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Nomenclature

Symbols

a coefficient of multivariable polynomial or a constant
C case variable

d data distance to zone center

Amax maximum distance of the filtered group in the zone
h variables of the hidden layer neurons

m number of coefficients, number of features to determine fault pattern
N number of data, normal distribution

0 variable of output neuron

P pressure (kPa) or probability

r residual

S positive constant multiplier of the threshold

T temperature (°F)

w weight matrix

w work (W)

X variable representing measured data

X variables of the input layer neurons, independent variables
z standardized feature residual

Greek Symbols

a learning rate

) an error information term

A difference

€ threshold value

I momentum terms, predicted value by fault-free models
o standard deviation

[0) feature parameter

Subscripts

C condenser

CA condenser air

D compressor discharge

DB dry bulb

DP dew point

E evaporator

EA evaporator air

FF fault free

ID indoor

IDP indoor dew point

oD outdoor

sat saturation



SC subcooling
SH superheat

Abbreviations

AC air conditioner

ANN artificial neural network

avg average

CF condenser fouling, reduced outdoor air flow rate
CMF compressor valve leakage

copP coefficient of performance

DCR domain coverage rate

EF evaporator fouling, improper indoor air flow rate
erf error function

FDD fault detection and diagnosis

FF fault free

HP heat pump

loT Internet of things

LL liquid line restriction

MPR multivariable polynomial regression
NC presence of non-condensable gases
oC refrigerant overcharge

PDF probability density function

RH relative humidity

SDR successful diagnosis rate (%)

trans transfer function

TRE test relative error (%)

TSE test standard error (°F)

uc refrigerant undercharge

ZD zone density



1. Introduction

In 2014, residential cooling consumed 13 % of the total U.S. residential home electrical energy
used (189 of 1415 billion kWh) according to the U.S. Energy Information Administration (EIA,
2014). Therefore, efficient maintenance techniques for cooling systems are very important in
preventing energy waste due to improper operation and lack of fault recognition. If a fault
detection and diagnostic (FDD) system could save 1 % of the 189 billion kWh used for cooling, it
would have saved consumers approximately $229 million (EIA, 2013). However, building and
applying a generic FDD model is very difficult due to the various installation environments seen
for residential air-conditioning and heat pump systems. Self training FDD methods are the only
way to implement an effective FDD method in these varied installation environments.

Fault Detection and Diagnostics (FDD) can be used to commission and maintain the
performance of residential style, split-system, air conditioners and heat pumps. Previous
investigations by various researchers have provided techniques for detecting and diagnosing all
common faults, but these techniques are meant to be applied to systems that have been
thoroughly tested in a carefully instrumented laboratory environment. Although such an
approach can be applied to factory-assembled systems, installation variations of field-
assembled systems require in-situ adaptation of FDD methods. Providing a workable solution
to this problem has been the impetus for the work presented in this report, which describes a
method for adapting laboratory generated FDD techniques to field installed systems by
automatically customizing the FDD fault-free performance models to random installation
differences.

2. Overview of Fault Detection and Diagnostics

2.1. Previous Studies

The development of this fault detection and diagnostics (FDD) method required both extensive
measurements and analytical efforts. System characteristics were measured during fault-free
and faulty operation, and analytical work implemented that knowledge and data into
algorithms able to produce a robust determination of the ‘health’ of the system. In earlier work
the National Institute of Standards and Technology (NIST) made detailed measurements on the
cooling (Kim et al., 2006) and heating [(Payne et al., 2009), (Yoon et al., 2011)] performance of a
residential, split-system, air-source, heat pump with faults imposed. Previous research on FDD
techniques [e.g.,(Rossi and Braun, 1997), (Braun, 1999), (Chen and Braun, 2001)] was used to
refine a rule-based chart technique able to detect and diagnose common faults which can occur
during operation of an air conditioner (AC) and heat pump (HP) [(Kim et al., 2008b),(Kim et al.,
2010)].



2.2. Concept of Self Training

System parameters sensitive to common faults were identified, such as refrigerant subcooling
at the condenser outlet or a difference in the air temperature between the inlet and outlet of
the heat exchanger. These parameters are referred to as features. The values of these features
during fault-free heat pump operation were correlated and modeled as functions of different
operating conditions. After models of the fault-free features have been developed, detection of
a fault (if it exists) and its diagnosis can be done by comparing features’ fault-free values to
those measured during heat pump operation. Typically, fault-free features are measured and
correlated for steady-state operation. For this reason, feature measurements during regular
heat pump operation must be taken only when the system is steady-state.

For factory-assembled systems, e.g., windows air conditioners or roof-top units, fault-free
features can be measured in a laboratory to establish a representation for that model line.
These feature measurements (and derived correlations) can be applied to the entire model line
of the tested system. However, for field-assembled systems, such as split, air-to-air heat pumps
and air conditioners, their fault-free characteristics may substantially differ due to their
individual installation constraints. For this reason, for field-assembled systems, fault-free
feature models need to be developed based on data collected in-situ after the system has been
installed. This challenging task can be carried out by a self training module incorporated into
the FDD unit.

The self training module is started by a technician after completing a manual check of the
installed system per manufacturer instructions and ensuring the system operates free of faults.
During operation the self training module receives measurements of system features and
operating conditions, and processes them according to the scheme shown in Figure 2.1.

First, the steady-state detector evaluates the data and determines whether the heat pump
operation is steady. In the next step, the data are screened by the fault-free filter. This filter can
be considered as a preliminary FDD scheme provided by the outdoor unit manufacturer. It
contains preliminary models for predicting fault-free values of system features and uses relaxed
thresholds to accommodate different installation constraints and their impact on the system
features. The purpose of this screening is to identify significant departures of the measured
features from preliminary fault-free values and signal them as possible installation errors. In
such an instance, the self training process would be halted and could only be re-initiated by
manual restart.

Filtered data from a steady-state detector are recorded until the data are considered fault-free
based upon quality and distribution within the selected range of specific operating conditions
(independent variables): outdoor dry-bulb, indoor dry-bulb, and indoor humidity. The Zone
Density test considers the current independent variables and determines if they are better than
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any other previously collected data within some predefined variation. If the data are acceptable,
a decision is made to produce an intermediate fault-free correlation for all of the dependent
features. These intermediate fault-free correlations are used as new fault-free tests to select
more fault-free data. The self training process consists of generating several intermediate fault-
free models, with a new model replacing an older one as additional fault-free data are collected,
expanding the self training dataset used to develop the previous model. If a new intermediate
set of correlations is developed, then the extents of the independent variables are examined to
determine whether the desired range has been covered. This data collection process continues,
and the models are updated until the operating conditions domain coverage (or preselected
extents of the independent variables) reaches a maximum value. Once the domain coverage is
at the maximum value the final fault-free correlations are generated and self training is
complete. The concepts of Zone Density and Coverage Rate will be discussed further in the
following sections.

Zone
Density
Test

Steady-
State
Detector

Fault-
Free Test

Generate Steady- Generate
Intermediate State FINAL
Correlation Detector Correlation
Stop

Figure 2.1. General logic for self training

2.3. Measurement Features for Self Training

Following the previous NIST study on residential HP and AC FDD (see Kim et al. 2008b), the
three independent features, Top, Tip, Tiop, and seven dependent features, T¢, Tsy, T, Tp, Tsc, ATea,
ATc4 were chosen for self training (Table 2.1). The value of the seven dependent features can be
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correlated as functions of the three independent features within the three-dimensional
operating data domain.

Table 2.1. Measurement features for self training

Independent Features (operatin
P o (op & Dependent Features (FDD features)
conditions)
Evaporator exit refrigerant saturation
Outdoor dry-bulb temperature Top P g Te
temperature
Indoor dry-bulb temperature To Evaporator exit refrigerant superheat Tsh
. Condenser inlet refrigerant saturation
Indoor dew point temperature Tiop Tc
temperature
Compressor discharge refrigerant T
temperature b
Liquid line refrigerant subcooling T
temperature ¢
Evaporator air temperature change AY I
Condenser air temperature change ATy

3. Self Training Method

3.1. Qualifying Fault-Free Data for the Self Training Dataset

The goal of qualifying the new fault-free data is to develop a uniformly distributed self training
dataset for generating fault-free feature models. Figure 3.1 depicts the concept of fault-free
data storage in a three-dimensional operating data domain defined in terms of outdoor
temperature, indoor temperature, and indoor relative humidity. The domain is divided into
“zones” (represented by parallelograms) to facilitate managing the fault-free data distribution.
Some measured fault-free data points are indicated by blue points.



Top ()

Figure 3.1. Three dimensional operating data domain with sixty zones

The collected data may include multiple data points scattered within the cuboid space of a
particular zone. Moreover, storage capacity for data collection in the system has a limitation;
therefore, some means of keeping only the best data in a zone must be implemented. To do
this zone housekeeping, the concept of zone density (ZD) is introduced to manage and weight
the data efficiently. Figure 3.2 shows the concept of a spherical data filter within six, three
dimensional cuboid zones, but reduced to two dimensions for clarity of illustration.

Illlustration of data domain Application of data filter, ZD=5
Figure 3.2. Concept of zone density

To reduce the numerical and dimensional complexity of calculating the spherical radius within
the cuboids, the axial dimensions (x,y,z = Top, Tip, Tipp) are normalized to create a unit cube with
5



each side having unit area (i.e., 1x1x1). Only data within the sphere are selected, and of the
selected data, the data closest to the center are ranked as being higher quality and are selected
for storage. Data storage demands are reduced by imposing a zone density (ZD) limit which
means that only a specified number of data points, closest to the center of each sphere, are
kept. Figure 3.2 shows a ZD equal to 5; any new data within a zone will only be accepted if its
distance, d, is less than the maximum data point distance occurring in that zone. The distance
from the center of the sphere to a data point can be easily calculated as shown in Equation 3.1
and Figure 3.3a.

d =+(05-x)* +(0.5—y)? +(0.5— z)’ (3.1)

The maximum number of data points in a zone can be adjusted using the zone density concept
(Figure 3.3b). A ZD of m is defined as the selection of the closest m data points from the center
in each zone. For example, the allowable data number decreases with the decrease of ZD as
shown in Figure 3.3b. In this study, a ZD from 100 to 1 was applied and tested in the self
training FDD logic.

(a) A Smgle zone (b) Zone density 50
— Zone density 25
1 Zone density 10
| Zone density 5
T e Zone density 1
Center
Oé d
)Y, 2)
1 Zone
1

Figure 3.3. Concept of zone density: (a) data distance “d” from zone center and (b) various
zone densities

3.2. Domain Coverage Rate

Before a fault-free dataset is used to develop models for fault-free features, some numerical
criterion needs to be established to assess the quality and extent of the dataset. Preferably,
each zone should contain data to avoid extrapolation. According to Braun and Li (2001), the
predictions in case of extrapolation showed a deviation 3 to 10 times larger than those
predicted by interpolation. Ideally, each zone should contain the same number of data points
located close to the center.



For the purpose of rating the extent of the fault-free dataset, the concept of Domain Coverage
Rate (DCR) is introduced, which is the ratio of the number of zones with at least one fault-free
data point to the total number of zones within the operational data domain. The calculation of
the DCR is shown by Equations 3.2 and 3.3. If all zones contain at least one data point then the
DCR would equal 100 %.

1 if data found in i,, zone

Index, = . L (3.2)
0 if data not found in i,, zone

DCR = lZznarex,. (3.3)
nia

where n is the total number of zones.

3.3 Fault-Free Models

Once the domain coverage rate reaches a specified maximum level, the self training module will
correlate the data within all zones using the chosen fault-free model form. The following
sections evaluate the performance of several fault-free model forms developed from cooling
mode laboratory test data previously acquired for an air-source residential heat pump.

3.3.1. Multivariable Polynomial Regression Models

Multivariable Polynomial Regression (MPR) models have been widely applied as fault-free
models [(Li and Braun, 2003), (Braun and Li, 2001), (Kim et al., 2008b), (Heo et al., 2012)] due to
their simple structure and ease of programming. They belong to the “black-box” category of
models, which do not consider the physics of the system and require a large dataset to
accurately predict system performance. The higher order MPR models offer better accuracy of
prediction; however, excessive polynomial order for a relatively small database may worsen
data interpolation.

Equations 3.4, 3.5, and 3.6 show the general form of the regressed equations for features as 1%,
2" and 3" order MPR models, respectively.

(€Y I—

feature ~ Ao T aTyp +ay Ty +asTypp (3.4)
2y _— 40 2 2 2

eature — P feanre T a,TopTp + asTipTipp + asTippTop + a1, + agTyy + agTp (3.5)

@) _ (2 3 3 3 2
eature— Pfeature T o Top + a1 + ay,Tipp + aTon T Tpp + ayTop T (3.6)

2 2 2 2 2
+asTopTipp + T Top + A T Tipp + angTippTop + aigTp T



3.3.2. Artificial Neural Network Models

An Artificial Neural Network (ANN) model was developed for the seven dependent features.
The relationship between the three independent variables and seven dependent features is
“learned” by an artificial neural network using a back propagation algorithm. The ANN test
module was developed based on the sample code presented by Frenz (2002). The fault-free
data are used as targets for the back propagation learning.

Figure 3.4 shows the structure of the 3-layer ANN(3x3x1), which has three input variables (Top,
Tip, and Tjpp), one hidden layer, and one output. In general, a form of the sigmoid function is
used as the activation function in the nodes of the hidden layer. The weight coefficients and
offsets (or bias values) are learned using a momentum back propagation algorithm through
more than 10 000 iterations (Frenz, 2002).

Input Hidden Output

¢feature

Figure 3.4. Artificial neural network structure (3x3x1)

Each hidden layer neuron is connected to every input neuron and each individual hidden layer
neuron receives the sum of the weighted input neuron values as given in Equation 3.7. X;
represents the input neuron values (Top, Tip, and Tipp) and wj; represents the weights connecting
the input neurons to the hidden layer neurons. In a similar way, the output layer neurons are
determined as given in Equation 3.8. Bipolar sigmoid function was applied to layer transfer
function as given in Equation 3.9.

hm.j: P i + ZXiWI‘j ’ hout.j: lrans (hm.j) (3.7)
-1
Oin.k: Obias.j + Z hout.jwjk ’ O(mt.kz trans (Oin.k) (38)
=
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trans(x) = L_—l (bipolar sigmoid) (3.9)
l+e™

The back-propagation process utilizes a gradient descent algorithm that seeks to minimize the
errors of the values that are output from the neural network. The weight and bias update
equations including the learning rate (a) and momentum terms (p) are given in Equations 3.10
through 3.13. The learning rate fragments the weight/bias adjustment taken in each training
iteration. The smaller the value of alpha, the longer a network takes to train, but the smaller
alpha reduces fluctuations in the weight variation from iteration to iteration and generally
produces smaller errors. Momentum is added to the weight adjustment equations (Equations
3.10 and 3.12), which enables the weight to change in response to the current gradient step.
Delta (6) is calculated by multiplying the difference between the target value and output value
by the derivative of the activation function (Equation 3.14). Here t represents the current set of
weights/biases, t-1 the previous set, and t+1 the new set being calculated.

Wik (t+1)= Wik (t)+ad- P + /u(ij (1) - Wik (t-1) (3.10)
Obias.k (t + 1): Obias.k (t) + a5+ lu(Obias.k (t) - Obias.k (t _l)) (3 . 11)
w, (t+)=w, () +ao - X, + u(w, (£) —w; (¢ -1)) (3.12)
hbias.j (t +1): hbias.j (t) + a5 + lu(hbias.j (t) - hbias.j (t _1)) (313)
o= %(1 +trans(O,, )) (1 —trans(0,,) (O,per = O, )) (3.14)

The standard deviation (o) of the ANN model was investigated with the variation of the learning
rate, alpha (a), momentum (p), maximum iteration number, and number of hidden layers, as
shown in Figure 3.5. The ANN model’s performance was the most sensitive with learning rate (o)
and iteration number, which were optimized at 0.001 and 10000, respectively. The ANN
model’s performance improved with the increase of the momentum term. However with the
momentum term greater than 0.1, the ANN model’s performance decreased due to too large of
a gradient for training. If the number of hidden layers increased, the total number of variables
for modeling also increased. As a result, the ANN model with three layers showed the best
performance.
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Figure 3.5. Operating factor optimization for the ANN model

3.3.3. Combined ANN-MPR Models

Used alone, the ANN model showed good interpolation performance, poor extrapolation
performance, and relatively long times required for training. The low-order MPR model had
relatively good extrapolation performance, low interpolation performance, and very fast
training times. In order to combine the strengths of the ANN and MPR models, a combined
model was designed as illustrated by Braun and Li (2001).

In this study, the first and second order MPR models and the ANN (3x3x1) model were applied
in the combined model. First, the MPR model was regressed with the training data, and then
the residuals between the model output and the training data were fit with an ANN. This
combined model is calculated as given in Equation 3.15.

Bompine Pupr + Dann (3.15)

4. Self Training Implementation

4.1. Experimental Setup and Fault-Free Data Collection

To test and validate the self training scheme presented in the previous sections, we developed
a fault-free database with laboratory data taken on an R410A, 8.8 kW split heat pump operating
in the cooling mode. The unit had a Seasonal Energy Efficiency Ratio (SEER) of 13 (AHRI, 2008).
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The unit consisted of an indoor fan-coil section, outdoor section with a scroll compressor,
cooling and heating mode thermostatic expansion valves (TXV), and connecting tubing. Both
the indoor and outdoor air-to-refrigerant heat exchangers were of the finned-tube type. The
unit was installed in environmental chambers and charged with refrigerant according to the
manufacturer’s specifications. Figure 4.1 shows a schematic of the experimental setup
indicating the measurement locations. On the refrigerant side, pressure transducers and T-type
thermocouple probes were attached at the inlet and exit of every component of the system.
The refrigerant mass flow rate was measured using a Coriolis flow meter. The air enthalpy
method served as the primary measurement of the system capacity, and the refrigerant
enthalpy method served as the secondary measurement. These two measurements always
agreed within 5%. Uncertainties of the major quantities measured during this work are
summarized in Table 4.1. Detailed specifications of the test rig including indoor ductwork,
dimensions, data acquisition, measurement uncertainty, and instrumentation is described in
Kim et al. (2006).

Thermostatic

Expansion Valve Mass flow meter, VEES
ﬁ - @ for LL fault U
i ] (W \ _|
P, T, Teat
-----
1nnn

— Condenser
1
1

Valve
cTiw] for CMF fault

P, T T

Evaporator

Figure 4.1. Schematic diagram of the experimental setup (Kim et al., 2006)

To implement the most efficient test procedure, outdoor temperature was fixed at one of four
values, the addition of steam to the indoor chamber was set at one of several discrete levels by
modulating a steam valve, and the indoor dry-bulb temperature was changed over the desired
operating range by energizing 10 heaters sequentially. From the total number of 10409
recorded data scans, 5830 data sets were allowed by the steady-state detector. The data were
recorded every 18 s and filtered through the steady-state detector, which qualified steady-state
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data for use in development of the fault-free models for the seven features. In this process,
instability of the system due to on-off transients and rapid load changes was filtered out by the
steady-state detector. From the total number of 10 409 recorded datasets, 5830 datasets were
kept by the steady-state detector.

Table 4.2 shows operating conditions for the fault-free tests. The four outdoor temperatures
were maintained within +0.5 °F. For the indoor conditions, the amount of steam introduced to
the indoor chamber was fixed such that the humidity ratio varied from 0.0037 to 0.0168. Data
were recorded, every 18 s, as indoor dry-bulb temperature varied from 59.5 °F to 93.0 °F. The
range of operating conditions for which data were collected defines the applicable limits for the
FDD scheme.

Table 4.1. Measurement uncertainties

Measurement Range Uncertta\inty ata 95 %
Confidence Level

Individual temperature -0.4 °F to0 199.4 °F +0.54 °F
Temperature difference 0 °F to 50.4 °F +0.54 °F
Air nozzle pressure drop 0 Pato 1245 Pa +1.0Pa
Refrigerant mass flow rate 0 kg/h to 544 kg/h +1.0%
Dew point temperature -0.4 °F to 100.4 °F +0.72 °F
Dry-bulb temperature -0.4 °F to 104 °F +0.72 °F
Total cooling capacity 3 kW to 11 kW +4.0%
cop 2.5t06.0 5.5%

Table 4.2. Operating conditions for fault-free tests

Outdoor dry-bulb temp. °F 82,90, 95, 100
Indoor dry-bulb temp. °F 59.5t093
Indoor humidity ratio 0.0037 to 0.0168

If we assume that the data distribution is similar to that of a field-installed, real system, the DCR
can be calculated based on the accumulated dataset as introduced in Equations 3.2 and 3.3.
Figure 4.2 shows the fault-free data distribution with increments of the domain coverage rate.
DCR of 20 %, 40 %, 60 %, and 73 % were fulfilled when the accumulated data points reached
2104, 2830, 4211, and 5830, respectively. The datasets corresponding to these four DCRs were
used for the self training of different fault-free models.
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Figure 4.2. Test condition data distribution and progression of domain coverage

4.2. Fault-Free Model Performance with the Whole Dataset

Six fault-free model types [MPR(1st order), MPR(2nd order), MPR(3rd order), ANN, and two
combined models (MPR(1st order) + ANN, MPR(2nd order) + ANN)] were tested and compared
using the entire dataset. Each model’s overall performance was evaluated by calculating the
standard error, as given in Equation 4.1. The test standard error (TSE) is calculated from the
square root of the squared summation of residuals divided by the number of data points, N.
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(4.1)

Among the dependent features, the TSE of Tp and T, were the highest and the lowest,
respectively. The MPR(3rd order) model showed the lowest prediction error, followed by the
MPR(2nd order), combined MPR(2nd order)+ANN, combined MPR(1st order)+ANN, and ANN
model (Figure 4.3). Therefore, the MPR methods were applied and tested for additional analysis
of the self training method.

2.0
[ MPR(1st)
- B MPR(2nd)
- Bl MPR(3rd)
1.6 | [ [_JANN
~ 1 MPR(1st)+ANN
I [ MPR(2nd)+ANN
w12}
L s [ g |[] -
n _
= 08H
04h
ool 1

T T T T T AT AT Avg

E SH c D sSC EA CA

Figure 4.3. Fault-free models performance on the whole dataset

4.3. Fault-Free Model Performance with Different Zone Densities

The zone density (ZD) concept was introduced to limit the data needed to generate a model
while collecting data over the predefined range of independent variables. In this section, the
prediction performance of the fault-free model was tested with various zone densities. In the
process of training, fault-free models were developed based on the data kept at the desired ZD,
and then the prediction performance was tested on the filtered dataset in the test range (4627
of the 5830 original points after eliminating repeated tests).

Limiting the zone density produced a smaller dataset of training data; the bigger the zone
density number, the larger the training dataset for the training process. When the zone density
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decreased from 100 to 10, the data quantity drastically decreased from 2968 to 426 (Figure 4.4).
Therefore, as the ZD number decreased, the training speed and data storage compactness also
improved due to the smaller dataset. However, too small of a zone density number can
decrease the prediction performance.
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Figure 4.4. Data distance to zone center for different zones for two zone densities

Figure 4.5 shows the standard error of the fault-free model for the seven dependent features
with different zone densities. Whereas the standard error for Tg, T, ATes, ATca Was relatively
non-sensitive to the variation of zone density, the standard error for Tsy, Tp, and Tsc was more
rapidly increased with the decrease of zone density. The MPR(3rd order) model was the most
sensitive to zone density variation. The MPR(3rd order) model has a relatively large number of
coefficients (20) compared to the first order (4) and the second order (10) MPR models, so that
it requires abundant data for stable regression. On average, the MPR(3rd order) model showed
the lowest standard error followed by the second and the first order MPR models, respectively.
At a zone density of 100, the standard error remained at a similar level to the models using all
of the data (5830 non-filtered case). When the zone density was less than 25, the MPR(3rd
order) model showed similar prediction performance to that of the MPR(2nd order) model. The
MPR(3rd order) model with zone density of 100 showed the most stable and best prediction
performance.
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Figure 4.5. Fault-free model performance with zone density (Test Standard Error)
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4.4. Fault-Free Model Performance with Different Domain Coverage Rates

Figure 4.6 shows the domain coverage rate as the size of the fault-free dataset increases up to
its maximum value of 5380 data points. As the number of accumulated fault-free data points
increases, the DCR increases up to 73 %. The figure shows four training ranges corresponding to
DCR values of 20 %, 40 %, 60 % and 73 %.
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Figure 4.6. Domain coverage rate for different accumulated data quantity

Figure 4.7 shows the standard error of the fault-free models for the seven dependent features
as a function of the domain coverage rate. The standard error on all features decreased with an
increase in the DCR. The standard error of the MPR(3rd order) model was the most sensitive to
DCR variation. In a real system that is collecting training data, when the DCR is low, each
feature has a higher likelihood of being estimated by extrapolation using the currently
generated fault-free model. In most cases, the first and second order MPR models showed the
lowest standard errors at 20 % and 40 % DCR conditions, respectively. The MPR(3rd order)
model was the best at 60 % and 73 % DCR. After the DCR reached 40 %, the standard errors of
all fault-free feature correlations were less than 1 °F.
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Figure 4.7. Fault-free models performance with domain coverage rate (Test Standard Error)



The above standard error results are consistent with Braun and Li (2001) who commented that
the lower the order of the MPR model the better the extrapolation performance, in general.
When the DCR is low, each feature has a higher likelihood of being estimated by extrapolation.
For models generated at higher DCRs, extrapolation is less likely, and higher-order MPR models
are better where interpolation is required.

Figure 4.8 shows TSE of the MPR models for 20 %, 40 %, 60 %, and 73 % DCR as a function of
zone density. At a DCR of 20 %, the TSE of MPR(3rd order) and MPR(2nd order) exceeded 4 °F,
and 1 °F, respectively, with steep increases at low ZD values. For the higher DCRs, the TSE
stayed below 1 °F for all models and ZDs except MPR(3rd order) for 40 % DCR and ZD less than
25. For 60 % and 73 % DCR, all three models performed in a stable fashion smoothly improving
predictions as DCR and ZD values increased.

From this analysis, the MPR(1st order) and MPR(2nd order) models are recommendable for the
intermediate fault-free models at a DCR of 20 % and 40 %, respectively. After the DCR exceeds
60 %, the MPR(3rd order) model is the most appropriate for the final fault-free model. A ZD
between 100 and 50 is recommended for data filtering and storing criteria.
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Figure 4.8. Model standard error with zone density at DCR of 20 %, 40 %, 60 %, and 73 %
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5. Validation

We tested and validated the self training method by applying the fault-free models developed
using the self training scheme to an experimental dataset collected by Kim et al. (2006) on a
heat pump operating in the cooling mode. In addition, the FDD performance was compared and
analyzed considering different zone densities and domain coverage rates. Successful diagnosis
ratio, false alarm, missed detection, and misdiagnosis were calculated and presented to
evaluate the overall FDD performance.

5.1. Validation Dataset and Fault Types

The dataset assembled by Kim et al. (2006) includes performance data during fault-free
operation (72 points) and with seven faults: compressor valve leakage, improper outdoor air
flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant
overcharge, and non-condensables (84 points) (Table 5.1).

Table 5.1. Definition and range of studied heat pump operational cases

Fault name Symbol Definition of fault Fault Tempera;cure Numper
range (%) range (°F) of points
TOD: 8010102
oty | - | Beos |7
P Tiop: 42 t0 85
Comr;;zizo;valve % reduction in refrigerant Too: 80 to 100
g CMF flow rate from no-fault 3to40 Tip: 70 to 80 16
(4 to way valve value Tiop: 50to 61
leakage) DP:
Reduced outdoor air Too: 80 to 100
flow rate (condenser CF % of coil area blocked 10to 50 Tip: 70 to 80 13
fouling) Tiop: 50 to 61

Improper indoor air Top: 80 to 100

% below specified air

flow rate (evaporator EF flow rate 6to 35 Tp: 70 to 80 19
fouling) Tiop: 42 to 61
) -
Liquid line restriction LL P . . P q 10to 32 Tip: 70 to 80 6
line service valve to
Tiop: 50to 61

indoor TXV inlet
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. Top: 80 to 100
o)
jas, | e | Prembeenent | doen | meem | n
g g T/DP: 50 to 61
. Top: 80 to 100
0,
e | ec | et | doen | meen | n
g g T/DP: 50 to 61
% of pressure in
Presence of Z\;ajﬁzzejelnizzrtzeﬁza? Top: 80 to 100
non-condensable NC ’ . 10to 20 Tip: 70 to 80 6
condensable gas, with
gases . Tipp: 50 to 61
respect to atmospheric
pressure

5.2. Fault Detection and Diagnostic Method

When the system is operating with a fault, it is expected that feature temperatures willdeviate
from their normal, fault-free values. An individual feature’s deviation could be negative,

IlI

positive, or “neutral” (close to the fault-free value within a pre-defined threshold); collectively,
the feature’s deviations (or residuals) form a pattern, which is unique for a given fault. To
detect and diagnose the fault, a statistical rule-based classification is performed by calculating
the probability of the various fault-types based on the decision rules defined within a rule-
based chart’s predefined fault patterns. A set of measurement features can be regarded as a
multi-dimensional Gaussian probability distribution. With the assumption that each dimension
is independent, each of the three “class” problems (negative, positive, or neutral) can be
represented by a simple normal (Gaussian) distribution rather than a more complicated
distribution with multiple degrees of freedom and dependencies (Rossi et al., 1995, Kim et al.,
2008b). The probability of the k™ fault corresponding to the set of m statistically independent
variables (X, our features) is given by Equation 5.1, where P(Ci|X)) denotes the individual
probability of case variable C (negative, positive, or neutral) for the i™ feature with the k™ fault
type. Since the features are assumed to be independent, the total conditional probability, P(F]|
X), can be obtained by the multiplication of the individual probabilities.

P(F}c|x):P(Clk|X1)'P(C2k|X2)“'P(Cik|Xi):ﬁp(cilc Xi) (5-1)
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Figure 5.1. Probability for three measurement residual cases of positive, neutral, and
negative

In Figure 5.1, the three differently cross-hatched areas under the Normal Distribution, N(u;f,
oirr), represents the probability of the current measurement (or predicted value), represented
by a second normal distribution, PDF(x;, o;), being lower, higher, or relatively close (neutral) to
the predicted fault-free model’s value; if the conditions are fault-free, the difference in the
measured and predicted value, the residual, ri = x; — u; e, Will equal zero. In order to locate the
position of the current measurement under the normal distribution, we must convert the
currently measured value to its standard form; we must represent the current measurement as
some number of fault-free model standard deviations from the mean value of the fault-free
normal distribution (the currently predicted value). This standardization is often called the z-
value. Therefore the z-value for the current measurement, z;, is defined by our residual and the
standard deviation of the fault-free model as shown in Equation 5.2.

z, = X —Hipr _ T (5.2)

O, rr O, rr

Using the assumption of independent, normally distributed FDD features, the area under the
normal distribution, N(u; s, 0;rr), must be determined in order to place a numerical value on the
probability. This integral is represented by the cumulative distribution function, @(x), Equation
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5.3, of the standard normal distribution (a normal distribution with a mean of zero and
standard deviation of 1, N(0,1)).

B(x) = % + %erf (\7—5) (5.3)

The cumulative distribution function describes the probability of a real number value with a
given probability distribution function, X € PDF(x;, o;), having a value less than or equal to a
given value, a. This can be re-stated as Equation 5.4.

®(a) = P(X < a) (5.4)

This also leads to the probability of X lying within the semi-closed interval (a, b] or being greater
than some value, b, Equations 5.5 and 5.6, respectively.

P(a< X <b) =0(b) - 0(a) (5.5)
P(X >b) =1— @(b) (5.6)

For the purposes of FDD, we would like to know whether the residual, r;, is positive, negative, or
insignificant (i.e., within tg; (neutral threshold) of the FF model predicted value, y;f). In order
to use the cumulative distribution function, we must standardize the intervals around the
currently measured value, x; + €;, as a multiple of the FF model standard deviation; therefore we
“standardize” €; as being s number of FF model standard deviations as shown in Equation 5.7; s
is the “standardized” width of the neutral threshold (s>0). The standardized representation of
the residual and three possible cases (positive, negative, and neutral) are shown in Figure 5.2.

€i

& =80,pp Ors = (5.7)

Oi,FF

Now we may use Equation 5.6 to determine the probability of the residual being greater than
+¢g;, the negative residual case;

P(C1X;) =P(z; > (z;+5) =1—-0(z; + ) (5.8)
Less than or equal to -¢;, the positive residual case using Equation 5.4;

P(Ci]X;) = P(z; < (z; —5)) = D(z; — ) (5.9)
Or in the neutral interval of t¢; using Equation 5.5;

P(C_|X;))=P((z; —5)<z;<(z;+5)) =0(z; +s5) — 0(z; — 5) (5.10)
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Figure 5.2. Standard normal distribution showing the current measurements z-value and
standardized neutral threshold, s

The summation of probabilities calculated in Equations 5.8 to 5.10 equals unity, Equation 5.11,
since the integral of any PDFs from —eo to +o= must equal one by definition.

P(C,|X,)+ P(C,|X,)+ P(C_|X,) =1 (5.11)

When the fault level increases, the residual between the measured data and predicted data
may increase, decrease, or remain relatively unchanged. Figure 5.3 shows the residual pattern
analysis results for the seven studied faults which were used to generate a rule-based chart.
Due to the careful selection of the most sensitive (rapidly changing) features for a given fault
type, the feature patterns were quite different for all fault types, and each pattern (positive,
negative, and neutral) for a given fault is the template for the calculation of fault probability in
Equation 5.1. For example, the probability of a CMF fault (valve leakage) can be calculated by
the multiplication of the conditional probabilities of the residuals having the following pattern:
Tt (positive), Tsy (neutral), T¢ (negative), Tp (positive), Tsc (negative), ATg, (negative), and AT¢,
(negative), as shown in Equation 5.12.

P(F e |X) = P(C,|T,) - P(C |Ty,) - P(C,|T.) - P(C,|T,) - P(C, |T.)

(5.12)
-P(C,|AT,,)- P(C,|AT,,)
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Figure 5.3. Residual patterns for different faults
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Table 5.2. Rule-based FDD chart for air-to-air, single-speed heat pump in the cooling
mode

Fault type Te Tsn Te To Tsc | ATea | ATca

FF
(Fault-free)

CMF

(Compressor valve leakage) T B v T v v v
< N2 I N N R NS N N
(Improper outdoor air flow) B
EF
(Improper indoor air flow) v B v 0 B 0 v
H N Y N 20 7 N 7 N N2
(Liquid-line restriction)
ve N B N N B N N
(Refrigerant undercharge)
o I U B Y I N ey

(Refrigerant overcharge)

NC
(Presence of non-condensable gases)

The value of s must be determined so that it produces a given level of confidence that the
currently measured value is within the neutral threshold (or outside this threshold). The
confidence level is selected by the investigator; typical values of a are 0.01, 0.05, and 0.10, with
corresponding confidence levels of (1 - a) of 0.99, 0.95, and 0.90 (Graybill and lyer, 1994). In
applying the s values, the user is determining the alarm thresholds for calling a fault or no-fault.

Table 5.3 shows standard deviations and thresholds with different zone densities for MPR(3rd
order) models regressed to FDD test data. In general, if thresholds increase, the false alarm rate
(FAR) decreases but missed detections increase, and vice versa. In this study, the threshold for a
95 % confidence level was applied to the FDD test data. Table 5.4 summarizes the standard
deviations and thresholds for different domain coverage rates. Models with the best fit were
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selected with respect to the domain coverage rate; the standard deviation and threshold

prominently increased with a decrease of DCR.

Table 5.3. Standard deviation (°F) of the fault-free model for different ZD (DCR=73 %, all data)

Applied

zb rTF:zdeI 0 (Te) 0 (Tsu) o (Td) o (Tp) 0(Tsc) | 0(ATea) | 0(ATca)
rd

All 3" order 0.124 0.314 0.077 0.310 0.191 0.124 0.112
MPR
rd

100 3" order 0.133 0.322 0.081 0.318 0.195 0.135 0.114
MPR
rd

50 3%order | 147 0.388 0.093 0.521 0.219 0.156 0.117
MPR
rd

25 3" order 0.149 0.420 0.094 0.590 0.236 0.159 0.119
MPR
rd

10 3" order 0.144 0.432 0.093 0.597 0.258 0.157 0.121
MPR
rd

5 3" order 0.141 0.433 0.097 0.589 0.258 0.158 0.125
MPR
rd

1 3 order | 0144 0.442 0.099 0.537 0.277 0.166 0.138
MPR

E90%

1.65-0i.rF model

E959%

1-96'0i.FFmodeI

€999

2-58'C"i.FFmodel

Table 5.4. Standard deviation (°F) of fault-free model for different DCR (ZD =100)

Applied

DCR(%) | PPN | o(T) | o(Te) | o(Td | o(To) | 0(Tsd | 0(aTea) | 0(ATc)
rd

73 3" order 0.133 0.322 0.081 0.318 0.195 0.135 0.114
MPR
rd

60 3" order 0.197 0.385 0.090 0.811 0.282 0.160 0.123
MPR
nd

40 27 order 0.390 0.641 0.109 0.625 0.401 0.294 0.155
MPR
st

20 17 order 0.673 0.659 0.196 2.111 0.393 0.523 0.196
MPR

€90% 1.65:0i rF modei

€95% 1.96:0i Fr model

€99% 2.58:05 FF model
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5.3. Procedure for Testing and Rating FDD Performance

The faults summarized in Table 5.1 were part of the experimental dataset (Kim et al., 2006)
applied to test FDD performance. For each dataset, the fault probability for eight conditions (FF,
CMF, CF, EF, LL, UC, OC, and NC) was calculated using Equation 5.1 and the rule-based chart
fault patterns as given in Table 5.2. Among the probabilities of the eight conditions, the fault
type with the highest fault probability was selected as the fault type most likely occurring at the
time. When the diagnosed fault type was the same as the originally imposed fault type, the
diagnostic was considered successful. The goodness of the FDD method was further explored by
applying the concepts of FDD performance evaluation as defined by Braun et al., (2012).

e Successful diagnosis rate, SDR (%): A fault is present. The summation of the detected and
successfully diagnosed cases divided by total number of faulty tests equals the SDR for the
particular fault.

e False alarm rate, FAR (%): No fault is present, but the protocol indicates the presence of a
fault. The FAR equals the number of false alarm cases divided by the total number of fault-
free tests.

e Missed detection rate, MDR (%): A fault is present, but the protocol indicates that no fault is
present. The MDR equals the number of missed detection cases divided by the total number
of faulty tests.

e Misdiagnosis rate, MSR (%): A fault is present. The protocol detects the fault but
misdiagnoses the fault type. The MSR equals the number of misdiagnosis cases divided by
the total number of fault-free and faulty tests.

The above performance indices address that the detection aspect of FDD (FAR and MDR) and
the diagnosis (SDR and MSR).

As recommended in Section 4.3, the third order MPR model was applied for the fault-free
model training. A zone coverage rate of 73 % represented all of the data and was used for this
analysis. Figure 5.4 shows the SDR for the eight conditions with different zone densities. In the
cases of FF, CMF, EF, and OC, the successful diagnosis rate (SDR, %) was relatively high; more
than 80 % for all zone densities. The SDR of CF and UC was between 60 and 80 %, and that of LL
and NC was less than 50 %. The feature pattern of the NC fault was very similar to that of OC,
which was the reason for the inconsistent FDD performance on this fault (Figure 5.2). In the
case of the LL fault, the fault pattern was unclear, and additional fault data for LL was needed
since only six datasets were available for this fault case. Overall, the SDR gradually decreased
when zone density was less than 100 or 50 due to the increase in the standard deviation of the
fault-free models and neutral threshold width for a 95 % confidence (Figure 4.6). The average
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SDR with a zone density of ALL and 100 was 83 % and 82 %, respectively, and gradually
decreased from 75 % to 71 % as the zone density decreased.

100

(il Zone density I TN ]
10_ Al 100 50 25 10 5 1

Successful diagnosis rate (%)

FF CMF CF EF LL UC OC NC Avg
Fault types

Figure 5.4. Successful diagnosis rate of various faults for different zone densities

False alarm, missed detection, misdiagnosis were analyzed with decreasing zone density, and
presented in Figure 5.5. False alarm and missed detection were not observed at the tests with
zone densities of ALL and 100. For zone densities less than 50 %, the false alarm case increased
from 4.2 % to 5.6 % with decreasing zone density. Missed detections also increased from 3.6 %
to 9.5 % with decreasing zone density. The FAR was less than 6 % and the MDR was less than
10 % at all zone density conditions. A zone density greater than 100 would be the best choice
for a high quality FDD application due to the observed stability and predictive accuracy seen in
our experimental dataset. Fault diagnosis performance with zone densities of ALL and 100 was
also superior to cases with zone density less than 100. Misdiagnoses were 7.7 % and 8.3 % at
zone densities of ALL and 100, respectively, with misdiagnoses distributed from 13.5 % to 16.2 %
at zone densities less than 100.
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Figure 5.5. Fault detection and diagnostic performance for all eight conditions for different
zone densities

5.4. Effect of Domain Coverage Rate on FDD Performance

As recommended in Section 4.4, the first order and second MPR models were applied for the
fault-free models at a DCR of 20 % and from 40 % to 60 %, respectively. When the DCR was
more than 60 %, the MPR(3rd order) model was applied to the fault-free model training. A zone
density of 100 was applied for this analysis.

The successful diagnosis rate, SDR, for eight fault conditions and varying domain coverage rates
are presented in Figure 5.6. With a DCR of 73 % and 60 %, the FF, CMF, EF, UC and OC faults
showed an SDR of more than 85 %. The SDR of CF and NC faults was between 60 % and 70 %,
and that of LL was less than 50 %. Exact diagnosis of FF is very important because it determines
the fault detection performance (false alarm rate, FAR). In case of FF operation, the SDR
drastically decreased below 65 % when the DCR was 20 %. In cases of CMF, EF, UC, and NC
faults, the SDR significantly decreased at a DCR of 40 % and 20 % due to the increase in the
standard deviation of the FF model and corresponding increase in the neutral threshold. The
overall average SDR gradually decreased from 89 % to 61 % with the decrease of DCR from 73 %
to 20 %.

Figure 5.7 shows FAR (false alarm rate), MDR (missed detection rate), and MSR (misdiagnosis
rate) with the decrease of the DCR (domain coverage rate). False alarm and missed detection
were not observed in the tests with zone coverage rate of 73 %. FAR was 1.39 % and 8.3 % at
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DCR 60 % and 40 %, respectively, and then drastically increased to 37.5 % at DCR 20 %. MDR
gradually increased from 7.14 % to 26.2 % with the decrease of DCR from 60 % to 20 %. MSR
remained below 10 % at DCR 73 % and 60 %, and then the misdiagnosis rate steeply increased
to 18.6 % and 38.5 % at a DCR of 40 % and 20 %. At a DCR from 73 % to 60 %, FAR, MDR, and
MSR were all below 10 %. However, FDD performances worsened at DCRs from 40 % to 20 %.
From Figures 5.6 and 5.7, DCRs greater than 60 % were recommendable for a high quality FDD
application due stability and prediction accuracy. In addition, DCRs greater than 40 % might be

acceptable for a lower quality FDD application if the fault detection error less than 15 % was
allowable.

Successful diagnosis rate (%)

Domain coverage rate [ I ] N
(%) 73 60 40 20

FF CMF CF EF LL UC OC NC Awy
Fault types

Figure 5.6. Successful diagnosis rate of various faults for different domain coverage rates
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6. Concluding Remarks

A concept for a self training, fault-free model for residential air conditioner fault detection and
diagnosis was introduced and tested. The method of selecting the appropriate temperature
domain for the fault-free system data was illustrated in order to cover most operating
conditions considering different climate zones in the U.S. The fault-free system performance
was modeled based upon three independent features (Top, Tip, Tiop) and seven dependent
features (Tg, Tsy, Tc, Tp, Tsc, ATea, ATca). The new concept of zone density was introduced to
manage and filter the system data. In addition, the new concept of domain coverage rate was
also introduced to quantify the number of data needed to produce fault-free feature models.

Various fault-free models, such as the ANN (artificial neural network), the MPR (multivariable
polynomial regression), and a combined ANN/MPR, were explored for implementing self
training. The MPR method was shown to produce very good prediction performance (low
standard errors) compared to the methods using ANNs. Therefore, MPR models were applied
and tested against previously taken system data for additional analysis of self training.

For validation of the self training method, the full experimental dataset (72 fault-free and 84
fault tests) covering eight fault/conditions (fault-free, compressor valve leakage, outdoor coil
air flow blockage, improper indoor air flow, liquid-line restriction, refrigerant undercharge,
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refrigerant overcharge, and non-condensable gas contamination) was used to explore self
training performance. The statistical rule-based fault classification method was illustrated.

FDD performance was analyzed using the successful detection rate (SDR), false alarm rate (FAR),
missed detection rate (MDR), and misdiagnosis rate (MSR) as zone density (ZD) and domain
coverage rate (DCR) were varied. This effort showed that a zone density greater than 100 was
very successful within the experimental dataset. In addition, a domain coverage rate greater
than 60 % produced acceptable FDD performance and good prediction performance (low
standard errors).

This report attempts to document a mathematical and logical technique by which an FDD
technique may be adapted to an air conditioning system with variations in installation details as
would be seen in actual residences. It is by no means a perfected technique applicable to
immediate deployment; many issues remain that still must be resolved by laboratory
investigation and application to real world problems. When considering using an adaptive
technique for FDD in a real application the following questions must be resolved:

1) What operating states are suitable for learning? Steady state is important, but what
about heat pumps operating in frosting conditions for heating? What about the effects of
rain on the outdoor unit? What about cooling operation at low outdoor temperatures when
the TXV is operating at the edges of its steady control band? A key part of the learning
algorithm is developing a filtering algorithm which picks only the data known to be good.

2) How does the FDD technique deal with the fact that the unit is aging and changing over
time? In a real learning algorithm you must wait for the driving conditions to present
themselves. If you install an air-conditioner in the Fall season, it could be 10 months before
you see data for the hottest day. Is it fair to assume that the unit is unchanged since its
install? What if the home owner/ tenant keeps their cooling setpoint at 75 °F all of the time?
Now a new owner/tenant moves in and runs the house at 70 °F; can you use the old FDD
model?

3) How do you deal with/quantify the noise seen in sensors installed in the field? Large
transients and noise may be seen in sensor readings. A method of quantifying the sensor
noises and creating dynamic error bands need to be developed. How does the FDD deal
with a broken/malfunctioning sensor?

The next step is to take this idea to the laboratory and the field and start solving the
outstanding issues.
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Appendix A. Temperature Data Distribution

The temperature domain should be selected in order to cover most of the operating conditions
a residential air conditioner may experience. As summarized in Appendix A and Table A.1, the
U.S. climate may be divided into seven climate zones based upon certain criteria (Baechler et al.,
2010). Seven representative cities within these zones were chosen as a source for temperature
and humidity data (Thornton et al., 2009). The most recent five year climate data were
investigated as shown in Figure A.2. Temperature data domains for outdoor and indoor
temperature with relative humidity were determined using data for these seven cities.

Table A.1. Temperature domain by climate zone

Temp. . Mixed . .
domain Hot humid Hot dry humid Mixed dry Marine Cold Very cold
80to 105 | 80to100 | 80to 105 | 80to 105 80to 95 80 to 100 80to 95
T by a step by a step by a step by a step by a step by a step by a step
op of 5 °F of 5 °F of 5 °F of 5 °F of 5 °F of 5 °F of 5 °F
(5 zones) (4 zones) (5 zones) (5 zones) (3 zones) (4 zones) (3 zones)
- 65 to 85 by a step of 5 °F
P (4 zones)
20 to 80 by a step of 20 %
RH
(3 zones)
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Figure A.1 Representative cities for seven US climate zones
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