes results of ab initio local-density-functional calculations of total ener-
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Exhibit 41: Logistic regression model fitted
to the results of a test to measure the ballistic 
limit of a bullet-proof vest. The red dots indi
cate the bullet velocities that achieved pene
tration, and the green dots those that did not. 

gies for the ground-state configurations of all atoms and singly-charged cations with atomic 
number Z ⩽ 92 (Kotochigova et al., 1997a,b).
Four standard approximations were used: (i) the local-density approximation (LDA); (ii) the
local-spin-density approximation (LSD); (iii) the relativistic local-density approximation
(RLDA); and (iv) the scalar-relativistic local-density approximation (ScRLDA). For exam
ple, these approximations yield the following estimates of the first ionization energy of 20Ca: 
6.431 274 52 eV (LDA), 6.210 943 94 eV (LSD), 6.453 451 8 eV (RLDA), and 6.453 479 01 eV 
(ScRLDA), where 1 eV = 1.602 176 57 × 10−19 J. The corresponding value that was mea
sured experimentally is 6.113 155 20 eV with standard uncertainty 0.000 000 25 eV (Miyabe 
et al., 2006; Kramida et al., 2013).
Exhibit 42 lists values of the relative error of the LDA, LSD, and RLDA approximations
used in the local-density-functional calculations of the first ionization energy of the alkaline
earth metals: beryllium, magnesium, calcium, strontium, barium, and radium. (For these el
ements, the results of ScRLDA are almost indistinguishable from the results of RLDA, hence
they are not shown separately.) Each of these relative errors is of the form E = (E − E)∕E,c
where E denotes the estimate obtained via a first-principles calculation (from Kotochigovac
et al. (2011)) and E denotes the corresponding value measured experimentally (Kramida 
et al., 2013).
The measurand is the standard deviation r of the portion of the variability of the relative 
errors {Eij } that is attributable to differences between LDA, LSD, and RLDA. The corre
sponding measurement model is the observation equation Eij = ai + pj + 8ij , where Eij
denotes the relative error for element i and approximation j, ai denotes the effect of element 
i, pj denotes the effect of approximation j, and 8ij is a residual. 
This model is a mixed effects model (Pinheiro and Bates, 2000), which is a generalization of
the laboratory effects model discussed by Toman and Possolo (2009, 2010). Here the {ai}
represent “fixed” effects and the {pi} represent “random” effects. The former express differ
ences between the elements with regards to the accuracy of the ab initio calculations. The 
latter are modeled as a sample from a Gaussian distribution with mean 0 and standard devi
ation r. The “errors” {8ij } are regarded as a sample from a Gaussian distribution with mean 
0 and standard deviation (, which quantifies the intrinsic inaccuracy of the approximation 
methods. 
The model was fitted using function lme defined in R package nlme (Pinheiro et al., 2014). 
None of the estimates of the element effects {ai} differ significantly from 0. The estimate
of the standard deviation that reflects differences between computational approximations
is r̂ = 0.03 eV, and the estimate of the standard deviation that characterizes the within-
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Exhibit 42: Values and graphical representation of the relative error of three approxi
mations used in local-density-functional calculations of the first ionization energy of the
alkaline earth metals. Each of these values is of the form E = (E − E)∕E, where Ec cdenotes an estimate obtained via an ab initio calculation (Kotochigova et al., 2011) and E 
denotes the corresponding value measured experimentally (Kramida et al., 2013). 

element residuals is (̂ = 0.021 eV. Since these estimates are comparable, and in fact are not
significantly different once their associated uncertainties are taken into account (evaluated
approximately using function intervals defined in R package nlme), the conclusion is
that, for the alkaline earth metals at least, the dispersion of values attributable to differences
between computational approximations is comparable to the intrinsic (in)accuracy of the
individual approximation methods. 
E29 Forensic Glass Fragments. Evett and Spiehler (1987) point out that it is possible to
determine the refractive index and chemical composition of even a very small glass frag
ment, as may be found in the clothing of a suspect of smashing a window to gain illicit
access to a home or car. A forensic investigation may then compare the refractive index and
chemical composition of the fragment of unknown provenance against a reference collection
of samples of known type for which the same properties have been measured.
Evett and Spiehler (1987) describe a reference collection that was assembled by the Home
Office Forensic Science Laboratory in Birmingham, United Kingdom, comprising 214 glass
samples of known type with measured values of the refractive index and of the mass frac
tions of oxides of the major elements (Na, Mg, Al, Si, K, Ca, Ba, Fe). This is the Glass 
Identification Data Set in the Machine Learning Repository of the University of California
at Irvine (Bache and Lichman, 2013), also available in object glass of the R package mda 
(Hastie et al., 2013).
The glass samples in this collection belong to the following types (with the number of corre
sponding samples between parentheses): float processed building windows (70), non-float
processed building windows (76), float processed vehicle windows (17), containers (13),
tableware (9), and headlamps (29). Modern windows (of buildings and vehicles) are made
of glass that, while molten, was poured onto a bed of molten metal. This process, developed
in the 1950s, yields glass sheets of very uniform thickness and superior flatness (Pilkington,
1969). 
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Consider a classifier that, given values of the refractive index, and of the mass fractions of
the oxides of sodium, magnesium, aluminum, silicon, potassium, calcium, barium, and iron
(quantitative inputs), produces an estimate of glass type (qualitative output) as one of the six
types described above. The classifier we will consider was built using mixture discriminant
analysis (Hastie et al., 2009) as implemented in function mda of the R package of the same
name (Hastie et al., 2013). Exhibit 43 depicts the data in the space of “canonical variables”
computed by mda. 
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Exhibit 43: Projection of the glass data onto the three “canonical” variables that account
for 87 % of the variability in the data. 

Given values of the inputs for a particular glass fragment, the classifier computes a proba
bility distribution over the set of possible types, and assigns the fragment to the type that
has the highest probability. Suppose that a glass fragment of unknown provenance has re
fractive index 1.516 13 and mass fractions of the oxides of the major elements (%): 13.92,
3.52, 1.25, 72.88, 0.37, 7.94, 0, and 0.14. The classifier produces the following probability
distribution for the provenance of the fragment: building windows (float glass), 0.36; build
ing windows (non-float glass), 0.56; vehicle windows (float glass), 0.08; containers, 0.00;
tableware, 0.00; headlamps, 0.00.
Therefore, with 36% + 56% = 92% probability the fragment is from a building window,
and it is more likely to be from an old building (non-float glass) than from a modern building
(float glass). The corresponding value of the output is “building windows (non-float glass)”
because it has the highest probability, but this assignment is clouded by the considerable
uncertainty conveyed by that probability distribution.
Similarly to how the entropy was considered in Exhibit 8 on Page 37, this uncertainty may
be quantified using the entropy of the probability distribution over the six types of glass that
was produced by the classifier: 0.89 = −(0.36 log(0.36) + 0.56 log(0.56) + 0.08 log(0.08)). 
Since the entropy of a Gaussian distribution with standard deviation ( is ½ log(2 e)+log (,
one may argue that exp(0.89 − ½ log(2 e)) = 0.59 is an analog of the standard uncertainty.
However, if the output of the classifier were to be used as input to other measurements, then
the associated uncertainty should be propagated using the full distribution in the context of
the Monte Carlo method, as was done for the Damerau–Levenshtein distance in Example E6.
The performance of the classifier may be evaluated using leave-one-out cross-validation 
(Mosteller and Tukey, 1977), as follows: for each glass sample in turn, build a classifier 
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using the data for the other samples only, and use it to predict the type of the glass sample
left out. The overall error rate is then estimated by the proportion of glass samples that were
misclassified: this proportion was 30 % in this case. 
E30 Mass of W Boson. The W boson is one of the elementary particles that mediates the
weak interaction, and plays a role in some nuclear reactions, for example in the beta decay
of tritium to helium, which is used in applications of radio-luminescence, for example in
“tritium tubes” used to mark the hours on the faces of some watches. 
Exhibit 44 lists and depicts the measurement results quoted by Olive and Particle Data Group
(2014, Page 561), which have been obtained by the LEP Electroweak Working Group (in
volving the ALEPH, DELPHI, L3, and OPAL collaborations) (The ALEPH Collaboration et al., 
2013) and by the Tevatron experiments (CDF and D0 collaborations) (CDF Collaboration and
D0 Collaboration, 2013). The same Exhibit also indicates the estimate of the mass mW of 
the W boson, and associated standard uncertainty, as computed by Olive and Particle Data
Group (2014), and their counterparts (labeled “DL”) based on a laboratory random effects 
model. 
The laboratory random effects model is an observation equation that represents the value of
the mass of the W boson measured by laboratory j as mW,j = mW + Aj + Ej , for j = 1, … , n,
where n = 6 is the number of measurement results, mW denotes the true value of the mass 
of the W boson, Aj denotes an effect specific to experiment j, and Ej denotes measurement 
error. 
The laboratory effects {Aj } and the measurement errors {Ej } are modeled as outcomes of 
independent Gaussian random variables, all with mean zero, the former with (unknown) 

mW u(mW) 
2COLLABORATION GeV∕c

ALEPH 80.440 0.051 

DELPHI 80.336 0.067 

L3 80.270 0.055 

OPAL 80.415 0.052 

CDF 80.387 0.019 

D0 80.375 0.023 

mW (GeV c2)

80.2 80.3 80.4 80.5 80.6

● ALEPH

● DELPHI

● L3

● OPAL

● CDF

● D0

Olive et al. (2014)

DL

Exhibit 44: Measurement results for the mass of the W boson obtained by the LEP Elec
troweak Working Group (ALEPH, DELPHI, L3, OPAL) (The ALEPH Collaboration et al.,
2013) and by the Tevatron experiments (CDF and D0) (CDF Collaboration and D0 Col
laboration, 2013), summarized in Olive and Particle Data Group (2014, Page 561), where 
c denotes the speed of light in vacuum and 1 GeV∕c2 = 1.782 662 × 10−27 kg (left panel),
and the estimates and uncertainty evaluations produced by Olive and Particle Data Group
(2014), and by application of the DerSimonian-Laird procedure of meta-analysis (Der-
Simonian and Laird, 1986) (right panel). The measurement results are depicted in blue,
with a dot indicating the measured value, and the horizontal line segment representing the
interval mW,j ± u(mW,j ), for j = 1, … , 6. 
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standard deviation r, the latter with standard deviations equal to the corresponding standard 
uncertainties {uj (mW)} that are listed in Exhibit 44. 
It is the presence of the {Aj } that gives this model its name, random effects model, and that 
allows it to accommodate situations where the variability of the estimates {mW,j } exceeds 
what would be reasonable to expect in light of the associated uncertainties {uj (mW)}. In 
this case, such excess variability appears to be modest because the standard deviation of the
between-laboratory variability is estimated as r̂ = 0.019 GeV∕c2, which is quite comparable 
in size to the {uj (mW)} listed in Exhibit 44. 
The random effects model may be fitted to the data in any one of several different ways. One
of the most popular fitting procedures was suggested by DerSimonian and Laird (1986), and
it is implemented in function rma defined in R package metafor (Viechtbauer, 2010; R Core 
Team, 2015).
The resulting estimate, m̂ = 80.378 GeV∕c2 (where c denotes the speed of light in vacw
uum), and the associated standard uncertainty 0.018 GeV∕c2, are depicted in Exhibit 44. 
Since m̂ = 80.378 GeV∕c2 = 1.4329 × 10−25 kg, we conclude that the W boson is aboutw
86 times more massive than a proton. The corresponding values computed by Olive and
Particle Data Group (2014) are 80.385 GeV∕c2 and 0.015 GeV∕c2. Taking into account
these uncertainties, it is obvious that the two consensus values are not significantly different
statistically.
The DerSimonian-Laird procedure regards the {uj (mW)} as if they were based on infinitely
many degrees of freedom, and also fails to take into account the small number of degrees of
freedom (n − 1 = 5 in this case) that the estimate of the inter-laboratory standard deviation 
r is based on. This second shortcoming is mitigated by applying an adjustment suggested
by Knapp and Hartung (2003), and the results given above reflect this.
A Monte Carlo evaluation of the uncertainty associated with the DerSimonian-Laird esti
mate may be performed by taking the following steps. 
1. Model the estimate of r2 produced by R function rma as an outcome of a random variable 

with a lognormal distribution with mean equal to the estimated value r̂2 = 0.019 GeV∕c2,
and with standard deviation set equal to the estimate of the standard error of r̂2 produced 
by rma, computed as explained by Viechtbauer (2007), u(r2) = 0.00104 GeV∕c2. 

2. Compute an effective number of degrees of freedom � to associate with the {u(mW,j )}
to recognize, albeit coarsely, that they are based on finitely many numbers of degrees
of freedom. We do this motivated by the following fact: if s is the standard deviation 
of a sample of size � + 1 drawn from a Gaussian distribution with standard deviation 
(, then the variance of �s2∕(2 equals 2�. Supposing that u1(mW), … , u (mW) are like n
standard deviations of Gaussian samples all of the same size and with the same standard

2 2deviation (, it follows that v2, the sample variance of u (mW), … , u (mW), should be 1 n
2(4∕� approximately. Replacing ( by (̃ = median{uj (mW)} leads to � = 2(̃4∕v2 = 5.64. 

3. Select a sufficiently large integer K and then repeat the following steps for k = 1, … , K: 
2(a) Draw a value r from the lognormal probability distribution associated with r̂;k 

(b) Draw a value W2 from a chi-squared distribution with � degrees of freedom, and j,k
 

compute (j,k = 
(

�u2(mW,j )∕W2 
)½, for j = 1, … , n;
j,k
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(c) Draw a value Aj,k from a Gaussian distribution with mean 0 and standard deviation 
rk for j = 1, … , n; 

(d) Draw a value Ej,k from a Gaussian distribution with mean 0 and standard deviation 
(j,k, for j = 1, … , n; 

(e) Compute mW,j,k = m̂ + Aj,k + Ej,k, for j = 1, … , n;w 
∗(f) Compute the DerSimonian-Laird estimate mW,k of mW based on the n Monte Carlo 

measurement results (mW,1,k, (1,k), . . . , (mW,n,k, (n,k). 
A Monte Carlo sample of size K = 1 × 105 drawn from the distribution of the mass of the 
W boson as just described had standard deviation with the same two significant digits that
R function rma produced for u(mW), thus lending credence to that uncertainty evaluation. A

295 % coverage interval derived from the Monte Carlo sample ranges from 80.343 GeV∕c
to 80.414 GeV∕c2, while its counterpart produced by rma ranges from 80.333 GeV∕c2 to 
80.424 GeV∕c2. 
E31 Milk Fat. Exhibit 45 lists values of fat concentration in samples of human milk de
termined by two measurement methods, and shows a Bland-Altman plot of these data: one
method is based on the measurement of glycerol released by enzymatic hydrolysis of triglyc
erides (Lucas et al., 1987), the other is the Gerber method (Badertscher et al., 2007).
Bland and Altman (1986) point out that a very high correlation between the paired measured
values is a misleading indication of agreement between two measurement methods because a
perfect correlation only indicates that the value measured by one method is a linear function
of the value measured by the other, not that the corresponding measured values are identical.
The correlation coefficient for these two sets of measured values is 0.998. 
A paired t-test indicates that the mean difference does not differ significantly from zero.
However, this, too, falls short of establishing equivalence (or, interchangeability) between
the two measurement methods. If the paired samples are of small size, then there is a fair
chance that a statistical test will fail to detect a difference that is important in practice. And
if they are large, then a statistical test very likely will deem significant a difference that is
irrelevant in practice (Carstensen, 2010).
For these reasons, Bland and Altman (1986) suggest that graphical methods may be partic
ularly informative about the question of agreement between methods. This being the most
often cited paper in the Lancet indicates the exceptional interest that measurement issues 
enjoy in medicine.
The Bland-Altman plot in Exhibit 45 shows how the difference between the paired measured
values varies with their averages (Altman and Bland, 1983; Bland and Altman, 1986). Ex
cept for the inclusion of limits of agreement (the average of the differences between paired
measured values plus or minus twice the standard deviation of the same differences), the
Bland-Altman plot is the same as Tukey’s mean-difference plot.
In this case, the difference between the methods tends to be positive for small values of the
measurand, and negative for large values. Exhibit 46 shows a Bland-Altman plot that recog
nizes this trend. Function BA.plot from R package MethComp was used to draw the Bland-
Altman plots and to determine the “conversion” equation given in Exhibit 46 (Carstensen
et al., 2013). 
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0.96 0.85 2.28 2.17 3.19 3.15 
1.16 1.00 2.15 2.20 3.12 3.15 
0.97 1.00 2.29 2.28 3.33 3.40 
1.01 1.00 2.45 2.43 3.51 3.42 
1.25 1.20 2.40 2.55 3.66 3.62 
1.22 1.20 2.79 2.60 3.95 3.95 
1.46 1.38 2.77 2.65 4.20 4.27 
1.66 1.65 2.64 2.67 4.05 4.30 
1.75 1.68 2.73 2.70 4.30 4.35 
1.72 1.70 2.67 2.70 4.74 4.75 
1.67 1.70 2.61 2.70 4.71 4.79 
1.67 1.70 3.01 3.00 4.71 4.80 
1.93 1.88 2.93 3.02 4.74 4.80 
1.99 2.00 3.18 3.03 5.23 5.42 
2.01 2.05 3.18 3.11 6.21 6.20 ( Trig + Gerber ) / 2
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Exhibit 45: LEFT PANEL: Values of fat concentration in human milk (expressed in centi
gram per milliliter) determined by measurement of glycerol released by enzymatic hydrol
ysis of triglycerides (T) and by the Gerber method (G) (Lucas et al., 1987), as reported by

Bland and Altman (1999, Table 3). RIGHT PANEL: Bland-Altman plot, with the average
 
difference and the limits of agreement indicated by horizontal (blue) lines.
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Exhibit 46: Bland-Altman plot recognizing that the dif
ferences between paired measured values depend on the
averages of the same values. The corresponding equation
that “converts” a value produced by the Gerber method
into the value that Trig would be expected to produce is
Trig = 0.0779 + 0.9721 × Gerber, with standard uncer
tainty 0.0792 cg∕mL. The slope is consistent with the fact
that only about 98 % of the fat in human milk is present as
triglycerides (Lucas et al., 1987), which are the target of
Trig. 

E32 Load Cell Calibration. Calibrating a force transducer consists of characterizing its 
response R to different standard values of the applied force F . The data listed in Exhibit 47 
are representative of a modern force transducer designed with extremely good control over
sensitivities to force application alignment, sequencing, and timing. The response originates
in a strain gage bridge network within the force transducer, and represents the ratio of the
bridge output voltage (millivolt) to the bridge excitation voltage (volt).
NIST usually characterizes the transducer response by developing a calibration function l 
that, given a value of F , produces R = l(F ). To use the transducer to measure forces in 
practice, a function c is needed that does the reverse: given an instrumental indication R,
it produces an estimate of the applied force F = c(R). The traditional procedure (Bartel, 
2005) has been to choose l as a polynomial of low degree, and to determine its coefficients
by fitting the polynomial to values of R for given values of F by ordinary least squares. 
Subsequently, c is defined as the mathematical inverse of l . 
The traditional procedure ignores the uncertainty associated with the values of the applied 
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RUN 1 RUN 2 RUN 3
 
F (kN) R (mV∕V) F (kN) R (mV∕V) F (kN) R (mV∕V)
 

222.411 0.088905 222.411 0.088906 222.411 0.088889
444.822 0.177777 444.822 0.177776 444.822 0.177767
889.644 0.355454 889.644 0.355453 889.644 0.355437

1334.467 0.533199 1334.467 0.533198 1334.467 0.533184
1779.289 0.710934 1779.289 0.710932 1779.289 0.710917
2224.111 0.888732 2224.111 0.888728 2224.111 0.888714
2668.933 1.066526 2668.933 1.066533 2668.933 1.066495
3113.755 1.244343 3113.755 1.244336 3113.755 1.244311
3558.578 1.422163 3558.578 1.422169 3558.578 1.422137
4003.400 1.600025 4003.400 1.600020 4003.400 1.599981
4448.222 1.777899 4448.222 1.777906 4448.222 1.777849 

Exhibit 47: Forces and corresponding instrumental responses in three calibration runs of
a load cell under compression. The forces are exactly the same in the three runs because
they result from the application of the same dead-weights, and temporal differences in
buoyancy are neglected. 

forces when it determines the coefficients of the calibration function, but it does take them
into account, as well as the uncertainty associated with the transducer response, when eval
uating the calibration uncertainty. (Bartel, 2005) describes a most meticulous evaluation of
the uncertainties associated with the forces and with the responses in calibrations performed
in the NIST force laboratory, where the relative standard uncertainties associated with the
forces applied during calibration, and with the electrical calibration of the voltage-ratio mea
suring instruments, both are 0.0005 %.
In this example, the function c that is used to estimate the value of the applied force respon
sible for a particular transducer response is determined directly (and not as the inverse of the
calibration function), by application of a version of the so-called errors-in-variables (EIV)
model (Carroll et al., 2006).
The measurement model involves the following system of simultaneous observation equa
tions: Rij = Pi + 8i + wij , and Fi = c(Pi) + Ei, for i = 1, … , m and for j = 1, … , n, where 
m = 11 is the number of force standards used during calibration, and n = 3 is the number 
of calibration runs (with each run involving the application of the same m standard forces). 
Rij , with true value Pi, denotes the instrumental response read in the jth application of force 
Fi, whose true value is c(Pi). 
In this case, the function c is approximated by a polynomial of the second degree, which
has been chosen from among polynomials of the first, second, and third degrees based on
values of the Bayesian Information Criterion (BIC) (Burnham and Anderson, 2002), and on 
examination of plots of residuals.
The errors {Ei} are the differences between the true forces applied by the standard weights,
and the values calculated for them based on the masses and volumes of the weights, and on
the local gravitational acceleration and its vertical gradient. They are assumed to remain 
constant in the n calibration runs, and amount to 0.0005 % of the values of the true forces, 
u(Ei) = 0.000005c(Pi). (NIST is currently developing a calibration procedure that takes
into account changes in buoyancy effects attributable to changes in atmospheric conditions
in the laboratory, which are measured in real-time, hence the applied forces are no longer
assumed to remain invariant from run to run.) 
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The errors {8i} are the differences between the actual values of the instrumental responses
and their true values that are attributable to uncertainty associated with the measurements of
electrical quantities, including electrical calibration uncertainty. The {8i}, too, are assumed
to remain constant from run to run. The corresponding standard uncertainties amount to
0.0005 % of the values of the true responses, u(8i) = 0.000005Pi. 
The errors {wij } describe the differences of the instrumental responses that are observed
in different runs, which are attributable in large part to deliberate, between-run changes in
the orientation of the transducer relative to the apparatus that applies forces to it. The errors
that pertain to force Fi are assumed to have a common probability distribution with standard 
deviation (i, which is evaluated statistically (Type A evaluation). In this example, the same
relative uncertainty was chosen for all the {wij } as the median of the relative uncertainties 

{(i∕Ri} where Ri denotes the average transducer response to force Fi over the n runs, for 
i = 1, … , m. It so turns out that the (i are about 3 times larger than the corresponding u(8i). 
The model just described was fitted to the data in Exhibit 47 by the method of maximum
likelihood (which in fact reduces to non-linear, weighted least squares), assuming that the
{Ei}, the {8i}, and the {wij } are like outcomes of independent, Gaussian random variables
all with mean zero and with standard deviations equal to the standard uncertainties specified
above. The corresponding optimization was done numerically using R (R Core Team, 2015)
function nloptr, defined in the package of the same name (Ypma, 2014; Johnson, 2015),
employing the the “Subplex” algorithm (Rowan, 1990). The fitting procedure produces
estimates of the (3) coefficients of the second degree polynomial c, and of the true values 
P1, . . . , P of the transducer responses.m 

The parametric statistical bootstrap was used for uncertainty evaluation, and it took into
account the fairly small number of degrees of freedom that the relative standard uncertainty
associated with the between-run dispersion of values is based on, and it involved repeating
the following steps for k = 1, … , K = 10 000: 
1. Compute perturbed values of the applied forces as Fi,k = ĉ(P̂i) +8i,k, where ĉ denotes the 

function fitted to the calibration data using the errors-in-variables procedure, P̂i denotes 
the estimate of the true instrumental response, and 8i,k denotes a simulated error with 
mean 0 and standard deviation equal to u(8i), for i = 1, … , m. 

2. Compute perturbed values of the transducer responses as Rij,k = P̂i +Ei,k +wij,k, where 
Ei,k denotes a simulated error with mean 0 and standard deviation equal to u(Ei), and wij,k 
denotes a simulated error with mean 0 and standard deviation equal to (i, for i = 1, … , m 
and j = 1, … , n. 

∗3. Compute the errors-in-variables estimate c of the function that produces values of force kgiven values of the transducer response. 
All the simulated errors mentioned above are drawn from Gaussian distributions, except
the {wij,k}, which are drawn from Student’s t distributions with m(n − 1) degrees of free
dom, rescaled to have the correct standard deviations. Exhibit 48 shows a coverage re
gion (depicted as a shaded band) for the whole curve c, computed by applying R function 
envelope, defined in package boot (Canty and Ripley, 2013a; Davison and Hinkley, 1997), 

∗ ∗to c1, … , c .K 
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Exhibit 48: EIV regression function (red
line) used to predict force as a function of in
strumental response, calibration values (open
blue circles) as listed in Exhibit 47, and asso
ciated standard uncertainties (horizontal and
vertical segments), and approximate 95 % si
multaneous coverage region (pink) for the re
gression function. Both the lengths of the
segments representing the standard uncer
tainties, and the (vertical) thickness of the
coverage band, are magnified 10 000 times. 
The relative standard uncertainties associated 
with the forces are all approximately equal to
0.0005 %. 

E33 Atomic Weight of Hydrogen. Hydrogen has two stable isotopes, 1H and 2H, the
former being far more abundant in normal materials than the latter, which is also known
as deuterium. The Commission on Isotopic Abundances and Atomic Weights (CIAAW) of
the International Union of Pure and Applied Chemistry (IUPAC), defines “normal material”
for a particular element any terrestrial material that “is a reasonably possible source for this
element or its compounds in commerce, for industry or science; the material is not itself
studied for some extraordinary anomaly and its isotopic composition has not been modified
significantly in a geologically brief period” (Peiser et al., 1984).
The atomic weight of hydrogen in a material is a weighted average of the masses of these
isotopes, ma(1H) = 1.007 825 032 2 Da and ma(2H) = 2.014 101 778 1 Da, with weights pro
portional to the amount fractions of 1H and 2H in the material. Since these fractions vary
between materials, the atomic weight of hydrogen (and of other elements that have more than
one stable isotope) is not a constant of nature (Coplen and Holden, 2011). The standard un
certainties associated with those masses are u(ma(1H)) = u(ma(2H)) = 0.000 000 000 3 Da 
(www.ciaaw.org/hydrogen.htm).)
Chesson et al. (2010, Table 2) reports 82H = 16.2 ‰ measured by isotope ratio mass spec
trometry in water extracted from a sample of Florida orange juice, and 82H = −16.8 ‰ 
measured in a sample of Florida tap water. The corresponding standard measurement un
certainty was u(82H) = 1.7 ‰ (Lesley Chesson, 2015, personal communication).
Delta values (Coplen, 2011) express relative differences of isotope ratios in a sample and in a
reference material, which for hydrogen is the Vienna Standard Mean Ocean Water (VSMOW)
maintained by the International Atomic Energy Agency (Martin and Gröning, 2009) For
example, 82H = (R(2H∕1H)M − R(2H∕1H)VSMOW )∕R(2H∕1H)VSMOW , where R(2H∕1H)M
denotes the ratio of the numbers of atoms of 2H and of 1H in material M and R(2H∕1H)VSMOW 

= 155.76 × 10−6 (Wise and Watters, 2005a) is its counterpart for VSMOW. 
Coplen et al. (2002, Page 1992) point out that “citrus trees in subtropical climates may
undergo extensive evaporation, resulting in 2H enrichment in cellular water”. The question
we wish to consider is whether the isotopic fractionation that led to the foregoing measured
values of 82H is sufficient to substantiate a statistically significant difference between the 
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atomic weight of hydrogen in the two materials, once the contributions from all relevant
sources of uncertainty are taken into account.
The uncertainty for the atomic weight of hydrogen may be evaluated by application of
the Monte Carlo method of the GUM-S1. Given a delta value 82HM,VSMOW for a material 
M (either orange juice or tap water in this case), and the associated standard uncertainty 
u(82HM,VSMOW ), choose a suitably large sample size K , and repeat the following steps for 
k = 1, … , K: 
1. Draw a value 82HM,VSMOW,k from a uniform (rectangular) distribution with mean 82HM,VSMOW 

and standard deviation u(82HM,VSMOW ); 
2. Draw a value xk(2H)VSMOW for the amount fraction of 2H in the VSMOW standard from 

a Gaussian distribution with mean x(2H)VSMOW = 0.999 844 26 and standard deviation 
u(x(2H)VSMOW ) = 0.000 000 025; 

3. Compute the corresponding amount fraction of 1H in the standard, xk(1H)VSMOW = 1 − 
xk(2H)VSMOW ; 

4. Compute the isotope ratio in material M as Rk(2H∕1H)M = (82HM,VSMOW,k+1) xk(2H)VSMOW 

∕xk(1H)VSMOW ; 
5. Compute the amount fraction of 2H in material M as xk(2H)M = Rk(2H∕1H)M ∕(1 + 

Rk(2H∕1H)M); 
6. The corresponding amount fraction of 1H in material M is xk(1H)M = 1 − x(2H)M; 
7. Draw a value ma,k(2H) from a uniform (rectangular) distribution with mean m (2H) anda

standard deviation u(m (2H));a

8. Draw a value ma,k(1H) from a uniform (rectangular) distribution with mean m (1H) anda
standard deviation u(m (2H));a

9. Compute a sample value from the resulting probability distribution of the atomic weight
[ ]of hydrogen in material M as Ar,k(H)M = xk(2H)Mma,k(1H) + xk(1H)Mma,k(2H) ∕mu,

where mu = 1Da exactly. 
These steps produce a sample of size K from the probability distribution of the atomic
weight of hydrogen in material M that expresses uncertainty contributions from the follow
ing sources: measurement of the delta value, amount fractions of the two stable isotopes of
hydrogen in the standard, and atomic masses of the two isotopes.
The mean of this sample of values of the atomic weight of hydrogen, {Ar(B)M,1, … , Ar(B)M,K },
is an estimate of the atomic weight of hydrogen in material M, and the standard deviation is
an evaluation of the associated standard uncertainty u(Ar(H)M). 
For the measurements of the isotopic composition of orange juice (OJ) and tap water (TW),
application of this procedure with K = 1 × 107 produced 1.007 983 7 as estimate of Ar(H)OJ,
and 1.007 981 3 as estimate of Ar(H)TW. The corresponding, associated standard uncertain
ties were both 0.000 000 3. Since (1.0079837 − 1.0079813)∕ 

√ 
2 × 0.00000032 = 5.7, and

the probability of a Gaussian random variable taking a value more than 5.7 standard devi
ations away from its mean is 2 × 10−8, we conclude that the difference between the atomic
weight of hydrogen in these samples of OJ and TW is statistically, highly significant. 
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E34 Atmospheric Carbon Dioxide. The concentration of CO2 in the atmosphere has 
been measured regularly at Mauna Loa (Hawaii) since 1958 (Keeling et al., 1976). Etheridge
et al. (1996) report values of the same concentration measured in air samples that became
trapped in ice between 1006 and 1978, and that were recovered from several ice cores drilled
in the region of the Law Dome (Antarctica). The yearly average concentrations from both
locations (the series overlap between 1959 and 1978) are listed in Exhibit 49 and depicted
graphically in Exhibit 50. 

Law Dome Mauna Loa 

yr c yr c yr c yr c yr c 

1006 279.4 1832 284.5 1939 309.2 1959 316.0 1987 349.2
1046 280.3 1840 283.0 1940 310.5 1960 316.9 1988 351.6
1096 282.4 1845 286.1 1944 309.7 1961 317.6 1989 353.1
1146 283.8 1850 285.2 1948 309.9 1962 318.4 1990 354.4
1196 283.9 1854 284.9 1948 311.4 1963 319.0 1991 355.6
1246 281.7 1861 286.6 1953 311.9 1964 319.6 1992 356.4
1327 283.4 1869 287.4 1953 311.0 1965 320.0 1993 357.1
1387 280.0 1877 288.8 1953 312.7 1966 321.4 1994 358.8
1387 280.4 1882 291.9 1954 313.6 1967 322.2 1995 360.8
1446 281.7 1886 293.7 1954 314.7 1968 323.0 1996 362.6
1465 279.6 1891 294.7 1954 314.1 1969 324.6 1997 363.7
1499 282.4 1892 294.6 1959 315.7 1970 325.7 1998 366.6
1527 283.2 1898 294.7 1962 318.7 1971 326.3 1999 368.3
1547 282.8 1899 296.5 1962 317.0 1972 327.4 2000 369.5
1570 281.9 1905 296.9 1962 319.4 1973 329.7 2001 371.1
1589 278.7 1905 298.5 1962 317.0 1974 330.2 2002 373.2
1604 274.3 1905 299.0 1963 318.2 1975 331.1 2003 375.8
1647 277.2 1912 300.7 1965 319.5 1976 332.1 2004 377.5
1679 275.9 1915 301.3 1965 318.8 1977 333.8 2005 379.8
1692 276.5 1924 304.8 1968 323.7 1978 335.4 2006 381.9
1720 277.5 1924 304.1 1969 323.2 1979 336.8 2007 383.8
1747 276.9 1926 305.0 1970 325.2 1980 338.7 2008 385.6
1749 277.2 1929 305.2 1970 324.7 1981 340.1 2009 387.4
1760 276.7 1932 307.8 1971 324.1 1982 341.4 2010 389.9
1777 279.5 1934 309.2 1973 328.1 1983 343.0 2011 391.6
1794 281.6 1936 307.9 1975 331.2 1984 344.6 2012 393.8
1796 283.7 1938 310.5 1978 335.2 1985 346.0 2013 396.5
1825 285.1 1939 311.0 1978 332.0 1986 347.4 

Exhibit 49: Yearly (yr) average amount-of-substance fraction c (expressed as micromole 
of CO2 per mole of air) in the atmosphere, measured either in air bubbles trapped in ice at
the Law Dome (Antarctica), or directly in the atmosphere at Mauna Loa (Hawaii). 

The measurand is the function e that produces the true value of the yearly average atmo
spheric concentration for any given year between 1006 and 2014. Since e may be expected
to vary smoothly over this range, estimating it amounts to building a smooth interpolant for
the data, which can be done in many different ways.
The observation equation (statistical model) selected for illustration in this example is a
treed Gaussian process (Gramacy and Lee, 2008), which makes no assumptions about the
functional form of e, and represents the target function either as an outcome of a single
Gaussian random function, or as an outcome of two of more Gaussian random functions
joined end-to-end.
A Gaussian random function is a collection of correlated Gaussian random variables {e(t) ∶ 
t = 1006, … , 2013}, also called a Gaussian stochastic process. The correlations allow 
the function to capture the fact that values at neighboring epochs tend to be more similar
than values at widely separated epochs. Such functions can enjoy much greater modeling
flexibility than a polynomial or even a piecewise polynomial function, for example. 
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The function btgp defined in R package tgp (Gramacy, 2007) implements a Bayesian pro
cedure to fit this model (Gramacy and Lee, 2008; Chipman et al., 2013). When fitted to this
data, a change in regime around 1877 was detected. Exhibit 50 shows the estimate of e and 
a 95 % coverage band.
The thick tick mark pointing up from the horizontal axis indicates the year 1877, which
marks the transition from a regimen that lasted for at least 800 years, during which the
amount fraction of CO2 remained fairly constant at about 280 µmol∕mol, to a period that
started with the Industrial Revolution and continues until the present, when this amount
fraction has been increasing very rapidly. 
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Exhibit 50: Antarctica ice-core locations, including the Law Dome (left panel: image 
source cdiac.ornl.gov/trends/co2/ice\_core\_co2.html, Carbon Dioxide Infor
mation Analysis Center). Yearly average amount fraction cCO (right panel, micromole of 

2CO2 per mole of air) measured either in air bubbles trapped in ice at the Law Dome (large
blue dots), or directly in the atmosphere at Mauna Loa, Hawaii (small red dots). Estimate
of the function e that produces the true value of cCO2 

for any given year between 1006 and 

2014 (solid, dark green line), qualified with a 95 % coverage band. The green tick mark
pointing up from the horizontal axis indicates the year (1877) when a transition occurs in
the model, from one Gaussian process to another. 

E35 Colorado Uranium. The National Geochemical Survey maintained by the U.S. Geo
logical Survey (U.S. Geological Survey Open-File Report 2004-1001, version 5.0 available
at mrdata.usgs.gov/geochem/doc/home.htm, accessed on March 22, 2015) includes 
data for 1150 samples, primarily of stream sediments, collected in Colorado between 1975
and 1980 as part of the National Uranium Resource Evaluation (NURE) program (Smith,
2001). The corresponding data may be downloaded (in any one of several formats) from 
mrdata.usgs.gov/geochem/select.php?place=fUS08&div=fips. 
The mass fraction of uranium in these samples was measured using delayed neutron counting
(Knight and McKown, 2002). The measured values range from 1 mg∕kg to 147 mg∕kg, and
their distribution is markedly asymmetric, with right tail much longer than the left. A Box-
Cox transformation that re-expresses an observed value x into (xA − 1)∕A, with A = −0.7,
reduces such asymmetry substantially (Box and Cox, 1964), and enhances the plausibility
of models that involve Gaussian assumptions.
The measurand is the function e that, given the geographical coordinates (u, v) of a loca
tion within Colorado, produces an estimate of the mass fraction of uranium in sediments at
that location. The generic observation equation expresses the measured value of the mass 

NIST TECHNICAL NOTE 1900 91 ∕ 103 



fraction of uranium W(u, v) as (W(u, v)A − 1)∕A = e(u, v) + E(u, v).
 
The measurement errors {E(u, v)} are assumed to behave like values of independent, Gaus
sian random variables with mean zero and the same standard deviation. The function e is
 
deterministic in two of the models considered below, and stochastic in two others.
 
A polynomial (in the geographical coordinates) would be an example of a deterministic

function. A collection of correlated Gaussian random variables, where each one describes

the mass fraction of uranium at one location in the region, would be an example of a stochas
tic function: the correlations capture the fact that neighboring locations tend to have more

similar values of that mass fraction than locations that are far apart.

Exhibit 51 shows that both deterministic and stochastic functions are able to capture very

much the same patterns in the spatial variability of the data. Even though the function e
 
can be evaluated at any location throughout the region, here it is displayed as an image that

depicts the values that e takes at the center of each pixel in a regular grid comprising 40×30
 
pixels. These are the four models used for e:
 

Q: Locally quadratic regression model with nearest-neighbor component of
the smoothing parameter chosen by cross-validation, as implemented in
R package locfit (Loader, 1999, 2013); 

K: Ordinary kriging model with Matérn’s covariance function and estimation
of spatial anisotropy as implemented in R package intamap (Stein, 1999; 
Pebesma et al., 2010); 

G: Generalized additive model with thin plate regression splines and smooth
ing parameter chosen by generalized cross-validation, as implemented in
R package mgcv (Wood, 2003, 2006); 

L: Multi-resolution Gaussian process model as implemented in R package LatticeKrig,
with default settings for all the user adjustable parameters (Nychka et al.,
2013, 2014). 

The four estimates of e are generally similar but clearly differ in many details. The signifi
cance of these differences depends on the uncertainty associated with each estimate. Instead

of exploring the differences, we may choose instead to combine the estimates, and then to

capture the differences that are attributable to model uncertainty alongside other identifiable

sources of uncertainty, when evaluating the uncertainty associated with the result.

Model averaging is often used for this purpose (Hoeting et al., 1999; Clyde and George,

2004), which typically is done by computing the weighted mean of the results corresponding

to the different models, with weights proportional to the Bayesian posterior probabilities of

the models given the data.

In this case, we adopt the simplest version possible of model averaging, which assigns to

the pixel with center coordinates (u, v) the (unweighted) arithmetic average of the values

that the four estimates described above take at this location: ê(u, v) = (êQ(u, v) + êK(u, v) +
 

êG(u, v) + êL(u, v))∕4.
 
Exhibit 52 shows this pixelwise average, and also the endpoints of pixelwise coverage inter
vals for e (one interval for each of the pixels in the image) based on a Monte Carlo sample
 
of size K = 1000 drawn from the probability distribution of e. Each element in this sample,
 

NIST TECHNICAL NOTE 1900 92 ∕ 103 



● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−250 −50 150

44
50

46
50

48
50

 2
.6

 

 3.2 

 4.1 

 4.1 

 4.1 

 4.1 

 5.6 

 8.2 

 8.2 
● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 2.2 

 2
.2

 

 2
.6

 

 2.6 

 2.6 

 3.2 

 3
.2

 

 3.2 

 4.1 

 4.1 

 4.1 

 4.1 

 4.1 

 4.1 
 5.6 

 5.6 

 5.6 

 5
.6

 

 8.2 

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 2
.2

 

 2.6 

 2.6 

 3.2 

 3.2 
 4.1 

 4.1 

 5.6 

 8.2 
● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 2
.2

 

 2.6 

 2.6 

 2.6 

 3.2 

 3.2 

 4.1 

 4.1 
 4.1 

 4.1 

 5.6 

 8.2 

Exhibit 51: Four estimates of the spatial distribution of the mass fraction of uranium in
stream sediments throughout Colorado: (i) Q (locally quadratic regression, top left); (ii) 
K (ordinary kriging, top right); (iii) G (generalized additive model, bottom left); and (iv) 
L (multi-resolution Gaussian process model, bottom right). The black square marks the
location of the city of Denver, and the light-colored little dots mark the locations that were
sampled. The geographical coordinates are expressed in km, and the labels of the contour 
lines are expressed in mg∕kg. 

for k = 1, … , K , is a map built as follows, where m = 1150 denotes the number of locations 
where the mass fraction of uranium was measured: 

1. Draw a sample of size m, uniformly at random and with replacement, from 
the set of m locations where sediment was collected for analysis;

2. Since the same location may be selected more than once, the geographical
coordinates of all the locations that are drawn into the sample are jittered
slightly, to avoid the occurrence of duplicated locations, which some of
the software used cannot handle; 

3. Obtain estimates êQ,k, êK,k, êG,k, êL,k as described above, but using the 
sample drawn from the original data;

∗4. Compute êk = (êQ,k + êK,k + êG,k + êL,k)∕4. 
The coverage interval at the pixel whose center has coordinates (u, v) has left and right 

∗ ∗̂endpoints equal to the 2.5th and 97.5th percentiles of {ê (u, v), … , e (u, v)}. These maps 1 K
of percentiles indicate how much, or how little of the structures apparent in ê are significant
once measurement uncertainty (including model uncertainty) is taken into account. 
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Exhibit 52: The center panel shows the pointwise average of the four estimates of the
spatial distribution of the mass fraction of uranium depicted in Exhibit 51. The black dot
marks the location of the city of Denver, and the light-colored little dots mark the locations
that were sampled. The geographical coordinates are expressed in km, and the labels of 
the contour lines are expressed in mg∕kg. The left and right panels show the left and right
end-points of approximate 95 % coverage intervals for e. 
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