
NIST Technical Note 1790
 

Configuration of profiling tools for 
C/C++ applications under 

64-bit Linux 

David Flater 

http://dx.doi.org/10.6028/NIST.TN.1790 

http://dx.doi.org/10.6028/NIST.TN.1790


NIST Technical Note 1790
 

Configuration of profiling tools for 
C/C++ applications under 

64-bit Linux 

David Flater 
Software and Systems Division 

Information Technology Laboratory 

http://dx.doi.org/10.6028/NIST.TN.1790 

March 2013 

U.S. Department of Commerce 
Rebecca Blank, Acting Secretary 

National Institute of Standards and Technology 
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director 

http://dx.doi.org/10.6028/NIST.TN.1790


Certain commercial entities, equipment, or materials may be identified in this 
document in order to describe an experimental procedure or concept adequately. 

Such identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that the 

entities, materials, or equipment are necessarily the best available for the purpose. 

National Institute of Standards and Technology Technical Note 1790 
Natl. Inst. Stand. Technol. Tech. Note 1790, 20 pages (March 2013) 

http://dx.doi.org/10.6028/NIST.TN.1790 
CODEN: NTNOEF 

http://dx.doi.org/10.6028/NIST.TN.1790


1 

1 

NIST Technical Note 1790 

Configuration of profiling tools for C/C++ applications under 
64-bit Linux∗ 

David Flater <dflater@nist.gov> 

March 2013 

Abstract 

Application profiling tools are the instruments used to measure software performance at the function and 
application levels. Without careful configuration of the tools and the environment, invalid results are 
readily obtained. The errors may not become obvious if a large, complex application is profiled before 
more simple validations are attempted. A set of four simple, synthetic reference applications was used 
to validate configurations for profiling under x86 64 Linux. Results from one validated configuration 
and examples of observed invalid results are presented. While validation results for specific versions of 
software quickly lose value, this exercise demonstrates how future configurations can be validated and 
shows the kinds of errors that may reoccur. 

Background 

Although application profiling tools can provide a range of different kinds of measurements, the most powerful 
measurement method available and the focus of this report is sampling-based profiling, where an application 
is interrupted based on some event to collect data on what it was doing when the interrupt occurred. Using 
hardware interrupts that are enabled by a separate profiling tool and then serviced by a kernel subsystem, 
it is possible to collect data about the inner workings of an application without modifying its source code or 
executables. 

The simplest form of analysis for the resulting data simply ranks the functions of an application by the 
proportion of samples in which they were found to be currently executing. This proportion is called the self 
time of a function because it represents only the time spent executing the function itself, not the time spent 
executing any subfunctions that it invokes. 

Those functions that directly consume the most CPU time are readily identified by self time. However, self 
time alone provides no information on why those functions were called. Profiling tools therefore support the 
collection of call chains, which are the hierarchical sequences of function calls leading down to the invocation 
of a given function. From call chains, the total time of functions, which includes both the self time and the 
time spent executing any subfunctions, can be determined. 

When a sample is taken, there are three different methods that a profiling tool can use to determine the call 
chain of the currently executing function: 

1. The call chain can be determined using static call frame information that recent compilers will include 
in the DWARF debugging data [1] that are typically included in the executable. This is the least 
invasive method. 

∗Specific computer hardware and software products are identified in this report to support reproducibility of results. Such 
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does 
it imply that the products identified are necessarily the best available for the purpose. 

mailto:dflater@nist.gov


2 NIST Technical Note 1790 

2. The call chain can be determined using frame pointers, a legacy x86 run-time feature/protocol that 
is by default not done on x86 64, but that can be enabled with a compiler switch. Enabling frame 
pointers ties up one CPU register and produces extra code that pushes this register on the stack at 
the beginning of each function and pops it off the stack at the end of each function. Since the frame 
pointer protocol incurs a small but measurable run-time overhead [2], this method is slightly more 
invasive. 

3. Finally, a profiling tool that instruments (modifies) programs to add its own data collection infras­
tructure can use that arbitrary instrumentation to keep track of call chains as functions are called and 
exited and simply retrieve that information when needed. This is the most invasive method. 

There are a great many tools for application profiling. However, the selection of a particular platform, 
programming language, compiler or interpreter can quickly limit the choices. This report covers the following: 

•	 Although various versions of the Linux kernel were tested, only x86 64 Linux was used. 

•	 Perf [3], a high-powered profiling toolset, is included in the Linux kernel source tree and therefore 
inherits its versioning from the kernel. The ability to use DWARF debugging data instead of frame 
pointers to determine call chains first appeared in version 3.7, which was declared stable on 2012-12-10. 

•	 OProfile [4], a similar high-powered profiling toolset, includes a new data collection tool, operf, that is 
built on the same kernel subsystem as perf, as well as a “legacy” tool, opcontrol, that uses a different 
method to collect data. As of 2012-12-26, the current version is 0.9.8, released 2012-08-27. It does not 
yet support the use of DWARF debugging data. 

•	 GNU gprof [5] is an older profiling tool that is integrated with the GNU Compiler Collection (GCC) 
[6]. GNU gprof is very similar to the earlier Berkeley gprof [7]. Unlike perf and OProfile, gprof inserts 
data collection instrumentation into applications when they are compiled. Data are collected only for 
ob jects that were compiled with that instrumentation, which typically excludes the kernel and requires 
the use of gprof-enabled versions of standard libraries if complete results are to be obtained. 

•	 Gprof2Dot [8] is a visualization tool that reads the text-format reports from various profiling tools 
and produces call graphs in the DOT language supported by Graphviz [9]. Gprof2Dot r. 2012-11-25 
implements a heuristic to infer the total time of functions given profiler reports that do not include 
those data. An improved (non-heuristic) calculation of total time for perf input has been implemented 
in a patch [10], for now called r. 2012-11-25-DWF. 

•	 The only compiler used in this work was GCC. Different versions of GCC produce different implemen­
tations of frame pointers and DWARF debugging data in compiled executables; successful application 
profiling therefore requires control over the version of GCC that is used. As of 2012-12-26, the current 
version is 4.7.2, released 2012-09-20. 

Because the relevant software evolves at a rapid pace, the validation results for specific versions will quickly 
lose value. Nevertheless, this exercise demonstrates how future configurations can be validated, and the 
errors observed with current configurations demonstrate the importance of validating future configurations 
before they are relied upon. 

How to read the call graphs 

Following sections of this report will refer to call graphs appearing in Appendix A. All of the graphs were 
generated by Gprof2Dot and follow the same conventions. 

Functions are represented by square nodes and function calls are represented by arrows from the caller to 
the callee. 

In most cases, the nodes contain the following four pieces of information, from top to bottom: the name of 
the executable object containing the function, the name of the function, the approximate total time of the 

2 



3 NIST Technical Note 1790 

function, and the approximate self time of the function expressed as a percentage. If all reported functions 
are in the same ob ject, the first field may be omitted. 

Arrows are labelled with an estimate of the proportion of a callee’s total time that is attributable to the 
indicated caller. 

Finally, nodes and arrows are colorized using a simple “heat map” scale in which functions with a large 
proportion of total time tend toward red and functions with little total time tend toward blue. 

3 Configuration and use details 

3.1 Compiler options for building the application 

The following information is based on the behavior of versions 4.6.3 and 4.7.2 of GCC under x86 64 Linux. 
Future versions may, of course, behave differently. 

If call chains are to be determined using DWARF data, these data must be present in the executable. It is 
the default behavior of GCC to include them (even without the –g switch), so the only requirement is not 
to remove them using the strip tool or the –s switch of GCC. 

If call chains are to be determined using frame pointers, then the application to be profiled must be compiled 
with the –fno-omit-frame-pointer switch to override the default behavior on x86 64, and it should be built 
only with GCC version 4.6.x. This version constraint is to avoid the errors described in Section 5.2 and 
Section 5.3. 

If gprof is to be used, then the application to be profiled must be compiled and linked with the –pg switch, 
and optimization must be limited to –O0 or –O1 to obtain call graph data. The latter is not a documented 
requirement, but when tested, –O2 and –O3 somehow disabled gprof ’s instrumentation: 

gprof: gmon.out file is missing call-graph data 

For accurate attribution of time spent in kernel space or shared libraries, those objects must also be built 
with DWARF data, frame pointers or gprof instrumentation, as applicable. 

Less straightforward than the previous requirements is the decision of whether or not to prevent inlining of 
functions and similar optimizations. Inlining avoids the overhead of a function invocation by including the 
code of the invoked function within the calling function. A similar optimization involves replacing function 
invocations with simple jumps when the function invocations occur in a predictable, linear sequence. 

Inlining does not necessarily invalidate profiling results, but it routinely obfuscates them. If profiling is 
performed on applications that were compiled with these kinds of optimizations enabled, the reported call 
chains and attributions of time will, at best, reflect the structure of the program as it was implemented by 
the compiler rather than the structure of the source code as it was written. Depending on the goals of the 
profiling exercise, this may or may not be a useful result. At worst, the optimizations done by the compiler 
may contradict assumptions made by the profiling tool and lead to confusing or invalid results. 

The relevant GCC options that were used in this work were no-inline and no-optimize-sibling-calls, applied 
selectively using function attributes as needed to obtain predictable results in valid profiles. The impact on 
profiling of omitting these options is shown by examples in Section A.4. 

Disabling inlining for the entirety of a C++ program is inadvisable as it will significantly skew the perfor­
mance of the Standard Template Library [11]. 



4 NIST Technical Note 1790 

3.2 Sampling events and frequency 

Both perf and OProfile allow the user to choose numerous different events to drive event-based sampling and 
to adjust the frequency with which samples are taken. When the chosen event is that a particular hardware 
timer reaches a specified count, the sampling frequency is derived from the count and the timer’s frequency. 
If a different sort of event is chosen, such as a tracepoint for a specific kernel operation, sampling need not 
occur at any regular interval and may occur in bursts. 

If the sampling frequency at any time becomes too high, data collection tools may lose samples or the 
overhead of profiling may skew or completely overwhelm the application under test. If it is too low, too 
few samples will be taken and the results will not be representative of actual program performance. The 
frequency must be tuned to account for the capabilities of the system and the needs of the measurement. 

For the examples in this report, perf and OProfile were configured to sample at a count of 106 CPU cycles. 
This yielded a sampling frequency of approximately 3 kHz on the system tested. (Perf also offers the option 
to specify a desired sampling frequency directly and derive the count from that.) 

perf record -e cpu-cycles -c 1000000 ... 
operf -e CPU_CLK_UNHALTED:1000000 ... 
opcontrol --event="CPU_CLK_UNHALTED:1000000" ... 

As a consequence of sampling at regular intervals, functions that do not account for much of an application’s 
CPU time may be entirely missed by data collection or may be sampled only occasionally, appearing and 
disappearing at random from the results of repeated data collection runs. This happens with the kernel’s 
timer interrupt and its callees in the examples in Appendix A. To prevent call graphs from becoming 
cluttered with such ephemeral functions, gprof2dot implements an adjustable total time threshold, which 
defaults to 0.5 % for function nodes and 0.1 % for edges. Perf-report implements a similar threshold, but 
on self time, to filter the reported call chains. The suppressed results are not necessarily invalid; they are 
merely deemed insignificant. 

Gprof tracks function calls with embedded instrumentation, so even functions that do not account for much 
of an application’s CPU time are reliably detected. However, gprof determines self time by sampling at a 
fixed frequency of 100 Hz, so the functions in question won’t necessarily have significant values for self time. 

The variability of measurements that can result from too few samples is a consideration for any application 
profile. Methods for quantifying that variability are provided in a separate report [12]. 

If a single run of an application at the maximum reasonable sampling frequency yields insufficient data and 
therefore too much uncertainty in the results, it is often statistically valid to pool the data from multiple 
runs to achieve the same effect as a higher sampling frequency. Gprof includes support for this operation. 

3.3 Handling data volume with perf 3.7 

In the transition from perf 3.6 (using frame pointers) to 3.7 (using DWARF), the volume of data written for 
call chain profiling increased dramatically, resulting in overload-related data loss on the system tested: 

Warning: 
Processed 14551 events and lost 2 chunks! 

Check IO/CPU overload! 

If sufficient RAM is available, the most effective mitigation is to direct the perf data to a tmpfs directory. If 
disk storage must be used, the failures are reduced but not eliminated by adding –r 1 to the command line 
to run perf at realtime priority. 



5 NIST Technical Note 1790 

4 Validation approach 

Different configurations were tested using a suite of four very simple test cases written in C. Brief descriptions 
of the test cases are included at the top of the relevant subsections in Appendix A. Source code is available 
on request or from the NIST web site [13]. 

The configuration-specific –fno-omit-frame-pointer, –pg, and –On compiler command-line switches were de­
termined by Makefile logic depending on the choice of profiling tool. Configuration-independent options 
to control inlining of test functions were specified in the source code of the test programs using function 
attributes: 

__attribute__((noinline,optimize("no-optimize-sibling-calls"))) void fn2() { 

These function attributes were altered only for Figure 11 and Figure 12 where they were disabled to demon­
strate the effects. 

Another optimization that would yield degenerate results is code elimination. A compiler will frequently 
delete variables whose values are not used and cascade this deletion onto the executable statements that 
generated those values. Any synthetic workload intended to do nothing except create a predictable amount 
of busy-work is vulnerable to being eliminated in this way. Two techniques were used to combat this. First, 
declaring variables with global visibility makes it difficult for the compiler to conclude that their values are 
never used or altered by external code. Second, printing their values at the end of the program ensures that 
they cannot be eliminated unless the compiler can determine their final values through static analysis. In 
test cases that take no external input, it is still theoretically possible for a compiler to optimize away the 
entire workload and substitute a printout of the final result, but these two techniques have proven effective 
thus far. 

Each test case is parameterized to permit adjustment of the number of iterations to perform in busy-work 
loops. Val1 (the first test case) is further parameterized to permit adjustment of the number of leaf functions 
that the program should have. These parameters were altered from their default values only for Figure 3 
and Figure 4 where val1 was tweaked to demonstrate anomalies that correlate with shorter execution times. 

5 Catalog of observed errors 

5.1 Type 1 missing caller (untimely sampling) 

A call chain is reported that erroneously omits the actual caller of a function, making it appear as if it 
were invoked directly by the caller’s caller. This particular anomaly is known and documented to appear 
when a sample is taken while the call frame is being constructed at the very beginning or destroyed at 
the very end of a function’s invocation [14]. Although these anomalous call chains can be collected in any 
profiling run regardless of the application, some of the reporting tools by default implement a minimum time 
threshold to prune out low-frequency results, and this threshold usually prevents the anomalous call chains 
from being reported. However, if the frame construction/destruction overhead is significant in comparison 
to the execution time of an important function—as in “short” functions that are invoked frequently—then 
the anomaly causes significant skewing of the results that cannot be filtered out. 

Because this anomaly is documented and endemic, the validation tests were designed to ensure that leaf 
functions have significant execution time. However, the anomaly can be reproduced by adjusting the pa­
rameters of the val1 test to do the opposite. Figure 3 shows the problem with results obtained by defining 
–DINNERLOOP=1; compare its call graph with the valid one in Figure 1. 

The type 1 missing caller error is avoided by using DWARF or gprof instrumentation for call chains. 

Figure 3 also reflects significant skewing of the reported self time of function1 relative to the expected results. 
This separate anomaly will be discussed in Section 6. 



6 NIST Technical Note 1790 

5.2 Type 2 missing caller (deferred frame pointer push) 

A change made in GCC 4.7 allowed optimization to reschedule and defer the push of the frame pointer that 
previously occurred in the function prologue whenever frame pointers were enabled [15]. When binaries 
compiled with GCC 4.7.x are profiled using frame pointers, incorrect call chains are derived whenever a 
sample is taken between the top of the function and the instruction that pushes the frame pointer. In 
Figure 13, this resulted in the main program being erroneously omitted from half of the call chains, with 
collateral damage to the calculation of total time for main. For comparison, valid results are shown in 
Figure 10. 

The error is avoidable by reverting to GCC 4.6 or by using DWARF for call chains. 

5.3 Type 3 missing caller (missing frame pointers) 

A behavior present in GCC 4.4 and 4.5 caused optimization attributes of functions, such as the 
optimize("no-optimize-sibling-calls") example in Section 4, to implicitly reset global options pro­
vided on the command line, including –fno-omit-frame-pointer [16]. Those functions for which optimization 
attributes were specified could thus unexpectedly end up without frame pointers, while other functions in 
the program would still have them. The consequences are similar to those of the previous error, but more 
severe (Figure 9). For comparison, valid results are shown in Figure 7. 

While they were useful in the validation test cases, optimization attributes of functions are seldom used in 
general applications. The error is avoidable by promoting the optimization options to the command line 
(applying the same choices to every function in the application) or by upgrading to GCC 4.6 or 4.7. 

5.4 Spurious recursion 

The operf tool of OProfile 0.9.8 reports cycles of recursion that do not exist (Figure 6). For comparison, 
valid results are shown in Figure 5. The error reproduced with GCC 4.6.3 for kernel versions ranging from 
3.7.1 back to 3.0.57.
 

This error is confined to operf ’s reporting of call chains and does not affect self time results.
 

5.5 Inaccurate distribution of total time 

Having been designed originally for use with gprof, gprof2dot.py r. 2012-11-25 relies on a graph-based 
heuristic to estimate total time for functions. This results in an inaccurate distribution of total time for val3 
(Figure 8). For comparison, valid results are shown in Figure 7. 

The input to gprof2dot.py from perf includes complete call chains for every sample, so it is not necessary 
to estimate total times heuristically. Instead, total time may be calculated as the proportion of samples for 
which a function either was executing or was found on the stack [17]. gprof2dot.py r. 2012-11-25-DWF was 
patched to implement this change to the calculation of total time when the input is from perf [10]. 

5.6 Excessive variability of self time 

When calculating the self time of functions from data collected by opcontrol while call graph profiling is 
enabled and sample separation is off, OProfile uses only about 1 % the number of samples that ought to 
be available for that calculation, resulting in increased variability of results due to the small sample size. 
Figure 2 shows comparable results from two consecutive runs. The self time of function1 was calculated as 
the proportions 36/130 and 44/114 respectively, with correspondingly fewer samples for the other functions. 

http:gprof2dot.py
http:gprof2dot.py
http:gprof2dot.py


-------------------------------------------------------------------------------

-------------------------------------------------------------------------------

7 NIST Technical Note 1790 

With over 15 000 samples having been collected in each run, the count for function1 should have been over 
5000 given the construction of the reference application. 

In the output of opreport, the expected numbers of samples do appear in the context of calls from the main 
program—just not in the summaries for the five functions themselves: 

samples % symbol name 

5004 100.000 main 
36 27.6923 function1 
36 

-------­
100.000 

----------­
function1 [self] 
-----------------------------------------------------------­

3941 100.000 main 
36 27.6923 function2 
36 

-------­
100.000 

----------­
function2 [self] 
-----------------------------------------------------------­

3032 100.000 main 
32 24.6154 function3 
32 

-------­
100.000 

----------­
function3 [self] 
-----------------------------------------------------------­

2019 100.000 main 
18 13.8462 function4 
18 

-------­
100.000 

----------­
function4 [self] 
-----------------------------------------------------------­

982 100.000 main 
8 6.1538 function5 
8 

-------­
100.000 

----------­
function5 [self] 
-----------------------------------------------------------­

0 0 main 
5004 33.4090 function1 
3941 26.3119 function2 
3032 20.2430 function3 
2019 13.4798 function4 
982 6.5563 function5 
0 0 main [self] 

This behavior was reproduced with GCC 4.6.3 for OProfile 0.9.8 and kernel versions ranging from 3.7.1 back 
to 3.0.57, and for OProfile 0.9.7 and kernel version 2.6.34.13. 

The error goes away if call graph profiling is disabled with the – –callgraph=0 option or if opcontrol is started 
with the ––separate=kernel option. N.B., options are saved in /root/.oprofile/daemonrc and persist from 
run to run until explicitly changed. 

While this error is confined to opcontrol, variability of measurements is a consideration for any application 
profile and is addressed in a separate report [12]. 

Anomalous results with short functions 

Figure 3 reflects significant skewing of the reported self time of function1 relative to the expected results. 
Defining –DINNERLOOP=1 for val1 has the effect of reducing the number of busy-work iterations in the 
leaf functions from 256 to 1 and of increasing the number of main loop iterations by the same factor of 
256 to maintain a similar total run time. The main program therefore could be expected to have a greater 
proportion of self time than it would have in the default configuration. Nevertheless, the leaf functions 
should still show a linear relationship in the way self time is allocated among them. That did not occur in 

6 

http:2.6.34.13


8 NIST Technical Note 1790 

Figure 3; the self time of function1 falls significantly below a line fit through the other four functions’ results. 
(See [12] for additional data collection and analysis showing that the deviation is statistically significant.) 

A review of the disassembled executable revealed no obvious reason why function1 would perform significantly 
differently in this case. The anomaly occurs for perf 3.7 using DWARF, for perf 3.6 using frame pointers, and 
for operf using frame pointers. The results from gprof appear to be closer to expectations once variability is 
taken into account—but gprof ’s instrumentation overhead and limiting optimization to –O1 both would be 
expected to increase the execution time of the leaf functions, dampening the effect of setting INNERLOOP=1. 

The realm of plausible explanations includes both measurement bias and actual differences in performance. 
Regarding the former, the OProfile manual warns that x86 hardware-specific latencies in the delivery of 
profiling interrupts can skew the results in certain cases [18]: 

The problem comes from the x86 hardware; when the counter overflows the IRQ is asserted but 
the hardware has features that can delay the NMI interrupt: x86 hardware is synchronous (i.e. 
cannot interrupt during an instruction); there is also a latency when the IRQ is asserted, and the 
multiple execution units and the out-of-order model of modern x86 CPUs also causes problems. 

This class of phenomena is often referred to as “skid,” metaphorically likening a CPU to a speeding car that 
cannot stop short enough to service an interrupt exactly where it occurred. The precise sampling features 
of newer CPUs (Intel PEBS [19, §18.4.4] or AMD IBS [20]) are intended to minimize skid; however, there 
remains a systematic, single-instruction skid which would not necessarily be compensated for by a profiling 
tool [21]. (With branches, the location of the previous instruction might be ambiguous, and the systematic 
error therefore difficult to correct.) 

Perf supports the use of PEBS and IBS through a parameter called precise-level. Running perf at its 
maximum supported precise-level of 2 (“SAMPLE IP requested to have 0 skid”) did not change the self time 
relationships among the five leaf functions and main. It did, however, transfer about 3 % of samples to an 
“[unknown]” function and cause invalid call chains to be reported, as seen in Figure 4. 

Another plausible explanation for the skewed proportions of self time is that the short functions have brought 
an actual performance feature of the microarchitecture, such as branch prediction, cache, or CPU pipeline 
scheduling efficiencies, to the forefront. Function1 would then be showing an actual performance difference 
related to its being the first of the five functions that is invoked after the loop iteration logic in the main 
program is executed and the only one for which the branch is always true. 

Reversing the order of the conditional function invocations in the main program of val1 did not produce an 
anomalously low result for function5. Instead, the five functions showed the progression that was expected, 
and the program completed in slightly less time. Disassembly revealed that the implementation of the main 
program was more efficient for the reversed case. The experiment thus showed that different coding of the 
main program results in a redistribution of reported self time among the leaf functions, but did not rule out 
measurement bias as a possible explanation (i.e., it is premature to conclude that the observed difference 
comes from an actual change in performance). 

Until further research identifies a root cause for this anomaly, it is advisable to watch for short, frequently-
invoked functions in profile reports and use results with extra caution whenever they are found. The call 
counts provided by gprof are helpful in determining which functions could be problematic. 

Conclusion 

Invalid profile results can be caused by a number of factors from misuse of the tooling to obscure version 
dependencies. A failed validation is only the first step in the process that leads to identifying and correcting 
a problem in the failing configuration. Similarly, a successful validation is only the first step in the process 
of applying a particular toolset to accomplish some goal. In either case, validation testing replaces second­
hand information on what should work with first-hand, empirical results on how particular toolsets actually 
function in situ and may avert harmful consequences for the user when these two differ for any reason. 

7 



9 NIST Technical Note 1790 

References
 

[1] The DWARF debugging standard website, 2012. http://dwarfstd.org/. 

[2] David Flater and William F. Guthrie. Screening for factors affecting application performance in profiling 
measurements. NIST Technical Note, to appear. 

[3] Perf: Linux profiling with performance counters, 2012. https://perf.wiki.kernel.org/. 

[4] OProfile, 2012. http://oprofile.sourceforge.net/. 

[5] Jay Fenlason. GNU gprof, 1988. In GNU binutils, http://www.gnu.org/software/binutils. 

[6] GCC, the GNU Compiler Collection, 2012. http://gcc.gnu.org/. 

[7] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.	 Gprof: a call graph execution pro-
filer. SIGPLAN Notices, 17(6):120–126, June 1982. http://docs.freebsd.org/44doc/psd/18.gprof/ 
paper.pdf. 

[8] José Fonseca. Gprof2Dot: Convert profiling output to a dot graph, March 2012. http://code.google. 
com/p/jrfonseca/wiki/Gprof2Dot. 

[9] Graphviz—graph visualization software, 2012. http://www.graphviz.org/. 

[10] David Flater.	 [Enhancement] Calculate true total time with perf, December 2012. http://code. 
google.com/p/jrfonseca/issues/detail?id=77. 

[11] José Fonseca. Which options should I pass to gcc when compiling for profiling? In Gprof2Dot: Con­
vert profiling output to a dot graph, December 2012. http://code.google.com/p/jrfonseca/wiki/ 
Gprof2Dot#Which options should I pass to gcc when compiling for profiling? 

[12] David Flater and William F. Guthrie. Estimation of uncertainty in application profiles. NIST Technical 
Note, to appear. 

[13] David Flater. Application profiling tool validation test suite for Linux.	 http://www.nist.gov/itl/ 
ssd/cs/software-performance.cfm. 

[14] John	 Levon et al. Interpreting call-graph profiles, in OProfile manual, 2012. http://oprofile. 
sourceforge.net/doc/interpreting-callgraph.html. 

[15] David Flater.	 GCC Bug 55667 [4.7 regression] –O1 enables frame pointer push to move around on 
x86 64, December 2012. http://gcc.gnu.org/bugzilla/show bug.cgi?id=55667. 

[16] Richard Sandiford.	 GCC Bug 38716, undocumented attribute ((optimize)) behavior when the at­
tribute specifies no optimisation level, January 2009. http://gcc.gnu.org/bugzilla/show bug.cgi? 
id=38716. 

[17] Mike	 Dunlavey. Answer to “Alternatives to gprof ”, August 2012. http://stackoverflow.com/ 
questions/1777556/alternatives-to-gprof#1779343, item 4 (the myth “that recursion is a tricky 
confusing issue”). 

[18] John	 Levon et al. Profiling interrupt latency, in OProfile manual, 2012. http://oprofile. 
sourceforge.net/doc/interpreting.html#irq-latency. 

[19] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System Programming Guide, 
Part 2, August 2012. http://download.intel.com/products/processor/manual/253669.pdf. 

[20] Paul J. Drongowski.	 Instruction-Based Sampling: A new performance analysis technique for AMD 
family 10h processors, November 16, 2007. http://developer.amd.com/assets/AMD IBS paper EN. 
pdf. 

[21] Intel VTune Amplifier XE 2013 Release Notes, August 2012.	 http://software.intel.com/en-us/ 
articles/intel-vtune-amplifier-xe-2013-release-notes. See §6, Issues and Limitations: Run­
ning time is attributed to a next instruction. 

http://dwarfstd.org/
https://perf.wiki.kernel.org/
http://oprofile.sourceforge.net/
http://www.gnu.org/software/binutils
http://gcc.gnu.org/
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://www.graphviz.org/
http://code.google.com/p/jrfonseca/issues/detail?id=77
http://code.google.com/p/jrfonseca/issues/detail?id=77
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot#Which_options_should_I_pass_to_gcc_when_compiling_for_profiling?
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot#Which_options_should_I_pass_to_gcc_when_compiling_for_profiling?
http://www.nist.gov/itl/ssd/cs/software-performance.cfm
http://www.nist.gov/itl/ssd/cs/software-performance.cfm
http://oprofile.sourceforge.net/doc/interpreting-callgraph.html
http://oprofile.sourceforge.net/doc/interpreting-callgraph.html
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=55667
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=38716
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=38716
http://stackoverflow.com/questions/1777556/alternatives-to-gprof#1779343
http://stackoverflow.com/questions/1777556/alternatives-to-gprof#1779343
http://oprofile.sourceforge.net/doc/interpreting.html#irq-latency
http://oprofile.sourceforge.net/doc/interpreting.html#irq-latency
http://download.intel.com/products/processor/manual/253669.pdf
http://developer.amd.com/assets/AMD_IBS_paper_EN.pdf
http://developer.amd.com/assets/AMD_IBS_paper_EN.pdf
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-2013-release-notes
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-2013-release-notes


10 NIST Technical Note 1790 

A Gallery of valid and invalid results 

A.1 val1: triangular distribution of time among N functions 

With default values of the parameters, the expected distribution of time (both self and total) is approximately 

Function Time 
function1 5/15 
function2 4/15 
function3 3/15 
function4 2/15 
function5 1/15 
main 0 

val1
function5
6.55%
(6.51%)

val1
_start

99.98%
(0.00%)

libc-2.15.so
__libc_start_main

99.98%
(0.00%)

99.98%

val1
main

99.98%
(0.09%)

99.98%

val1
function4
13.36%
(13.32%)

6.55% 13.36%

val1
function1
33.11%
(32.90%)

33.11%

val1
function3
19.93%
(19.80%)

19.93%

val1
function2
26.93%
(26.85%)

26.93%

Figure 1: val1 valid result. — kernel/perf 3.7.1, GCC 4.7.2 (–O3), gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py


11 NIST Technical Note 1790 

Run 1 

function2
27.69%
(27.69%)

function3
24.62%
(24.62%)

function1
27.69%
(27.69%)

function4
13.85%
(13.85%)

function5
6.15%
(6.15%)

main
100.00%
(0.00%)

27.69% 24.62% 27.69% 13.85% 6.15%

Run 2 

function2
31.58%
(31.58%)

function3
15.79%
(15.79%)

function1
38.60%
(38.60%)

function4
9.65%
(9.65%)

function5
4.39%
(4.39%)

main
100.00%
(0.00%)

31.58% 15.79% 38.60% 9.65% 4.39%

Figure 2: val1 excessive variability of self time. — kernel 3.7.1, OProfile (opcontrol) 0.9.8 (default 
––separate=none behavior), GCC 4.6.3 (–O3 –fno-omit-frame-pointer), gprof2dot.py r. 2012-11-25-DWF 

val1
function2
23.75%
(23.62%)

val1
main

73.92%
(13.70%)

16.63%

val1
function1
25.24%
(25.11%)

17.82%

val1
function3
18.54%
(18.45%)

12.83%

val1
function5
6.12%
(6.09%)

4.20%

val1
function4
12.57%
(12.53%)

8.66%

libc-2.15.so
__libc_start_main

99.99%
(0.00%)

7.12%

73.92%

7.42%5.70%1.92% 3.91%

Figure 3: val1 (–DINNERLOOP=1) type 1 missing caller. — kernel/perf 3.6.11, GCC 4.6.3 (–O3 
–fno-omit-frame-pointer), gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py
http:gprof2dot.py


12 NIST Technical Note 1790
 

[kernel.kallsyms]
apic_timer_interrupt

0.54%
(0.00%)

[kernel.kallsyms]
smp_apic_timer_interrupt

0.54%
(0.00%)

0.54%

val1
_start
93.29%
(0.00%)

libc-2.15.so
__libc_start_main

93.29%
(0.00%)

93.29%

val1
main

93.29%
(13.44%)

2.94%

93.29%

90.35%

val1
function1
24.30%
(24.17%)

23.42%

val1
function2
23.48%
(23.37%)

22.67%

val1
function3
17.41%
(17.32%)

16.85%

val1
function5
5.63%
(5.58%)

5.42%

val1
function4
11.74%
(11.67%)

11.40%

0.12%

val1
frame_dummy

0.92%
(0.92%)

0.11%

[unknown]
[unknown]
2.81%
(0.00%)

0.87%0.82% 0.56%0.21% 0.35%

val1
[unknown]
2.97%
(2.97%)

Figure 4: val1 (–DINNERLOOP=1) call chain anomalies with PEBS. — kernel/perf 3.7.1 (–e cpu-cycles:pp), 
GCC 4.7.2 (–O3), gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py


13 NIST Technical Note 1790 

A.2 val2: two functions with a single invocation and no recursion 

The call graph is simply 
main→leaffn 

with nearly 100 % of time spent in leaffn. 

val2
main

99.94%
(0.00%)

val2
leaffn

99.94%
(99.45%)

99.94%

libc-2.15.so
__libc_start_main

99.94%
(0.00%)

99.94%

val2
_start

99.94%
(0.00%)

99.94%

Figure 5: val2 valid result. — kernel/perf 3.7.1, GCC 4.7.2 (–O3), gprof2dot.py r. 2012-11-25-DWF 

val2
leaffn

99.96%
(99.66%)

libc-2.15.so
__libc_start_main

99.98%
(0.00%)

val2
main

99.96%
(0.00%)

99.96%

99.96%

Figure 6: val2 spurious recursion. — kernel 3.7.1, OProfile (operf ) 0.9.8, GCC 4.6.3 (–O3 
–fno-omit-frame-pointer), gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py
http:gprof2dot.py


14 NIST Technical Note 1790 

A.3 val3: mutually recursive functions 

With default values of FN1LOOP and FN2LOOP, the expected distribution of time is approximately 

Function Total time % Self time % 
main 100 0 
cycfn2 100 67 
cycfn1 67 33 

resulting from the following call chains and proportions of samples: 

Samples (scaled) Call chain 
2 main→cycfn2 
1 main→cycfn2→cycfn1 
2 main→cycfn2→cycfn1→cycfn2 
1 main→cycfn2→cycfn1→cycfn2→cycfn1 



15 NIST Technical Note 1790
 

[kernel.kallsyms]
apic_timer_interrupt

0.64%
(0.01%)

[kernel.kallsyms]
smp_apic_timer_interrupt

0.61%
(0.00%)

0.61%

[kernel.kallsyms]
hrtimer_interrupt

0.54%
(0.01%)

0.54%

val3
cycfn1
66.78%
(33.35%)

0.25%

val3
cycfn2
99.97%
(65.98%)

33.32%

0.40%

66.78%

val3
_start
99.97%
(0.00%)

libc-2.15.so
__libc_start_main

99.97%
(0.00%)

99.97%

val3
main

99.97%
(0.00%)

99.97%

99.97%

Figure 7: val3 valid result. — kernel/perf 3.7.1, GCC 4.7.2 (–O3), gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py


16 NIST Technical Note 1790
 

[kernel.kallsyms]
apic_timer_interrupt

0.64%
(0.01%)

[kernel.kallsyms]
smp_apic_timer_interrupt

0.61%
(0.00%)

0.61%

[kernel.kallsyms]
hrtimer_interrupt

0.54%
(0.01%)

0.54%

val3
cycfn1
33.60%
(33.35%)

0.25%

val3
cycfn2
99.97%
(65.98%)

0.40%

33.60%

val3
_start
99.97%
(0.00%)

libc-2.15.so
__libc_start_main

99.97%
(0.00%)

99.97%

val3
main

99.97%
(0.00%)

99.97%

99.97%

Figure 8: val3 inaccurate distribution of total time by heuristic in gprof2dot.py r. 2012-11-25. — kernel/perf 
3.7.1, GCC 4.7.2 (–O3) 

http:gprof2dot.py


17 NIST Technical Note 1790
 

[kernel.kallsyms]
apic_timer_interrupt

0.51%
(0.03%)

val3
cycfn2
66.58%
(66.22%)

0.35%

val3
cycfn1
33.40%
(33.23%)

0.16%

libc-2.15.so
__libc_start_main

99.98%
(0.00%)

66.58% 33.40%

Figure 9: val3 type 3 missing caller. — kernel/perf 3.6.11, GCC 4.5.4 (–O3 –fno-omit-frame-pointer), 
gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py


18 NIST Technical Note 1790 

A.4 val4: three functions with a single invocation and no recursion 

With default values of FN1LOOP and FN2LOOP, the expected distribution of time is approximately 

Function Total time % Self time % 
main 100 0 
fn2 100 50 
fn1 50 50 

libc-2.15.so
__libc_start_main

99.94%
(0.00%)

val4
main

99.94%
(0.00%)

99.94%

val4
fn2

99.94%
(49.60%)

99.94%

val4
fn1

50.15%
(49.87%)

50.15%

val4
_start

99.94%
(0.00%)

99.94%

Figure 10: val4 valid result. — kernel/perf 3.7.1, GCC 4.7.2 (–O3), gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py


19 NIST Technical Note 1790
 

[kernel.kallsyms]
apic_timer_interrupt

0.51%
(0.00%)

[kernel.kallsyms]
smp_apic_timer_interrupt

0.51%
(0.00%)

0.51%

val4
_start

99.94%
(0.00%)

libc-2.15.so
__libc_start_main

99.94%
(0.00%)

99.94%

val4
main

99.94%
(0.00%)

99.94%

val4
fn1

49.96%
(49.68%)

0.28%

val4
fn2

49.96%
(49.74%)

0.22%

49.96% 49.96%

Figure 11: Id., no-optimize-sibling-calls attribute removed from source to demonstrate effect 



20 NIST Technical Note 1790 

val4
fn2

99.94%
(99.54%)

val4
_start

99.94%
(0.00%)

libc-2.15.so
__libc_start_main

99.94%
(0.00%)

99.94%

val4
main

99.94%
(0.00%)

99.94%

99.94%

Figure 12: Id., no-inline attribute removed from source to demonstrate effect 

val4
main

50.24%
(0.00%)

val4
fn2

99.92%
(49.41%)

50.24%

[kernel.kallsyms]
apic_timer_interrupt

0.53%
(0.04%)

0.24%

val4
fn1

50.24%
(49.94%)

50.24%

libc-2.15.so
__libc_start_main

99.92%
(0.00%)

50.24%

49.68%

0.28%

Figure 13: val4 type 2 missing caller. — kernel/perf 3.6.11, GCC 4.7.2 (–O3 –fno-omit-frame-pointer), 
gprof2dot.py r. 2012-11-25-DWF 

http:gprof2dot.py

	Background
	How to read the call graphs
	Configuration and use details
	Compiler options for building the application
	Sampling events and frequency
	Handling data volume with perf 3.7

	Validation approach
	Catalog of observed errors
	Type 1 missing caller (untimely sampling)
	Type 2 missing caller (deferred frame pointer push)
	Type 3 missing caller (missing frame pointers)
	Spurious recursion
	Inaccurate distribution of total time
	Excessive variability of self time

	Anomalous results with short functions
	Conclusion
	Gallery of valid and invalid results
	val1: triangular distribution of time among N functions
	val2: two functions with a single invocation and no recursion
	val3: mutually recursive functions
	val4: three functions with a single invocation and no recursion


