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Abstract 

This paper describes pitfalls, issues, and methodology for measuring software performance. Ideally, 
measurement should be performed and reported in such a way that others will be able to reproduce 
the results in order to confirm their validity. We aim to motivate scientists to apply the necessary 
rigor to the design and execution of their software performance measurements to achieve reliable results. 
Repeatability of experiments, comparability of reported results, and verifiability of claims that are based 
on such results can be achieved only when measurements and reporting procedures can be trusted. In 
short, this paper urges the reader to measure the right performance and to measure the performance 
right. 

Introduction 

Metrology is the science of measurement and its application. IT metrology is the application of metrology 
to computer systems. It entails the measurement of various aspects of hardware components as well as 
software entities at differing levels of abstraction. Software performance metrology deals specifically with 
performance aspects of software processes (how software actually runs). Research in this field aims to 
identify appropriate metrics for measuring aspects of software performance as well as the specification of 
sound methods and techniques to acquire and analyze software performance data. 

Figure 1: The position of software performance metrology in the metrology field 

Software performance measurement is much harder than it is generally believed to be. There are many fac­
tors that confound software performance measurements. The complexity of computing systems has tremen­
dously increased over the last decades. Hierarchical cache subsystems, non-uniform memory, simultaneous 
multi-threading, pipelining and out-of-order execution have a huge impact on the performance and compute 
capacity of modern processors. These advances have complicated software performance metrology to a large 
extent. Simple practices and rules of thumb used in software performance metrology in the past are no 
longer reliable. New metrics, methods and techniques have to be applied to cope with modern hardware and 
software complexities. 
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A lack of the necessary rigor in the application of software performance metrology seems apparent. Mytkowicz 
et al. [2009] observed that measurement bias is commonplace in published papers with experimental results 
while Flater and Guthrie [2013] noted that the earlier observation by Berry [1992] that statistical design of 
experiments for the analysis of computer system performance is not applied as often as it ought still seems 
true more than a decade later. This observation was supported by Vitek and Kalibera [2012] who stated 
that papers in proceedings of computer science conferences regularly appear without a comparison to the 
state of the art, without appropriate benchmarks, without any mention of limitations, and without sufficient 
detail to reproduce the experiments. Kalibera and Jones [2013] investigated papers published during 2011 
in prominent conference proceedings and found that the ma jority of these papers reported results in ways 
that seem to make their work impossible to repeat. 

We are concerned about the current state of affairs and acutely aware of the problems that contribute to 
the degeneration of the quality of reported software performance experiments as reported in the literature. 
This paper aims to draw attention to these problems and provide some guidelines to address them. In 
Section 2 we provide a theoretical framework describing the required content and life cycle of software 
performance experiments to serve as a foundation on which software performance metrologists should base 
their work. A number of the issues that are mentioned in the discussion of the framework are further 
discussed in the sections that follow. In Section 3 we explain the strengths and weaknesses of a selection 
of available software performance metrics to serve as a baseline when selecting the metrics for software 
performance experiments. Section 4 provide guidelines to find suitable instruments that can be applied to 
obtain the required data. Section 5 highlights some aspects that should be considered when designing software 
performance experiments to ensure that the experiments comply with statistical requirements. Section 6 
describes available measurement techniques while Section 7 provides guidance for dealing with some known 
hard to control factors. The concluding section summarizes the essence of our plea that the state of the 
practice in experimental evaluation of various aspects of software performance should be improved. 

2 Software performance experiments 

Software performance experiments are conducted to determine the relative performance of software entities or 
to assert claims about the compliance of software entities with specified standards (an instance of conformity 
assessment or conformance testing). A scientific approach is required throughout the life cycle of experiments 
to achieve credibility. 

2.1 Components 

A software performance experiment consists of the following components identified by the Evaluate Collab­
oratory [Evaluate Collaboratory; Blackburn et al., 2012]: 

1. Measurement context:	 software and hardware components to vary (independent variables ) or hold 
constant (controlled variables ) in the experiment. 

2. Workloads: the characteristics of the data that are used in the experiment. 

3. Metrics: the properties that are measured and how they are measured. 

4. Data analysis and interpretation: the methods applied to analyze and interpret the data. 

When reporting the outcome of a software performance experiment it is essential to provide detailed infor­
mation about each of these components. 
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2.2 Life cycle 

The term life cycle in context of software performance experiments refers to the process to conduct an 
experiment. This includes all actions from the identification of a need to measure software performance to 
the accomplishment of the goal of the experiment. Figure 2 illustrates the activities in the life cycle of a 
software performance experiment (shown on the left) as well as the components of the experiment (shown 
on the right). The arrows from the life cycle activities to the components indicate which components are 
influenced by each of the activities. 

2.2.1 Formulate the goal 

Every software performance experiment should be conducted with a specific goal in mind. It may be to 
compare alternative configurations or algorithms, to determine the impact of a feature, to find the configu­
ration that produces the best overall performance, to describe the performance capabilities of a program, to 
determine why a program is not meeting performance expectations, etc. The goal of the experiment dictates 
the rest of its life cycle. The dotted arrow in Figure 2 from the Formulate the goal activity to the outline that 
encapsulates all the components of an experiment indicates that this activity influences all the components 
of the experiment. 

Formulate 
the Goal

Metrics

Factors

Metrics

Context

Workload

Analysis

Analyse

Measure

Report

Design

Stats

Data

Population

Figure 2: Software performance experiment life cycle 
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2.2.2 Population 

Once the goal is clear, the experiment can be designed. The first step in this regard is to decide what 
population the experiment is intended to reveal information about. 

At the conclusion of an experiment there will be some general inference made based on observations of a 
sample. The utility of a study has to do not only with whether a question is answered for the system as 
tested, but also whether that conclusion is robustly valid over all of the different kinds of software applications, 
environments, use cases, loads, etc., that the system may encounter or that the experimenter is interested 
in. If the robustness issue is not dealt with, then one can end up optimizing for an overly specific scope and 
actually making things worse on average for the scope that applies in reality. 

A careful enumeration of what the robustness factors are, followed by what levels those robustness factors 
should be set at so as to be representative of actual usage, is a good start to identifying the set of factors 
for the experiment and selecting representative workloads. 

2.2.3 Metrics 

Next, an appropriate metric has to be chosen. The formulation of the goal should indicate the metrics that 
can be used to reach the goal. For example, if you want to determine if a new system consumes more power 
than your old system, it is obvious that you need metrics to measure and express power consumption. 

When choosing a metric, you need to know how it can be measured as well as the unit of measure that is 
appropriate for the experiment. It is important to use metrics that are relevant rather than simply choosing 
metrics that are easy to obtain. Also use units that are suited to achieve the goal of the experiment. Whether 
a metric is appropriate is determined by the goal of the experiment as well as the cost of gathering the data. 
The choice of the metric, the procedure to measure it as well as the chosen unit constitutes the metrics 
component of the experiment. This is shown with a dotted arrow from the Metrics aspect in the design 
activity in Figure 2 to the metrics component. The metric that is chosen may influence the measurement 
context because the process to measure the chosen metric may require instrumentation which is part of the 
measurement context. 

Section 3 discusses some performance measures and their characteristics to support decisions regarding the 
most appropriate performance measure for a given problem. Section 4 points to some instruments that can 
be used to obtain these measures. 

2.2.4 Factors 

An important aspect of the design of the experiment is the identification of factors that play a role in the 
phenomenon under investigation. One should be aware of the various factors that may influence the metric 
of choice and find ways to minimize bias that may be caused by such factors. 

The identification of factors is crucial because the omission or misunderstanding of factors may invalidate 
the results and conclusions of the experiment or severely limit the scope within which those conclusions are 
valid. The identification of the appropriate factors is arguably the most difficult aspect of the design of a 
software performance experiment. To do so correctly without experimentation requires a deep understanding 
of the underlying system. A more reliable approach is to perform a separate experiment just to identify the 
most important factors. This is called a sensitivity analysis experiment or a screening experiment —screening 
for those factors that have the largest impact and letting the less important factors fall through. A two-
level fractional factorial experimental design [Schatzoff, 1981; Gunst and Mason, 2009; NIST/SEMATECH, 
2012; Montgomery, 2013] is usually both efficient and effective for this purpose provided that there are not 
conflicting constraints on the combinations of factor levels (often called treatments ) or the testing sequence. 

Measures to control the influence of factors that are kept constant should be described in the experimental 
context while the values of factors that are varied in the experiment should be described in the workload 
component. This is illustrated in Figure 2 by the arrows pointing from the factors component in the life 
cycle to the experimental context and workload components of the experiment. 
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The discussion about metrics in Section 3 mentions some pertinent factors that should be addressed when 
using each of the metrics while Section 7 discusses a few obscure factors. Often, unidentified factors lead 
to anomalies in the results, ultimately contributing to the discovery of new factors. In Figure 2 there 
is a transition from the analysis stage back to the factors stage to indicate that the discovery of a new 
factor requires the metrologist to incorporate the newly identified factor in the experimental design and 
repeat the experiment in order to be able to reach the goal of the experiment. Sometimes factors may be 
discovered earlier in the process; for example, Flater [2013] identified several factors while validating profiling 
instruments. 

2.2.5 Statistics 

Errors are inherent in measurements of real computer systems. Established and trusted statistical methods 
should be applied to deal with variability and increase the confidence levels with which one can draw 
conclusions. The data gathered for an experiment need to contain sufficient samples where the role of 
each of the contributing factors is understood. The experimental system should be designed to have each 
factor either be carefully controlled or realistically varied to be representative in the observed context. 

Georges et al. [2007] point out that many performance evaluation studies seem to neglect statistical rigor. 
They advocate increased statistical rigor for experimental design and data analysis because statistics, and in 
particular confidence intervals, enable one to determine whether differences observed in measurements are 
due to random fluctuations in the measurements or due to actual differences in the alternatives compared 
against each other. 

It is beyond the scope of this article to provide detailed guidelines on proper statistical procedures to compute 
confidence intervals, to analyze variance and to compare multiple alternatives. The reader is advised to 
collaborate with statisticians and consult textbooks such as Jain [1991]; Lilja [2000]; Maxwell and Delaney 
[2004] and Johnson and Wichern [2007] for guidance. A more technical, freely available reference is the 
“GUM” (Guide to the expression of Uncertainty in Measurement) and its supplement [JCGM 100, 2008; 
JCGM 101, 2008]; see also the NIST/SEMATECH e-Handbook of Statistical Methods [NIST/SEMATECH, 
2012]. 

Some statistical considerations feature prominently in Section 5 where different aspects of the design of 
software performance experiments are discussed. 

2.2.6 Measure 

The validity of data that are gathered relies on the use of trustworthy instruments. The selection and 
validation of instruments is discussed in Section 4. It is also assumed that the measurements are performed 
according to a well-designed plan as suggested in Section 5. 

The application of wrong or inappropriate methods when measuring, even when applying a good design and 
using trusted tools, can still invalidate the measurements and consequently the conclusions drawn from such 
results. It is therefore essential that performance measures be validated before they are used in analysis. 

Different measurement techniques that can be applied are discussed in more detail in Section 6. 

2.2.7 Data 

The data resulting from experiments are also subject to validation through inspection. To begin with, it is 
always a good idea to examine data with scatter plots to see whether anomalies such as time-dependency are 
obvious. More sophisticated analytical validations that can be done include normalcy tests to see whether 
results are described by a normal distribution and autocorrelation tests to see whether they are independent. 
The gamut of applicable methods falls in the scope of Exploratory Data Analysis (EDA), a field famously 
championed by Tukey [1977]. 
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Data can be “anomalous” by being nonrandom or by having a drifting location, drifting variation, or drifting 
distribution. The goal of this examination is to gain confidence that the process is in “statistical control” 
and therefore satisfies the assumptions of the statistical methods that will be applied to make inferential 
statements about a population. 

Often, measurements gathered during a warm up phase are substantially different from data gathered after 
a system has reached a stable state where benchmark iterations are statistically independent and identically 
distributed. This phenomenon can be attributed to once-off initial overhead required by dynamic linking, 
filling I/O buffers for data/code, or just-in-time compilation. 

If a system reaches a stable state within reasonable time, valid conclusions can be drawn by using only 
the data gathered during the stable state (assuming that this optimized performance, and not the once-off 
performance, is the measurand of interest). However, Kalibera and Jones [2013] observed that it may often 
happen that a system fails to reach a stable state. They recommend that the metrologist use data from the 
same iteration of each of multiple runs in such cases. 

2.2.8 Analyze and report 

The assumption at this point is that the metrologist has implemented the steps needed to ensure that the 
measurements obtained are as accurate as possible as described in Section 4.2 and have applied the sound 
statistical precautions described in Section 5 in the design of the experiment to ensure the validity of the 
observations. Having sufficiently characterized and validated the data, one is in position to choose applicable 
and appropriate methods to summarize and visualize them for use in drawing conclusions. 

An analysis will usually involve graphical methods like main effects plots and quantitative methods like 
Analysis of Variance (ANOVA). Generically speaking, some parameters are estimated and then a comparison 
is performed or a hypothesis is tested. The body of scientific and statistical knowledge that is available to 
assist the experimenter at this point is both broad and deep, covering general cases as well as a plethora of 
special cases. One could not do justice to it with any survey that would fit within the scope of this paper. 

When reporting the results, one has to be able to demonstrate that the data that were gathered truly reflect 
the phenomenon that is observed. Reporting should contain sufficient information to substantiate the claims 
that are made and support repeatability of experiments. For this reason, each report should discuss each 
of the components of an experiment that is outlined in Section 2.1. Reporting that complies with these 
expectations contributes to the comparability of results and the verifiability of claims that are based on such 
results. 

3 Performance measures 

The selection of the appropriate metric depends on the goal of the measurement experiment; however, 
the choices are limited by the services provided by the systems being benchmarked and available tooling 
(measurement instruments). The measures that are discussed here are not comprehensive. A few commonly 
used metrics that can be measured with the aid of existing profiling tools are covered. This provides a 
starting point for the creative metrologist to find or derive the ideal metric to reach his goal. 

3.1 Elapsed (“wall clock”) time 

Elapsed time is simply the time that elapses while the process being measured is executed. It can be 
determined by starting a timer before the process is started and stopping the timer when the process signals 
completion. This time is also known as wall clock time. Elapsed time can also be determined by reading a 
clock time just before the process is started and again at completion time. The absolute difference between 
these times is the elapsed time. 

Elapsed time includes time that may have been spent on other processes on the system while the process 
being measured was executed. This is very common on most modern systems. Even on stand-alone machines 
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the OS is likely to time-share many processes that are constantly working towards improving the overall 
performance of all the applications that are used on the machine. For this reason the influence of other 
processes is an important factor that should be considered when measuring elapsed time. Other factors that 
may play a role are the processor make and model, the number of processors and their frequencies. 

Lilja [2000, page 19] deems elapsed time, when performed using a statistically sound experimental design, 
one of the best metrics to use when analyzing computer system performance. 

3.2 CPU time 

CPU time (or process time) is the amount of time, usually measured in seconds or clock ticks, that was used 
while executing the process being measured. This excludes the time that the CPU was processing other 
processes or was in low-power (idle) mode. It also excludes time the process being measured was waiting for 
input/output (I/O) operations. When a system has multiple processors, it may be necessary to acquire the 
CPU time of each of the different processors individually and add them to calculate the total CPU time of 
the process being measured; however, up-to-date tooling will do this automatically. 

The CPU time of a function is sometimes expressed as a percentage indicating the proportion of time 
consumed by the function relative to the total time consumed by the process that contains the function. 

The CPU time of a function may be measured as self time or as total time. The self time of a function is 
the time spent executing the function itself, excluding time spent by any sub-functions it may have invoked. 
The total time of a function is the time spent executing the function as well as any sub-functions invoked 
by it. The calculation of total time is complicated by situations where a function may be called by two or 
more different functions, or when functions are called recursively. Figure 3 illustrates a problem arising with 
a recursive call. In the diagram on the left, function f calls functions f1 and f2. The total time of f is 
calculated as the sum of its self-time plus the total times of the functions it calls. Since the call graph is 
hierarchical this does not pose a problem. In the diagram on the right the function f also calls itself. Owing 
to the cyclic call graph, the application of the proposed formula is infinite. 

f 
Self=3 

Total=10 

f1 

Self=4 
Total=4 

f2 

Self=3 
Total=3 

1 

f 
Self=3 
Total= 

f1 

Self=4 
Total=4 

f2 

Self=3 
Total=3 

4+3+3+(4+3+3+(4+3+3+ ... 

2 

Without cycles With cycle 

Figure 3: Recursive definition to calculate total time 

A more robust way to determine the total time of a function is to use information on the call stacks. The 
total time of a function can be defined as the sum of the times when the function is either executing or was on 
the stack. Table 1 shows a hypothetical call stack of the execution of the functions shown in Figure 3 at times 
1, 2, 3, . . . 10 and the total times of these functions calculated through the application of this definition. This 
robust approach is supported by the combination of Linux perf [Perf, 2013] with the Gprof2Dot visualization 
tool (option --total=callstacks) [Fonseca, 2013]. For GNU gprof [Fenlason, 1988] and other tools that do 
not separate the call stack information from the call graph, workarounds and heuristics must be used instead 
to estimate total times. 

The designs for experiments measuring CPU time have to describe how prominent factors that influence 
these measurements such as processor make and model, the number of processors and their frequencies are 
controlled or varied. While the measurement of CPU time does not include the time spent on other processes 
in the system while the process being measured was executed, as is the case when measuring elapsed time, 
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1 2 3 4 4 6 7 8 9 10 

f f f f f f f f f f 
f1 f1 f2 f2 f2 f f f f 

f1 f1 f 

Function Self time Total time 

f 3 10 
f1 4 4 
f2 3 3 

Table 1: Calculating total time by counting the number of times a function was observed executing or on 
the call stack 

all of the factors that should be considered when measuring elapsed time are still relevant when measuring 
CPU time, albeit for different reasons. Competing loads may indirectly increase the CPU time used by a 
process by filling up cache space or creating additional overhead. Zaparanuks et al. [2009] noted significant 
variability of cycle counts owing to perturbation associated with performance counters. This variability was 
reproduced in Flater and Guthrie [2013]. 

3.3 CPU utilization and memory latency 

CPU utilization is a term used to describe how much the processor is working [Robbin, 2009], while latency 
is the time delay experienced in a system. These concepts are related. Latencies directly influence the CPU 
utilization: reducing wait time can be more important than increasing execution speed. A CPU waiting 
for 100 clock ticks for data would run at 1/100 (1 %) of theoretical performance [SiSoftware staff, 2012]. 
Conversely, excessive CPU utilization for a given process can starve other processes and lead to overall 
non-responsiveness of the system. 

CPU utilization can be used to track CPU performance regressions or improvements and is a useful data 
point for performance problem investigations. Originally, CPU utilization was a concern only for scheduling 
algorithms, but it is increasingly important for the design of software in general because nearly all CPUs 
are now multi-core. An application that cannot use all available CPU cores will suffer in the elapsed time 
measure, and a low CPU utilization measurement indicates the root cause of that suffering. 

In modern systems it is likely that CPU frequency is changed dynamically to optimize performance, heat 
dissipation, and power consumption. To prevent the processor clock frequency from changing during mea­
surements, frequency scaling should be disabled [Zaparanuks et al., 2009]. Hopper [2013] points out that 
theoretical hardware performance values do not always reflect actual application performance due to many 
factors, including caching effects, data locality, and instruction sequences, among other things. 

3.4 Memory usage 

The memory usage of a process is simply how much memory the process is using. It is, however, a complex 
matter to determine the memory usage of an application or process accurately since it can fluctuate arbitrarily 
as the application executes. Furthermore, memory management algorithms implemented at both the kernel 
and application levels can exhibit system-dependent, context-sensitive, irreproducible behavior. Even the 
memory page size, and therefore the granularity of memory allocation, can be varied by the operating system 
[Giraldeau et al., 2002; Torrellas et al., 2005]. 

This physical memory usage observed at the kernel level may not be an accurate reflection of memory 
operations performed by an application. Since it is common for applications to allocate and free memory 
in cycles or in chaotic patterns, memory management algorithms will hang onto nominally freed memory in 
order to avoid the relatively expensive process of fully releasing memory back into the operating system’s 
pool only to have to fully allocate it again [Giraldeau et al., 2011]. 
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Another aspect contributing to confusion when determining the memory usage is the various ways in which 
operating systems may implement the use of virtual memory. Most profiling tools distinguish between 
resident set size (RSS) and virtual set size (VSZ). RSS is how much memory this process currently has in 
main memory (RAM), whereas VSZ is how much virtual memory the process has in total, i.e., memory in 
RAM as well as memory that has been swapped out. Numerous other distinctions are possible. For example, 
in Linux one can distinguish between shared and unshared memory, between memory requested and memory 
actually used, between regular memory and transcendent memory [Magenheimer, 2011], and possibly other 
variations. Depending on the goals of the measurement, one might include or exclude different types of 
memory from the total. 

Going below the application level of granularity, one can distinguish between code, heap, and stack memory 
and between addressable and unaddressable (i.e., leaked ) memory. Profiling instruments that are capable 
of reporting detailed statistics at this level are likely to slow down the operation of the processes under 
test. Bruening and Zhao [2011] measured the execution times while using two different profiling instruments 
relative to native times on a number of benchmarks and observed considerable slow down in some cases. To 
avoid variability of time measurements that may be caused by the profiling instrument, it may be a good 
idea to measure CPU usage or CPU time in benchmarks separate from the benchmarks applied to profile 
the memory usage at this lower level of granularity. 

3.5 Power consumption 

Despite incomplete and uncertain information, it is estimated that the generation and distribution of elec­
tricity comprises nearly 40 % of U.S. CO2 emissions [Weber et al., 2010]. Recent trends in achieving a 
sustainable future pay due attention to energy efficiency in order to reduce environmental impacts and risks. 
While energy-efficient hardware design seems to dominate energy-efficient computing literature, future ap­
plications and system software also need to participate in power-saving efforts [Esmaeilzadeh et al., 2012]. 
In many applications, such as portable devices, low power is more important than performance. Kin et al. 
[1997] believe that low power researchers should be open to sacrificing some performance for power savings. 
For these reasons, interest in measuring the relative power consumption of software has grown. 

One way to measure the power consumption of a computer is the use of a power meter installed at the 
wall socket. This allows the analyst to measure the overall wattage used by the system. This method of 
measuring is not useful in cases where the power consumption of separate components is needed (memory, 
hard drives, I/O boards, disk controllers, etc.). With more effort, hardware instrumentation can be attached 
to the power inputs of the components one wants to measure [Carroll and Heiser, 2010]. 

Alternative approaches for estimating power consumption based on a power model and activity counters that 
can be used in place of instrumented power measurements have been proposed [Flinn and Satyanarayanan, 
1999; Goel et al., 2010; Lewis et al., 2008; Singh et al., 2009; Stockman et al., 2010]. Software instruments 
that may be used to estimate power consumption at varying levels of detail are mentioned in Section 4. 

Owing to complex architectural setup when using multiple cores, the power used by a given process may 
not be directly associated with the measured power consumption. Tudor and Teo [2013] observed large 
imbalances between cores, memory and I/O resources leading to under-utilized resources and energy waste. 
Environmental and electrical variations such as temperature and electro-migration may contribute to un­
wanted variability in energy consumption and hence need to be controlled when measuring in-system power 
consumption. Brooks et al. [2007] explain the power, thermal, and reliability modeling problems. Muroya 
et al. [2010] remarked that higher room temperature can affect power consumption in information and com­
munications technology equipment through increasing cooling fan speed. An AnandTech forum participant 
(IDC) [2011] reported an experiment showing a striking correlation between operating temperature and the 
power consumption of a CPU itself. Both effects must be considered in context of the total system, which 
includes the power for air conditioning to maintain lower ambient temperatures. 
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3.6 Power cost 

Although the cost of power is closely correlated with the amount consumed, it is a different concern that leads 
to different conclusions. In some cases power is dynamically priced so that simply shifting power consumption 
from one time of day to another can decrease costs. Thus, a software configuration that performs more poorly 
according to other measures such as response time may be better according to this metric. To maximize 
profit, cloud service providers must account for such effects when pricing out service options with differing 
guarantees on response time and other quality of service metrics [Wang et al., 2013; Urgaonkar et al., 2013; 
Samanthula et al., 2013]. 

Of course, the cost of power is only one of the costs that are incurred by or amortized over software processes, 
but it has for now become the focus of attention. Not long ago, the focus was on the cost of labor (human 
time and attention) needed to keep software systems operational, and metrics for the maintainability of 
software were highly sought after. Before that, it was the cost of procuring or developing software; before 
that, it was the cost of hardware. 

4 Instruments 

In Section 3 some key performance measures were discussed. After deciding what metrics are to be used 
the metrologist has to find instruments to determine these metrics and identify those that are suitable to 
use for each particular case. A plethora of performance monitoring and profiling instruments exists. An 
understanding of the availability and techniques of the different monitoring tools is essential for choosing the 
proper tool to suit the goal of each experiment. 

4.1 Finding an instrument 

This section only points to sources of information to serve as a starting point to find the appropriate 
instruments for software performance experiments. 

Most operating systems have command-line utilities that can be used to report the time used by a given 
executable. Examples are time on Linux and Mac and Measure-Command on Windows. These commands are 
available by default, easy to use and require no modification of the software under inspection. They report 
elapsed time as well as CPU time of a complete program. It may not be fine-grained enough to provide all 
the required information. The GNU 1.7 version of the time command outputs additional information on 
other resources like memory, I/O and IPC calls. The Linux perf tools [Perf, 2013] allow user-level access to 
per thread hardware counters. 

A list of performance monitoring and profiling tools can be found in Wikipedia. Many of these instruments 
are complete suites that can be used to collect most of the performance measures mentioned in Section 3 
and more. 

Popular instruments that support measuring different levels of memory usage are Valgrind [Valgrind], Pin 
[Berkowits, 2012] and Dr. Memory [Dr. Memory]. Generic system-level monitoring tools such as the Unix 
ps and top commands can also be used for this purpose, albeit with a limited sampling rate. A few software 
instruments that can be applied to measuring or estimating power consumption are PowerTOP [PowerTOP] 
on Linux, Joulemeter [Microsoft Research] on Windows, Sleep Monitor [Dragon Systems Software Ltd.] on 
a Mac, and Intel Power Gadget [Vega, 2013] on all three platforms. 

4.2 Validating an instrument 

One should validate an instrument before using it. Flater [2013] demonstrates the importance of validating 
configurations before they are relied upon. It is a good idea to read the technical documentation of the 
instruments as well as some independent reviews of a product before using it. Wun [2006], Helvick [2008] 
and Prinslow [2011] have compiled surveys of available instruments that may provide valuable insight about 
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some of the popular ones. However, the tools evolve rapidly, so it is important to search for similar surveys 
that are not yet outdated at the time you need this information. 

Surveys and documentation are always vulnerable to being outdated or simply wrong; therefore, operational 
validation is always advisable. Even a single, simple, inexpensive test of the features most needed can return 
surprising results that will drastically affect your plans. There is no test that is too small or too simple to 
fail. Among other things, a validation should attempt to confirm that the accuracy and resolution of the 
measurement are suitable for the intended use. 

When a measurement has imperfections that give rise to an error, the error is either random or systematic 
[JCGM 100, 2008]. If the error is random and small it can be dealt with through taking large samples; 
however, if it is so significant as to be practically insurmountable, the instrument is obviously unsuitable for 
use. Discovering this fact up front is both easy and important. If the error is systematic, it is a kind of bias 
that can and should be corrected for. For example, if under given conditions the instrument is known to 
read low by a fixed amount or fixed factor, then one can add this fixed amount or factor to each result. 

Bias, precision, accuracy, and resolution are frequently confused but important to distinguish. These con­
cepts are further explained in Figure 4, Figure 5, and the following subsections. 

4.2.1 Bias 

The bias of an instrument is an indication of the instrument’s closeness to a set standard. It is not always 
easy to determine the bias of an instrument. It is usually trusted that the instrument was properly calibrated 
by the manufacturer. Such an assumption is not unreasonable; however, it is not impossible to encounter 
biased instruments. See, for example, the news item by Anthony [2013]. 

4.2.2 Precision 

When measuring the same characteristic of an object multiple times under the same conditions, an instrument 
should produce the same result. In other words, the measurement process should have little variability. A 
tight distribution of repeated measurements is an indication of precision [Lilja, 2000] (see Figure 4). The 
International Vocabulary of Metrology [JCGM 200, 2012] uses measurement precision to define measurement 
repeatability and measurement reproducibility. 

There are several ways to report the precision of results. The simplest is the range (the difference between 
the highest and lowest results). It can also be quantified by calculating the standard deviation of the results 
or other statistical measures to express variance. 

4.2.3 Accuracy 

If a process has both a small bias and little variability, then it is called accurate. Equivalently, an accurate 
process is one that has both low bias and high precision; or one could say that a process is accurate if it is 
both unbiased and precise. 

As Figure 4 illustrates, there are three ways that a process can be inaccurate: it can be biased, it can be 
imprecise, or it can be both. 

4.2.4 Resolution 

The resolution of an instrument is the smallest incremental change that can be observed by the instrument 
(see Figure 5). If one is interested in differences that are likely to be orders of magnitude smaller than the 
resolution of a given instrument, that instrument is not suitable to measure it. In cases where the differences 
are close enough to the resolution of the instrument and the measurement is unbiased, the mean of a series 
of measurements should converge to the correct value through having the correct proportion of x and x + 1 
results. If it is biased (e.g., always rounds down or always rounds up) then this doesn’t work. 
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Keep in mind that the resolution of an instrument may vary depending on external factors. For example, 
the resolution of user and system time results reported by the bash shell’s builtin time command can vary 
from 0.01 s to 0.001 s depending on the Linux kernel’s HZ timer value. 

4.2.5 Limitations 

One of course attempts to choose instruments so that bias is minimized and precision is maximized (hence 
the accuracy is maximized), the resolution is to the desired level, and uncertainty is minimized, but this is 
an optimization problem where some of these aspects may be compromised to avoid unacceptable levels of 
other aspects. The burden is then on experimental design to perform the analysis in a manner that controls 
and corrects for the known uncertainties and biases and attempts to detect unknown factors. 

Even after validating instruments to the maximum practical extent, one can never be certain that unex­
pected measurement error will not creep in. Such error can result from latent faults in the tooling or from 
incomplete or erroneous documentation of tool usage and functionality. This leads to problematic, epistemic 
uncertainty that is particularly acute whenever measurement results seem odd yet plausible. Without addi­
tional experiments, one cannot be certain whether the odd behavior is actual performance or is an artifact; 
additional experiments may contrariwise produce yet more unexpected behaviors without resolving the orig­
inal question. However, despite the human tendency to be less anxious about normal-looking results, there 
is no reason to believe that they would be immune to measurement error. 
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4.3 Automation 

The process to gather data in situations where certain factors are kept constant while others are changed in 
predictable ways lend itself to automation, especially if the factors that are varied can be scripted. Metrol­
ogists are encouraged to create such automation and share it with the community. Curtsinger and Berger 
[2013] created software [Berger] to automate randomization of memory configurations. It forces executions 
to sample over the space of all memory configurations of C++ programs by efficiently and repeatedly ran­
domizing the placement of code, stack, and heap ob jects at runtime. Similarly, Georges et al. [2007] created 
software [Georges] that runs Java benchmarks automatically until a sufficiently narrow confidence interval 
is obtained for a given performance metric. 

5 Experimental design 

When reviewing available resources for experimental designs, one will find that techniques are grouped by 
broad categories of experimental goals. Popular design categories include: 

• Screening or sensitivity analysis; 

• Comparisons; 

• Optimization; 

• Regression, modelling, estimation; 

• Reliability assessment. 

The issues discussed in this section need to be addressed to achieve an experimental design that fits the goal 
of the experiment given the instruments that were chosen to reach the goal. Additional overview of design 
of experiments in the context of computer performance evaluation can be found in Schatzoff [1981]. 

5.1 Constraints 

An important part of the design procedure is the formal elicitation of constraints on the number of runs, 
number of configurations, time, equipment, personnel, money, etc., that can be devoted to the experiment. 
Experiment design as a discipline is the structured tradeoff between scientific goals and practical constraints. 

5.2 Uncertainty 

Simply comparing the average result of a number of repeated results often leads to incorrect conclusions, 
particularly if the variability of the result is high. A lack of statistical rigor has been a ma jor weakness in 
the field of computer systems performance analysis [Lilja, 2000]. 

One can deal with uncertainty empirically or analytically. With an empirical approach, uncertainty is 
estimated based on repeated measurements, whereas with an analytical approach this estimation is based 
on a mathematical model and the application of probability theory. 

Ultimately, the degree of uncertainty determines the confidence level of the conclusions that can be drawn 
from the measurements. However, the conclusions may be based on arbitrarily complex functions of the 
measurement values, and those functions affect the propagation of uncertainty from the measurements to 
the output. When measurement values are sub jected to multiple comparisons the uncertainty is amplified, 
necessitating higher confidence levels for each individual measure in order to attain an adequately high 
confidence level for the conclusions. Methods applicable to these problems are introduced in Flater [2014] 
and described in detail in JCGM 100 [2008] and JCGM 101 [2008]. 
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5.3 Random errors 

Random errors are errors that cannot necessarily be explained. They may be the result of the measuring 
tool, the observer reading the output of the tool, or random processes within the system being studied [Lilja, 
2000]. Random errors affect the precision of the measurements and thereby determine the repeatability of 
the results. 

The metrologist should apply an appropriate statistical model to describe the effect of random errors on 
the experimental results in order to quantify the precision of the measurements. Most experimental errors 
can reasonably be modeled using a Gaussian distribution centered around the true value, but there are 
exceptions. When random errors are not Gaussian, either the results must be normalized or a more robust 
uncertainty method must be applied before conclusions can be made based on the measurements. 

Traditionally, a measurement value with random error is expressed in the form y ± u. Ultimately, however, 
the confidence interval matters more than the value of u. In the general case, the output of the measurement 
can take on any probability distribution, and the distribution need not be symmetrical around the chosen 
estimate (which is usually the mean of some number of repeated measurements). Furthermore, there is more 
than one reasonable way to derive a confidence interval for a given coverage probability [JCGM 101, 2008, 
§5.3] and the different approaches often yield different intervals when the distribution is not Gaussian. 

Flater [2014] includes examples of non-Gaussian error distributions in software performance measurements 
and the use of alternative methods to deal with them. 

5.4 Systematic errors (bias) 

Systematic errors are predictable errors that are intrinsic to the measuring instrument or process. They can 
be caused by faulty instruments or by the wrong use of instruments. Systematic errors cause a constant 
bias in the measurements (see Section 4.2) that must be detected, controlled, and adjusted for [Patil and 
Lilja, 2012]. JCGM 100 [2008, §F.2.4.5] recommends that corrections be applied to measurement results for 
known significant systematic effects and gives guidelines on how to calculate a mean or average correction 
when individual correction may be infeasible. 

From a practical standpoint, systematic errors can be more difficult to deal with than random errors because 
they cannot be detected just from the variability of results and cannot be reduced by merely increasing the 
sample size and averaging the outcomes. On the other hand, correcting for known systematic errors does 
not necessitate an increased sample size. 

Bias adjustments are frequently difficult. In the physical sciences, bias can be addressed by measurement 
standards, otherwise-derived ground truth, multiple measurement methods, and models (sometimes called 
“phantoms”) that are specially designed for the purpose. In experimental computer science, there are few 
applicable measurement standards, ground truth is frequently unobservable (e.g., CPU time is entirely a 
function of internal state), and the independent validity of different measurement methods is difficult to 
establish. The design of valid “phantom programs” that provide the transparency required to calibrate 
software measures is an interesting research challenge. 

5.5 Designing the workload 

The success and validity of experiments rely heavily on the design of the workloads used. A well-designed 
workload requires the application of deep knowledge of the factors contributing to the phenomenon under 
observation along with sound statistical planning. The workload should be designed to be representative of 
conditions that may occur when the system under test is used for its intended purpose. The characteristics 
of real workloads can be determined through sampling typical workloads, whereafter a synthetic workload 
can be designed that displays characteristics similar to that of the sample. 

When the number of contributing factors is large, a representative workload may be too large for practical 
application. In such cases, fractional factorial design is recommended [Schatzoff, 1981; Gunst and Mason, 
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2009; NIST/SEMATECH, 2012; Montgomery, 2013]. For screening, a carefully selected subset of the exper­
imental runs of a full factorial design is used to identify those factors that have the most notable impact. 
After identifying the notable factors, a smaller workload can be designed that varies only the identified 
factors and interactions, but with better coverage. 

One should strive to create a benchmark suite that is diverse enough to reveal measurement bias yet small 
enough to allow the completion of the experiment within the constraints that were identified. Kalibera and 
Jones [2013] address the question of how to determine the minimum number of repetitions needed to obtain 
adequate results in various situations. The minimal sample size needed for a design is a function of the 
natural variability in the data and the desired tolerance that the researcher needs for the estimates. For the 
special case of estimating the population mean given the sample mean of well-behaved data, one can apply 
standard formulae. 

When synthetic test data are generated, it is advised that the pseudorandom number generator used for this 
purpose as well as the generated data be evaluated for randomness. NIST provides a statistical test suite 
for random number generators for cryptographic applications [Rukhin et al., 2010]; although the generator 
need not meet cryptographic requirements, those statistical tests are very relevant and useful. 

6 Measurement techniques 

6.1 “Wall clock” 

The simplest measurement technique is sometimes the best. If one is interested only in the total elapsed 
execution time for an application, one can time it with an independent timer or (less independently) use any 
of the many simple methods for recording elapsed time that are normally available, such as the bash shell’s 
builtin time command. 

At this highest level of granularity, the only difference between hardware and software performance mea­
surements is which factor (the hardware platform or the software application) is controlled and which one 
is varied. Such measurements can be obtained without recourse to sophisticated tools, but the results are 
correspondingly less useful if it is necessary to improve the software’s performance. 

6.2 Sampling-based profiling 

Measuring software performance at a finer granularity is called profiling. The term profiling is used to 
refer to the process of acquiring fine grained information about an application or process while it is being 
executed. With measurements scoped to the function level or below, it becomes possible to identify and 
remedy previously unknown performance bottlenecks in the software with less experimentation. 

The sampling-based approach to profiling entails interrupting the application under test on specified events 
to collect data on what it was doing when the interrupt occurred. The metrologist has to decide on what 
events profiling data should be taken. Events can range from a specified value of a timer count to tracepoints 
to specific kernel events. Appropriate parameters should be chosen to control the frequency of sampling. 
The frequency of sampling should be tuned to account for the capabilities of the system and the needs of 
the measurement. 

When timer events are used, the frequency is related to the frequency of the timer and the chosen value. 
When other events are used, sampling may be irregular and may occur in bursts. When the frequency is 
too high, the data collection tools may lose samples or the overhead of profiling may skew or overwhelm the 
application under test. If it is too low, it can result in too few samples taken, rendering the data inadequate 
to draw any statistically significant conclusions. 

It is important to have enough samples to produce reliable results. The number of samples is controlled 
by the duration of the experiment and the sampling rate. While a higher sampling rate will yield more 
samples resulting in less statistical uncertainty, it also increases the perturbation of the program caused by 
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the measurement process, which has a negative effect on the reliability of the results. The metrologist has 
to find a workable compromise. 

Another factor that is important to take note of is that the samples should be taken in a manner that 
does not bias the results. By taking the samples at fixed intervals, it is assumed that these interrupts will 
be distributed uniformly throughout the execution of the program. However, if there is any synchronism 
between the program events and the sampling interrupts, it may happen that some areas of the program are 
sampled less or more often than they should be given their actual frequency of occurrence. 

6.3 Tracing 

A trace of a program is a chronological list of the events generated by the program as it executes. Traces 
can be analyzed to characterize the behavior of a program. Traces are often used for debugging but can also 
be used to gather detailed information about a wide variety of traceable events of interest such as the sizes 
and destinations of messages sent over a network. 

Traces can be generated by adding statements in the code, in linked objects used by the code, or in the 
interpreter (for interpreted languages) to output the required information. Normally the process is automated 
by available tooling and infrastructure. For example, the Debug class enables function entry/exit tracing 
of Java Android apps, and the Linux kernel is already instrumented to trace all kinds of events that are 
visible from kernel space, such as system calls made by a program. The Java Virtual Machine Tool Interface 
[Oracle] is an instrumentation of a Java VM that can similarly be applied. 

Another popular option for generating program traces is to use an emulator or emulation layer to run the 
program. An emulator executes the program and can at the same time gather the required information; an 
emulation layer traces events as operations pass through it. Examples are the Intel Software Development 
Emulator [Tal, 2012] and DynamoRIO [DynamoRIO]. 

Tracing has the potential to slow down or influence the behavior of the program or process under observation 
significantly. The metrologist has to take such changes in behavior into account when analyzing the data 
and provide adequate arguments to substantiate the claims that are made despite these possible changes. 

The volume of data gathered during a trace depends on the experimental design and the needs of the 
metrologist. When generating detailed information, execution time overhead might be reduced by saving 
all the gathered information with the intention to summarize and analyze it later; however, the amounts of 
memory or disk space and associated I/O needed to store the unprocessed data can also have a negative 
impact. In some cases it may be better to gather fewer data and summarize them on the fly; for example, it 
will suffice to count the number of times each basic block in the code was executed if one is interested only 
in finding the code block that is executed most often, regardless of when or why it is executed. 

7 Some factors that may be hard to control 

All measurement is sub jected to some degree of uncertainty and in many cases there also is bias. Under­
standing the reasons why the measurements that are made are likely to be biased can help the metrologist 
to avoid some and mitigate other sources of bias. The subsections that follow provide guidelines on how to 
deal with bias by considering sources of bias when designing benchmarking experiments and when reporting 
results. 

7.1 Monitoring overhead 

Monitoring overhead is the undesirable side-effects of the measurement tools. The software that is used 
to gather data consumes processor, storage and I/O resources, and that may have adverse effect on the 
measurements, regardless whether sampling or tracing is used. 
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One can sometimes measure the overhead by running null benchmarks and then subtract it as a form of 
systematic error. One must be cautious, however, to distinguish constant overhead from variable overhead 
and normal states from overloaded states. For example, the time overhead of tracing function entries and 
exits might be constant in a per-invocation sense, but that overhead must then be scaled by the number of 
function invocations to obtain a correction for the program as a whole. Also, as the amount of data collected 
increases, at some point some resource can become saturated by the overhead of saving or processing the 
data, and then performance will be dramatically impacted in a way that no null benchmark will predict. 

Figure 6 shows the results of an example “pre-experiment” that was conducted to find the usable range of 
sampling frequencies. Data were collected from repeated runs of the synthetic test program that was used 
in Flater [2014]. The linear progression of sample counts versus sampling frequency that appears in the 
midrange is the correct behavior. At the low end, the sample counts are so low that quantization error skews 
the result. At the high end, clearly there is a limit beyond which things break down. With sampling periods 
of (104 and 103.5) cycles, the sample counts failed to increase as expected, showing that some limit had been 
reached. With sampling periods of 103 and 102.5, the resolution of the sample counts unexpectedly fell by a 
factor of 1000 (they all came back as even multiples of 1000). Finally, with a sampling period of 102.5 cycles, 
5 of the 200 repetitions failed to return any data at all. 

A high sampling frequency or heavy tracing not only escalates the amount of direct overhead for record-
keeping, it also increases the amount of cache disruption that occurs, which indirectly worsens the perfor­
mance of the software under test. 

Zaparanuks et al. [2009] conducted a well-designed experiment to determine the monitoring overhead of 
a number of configurations that allow user-level access to per-thread hardware counters in Linux. They 
observed that the monitoring overhead differs drastically between configurations. A surprising anomaly 
observed in these experiments is that disabling the time stamp counter (TSC, a hardware counter) in the 
perfctr tool when there is no need for the TSC results significantly degrades accuracy. The explanation for 
this anomaly is that perfctr, when the TSC is enabled, can read counters from user mode without calling 
into the kernel. 
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7.2 Time-dependency and other stateful behaviors 

When the execution of a process under investigation—or simply the passage of time, for that matter— 
changes the state of the system in a nonrandom way that causes the next execution of the same process to 
behave differently, the statistical assumption that the results of repeated measurements are “independent 
and identically distributed” (i.i.d.) is violated, necessitating additional care in the design of the experiment 
and the interpretation of results. 

Caching of memory, hard disk sectors, or anything else generally has a significant effect on performance 
when these resources are used. Another effect is that the processor will heat up during the execution of 
a CPU-intensive benchmark, resulting in a change of behavior of the processor owing to dynamic thermal 
management applied by the system [Brooks and Martonosi, 2001]. 

If a virtual machine is involved, reusing the same virtual machine instance and possibly even the same 
instance of the app (as is standard practice in Android) creates another entire layer of statefulness. Georges 
et al. [2007] propose rigorous techniques and have developed tools to automate Java performance evaluation. 
NIST has a test driver to repeatedly launch Android apps [RTD, 2013]. 

7.3 Memory layout 

The mapping of an application’s virtual address space into physical memory can change on every execution 
of a given program, and this alone is sufficient to impact the effectiveness of caching. Memory layout can 
further change as a result of deliberate layout randomization for hardening against attacks and, of course, 
from recompilation with different options. 

Mytkowicz et al. [2009] observed that the performance of software can be extremely sensitive to memory 
layout. The variability reported in Mytkowicz et al. [2009], however, was not found by Kalibera and Jones 
[2013] to reproduce at such magnitude if the reference sizes of the benchmarks were used. 

Zaparanuks et al. [2009] observed that cycle count measurements can be drastically perturbed by code 
placement. Curtsinger and Berger [2013] maintain that two versions of a program, regardless of the number 
of runs, are only two samples from the distribution over possible layouts. Performance penalties imposed by 
cache misses or branch mis-predictions are somewhat unpredictable and may cause substantial variability. 
Mytkowicz et al. [2009] suggest experimental setup randomization by applying different link orders and 
environment variable sizes to control for layout effects. Using randomization to combat sources of bias is a 
standard practice of experimental design; Tsafrir et al. [2007] applied it to a scheduler simulation. 

7.4 Parallelism effects 

With parallelism having been incorporated into multiple levels of every common architecture (including, at 
least, multiple functional units in the microarchitecture and multiple cores in the CPU), it has become very 
difficult to avoid perturbations in the sequence and timing of instruction execution. The resulting variability 
can be chaotic: “The combination of simple caches and multithreading can produce high and unpredictable 
cache miss rates, even when the compiler optimizes the data layout of each program for the cache.” [Sarkar 
and Tullsen, 2008] 

Although taking measurements with all of the parallelism turned off is neither feasible nor representative of 
actual performance, it is often reasonable to take measurements with the operating system in a single-user 
mode, minimizing the impact of uncontrolled competing loads. Desktop PCs sometimes further allow one to 
disable symmetric multiprocessing features in BIOS setup, which may be helpful and appropriate depending 
on the type of application and measurement being attempted. 
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7.5 Compiler optimization effects 

Differing compiler optimization options can drastically change a program’s performance [Flater and Guthrie, 
2013; Zaparanuks et al., 2009]. Worse yet, code elimination can produce degenerate results. A compiler will 
frequently delete variables whose values are not used and cascade this deletion onto the executable statements 
that generated those values. Any synthetic workload intended to do nothing except create a predictable 
amount of busy-work is vulnerable to being eliminated in this way, yet turning off optimization entirely 
yields results that are significantly skewed from the normal case. Flater [2013] applied two techniques to 
combat this. First, declaring variables with global visibility makes it difficult for the compiler to conclude 
that their values are never used or altered by external code. Second, printing their values at the end of the 
program ensures that they cannot be eliminated unless the compiler can determine their final values through 
static analysis. In test cases that take no external input, it is still theoretically possible for a compiler to 
optimize away the entire workload and substitute a printout of the final result, but these two techniques 
have proven effective thus far. Similar challenges were reported in Watson [1995]. 

7.6 Short function anomalies 

Flater [2013] observed statistically significant skewing of the reported self time of a small function relative 
to the expected results. The realm of plausible explanations for this anomaly includes both measurement 
bias and actual differences in performance. Regarding the former, the OProfile manual warns that x86 
hardware-specific latencies in the delivery of profiling interrupts can skew the results in certain cases [Levon, 
2012]. However, it is also plausible that the short functions brought an actual performance feature of the 
micro-architecture, such as branch prediction, cache, or CPU pipeline scheduling efficiencies, to the forefront. 

It is advisable to watch for short, frequently-invoked functions in profile reports and use results with extra 
caution whenever they are found. The call counts provided by gprof are helpful in determining which 
functions could be problematic. 

8 Conclusion 

Despite evidence that benchmarking experiments reported in the literature often lack statistical rigor, aware­
ness of the problem seems to be growing. The establishment of the Evaluate Collaboratory in 2010 and their 
ongoing work to promote the quality of reported experimental evaluation of computer systems boosted this 
awareness. A vast body of knowledge covering experimental design exists; however, computer scientists are 
required to apply these general principles to a specific and ever-changing domain. This paper is but a drop 
in the ocean to help software performance metrologists to gain better understanding of the work that has 
to be done. Deeper understanding of the requirements as well as awareness of the problems associated with 
this work may improve the quality of future benchmarking experiments. 

We described the life cycle of performance measurement experiments and the interplay between the different 
aspects of the life cycle. We discussed the requirements to ensure the quality of all the steps that have to 
be taken to conduct an experiment to evaluate a computer system. We hope that it will assist software 
performance metrologists not only to design and implement better software performance experiments, but 
also to gauge the quality and validity of claims based on the outcome of reported software performance 
experiments they may encounter. 
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