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Abstract

Application profiling tools are the instruments used to measure software performance at the function and
application levels. The most powerful measurement method available in application profiling tools today
is sampling-based profiling, where a potentially unmodified application is interrupted based on some
event to collect data on what it was doing when the interrupt occurred. It is well known that sampling
introduces statistical uncertainty that must be taken into account when interpreting results; however,
factors affecting the variability have not been well-studied. In attempting to validate two previously
published analytical estimates, we obtained negative results. Furthermore, we found that the variability
is strongly influenced by at least one factor, self-time fragmentation, that cannot be determined from the
data yielded by sampling alone. We investigate this and other factors and conclude with recommendations
for obtaining valid estimates of uncertainty under the conditions that exist.

1 Introduction

“The hope is that the progress in hardware will cure all software ills. However, a critical observer
may observe that software manages to outgrow hardware in size and sluggishness.” [1]

This report is intended for the audience that wishes to measure software performance, whether as a necessary
step for improving it or for making performance comparisons in general, rather than relying on newer
hardware and more power to cure all performance ills.

The simplest measurements of application performance are nothing more than the total elapsed time or
CPU time that is required for an application to run to completion for a given input. At this highest level of
granularity, the only difference between hardware and software performance measurements is which factor
(the hardware platform or the software application) is controlled and which one is varied. Such measurements
can be obtained without recourse to sophisticated tools, but the results are correspondingly less useful if it
is necessary to improve the software’s performance.

Measuring software performance at a finer granularity is called profiling. With measurements scoped to the
function level or below, it becomes possible to identify and remedy previously unknown performance bottle-
necks in the software with optimal precedence. However, every measurement has an associated uncertainty.
If the uncertainty of profile results is estimated incorrectly, the conclusions drawn can be incorrect and the
actions taken may be inefficient or do more harm than good.

We performed a series of experiments to better understand this uncertainty and made some interesting
findings, including:

• Our results do not support either of two previously published estimates of uncertainty;

• Our results show a pattern of the actual variability being strongly influenced by a different factor that
was not previously identified;

• Larger sources of noise that are specific to a particular environment or measuring instrument exist;

• Results can be skewed by seemingly extraneous factors and potentially by sampling bias; and
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• Projections made in the process of matching observed results with expected results can introduce
uncertainties that exceed those of the original measurements.

The remainder of this paper is organized as follows. Section 2 provides background about profiling and
profiling tools. Section 3 provides background about applicable standard uncertainty methods and available
estimates of the uncertainty of function-level measurements. Section 4 characterizes the observed non-
normalities of results (meaning, they do not adhere to a Gaussian, a.k.a. normal, distribution). Section 5
presents a series of experiments focusing on the effects of several factors on results from different profiling
tools. Section 6 presents additional experiments investigating other factors. Section 7 provides a worked
example illustrating methods for multiple comparisons and uncertainty resulting from the extrapolation of
expected results. Section 8 looks at possible biases. Finally, Section 9 lists findings, recommendations, and
future work.

2 Profiling and profiling tools

There are a great many tools for application profiling. However, the selection of a particular platform,
programming language, compiler or interpreter can quickly limit the choices. The examples in this report
use the following tools and platforms:1

• On x86 64 Linux:
– Perf [2] is included in the Linux kernel source tree and therefore inherits its versioning from the

kernel.

– OProfile [3] includes a new data collection tool, Operf, that is built on the same kernel subsystem
as Perf, as well as a “legacy” tool, Opcontrol, that uses a different method to collect data.

– GNU Gprof [4] is an older profiling tool that is integrated with the GNU Compiler Collection
(GCC) [5]. GNU Gprof is very similar to the earlier Berkeley Gprof [6, 7]. Unlike Perf and
OProfile, Gprof inserts data collection instrumentation into applications when they are compiled.
Data are collected only for objects that were compiled with that instrumentation, which typically
excludes the kernel and requires the use of Gprof-enabled versions of standard libraries if complete
results are to be obtained.

– The compiler used under Linux was GCC. Versions were as specified for each experiment.

• On x86 64 Windows 7:
– VTune Amplifier XE 2013 [8] (“AXE”) is included in Intel’s developer suites for the Windows and

Linux platforms and provides several different data collection drivers with differing characteristics.

– The compiler used under Windows was Intel Composer XE 2013 [9] (“ICL”), which operated in
conjunction with Visual Studio 2012 Express.

• On Android 2.3.7:
– Android’s Debug class [10] is included in its Java library and offers tracing-based profiling of Java

apps that support it.

Although application profiling tools can provide a range of different kinds of measurements, the most powerful
measurement method available and the focus of this report is sampling-based profiling, where an application
is interrupted based on some event to collect data on what it was doing when the interrupt occurred. Using
hardware interrupts that are enabled by a separate profiling tool and then serviced by a kernel subsystem,
it is possible to collect data about the inner workings of an application without modifying its source code or
executables.

Perf, OProfile, Gprof, and AXE all support sampling-based profiling; however, Gprof is limited to user space
and a fixed sampling frequency. For AXE, the capabilities vary by data collection driver.

1Specific computer hardware and software products are identified in this report to support reproducibility of results. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does
it imply that the products identified are necessarily the best available for the purpose.
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The simplest form of analysis for the resulting data simply ranks the functions of an application by the
proportion of samples in which they were found to be currently executing. This proportion is called the self
time of a function because it represents only the time spent executing the function itself, not the time spent
executing any subfunctions that it invokes. Those functions that directly consume the most CPU time are
readily identified by self time.

Profiling tools support an additional level of data collection to gather information on why those functions
were called. From call chains, the total time of functions, which includes both the self time and the time
spent executing any subfunctions, can be determined. Since the uncertainty issues for total time are not
materially different, the examples in this report focus on the self-time results that are simpler to collect.2

Perf, OProfile, and certain AXE drivers allow the user to choose numerous different events to drive event-
based sampling and to adjust the frequency with which samples are taken. When the chosen event is that a
particular hardware timer reaches a specified count, the sampling frequency is derived from the count and
the timer’s frequency. If a different sort of event is chosen, such as a tracepoint for a specific kernel operation,
sampling need not occur at any regular interval and may occur in bursts. For the purposes of this report, it
is assumed that the sampling is periodic.

If the sampling frequency at any time becomes too high, data collection tools may lose samples or the
overhead of profiling may skew or completely overwhelm the application under test. If it is too low, too few
samples will be taken and the results will not be useful for decision-making. The frequency must be tuned
to account for the capabilities of the system and the needs of the measurement.

When samples are taken at regular intervals, functions that do not account for much of an application’s
CPU time may be entirely missed by data collection or may be sampled only occasionally, appearing and
disappearing at random from the results of repeated data collection runs. To prevent reports from becoming
cluttered with such ephemeral functions, some reporting tools implement adjustable thresholds to filter the
reported results. The suppressed results are not necessarily invalid; they are merely deemed insignificant.

Gprof counts function calls with embedded instrumentation, so even functions that do not account for much
of an application’s CPU time are reliably detected. However, Gprof determines self time by sampling at a
fixed frequency, so the functions in question won’t necessarily have significant values for self time.

The uncertainties resulting from a variety of factors are potentially important for any application profile.
The following sections describe ways of determining that uncertainty.

3 Standard uncertainty methods

Without disrespect to the comprehensive and authoritative references on standard uncertainty that are
readily available [12, 13, 14, 15], this section provides a shortened and simplified how-to that is tailored to
the audience and the kind of measurement being discussed.

3.1 Empirical estimation of uncertainty from repeated measurements

Estimating uncertainty based on statistical analysis of repeated measurements is known as Type A evaluation
of uncertainty [12, §4.2][16]. This empirical approach has the advantage that it requires little advance knowl-
edge about the underlying distribution of measurement results along with the corresponding disadvantage
that any such knowledge that one may have is not used to improve the estimate. Holistic benchmarks and
self-time measurements are both amenable to this approach if the measurements can be repeated a sufficient
number of times.

2If one calculates total time simply using the proportion of samples in which a given function either is executing or is found
on the stack, then there is no material difference from the uncertainty perspective. Graph-based approaches for estimating total
time are less straightforward and may produce divergent results when cycles are present in the call graph. See Ref. [11] for a
simple example.
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The most frequently used method, which we will refer to as the “original” method, is as follows. It assumes
that the samples are independent and identically distributed (i.i.d.), that the distribution has a finite mean
and variance, and that the desired summary statistic is the sample mean. Letting Xk represent the n samples
(individual, independent measurement results) and X the sample mean of those n samples, the standard
deviation of the mean is estimated as

u =

(
1

n (n− 1)

n∑
k=1

(
Xk −X

)2) 1
2

3.2 Analytical estimation of uncertainty

Estimating uncertainty using an analytical model is a case of Type B evaluation of uncertainty [12, §4.3][17].

An analytical model of the intrinsic measurement uncertainty caused by sampling would be useful to support a
conclusion that observed variations in performance are actual and not measurement artifacts. We are aware
of only two previously published models, which are the documented uncertainty for GNU Gprof and the
multinomial model that is applied in Ref. [18]. These two models are presented in the following subsections,
followed by a third model that characterizes quantization error.

3.2.1 Gprof result

Gprof’s author documented the following result for the “expected error” of self times:

The actual amount of error can be predicted. For N samples, the expected error is the square-root
of N. For example, if the sampling period is 0.01 seconds and ‘foo’’s run-time is 1 second, N
is 100 samples (1 second/0.01 seconds), sqrt(N) is 10 samples, so the expected error in ‘foo’’s
run-time is 0.1 seconds (10 × 0.01 seconds), or ten percent of the observed value. Again, if the
sampling period is 0.01 seconds and ‘bar’’s run-time is 100 seconds, N is 10000 samples, sqrt(N) is
100 samples, so the expected error in ‘bar’’s run-time is 1 second, or one percent of the observed
value. It is likely to vary this much on the average from one profiling run to the next. (Sometimes
it will vary more.) [19]

Gprof reports self time in seconds, but the sampling period of 0.01 s, be it actual or derived, is stated in
every report:

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
78.07 1.27 1.27 8 159.07 159.07 fn2
20.37 1.60 0.33 2 165.99 165.99 fn1

The derivation or source of the result was not cited. Lacking further details, we would assume that it
characterizes the behavior of sampling-based profilers in general, not just Gprof. But in Section 5, we will
present empirical results that argue for a different analytical model (or none at all) for Gprof as well as other
sampling-based profilers.



NIST Technical Note 1826 5

3.2.2 Multinomial model

Another approach is to use a multinomial distribution as the analytical model as was done in Ref. [18].3 In
this model, each sample is an independent trial, each function is a multinomial outcome, and the probability
of each outcome is the self-time proportion of the corresponding function.

If function i has a self-time proportion of pi and the total number of samples taken in the entire profiling
run was n, then according to the definition of the multinomial distribution, the standard deviations of the
sample counts (the random variables indicating the number of times outcome i would be observed in n trials)
should be

σi =
√

n pi (1− pi)

This analytical result comes with a logical derivation, but the empirical results that we will present in
Section 5 do not support this model either.

3.2.3 Quantization error

A sample count is a discrete measure, but the “true” or “ideal” measure of a function’s self time generally
must be continuous to be practical. Each sample-based measurement of self time therefore is affected by
quantization error. Assuming that there is sufficient variation in the data, an empirical estimate of uncer-
tainty from repeated measurements typically would already include the additional uncertainty contributed
by this error. However, in an analytical evaluation, quantization error is a component of uncertainty that
must either be accounted for or declared to be negligible in the context of the particular measurement.

Consider the idealized scenario in which a function runs for exactly the same amount of time each time it is
executed, profiling samples occur with precise periodicity, and the time at which the first profiling sample is
taken (call this the “offset”) is a uniform random variable with a range from zero to one sampling period.
In the simplest case, where all of a function’s self time is spent in a single invocation of that function and
no subfunctions are called, one can intuit that the quantization error is unbiased:

• Error in the negative direction occurs whenever a “fractional sample” is dropped.

• Error in the positive direction occurs whenever n+1 samples are distributed within a function execution
of length n + ε sampling periods; for example, a function execution of length 2.2 sampling periods
permits samples to be taken at t = 0.1, 1.1, 2.1 sampling periods from the time at which the function
began executing.

Over a large number of independent measurements that follow this idealized model, the mean sample count
for the function in question will converge to the ideal value. Since the error is unbiased, the estimate of
its value in a measurement equation is zero. Letting v ∈ <≥0 be the ideal or true value that is being
approximated, for a function that is called only once, the discrete sample count can be described using a
single draw from the binomial distribution (B) with p = v − bvc:

N = bvc+ B(1, v − bvc)

The variance of N , and therefore of the quantization error, is p (1− p) ≤ 1
4 with the maximum occurring at

p = 1
2 (when the execution time of the function is exactly halfway between two multiples of the sampling

period).

But consider now what happens when the self time of a function is divided among I separate calls of that
function. Making additional simplifying assumptions that the execution time of each invocation is the same
and that the offset with respect to each invocation is an independent draw from a uniform distribution with
a range from zero to one sampling period, the equation for the sample count generalizes to

N = Ibv′c+ B(I, v′ − bv′c)
3The cited reference refers to the binomial distribution instead of the multinomial distribution and scales results by the

factor of n instead of using sample counts directly, but the underlying model is the same.
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Figure 1: Comparison of theoretical bounds for the variance of quantization error with the theoretical
variances and simulated sample estimates for function self time v = 50 sampling periods

with v′ = v
I . If we again use the maximum at p = 1

2 , the upper bound on the variance of N given I is I
4 .

Fortunately, there is an alternative bound that does not increase linearly with I. If we assume that I > v,
bv′c = 0, and the variance of N can be simplified to

Iv′ (1− v′) = I
v

I

(
1− v

I

)
= v

(
1− v

I

)
which approaches v as I goes to infinity. In the event that I ≤ v, trivially, I

4 ≤ v, so v also functions as an
upper bound in all cases.

With N being our estimate of v, this second bound begins to look like the gprof estimate of
√

N for
the standard deviation, but only as I approaches infinity (i.e., when the self time of a function is highly
fragmented). At the other end of the spectrum, the equally valid I

4 bound drives the variance to zero as
I goes to zero. If the call count I is a known value, I

4 provides a tighter bound for sufficiently small I.
Of course, if one has a good estimate of v and I is known, one can calculate the theoretical variance of N
directly, but this theoretical variance begins fluctuating with increasing sensitivity to its input parameters
as I becomes less than v.

Figure 1 shows the relationship between the two bounds, the theoretical variance, and a sample of simulated
sample counts (estimates of v) for a range of I from 1 to 6v.

The empirical results that we will present in Section 5 do show a trend of sample count variance increasing
as I increases. However, the observed variances in most cases are much less than predicted by this model,
despite the presumed presence of other sources of variability in addition to quantization error.
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3.3 Expanded uncertainty and confidence intervals

The purpose of “expanded uncertainty” is to derive a confidence interval for the measurement given a
standard deviation.4 In the original method, this is done based on the assumption that the distribution of
the mean of a given number of repeated measurements is approximately normal, a condition which is often
asserted by virtue of the Central Limit Theorem [12, §G.2].

Having obtained an estimated standard uncertainty u (either using empirical, analytical, or a mixture of
analysis methods to assess the uncertainty from each source), one then calculates the expanded uncertainty
U = ku from u and a coverage factor k, which is chosen as needed to produce the desired coverage probability
(commonly 95 % or 99 %). The confidence interval is then simply the experimental mean plus or minus U .

In the absence of complications, k can be taken directly from the t-distribution with n−1 degrees of freedom
[12, §G.3]. In Octave [21], that value of k for a level of confidence C (or (100× C) % confidence) is returned
by tinv((1+C)/2, n-1). In R [22], the same value is returned by qt((1+C)/2, n-1).

Potential complications:

• If the combined uncertainty is the sum of two or more estimated uncertainty components, one must
adjust the degrees of freedom for the t-distribution using the Welch-Sattherthwaite formula [12, §G.4.1].

• When it is necessary to achieve a simultaneous level of confidence for every possible comparison that
might be made between different measurements rather than a confidence interval for a single measure-
ment in isolation, the Šidák inequality [23, 24] or one of the comparable methods should be used to
determine the higher level of confidence that must be used for the individual measurements in order
to obtain the desired confidence for the set of intervals.

An example use of the Šidák inequality appears in Section 7.3. An extended example that applies both the
Welch-Sattherthwaite formula and the Šidák inequality to software performance measurements can be found
in Ref. [25].

3.4 Numerical determination of confidence intervals

The use of the t-distribution in the previous section introduces an assumption of normality. Measurements of
software can often be automated and repeated a sufficient number of times not only to validate an appeal to
the Central Limit Theorem, but to make the uncertainty of the mean negligible according to any reasonable
evaluation. But when the distribution of results is not normal and the sample size is limited by any factor, the
validity of the normal-based estimate becomes difficult to establish, and there is no universally applicable
recipe for doing so. For that reason, the “bootstrap” method of estimating uncertainty [26] is gaining
currency.

The bootstrap method is more robust and can be used any time that the distribution of measurement values
can be reasonably well characterized. In the cited article and in common practice, that distribution is
simulated through random sampling with replacement from the original data. Alternative methods can be
used, such as fitting a common probability distribution or a derived estimated distribution to the data.

The general purpose of the bootstrap is to obtain approximate confidence intervals. Unlike the original
method, the bootstrap method can be applied in essentially the same way for summary statistics other than
the mean and can accurately characterize confidence intervals that are asymmetrical around the estimated
value. Since the data used to find a confidence interval are generated randomly rather than collected
experimentally, there should be no problem getting sufficiently many samples for the estimate to converge
even in complex cases, pathological distributions excepted.

4Ref. [12] avoids the term confidence interval for reasons that are described in [12, §6.2.2], but the term coverage interval
that is used instead is unfamiliar to many readers and could be misinterpreted to suggest that we mean either a Bayesian
credible interval or a statistical tolerance interval. We believe that the uncertainty intervals used in this document meet the
conditions and use the specific definitions that [12, §6.2.2] indicates for confidence intervals. According to [12, §2.3.5, §6.2.2]
and [20, §2.36], however, if an expanded uncertainty includes uncertainty from sources assessed using Type B methods, then
the interval should be termed a coverage interval and not a confidence interval.
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The uncertainty of the mean of n samples would be estimated by randomly generating “many” sets of n
samples according to the supplied probability distribution, calculating the means of those sets, and then
examining the resulting distribution of generated means. Although one can easily estimate the standard
deviation of the mean at that point by taking the standard deviation of the set of generated means, this
result is known to converge to [27, Eqn. 5.12]:

u′ =

(
1
n2

n∑
k=1

(
Xk −X

)2) 1
2

which for large n is close to and not better than the original method’s estimate. Instead, it is more productive
to jump directly to the goal of finding a confidence interval. The location and width of the confidence
interval can change even though the standard deviation does not. A probabilistically symmetric5 confidence
interval can be estimated by taking quantiles of the set of generated means (e.g., 2.5 % and 97.5 % for a
95 % confidence interval). For multiple comparisons, the higher level of confidence that was used in the k
calculation for the original method is used analogously in choosing the quantiles for the confidence interval
in the bootstrap method.

The confidence interval described above is commonly known as the percentile interval. It has greater coverage
error than the BCa and bootstrap-t intervals [28], but compared to those alternatives it is much simpler to
explain and implement. The better (and worse) alternatives are explained in textbooks [27] and implemented
in the R boot package [29].

The validity of the bootstrap method depends on one’s ability to approximate the distribution of measure-
ment values. For many fairly well-behaved distributions, the effort may not be onerous. However, it may
happen that by the time an unusual distribution has been adequately characterized through repeated mea-
surements, the uncertainty of the mean of those measurements will already have become negligible. On the
assumption that future measurements of the same type will exhibit the same distribution of results, the
effort might support a reduction in the amount of data collection for subsequent experiments.

4 Observed non-normalities of self-time results

The following generalizations are based on visual examination of the distributions of results for the self time
of functions as reported by multiple application profiling tools.

4.1 Discretization

Trivially, any profiler that relies on sampling has a quantum corresponding to a single sample. Less trivially,
any profiler that relies on tracing to determine self times has a quantum corresponding to the resolution of
the clock that is used to timestamp tracing events. If this resolution is sufficiently coarse, in can be observed
in scatter plots of results, which will stratify along quantum levels.6

By definition, discretization guarantees that the distribution of results is not a normal distribution, but
it can be a close enough approximation for many purposes. Figure 2 shows an example of an otherwise
well-behaved distribution.

5Meaning, that the probability of missing the interval is the same on both sides. An alternative is to find the shortest
confidence interval, which is not necessarily symmetric [13, §5.3.4].

6Some computer systems in which the precision of timestamps significantly exceeded the resolution of the hardware clock
have mitigated timing anomalies by artificially incrementing the software clock value each time it was read. Such a practice
would add noise to results but would not obscure the strata entirely.
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Figure 2: Example showing effect of discretization on bell-shaped distribution of results
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Figure 3: Example of long-tailed distribution of results

4.2 Asymmetry

It is not unusual for distributions of results to show a longer tail on one side. The component of variability
that represents actual performance differences is bounded on one side by the performance that is optimal for
the system, producing a longer tail going upward. The component of variability that represents sampling
noise is bounded at the high end by the number of sampling periods that will fit within the program’s
execution and at the low end by zero, so it can produce an asymmetry in either direction depending on
location. The degree to which these effects or others affect the distribution of results is tool- and test-case-
dependent.
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Figure 4: Example of an asymmetrical distribution with a solitary outlier

4.3 Long tails and outliers

When the results in one case display a relatively smooth change in the proportion of points from the center
of the distribution to its extremes and a large proportion of points far from the center of the distribution,
they may form a long-tailed distribution. Figure 3 shows an example.

However, it sometimes happens that a single, extreme outlier appears in the data, as in the example of
Figure 4. If it occurs as the first measurement of a series, it might plausibly be attributed to start-up effects
and optionally discarded if a steady-state result is desired. One or two extreme outliers appearing in the
middle of data sets are more troubling, since they suggest the presence of a long tail or of one or more
additional modes that were inadequately characterized by the sample.

4.4 Multi-modality

Having collected relatively large samples, we have observed so-called outliers clustering around secondary
modes in a manner that transient failures would not explain. Figure 5 shows an example. There has been
no evidence to support a conclusion that they are erroneous and should be discarded. An assumption
that the performance of software in a controlled configuration should be characterized by a better-behaved
distribution would be convenient but difficult to justify, given the complexity of the system.

When measurements behave in this manner, the maximum (worst-case) result might be of equal or greater
value than the mean. The most informative presentation of results, if enough data have been collected to
characterize it, is to plot the probability distribution.

5 Observed effects of sample count, self-time fragmentation, and
kernel timer frequency

5.1 Uncertainty methods applied

This subsection describes the methods applied for the experiments in this section and similar ones in subse-
quent sections.
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Figure 5: Example of distribution with a low-frequency secondary mode

Consistent with the methods discussed in Section 3, we assume that measurement results are independent
and identically distributed (i.i.d.) samples from an unknown distribution.

The unknown distribution may have asymmetry, a long tail, or multiple modes. For the sake of tractability,
we assume that any secondary modes in the distributions of results have a high enough frequency that they
would appear in our samples with high probability. Without some assumption of this form, we could never
be assured of having adequately characterized the distribution with any finite sample however large.

The distributions of measurement results from each experiment were visually inspected for pathologies such
as time-dependency (a failure of i.i.d.) and significant outliers. Inspection was performed using scatter plots,
kernel density plots, and autocorrelation plots. The kernel density plots were produced using the R density
function with smoothing bandwidth of no less than the value of 0.5 samples (half the quantum of the input
data). This minimum limit prevented the discretization of sample counts from producing oscillations in
the density plots when the default bandwidth selector (based on Silverman’s rule [30]) chose a very narrow
bandwidth. Similarly, the autocorrelation plots were produced by the R acf function after dithering the
input data to mask the discretization.

Next, confidence intervals for the means were calculated using the original method and subsequently validated
using the bootstrap method (percentile interval). Despite noted outliers and non-normality, the two methods
yielded significantly different confidence intervals for the mean only for certain cases in Section 7, where
extreme solitary outliers in a relatively small sample (100) led to a questionable bootstrap.

To test the analytical estimates of uncertainty given in Section 3.2, we also needed confidence intervals for
the standard deviations—the uncertainties of the standard uncertainties. The estimated variance of samples
from a normal population is known to have a scaled chi-squared distribution; in the original method, the
confidence intervals therefore would be derived using quantiles of that distribution: [31, Thm. 6.16][32]

σ2 ∈

[
(n− 1) s2

χ2
n−1,1−α/2

,
(n− 1) s2

χ2
n−1,α/2

]
However, the confidence interval for the standard deviation is much more sensitive to non-normality than
the confidence interval for the mean. In cases where the distributions of measurement results were clearly
non-normal, we found that the bootstrap method gave significantly wider confidence intervals than the
above equation. In well-behaved cases, the two methods were in material agreement. Therefore, we have
consistently used 106 iterations of the bootstrap method (percentile interval) to find the confidence intervals
of standard deviations.
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Figure 6: Attained coverage of several bootstrap confidence intervals for 95 % nominal coverage of the
standard deviation of a mixture distribution in 103 trials with sample size 103 and 104 bootstrap replicates
in each trial

Through simulation experiments on mixture distributions, we found that the coverage attained by the per-
centile interval for the true standard deviation drops below the specified level when a low-frequency secondary
mode is present (see Figure 6). The critical parameter affecting the coverage error (i.e., the uncertainty of the
uncertainty of the uncertainty...) is not the sample size but the expected number of “outliers” corresponding
to the secondary mode. For a mixture of two normal distributions with standard deviations of 1 and means
of 10 and 30, the attained coverage drops below a nominal 95 % as the expected count of outliers drops
below 10. Under the same conditions, the BCa interval [27, Ch. 14] runs on the high side of nominal until
the expected count of outliers drops below 3. At that point, however, the attained coverage of both methods
falls off a cliff.

When the sample contains not a single value belonging to the secondary mode, it is a degenerate case that
ensures the failure of the bootstrap. In the simulation results, the precipitous drop in attained coverage as
the expected count of outliers drops below 3 is clearly related to the rising prevalence of degenerate cases.
However, a degenerate case would be undetectable in practice without an additional source of information—
hence our assumption 6 paragraphs ago that this did not occur.

Although use of the BCa interval would marginally improve the attained coverage when low-frequency
secondary modes appear, we will instead observe that our samples were too small to adequately characterize
the secondary modes and use due caution in interpreting the results in those cases.
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5.2 Derivation of predicted standard deviations

The analytical models of Section 3.2 produce one result for each profiling run. But in our experiments,
we performed many profiling runs to be able to determine the standard deviations empirically. There are
consequently too many predictions to present alongside the empirical results.

For the Gprof and quantization error models, we used the mean sample counts rather than the individual
sample counts to obtain a single set of predictions for each treatment. For the multinomial model, we pooled
the results from the many profiling runs to obtain a single set of pi values and used the mean of the total
sample counts for n.

With respect to the quantization error predictions, since the value of I is known in these experiments and
the mean sample counts provide a good estimate of v, the predictions are taken from the theoretical variance
(the blue dots in Figure 1) rather than the bounds.

5.3 Gprof

To validate the
√

N result quoted in Section 3.2.1, we performed the following experiment with Gprof:

• Controlled variables

– Dell Precision T5400 PC as used in [25], fixed CPU frequency

– Slackware Linux 14.0 booted in single-user mode

– Linux kernel version 3.9.2

– GCC version 4.7.3

– Test program alternates between 2 calls to fn1 and 8 calls to fn2, two functions with the same
expected execution times

– Program built with –O1 –pg

– 1000 runs for each combination of independent variables

• Independent variables

– 2 levels of the value N described above: fn2 is expected to show approximately 4 times as many
samples as fn1

– 15 levels of self-time fragmentation: the test program is parameterized by a function call count to
allow approximately the same total workload to be executed using longer functions called fewer
times or with shorter functions called more times

– 2 levels of the kernel configurable CONFIG HZ: 100 vs. 1000 (CONFIG NO HZ was also set in
each case)

Each run of the test program produced a value for both levels of N by dividing execution time between two
functions, with the main program being overhead. The order of tests progressed upward through each level
of self-time fragmentation before starting on the next of the 1000 iterations. The two levels of HZ were run
separately after a reboot into the respective kernels.

The test program used the same workload for fn1 and fn2 and created the different levels of N by invoking
fn2 four times as frequently as fn1. This implies an expectation that any effect of self-time fragmentation
would arise due to the shortening execution times of functions as opposed to the absolute number of times
that functions were invoked. If the latter case were true, the N factor and the self-time fragmentation factor
would not be independent of one another with the test program as implemented, and it would be better to
make the same number of calls to functions with different workloads instead of vice-versa.

Regardless, the results for Gprof (Figure 7) indicate that the effect of self-time fragmentation on variability
dominates the effects of N and HZ. Neither of the previously published analytical models responds to
self-time fragmentation at all, so the observations do not follow their predictions. Although the model of
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Figure 7: Gprof sample count standard deviations, predicted vs. actual, with 95 % confidence intervals
(presumed less than 95 % for x = 5.5 with HZ=1000). Confidence intervals are not drawn when the range
is vanishingly small.

quantization error in Section 3.2.3 does predict an effect from self-time fragmentation, the observed variability
in most cases is still much less than predicted.

It is worth noting that the multinomial predictions would all be exactly the same in an idealized world. The
total sample count n would be the same for every run, the observed pi proportions would be exactly 0.2 and
0.8, and the predicted standard deviation for both functions of interest would always be 0.4

√
n.

Figure 8 shows the effects of self-time fragmentation and CONFIG HZ on the mean sample counts. Some
impact from self-time fragmentation is unsurprising since the execution of the program is increasingly bur-
dened with function call overhead. Similarly, CONFIG HZ is expected to affect the number of interrupts
that occur during program execution and may even impact the servicing of Gprof’s profiling interrupts.7

The distributions of results were mostly well-behaved with discretization being the only divergence from the
idealized model of normality that affected every result. Some cases showed asymmetry and/or long tails,
but only the case of 105.5 function calls with HZ=1000 was significantly affected by a solitary outlier (an
anomalously high count for fn1, and a correspondingly low count for fn2, in iteration 564). An optimistic
confidence interval in that case does not impact the findings.

In the case of 104.5 function calls and HZ=1000, the distributions showed long tails on both sides. The
distribution for fn1 appeared earlier as the example in Figure 3. An especially interesting event was the
occurrence of a sample count of 1 for fn1. This measurement differed from the mean by an enormous factor
of 33, yet in the context of the long-tailed distribution of 1000 samples it does not stick out as an extreme
outlier.

7In a message to the kernel-newbies mailing list, Greg Kroah-Hartman wrote, “From userspace’s point of view, the kernel
HZ value means NOTHING” [33]. But in this case, despite Gprof being limited to userspace profiling, the source of the profiling
interrupts one way or another is in the kernel [34].
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Figure 8: Gprof mean sample counts with 95 % confidence intervals

5.4 Linux Perf

The test of Section 5.3 was repeated with the following changes:

• The test program was compiled with –O2 for Perf instead of –O1 –pg for Gprof.8

• Data were collected using perf record –e cpu-cycles –c 1000000

• Call chains were not recorded.

1000 iterations with each combination of HZ and level of self-time fragmentation yielded the results shown
in Figure 9 and Figure 10.

In Figure 9, the filled circle representing the observed standard deviation of the sample count for fn1
is invisible for most combinations with fewer than 107.5 function calls per run because the filled square
representing the corresponding result for fn2 is directly on top of it. Similarly, in Figure 10, the results
for HZ=1000 are mostly invisible because the results for HZ=100 are directly on top of them, reflecting the
negligible difference that HZ made for the mean sample counts.

Self-time fragmentation again had a significant impact on standard deviation, and the HZ value had some im-
pact, although not consistently. The observations again failed to track any of the analytical models, although
the multinomial predictions are in the right vicinity for the runs with maximum self-time fragmentation. It
can also be said in the models’ favor that they usually err on the side of caution for this test case.

The distributions of results were again not normal but were relatively well-behaved. The distributions
corresponding to 106.5 function calls did not stand out from the others. On the other hand, the results
for 101.5 and 103 at HZ=100 showed significant positive autocorrelation with a weaker pattern of positive
autocorrelation appearing between them at 102 and 102.5. It is far from obvious why such a pattern should
appear in only this region of the data!

8Inlining of fn1 and fn2 was prevented by noinline function attributes.
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Figure 9: Perf sample count standard deviations, predicted vs. actual, with 95 % confidence intervals
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5.5 Windows Amplifier XE

Initially, the test of Section 5.3 was repeated with the following changes:

• Different PC, with a Xeon W3530 4-core, variable-frequency CPU (nominal 2800 MHz, Turbo Boost
to 2933 or 3067 MHz).

• The PC was running Windows 7 Enterprise Service Pack 1 64-bit under relatively uncontrolled,
centrally-administered desktop conditions, with randomly occurring competing loads (e.g., security
scans).

• The test program was compiled with Intel Composer XE 2013 (“ICL”) Update 4 at /O2 with debugging
enabled.9 ICL depends on Visual Studio; Visual Studio 2012 Express Update 2 or earlier was installed.

• Data were collected using Intel VTune Amplifier XE 2013 (“AXE”) Update 8, amplxe-cl –collect
lightweight-hotspots.10

• Call chains were not recorded (–knob enable-stack-collection=false).11

• The CONFIG HZ setting does not apply.

Operational issues and interference from administrative software prevented a complete and credible data col-
lection run on this configuration, but as it was, the collected results showed some apparent time-dependency
(Figure 11). This was attributed to the interaction of Turbo Boost with temperature—AXE reported the
self times as “CPU Time:Self” in seconds, so presumably they would vary with frequency—and when the
experiment was repeated (again incompletely) with Turbo Boost, SpeedStep, and C-states control disabled
in BIOS setup, the pattern did not reappear. Nevertheless, when the experiment was migrated to a non-
centrally-administered Windows 7 laptop to resolve the issues, a similar slowdown failed to reproduce even
though Turbo Boost, SpeedStep, and C-states control all remained enabled (Figure 12).

The follow-up experiment on the laptop was different in the following ways:

• Dell Latitude E6330 with a Core i5-3320M CPU (2-core, nominal 2.6 GHz, Turbo Boost to 3.1 or
3.3 GHz)

• Windows 7 Professional Service Pack 1 64-bit with no unnecessary software

• Disconnected from network

• Minor revisions of software (AXE Update 10, ICL Update 5, VS 2012 Express Update 3)

Self times must be expressed in terms of samples counted in order to obtain a predicted result using the
√

N
rule of thumb, but no way was found to export the data from AXE in those terms. Instead, milliseconds
were converted to approximate sample counts using the nominal values for CPU frequency and CPU cycles
per sample (“Events Per Sample,” as AXE reports, for the event CPU CLK UNHALTED.THREAD):

x samples ≈ y ms× 1 s
103 ms

× 2.6× 109 cycles
1 s

× 1 sample
2000003 cycles

≈ y ms× 1.3 samples
ms

Despite improved control over the follow-up environment, it remained the case that test executions would
occasionally fail silently and produce no output. As a hedge, the number of iterations was increased to 1020.
At the end of the experiment, 4 of the 15 logs (for 15 levels of self-time fragmentation) contained only 1019

9Inlining of fn1 and fn2 was prevented by an auto inline(off) pragma.
10Operational problems with reporting prevented the use of the –collect-with runsa data collection driver, which would have

been more comparable to Perf.
11In Update 9 of AXE, the syntax quoted here was deprecated. The profiling mode previously known as –collect lightweight-

hotspots –knob enable-stack-collection=false was renamed to –collect advanced-hotspots –knob collection-detail=hotspots-
sampling.
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Figure 11: Sum of time series from original AXE experiment showing an apparent slowdown over time with
75-point moving mean
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Figure 12: Sum of time series from follow-up AXE experiment showing minimal slowdown over time with
75-point moving mean, vertical axis scaled to match previous figure
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Figure 13: AXE approximated sample count standard deviations, predicted vs. actual, with presumed less
than 95 % confidence intervals

samples. For the combined time series shown in Figure 12, therefore, some of the data are time-shifted by
one iteration.

Many of the distributions of results this time exhibited a low-frequency secondary mode located above the
main cluster at a ratio close to 1.1, which corresponds to no integral adjustment of the CPU multiplier from
any of the three cited CPU frequencies. An example appeared in Figure 5. Some results showed a long tail
going upward instead, and some had outliers below the main cluster. Because of the low-frequency secondary
modes and outliers, the confidence intervals for standard deviations in this experiment, shown in Figure 13,
are presumed invalid.

Nevertheless, the previously noted effect of self-time fragmentation on variability can be observed using a
more robust measure, the interquartile range (IQR). In Figure 14, the standard deviations (SD) are shown
in comparison with the interquartile ranges divided by the constant factor 1.349, which would approximate
the SD if the results were normally distributed [35]. The effect of self-time fragmentation is obscured by the
outlier-induced “noise floor” in the standard deviations for fn2, but remains apparent in the interquartile
ranges.

The still-valid mean results are shown in Figure 15.

5.6 Android Debug class (Java)

For the last version of this experiment, we made radical changes:

• From desktop platforms to a mobile platform (Droid X phone running Android 2.3.7);

• From Intel CPUs to an ARM-based CPU (TI OMAP3630-1000, 1 GHz ARM Cortex-A8 [36]);

• From C language to Java for the test program;
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• From a sampling-based measurement to a tracing-based measurement using Android’s Debug Java
class [10] and the reporting tool dmtracedump [37]. Self time is determined from the timestamps of
traced events for function entry and exit.

The experiment was run with the phone connected to AC power and in airplane mode. The test application
was launched repeatedly by a version of RTD [38] that was customized for this experiment. All traces were
accumulated on the phone’s sdcard and offloaded for analysis after data collection was complete.

Both time and space constraints compelled us to reduce the scope of the test. The maximum number of
function calls per run was reduced by a factor of 100, the total workload by a factor of 200. Since every
function entry and exit is traced by Debug, the size of the tracing data expanded exponentially as the
number of function calls did, reaching 18 MB for a run having 106 function calls. The number of completed
iterations was limited to 569 by the amount of space available on the phone’s 16 GB sdcard. One trace file
from iteration 380 was unrecoverable because of an I/O error, so all of the traces for that iteration were
skipped, leaving a final sample size of 568 for each level of self-time fragmentation.

The results, shown in Figure 16 and Figure 17, are dominated by an escalation of the reported self times
that begins when self-time fragmentation reaches 105 function calls per program run. Presumably, this is
related to the tracing overhead escalating in proportion to the number of function calls—arguably still an
effect of self-time fragmentation, but an indirect one. The distributions of results in these cases also show a
low-frequency mode located below the main cluster.

The results at the low end (10 function calls) showed an extreme outlier corresponding to the very first
execution of the test application for fn1 (shown in Figure 4) and a bimodal distribution and a solitary
outlier in the middle of the run for fn2. Thus, the confidence intervals for standard deviations are presumed
invalid for this case and the high-end cases.

For the intermediate range from 101.5 to 104.5 function calls per run, the distributions of results were well-
behaved. Examining only this intermediate range, the standard deviation is consistently higher for fn2 than
for fn1. As self-time fragmentation increases, a relatively minor upward trend in standard deviations becomes
evident before the escalation of the means begins to affect the standard deviation to a much greater extent.
However, apart from that relative comparison, the significance of the upward trend in the intermediate range
has no objective measure. Any comparison of the variability with that of sampling-based measurements could
only be done in terms of time, for a given sampling frequency, and the analytical models for sampling-based
measurements are not applicable.

6 Other factors

6.1 Sampling frequency

The sampling frequency is not adjustable for Gprof or for AXE’s lightweight-hotspots driver as far as we can
tell. The following results were obtained using Linux Perf. The experiment was similar to that of Section 5.4,
with the following changes:

• CONFIG HZ was fixed at 1000.

• The number of function calls was fixed at 1000.

• Iterations were reduced to 100 per configuration.

• The event count for profiling (which has a reciprocal relationship with sampling frequency) became an
independent variable with 10 levels.

Figure 18 shows that measured self-times remained proportional throughout the range of feasible sampling
frequencies, from extremely low up to just below the point where the event rate was apparently throttled.
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Figure 16: Standard deviations of Android reported self times with 95 % confidence intervals for 1 < x < 5,
presumed less than 95 % for the other cases
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Figure 17: Android mean reported self times with 95 % confidence intervals (when not vanishingly small)
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Figure 18: Effect of sampling frequency on mean sample count for Perf with 95 % confidence intervals for
the means

Figure 19 and Figure 20 show the effect of sampling frequency on the standard deviation of the self-time
measurements in absolute and relative terms respectively. Although the standard deviation does rise as sam-
ple counts become large, in relative terms it approaches zero. At low frequencies, the bounded quantization
error (see Section 3.2.3) becomes relatively significant.

The distributions of results were well-behaved, though not normal. The smaller sample sizes led to more
fluctuations in the density curves. Positive autocorrelation reared its ugly head again as the sampling period
reached 108 cycles and the sampling frequency became very low. For fn1 at 108.5 cycles, there were only
two distinct sample count values—3 and 1—and the 10 occurrences of 1 came in runs of length 7 and 3.

6.2 Competing loads

To test whether competing loads would impact the variability of results, experiments were performed similar
to those of Section 5.3 and Section 5.4, with the following changes:

• CONFIG HZ was fixed at 1000.

• Iterations were reduced to 100 per configuration.

• The number of function calls was reduced to 2 levels, at 10 and 106.

• Two new independent variables were added:

– 2 levels of kernel support for symmetric multiprocessing (SMP off, SMP on). For SMP off, the
kernel was booted with the nosmp parameter.

– 2 levels of competing load (no load, with load). The command dd if=/dev/urandom of=/dev/null
was used as the competing load.
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Figure 19: Effect of sampling frequency on sample count standard deviation for Perf, with 95 % confidence
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Figure 21: Perf sample count variability with competing loads

Figure 21 and Figure 22 show the results for Perf and Gprof respectively. Consistent with earlier results,
self-time fragmentation correlated with an obvious increase in sample count variability; also, the higher
sample count for fn2 correlated with a slight increase in variability that is apparent in the black dots (10
function calls per run); but the presence of a competing load, with or without SMP, made relatively little
difference.

For AXE under Windows 7, the experiment was adjusted as follows:

• CONFIG HZ did not apply.

• To reduce effort, the new independent variables were reduced to two configurations: SMP on with no
competing load and SMP off with a competing load. The SMP off condition was created by disabling
multi-core support and Hyper-Threading in BIOS setup. The competing load was generated with
IntelBurnTest v. 2.54 [39] running at “standard” level.

• Iterations were increased to 205 per configuration.

• Other conditions were as in the follow-up experiment in Section 5.5.

No data were lost this time. As shown in Figure 23, the results for AXE were quite different than those for
Perf and Gprof. The competing load had a drastic effect on both the location and dispersion of measurement
values and was different depending on the self-time fragmentation factor.

In preliminary experiments for Ref. [25], running multiple copies of a benchmark simultaneously as a com-
peting load on a single CPU had an obvious impact. That benchmark differed from the Perf and Gprof
experiments above both in the measurement instrument (high-level Posix timers instead of Perf events) and
in the workload (memory-write intensive instead of arithmetic-logic intensive).
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Figure 22: Gprof sample count variability with competing loads
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Figure 23: AXE approximated sample count variability with competing loads
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7 Uncertainty of expected results

7.1 Background

In a previous report [11], we asserted that a particular test application (val1: triangular distribution of time
among N functions) produced anomalous self-time results under certain conditions. We now provide the
additional data collection and analysis needed to support that assertion. In this report, it serves as a worked
example where the dominant component of uncertainty that is critical to the conclusion arises not from the
variability of individual measurements but from the extrapolation of an expected result.

With default values of all parameters, the expected distribution of time (both self and total) among functions
in the test application val1 is approximately

Function Time
function1 5/15
function2 4/15
function3 3/15
function4 2/15
function5 1/15
main 0

Data were collected with the default values for all parameters and in two other configurations:

1. –DINNERLOOP=1 has the effect of reducing the number of busy-work iterations in the leaf functions
from 256 to 1 and of increasing the number of main loop iterations by the same factor of 256 to maintain
a similar total run time. The main program therefore could be expected to have a greater proportion of
self time than it would have in the default configuration. Nevertheless, the leaf functions would still be
expected to show a similar linear relationship in how self time is allocated among them.

2. –DINNERLOOP=1 –DREVERSE reverses the order in which the main program invokes leaf functions
but is otherwise the same as –DINNERLOOP=1.

7.2 Test conditions

• Controlled variables

– Dell Precision T5400 PC as used in [25], fixed CPU frequency

– Slackware Linux 14.0 booted in single-user mode

– Linux kernel version 3.7.2 with profiling features enabled

– Test cases built with GCC 4.6.3; kernel with GCC 4.7.2

– 100 repeats of each combination, run serially

• Independent variables

– 3 levels of Val1 configuration

1. Default (nickname “original”)
2. –DINNERLOOP=1 (nickname “forward”)
3. –DINNERLOOP=1 –DREVERSE (nickname “reverse”)

– 6 levels of program compile options × profiling options

∗ –O1 –pg, implicit –fomit-frame-pointer
1. gprof

∗ –O3, implicit –fomit-frame-pointer
2. perf
3. perf-PEBS12 (PERFEVENT=cpu-cycles:pp)

12Precise Event-Based Sampling [40, §18.4.4].
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∗ –O3 –fno-omit-frame-pointer
4. operf (the new tool) from OProfile 0.9.8
5. opcontrol (the “legacy” tool) from OProfile 0.9.8
6. perf

Call chains were not recorded during any of the runs. There was no rotation of combinations; each one was
tested with 100 consecutive repetitions.

7.3 Summary data

7 means (function1 through function5 plus main and “other”) from 18 combinations (6 combinations for
each of original, forward, reverse) gives 126 means (of 100 results each) with their associated uncertainties.

Possible comparisons to be made include:

• 7 functions against each other;
• 3 executables against each other;
• 6 measurements of a given configuration against each other;
• 3 configurations against each other;
• Everything against the expected results.

Unless there are very close comparisons where statistical significance is a problem, it is most expedient to
use the Šidák inequality [23, 24] to set the coverage probabilities of intervals for each of the 126 means
high enough so that the levels of confidence for all possible statements about the results are simultaneously
controlled. Allowing for 1262 possible statements about the means individually or pairwise13 and using 0.95
as the minimum level of confidence to be achieved for any statement, the level of confidence for each mean
is taken to be 0.95(1/1262) = 0.999996769. The corresponding k value for 99 degrees of freedom (obtainable
using the Octave or R syntax given in Section 3.3) is approximately 4.936.

The resulting means with their expanded uncertainties are shown in Figure 24. Several patterns are imme-
diately obvious:

• In the forward configuration, the leaf functions function1 through function5 do not present the
expected straight-line relationship of their sample counts. Furthermore, Gprof’s results for this con-
figuration diverge from those of the other tools.

• The main program does show significant self time in the forward and reverse configurations.

• Gprof results have wider confidence intervals. Distributions of results notwithstanding, this is to be
expected since Gprof’s sampling rate is about 3.3 % that of the other tools (100 Hz / 2992.5 Hz) and
the sample counts are correspondingly lower.

• In the forward and reverse configurations, perf-PEBS culls an apparently unbiased selection of samples
from the leaf functions and transfers these samples to “other.” (Specifically, it transfers about 3 % of
samples to an “[unknown]” function.)

All of the distributions of results for the original configuration were well-behaved. In the other two configu-
rations, Gprof exhibited some long tails and outliers, while Opcontrol exhibited isolated extreme high values
appearing in every plot for function1 through function5. Autocorrelation was significant only for “other,”
which is explainable by the inclusion of time-varying kernel overhead in that category.

This was the only experiment in which the bootstrap method made a significant albeit immaterial difference
in the confidence intervals for the means (for Gprof and Opcontrol). Use of the bootstrap method with
solitary extreme outliers in the input raises validity questions since the original sample was not large enough
to provide a credible estimate of their frequencies in the steady state. With a sample size of 100, their
frequencies could not be estimated any lower than 1

100 . Since the difference that bootstrap made was not
enough to materially impact the findings, we have stayed with the original method for the confidence intervals
of the means.

13Less conservatively, one could allow for
(
126
2

)
+ 126 possible statements, but in this case it makes little difference.
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Figure 24: Mean sample counts with expanded uncertainty from each combination of options for configura-
tions original (row 1), forward (row 2), and reverse (row 3). In each plot, the functions from left to right
are function1 through function5, main, and “other.” Coverage is presumed to be less than specified for
Gprof and Opcontrol in the forward and reverse configurations.

7.4 Demonstration of anomaly

A result is anomalous only if the confidence interval defined by the result and its associated uncertainty
excludes the expected result. In this example, the expected result for one function is understood in terms of
its proportion of self time in relation to that of four other functions.

Figure 25 shows results from Perf with –fomit-frame-pointer in the original configuration. As expected, the
sample counts for the five leaf functions form a linear progression. To enable an apples-to-apples comparison
in discussion below, the expected sample count for function1 was projected based on the other four functions’
sample counts. The linear model is an ordinary least-squares fit, and the uncertainty of the projection is
based on the residual standard deviation from the fit and a 95 % confidence interval. The standard deviations
of means were considered for use in a weighted least squares (WLS) fit, but the residual standard deviation
from the fit of the straight-line model is much larger, negating the need for WLS.

Figure 26 shows the corresponding results from Perf with the forward configuration. Using the same approach
that was used for Figure 25, the sample count of function1 this time falls significantly below a line fit through
the other four functions’ results and outside of the derived confidence interval for the projection. Having
accounted for the additional uncertainty incurred by the linear extrapolation, it is possible to conclude that
an anomaly exists in the reported sample count of function1 as it relates to the other four leaf functions.
Of course, this does not explain why such an anomaly would exist. Hypotheses regarding this particular
anomaly were discussed in [11].
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Figure 25: “Original:” Linear fit to Perf mean sample counts for functions 2 through 5 with an observed
function1 execution time consistent with the data for functions 2 through 5 demonstrated by the fact that
the observed result for function1 is captured in the 95 % prediction interval shown. (95 % confidence
intervals are also shown for the individual means.)

Finally, Figure 27 shows the corresponding results from Gprof with the forward configuration. In this case,
the sample count for function1 falls well above the expected value, but is still barely contained in the
95 % prediction interval. The statistical significance of the deviation is therefore not quite great enough to
conclude that the Gprof results are also anomalous.

8 Possible biases

The usual interpretation of sampling-based profiles assumes that the proportion of samples that are taken
within a particular function, relative to the total number of samples, is representative of the proportion of
execution time that that function consumed.

If the sampling is unbiased, then pooling the samples from N separate runs is comparable to increasing the
sampling frequency within a single run by a factor of N . Pooling is a simple and effective way of obtaining
summary results while preserving the equal weighting of all samples across all runs. The downside is that
the original method of estimating uncertainty is then no longer feasible, since only one result is produced.

Biased sampling would result in a function being sampled more or less frequently than its share of the
application’s execution time would indicate, causing its self time to be overestimated or underestimated
accordingly. In that case, pooling the samples from multiple runs is correspondingly less productive and an
uncertainty calculated based on the assumption that the runs were independent of one another likely would
be too optimistic. In the extreme case of sampling that hits exactly the same instruction points every time
a program is executed, the results would be completely self-consistent, and the additional runs contribute
no new information about the closeness of the measured quantity values to the true or ideal values.
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Figure 26: “Forward:” Linear fit to Perf mean sample counts for functions 2 through 5 with anomalous
function1 result demonstrated by the fact that the observed result for function1 is not contained in the
95 % prediction interval shown.

Bias could arise in several ways:

1. For periodic sampling of a nominally deterministic program repeating the same workload run after run,
the natural tendency would be for samples to be taken at or near the same instruction points every
time, which artificially decreases the run-to-run variation and increases the bias. Actual variability in
execution times and in the delivery of sampling interrupts partially mitigates the problem.

2. If the execution times of groups of functions and the nominal sampling period have some mathematical
relationship to one another, even significant variation in execution times and in the delivery of sampling
interrupts might be insufficient to mitigate the bias. For example, if an application cycles among 10
functions that have an execution time of 100 µs and samples are taken at a nominal frequency of 10 ms,
the expected result would be to sample one or two functions repeatedly and miss the others.

3. If the hardware or kernel has an attraction or aversion to servicing profiling interrupts at a particular
instruction point, the samples will avoid certain areas and clump up in others. If this causes samples
to shift from one function to another, the measurement of self time will be biased accordingly.

4. If the servicing of interrupts is delayed by an equal amount for every instruction point, there is no net
bias except at the very beginning, where an unsampleable “blind spot” exists.

Pragmatically, when one is unsure whether some controllable factor could be introducing bias into results,
it is best to include that factor as an independent variable in the experiment. The first two of the biases
enumerated above could be mitigated by explicitly randomizing the interval between samples (not supported
in current tooling) or by at least comparing the results obtained with several different sampling frequencies.

Regarding the third bias, we performed an experiment on the Linux PC in which a function consisting of 256
identical, 1-byte nop instructions followed by a ret instruction was invoked repeatedly by a main program
that incorporated some random noise. Specifically, on each iteration, the main program read a byte from
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Figure 27: “Forward:” Linear fit to Gprof mean sample counts for functions 2 through 5 with an observed
function1 execution time that is barely contained in the 95 % prediction interval.

/dev/urandom (an operation which itself contributes noise) and then performed a do-nothing loop for 0–15
iterations as determined from the four high bits. The test program was then profiled with perf record –e
cpu-cycles:pp –c 1000003.

The purpose of both the main program noise and the prime number for the event count was to attempt to
control factors that could cause a nonuniform sampling of the nop function. It was already clear from the
anomaly reported in the previous section, which arose in the “forward” configuration but not in “reverse,”
that the main program could influence the results for sampled functions in a simple test program. We hoped
to see a nearly flat distribution in which each address within the nop function was sampled (i.e., appeared
as the instruction pointer address reported by Perf) with approximately the same frequency. Ultimately,
253 of the 257 addresses in the function were sampled at least once; however, the distribution of addresses
was distinctly nonuniform (Figure 28), showing a strong but not absolute preference for addresses ending in
binary 10 (0b10) (Figure 29) as well as unexplained patterns on a larger scale. This unexpected result adds
to a growing list of anomalies that deserve further investigation.

9 Conclusion

This report has demonstrated the role of uncertainty estimation in the interpretation of application profile
self-time results and in comparisons between results, investigated several factors impacting the variability of
such results, and discussed possible biases.

Our findings are as follows:

• Our results do not support either of two previously published estimates for the uncertainty of self-time
measurements.
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Figure 28: Histogram of instruction pointer addresses sampled by Perf within a function consisting of 256
identical, 1-byte nop instructions followed by a ret instruction
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Figure 29: Id., instruction pointer addresses modulo 16

• Our results show a pattern of the actual variability being strongly influenced by self-time fragmentation,
a factor which cannot be determined from the data yielded by sampling alone. Although the model
of quantization error in Section 3.2.3 attempts to account for the uncertainty arising from self-time
fragmentation, the observed variances in most cases are much less than the uncertainty bounds based
on this model.

• Sources of noise that are specific to a particular environment or measuring instrument can have a
greater effect, as can competing loads (but not always).

• Results can be skewed by seemingly extraneous factors, such as the main program differences that
impacted the test in Section 7, and potentially by sampling bias, which the experiment of Section 8
did nothing to exclude.

• Projections made in the process of matching observed results with expected results can introduce
uncertainties that exceed those of the original measurements.

• Turbo Boost and any functionally similar dynamic CPU frequency adjustment features may introduce
significant time- and temperature-dependency, which invalidates the original method of determining
uncertainty that assumes that the observations are independent and identically distributed.

• Small-sample results are vulnerable to being invalidated by outliers whose relative frequency becomes
apparent only in larger samples.

Given those findings, we recommend the following:

• The number of repetitions of benchmarks should not be determined based on rules of thumb or sub-
jective consistency of results. Benchmarks should be repeated a sufficient number of times to permit
assessment of the distribution of results and to achieve an acceptably small confidence interval accord-
ing to the original method at least.



NIST Technical Note 1826 35

• If the distribution of results is obviously non-normal or changes based on unknown or uncontrollable
factors, the risk of drawing invalid conclusions from small samples is correspondingly amplified, and
the repetitions should be increased accordingly to limit that risk. If the distribution is predictable and
any secondary modes have been adequately characterized, the bootstrap method can be applied to find
a more accurate confidence interval or to validate the output of the original method.

• With functions having short execution times being particularly susceptible to self-time fragmentation
and suffering greater impact from any skewing and sampling bias that might occur, it is advisable to
identify short, frequently-invoked functions when possible and use results with extra caution whenever
they are found.

• If measurements cannot be isolated from competing loads, then the impact of competing loads on the
measurements should be evaluated in situ and taken into account when analyzing results.

• When applicable, non-experimental sources of uncertainty, such as the uncertainty introduced when a
model is fit to experimental observations, should be evaluated.

• If relative comparisons of self time are adequate for the purpose, then one should prefer a count of CPU
cycles, rather than time, as the trigger for sampling events, and prefer a count of samples, rather than
CPU or elapsed time, as the measure of self time, to factor out the effects of CPU frequency scaling.

• Check recorded data for evidence of time- and temperature-dependency. If it is evident, repeat the
experiment with dynamic CPU frequency adjustment features such as Turbo Boost and SpeedStep
disabled and note in analysis that performance under normal conditions would vary. If thermal limits
do not permit this, collected data will have to be filtered to deal with the time- and temperature-
dependency of results. At a minimum, “cold” and “hot” results should be evaluated separately.

Additional research on this topic should

• Narrow down the self-time fragmentation effect by comparing results with a modified test program in
which fn1 and fn2 have the same number of calls but the fn2 workload is four times as long;

• Determine whether call counts or function entry-exit traces provide sufficient additional information
to accurately predict the uncertainty;

• Determine whether explicit randomization of sampling intervals has a beneficial effect;

• Follow up on plausible explanations of observed anomalies to confirm or refute the presence of bias;

• Do more experiments with different languages and measuring instruments; and

• When possible, follow up on AXE for Windows with the “runsa” data collection driver and on Perf for
Android to determine whether the secondary modes go away and results are comparable to those seen
under Linux with Perf and Gprof.

The raw data and source code pertaining to this report are available online [41].
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