
 
  

NIST Technical Note 1749 
 
 

Robustness of Steel Gravity Frame 
Systems with Single-Plate  

Shear Connections 
 
  

Joseph A. Main 
Fahim Sadek 

 
http://dx.doi.org/10.6028/NIST.TN.1749 

 

  
 

 
 
 





 

 

 

 
 

NIST Technical Note 1749  
 
 

Robustness of Steel Gravity Frame 
Systems with Single-Plate  

Shear Connections  
 

Joseph A. Main 
Fahim Sadek 

Engineering Laboratory 
National Institute of Standards and Technology 

 
 

http://dx.doi.org/10.6028/NIST.TN.1749 
 
 
 
 
 

July 2012  
 

(includes corrections dated February 2013) 
 
 
 

 
 
 
 

U.S. Department of Commerce  
Rebecca Blank, Acting Secretary 

 
National Institute of Standards and Technology  

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director  
 

 



 

Certain commercial entities, equipment, or materials may be identified in this 
 document in order to describe an experimental procedure or concept adequately. 

Such identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that the 
entities, materials, or equipment are necessarily the best available for the purpose. 

The policy of the National Institute of Standards and Technology is to include statements  
of uncertainty with all NIST measurements. In this document, however, measurements of authors  

outside of NIST are presented, for which uncertainties were not reported and are unknown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

National Institute of Standards and Technology Technical Note 1749  
Natl. Inst. Stand. Technol. Tech. Note 1749, 111 pages (February 2013)  

http://dx.doi.org/10.6028/NIST.TN.1749 
CODEN: NTNOEF 

 

 

 



  

iii 

ABSTRACT 

This report presents a computational assessment of the performance of steel gravity framing systems with 
single-plate shear (“shear tab”) connections and composite floor slabs under column loss scenarios. The 
computational assessment uses a reduced modeling approach, while comparisons with detailed model 
results and available experimental data are presented to establish confidence in the reduced models. The 
reduced modeling approach enables large multi-bay systems to be analyzed much more efficiently than 
the detailed modeling approaches used in previous studies. Both quasi-static and sudden column loss 
scenarios are considered, and an energy-based approximate procedure for analysis of sudden column loss 
is adopted, after verification through comparisons with direct dynamic analyses, further enhancing the 
efficiency of the reduced modeling approach. Reduced models are used to investigate the influence of 
factors such as bay spacing, slab continuity, and the mode of connection failure on the collapse resistance 
of gravity frame systems. Simple equations for the rotational capacities of the connections are derived as 
a function of a few parameters including the span length and the connection depth. These equations yield 
good agreement with computed rotational capacities of connections both in bare steel assemblies (i.e., no 
slab) and in composite floor systems, where composite action leads to reduced rotational capacities. The 
reduced models are used to assess the adequacy of current structural integrity requirements, and based on 
the computational results, a new relationship is proposed between the uniform load intensity and the tie 
forces required for collapse prevention.   

 

Keywords: Buildings; Connections; Disproportionate collapse; Floors; Finite element method; Nonlinear 
analysis; Progressive collapse; Steel structures. 
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Chapter 1 
INTRODUCTION 

From the early 1980s (ANSI 1982) to the present (ASCE 2010), standards for structural design in the 
United States have included requirements for “general structural integrity.” Such requirements are 
intended to ensure that structures are resistant to disproportionate (or progressive) collapse, wherein local 
damage spreads progressively, resulting in a partial or total collapse that is disproportionate to the 
initiating event. The commentary to the American Society of Civil Engineers Standard 7 (ASCE 2010) 
outlines two basic approaches for providing resistance to disproportionate collapse: (1) direct design, in 
which structures are designed explicitly to resist collapse by either (a) developing alternate load paths in 
the event of a local failure or (b) providing sufficient local resistance to prevent local failure and (2) 
indirect design, in which collapse resistance is addressed implicitly by providing minimum levels of 
strength, continuity, and ductility. The 2010 version of ASCE 7 (ASCE 2010) also includes 
“extraordinary event” load combinations, previously in the commentary only, to be used in assessing 
residual capacity following the notional removal of selected load-bearing elements. 

While ASCE 7 (ASCE 2010) does not include specific provisions or criteria for resistance to 
disproportionate collapse, beyond the general guidance mentioned above, a few other codes and standards 
have incorporated structural integrity requirements consistent with the indirect design approach. As an 
example, the American Concrete Institute Building Code 318 (ACI 2008, Section 7.13) includes 
requirements for minimum integrity reinforcement for concrete frame and bearing wall structures. The 
2009 version of the International Building Code (IBC) (ICC 2009, Section 1614) introduced structural 
integrity requirements for design of high-rise buildings in occupancy categories III (buildings that 
represent a substantial hazard to human life in the event of a failure) and IV (essential facilities). These 
new requirements include minimum levels of tensile strength for the end connections of beams in steel 
frame structures.  

The structural integrity requirements in ACI 318 (ACI 2008) and in the 2009 IBC (ICC 2009) were based 
mainly on engineering judgment, and while the intent of these requirements is to enhance resistance to 
disproportionate collapse, the enhancements that are actually achieved are not well defined. The tie force 
requirements for U.S. military buildings in the Unified Facilities Criteria (UFC) 4-023-03 (DOD 2009), in 
contrast, were developed (Stevens 2008) with the specific objective of preventing collapse under several 
different column loss scenarios. In the development of these tie force requirements (Stevens 2008), it was 
noted that most steel connections are not capable of sustaining the magnitudes of rotation necessary to 
carry the gravity loads through catenary action (i.e., through tensile forces in the beams). For this reason, 
the 2009 version of the UFC 4-023-03 (DOD 2009) requires that tie forces be carried by the floor system, 
unless the connections can be shown capable of developing the required tensile forces while sustaining 
substantial rotations of 0.20 rad (11.3°). This approach contrasts sharply with the integrity requirements in 
the 2009 IBC, which specify minimum tensile capacities for the end connections of beams, without 
consideration of the rotational capacity of the connections. 

Recent full-scale tests (Sadek et al. 2010) have demonstrated the good performance of seismically 
designed steel moment-resisting connections (Seismic Design Categories C and D) under simulated 
column loss, with the connections sustaining rotations almost twice as large as those observed in previous 
seismic tests and developing significant vertical capacity through a combination of flexural and catenary 
action. Reduced models of these moment connections have been developed and validated against 
experimental data (Sadek et al. 2010), and computational models of 10-story buildings incorporating 
these reduced connection models (Main et al. 2011, Alashker et al. 2011) have shown that seismically 
designed moment frames are able to sustain the sudden loss of multiple columns without collapse. In 
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these studies (Main et al. 2011, Alashker et al. 2011) peak deflections on the order of 500 mm (20 in) 
were observed after sudden loss of two columns from perimeter moment frames. Although the rotational 
capacities of these moment connections were less than the value of 0.20 rad (11.3°) required by the UFC 
4-023-03 (DOD 2009) for tie forces to be carried by the beams, these results indicate that seismically 
designed moment connections are capable of sustaining sudden column loss without collapse.  

In contrast, recent computational studies (Sadek et al. 2008, Alashker et al. 2010) have indicated the 
susceptibility to collapse of gravity frames (i.e., frames designed to carry only vertical loads) with simple 
shear connections under column loss. A detailed modeling approach was used to study a 2 bay × 2 bay 
gravity framing system with single-plate shear (“shear tab”) connections and a composite concrete slab on 
steel deck. Under loss of the central column, the composite floor slab was found to significantly enhance 
the capacity of the system relative to the capacity of the bare steel framing system. However, the capacity 
of the composite system was still found to be inadequate to sustain the gravity loads under sudden loss of 
the central column. Alashker et al. (2010) considered the influence of a number of factors on the collapse 
resistance of the 2 bay × 2 bay system, including thickness of the steel deck, area of the welded wire 
reinforcement, and the number of bolts in the shear tab connections. The thickness of the steel deck was 
found to have a particularly significant effect, with a doubling of the thickness enhancing the overall 
capacity of the system under column loss by 37 %.  

While the susceptibility to collapse of steel gravity framing systems is of concern, this susceptibility is 
affected by a number of factors in addition to those previously investigated by Sadek et al. (2008) and 
Alashker et al. (2010). These previous studies assumed a gradual softening in the post-ultimate response 
of the shear tab connections, representative of a tear-out failure of the bolts through the beam web. 
However, recent tests of shear tab connections exhibited sudden fracture rather than gradual softening 
(Thompson 2009, Weigand et al. 2012). The sudden fractures were associated with either bolt shear 
rupture or brittle rupture of the connection plate. Sudden fractures of the connections result in a loss of 
both axial and shear capacity at a smaller rotation than would be sustained due to gradual softening, thus 
reducing the capacity of the system. On the other hand, while Sadek et al. (2008) and Alashker et al. 
(2010) considered an isolated 2 bay × 2 bay floor system, continuity of the slab beyond the bays affected 
by column loss (i.e., for a floor system with more than two bays in each direction) has the potential to 
enhance the capacity of the system by supporting the development of larger membrane forces in the floor 
slab. Bay size is also of interest. Sadek et al. (2008) and Alashker et al. (2010) considered a bay size of 
6.10 m × 9.14 m (20 ft × 30 ft), where the 6.10 m (20 ft) span is somewhat short compared to typical 
construction. Longer beam spans might be expected to impose larger demands on the connections and the 
floor slab under column loss scenarios, potentially leading to increased susceptibility to collapse. 

Motivated by these considerations, this report presents a reduced modeling approach for the analysis of 
steel gravity framing systems with composite floor slabs under column loss scenarios and uses this 
approach to investigate the influence of factors such as bay size, slab continuity, and the mode of 
connection failure on the capacity of the systems. The reduced modeling approach enables large multi-
bay systems to be analyzed much more efficiently than the detailed approach used previously by Sadek et 
al. (2008) and Alashker et al. (2010), thus facilitating consideration of various factors in the analyses. The 
energy-based approximate procedure proposed by Izzuddin et al. (2008) for analysis of sudden column 
loss is also considered and verified computationally, enabling the structural capacity under sudden 
column loss to be evaluated using the results of a single quasi-static pushdown analysis, rather than 
requiring multiple dynamic analyses of sudden column loss at different load levels. The reduced modeling 
approach is also used to assess the effectiveness of the structural integrity requirements in the 2009 IBC 
(ICC 2009) and the tie force requirements in UFC 4-023-03 (DOD 2009) in preventing collapse under 
sudden column loss scenarios and to evaluate the levels of force required for prevention of collapse. 

The outline of the report is as follows. Chapter 2 describes the prototype steel frame buildings considered 
in this study, including alternate designs with different bay size, and presents details of the composite 
floor system and the shear tab connections used in these buildings. Chapter 3 describes the reduced 
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modeling approach used for the shear tab connections and presents comparisons with detailed model 
results and available experimental data, including two-span beam assembly tests by Thompson (2009), to 
establish confidence in the reduced models. Simplified spreadsheet procedures for analyzing two-span 
beam assemblies and predicting rotational capacities of the connections are also presented in Chapter 3 
and compared with model predictions and experimental data. Chapter 4 describes the reduced modeling 
approach used for composite floor systems, including the concrete slab on steel deck, and presents 
comparisons with the results of detailed models, as used by Sadek et al. (2008) and Alashker et al. (2010), 
to establish confidence in the reduced models. Chapter 5 presents assessments of the collapse resistance 
of prototype floor systems, comparing the applicable gravity loads to the capacity evaluated under both 
quasi-static loading and sudden column loss. Current integrity requirements are also assessed in Chapter 
5, and the levels of tying force required for prevention of collapse are evaluated. Finally, Chapter 6 
summarizes the key findings and conclusions of this study. 
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Chapter 2 
PROTOTYPE GRAVITY FRAMING SYSTEMS 

Working with a panel of practicing structural engineers across the U.S., NIST developed the overall 
configuration and dimensions of prototype buildings to be considered in this research program. For 
simplicity of design and analysis, a 10-story building with rectangular plan for office occupancy was 
chosen as the prototype building. Figure 2–1 shows the plan layout of two prototype steel frame building 
designs, each having plan dimensions of 30.5 m × 45.7 m (100 ft × 150 ft). The two different plan layouts 
shown in Figure 2–1 were developed to examine the influence of span length on disproportionate collapse 
resistance. Both buildings were designed for Seismic Design Category C, and the lateral loads are resisted 
by seismically designed intermediate moment frames (IMFs) located on the exterior of the buildings. All 
interior frames were designed to support gravity loads only. 
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Figure 2–1. Plan layouts for (a) 5 bay × 5 bay building (building A) and (b) 5 bay × 3 bay building (building B) 

 

The buildings were designed according to the American Society of Civil Engineers standard 7-02 (ASCE 
2002) and its referenced material design standards, including the American Institute of Steel Construction 
(AISC) “Load and Resistance Factor Design Specification for Structural Steel Buildings” (AISC 1999) 
and the AISC “Seismic Provisions for Structural Steel Buildings” (AISC 2002). The various steel 
components of the buildings, discussed in the following sections, conform to ASTM standard 
specifications with tensile requirements as listed in Table 2–1. 

2.1 GRAVITY LOADS 

The design loads on the buildings were determined based on the International Building Code (IBC 2003). 
For typical floors, the dead load consisted of the self-weight of the floor of 2.2 kN/m2 (46 lbf/ft2) and a 
superimposed dead load of 1.44 kN/m2 (30 lbf/ft2), while the design live load was assumed to be 
4.79 kN/m2 (100 lbf/ft2). For the roof, the self-weight of the slab was 2.2 kN/m2 (46 lbf/ft2), the super-
imposed dead load was 0.48 kN/m2 (10 lbf/ft2), and the design live load was 0.96 kN/m2 (20 lbf/ft2). The 
reduction in live loads was based on Section 1607.9.1 of IBC (2003). The load combinations used in the 
design were those required by ASCE 7-02. For the sizing of the gravity frame members and their 
connections, the following load combination governed the design: 1.2D + 1.6L + 0.5 Lr, where D is the 
dead load, L is the live load, and Lr is the roof live load. 
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Table 2–1. Tensile requirements of steel components in prototype buildings 

Building 
Component 

ASTM 
Designation a 

Yield Strength, Min. 
Fy, MPa (ksi) 

Tensile Strength, Min. 
Fu, MPa (ksi) Elongation, Min. 

Steel plates A36 250 (36) 400 (58) 20 % in 200 mm (8 in)  

Wire reinforcement A82 b 450 (65) 515 (75) not specified 

Shear studs A108 c 350 (51) 450 (65) 20 % in 50 mm (2 in) 

High-strength bolts A325 d 
A490 e 

635 (92) 
900 (130) 

825 (120) 
1040 (150) 

14 % in 4D 
14 % in 4D 

Steel deck A653, Grade 33 230 (33) 310 (45) 20 % in 50 mm (2 in) 

Rolled steel shapes A992 345 (50) 450 (65) 18 % in 200 mm (8 in) 
a  Standard specifications: A36 (ASTM 2008), A82 (ASTM 2007a), A108 (ASTM 2007b), A325 (ASTM 2010a), 

A490 (ASTM 2010b), A653 (ASTM 2011), A992 (ASTM 2006) 
b  Tensile requirements listed are for welded wire reinforcement size W1.2 and larger. 
c  Tensile requirements listed are for AWS D1.1 (AWS 2010) Type B studs. 
d  Used in shear tab connections; tensile requirements listed are for specimens machined from bolts with 

12.7 mm ≤ D ≤ 25.4 mm (1∕2 in ≤ D ≤ 1 in), where D is the nominal bolt diameter. 
e  Used in moment connections; tensile requirements listed are for specimens machined from bolts with 

12.7 mm ≤ D ≤ 38.1 mm (1∕2 in ≤ D ≤ 11∕2 in), where D is the nominal bolt diameter. 
 

2.2 FLOOR SLAB 

The floor slab, illustrated in Figure 2–2, consists of 83 mm (31∕4 in) lightweight concrete over a 76 mm 
(3 in) deep composite steel deck with an average rib width of 152 mm (6 in). ASTM A653 Grade 33 
structural steel (see Table 2–1) is used for the 20 gage steel deck, which has a thickness of 0.91 mm 
(0.0358 in). The lightweight concrete has a specific weight of 17.3 kN/m3 (110 lbf/ft3) and a nominal 
compressive strength of 20.7 MPa (3000 psi). The concrete slab has welded wire reinforcement 
designated 6×6 W1.4/1.4, which indicates a 152 mm × 152 mm (6 in × 6 in) grid spacing with wires 
having a cross-sectional area of 9.0 mm2 (0.014 in2). ASTM A82 steel wire (see Table 2–1) is used for the 
reinforcement. Shear connector studs with a diameter of 19 mm (3∕4 in) are used to develop composite 
action between the steel beams and the concrete slab. ASTM A108 steel is used for the shear studs, with 
tensile requirements (see Table 2–1) corresponding to Type B studs as specified in the American Welding 
Society’s Structural Welding Code – Steel, AWS D1.1 (AWS 2010).  

76
 m

m
83

 m
m

lightweight 
concrete

welded wire reinforcementshear stud

steel deck

20 mm
132 mm 132 mm 132 mm

20 mm  
Figure 2–2. Cross sectional view of floor slab 
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2.3 GRAVITY FRAMES 

The gravity frame members (members that are not part of the lateral-force resisting system) were 
designed assuming fully composite action between the steel beams and the concrete slab. ASTM A992 
structural steel (see Table 2–1) is used in the beams and columns. The 5 bay × 5 bay building (designated 
building A) has bay spans of 6.1 m × 9.14 m (20 ft × 30 ft), while the 5 bay × 3 bay building (designated 
building B) has bay spans of 10.16 m × 9.14 m (331∕3 ft × 30 ft). Beam spans and cross sections for the 
gravity frames in both buildings are listed in Table 2–2 along with the number of shear studs per span. 
The structural steel shapes used for the columns in the gravity frames of buildings A and B are listed in 
Table 2–3. 

 
Table 2–2. Beam spans, cross sections, and number of shear studs in the gravity frames 

Building Beam Orientation Beam Span Cross Section Number of Shear Studs 

A East-West 9.14 m (30 ft) W14×22 40 per span 

 North-South 6.10 m (20 ft) W16×26 44 per span 

B East-West 9.14 m (30 ft) W21×50 86 per span 

 North-South 10.16 m (331∕3 ft) W16×26 46 per span 

 
Table 2–3. Story heights and column cross sections in the gravity frames 

Floor Range Story Height 

Cross Section 

Building A Building B 

1 5.33 m (171∕2 ft) W14×120 W14×176 

2 – 4 4.19 m (133∕4 ft) W14×90 W14×145 

5 – 7 4.19 m (133∕4 ft) W14×74 W14×90 

8 – 10 4.19 m (133∕4 ft) W14×48 W14×61 

 

2.4 SINGLE-PLATE SHEAR CONNECTIONS 

In the gravity frames of both buildings, the steel beams are connected to the columns using single-plate 
simple shear connections (shear tab connections), illustrated in Figure 2.3. ASTM A36 steel (see Table 2–
1) is used for the shear tabs, with a thickness of 9.5 mm (3∕8 in). Shear tabs are welded to the columns 
using fillet welds with 8 mm (5∕16 in) throat thickness and are bolted to the beam webs using 22 mm (7∕8 in) 
diameter ASTM A325 high strength bolts (H.S.B.) with threads excluded from the shear plane. Shear 
connections on the east-west beams in building B incorporate four rows of bolts, while all other shear 
connections incorporate three rows of bolts (see Table 2–4). In all cases, the center of the top bolt is 
placed 76.2 mm (3 in) below the top of the beam, which is consistent with typical industry practice (e.g., 
Liu and Astaneh-Asl 2004, Thompson 2009). Factored shear forces in the connections and shear strength 
values are listed in Table 2–4. The shear strength values in Table 2–4 are from Table 10–9 in the LRFD 
Manual of Steel Construction (AISC 2001), in which design strength values of single-plate connections 
are tabulated; rigid support conditions are assumed. 



Chapter 2  

 8 

Shear tab (A36):
9.5 mm x 229 mm x 102 mm

3 A325 H.S.B., D = 22 mm 

8 mm

76.2 mm

76.2 mm

76.2 mm
38.1 mm

25.4 mm

38.1 mm Shear tab (A36):
9.5 mm x 305 mm x 102 mm

4 A325 H.S.B., D = 22 mm 

8 mm

76.2 mm

76.2 mm

76.2 mm
38.1 mm

25.4 mm

38.1 mm
76.2 mm

(a) (b)  
Figure 2–3. Details of single-plate shear connections: (a) three bolt rows; (b) four bolt rows 

 
Table 2–4. Shear connection design parameters 

Building Beam Orientation Factored Shear Force Number of Bolt Rows Shear Strength 

A East-West 153 kN (34.3 kip) 3 252 kN (58.7 kip) 

 North-South 153 kN (34.3 kip) 3 252 kN (58.7 kip) 

B East-West 292 kN (65.6 kip) 4 348 kN (78.3 kip) 

 North-South 166 kN (37.4 kip) 3 252 kN (58.7 kip) 
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Chapter 3 
MODELING AND ANALYSIS OF SINGLE-PLATE SHEAR CONNECTIONS 

This chapter presents modeling and analysis of bare steel framing systems (i.e., no floor slab) with single-
plate shear (“shear tab”) connections under column loss scenarios. Two-span beam assemblies under 
“pushdown” loading with an unsupported center column are considered, as illustrated in Figure 3–1, to 
assess the behavior of the shear connections. This configuration subjects the connections to a combination 
of vertical shear, bending moment, and axial tension, while imposing substantial rotational demands. Two 
basic modeling approaches are considered for analyzing the behavior of the connections: (1) detailed 
finite element modeling, which uses highly refined solid and/or shell element meshes to represent 
nonlinear material behavior and fracture, and (2) reduced finite element modeling, which uses a smaller 
number of beam and spring elements to capture the predominant response characteristics and failure 
modes. Analyses with the reduced models can be performed much more rapidly than with the detailed 
models, making the reduced models well suited for collapse analysis of complete structural systems. Both 
detailed and reduced models are analyzed using the LS-DYNA finite element software (Hallquist 2007) 
with explicit time integration. For the configuration in Figure 3–1, displacement-controlled loading is 
considered, in which translating boundary conditions are applied slowly to the unsupported center column 
to achieve a quasi-static response. 

P

 
Figure 3–1. Two-span beam assembly under pushdown loading with unsupported center column 

Sections 3.1 describes the detailed modeling approach and presents comparisons of detailed model 
computations with available experimental data for double-shear, single-shear, and bolt-bearing tests, 
demonstrating the capability of the detailed models to capture both bolt shear deformations and bearing-
induced plate deformations. Section 3.2 describes the reduced modeling approach. Section 3.3 presents 
comparisons of both detailed and reduced model computations with experimental data from Thompson 
(2009) for two-span beam assemblies under push-down loading of the unsupported center column.  

Section 3.4 presents a simplified analysis of two-span beam assemblies under a column removal scenario, 
based on the assumption that all of the deformation is concentrated in the shear connections, while the 
beam spans rotate as rigid bodies. This analysis affords insight into the behavior of shear connections 
under collapse scenarios and provides a fairly accurate calculation procedure that can be implemented in a 
spreadsheet. Detailed and reduced model computations are compared with results of the simplified 
spreadsheet calculation. Section 3.5 uses the reduced modeling approach to analyze two-span beam 
assemblies taken from the gravity framing systems of the prototype buildings described in Chapter 2 
under column removal scenarios. The influences of the span length and the connection properties on the 
ultimate load and rotational capacities of the assemblies are investigated. In Section 3.6, fairly simple 
analytical expressions are derived for the rotational capacity of the connections as a function of a few 
parameters including the span length and the connection depth. Finally, Section 3.7 summarizes the key 
findings of this chapter. 
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3.1 DETAILED MODELING APPROACH 

The detailed modeling approach for single-plate shear connections uses finely meshed solid elements to 
represent the beam, shear tab, and bolts. Figure 3–2 shows a detailed model of the shear connection used 
in the N-S frames of building A (see Section 2.4). A typical element size of 3 mm (0.12 in) was used to 
represent the beam and shear tab, with three layers of solid elements through the thickness of the beam 
web and flanges and four layers of solid elements through the thickness of the shear tab. A typical solid 
element size of 1.5 mm (0.06 in) was used to represent the bolts. Contact was defined between the bolts, 
shear tab, and beam web to model the transfer of forces through the bolted connection, including friction 
(a value of 0.3 was assumed for both the static and dynamic coefficients of friction) and bolt bearing. 
Because hand calculations indicated that weld failure would not occur, the end nodes of the shear tab 
were rigidly constrained to nodes on the column web. The column (omitted from Figure 3–2 for clarity) 
was modeled using a coarser solid element mesh, and contact between the column and the beam flanges 
was defined, to allow for the possibility of binding under large rotations. 

 

(b)

(a)

(b) (c)  
Figure 3–2. Detailed model of single-plate shear connection showing finite element mesh of (a) beam, (b) bolt, and 

(c) shear tab 

3.1.1 Modeling of plasticity and fracture 

A piecewise-linear plasticity model (material 24 in LS-DYNA) was used to represent the material 
behavior of the various steel components in the detailed modeling approach. In this material model, an 
effective stress versus effective plastic strain curve is specified, along with a plastic strain to failure. 
Fracture is simulated using element erosion, in which elements are removed from the model when the 
specified failure strain is reached. The material model parameters for each component were developed 
based on engineering stress-strain curves obtained from tensile tests reported in the literature for each 
type of steel. Following the procedure described in Sadek et al. (2010), the engineering stress-strain 
curves were converted to true stress vs. plastic strain curves, and the resulting true stress-strain curves 
were extrapolated linearly beyond the point of necking onset. The post-necking modulus and the failure 
strain were adjusted so that engineering stress-strain curves obtained from finite element models of tensile 
coupons would correspond closely to the coupon test results. Due to mesh-size sensitivity in the modeling 
of softening behavior, this calibration was performed using finite element models of tensile coupons with 
the same mesh size as those used in the models of each connection.  

For the ASTM A325 and A490 high-strength bolts, the material model parameters were based on typical 
engineering stress-strain curves from coupon tests reported in Kulak et al. (1986) and shown in Figure 3–
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3(b) (labeled “coupon test”). Corresponding true stress-strain curves for the ASTM A325 and A490 high-
strength bolts are shown in Figure 3–3(a). Note that the true stress-strain curves evaluated from coupon 
test data in Figure 3–3(a) exhibit a drop in stress at a plastic strain of about 8 %, which corresponds to the 
onset of necking; extrapolation was needed beyond this point because the coupon data are not 
representative of the true stress in the neck region of the coupon. The extrapolated true stress-strain 
curves, labeled “model” in Figure 3–3(a), were implemented in detailed finite-element models of coupon 
tests, using the solid-element mesh shown in Figure 3–4 with a gage length of 50 mm (2 in). Engineering 
stress-strain curves computed from the detailed models are shown in Figure 3–3(b) along with the coupon 
test results. The good comparison of the computed and experimental stress-strain curves in Figure 3–3(b) 
shows that the piecewise linear plasticity model with element erosion accurately represents softening 
behavior after the onset of necking and captures fracture of the tensile coupons at the appropriate values 
of engineering strain.  

While the shear connections in the prototype buildings use A325 bolts, A490 bolts are also considered to 
enable an assessment of the modeling approach through comparison with available double-shear test data 
for different bolt types and sizes (Section 3.1.2) and to enable comparison of detailed model predictions 
with test results from a two-span beam assembly in which A490 bolts were used as exterior pin supports 
(Section 3.3).  A490 bolts are also used in moment connections in the perimeter moment frames of the 
prototype buildings, which were investigated by Sadek et al. (2010) and are not considered in this study. 
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Figure 3–3. (a) True stress-strain and (b) engineering stress-strain curves for A325 and A490 high-strength bolt 

material: comparison of computed results with coupon tests from Kulak et al. (1986) 

50 mm

(a)

(b)  
Figure 3–4. Finite element mesh of bolt tensile coupon: (a) prior to loading; (b) after fracture 

A similar procedure to that illustrated in Figure 3–3 was used to calibrate the plasticity model for the steel 
plate components in the bolted connections. A typical engineering stress-strain curve for ASTM A36 
steel, reported by Kulak et al. (1986, Fig. 2.2), is shown in Figure 3–5(a), labeled “coupon test”. The yield 
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and ultimate strength values from this curve correspond to the minimum specified values of 250 MPa 
(36 ksi) and 400 MPa (58 ksi), respectively, for A36 steel (ASTM 2008). Also shown in Figure 3–5(a) is 
a stress-strain curve obtained from a finite element model of a tensile coupon with a gage length of 
200 mm (8 in), shown in Figure 3–6. Linear extrapolation of the true stress-strain curve beyond the onset 
of necking, as described previously, was used to achieve the good agreement shown in Figure 3–5(a) 
between the computed and experimental results. 

To develop confidence in the detailed modeling approach, the following sections present comparisons of 
model predictions with available experimental data from connections with a single bolt, including double-
shear tests (Wallaert and Fisher 1965), a test of bolt bearing on a single plate (Rex and Easterling 2003), 
and a single-shear test (Richard et al. 1980). Because stress-strain curves for the plate materials were not 
reported from these tests, stress-strain curves for use in the computational models were developed by 
making use of typical stress-strain curves (e.g., Kulak et al. 1986, Fig. 2.2) and scaling the stresses in the 
post-elastic range to match the reported yield and ultimate strength values. Yield and ultimate strengths of 
296 MPa (43 ksi) and 524 MPa (76 ksi), respectively, were reported for the A440 steel plate used by 
Wallaert and Fisher (1965), and the stress-strain curve calibrated to match these values is shown in Figure 
3–5(b). Yield and ultimate strengths of 307 MPa (44.5 ksi) and 452 MPa (65.6 ksi), respectively, were 
reported for the “mild” steel used by Rex and Easterling (2003, test 41), and the stress-strain curve 
calibrated to match these values is also shown in Figure 3–5(b). The stress-strain curves shown in Figure 
3–5(b) were obtained from finite element models of tensile coupons with gage length of 200 mm (8 in), 
similar to that shown in Figure 3–6. Because yield and ultimate strength values were not reported for the 
A36 plate steel used by Richard et al. (1980), the computational model was based on the typical stress-
strain curve shown in Figure 3–5(a), which corresponds to the minimum specified strength values.  
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Figure 3–5. Stress-strain curves used to represent steel plates in computational models of bolted connection tests 

(a)

(b)

200 mm

 
Figure 3–6. Finite element mesh of plate tensile coupon: (a) prior to loading; (b) after fracture 

In detailed models of shear tab connections from the prototype buildings, the stress-strain curves were 
calibrated to match the minimum specified values of yield strength, tensile strength, and elongation, as 
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listed in Table 2–1.  Computed engineering stress-strain curves for the two types of steel are shown in 
Figure 3–7. These curves were obtained using a finite element mesh of a tensile coupon with a gage 
length of 200 mm (8 in), as shown in Figure 3–6. The stress-strain curve for A36 steel in Figure 3–7 
differs from the computed stress-strain curve in Figure 3–5(a) only in that fracture strain has been reduced 
to match the minimum specified elongation of 20 %. 

 

A36 steel

A992 steel

 
Figure 3–7. Stress-strain curves used to represent A36 and A992 steel in detailed models of shear tab connections 

from the prototype buildings 

3.1.2 Comparison with double shear test data 

Wallaert and Fisher (1965) present results of double-shear tests for high-strength bolts of different 
materials and sizes, as well as for different plate materials. Detailed models of selected test specimens 
were developed. Because the test configuration was symmetric, only one half of each test specimen was 
modeled, with appropriate boundary conditions on the plane of symmetry. Figure 3–8(a) shows a section 
view of the detailed model of a test specimen at its ultimate load.  Figure 3–8(b) shows the solid element 
mesh of the bolt after fracture. 

Plane of 
symmetry

(a) (b)  
Figure 3–8. Detailed model of bolt double-shear test: (a) section view at ultimate load; (b) bolt mesh after fracture 

Figure 3–9 shows a comparison of experimental bolt shear stress versus deformation curves with those 
computed using the detailed model. The deformations plotted correspond to displacements at the loaded 
end of the translating plate and thus include a combination of bolt shear and bearing deformations. 
Generally good agreement is observed for the different combinations of bolt size, bolt material, and plate 
material, demonstrating that the detailed modeling approach is able to capture the influence of these 
factors on the strength and ductility of the connections. The ultimate strength obtained from the model is 
within 6 % of the measured value, while the post-ultimate displacement corresponding to 90 % of the 
ultimate strength is within 11 %. The initial stiffness computed by the detailed model is consistently 
lower than that observed experimentally because frictional clamping due to initial bolt tension was not 
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included in the model. However, the initial bolt tension has little effect on the ultimate strength and 
displacement of the connection, which are of primary interest in this study. 
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Figure 3–9. Bolt shear stress vs. deformation curves from double-shear specimens: comparison of computed results 

with experimental data1 from Wallaert and Fisher (1965) 

Comparison of Figure 3–9(a) and Figure 3–9(b) shows the influence of bolt material, with the A490 bolt 
exhibiting higher strength than the A325 bolt, with comparable deformations at the ultimate stress. 
Comparison of Figure 3–9(b) and Figure 3–9(d) shows the influence of bolt diameter, with the 25 mm 
(1 in) bolt sustaining larger deformations than the 22 mm (7∕8 in) bolt before failure, with comparable 
values of the ultimate stress. Comparison of Figure 3–9(c) and Figure 3–9(d) shows the influence of plate 
material, with larger deformations sustained for A440 steel plates than for higher strength quenched and 
tempered steel plates. The larger deformations for the A440 steel plates were associated with larger 
bearing-induced deformation of the plates.  The detailed model of the plates was able to capture these 
bearing-induced deformations using a stress-strain curve calibrated to match the reported yield and 
ultimate strengths of the A440 steel plate material [see Figure 3–5(b)]. The quenched and tempered steel 
plates were represented using an elastic material model, to preclude bearing-induced plastic deformations. 
For all specimens, the ultimate limit state was bolt shear failure, resulting in a rapid drop in resistance 
after the ultimate stress was reached. 
                                                      
1 Experimental curves are best-fit to data from several tests; estimated coefficient of variation in measurements: 4 %. 
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3.1.3 Comparison with bolt bearing test data 

Figure 3–10(a) shows an experimental load-deformation curve for a bolt bearing against a single plate 
(Rex and Easterling 2003) compared with results from a detailed model. Figure 3–10(b) shows the 
detailed model at the ultimate load of the specimen, in which significant bearing-induced deformations 
are evident and the associated plastic strains are indicated. The results correspond to a bolt diameter of 25 
mm (1 in), plate thickness of 6.5 mm (1∕4 in), plate width of 127 mm (5 in), and a distance of 38 mm 
(1.5 in) from the center of the bolt hole to the edge of the plate. The stress-strain curve for the plate 
material was calibrated to match the reported yield and ultimate strengths of the “mild” steel plate [see 
Figure 3–5(b)]. While the bolt material was not specified by Rex and Easterling (2003), the experiment 
was designed to develop bearing deformations in the plate, not the bolt, and the bolt was simply 
represented as linearly elastic in the detailed model. Generally good agreement between the experimental 
and computed load-deformation curves is observed, and the ultimate load obtained from the model is 
within 11 % of the measured value.  

While the experimental curve terminates at a deformation of 12.7 mm (0.5 in) (this value of deformation 
was used to define bearing failure by Rex and Easterling), the computational analysis was continued 
further, showing the drop in resistance associated with bolt bearing failure and tearout. Note that the 
computed post-ultimate response in Figure 3–10(a) is subject to considerable uncertainty, given the 
significant approximations inherent in modeling fracture propagation using element erosion. (The 
oscillations in the descending portion of the load-deformation curve are associated with erosion of 
subsequent layers of elements.) However, by comparing Figure 3–10(a) with the results in Figure 3–9, it 
can be seen that the drop in resistance associated with bearing failure and tearout is more gradual than that 
associated with bolt shear failure. The resistance of the connection drops to near zero at a deformation of 
36.5 mm (1.4 in), corresponding closely to the edge distance of 38 mm (1.5 in).  
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Figure 3–10. (a) Load-displacement curves for bolt tearout: comparison of computed results with experimental 

data2 from Rex and Easterling (2003); (b) contours of effective plastic strain from detailed model at ultimate load 

3.1.4 Comparison with single shear test data 

Figure 3–11(a) shows an experimental load-deformation curve from a single-shear test reported in 
Richard et al. (1980), plotted with computed results from a detailed model. The single-shear test specimen 
consisted of two 9.5 mm (3∕8 in) thick A36 steel plates connected by a single 19 mm (3∕4 in) A325 bolt, 
                                                      
2 Estimated coefficient of variation in measurements: 0.8 % 
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with plate widths of 102 mm (4 in), and a distance of 38 mm (1.5 in) between the center of each bolt hole 
and the edge of the plate. Figure 3–11(b) shows a section view of the detailed model at the ultimate load 
of the specimen. The deformations plotted correspond to displacements at the loaded end of the 
translating plate and thus include a combination of bolt shear and bearing deformations. Because the yield 
and ultimate strengths of the A36 steel plate material were not reported by Richard et al. (1980), a typical 
stress-strain curve having the minimum specified strength values [see Figure 3–5(a)] was used in the 
model. An initial bolt tension consistent with that reported by Richard et al. was applied in the model by 
defining a thermal expansion coefficient for the bolt and reducing the bolt temperature to develop the 
preload. Applying this preload allowed for good agreement in the initial stiffness of the specimen, as 
shown in Figure 3–11(a). The computed ultimate load is within 0.5 % of the measured value. The 
experimental load-deformation curve terminates at a deformation of 9 mm (0.35 in), which exceeds the 
deformation of 7.6 mm (0.3 in) used by Richard et al. (1980) as their criterion for desired ductility.  
Richard et al. (1980) did not report that fracture occurred at this deformation, and the computational 
analysis was continued further, showing additional displacement associated with the combined effects of 
bolt shear and bearing-induced plate deformations [see Figure 3–11(b) and (c)]. The final sudden drop in 
resistance in the computational model was associated with bolt shear failure. 
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Figure 3–11. (a) Load-deformation curves for single-shear specimen: comparison of detailed model predictions with 
experimental results3 from Richard et al. (1980); (b) section view through bolt centerline and (c) side view (with bolt 

hidden) of detailed model at ultimate load 

3.2 REDUCED MODELING APPROACH 

The reduced modeling approach for single-plate shear connections, illustrated in Figure 3–12, uses 
nonlinear springs, one for each bolt row in the connection, to represent the combined effects of bolt shear 
and bearing-induced deformation. Each nonlinear spring element has distinct load-deformation curves to 
represent yielding and failure (1) along the beam axis and (2) in the vertical direction. The load-
deformation behavior of the discrete beam elements in the axial direction captures the interaction of 
bending moment and axial force for the connection, while the load-deformation behavior in the vertical 
direction captures vertical shear. The nonlinear springs are implemented using a zero-length discrete 
beam element formulation in LS-DYNA (beam element formulation 6) with material model 119, which 
allows arbitrary load-deformation curves to be defined along orthogonal coordinate axes (Hallquist 2007). 
Each nonlinear spring is deleted when the specified failure displacement is reached along either axis. To 
maintain the proper connection geometry, rigid links connect the ends of the spring elements to nodes 
along the beam and column centerlines. Beams and columns in the reduced models are represented using 
                                                      
3 Experimental curve is best-fit to data from several tests; estimated coefficient of variation in measurements: 3 %. 
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Hughes-Liu beam elements with cross-section integration, and a piecewise linear plasticity model 
(material model 24 in LS-DYNA) was used to represent the steel material of the beam and column, with 
stress-strain curves corresponding to the minimum yield and ultimate strengths listed in Table 2–1. 

column

beam

bolt springs

rigid links

 
Figure 3–12. Reduced model of single-plate shear connection 

3.2.1 Load-deformation relationships for nonlinear springs 

The axial load-deformation relationship used for the nonlinear springs in the reduced connection model is 
based on that presented by Sadek et al. (2008). Alternate load-deformation relationships are shown in 
Figure 3–13, in which forces and deformations along the beam axis are plotted on the vertical and 
horizontal axes, respectively. Positive values of deformation (corresponding to tensile forces) denote 
displacements away from the column, and negative values of deformation (corresponding to compressive 
forces) correspond to displacements toward the column. Note that both tensile and compressive forces in 
a bolt spring (or bolt row) are developed through shear forces in the bolt itself.  
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Figure 3–13. Axial load-deformation relationships for bolt springs controlled by: (a) bearing failure; (b) bolt shear 

failure 

Figure 3–13(a) shows a load-deformation relationship of the form proposed by Sadek et al. (2008) for 
axial behavior controlled by bolt tear out, which exhibits gradual drop in resistance after the ultimate load 
in tension (tu) is reached and no drop in resistance after the ultimate load in compression (cu) is reached. 
The gradual drop in resistance for bolt tear out is consistent with that shown in Figure 3–10(a) from 
detailed model simulations of a bolt-tear out test. For axial behavior controlled by bolt shear failure, a 
load-deformation relationship of the form shown in Figure 3–13(b) is proposed, which exhibits a steeper 
drop in resistance after the ultimate load is reached in both tension and compression. The steeper drop in 
resistance for bolt shear failure is consistent with the load-deformation curves shown in Figure 3–9 and 
Figure 3–11(a) from detailed model simulations of connections governed by bolt shear failure.  If bolt tear 
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out controls in tension while bolt shear controls in compression, then the curve in Figure 3–13(a) can be 
used in tension, while the curve in Figure 3–13(b) can be used in compression.  

In both cases, the initial stiffness k of the bolt spring is estimated based on a linear regression of rotational 
stiffness data from seismic testing. The initial rotational stiffness of a shear tab connection, here denoted 
κ, is given in Eq. (5-19) of FEMA 355D (FEMA 2000): 

 
124 550( 142 mm)      (kN mm/rad)
28 000( 5.6 in)           (kip in/rad)
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bg

d
d

κ
− ⋅=  − ⋅

 (3.1) 

where dbg = s(N − 1) is the depth of the bolt group, s = 76.2 mm (3 in) is the vertical spacing between 
bolts, and N is the number of bolts. Eq. (3.1) does not include any stiffening contribution from the floor 
slab. The initial translational stiffness of a spring element representing a single bolt row, denoted k, can 
then be estimated as: 

 2
i

i

k
y

κ
=

∑
 (3.2) 

where yi is the vertical distance of the ith bolt row from the center of the bolt group. 

The yield and ultimate capacities of each spring in tension (ty and tu, respectively) and in compression (cy 
and cu, respectively) are calculated based on the governing failure mode of the connection under axial 
loading, using equations in the AISC Specification (AISC 2010) with a resistance factor of φ = 1. 
Minimum specified values of yield strength Fy and ultimate strength Fu for each type of steel are used in 
these equations, as listed in Table 2–1. Connection capacities are divided by the number of bolts to obtain 
the capacity corresponding to a single bolt row. While other failure modes may potentially govern, such 
as fillet weld failure (AISC 2010, Section J2.4) or block shear failure (AISC 2010, Section J4.3), the 
governing failure modes for the shear tab connections in the prototype buildings (see Section 2.4) are 
bearing failure at bolt holes (AISC 2010, Section J3.10) and bolt shear failure (AISC 2010, Section J3.6).  

The equations used to calculate the yield and ultimate capacities of a single bolt row for these limit states 
are listed in Table 3–1, in which t is the thickness of the connected material (beam web or shear tab), Lc is 
the clear distance between the edge of the bolt hole and the edge of the connected material, and d and Ab 
are the diameter and cross-sectional area of the bolt, respectively (see AISC 2010). Fv is used to denote 
the ultimate strength of the bolt in shear. Values of Fv listed in the footnote of Table 3–1 were obtained by 
dividing the values reported in Table 5.1 of the Research Council on Structural Connections Specification 
(RCSC 2004) by a factor of 0.80 to eliminate the reduction in strength that accounts for non-uniform 
shear force distribution, since for axial loading the connections under consideration have only one bolt in 
the line of force. The factor of 0.75 in the expression for the bolt shear yield capacity is the approximate 
ratio of the yield strength to the ultimate strength of the bolts. 

Table 3–1. Equations used to calculate yield and ultimate capacities of single bolt rows in tension and compression 

Failure Mode 

Tensile Capacities Compressive Capacities 

ty (yield) tu (ultimate) cy (yield) cu (ultimate) 

Bearing at bolt hole 1.5LctFy ≤ 3.0dtFy  1.5LctFu ≤ 3.0dtFu 3.0dtFy 3.0dtFu 

Bolt shear* 0.75FvAb FvAb 0.75FvAb FvAb 

* Fv = 517 MPa (75 ksi) for ASTM A325 bolts and Fv = 646 MPa (94 ksi) for ASTM A490 bolts, both with threads 
excluded from the shear plane. 
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The spring displacement corresponding to the ultimate load, denoted δu, is estimated using Eq. (5-17a) in 
FEMA 355D (FEMA 2000), which gives the plastic rotational capacity of simple shear connections 
designed using the AISC Specifications, and with adequate clearance between beam flanges from column 
to prevent binding. Adding an estimated elastic rotation of 0.02 rad to Eq. (5-17a) from FEMA 355D 
gives the following estimated total rotational capacity (in rad): 

 
0.17 0.00014         (  in mm)
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d d
d d

θ
−=  −

 (3.3) 

Since the tests in FEMA 355D (FEMA 2000) subjected the connections to rotation with no axial 
extension, the deformation at ultimate load for a bolt spring element can be estimated as u max maxyδ θ= , 
where ymax = dbg ∕ 2 represents the distance from the center of the bolt group to the most distant bolt. 
Substituting Eq. (3.3) for maxθ  yields the following expression for uδ : 
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 (3.4) 

Note that uδ  increases with dbg, as shown in Figure 3–14, from uδ  = 11.3 mm (0.445 in) for a 3-bolt 
connection to uδ  = 19.3 mm (0.761 in) for a 5-bolt connection.  
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Figure 3–14. Deformation at ultimate load vs. depth of bolt group 

For axial behavior governed by bearing failure, the failure displacement of the spring in tension (δ f,t), at 
which the resistance drops to zero and the element is deleted, is selected as the edge distance, which in 
this case is 38.1 mm (1.5 in), as shown in Figure 2–3. No softening or element deletion is considered for 
bearing failure in compression. For axial behavior governed by bolt shear failure, a more sudden drop in 
resistance after the ultimate load is considered, and the failure displacements of the spring in tension and 
compression (δ f,t and δ f,c, respectively) are set equal to 1.15δu. In the case of load reversal (e.g., if initial 
compressive forces in a bolt spring due to flexural action later change to tensile forces due to catenary 
action), unloading follows a quadratic curve with no permanent offset. Quadratic unloading was found to 
give somewhat better agreement with experimental data (see Section 3.3) than linear unloading with the 
initial stiffness k. 
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Table 3–2 lists the parameters of the axial load-deformation curves for single bolt rows from each of the 
shear tab connections in the prototype buildings (see Section 2.4). The connections with three bolts are 
governed by bearing failure of the beam web in both tension and compression, with slightly larger yield 
and ultimate capacities for the N-S beam connections than for the E-W beam connections, due to the 
slightly thicker beam web. Due to the significantly thicker beam web of the connection with four bolts (E-
W beam connection in building B), the tensile behavior is governed by bearing failure of the shear tab, 
while the compressive behavior is governed by bolt shear failure.  

 
Table 3–2. Parameters of axial load-deformation relationships for springs representing single bolt rows of prototype 
connections 

Property 

Connection Location 

Building A 
E-W beams 

Buildings A & B 
N-S beams 

Building B 
E-W beams 

Number of bolts, N 3 3 4 

Beam web thickness, mm (in) 5.8 (0.23) 6.4 (0.25) 9.7 (0.38) 

Initial stiffness, k, kN/mm (kip/in) 110 (620) 110 (620) 370 (2120) 

Displacement at ultimate load, δu, mm (in) 11.4 (0.45) 11.4 (0.45) 15.7 (0.62) 

Controlling limit state in tension bearing, beam web bearing, beam web bearing, shear tab 

Yield capacity in tension, ty, kN (kip) 79 (17.8) 86 (19.3) 92.9 (20.9) 

Ultimate capacity in tension, tu, kN (kip) 103 (23.1) 112 (25.1) 150 (33.6) 

Failure displacement in tension, δf,t, mm (in) 38.1 (1.5) 38.1 (1.5) 38.1 (1.5) 

Controlling limit state in compression bearing, beam web bearing, beam web bolt shear 

Yield capacity in compression, cy, kN (kip) 134 (30.2) 146 (32.8) 150 (33.8) 

Ultimate capacity in compression, cu, kN (kip) 175 (39.2) 190 (42.7) 201 (45.1) 

Failure displacement in compression, δf,c, mm (in) none none 18.1 (0.71) 

 

The vertical shear behavior of each bolt spring is represented using the load-deformation curve illustrated 
in Figure 3–15, which is symmetric for upward (positive) and downward (negative) displacement of the 
beam. The yield and ultimate capacities of each spring (vy and vu, respectively) are obtained by dividing 
the vertical yield and ultimate capacities of the connection, calculated using equations in the AISC 
Specification (AISC 2010) with φ = 1, by the number of bolts. While other failure modes may potentially 
govern, such as fillet weld failure (AISC 2010, Section J2.4), block shear failure (AISC 2010, Section 
J4.3), or bolt shear failure (AISC 2010, Section J3.6), the governing failure modes for the shear tab 
connections in the prototype buildings are shear yielding of the gross section of the shear tab for vy (AISC 
2010, Eq. J4-3) and shear rupture of the net section of the shear tab for vu (AISC 2010, Eq. J4-4).  

The initial stiffness k and the displacement at the ultimate load, δu, are assumed to be the same in the 
vertical and axial directions, given by Eqs. (3.2) and (3.4), respectively. While these parameters were 
developed to represent the axial and bending response of the connections, they are applied to the vertical 
shear response as well, in the absence of empirical equations comparable to Eqs. (3.1) to (3.4) for shear 
stiffness and deformation capacity. The deformation capacities in the two directions certainly may differ, 
particularly if the failure modes are different. Detailed model simulations for the N-S beam connections in 
buildings A and B have shown that the deformation at ultimate load is about 50 % larger in the vertical 
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direction than in the axial direction. However, the overall structural response in column removal scenarios 
is much less sensitive to vertical shear deformations of the connections than to axial and bending 
deformations, which relate directly to the development of catenary action. The vertical shear capacity is 
represented correctly in the reduced model, and any discrepancies in the modeling of vertical shear 
deformations are not expected to significantly affect the structural response.  The failure displacement in 
vertical shear (δf,v) is set equal to 1.15δu, as for axial failure governed by bolt shear in Figure 3–13(b). 
While some failure modes (e.g., bearing and tearout) could result in a more gradual drop in resistance, a 
rapid drop after the ultimate load is conservatively assumed for the vertical shear response. 
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Figure 3–15. Vertical shear load-deformation relationship for bolt springs 

Interaction of the axial and vertical failure modes is handled by deleting the bolt spring from the model if 
the following inequality is satisfied: 
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 (3.5) 

where δi denotes the axial deformation and δv,i denotes the shear deformation of the ith bolt spring 
element. If axial failure in compression is permitted, then a corresponding inequality is also considered 
for compression, in which δ f,t is replaced by δ f,c. Failure of the connection is represented in the reduced 
model by successive failure of each bolt spring element. 

3.2.2 Comparison with detailed modeling of axial extension 

Predictions of the detailed and reduced connection models are first compared under the simple case of 
axial extension. Detailed models of shear tab connections from the prototype buildings are shown in 
Figure 3–16, with bolts hidden to reveal bearing-induced bolt hole deformations at the ultimate tensile 
load. Figure 3–16(a) corresponds to a N-S beam connection in buildings A and B, and Figure 3–16(b) 
corresponds to an E-W beam connection in building B. Beam segments of length 143 mm (5.6 in) were 
considered in both cases, and all nodes on the cross section at the end of the segment were subjected to 
displacement-controlled translation along the beam axis. The failure modes observed in the detailed 
models were consistent with calculations based on the AISC specification (see Table 3–2): the detailed 
model of the N-S connection in buildings A and  B, with a beam web thickness of 6.4 mm (0.25 in), 
exhibited bearing failure of the beam web, while the E-W connection in building B, with a beam web 
thickness of 9.7 mm (0.38 in), exhibited bearing failure of the shear tab connection.  
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(a) (b)  
Figure 3–16  Detailed models of prototype connections under axial tension showing deformations at ultimate tensile 

load (bolts hidden): (a) N-S connection in buildings A and B; (b) E-W connection in building B 

Figure 3–17 shows a comparison of axial load-displacement relationships predicted by the reduced model 
with corresponding curves obtained computationally from the detailed models shown in Figure 3–16. 
Figure 3–17(a) corresponds to the N-S beam connection in buildings A and B, while Figure 3–17(b) 
corresponds to the E-W beam connection in building B. The reduced model curves in Figure 3–17 were 
calculated as described in Section 3.2.1, with the load values for a single bolt row multiplied by the 
number of bolts to obtain the total axial resistance of the connection. The detailed model curves in Figure 
3–17 show no resistance until bolt bearing is engaged at a displacement of 1.6 mm (1∕16 in), because 
standard bolt holes are considered in the model, with a hole diameter 1.6 mm (1∕16 in) larger than the bolt 
diameter, and because zero initial tension in the bolts is assumed, resulting in no frictional resistance 
initially.  
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Figure 3–17  Comparison of reduced and detailed model results for tensile behavior of a single bolt row: (a) N-S 

beam connection in buildings A and B; (b) E-W beam connection in building B. 

The ultimate tensile capacity computed from the detailed model exceeds the tensile capacity from the 
reduced model by 19 % in Figure 3–17(a) and by 13 % in Figure 3–17(b). As discussed in Section 3.2.1, 
the capacity calculations in the reduced modeling approach are based on equations from the AISC 
specification (AISC 2010), and this comparison indicates that these capacities are somewhat conservative 
relative to the detailed model computations. However, the displacements at ultimate load computed from 
the detailed models are less than the values predicted by the reduced model, being 25 % less in Figure 3–



 Modeling and Analysis of Single-Plate Shear Connections 

 23 

17(a) and 38 % less in Figure 3–17(b). It is noted that the stress-strain curves used in the detailed models 
for the A36 steel shear tab and the A992 steel beam web are based on minimum specified values of 
elongation at fracture (see Figure 3–7), while steel components used in practice typically exhibit larger 
elongations than these minimum values. Detailed models based on a more typical elongation of 25 % at 
fracture (not presented herein) yield displacements at the ultimate load that are more consistent with the 
reduced models. These observations suggest that the reduced model approximation in Eq. (3.4) for the 
displacement at ultimate load δu may be a good estimate for typical material properties but may not 
always be conservative. 

3.3 MODELING OF TWO-SPAN BEAM ASSEMBLY TESTS 

Thompson (2009) tested two-span beam assemblies in the configuration illustrated in Figure 3–18, with 
shear tab connections to the center column, exterior “true pin” connections at beam mid-height, and 
concentrated loading applied to the unsupported center column. A fairly short beam with a chord length4 
of L = 1.89 m (6.21 ft) was used in these tests, and three different connection sizes were considered, 
having three bolts, four bolts, and five bolts per shear tab. Three tests were conducted for each connection 
size for a total of nine tests.  

The same beams were used in all nine tests, with doubler plates welded to the beam webs in the 
connection regions to prevent bearing-induced deformations around the bolt holes in the beam web. At 
the exterior pin connections, 9.5 mm (3∕8 in) A36 steel doubler plates were welded to each side of the 
beam web, and at the shear tab connections, one 9.5 mm (3∕8 in) A36 steel doubler plate was welded to the 
side opposite the shear tab. Threads were excluded from the shear plane for both the 32 mm (11∕4 in) A490 
bolts at the exterior pin connections and the 19 mm (3∕4 in) A325 bolts in the shear tab connections. Two 
A36 steel shear plates at each exterior pin connection placed the A490 bolts into double shear. These 
plates, shown with fixed edges in Figure 3–18, were welded to an end plate, which was in turn bolted to a 
rigid test frame. The thickness of the shear tabs at the center column was 9.5 mm (3∕8 in), the horizontal 
distance from the centerline of the bolts to the edge of the shear tab was 38.1 mm (1.5 in), and the depth 
of the shear tabs was 229 mm (9 in) for the 3-bolt connection, 305 mm (12 in) for the 4-bolt connection, 
and 381 mm (15 in) for the 5-bolt connection. 

A325 bolts, D = 19 mm
(3, 4, or 5 bolts)

A490 bolt, D = 32 mm
(double shear)

center column: W12x53 (A992)

L = 1.89 m

W18x35 beam (A992)

A36 shear tab
(t = 9.5 mm)

L = 1.89 m

P

A36 shear plates
(t = 19 mm, both sides)

 
Figure 3–18. Configuration of two-span beam assemblies tested by Thompson (2009) 

3.3.1 Detailed modeling 

Figure 3–19 shows a detailed model of the assembly with 5 bolts per shear connection, in which only half 
of the assembly was modeled, with appropriate boundary conditions on the plane of symmetry through 
the center column. Modeling of the connection regions, including the center column, shear tab, beam, 

                                                      
4 Note that the “chord length” of a beam, denoted L, is used throughout this report to represent the horizontal distance between 

the bolt centerlines at each end of the beam. This is in contrast with the “span length,” which is measured between the 
centerlines of the columns. 
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doubler plates, and bolts, followed the detailed modeling approach described in Section 3.1, using solid 
element meshes and contact with friction. The beam span between connections, where stresses remain in 
the elastic range, was modeled using shell elements, with nodal constraints linking the degrees of freedom 
of the solid and shell elements at their interface, indicated in Figure 3–19. Similar models were developed 
for the 3-bolt and 4-bolt assemblies. 

Because tensile test data were not provided for the steel components used in these tests, representative 
stress-strain curves and failure strain values were used for the various types of steel, calibrated as 
described previously in Section 3.1.1. Stress-strain curves used for the A325 and A490 bolts were shown 
previously in Figure 3–3, for the A36 steel shear tabs in Figure 3–5, and for the A992 steel beams and 
columns in Figure 3–7.  

The test specimens used standard hole sizes for all bolts, for which the hole diameter is 1.6 mm (1∕16 in) 
larger than the bolt diameter. This gap was represented accurately in the solid element mesh, with the 
bolts initially centered in the holes, allowing some slippage before bolt bearing is engaged. Zero initial 
tension in the bolts is assumed, resulting in no frictional resistance initially. 

center column: W12x53 (A992)

shear plate 
edges fixed

plane of symmetry

solid/shell interface

(a) (b)  
Figure 3–19. Detailed model of two-span beam assembly tested by Thompson (2009): (a) overview; (b) region near 

exterior pin connection 

3.3.2 Reduced modeling 

Figure 3–20(a) shows a reduced model of the assembly with 5 bolts per shear connection, which follows 
the modeling approach outlined in Section 3.2, using beam elements for the beams and columns, 
nonlinear springs for each bolt row of the shear connection, and rigid links to maintain proper connection 
geometry. As with the detailed model, only half of the assembly was modeled, with appropriate boundary 
conditions on the plane of symmetry. Similar models were developed for the 3-bolt and 4-bolt assemblies. 

Load-deformation relationships used to represent the bolt springs in the reduced model are shown in 
Figure 3–20(b). These load-deformation relationships were developed as described in Section 3.2.1, 
except for the initial flat portion of the curves, which has zero load until a deformation of 1.6 mm (1∕16 in) 
in both tension and compression. This flat portion was intended to represent the initial gaps between the 
bolt shank and the standard size bolt holes, which allow some slippage to occur before bolt bearing is 
engaged. Including this initial gap is consistent with the detailed model described previously and yields 
better agreement with the experimental data (see Section 3.3.3) than if the gap is neglected. Initial gaps 
were included only in the axial load-deformation relationship for the bolt springs, not in the vertical shear 
load-deformation relationship. Following the initial flat portion, the load increases with stiffness k from 
Eq. (3.2) and, after yielding, reaches the ultimate load at a deformation of δu from Eq. (3.4). The load-
deformation relationships differ depending on the number of bolts in the connection, since both k and δu 
depend on db, the depth of the bolt group, according to Eqs. (3.2) and (3.4) (see Figure 3–14). A “gap 
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element” was also introduced at the exterior pin support, which allows slippage of 1.6 mm (1∕16 in) before 
forces are developed, representing initial gaps at the bolt holes for the exterior pin connection. 

The yield and ultimate capacities of the bolt springs were calculated using equations in Table 3–1, which 
do not depend on the number of bolts in the connection. The ultimate capacity was found to be governed 
by bolt shear failure in both tension and compression and was calculated as 147 kN (33.1 kip). Because 
bolt shear failure was found to govern, the failure displacements in both tension and compression were set 
to 1.15δu. While the calculations indicated that bolt shear failure would govern, it is noted that the 
ultimate bearing capacity of the shear tab in tension was calculated as 159 kN (35.7 kip), which is only 
8 % larger than the bolt shear capacity. This helps to explain why the failure mode differed from test to 
test, as is discussed subsequently. The yield capacity in compression was calculated as 111 kN (24.9 kip), 
corresponding to yielding of the bolt in shear, while an 11 % smaller yield capacity 98.5 kN (22.1 kip) in 
tension was calculated, corresponding to bearing-induced yielding at the bolt hole in the shear tab.  

column

beam

bolt springs
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(a) (b)  
Figure 3–20. (a) Reduced model of two-span beam assembly tested by Thompson (2009); (b) load-displacement 

curves used for bolt springs 

3.3.3 Comparison of experimental and computational results 

Figure 3–21 shows comparisons of experimental measurements with detailed and reduced model 
computations of (a) the vertical load P and (b) the beam axial force T versus the vertical displacement of 
the center column for the two-span beam assemblies. The measured axial force T is an average of the 
axial forces measured in the two beam spans. Each row of plots in Figure 3–21 corresponds to a different 
connection size, and results are presented for 3-bolt, 4-bolt, and 5-bolt connections. Three tests were 
conducted for each connection size, and the numerical labels on curves in Figure 3–21 indicate the test 
number for a given connection size. Measurements from test 1 for the 5-bolt connection are not presented 
because data from the initial portion of this test were missing due to a problem with the test setup.  

Figure 3–21 shows fairly good correspondence between the computational results and the experimental 
measurements, given the variability in the experimental data. Quantitative comparisons of the computed 
and measured values of the ultimate vertical load Pu are presented in Table 3–3, which shows that the 
detailed model predictions are within 15 % of the mean measured values and the reduced model 
predictions are within 21 %, while the coefficient of variation in the measured values is as large as 20 %. 
This indicates that the deviations of the model predictions from the experimental measurements are 
comparable to the variability in the experimental measurements themselves. The detailed models 
consistently underestimate Pu, which is conservative, while the reduced model overestimates Pu in one 
case by 10.6 %.  

Table 3–4 shows similar comparisons of the rotation at the ultimate load, θu, in which somewhat larger 
discrepancies are observed, with the computed results always being conservative. Note that the measured 
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rotation values in Table 3–4, as well as those along the upper axes in Figure 3–21, are about 5 % larger 
than the values reported by Thompson (2009). This is because the rotations in this study were calculated 
using the span length of L = 1.89 m (6.21 ft) between bolt centerlines, as illustrated in Figure 3–18, while 
Thompson (2009) used the span length of 1.99 m (6.53 ft) from the exterior pin support to the face of the 
center column. The span length between bolt centerlines was used in this study for consistency with 
analytical models presented subsequently in Sections 3.4 and 3.6. 

Both the detailed and reduced models were able to capture the following primary stages in the response of 
the assemblies: (1) connection slippage, in which both the vertical load and the beam axial forces remain 
small before bolt bearing is engaged, (2) flexural action, in which the vertical load increases due to the 
development of bending moments in the shear tab connections, while the axial forces remain small, and 
(3) catenary action, in which tensile forces develop in the beams, accompanied by further increases in the 
vertical load until failure occurs.  

The detailed model computations showed that plastic deformations were concentrated in the bolts and in 
bearing-induced deformations around the bolt holes, as evidenced by the substantial shear deformation of 
the bottom bolt shown in Figure 3–22(b) and the significant elongation of bolt holes in the shear tabs 
shown in Figure 3–23. (Note that the same beams were used in all tests by Thompson (2009), and 
therefore, five bolt holes in the beam web are evident in Figure 3–23 even for the tests with fewer bolts.) 
The remainder of the beam remained in the elastic range, essentially rotating as a rigid body, as evidenced 
by the straight-line deflected shape of the 4-bolt assembly at ultimate load, shown in Figure 3–22(a). 
While the failure mode predicted by the detailed and reduced models was bolt shear fracture in all cases 
[the onset of bolt fracture is evidenced by eroded elements in Figure 3–22(b)], the failure mode varied 
from test to test in the experiments, being bolt shear failure in some cases, tensile rupture of the shear tab 
in other cases, and block shear failure of the shear tab in still other cases. The closeness of the calculated 
capacities for bolt shear failure and plate bearing failure helps to explain this observed variability in the 
failure mode, since typical variations in material strength could shift the failure from one component to 
another.  

In all cases, the failures were characterized by a fairly steep drop in resistance after the ultimate load, 
which was captured by the detailed and reduced models. In the 4-bolt and 5-bolt assembly tests, 
successive failures were observed, in which the resistance increased after an initial failure until a 
secondary failure occurred.  These successive failures were captured by both the detailed and reduced 
models, for which the peak computed vertical load Pu always corresponded to the initial failure. In the 
experiments, two cases were observed in which the peak load corresponded to a secondary failure rather 
than the initial failure (test 1 for the 4-bolt assembly and test 3 for the 5-bolt assembly). 

It is noted that the correspondence between the computational results and the experimental measurements 
in Figure 3–21 is generally better for the vertical load P than for the beam axial force T. The beam axial 
forces are more sensitive than the vertical load to axial restraint conditions, including such factors as the 
initial gaps in the connections. Daneshvar and Driver (2011) compared detailed model predictions with 
experimental measurements from the 3-bolt assembly tested by Thompson (2009) and found that 
improved agreement could be achieved by introducing axial springs at the exterior pin connections to 
represent the unknown stiffness of the testing frame. These axial springs reduced the magnitude of an 
initial compressive axial force that was observed in the models but not in the tests. In this study, it was 
found that introducing initial gaps at both the shear tab and exterior pin connections, to represent the 
actual dimensions of standard size bolt holes, reduced the initial compressive axial forces without the 
need for axial springs. 

In the reduced modeling approach, the unloading procedure used in the case of load reversal was also 
found to have a noticeable effect on the beam axial forces. In the initial flexural response of the assembly, 
yielding of the upper bolt springs in compression was observed. Later in the response, as catenary action 
developed, the forces in the upper bolt springs changed from compression to tension. Two unloading 
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procedures were considered in the reduced modeling: (1) linear unloading with the initial stiffness k and 
(2) quadratic unloading with no permanent offset. The latter approach was found to give somewhat better 
agreement with the experimental measurements and was adopted in the simulations presented herein. 
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Figure 3–21. Comparison of detailed and reduced model results with experimental measurements (Thompson 2009) 
for two-span beam assemblies: (a) vertical load and (b) axial force versus vertical column displacement (numerical 

labels on curves indicate the test number for a given connection size) 
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Table 3–3. Comparison of model predictions and experimental measurements (Thompson 2009) of ultimate vertical 
load Pu for two-span beam assemblies 

Connection Size 

Detailed Model Reduced Model Experiment 

Pu [Deviation*] Pu [Deviation*] Mean Pu [COV†] 

3 bolts 47.1 kN  [−14.6 %] 43.4 kN [−21.3 %] 55.1 kN [11.3 %] 

4 bolts 65.7 kN [−10.6 %] 74.8 kN [+1.8 %] 73.5 kN [19.5 %] 

5 bolts 90.7 kN [−5.8 %] 106.6 kN [+10.6 %] 96.4 kN [7.1 %] 

* Percentage deviation from mean experimental value 
† Coefficient of Variation = [standard deviation] ∕ [mean] 

 

Table 3–4. Comparison of model predictions and experimental measurements (Thompson 2009) of rotation at 
ultimate load, θu, for two-span beam assemblies 

Connection Size 

Detailed Model Reduced Model Experiment 

θu [Deviation*] θu [Deviation*] Mean θu [COV†] 

3 bolts 0.120 rad  [−13.8 %] 0.103 rad [−26.1 %] 0.139 rad [3.4 %] 

4 bolts 0.087 rad [−21.5 %] 0.093 rad [−16.6 %] 0.111 rad [18.8 %] 

5 bolts 0.066 rad [−24.3 %] 0.082 rad [−5.6 %] 0.087 rad [9.6 %] 

* Percentage deviation from mean experimental value 
† Coefficient of Variation = [standard deviation] ∕ [mean] 

(a)

(b)  
Figure 3–22. Deformations of 4-bolt assembly at ultimate load: (a) overview; (b) section view through bottom bolt 

(a) (b) (c)  
Figure 3–23. Connection regions of detailed models at ultimate load: (a) 3 bolts; (b) 4 bolts; (c) 5 bolts  

(bolts hidden to show bearing-induced elongation of bolt holes in shear tabs) 
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3.4 SIMPLIFIED SPREADSHEET CALCULATIONS 

A simple but fairly accurate calculation procedure for the load-deformation response of two-span beam 
assemblies can be developed based on the assumption that all of the deformation is concentrated in the 
connections, while the beam spans rotate as rigid bodies with negligible bending or axial deformations. 
This is consistent with the behavior illustrated in Figure 3–22 and Figure 3–23 for detailed models of the 
two-span beam assemblies tested by Thompson (2009). This simplified analysis affords insight into the 
mechanics of the shear connection behavior and allows calculations to be performed in a spreadsheet. It is 
noted that this analysis procedure is not limited to shear tab connections, but could also be applied to 
other types of connections, such as double angle connections, for which a load-deformation relationship 
for each bolt row can be defined. Initially, in Section 3.4.1, the outer ends of the beams are assumed to be 
pin supported, while in Section 3.4.2 the influence of having two shear connections per span is 
considered. 

3.4.1 Two-span beam assembly with exterior pin supports 

Two beam spans connected to an unsupported center column by shear tab connections are considered, as 
depicted in Figure 3–24(a). The outer ends of the beams are assumed to be pin supported, with the 
elevation of the pin supports corresponding to mid-height of the shear tab connections. Two loading 
scenarios are considered, including a concentrated load P on the center column (Figure 3–24(b)) and a 
uniform load with intensity w distributed along the beam spans (Figure 3–24(c)). Equilibrium of vertical 
forces in both cases yields the following expression for the total applied vertical load:  

 ( )concentrated load:     
2 sin cos

uniform load:        2
P

T V
wL

θ θ


= +


 (3.6) 

where T is the axial force and V is the shear force in the beams at the pin supports. The rotation of the 
beam chord, θ, (in rad) is given by 

 1tan ( / )Lθ −= ∆  (3.7) 

where Δ is the vertical displacement of the center column and L is the chord length of the beam, or the 
distance between the centerlines of the bolts at one end of the beam and the pin support at the other, as 
shown in Figure 3–25(a). Based on the geometry shown in Figure 3–25(a), the axial extension of the 
connection at mid-height of the bolt group, denoted δ, can be expressed as 

 2 2L Lδ = + ∆ −  (3.8) 

The axial extension of the ith bolt row of the connection, denoted δi, can then be calculated as: 

 i iy
L

δ δ ∆
= +  (3.9) 

where yi is the distance of the ith bolt row from mid-height of the bolt group, positive downwards for 
convenience, as shown in Figure 3–25(b). Note that δ2 = δ  for the connection shown in Figure 3–25, 
because y2 = 0. The axial component of the force in each bolt row, denoted ti, can then be calculated as a 
function of the axial extension δi, as ti = f (δi), where the function f (δi) represents the axial load vs. 
deformation relationship for a single bolt row of the shear tab connection, described in Section 3.2.1 for 
the reduced model of the connection. Positive values of ti correspond to tension in the bolt row, where it is 
noted that tension in the bolt row produces shear in the bolt itself. 
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Figure 3–24. (a) Two-span beam assembly with exterior pin supports; (b) concentrated load; (c) uniform load 
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Figure 3–25. Deformed geometry of beam span with exterior pin support: (a) overview; (b) near shear tab 

connection to center column 

Considering a free-body diagram of a single beam span, as shown in Figure 3–26, equilibrium of forces 
along the beam axis yields the following expressions for the axial force T at the pin support: 

 
                  (concentrated load)

sin          (uniform load)

N

i
i

N

i
i

t
T

wL tθ



= 
 +

∑

∑
 (3.10) 

where N is the number of bolts in the shear tab connection. Equilibrium of moments about the center of 
the bolt group yields the following expressions for the shear force V at the pin support: 

 
                   (concentrated load)

cos           (uniform load)
2

N
i i

i
N

i i

i

t y
L

V
t ywL
L

θ



= 
 +

∑

∑
 (3.11) 
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where the bending moment in the shear tab connection, calculated about the center of the bolt group, can 
be expressed as follows: 

 
N

tab i i
i

M t y= ∑  (3.12) 

Substituting Eqs. (3.10) and (3.11) into Eq. (3.6) and grouping terms on wL for the case of the uniform 
load yields the following expressions for the total applied load: 

 concentrated load:               2 sin cos
N N

i i
i

i i

t yP t
L

θ θ
 

= + 
 
∑ ∑  (3.13) 

 2
4uniform load:         2 sin cos

cos

N N
i i

i
i i

t ywL t
L

θ θ
θ

 
= + 

 
∑ ∑  (3.14) 
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Figure 3–26. Free body diagram of beam 

The preceding equations can be easily implemented in a spreadsheet as follows: 

1. Define a column of values of the center column displacement ∆ spanning from zero to the 
maximum displacement of interest. 

2. Calculate a column of values of the beam chord rotation, θ, from Eq. (3.7). 

3. Calculate a column of values of axial extension at mid-height of the bolt group, δ, from Eq. (3.8). 

4. Calculate columns of values of axial extension of each bolt row, δi, from Eq. (3.9). 

5. Calculate columns of values of axial force in each bolt row, ti, based on the axial load-
deformation relationship of the bolt row. Piecewise-linear load-deformation relationships, such as 
those illustrated in Figure 3–13, can be implemented using conditional formulas. 

6. Calculate a column of values of the concentrated load P from Eq. (3.13) or the uniform load w 
from Eq. (3.14). 

A load-displacement curve for the two-span beam assembly can then be generated by plotting the values 
of P or w from step 6 against the values of ∆ from step 1. Plots of T, V, and Mtab against ∆ can be 
generated similarly using Eqs. (3.10), (3.11), and (3.12). Figure 3–27 shows examples of such plots, 
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calculated for a chord length of L = 5.97 m (19.6 ft), corresponding to a N-S beam from building A, using 
a bolt force-deformation relationship of the form illustrated in Figure 3–13(a) with the parameters listed 
in Table 3–2 for N-S beam connections. 

 Since cos2θ  ≈ 1 for small angles, it is noted that the right-hand side of Eq. (3.14) is approximately two 
times larger than the right-hand side of Eq. (3.13). This indicates that for a given center column 
displacement ∆, the total applied load that can be sustained in the case of a uniform load is approximately 
twice the load that can be sustained in the case of a concentrated load. This is illustrated in Figure 3–
27(a), in which P from Eq. (3.13) and wL, which is half of the applied load from Eq. (3.14), are plotted 
together against the vertical column displacement ∆ and are seen to be virtually equivalent. 

The additional load capacity in the case of a uniform load is due to the fact that approximately half of the 
applied load is transferred directly to the pin supports by shear in the beams, as indicated by the term 
(wL ∕ 2) cos θ  in Eq. (3.11). Figure 3–27(b) shows the shear force V at the pin support plotted against the 
vertical column displacement ∆ for both concentrated and uniform loads. In the case of a concentrated 
load, the shear force V is relatively small, and a fairly good approximation for P can be obtained by 
neglecting V, in which case Eq. (3.6) becomes P ≈ 2T sinθ. This approximation is also plotted in Figure 
3–27(a) along with the more accurate expression for P, and the two curves agree quite well. Discrepancies 
are largest in the early stages of loading, in which the axial force T is relatively small and the contribution 
of shear in the beams is most significant. 
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Figure 3–27  (a) Applied vertical load, (b) shear force at pin support, (c) beam axial force at pin support, and (d) 
bending moment at shear tab vs. vertical column displacement for two-span beam assembly with pin supports. 
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Figure 3–27(c) shows the beam axial force T at the pin support, from Eq. (3.10), plotted against the 
vertical column displacement ∆ for both concentrated and uniform loads. The two curves in Figure 3–
27(c) are virtually indistinguishable, indicating that the axial force for a given column displacement ∆ is 
essentially the same under both types of loading. While Eq. (3.10) indicates that T for a uniform load 
exceeds T for a concentrated load by an amount equal to wL sin θ, this difference is small relative to T. In 
the case of a concentrated load, the axial force is constant along the beam span. In the case of a uniform 
load, the axial force varies linearly along the beam span, increasing by the amount wL sin θ  from the 
center connection to the pin support. However, because the quantity wL sin θ  is small relative to T, as just 
noted, the axial force is essentially constant in the case of a uniform load as well. 

Figure 3–27(d) shows the bending moment at the shear tab connection, which is the same for both 
concentrated and uniform loading, plotted against the vertical column displacement ∆. The bending 
moment is initially positive, as the lowest bolt row is in tension and the uppermost bolt row is in 
compression. The bending moment remains positive as deflections increase and tension develops in all of 
the bolt rows, since the largest extension, and thus the largest tension, is developed in the lowest bolt row, 
below the center of the bolt group (see Figure 3–25). However, the bending moment eventually changes 
sign to negative after the ultimate capacity of the lowest bolt row is exceeded, and larger tension develops 
in the upper bolt rows. Note that the shear force V in the case of a concentrated load, plotted in Figure 3–
27(b), can be expressed as V = Mtab ∕ L , where Mtab is defined in Eq. (3.12), and thus these two curves are 
proportional. 

Figure 3–28 shows a comparison of the simplified spreadsheet calculations with computations using the 
detailed and reduced modeling approaches. As in Figure 3–27, the beam and connections considered in 
Figure 3–28 correspond to a N-S beam span in building A, with L = 5.97 m (19.5 ft). The detailed model 
is shown in Figure 3–29 , and in both the detailed and reduced models, symmetry is exploited by 
considering only a single beam span, with a pin support at one end and a shear tab connected to a column 
on the plane of symmetry at the other end. The column is translated downward under displacement 
control, with horizontal displacements constrained to maintain symmetry, and the vertical load obtained 
computationally is multiplied by two for comparison with the vertical load on a two-span beam assembly. 

In the detailed model (see Figure 3–29), the connection region is represented using finely meshed solid 
elements, as described in Section 3.1, while the remainder of the beam span, where deformations are 
expected to be small, is represented using fairly coarse shell elements. The shell element mesh transitions 
to match the element size of the solid element mesh at their interface, where constraints are used to tie the 
edges of the shell elements to nodes of the solid elements. Material models corresponding to minimum 
specified strength properties (see Figure 3–7) are used for the A36 steel of the shear tab and the A992 
steel of the W16x26 beam. An elastic material model is used for the shell elements surrounding the pin 
support, to preclude plastic deformations at that location. 
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Figure 3–28  Comparison of spreadsheet calculation with detailed and reduced model results for two-span beam 

assembly with exterior pin supports: (a) vertical load and (b) axial force versus vertical column displacement. 

L = 5.96 m

 
Figure 3–29. Detailed model of N-S beam span in building A with pin support at one end 

Figure 3–28 shows fairly good correspondence between the detailed and reduced model predictions and 
the spreadsheet calculations. Differences of about 5 % are observed among the predictions of the peak 
vertical load in Figure 3–28(a), while differences of about 1 % are observed among the predictions of the 
peak axial force in Figure 3–28(b). Some sources of the discrepancies observed in Figure 3–28 are 
discussed in the following paragraphs.  

Figure 3–28(b) shows that the axial force from the spreadsheet calculation increases more quickly than 
predicted by the detailed and reduced models. The discrepancy between the reduced model and the 
spreadsheet calculation may at first be surprising, since the same load-deformation relationship is used for 
the bolt springs in both models. However, recall that the spreadsheet calculation procedure is based on the 
approximation that the beam span behaves as a rigid body except at the connections. This approximation 
neglects the axial flexibility of the beam, resulting in an overestimation of the axial stiffness of the 
system. Using the reduced modeling approach, an analysis was performed in which the beam span was 
modeled as rigid, and the computed values of vertical load and axial force were found to be virtually 
indistinguishable from the spreadsheet calculations. This confirms that the small discrepancies in Figure 
3–28 between the reduced model and the spreadsheet calculations are due to the axial flexibility of the 
beam.  

Figure 3–28 shows that the vertical load and axial force from the detailed model do not begin to increase 
significantly until the vertical column displacement exceeds about 80 mm (3.1 in). This occurs because 
the diameter of the bolt holes was modeled as 1.6 mm (1∕16 in) larger than the bolt diameter, while no pre-
tension was applied to the bolts to introduce frictional clamping, so that some sliding occurs before the 
bolts come into bearing, as was observed previously in Figure 3–17. Figure 3–28 also shows that the 
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vertical load and the axial force from the detailed model drop more quickly after the ultimate load than 
predicted by the reduced model and the spreadsheet calculation. This occurs because the stress-strain 
curves used in the detailed model are based on minimum specified values of elongation (see Figure 3–7), 
resulting in a smaller deformation at ultimate load than predicted by the reduced model, as observed 
previously in Figure 3–17.  

3.4.2 Two-span beam assembly with two shear connections per span 

While Eqs. (3.8) – (3.14) apply for a two-span beam assembly with pin supports at the outer beam ends, 
of greater interest is the more typical situation shown in Figure 3–30(a), with shear connections at both 
ends of each beam span. It is assumed here that the exterior columns are restrained from lateral motion at 
the level of the beams. The presence of two shear connections introduces an additional degree of freedom 
associated with deformation of the second shear connection. However, if it is assumed that the shear 
connections at both ends of each beam experience the same mid-height extension δ  (limitations of this 
assumption are discussed later in this section), then δ  can be expressed as follows, based on the deformed 
geometry shown in Figure 3–30(b): 

 
2 2

2
L Lδ + ∆ −

=  (3.15) 

It is noted that an equation similar to Eq. (3.15) was obtained by Weigand et al. (2012) in their 
development of an experimental setup for testing of connection subassemblages.  
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Figure 3–30  (a) Two-span beam assembly with two shear connections per span; (b) deformed geometry of beam; 

(c) free body diagram of beam. 

For simplicity, only the case of a concentrated load is considered in Figure 3–30, in which case the axial 
force is constant and is given by the expression in Eq. (3.10). Assuming an antisymmetric distribution of 
bolt forces at the two ends of the beam span, as illustrated in Figure 3–30(c), equilibrium of moments 
about the center of a bolt group yields the following expression for the shear force V in the beam: 
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Note that the shear force in Eq. (3.16) is twice its value in Eq. (3.11), due to the presence of bending 
moment at two shear connections rather than just one. Substitution of Eqs. (3.10) and (3.16) into Eq. (3.6) 
then yields the following expression for the vertical load P:  

 2 sin 2 cos
N N

i i
i

i i

t yP t
L

θ θ
 

= + 
 
∑ ∑  (3.17) 

Figure 3–31 shows (a) the vertical load P from Eq. (3.17) and (b) the axial tension T plotted against the 
vertical column displacement ∆. Also plotted in Figure 3–31(a) is the simplified approximation 
 P ≈ 2T sinθ, which neglects the contribution of the shear forces. Comparison with Figure 3–27(a) shows 
that neglecting shear forces results in a larger discrepancy for this case, with two shear connections per 
span, than it did for the case with exterior pin supports. The discrepancies are most significant in the early 
stages of loading, while the simplified approximation still captures the ultimate load fairly well. As in 
Figure 3–27, the numerical results in Figure 3–31 correspond to a chord length of L = 5.97 m (19.6 ft) and 
a bolt force-deformation relationship of the form illustrated in Figure 3–13(a), with the parameters listed 
in Table 3–2 for N-S beam connections. 

The ultimate vertical load in this case is 50.7 kN (11.4 kip), which is about 31 % larger than the ultimate 
load of 38.5 kN (8.7 kip) for the case with exterior pin supports, shown in Figure 3–27(a). The beam 
chord rotation at the ultimate load in this case is 0.0971 rad, which is also about 31 % larger than the 
rotation at ultimate load of 0.0739 rad for the case with exterior pin supports. While the peak axial force 
is about the same in both cases, the beam chord rotation corresponding to the peak axial force in this case 
is 0.0654 rad (see Figure 3–31(b)), which is about 31 % larger than the rotation of 0.0501 rad 
corresponding to the peak axial force for the case with exterior pin supports (see Figure 3–27(c)). The 
peak axial force is attained at a larger rotation in this case due to the greater axial deformation capacity of 
two shear connections compared with a single shear connection. Since the vertical component of the beam 
axial forces is given by 2T sinθ, it is noted that the same axial force occurring at a larger rotation results 
in a larger vertical load. It is therefore observed that the greater axial deformation capacity of two shear 
connections per span, as compared with a single shear connection per span, results in substantial increases 
in both the ultimate load and the corresponding column displacement.  

Figure 3–32 shows a comparison of the simplified spreadsheet calculations, for the two-span beam 
assembly with two shear connections per span, with computations using the detailed and reduced 
modeling approaches. The detailed model for this case is shown in Figure 3–33, and in both the detailed 
and reduced models, symmetry is exploited to model only a single beam span, as described previously. 
Figure 3–32 shows fairly good correspondence between the results of the detailed and reduced models 
and the spreadsheet calculation, although not quite as good as for the single shear tab connection in Figure 
3–28. Differences of about 3 % are observed among the predictions of the peak vertical load in Figure 3–
32(a), while differences of about 5 % are observed among the predictions of the peak axial force in Figure 
3–32(b). 
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Figure 3–31  (a) Applied vertical load and (b) beam axial force vs. vertical column displacement for two-span beam 

assembly with two shear connections per span. 
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Figure 3–32  Comparison of detailed model, reduced model, and spreadsheet calculation results for a two-span 

beam assembly with two shear connections per span: (a) vertical load and (b) axial force versus vertical 
displacement of center column. 

L = 5.96 m

 
Figure 3–33. Detailed model of N-S beam span in building A with shear connections at both ends 

One notable discrepancy in Figure 3–32 is that after the ultimate load is reached, the spreadsheet 
calculation consistently overestimates both the vertical load and the axial force relative to the detailed and 
reduced models. This is a consequence of the assumption, noted in Section 3.4.2, that the shear 
connections at both ends of the beam experience the same mid-height extension. As illustrated using 
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detailed model results in Figure 3–34, this assumption is appropriate up until the ultimate load is reached, 
but is not appropriate thereafter, because deformations tend to localize at one connection in the softening 
segment of the response. Figure 3–34(a) shows bolt hole deformations at the two ends of the beam at a 
vertical column displacement of 500 mm (20 in), which corresponds closely to the ultimate load of the 
assembly. At this displacement, the bolt hole deformations at the two ends of the beam are comparable. 
However, Figure 3–34(b) shows bolt hole deformations at the two ends of the beam at a vertical column 
displacement of 800 mm (31 in), in the softening segment of the response after the ultimate load has been 
reached. At this displacement, deformations have clearly localized, and Figure 3–34(b) shows 
significantly larger deformations at the right-hand connection than at the left hand connection. The 
reduced model is able to capture this localization of deformation as well, as shown in Figure 3–35, and 
thus matches the detailed model more closely than the spreadsheet calculation in the softening portion of 
the response. 

(a)

(b)

 
Figure 3–34  Localization of deformation in post-ultimate softening response of detailed model: (a) ∆ = 500 mm 

(20 in), near ultimate load; (b) ∆ = 800 mm (31 in), post ultimate load. 
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Figure 3–35  Localization of deformation in post-ultimate softening response of reduced model: (a) ∆ = 500 mm 

(20 in), near ultimate load; (b) ∆ = 800 mm (31 in), post ultimate load. 

3.5 BEHAVIOR OF PROTOTYPE SHEAR CONNECTIONS 

In Section 3.4, fairly good agreement was observed between the results of the detailed and reduced 
models, including the localization of deformation in the post-ultimate softening segment of the response. 
In this section, the reduced modeling approach is used to investigate the behavior of the shear tab 
connections in the prototype buildings (see Section 2.4) under column loss scenarios. Two-span beam 
assemblies with two shear connections per span, as depicted in Figure 3–30, are analyzed under 
displacement controlled loading of the unsupported center column. By considering two-span beams from 
different gravity frames in the prototype buildings, the influences of the span length and the connection 
strength can be considered. 

3.5.1 Influence of span length 

Both the N-S and the E-W shear tab connections in building A have three A325 bolts and are nominally 
equivalent, except that the N-S beam has a slightly thicker web than the E-W beam, resulting in a bearing 
capacity in tension that is about 9 % greater (see Table 3–2). However, the span of the N-S beams is 
6.1 m (20 ft), while the span of the E-W beams is 9.1 m (30 ft). Comparing the response of two-span 
beam assemblies from the N-S and E-W gravity frames of building A thus enables an assessment of the 
influence of span length on the behavior of the shear tab connections. 

Figure 3–36 shows a comparison of (a) the vertical load and (b) the beam axial force plotted against the 
rotation of the beam chord for the two assemblies with different span lengths (note the dual horizontal 
axes above the plots showing the vertical displacement of the center column for the different span 
lengths). While the peak axial force for the shorter span is only 7 % greater than for the longer span (a 
consequence of the slightly larger bearing capacity of the beam web), the difference in the vertical load 
capacity is significant, with the peak vertical load for the shorter span being 28 % greater than that for the 
longer span.  

The displacement at ultimate load for the shorter span is about 20 % less than for the longer span. 
However, when beam chord rotations are considered, as indicated below the plots in Figure 3–36, the 
rotation at ultimate load for the shorter span is actually about 18 % greater than that for the longer span. 
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The rotational capacity is greater for the shorter span because the axial force for a given rotation is 
smaller, as shown in Figure 3–36(b). Because the connections eventually fail primarily due to axial 
extension, the smaller axial forces for the shorter span enable the connection to sustain larger rotations 
prior to failure. Recalling that the vertical component of the beam axial forces is given by 2T sinθ  (see 
Section 3.4.2), it is noted that the same axial force occurring at a larger rotation results in a larger vertical 
load. It is thus observed that the greater rotational capacity of the shorter beam spans results in a 
substantial increase in the ultimate vertical load.  
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Figure 3–36  (a) Vertical load and (b) beam axial force vs. vertical displacement of center column for different span 
lengths with three bolts per shear tab connection. 

3.5.2 Influence of connection strength 

The E-W gravity frames in buildings A and B have the same bay spacing of 9.1 m (30 ft), but the E-W 
shear tab connections in building A have three bolts each, while those in building B have four bolts each. 
Comparing the response of two-span beam assemblies from the E-W gravity frames of buildings A and B 
thus enables an assessment of the influence of the number of bolts, or the connection strength, on the 
behavior of the shear tab connections. 

Figure 3–37 shows a comparison of (a) the vertical load and (b) the beam axial force plotted against the 
vertical displacement of the center column for the two assemblies with different numbers of bolts per 
connection. The peak vertical load for the four-bolt connection is almost exactly twice as large as that of 
the three-bolt connection, while the peak axial force is 1.8 times larger. It is thus observed that the vertical 
capacity of the assembly with four-bolt connections is substantially larger than that of the assembly with 
three-bolt connections, due primarily to the increased axial capacity of the connections. Note that the 
axial capacity of the four-bolt connection is more than 11∕3 times that of the three-bolt connection because, 
in addition to the larger number of bolts, the four-bolt connection has a thicker beam web (the beam web 
thickness, denoted tw, is indicated in Figure 3–37). This changes the failure mode from tear-out through 
the beam web to tear-out through the shear tab, resulting in bearing capacities for each bolt that are 45 % 
larger (see Table 3–2). The displacement (or rotation) at ultimate load is comparable in the two cases, 
being about 6 % larger for the four-bolt connection than for the three-bolt connection.  
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Figure 3–37  (a) Vertical load and (b) beam axial force versus vertical displacement of center column for 9.1 m 

(30 ft) beam spans with different numbers of bolts per shear tab connection. 

3.5.3 Influence of post-ultimate behavior 

In Section 3.2.1, alternate axial load-deformation relationships were presented for the bolt springs in the 
reduced model, depending on whether the controlling limit state was bearing failure or bolt shear failure. 
These alternate relationships differ in their post-ultimate behavior, with bearing failure characterized by a 
gradual softening and bolt shear producing a sudden drop in resistance. This distinction is illustrated in 
Figure 3–38, in which the curve labeled “gradual softening” corresponds to the parameters listed in Table 
3–2 for the E-W connections in building A, governed by bearing failure of the beam web, and the curve 
labeled “sudden fracture” is identical except that the failure displacement in tension has been reduced to 
1.15δu, which is the value used when bolt shear failure governs.  
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Figure 3–38.  Alternate post-ultimate behaviors of a single bolt row in a shear tab connection under axial tension 

For the shear tab connections in the prototype buildings, both calculations based on design equations (see 
Section 3.2.1) and detailed model computations (see Section 3.2.2) indicate that tensile failure is 
controlled by bearing failure. However, for other shear tab connections, bolt shear failure, or other failure 
modes characterized by sudden fracture, may certainly control. For the shear tab connections tested by 
Thompson (2009), three nominally identical specimens were tested for each connection size, and the 
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failure mode differed from test to test, being shear rupture of the bolts in some cases and tensile rupture or 
block shear failure of the shear tab in other cases. The observed tensile ruptures of the shear tabs were 
described as brittle, rather than ductile. While extensive bearing-induced elongations of the bolt holes 
were observed in all cases, the eventual failure modes were characterized by a sudden, rather than 
gradual, drop in resistance. Because such sudden fractures can occur, it is important to understand their 
effect on the overall structural response under column removal scenarios.  

To investigate this, the two-span beam assemblies from the prototype buildings, which were analyzed 
previously assuming a gradual softening behavior, were analyzed again assuming that sudden fracture 
occurs when the ultimate load of each bolt row is reached. The reduced connection model parameters 
used in these analyses were the same as those listed in Table 3–2, except for the failure displacement in 
tension, which was reduced to 1.15δu in all cases. 

Figure 3–39 shows a comparison of (a) the vertical load and (b) the beam axial force plotted against the 
vertical displacement of the center column for two-span beam assemblies with the alternate post-ultimate 
behaviors. These results correspond to the E-W gravity frames of building A, with a bay spacing of 9.1 m 
(30 ft) and with three A325 bolts per connection. Figure 3–40 and Figure 3–41 show similar results for 
the N-S gravity frames of building A and the E-W gravity frames of building B, respectively. In all cases 
the peak vertical load is significantly less for sudden fracture than for gradual softening, being 15 % less 
in Figure 3–39(a), 23 % less in Figure 3–40(a), and 16 % less in Figure 3–41(a). The peak axial forces are 
only slighty less for sudden fracture than for gradual softening, being 1 % less in Figure 3–39(b), 7 % less 
in Figure 3–40(b), and 2 % less in Figure 3–41(b). However, the axial forces are sustained for larger 
rotations in the case of gradual softening, resulting in larger vertical loads since the vertical component of 
the beam axial forces is given by 2T sinθ. It is thus observed that the connections characterized by gradual 
softening achieve increased vertical load capacity by sustaining comparable levels of axial tension under 
larger rotations. Rotational capacities of the connections are further discussed in the following section. 
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Figure 3–39  (a) Vertical load and (b) beam axial force versus vertical displacement of center column for different 

post-ultimate behaviors with 9.1 m (30 ft) beam spans and three bolts per connection. 
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Figure 3–40  (a) Vertical load and (b) beam axial force versus vertical displacement of center column for different 

post-ultimate behaviors with 6.1 m (20 ft) beam spans and three bolts per connection. 
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Figure 3–41  (a) Vertical load and (b) beam axial force versus vertical displacement of center column for different 

post-ultimate behaviors with 9.1 m (30 ft) beam spans and four bolts per connection. 

3.6 ROTATIONAL CAPACITIES 

In the spreadsheet calculation approach described in Section 3.4, the deformed geometry of two-span 
beam assemblies was used to derive kinematic relationships between the connection deformations and the 
overall deflections and rotations of the assemblies. In the following sections, such kinematic relationships 
are used to obtain expressions for the rotational capacity of the connections as functions of the span 
length and deformation capacity of the connections. Section 3.6.1 considers two-span beam assemblies 
with exterior pin supports, for comparison with the experimental data of Thompson (2009) (see Section 
3.3), while Section 3.6.2 considers two-span beam assemblies with two shear connections per span, for 
comparison with the reduced model results for the prototype shear tab connections (see Section 3.5).  

For both types of exterior support conditions, the axial extension of the ith bolt row in the connection to 
the center column, denoted δi, can be calculated using Eq. (3.9). In assessing rotational capacities, cases in 
which δi = δu are of interest, where δu is the deformation at the ultimate load of the bolt row, defined in 
Eq. (3.4) as a function of dbg, the depth of the bolt group. Substituting δi = δu into Eq. (3.9) and 
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introducing the approximation / Lθ ≈ ∆ , applicable for small angles, yields the following expression for 
the axial extension δ at the center of the connection when the ith bolt row reaches its ultimate load: 

 ,
u i

u i
y

L L L
δδ θ= −  (3.18) 

The subscript on ,u iθ  indicates the rotation at the ultimate load of the ith bolt row. Alternate expressions 

for the axial extension δ as a function of rotation θ  are presented for different support conditions in the 
following sections, allowing Eq. (3.18) to be solved for ,u iθ . 

3.6.1 Two-span beam assembly with exterior pin supports 

The deformed geometry of a beam span with an exterior pin support was shown previously in Figure 3–
25, in which the elevation of the pin support was assumed to be at mid-height of the bolt group at the 
opposite end of the span. In the tests conducted by Thompson (2009), the exterior pin support was located 
at mid-height of the beam, not at mid-height of the bolt group. This results in an initial vertical offset, 
denoted y , between the pin support and the center of the bolt group, as illustrated in Figure 3–42. 
Accounting for the influence of this offset on the rotation of the system, the extension δ at mid-height of 
the connection can be expressed as follows: 

 2 2( )L y Lδ θ= − + ∆ −  (3.19) 

∆

L

θ

 
Figure 3–42.  Deformed geometry of beam span with exterior pin support at beam mid-height 

Introducing the approximation / Lθ ≈ ∆ , applicable for small angles, Eq. (3.19) can be expressed as 

 21 2 1y
L L
δ θ θ = − + − 

 
 (3.20) 

in which a term 2 2( / )y L θ  has been dropped inside the radical, because it is negligibly small relative to 
the other terms. Substituting  Eq. (3.20) into Eq. (3.18) and rearranging yields the following quadratic 
equation for ,u iθ : 
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 2
, ,2 2 0i u u

u i u i
y y

L L L
δ δ

θ θ
−   + − + =   

   
 (3.21) 

in which the terms 2 2
,( / )i u iy L θ  and ,2( / )( / )i u u iy L Lδ θ  have been dropped, retaining terms up to the 

second order in quantities 1 . Solving the quadratic equation and taking the positive root yields the 
following expression for the rotation ,u iθ : 

 
2

, 2i u u i
u i

y y y y
L L L L

δ δ
θ

− −     = + + −     
     

 (3.22) 

Figure 3–43 shows θu,1, the rotation at ultimate load of the bottom bolt row, and θu,2, the rotation at 
ultimate load of the second bolt row from the bottom, plotted against the depth of the bolt group, dbg, for a 
beam span of L = 1.89 m (6.21 ft), corresponding to the tests of Thompson (2009).  Plotted with these 
analytical curves is the expression for θmax from Eq. (3.3), which is based on linear regression of data 
from cyclic flexural testing of simple shear connections reported in FEMA 355D (FEMA 2000). Recall 
that δu, defined in Eq. (3.4), was obtained directly from θmax by assuming pure rotation of the connection 
about the center of the bolt group in the cyclic testing. Figure 3–43 shows that θu,1 is significantly less 
than θmax, being 28 % less for the 3-bolt connection, 32 % less for the 4-bolt connection, and 35 % less for 
the 5-bolt connection. This indicates that the combination of rotation and axial extension in the 
configuration of Figure 3–42 causes the bottom bolt row to reach its ultimate load at a smaller rotation 
than under pure rotation. For the 4-bolt and 5-bolt connections, even the second bolt row from the bottom 
reaches its ultimate load at a rotation smaller than θmax, due to the axial component of deformation 
imposed on the connection. 

0

0.05

0.1

0.15

0.2

120 150 180 210 240 270 300 330

R
ot

at
io

na
l C

ap
ac

ity
 (

ra
d)

Depth of Bolt Group, dbg (mm)

: FEMA 355D (FEMA 2000)
Thompson (2009) data: initial failure
Thompson (2009) data: secondary failure

: analytical, bottom bolt row
: analytical, second bolt row from bottom

θu,1
θu,2

43 5
Number of Bolts, N

θmax

 
Figure 3–43.  Comparison of experimental and analytical rotational capacity values for L = 1.89 m (6.21 ft) with 

exterior pin supports (circles indicate mean values, while error bars indicate maximum and minimum values from a 
series of three tests) 
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Also plotted in Figure 3–43 are beam rotations corresponding to the initial and secondary failures 
reported by Thompson (2009), from tests described previously in Section 3.3. Load-displacement curves 
corresponding to the failure rotations in Figure 3–43 were presented in Figure 3–21, and in all but two 
cases (test 1 for the 4-bolt connection and test 3 for the 5-bolt connection), the peak reported vertical load 
was associated with the initial failure.  

The rotation values corresponding to initial failure in Figure 3–43 correspond quite well with θu,1, the 
analytical result for the rotation at which the bottom bolt row reaches its ultimate load. While θu,1 
underestimates the mean initial failure rotation of the 3-bolt connection by 23 %, it is within 6 % of the 
mean initial failure rotation of the 4-bolt connection and within 3 % of the mean initial failure rotation of 
the 5-bolt connection. Similarly, the rotation values corresponding to secondary failure correspond quite 
well with θu,2, the analytical result for the rotation at which the second bolt row from the bottom reaches 
its ultimate load. Although the secondary failure data is more limited, θu,2 is within 7 % of the secondary 
failure rotation of the 4-bolt connection (test 1) and within 11 % of the mean secondary failure rotation of 
the 5-bolt connection. This comparison indicates that the analytical expression in Eq. (3.22) captures 
fairly well both the initial and secondary failures observed experimentally. Because the vertical capacity 
in most tests was associated with the initial failure mechanism, it would seem prudent to estimate the 
rotational capacity of the connections based on failure of the bottom bolt row, using θu,1 rather than θu,2 as 
the rotational capacity estimate.  

3.6.2 Two-span beam assembly with two shear connections per span 

The deformed geometry of a beam span with two shear connections was shown previously in Figure 3–
30, and an expression for the extension of the connection at the center of the bolt group was presented in 
Eq. (3.15). Introducing the small-angle approximation / Lθ ≈ ∆ , Eq. (3.15) can be approximated as 

 ( )21 1 1
2L

δ θ= + −  (3.23) 

Substituting  Eq. (3.23) into (3.18) and rearranging yields the following quadratic equation for ,u iθ : 

 2
, ,4 4 1 0i u u

u i u i
y
L L L

δ δ
θ θ    + − + =    

    
 (3.24) 

in which the terms 2 2
,4( / )i u iy L θ  and ,8( / )( / )i u u iy L Lδ θ  have been dropped, retaining terms up to the 

second order in quantities 1 . Solving the quadratic equation and taking the positive root yields the 
following expression for ,u iθ : 
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L L L L

δ δ
θ      = + + −     

     
 (3.25) 

Figure 3–44 shows plots of ,1uθ  and ,2uθ  vs. dbg for beam spans of (a) 6.1 m (20 ft) and (b) 9.1 m (30 ft), 
along with the linear regression equation for θmax in Eq. (3.3), from FEMA 355D (FEMA 2000). Plotted 
with these analytical curves are values of rotational capacity corresponding to the peak vertical loads from 
the reduced model results shown in Figure 3–39, Figure 3–40, and Figure 3–41, for both gradual 
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softening and sudden fracture. The rotation values corresponding to sudden fracture in Figure 3–44 
correspond well with θu,1, the analytical result for the rotation at which the bottom bolt row reaches its 
ultimate load, while the rotation values corresponding to gradual fracture correspond well with θu,2, the 
analytical result for the rotation at which the bottom bolt row reaches its ultimate load.  

Comparing Figure 3–44(a) and Figure 3–44(b) shows that the rotational capacities are smaller for the 
longer span. This is because, for a given rotation θ, the axial extension δ increases linearly with L, 
according to Eq. (3.23), thus imposing greater deformations on the connections for longer spans. Note 
also that the rotational capacities in Figure 3–44 are lower than those shown in Figure 3–43 for a shorter 
beam span of L = 1.89 m (6.21 ft), even though the shorter beam span has only one shear connection per 
span, resulting in reduced axial deformation capacity (see Section 3.4.2). Figure 3–44 shows a slight 
increasing trend of  ,1uθ  and ,2uθ  with dbg for both span lengths, in contrast with the decreasing trend 
shown in Figure 3–43 for exterior pin supports at beam mid-height. The rotational capacities in Figure 3–
44 are significantly less than predicted by FEMA 355D (FEMA 2000), with ,1uθ  being as much as 62 % 
less than maxθ  for the 3-bolt connection with 9.1 m (30 ft) span.  
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Figure 3–44.  Comparison of analytical rotational capacities to values obtained from reduced models with two shear 

connections per span: (a) 6.1 m (20 ft) span; (b) 9.1 m (30 ft) span 

3.7 SUMMARY AND CONCLUSIONS 

Two alternative finite element modeling approaches were described for analysis of single plate “shear 
tab” connections under column loss scenarios: (1) detailed modeling and (2) reduced modeling. The 
detailed modeling approach used finely meshed solid elements, contact algorithms, and plasticity models 
calibrated to match stress-strain curves and fracture strains from tensile tests. Comparison with 
experimental data from bolted connections showed that detailed models are able to capture both bolt shear 
deformations and bearing-induced plate deformations, including the combination of these mechanisms 
that contributes to the overall deformation in shear tab connections. The reduced modeling approach used 
an assembly of nonlinear spring elements, one for each bolt row in a shear tab connection, with nonlinear 
load-deformation relationships that represent the combination of bolt shear and bearing-induced 
deformations. Yield and ultimate capacities of the nonlinear springs were calculated from equations in the 
AISC specification (AISC 2010), while the initial stiffness and the deformation at ultimate load are 
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calculating using empirical equations based on seismic testing of shear connections (FEMA 2000). 
Detailed model computations showed a steep drop in resistance after the ultimate load for connections 
governed by bolt shear failure but a more gradual softening behavior after the ultimate load for 
connections governed by bolt tearout. This distinction was reflected in the reduced models by using a 
steeper post-ultimate descent in the load-deformation curve for connections governed by bolt fracture 
than for those governed by bolt tearout. 

Both detailed and reduced models were compared with experimental data from a series of two-span beam 
assemblies subjected to displacement-controlled loading of the unsupported center column (Thompson 
2009). Assemblies with 3-bolt, 4-bolt, and 5-bolt shear tab connections were considered, and fairly good 
agreement was observed between the computed and experimental results, with deviations in the ultimate 
vertical load being generally less than 20 %, comparable to the variability in the measurements 
themselves. The detailed and reduced models were able to capture the successive stages of the measured 
responses, including (1) connection slippage, (2) flexural action, and (3) catenary action, in which tensile 
forces developed in the beams and increased until failure occurred. 

Detailed model simulations of the two-span beam assembly tests showed that plastic deformations were 
concentrated in the bolts and in bearing-induced elongations of the bolt holes, while the remainder of the 
beam remained in the elastic range. Motivated by this observation, a simple but fairly accurate 
spreadsheet calculation procedure for the load-deformation response of two-span beam assemblies was 
developed, based on the assumption that all of the deformation is concentrated in the connections, while 
the beam spans rotate as rigid bodies with negligible bending or axial deformations. Equations were 
derived for two-span beam assemblies with two different end support conditions: (1) exterior pin 
supports, as in the tests by Thompson (2009), and (2) two shear connections per span, as in a typical 
gravity framing system. The simplified spreadsheet calculations were compared with detailed and reduced 
model results for both types of end support conditions, and fairly good agreement was observed. The 
additional axial deformation capacity of two shear connections, as opposed to just one, was found to 
increase both the ultimate vertical load and the corresponding rotational capacity by about 30 %, while 
the peak axial tension remained about the same. This significant increase highlights the importance of 
axial deformation capacity on the collapse resistance of connections. The simplified spreadsheet 
calculation procedure was found to overestimate the post-ultimate capacity of the assembly with two 
shear connections per span, because it does not account for localization of deformation in the post-
ultimate softening response. Both the detailed and reduced models predicted localization of deformation 
at one end connection after the ultimate load was attained, resulting in a steeper drop in resistance. 

With confidence in the reduced modeling approach established through comparisons with experimental 
measurements and detailed model computations, reduced models were used to assess the resistance of 
two-span beam assemblies from the prototype buildings (see Section 2.4) under “pushdown” loading of 
an unsupported center column. By considering two-span beam assemblies from different gravity frames in 
the prototype buildings, the influences of span length and number of bolts could be considered. 
Comparing the response of two assemblies with span lengths of 6.1 m (20 ft) and 9.1 m (30 ft) and 
comparable 3-bolt connections, it was found that the ultimate vertical load was about 28 % greater for the 
assembly with the shorter span, while the peak value of the axial force was comparable in the two cases. 
The larger vertical capacity was due to the fact that the axial tension for a given rotation was smaller for 
the shorter span, enabling the connections to sustain larger rotations prior to exceeding their tensile 
capacity. Comparing the response of two assemblies with 3-bolt and 4-bolt connections and the same span 
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length of 9.1 m (30 ft), it was found that the ultimate vertical load was about twice as large for the 
assembly with the 4-bolt connections, due to primarily to the increased tensile capacity of the 
connections.  

The influence of post-ultimate softening behavior on the resistance of the two-span beam assemblies was 
also investigated using the reduced models, and it was found that changing the post-ultimate behavior 
from gradual softening (typical of bolt tearout) to sudden fracture (typical of bolt shear rupture) could 
reduce the ultimate vertical capacity by as much as 23 %, while the peak axial forces were reduced by 
only 7 % or less. Given the significant reduction in the ultimate vertical capacity associated with sudden 
fracture rather than gradual softening, it would seem prudent in assessing collapse resistance to assume 
that sudden fracture will occur, even if design calculations indicate that tearout failure controls. This 
conservative approach is supported by noting that all of the failures observed by Thompson (2009) 
exhibited sudden fracture rather than gradual softening and that factors such as plate overstrength could 
potentially shift the failure mode from bolt tearout to bolt shear rupture. 

Finally, kinematic relationships between the connection deformations and the overall deflections and 
rotations of the assemblies were used to derive expressions for the rotational capacity of the connections 
as functions of the span length and deformation capacity of the connections. Expressions were derived for 
two-span beam assemblies with (a) exterior pin supports at beam mid-height, for comparison with the 
experimental data of Thompson (2009) and (b) two shear connections per span, for comparison with the 
reduced model results for the prototype two-span beam assemblies. In both cases, fairly simple 
expressions were obtained for the rotation at which the ith bolt row reaches its ultimate load. Beam 
rotations corresponding to initial and secondary failures reported by Thompson (2009) were found to 
correspond quite well to the analytical results for the rotations at which the bottom bolt row and the 
second bolt row from the bottom, respectively, would reach their ultimate loads. Similarly, reduced model 
results corresponding to sudden fracture and gradual softening were found to correspond well with the 
analytical results for the rotations at which the bottom bolt row and the second bolt row from the bottom, 
respectively, would reach their ultimate loads. Rotational capacities were found to be as much as 62 % 
less than those based on seismic testing of shear connections (FEMA 2000), due to the axial component 
of extension imposed in addition to the rotations. This result is in contrast with experimental data from 
steel moment frames (Sadek et al., 2010), for which rotational capacities under simulated column loss 
were found to be about twice as large as those based on seismic test data. Even smaller rotational 
capacities are observed in subsequent analyses, when the contribution of the composite floor slab is 
included (see Section 5.3.3). 
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Chapter 4 
MODELING AND ANALYSIS OF COMPOSITE FLOOR SYSTEMS 

This chapter considers the modeling and analysis of the floor framing system, including the composite 
slab. As in the modeling of shear connections presented in Chapter 3, both detailed and reduced modeling 
approaches are considered for analyzing the behavior of the floor system under a column loss scenario. In 
presenting the modeling approaches and comparing the computed responses, a 2 bay × 2 bay portion of 
the floor system from prototype building A is considered, as illustrated in Figure 4–1. The slab in this 
floor system is assumed to be connected to the beams and girders (including those along the perimeter) by 
shear studs designed for fully composite action (see Table 2–2). The center column is unsupported 
vertically, and loads are applied gradually, as described in Section 4.1, to simulate quasi-static column 
loss. The detailed modeling approach, described in Section 4.2, follows the approach of Sadek et al. 
(2008) and Alashker et al. (2010) and uses a large number of solid, shell, and beam elements. The reduced 
modeling approach, described in Section 4.3, uses a smaller number of beam and spring elements, with a 
fairly coarse mesh of shell elements to represent the floor slab. Section 4.4 presents a comparison of 
computed results from the detailed and reduced models.  
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Figure 4–1. 2 bay × 2 bay gravity framing system from prototype building A 

4.1 QUASI-STATIC COLUMN LOSS 

In analyzing the behavior of the floor systems in this chapter, two different methods of loading are 
considered, as described in Alashker et al. (2010). The first method involves applying a concentrated load 
to the center column under displacement control, while the second method involves applying a gradually 
increasing uniform load to the entire slab under force control. The analyses are performed dynamically, 
using explicit time integration in LS-DYNA (Hallquist 2007), while both the prescribed displacement 
(under concentrated loading) and the applied load (under uniform loading) are increased gradually to 
maintain quasi-static loading conditions. 

Figure 4–2 shows force-displacement curves obtained from the two loading methods for the floor system 
in Figure 4–1(a), using the detailed model described in the following section. In both cases, the E-W 
connections to the center column have completely failed (i.e., all three bolt rows have reached their 
failure displacement and can no longer carry tension or shear) at a center column displacement of about 
600 mm (24 in). Under concentrated loading of the center column, the N-S connections have also 
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completely failed at a displacement of about 650 mm (26 in), after which no further load can be applied to 
the system, as shown in Figure 4–2(a). Under uniform loading of the floor slab, the N-S connections have 
completely failed at a displacement of about 800 mm (31 in), after which the system continues to carry 
load, as shown in Figure 4–2(b). Since the displacement of the center column is not meaningful after the 
column has completely detached from the beams and girders, the vertical displacement plotted on the 
horizontal axes in Figure 4–2 (and in subsequent figures) is the largest vertical displacement of the beam 
and girder ends originally attached to the center column. Prior to connection failure, this displacement 
matches very closely the displacement of the center column. Values of load intensity are plotted on the 
vertical axis for both concentrated and uniform loading, and the load intensity in the case of concentrated 
loading is calculated by dividing the applied load by the tributary area of 55.7 m2 (600 ft2) for the center 
column. As noted by Alashker et al. (2010), the capacity of the system obtained using the two loading 
methods is comparable when presented in terms of load intensity.  

Both the applied load and the total vertical reaction at the column bases are shown in Figure 4–2. In this 
study the load carried by the system is calculated as either the applied load or the total reaction, 
whichever value is smaller. Under static conditions, the reaction must equal the applied load. However, 
because dynamic analyses are performed, local failures can lead to acceleration of the structure, resulting 
in a difference between the applied load and the reaction that is balanced by inertial forces. Such inertial 
effects under concentrated loading are illustrated in Figure 4–2(a), in which a pulses in the vertical 
reaction are observed at displacements of about 600 mm (24 in) and 650 mm (26 in), as the floor system 
rebounds after failure of the connections to the center column. The peak reaction force in this case is not 
representative of the capacity of the system. Under uniform loading the reaction force can drop below the 
applied force when local failures occur, as illustrated in Figure 4–2(a), where dips in the reaction force at 
central column displacements of about 700 mm (28 in) and 1100 mm (43 in) are associated with 
downward acceleration of the structure. In such cases, the applied force is not representative of the 
capacity of the system. These examples illustrate that both the applied force and the reaction force can 
overestimate the capacity of the system under different conditions. Taking the smaller of the two values 
ensures that the capacity of the system is not overestimated due to dynamic effects associated with local 
failures. 
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Figure 4–2  Comparison of applied load and total reaction computed from detailed model: (a) concentrated load; 

(b) uniform load. (2 bay × 2 bay floor system from building A) 

4.2 DETAILED MODELING APPROACH 

Figure 4–3 shows a detailed model of the floor system in Figure 4–1, which is based on the model 
previously developed by Sadek et al. (2008). Only one quarter of the floor system is modeled, with 
appropriate boundary conditions on the planes of symmetry. The columns extend one story above and 
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below the floor slab, and the upper and lower ends of the columns are modeled as pinned. As shown in 
Figure 4–4(a), concrete in the floor slab is represented using solid elements, while the welded wire 
reinforcement is represented using beam elements sharing common nodes with the solid elements. Bond 
slip of the reinforcement is not considered. The profiled steel deck and the wide flange beam and column 
sections are represented using shell elements. Shear studs embedded in the concrete slab and connecting 
the steel deck to the floor beams are represented using beam elements sharing common nodes with the 
solid and shell elements of the concrete slab, steel deck, and wide flange beams. The typical edge length 
of the solid, shell, and beam elements in the model is about 38 mm (1.5 in). Sliding contact with a 
frictional coefficient of 0.3 was defined among the various components of the model to prevent 
interpenetration and to allow for the possibility of bearing (e.g., of the floor slab and/or beam flanges 
against the columns). 

center column
(unsupported)

 
Figure 4–3  Detailed model of composite floor system. 

(a)
W14x74 
column(b)  

Figure 4–4  Finite element mesh used in detailed model: (a) composite floor slab; (b) beam-to-column connections. 

4.2.1 Connection Modeling 

While Sadek et al. (2008) and Alashker et al. (2010) used specially calibrated shell elements to model the 
nonlinear behavior and failure of the shear tab connections, in this study the shear tab connections are 
represented using the nonlinear springs described previously in Section 3.2.1. As illustrated in Figure 4–
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4(b), these spring elements interconnect nodes of shell elements on the beam webs with nodes of shell 
elements representing the shear tabs. These bolt spring elements are used in both the detailed model of the 
floor system and in the reduced model described subsequently in Section 4.3, in order to ensure 
consistency in modeling of the shear connections under the two approaches.  

Two rows of shell elements represent each shear tab, as shown in Figure 4–4(b). Since bearing-induced 
deformations and failure are incorporated in the nonlinear bolt spring elements, shell elements in the row 
connected to the nonlinear spring elements are assigned an elastic material model to preclude local plastic 
deformations. Shell elements in the row connected to the column are assigned a piecewise linear plasticity 
material model, as described in the following section, to allow for yielding of the connections when 
subjected to torsion and transverse shear loading due to membrane action of the floor slab. Using this 
approach, load-displacement curves obtained for transverse shear and torque-rotation curves obtained for 
torsion were found to be reasonably consistent with corresponding curves obtained using high-fidelity 
solid-element models of the connections, described subsequently in Section 4.3.2.  

4.2.2 Material Modeling 

The various steel components in the model are represented using piecewise linear plasticity models: 
material type 3 in LS-DYNA for the beam elements representing shear studs and welded wire 
reinforcement, and material type 24 for the shell elements representing the steel deck, shear tabs, and 
wide flange sections. Stress-strain curves used in the models were calibrated to match the values of yield 
strength, tensile strength, and percent elongation listed in Table 2–1 for the various components. Fracture 
was modeled using element erosion, in which elements were deleted at a value of plastic strain 
corresponding to the specified elongation.  

Figure 4–5 shows engineering stress-strain curves used for the wire reinforcement, shear studs, and steel 
deck. Because ASTM standard A82 (ASTM 2007a) does not specify a minimum elongation for welded 
wire reinforcement, a value of 5 % was used for the fracture elongation, based on tensile test data reported 
by Gilbert and Sakka (2007), which indicated an elongation between 4 % and 6 % at fracture. Note that 
this is substantially less than the fracture elongation of 25 % used for the wire reinforcement by Sadek et 
al. (2008) and Alashker et al. (2010). The stress-strain curve shown in Figure 4–5 was used for the portion 
of the shear stud embedded in concrete, while the portion of the shear stud connecting the beam flange to 
the steel deck was modeled using a spot weld model (material type 100 in LS-DYNA), with a shear 
failure criterion based on the nominal shear strength from the AISC Specification (AISC 2010, Section 
I8.2a). The steel deck is modeled as continuous, under the assumption that connections between adjacent 
panels (e.g., shear studs welded to the floor beams through deck panels) are able to develop the full 
capacity of the deck. Computed force levels in the steel deck can be used to assess the required strength of 
such connecting elements to develop membrane action. 
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Figure 4–5  Engineering stress-strain curves used to represent wire reinforcement, shear studs, and steel deck. 

Two material models are considered for the concrete floor slab. The first is a three-invariant concrete 
damage model (material type 72R3 in LS-DYNA) used by Sadek et al. (2008) and Alashker et al. (2010) 
in their analyses of composite floor systems. The second is a continuous surface cap model (material type 
159 in LS-DYNA) used by Lew et al. (2011) in their analyses of reinforced concrete beam-column 
assemblies under a column removal scenario, which yielded good agreement with full-scale data. Material 
model parameters for both material types were generated automatically based on the specified minimum 
compressive strength of 20.7 MPa (3000 psi). Solid elements with reduced integration are used for both 
material types, so hourglass control is required to suppress spurious zero-energy modes of deformation, 
and an assumed strain co-rotational stiffness form of hourglass control was selected (hourglass control 
type 6 in LS-DYNA).  

Figure 4–6 shows a comparison of load-displacement curves obtained using the two concrete models 
under concentrated loading of the center column. For each model, curves are presented for different 
values of the hourglass control coefficient QM, and increases in the peak load with increasing QM are 
evident. Material type 72R3 generally yielded lower values of the peak load than material type 159 and 
exhibited somewhat greater sensitivity to the hourglass control coefficient QM. In this study, material 
type 159 is selected to represent the concrete slab, and a value of QM = 0.03 was deemed adequate for 
hourglass control, since further increases in QM produced only slight changes in the computed response.  
Using material type 159 with QM = 0.03, the hourglass energy at the peak vertical load, with a center 
column displacement of about 500 mm (20 in), was approximately 2.6 % of the external work done by the 
concentrated load. The combined effect of the concrete material type and the hourglass control coefficient 
illustrated in Figure 4–6 is the primary reason that the capacities obtained using the detailed model in this 
study, based on material type 159 with QM = 0.03, are larger than those reported previously by Sadek et 
al. (2008), based on material type 72R3 with QM = 0.003. Results of the detailed model are presented 
subsequently in Section 4.4, for comparison with results obtained using the reduced modeling approach 
described in the following section.  
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Figure 4–6  Influence of hourglass control coefficient QM on load-displacement curves for detailed models with 
different concrete material types: (a) Material type 72R3; (b) material type 159. (2 bay × 2 bay floor system from 

building A; concentrated load) 

4.3 REDUCED MODELING APPROACH 

Figure 4–7 shows a reduced model of the 2 bay × 2 bay floor system of Figure 4–1. As in the detailed 
model discussed previously, the columns extend one story above and below the floor slab, and the tops 
and bottoms of the columns are modeled as pinned. The wide flange beams and columns are represented 
using beam elements, while the floor slab is represented using shell elements. The finite element mesh in 
Figure 4–7 was generated with a target element size of 610 mm (24 in). The mesh is constructed in such a 
way that nodes along the beams are aligned directly below nodes of the shell elements representing the 
floor slab, so that these nodes can be interconnected by discrete elements representing shear studs. Details 
of the reduced modeling approach for the composite floor system and the beam-to-column connections 
are illustrated in Figure 4–8 and are discussed in the following sections. 

 
W14x74 
column  

Figure 4–7  Reduced model of composite floor system. 
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Figure 4–8  Finite element mesh used in reduced model: (a) composite floor system; (b) beam-to-column 

connection. 

4.3.1 Composite Floor Slab Modeling 

As illustrated in Figure 4–8(a), the concrete slab on steel deck is represented in the reduced model using 
alternating strips of shell elements denoted “strong” and “weak” strips, which are oriented parallel to the 
ribs in the steel deck. As illustrated in Figure 4–9, the weak strips include only the concrete above the top 
of the steel deck, while the strong strips include the full depth of concrete. No contribution from the steel 
deck is included in the weak strips, in order to represent the anisotropic behavior of the steel deck, which 
has much greater stiffness and strength along the ribs than across the ribs. Six integration points are used 
through the thickness of each shell element, with four integration points representing the concrete, a fifth 
integration point representing the welded wire, and a sixth integration point representing either the steel 
deck (for the strong strips) or a “dummy material” with negligible stiffness and strength (for the weak 
strips, to represent the absence of material below the top of the steel deck). The area of the steel deck 
represented in the strong strips corresponds only to the bottom surface of each rib, with a width of 
132 mm (5.2 in) for each 152 mm (6 in) rib. This is consistent with the observation based on detailed 
modeling by Alashker and El-Tawil (2011) that since the steel deck is attached to the steel beams by shear 
studs, only a portion of the steel deck effectively yields at peak load.  

 

welded wire reinforcement

steel deck

welded wire reinforcement

steel deck

strong strip strong stripweak strip

(a)

(b)

concrete

concrete

 
Figure 4–9  Reduced modeling of composite floor slab: (a) actual profile; (b) alternating strong and weak strips. 

Alashker et al. (2011) proposed a different approach for reduced modeling of the composite floor slab, in 
which lines of beam elements parallel to the ribs were used to represent the steel deck. Kwasniewski 
(2010) used alternating strips of shell elements to represent a composite floor slab with steel deck. 
However, Kwasniewski (2010) incorporated integration points representing the steel deck in both types of 
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alternating strips, while the proposed approach includes the steel deck only in the strong strips, as just 
discussed, to represent the anisotropic behavior of the steel deck.  In addition, the strips of shell elements 
proposed by Kwasniewki (2010) were of the same width as the ribs of the steel deck, while results 
presented in the following show that strips much wider than the rib width can be used in order to enhance 
computational efficiency, without significant loss in accuracy. Figure 4–10 shows three different shell 
element mesh sizes considered for the floor slab, where the strips of shell elements in Figure 4–10(c) are 
about twice as wide as the ribs, the strips in Figure 4–10(b) are about four times as wide as the ribs, and 
the strips in Figure 4–10(a) are about seven times as wide as the ribs. Two possible arrangements for the 
alternating strips are also considered, as illustrated in Figure 4–11, in which either (a) the weak strips or 
(b) the strong strips are located along the girders. 

(b) (c)(a)  
Figure 4–10  Shell element meshes of floor slab with element sizes of (a) 1016 mm, (b) 610 mm, and (c) 295 mm. 
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Figure 4–11  Alternative arrangements for strips of shell elements in reduced models: (a) weak strips along girders; 

(b) strong strips along girders. 

Figure 4–12 shows the influence of mesh refinement on load-displacement curves obtained for the 
alternative strip arrangements shown in Figure 4–11, under concentrated loading of the center column. 
Figure 4–12(a) shows that placing the weak strips along the girders, as in Figure 4–11(a), yields results 
that are quite insensitive to the mesh size. As shown subsequently in Section 4.4, these results are also in 
good agreement with results of the detailed model. In contrast, Figure 4–12(b) shows that placing the 
strong strips along the girders, as in Figure 4–11(b), substantially overestimates the peak loads for the 
largest mesh size and yields results that change noticeably with mesh refinement, converging slowly 
towards the results in Figure 4–12(a). This comparison shows that placing the weak strips along the floor 
beams is preferable, enabling the use of larger shell elements in the floor slab without sacrificing 
accuracy. Consequently, the mesh arrangement illustrated in Figure 4–11(a) is used in the reduced models 
throughout the remainder of this report. The intermediate mesh size of 610 mm (24 in) is used for 
subsequent analyses, as it yields results that are consistent with the smaller mesh size, but with a 
significantly reduced computation time, while yielding better spatial resolution in the computed slab 
forces than the larger mesh size. 
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Figure 4–12  Influence of mesh refinement on load-displacement curves for reduced models: (a) weak strips along 

girders; (b) strong strips along girders. (2 bay × 2 bay floor system from building A; concentrated load) 

4.3.2 Shear Connection Modeling 

The reduced modeling approach used for the shear tab connections is illustrated in Figure 4–8(b). The 
primary components of the connection model are the bolt springs, previously discussed in Section 3.2, 
which are interconnected with rigid links to maintain the proper connection geometry. A “gap spring” is 
added at the level of the bottom flange of the beam, to allow bearing forces to be transmitted if the initial 
gap between the beam flange and the column closes. As shown in Figure 2–3, the initial gap is 25.4 mm 
(1 in) for the connections considered in this study. Concrete contact springs could also be included to 
represent bearing of the concrete slab against the columns, using properties defined in Sadek et al. (2008). 
However, these concrete contact springs were found to have a negligible effect for column removal 
scenarios considered in this study and therefore were not included in the analyses. 

Because of the three-dimensional nature of the composite floor system considered here, an additional 
discrete beam element (labeled “shear tab” in Figure 4–8(b)) is used to represent the torsional and 
transverse shear behavior of the shear tab connection. When membrane forces develop in the floor slab, 
transverse forces are transmitted to the top flanges of the floor beams through the shear studs, subjecting 
the connections to a combination of torsion and transverse shear.  

The torsional and tranverse shear behavior of the connections was analyzed using detailed models of the 
shear connections subjected to torsional rotation about the center of the bolt group, as illustrated in Figure 
4–13(b), and transverse displacement, as illustrated in Figure 4–13(c). Figure 4–14 shows (a) the torque 
vs. torsional rotation and (b) the transverse shear force vs. transverse displacement curves obtained from 
detailed models of the 3-bolt and 4-bolt connections shown in Figure 2–3, along with simplified 
piecewise-linear representations of these curves used in the reduced models. The ultimate failure modes 
of the connections were rupture of the shear tab near the welded edge for torsion and tearout of the bolts 
through the beam web for transverse shear. 

A discrete beam element formulation (beam element type 6 in LS-DYNA) is used for the “shear tab” 
beam, with material type 119, which allows arbitrary load-deformation and moment-rotation curves to be 
defined along orthogonal coordinate axes (Hallquist 2007). The reduced model curves shown in Figure 4–
14 are specified for the torsional and transverse shear behavior of the “shear tab” beam element, while the 
axial, vertical shear, and bending behavior are modeled using the elastic stiffness of the shear tab. In this 
manner, the torsional and transverse shear behavior of the connection is represented by the “shear tab” 
beam element, while the in-plane axial, shear, and bending behavior is represented by the bolt springs. To 
ensure that the bolt springs contribute only to the in-plane behavior, a large stiffness is specified for these 
elements in the out-of-plane direction. 
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 (a) (b) (c)  
Figure 4–13.  (a) Detailed model of 3-bolt shear tab connection subjected to (b) torsion and (c) transverse shear. 
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Figure 4–14.  Comparison of detailed and reduced models for (a) torsional and (b) transverse shear behavior of 

shear tab connections 

4.3.3 Material Modeling 

As discussed previously in Section 4.3.1, distinct integration points through the thickness of the floor slab 
are used for the concrete, welded wire reinforcement, and steel deck. The concrete in the floor slab is 
modeled using material type 172 in LS-DYNA, which includes concrete cracking in tension and crushing 
in compression, based on material data and equations from Eurocode 2, part 1.2. The minimum specified 
compressive strength of 20.7 MPa (3000 psi) is used in the model, with a tensile strength of 2.07 MPa 
(300 psi). 

The welded wire reinforcement and steel deck are represented using a piecewise linear plasticity model 
(material type 24 in LS-DYNA) with stress-strain curves calibrated to match those shown in Figure 4–5. 
The welded wire reinforcement and the steel deck are modeled as continuous, under the assumption that 
splices and connections between adjacent panels are able to develop the full capacity of the material. For 
the strong strips of shell elements (see Figure 4–9), element erosion is specified at an engineering strain of 
20 %, corresponding to fracture of the steel deck. For the weak strips, element erosion is specified at a 
larger engineering strain of 38 %, corresponding to the strain at which the steel deck would be completely 
flat, after unfolding of the ribs. The wide flange beam and column sections are also modeled using 
material type 24 in LS-DYNA, with stress-strain curves calibrated to match the yield stress, ultimate 
stress, and elongation values listed in Table 2–1 for ASTM A992 steel. 
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4.3.4 Shear Stud Modeling 

As illustrated in Figure 4–8(a), rigid links extend vertically from the centerline of the beams and girders 
to the top-of-steel elevation, and discrete beam elements representing shear studs connect these rigid links 
to nodes of the shell elements representing the floor slab. Using a discrete beam formulation (beam 
element type 6 in LS-DYNA with material type 119), the force vs. slip curve labeled “reduced model” in 
Figure 4–15 is used to represent the shear behavior of the shear studs.  

The initial portion of the piecewise-linear “reduced model” curve in Figure 4–15 approximates the 
empirical load-slip relationship proposed by Ollgaard et al. (1971) based on pushout testing of shear studs 
without steel deck. The empirical curve is also plotted in Figure 4–15, and while the curve is plotted up to 
a slip of 25 mm (1 in), it is noted that the equation is only intended to represent the initial load-slip 
behavior, up to slip of about 5 mm (0.2 in), for which the empirical relationship yields a normalized shear 
force value of 0.99. While Ollgaard et al. (1971) considered the initial load-slip behavior of shear studs 
without steel deck, Rambo-Roddenberry (2002) described the behavior at larger slip values of shear studs 
welded through steel deck, and the plateau region of the reduced model curve in Figure 4–15 is based on 
the behavior observed by Rambo-Roddenberry. For 19 mm (3∕4 in) diameter shear studs, Rambo-
Roddenberry (2002, p. 114) measured an average slip of 5.8 mm (0.23 in) at the ultimate load. Rambo-
Roddenberry (2002, p. 71) also noted that for shear studs in the weak position (i.e., with less concrete on 
the compression side of the shear stud than on the tension side), the load remained constant for values of 
slip between 5 mm and 15 mm (0.2 in and 0.6 in) or more, after which the load either fell steadily or in 
some cases increased further. Based on these observations, the shear force in the reduced model curve 
remains constant at the ultimate load between 5 mm and 15 mm (0.2 in and 0.6 in), after which it drops 
linearly to zero at a displacement of 25 mm (1 in). The ultimate shear strength of a 19 mm (3∕4 in) 
diameter shear stud was calculated as Qu = 76.1 kN (17.1 kip) based on the AISC Specification (AISC 
2010, Section I8.2a). 

The number of shear studs along each beam in the model depends on the mesh size, but is generally less 
than the number specified in the design, and the shear force values are scaled up accordingly. Elastic 
rotational stiffness is also specified for the shear stud elements to provide torsional restraint along the top 
flange of the floor beams.  
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Figure 4–15  Shear force versus slip relationship for shear studs used in reduced models. 
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4.4 COMPARISON OF MODEL PREDICTIONS 

Figure 4–16 shows a comparison of load-displacement curves obtained using the detailed and reduced 
models of the 2 bay × 2 bay floor system in Figure 4–1 under (a) concentrated loading of the center 
column and (b) uniform loading of the entire slab. Good general agreement is observed between the 
detailed and reduced models, providing verification of the reduced modeling approach. Under uniform 
loading, the reduced model is quite consistent with the detailed model up to the initial peak load at a 
displacement of about 600 mm (24 in), prior to failure of the connections to the center column. After 
failure of these connections, the detailed model predicts load values that are slightly greater than those 
from the reduced model. The slightly larger strength predicted by the detailed model is partly a 
consequence of the resistance of the steel deck to extension in the across-rib direction. This resistance is 
neglected in the reduced model by using weak strips with no contribution from the steel deck (see Figure 
4–9). However, the differences between the detailed and reduced model remain fairly small, and the 
predictions of the reduced model are conservative, so the reduced modeling approach is considered 
acceptable for assessing the collapse resistance of composite floor systems. Throughout the remainder of 
this report, results are presented using the reduced modeling approach. 
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Figure 4–16  Comparison of load-displacement curves from detailed and reduced models: (a) concentrated load; (b) 

uniform load. (2 bay × 2 bay floor system from building A) 
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Chapter 5 
ASSESSMENT OF COLLAPSE RESISTANCE 

Assessing the collapse resistance of steel gravity frame systems involves comparing the capacity of the 
structure with the demands imposed, in the form of gravity loads. While Section 4.1 presented procedures 
for the analysis of quasi-static column loss, the demands imposed under sudden column loss are higher 
than those under static loading. Gudmundsson and Izzuddin (2010) discuss the “sudden column loss” 
idealization and note that it provides a useful event-independent design scenario for disproportionate 
collapse assessment. For these reasons, sudden column loss, in addition to quasi-static column loss, is 
considered for assessing the collapse resistance of steel gravity frame systems in this chapter. 

Section 5.1 presents two approaches for assessing structural capacity under sudden column loss. The first 
approach involves direct dynamic analysis of the structural response to instantaneous loss of the column’s 
vertical support. The second approach involves a simplified approximate procedure proposed by Izzuddin 
et al. (2008) based on the balance between internal energy and external work at the peak dynamic 
displacement. In Section 5.2, the gravity loads used for analysis of the floor system are considered, 
including both an “extraordinary event” load combination used in ASCE 7-10 (ASCE 2010) and UFC 4-
023-03 (DOD 2009) and a lower level of loading corresponding to the expected gravity loading. In 
Section 5.3, the collapse resistance of the prototype floor systems is assessed by comparing the capacities 
under both quasi-static and sudden column loss to the imposed gravity loading. In some cases the capacity 
is found to be inadequate to sustain even the lower level of expected gravity loading. Section 5.4 presents 
an assessment of current structural integrity requirements, including the requirements incorporated for 
high-rise buildings in the 2010 version of the International Building Code (ICC 2010) and the tie force 
requirements in UFC 4-023-03 (DOD 2009). The 2010 IBC requirements are found to be inadequate to 
prevent collapse in a column loss scenario, even under the expected gravity loading. The UFC 4-023-03 
requirements, on the other hand, are found sufficient to prevent collapse of the prototype floor systems 
under the “extraordinary event” gravity load combination. Section 5.5 investigates the tie forces required 
to prevent collapse by considering the capacity of floor systems with varying levels of slab reinforcement.  

5.1 SUDDEN COLUMN LOSS 

5.1.1 Direct Dynamic Analysis 

The procedure used for direct dynamic analysis of sudden column loss is similar to that presented by 
Alashker et al. (2010). The procedure is illustrated here for the 2 bay × 2 bay floor system from 
building A shown in Figure 4–1. Uniform gravity loading of w = 4.36 kN/m2 (91.1 lbf/ft2) is first applied 
gradually over a period of 1 s using a smooth ramp function and is held constant for 0.25 s to avoid 
introduction of spurious dynamic effects. This gravity initialization phase is indicated in the plot of the 
vertical reaction at the base of the center column in Figure 5–1(a), where a slight dip in the column 
reaction between t = 1.0 s and t = 1.25 s is due to dynamic effects associated with the gravity 
initialization. The vertical deflections of the floor system at the end of the gravity initialization phase are 
shown in Figure 5–2(a). At t = 1.25 s, the vertical support of the center column is suddenly removed. 
(This is accomplished in LS-DYNA by using a *BOUNDARY_PRESCRIBED_MOTION card to impose 
a zero displacement constraint that is removed at the specified time.) As shown in Figure 5–1(b), the 
column drops vertically to a peak dynamic displacement of 595 mm (23.4 in) at t = 1.9 s before 
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rebounding and oscillating about a new equilibrium position. The computed vertical deflections of the 
floor system at the instant of peak displacement are shown in Figure 5–2(b). In this case the floor system 
is able to sustain the applied loading under sudden column loss without collapse. 

By repeating this analysis procedure for different levels of the uniform load intensity wk, and calculating 
in each case the peak dynamic deflection ∆k, discrete points on a load-displacement curve for sudden 
column loss can be generated, as illustrated in Figure 5–3. Different values of the load intensity wk are 
achieved in the computational model by adding distributed mass to the floor slab in addition to the self-
weight. Gravity loading is applied by imposing body forces due to gravitational acceleration in the model 
(using the LOAD_BODY_Z card in LS-DYNA). In this manner, both the gravity loading and the inertia 
of the structure are correctly represented. The resulting curve in Figure 5–3 represents the dependence of 
the peak dynamic displacement under sudden column loss on the intensity of the uniform gravity load 
acting on the floor slab.  
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Figure 5–1. (a) Vertical reaction at center column base and (b) vertical displacement of center column in 2 bay × 

2 bay floor system from building A under sudden column loss 
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Figure 5–3. Direct analysis procedure for generating a load-displacement curve for sudden column loss 
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5.1.2 Approximate Analysis Based on Energy Balance 

While the procedure described in the previous section requires a separate dynamic analysis to be 
performed for each point on the resulting load-displacement curve (corresponding to various load 
intensities), a load displacement curve for sudden column loss can be generated more efficiently using the 
“simplified dynamic assessment” procedure proposed by Izzuddin et al. (2008). This procedure, which is 
summarized here in a slightly different form, is based on the assumption that the structure responds in a 
single mode of deformation, whereby it can be analyzed as a single-degree-of-freedom system. It then 
follows that at the instant of peak displacement after sudden column removal, the kinetic energy must be 
zero, and the internal work done by the structure (Wint) must equal the external work done by the applied 
loads (Wext).  

In a sudden column loss scenario, the external work done by the applied loads in reaching the peak 
dynamic displacement ∆o can be expressed as  

 ext SCL oW wα= ∆  (5.1) 

where SCLw  is the unknown value of the uniform load that produces a peak dynamic displacement of o∆  
after sudden column loss, and α is a constant (also unknown, with units of area) that depends on the shape 
of the deformation mode. Assuming the same deformation mode under static loading, the internal energy 
at displacement ∆o can be expressed as 

 int 0
( )o

staticW w dα
∆

= ∆ ∆∫  (5.2) 

where the function w = wstatic(∆), illustrated in Figure 5–4, represents a load-displacement curve obtained 
from a quasi-static pushdown analysis under uniform load, as described in Section 4.1. Equating internal 
and external work allows the unknown constant α to be eliminated, yielding the following equation: 

 
0

( )o

SCL o staticw w d
∆

∆ = ∆ ∆∫  (5.3) 

The right-hand side of Eq. (5.3) represents the shaded area in Figure 5–4, while the left-hand side 
represents the hatched area. Eq. (5.3) then yields the following expression for the load intensity wSCL that 
yields a peak dynamic displacement of ∆o after sudden column loss:   

 
0

1 ( )o

SCL static
o

w w d
∆

= ∆ ∆
∆ ∫  (5.4) 
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Figure 5–4. Approximate procedure for generating a load-displacement curve for sudden column loss 
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By evaluating Eq. (5.4) with varying ∆o, the function w = wSCL(∆) can be obtained, which represents the 
load-displacement curve for sudden column loss, shown by the dashed curve in Figure 5–4. In this 
manner, the dynamic enhancement associated with sudden column loss can be included using only the 
results from a static pushdown analysis. The Dynamic Increase Factor (DIF) at a given displacement, 
denoted ( )Ω ∆ , can be defined as follows: 

 ( )( )
( )

static

SCL

w
w

∆
Ω ∆ =

∆
 (5.5) 

5.1.3 Comparison of Direct and Approximate Analysis Results 

Figure 5–5 shows a comparison of load-displacement results for sudden column loss obtained using the 
direct and approximate analysis procedures just described. These results correspond to the 2 bay × 2 bay 
floor system shown in Figure 4–1 under loss of the center column. Three different load-displacement 
relationships are presented in Figure 5–5. The first relationship, presented as a solid curve, was obtained 
from quasi-static uniform loading of the floor system under force control, as described previously in 
Chapter 4. This curve is the same as that previously presented in Figure 4–16(b) for the reduced model. 
The second relationship, presented using open circles, corresponds to direct dynamic analysis of sudden 
column loss. These values were generated using the procedure illustrated in Figure 5–3. The third 
relationship, presented as a dashed curve, also corresponds to sudden column loss but was generated 
based on the solid curve using the approximate procedure illustrated in Figure 5–4. Fairly good agreement 
is observed in Figure 5–5 between the results for sudden column loss using the direct and approximate 
analysis procedures, with differences in the calculated load intensity for a given peak displacement being 
less than 10 %. Figure 5–5 also presents the estimated ultimate capacity under sudden column loss, 
denoted wSCL,u, which is discussed in the following section. 

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

U
ni

fo
rm

 L
oa

d 
In

te
ns

ity
, w

(k
N

/m
2 )

Vertical Displacement of Center Column, ∆ (mm)

sudden column loss – direct analysis
sudden column loss – approximate: wSCL(∆)

static pushdown (uniform load): wstatic(∆)

∆ u

wSCL,u

sudden column loss – ultimate (wSCL,u)

 
Figure 5–5. Comparison of load-displacement results from direct and approximate analyses of sudden column loss 

(2 bay × 2 bay floor system from building A) 

5.1.4 Determination of Ultimate Capacity under Sudden Column Loss 

While Izzuddin et al. (2008) used a limit state of first connection failure in assessing structural capacity, 
the analysis procedure described in Section 4.1, with uniform loading under force control, allows the 
quasi-static load-displacement curve w = wstatic(∆) to be evaluated beyond the initial failure of connections 
to the ultimate static capacity of a structural system. Let ∆u denote the vertical column displacement 
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corresponding the ultimate static capacity, as illustrated in Figure 5–5. Even for displacements exceeding 
∆u, Figure 5–5 shows good agreement between the direct and approximate analysis results for sudden 
column loss, confirming that the approximate procedure illustrated in Figure 5–4 remains applicable even 
after connection failures have occurred.  

It is evident in Figure 5–5 that the function w = wSCL(∆) can continue to increase for displacements 
exceeding ∆u, due to residual, post-ultimate resistance of the structural system. Provided that 
wstatic(∆) > wSCL(∆), the analysis predicts that collapse will not occur. However, uncertainties in model 
predictions increase significantly in the post-ultimate response, particularly given the force-controlled 
nature of the uniform loading protocol, which produces accelerations and increasing dynamic effects after 
the ultimate capacity of the system is exceeded. The assumption of an unchanging mode of deformation, 
inherent in Eq. (5.4), may also become less appropriate after the ultimate load has been exceeded and 
displacements become very large. For this reason, and for the sake of conservatism, the ultimate capacity 
under sudden column loss, denoted wSCL,u, is evaluated at the displacement ∆u corresponding to the 
ultimate static load (see Figure 5–5): 

 , ( )SCL u SCL uw w= ∆  (5.6) 

A maximum permissible displacement ∆max can also be introduced, so that if the uniform load wstatic(∆) is 
still increasing at ∆max, the ultimate static load is limited to its value at this displacement. In other words, 
the ultimate static load is evaluated over an interval between 0 and ∆max in the vertical displacement ∆:  

 [ ]
max0

( ) max ( )static u staticw w
<∆≤∆

∆ = ∆  (5.7) 

In this study, ∆max = 1300 mm (51.2 in) is selected as the maximum permissible displacement for 
evaluation of ultimate capacities. This corresponds to the approximate displacement at which erosion of 
shell elements representing the floor slab is first observed for the analysis results illustrated in Figure 5–5. 
Element erosion represents fracture of the steel deck and is observed at a value of strain corresponding to 
complete unfolding of the steel deck in the across-rib direction (see Section 4.3.3). While shell element 
erosion occurs at somewhat larger displacements in other analyses presented subsequently, the selected 
value of ∆max is sufficiently large that in almost all cases, the ultimate static load occurs prior to ∆max.  

5.2 GRAVITY LOADS 

5.2.1 Load Combination for Extraordinary Events 

ASCE 7-10 (ASCE 2010, Section 2.5.2.2) specifies the following load combination for assessing residual 
capacity of structural systems following the notional removal of load-bearing elements: 

 (0.9 or 1.2) 0.5 0.2(  or  or )rD L L S R+ +  (5.8) 

where D is dead load, L is live load, Lr is roof live load, S is snow load, and R is rain load. For the floor 
systems considered in this study, this load combination can be simplified as follows: 

 1.2 0.5D L+  (5.9) 

in which the factor 1.2 is selected for the dead load, rather than 0.9, because gravity loads do not stabilize 
the structural system. Roof live loads, snow loads, and rain loads are omitted because a typical 
intermediate floor of the structure is considered. For a typical floor in the prototype buildings (see 
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Chapter 2), the total dead load D is 3.64 kN/m2 (76 lbf/ft2), which includes the floor self-weight of 
2.2 kN/m2 (46 lbf/ft2) and a superimposed dead load of 1.44 kN/m2 (30 lbf/ft2). 

The live load L in this combination is reduced based on Eq. (4.7-1) in ASCE 7-10, which can be written 
as: 

 
0.5    (if supporting one floor)

0.25
0.4    (if supporting multiple floors)

oo
o

oLL T

L
L L

LK A
λ  

= + ≥     
 (5.10) 

where λo = 4.57 m (15 ft), AT is tributary area, and KLL is the live load element factor given in Table 4-2 of 
ASCE 7-10 (ASCE 2010).  

Minimum specified values of the live load Lo for different occupancies in an office building are listed in 
Table 5–1, from Table 4–1 of ASCE 7-10 (ASCE 2010). In the structural design of the prototype 
buildings (see Chapter 2), the largest of these live load values, Lo = 4.79 kN/m2 (100 lbf/ft2), was 
conservatively applied to the entire area of each typical floor, with reduction according to Eq. (5.10). This 
value of live load applies to lobbies and first-floor corridors, and is thus considered too conservative for 
assessment of residual capacity of an upper floor, as considered here. A value of Lo = 2.40 kN/m2 
(50 lbf/ft2), applicable to offices, is used instead.  

The live load is reduced according to Eq. (5.10), based on the influence area KLLAT of a typical floor 
beam, for which KLL = 2. Influence areas for typical floor beams in buildings A and B (see Figure 2–1) are 
listed in Table 5–2, along with the corresponding live load reduction factors calculated from Eq. (5.10) 
and the resulting values of the reduced live load Loffice. Using this level of live loading in the load 
combination of Eq. (5.8) yields the values of uniform floor load listed in Table 5–2. 

 
Table 5–1. Minimum specified live loads for different occupancies in an office building 

Occupancy Uniform Live Load, Lo 
kN/m2 (lbf/ft2) 

Offices 2.40 (50) 

Corridors above first floor 3.83 (80) 

Lobbies and first-floor corridors 4.79 (100) 

 
Table 5–2. Gravity loads used for assessing collapse resistance 

Quantity Building A Building B 

Influence area of typical floor beam, KLLAT, m2 (ft2) 55.7 (600) 61.9 (667) 

Live load reduction factor, L ∕ Lo 0.862 0.831 

Reduced live load for offices, Loffice , kN/m2 (lbf/ft2) 2.06 (43.1) 1.99 (41.6) 

Combined floor load, 1.2D + 0.5Loffice , kN/m2 (lbf/ft2) 5.40 (113) 5.36 (112) 
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5.2.2 Expected Gravity Loading 

In some of the analyses presented subsequently, the floor systems are unable to sustain the combined 
loading from Eq. (5.9), given in Table 5–2. In such cases, it is of interest to compare the capacity of the 
floor systems with the expected (or “point-in-time”) value of the gravity loading. This lower level of 
gravity loading is given as follows: 

 survey1.05D L+  (5.11) 

where Lsurvey = 0.52 kN/m2 (10.9 lbf/ft2) denotes the mean live load for offices based on survey data, from 
Table C4-2 of ASCE 7-10 (ASCE 2010). Note that the live load contribution to the combined floor load 
in Table 5–2, given by 0.5Loffice, equals 1.03 kN/m2 (21.6 lbf/ft2) for building A and 0.99 kN/m2 
(20.8 lbf/ft2) for building B. These values are about twice as large as the mean live load based on survey 
data.  

The dead load factor in Eq. (5.11) is taken as 1.05 in order to more accurately represent the expected dead 
load. As noted by Ellingwood et al. (2007, p. 22), the dead load factor of 1.2 in the load combination of 
Eq. (5.8) might appropriately be taken as 1.0, but it is conservatively kept as 1.2 because the mean dead 
load in modern construction typically exceeds the nominally specified value by 5 % to 10 %. The total 
gravity loading given by Eq. (5.11) equals 4.34 kN/m2 (90.7 lbf/ft2) for both buildings A and B. The 
values of 1.2D + 0.5Loffice listed in Table 5–2 thus exceed the expected floor loading by about 24 %. 

 

5.3 ANALYSIS OF PROTOTYPE FLOOR SYSTEMS 

5.3.1 Prototype Building A: 6.10 m by 9.14 m (20 ft by 30 ft) Bay Spacing 

Figure 5–6 shows a comparison of the two levels of gravity loading with load-displacement curves for (a) 
2 bay × 2 bay and (b) 4 bay × 4 bay floor systems from building A under column loss scenarios. The three 
load-displacement relationships in Figure 5–6(a) are the same as those presented previously in Figure 5–5 
for the 2 bay × 2 bay floor system shown in Figure 4–1, while Figure 5–6(b) presents corresponding 
curves for the 4 bay × 4 bay gravity framing system shown in Figure 5–7. Loss of the center column is 
considered in both cases. Since the focus of this study is on the collapse resistance of gravity frame 
systems, no moment frames are considered in the 4 bay × 4 bay framing system shown in Figure 5–7. The 
slab in the 4 bay × 4 bay system is assumed to be connected to the beams and girders (including those 
along the perimeter) by shear studs designed for fully composite action (see Table 2–2), as was assumed 
for the 2 bay × 2 bay system. Values of the approximate ultimate capacity under sudden column loss, 
wSCL,u from Eq. (5.6), are indicated with solid circles in Figure 5–6, and it is noted that wSCL,u in Figure 5–
6(b) corresponds to the maximum permissible displacement of ∆max = 1300 mm (47.2 in). 
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Figure 5–6. Load-displacement curves under central column loss for floor systems from building A with gradual 

softening in post-ultimate response of connections: (a) 2 bay × 2 bay; (b) 4 bay × 4 bay 
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Figure 5–7. 4 bay × 4 bay gravity framing system from prototype building A 

Figure 5–6(a) shows that the capacity of the 2 bay × 2 bay floor system from building A under sudden 
column loss is close to the expected gravity loading from Eq. (5.11). The direct analysis procedure 
predicts that collapse would not occur under the expected gravity loading, with a peak dynamic 
displacement of about 600 mm (24 in), which is comparable to the displacement ∆u at the ultimate static 
load of the system. The approximate ultimate capacity under sudden column loss, wSCL,u, conservatively 
evaluated at a displacement of  ∆u  according to Eq. (5.7),  is slightly less than the expected gravity 
loading. The 2 bay × 2 bay floor system is clearly unable to sustain the larger level of gravity loading, 
1.2D + 0.5Loffice, under sudden column loss.  

Figure 5–6(b) shows that the 4 bay × 4 bay floor system from building A is able to sustain both the 
expected gravity loading and the larger level of gravity loading, 1.2D + 0.5Loffice, under sudden loss of the 
center column, with peak dynamic displacements of about 250 mm (10 in) and 500 mm (20 in), 
respectively, under the two levels of loading. The continuity provided by the adjoining bays in the 4 bay × 
4 bay floor system is found to increase its capacity under quasi-static loading by 41 % (7.87 kN/m2 / 
5.58 kN/m2 = 1.41) and under sudden column loss by 63 % (6.74 kN/m2 / 4.14 kN/m2 = 1.63) relative to 
the 2 bay × 2 bay floor system. As observed previously for the 2 bay × 2 bay floor system in Figure 5–5, 
Figure 5–6(b) shows fairly good agreement for 4 bay × 4 bay system between the direct and approximate 
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analysis results for sudden column loss. Differences in the calculated load intensity for a given peak 
displacement are generally less than 10 %. Because of this good agreement and because of the much 
greater efficiency of the approximate analysis procedure, subsequent results use only the approximate 
procedure for analysis of sudden column loss. 

Figure 5–8 shows plots comparable to those in Figure 5–6, but while the results in Figure 5–6 were based 
on an assumption of gradual softening in the post-ultimate behavior of the connections [see Figure 3–
13(a)], the results in Figure 5–8 are based on an assumption of sudden fracture [see Figure 3–13(b)]. 
Comparing Figure 5–8(a) with Figure 5–6(a) shows that sudden connection fracture reduces the static 
capacity of the 2 bay × 2 bay system by 13 % (4.84 kN/m2 / 5.58 kN/m2 = 0.87) and reduces the 
corresponding capacity under sudden column loss (wSCL,u) by 17 % (3.45 kN/m2 / 4.14 kN/m2 = 0.83). 
Reductions for the 4 bay × 4 bay system are somewhat smaller, with a reduction of 9 % in the static 
capacity (7.15 kN/m2 / 7.87 kN/m2 = 0.91) and a reduction of 13 % in the capacity under sudden column 
loss (5.90 kN/m2 / 6.74 kN/m2 = 0.87). While these reductions are significant, it is noted that reductions 
by as much as 23 % in peak vertical capacity were observed for two-span beam assemblies without floor 
slab for sudden fracture vs. gradual softening (see Section 3.5.3). The contribution of the floor slab is thus 
found to make the composite framing systems somewhat less sensitive to the effect of sudden connection 
failure than the bare steel framing system. Because of the significant reductions in capacity that result 
from sudden connection fracture, and because sudden fractures have been observed experimentally 
(Thompson 2009, Weigand et al. 2012), all subsequent analyses in this report use connection models that 
represent sudden fracture in the post-ultimate response. 
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Figure 5–8. Load-displacement curves under central column loss for floor systems from building A with sudden 

fracture in post-ultimate response of connections: (a) 2 bay × 2 bay; (b) 4 bay × 4 bay 

Figure 5–8 shows that the capacity of the 4 bay × 4 bay floor system under sudden loss of the central 
column is 71 % larger than that of the 2 bay × 2 bay system (5.90 kN/m2 / 3.44 kN/m2 = 1.71). Insight 
into the greater capacity of the 4 bay × 4 bay floor system relative to the 2 bay × 2 bay system is afforded 
by considering the forces in the beams and the floor slab, as shown in Figure 5–9 and Figure 5–10 for the 
2 bay × 2 bay and the 4 bay × 4 bay systems, respectively. These figures correspond to the results in 
Figure 5–8 for the case of central column loss under quasi-static loading, and in both cases, forces are 
shown along the edges of the bay immediately to the northwest of the missing column. For clarity, 
alphanumeric column designations are indicated at each corner of the isolated bay, corresponding to the 
grid systems shown in Figure 4–1 and Figure 5–7. Axial forces at the beam ends are shown using arrows, 
and numerical values of axial force are indicated, with positive values denoting tension. Tensile forces 
normal to the slab edges are shown using filled areas along the slab edges, and peak values of force per 
length are indicated. While these forces were obtained under quasi-static loading, they correspond closely 
to the forces at the same level of displacement under sudden column loss. This correspondence occurs 
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because the deformation mode matches closely under the two types of loading, as evidenced by the good 
agreement between the approximate and direct analysis results for sudden column loss in Figure 5–6. 

The values of force per length shown along the west and east edges in Figure 5–9 and Figure 5–10 
correspond only to the tension in the welded wire reinforcement, while the values along the north and 
south edges were obtained by adding the values of force per length for the welded wire reinforcement and 
the steel deck. In-plane forces in the concrete were not included in evaluating these forces. Since tensile 
forces are of primary interest, compressive forces were set to zero in computing these forces. In some 
cases, flexure of the slab caused the steel deck to be in compression while the welded wire reinforcement 
was in tension, or vice versa. Setting the compressive component to zero in such cases prevents 
cancellation of forces that would obscure the true magnitude of tension sustained by one component or 
the other. Tensile forces along the slab edge were calculated as the larger of the values from each pair of 
elements on either side of the edge. 
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Figure 5–9. Axial forces at beam ends (arrows) and tensile force per length normal to slab edges (filled areas) for 
2 bay × 2 bay floor system from building A under central column displacements of (a) 206 mm (initial connection 

failure) and (b) 474 mm (ultimate static capacity) 
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Figure 5–10. Axial forces at beam ends (arrows) and tensile force per length normal to slab edges (filled areas) for 
4 bay × 4 bay floor system from building A under central column displacements of (a) 206 mm (initial connection 

failure) and (b) 497 mm 
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Figure 5–9(a) and Figure 5–10(a) show forces immediately prior to the initial failure of the east-west 
connections to the central column, while Figure 5–9(b) shows forces corresponding to the ultimate static 
load of the 2 bay × 2 bay system, and Figure 5–10(b) shows forces at a central column displacement 
comparable to that in Figure 5–9(b). Comparing force levels before and after connection failure [i.e., 
comparing Figure 5–9(b) with Figure 5–9(a) and comparing Figure 5–10(b) with Figure 5–10(a)] shows a 
significant increase in the tensile forces in the welded wire reinforcement along the east edge of the 
isolated bay, as the floor slab bridges over the failed connections in the direction normal to the ribs of the 
steel deck. Comparing force levels for the 2 bay × 2 bay and 4 bay × 4 bay systems shows comparable 
forces along the south and east edges of the isolated bay, but significantly larger tensile forces along the 
north and west edges for the 4 bay × 4 bay system, where continuity of the floor slab is not provided in 
the 2 bay × 2 bay system. The larger tensile forces in the slab along the north and west edges are 
associated with much larger values of axial compression at the beam ends, indicating the development of 
a negative bending moment through composite action of the beams and slab. Such flexural resistance, 
which is developed at the beam ends opposite the missing column, is much more pronounced in Figure 5–
10 than in Figure 5–9 and contributes to the enhanced capacity of the 4 bay × 4 bay system relative to the 
2 bay × 2 bay system. 

While Figure 5–8(b) showed results for loss of the center column (column C3 in Figure 5–7), the 4 bay × 
4 bay floor system is actually more susceptible to collapse due to the loss of other columns, where slab 
continuity is not provided along all edges of the affected bays. Figure 5–11 shows load-displacement 
curves for loss of (a) near-penultimate column D4 and (b) penultimate column D5 (see Figure 5–7), 
which were found to be the most critical for the 4 bay × 4 bay floor system. Note that the column 
descriptions in Figure 5–7 (“internal,” “near-penultimate,” and “penultimate”) are from Figure C-2 of 
UFC 4-023-03 (DOD 2009). Note also that corner column loss is not considered in this study, because 
each corner column in the prototype buildings is part of a moment-resisting frame (see Figure 2–1), where 
previous studies (Main et al. 2011, Alashker et al. 2011) have shown the moment frames to be adequate to 
sustain the loss of a corner column without collapse. The ultimate capacities under sudden column loss 
are comparable for the two scenarios in Figure 5–11, in both cases being about 19 % less than the 
capacity under sudden loss of the center column. In both cases the capacity is adequate to sustain the 
expected gravity loading under sudden column loss, but not the higher level of gravity loading, 
1.2D + 0.5Loffice. 

 

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

U
ni

fo
rm

 L
oa

d 
In

te
ns

ity
 (k

N
/m

2 )

Vertical Displacement of Center Column (mm)

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

U
ni

fo
rm

 L
oa

d 
In

te
ns

ity
 (k

N
/m

2 )

Vertical Displacement of Center Column (mm) (b)(a)

1.05D + Lsurvey

1.2D + 0.5Loffice

1.05D + Lsurvey

1.2D + 0.5Loffice

sudden column loss – approximate
static pushdown (uniform load)

sudden column loss – ultimate (wSCL,u)

∆u ∆u

sudden column loss – approximate
static pushdown (uniform load)

sudden column loss – ultimate (wSCL,u)

 
Figure 5–11. Load-displacement curves for 4 bay × 4 bay floor system from building A: (a) loss of near-penultimate 

column (D4); (b) loss of penultimate column (D5) 
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5.3.2 Prototype Building B: 10.16 m by 9.14 m (33 ft by 30 ft) Bay Spacing 

Figure 5–12 shows similar plots to those in Figure 5–11 but for a 3 bay × 4 bay gravity framing system 
from building B, shown in Figure 5–13. As in the 4 bay × 4 bay system, the slab is assumed to be 
connected to the beams and girders (including those along the perimeter) by shear studs designed for fully 
composite action (see Table 2–2). Load-displacement curves are shown for loss of (a) near-penultimate 
column D3 and (b) penultimate column E3 (see Figure 5–13), which were found to be the most critical for 
the 3 bay × 4 bay floor system. As noted for the 4 bay × 4 bay system from building A, corner column 
loss is not considered in this study, because each corner column in the prototype buildings is part of a 
moment-resisting frame (see Figure 2–1). Actually, for building B it is not necessary to consider 
penultimate column loss either, because of the placement of the perimeter moment frames [see Figure 2–
1(a)]. However, the penultimate column loss scenario is still considered to enable comparison with the 
corresponding scenario for the 4 bay × 4 bay system from building A. Note that for both building A and 
building B, the critical penultimate column loss scenario requires the floor slab to develop membrane 
forces in its weak direction, normal to the ribs. 

Figure 5–12 shows that in both column loss scenarios, the 3 bay × 4 bay system from building B is unable 
to sustain even the expected gravity loading under sudden column loss. The maximum capacity under 
sudden loss of the penultimate in Figure 5–12(b) is only 84 % of the expected gravity loading. Note that 
building A (see Figure 5–7) has spans of 6.10 m (20 ft) in the N-S direction, while building B (see Figure 
5–13) has longer spans of 10.16 m (331∕3 ft) with correspondingly larger tributary areas for the columns. 
Comparing Figure 5–12 with Figure 5–11 shows that the floor system with longer spans (larger tributary 
areas) is more susceptible to collapse than the floor system with shorter spans (smaller tributary areas). 
The system with shorter spans can sustain the expected gravity loading under sudden column loss, while 
the system with longer spans collapses. 
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Figure 5–12. Load-displacement curves for 3 bay × 4 bay floor system from building B: (a) loss of near-penultimate 

column (D3); (b) loss of penultimate column (E3) 
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Figure 5–13. 3 bay × 4 bay gravity framing system from prototype building B 

5.3.3 Rotational Capacities 

For the results in Figure 5–8, Figure 5–11, and Figure 5–12, initial connection failures occur for center 
column displacements between approximately 200 mm and 300 mm and are reflected by dips in the 
quasi-static load-displacement curves. Table 5–3 presents beam chord rotations corresponding to the 
initial connection failures observed in Figure 5–11(a) and Figure 5–12(a), for near-penultimate column 
loss in the 4 bay × 4 bay system from building A and the 3 bay × 4 bay system from building B, 
respectively. For consistency with the rotational capacities presented previously in Section 3.6 for initial 
connection failure, the beam chord rotations in Table 5–3 correspond to the column displacement at 
which the axial force in the bottom bolt row reaches its peak value.  

Also presented in Table 5–3 are rotational capacities from Eq. (3.3), based on FEMA 355D (FEMA 
2000), which exceed the computed rotations at initial failure by as much as 4.7 times (0.148 rad / 
0.0313 rad = 4.73 for the N-S connection from building B), and rotational capacities from Eq. (3.25) for 
two-span beam assemblies with two shear connections per span, which exceed the computed rotations at 
failure by as much as 1.9 times (0.0654 rad / 0.0343 rad = 1.91 for the N-S connection from building A). 
The significantly smaller computed rotations at failure are a consequence of composite action between the 
beams and the floor slab, whereby the slab carries tension and the beam-to-column connections carry 
compression along the perimeter of the affected bays (see Figure 5–10), with the neutral axis of the 
composite section being located approximately at the top surface of the beam. Rather than equal vales of 
connection extension occurring at both ends of the beam span, as assumed in Figure 3–30, the end 
connection opposite the unsupported column thus actually experiences compressive deformation, which 
imposes a significantly larger extension on the connection to the unsupported column.  

The rotational capacity corresponding to this composite behavior can be calculated quite simply by using 
Eq. (3.22), for the rotational capacity of a beam span with an exterior pin support located at a distance y  
below the center of the bolt group, and setting TSy y= − , where TSy  is the vertical distance from the 
center of the bolt group to the top surface of the steel beam. This location is chosen to represent rotation 
about the neutral axis of the composite section, which, as noted above, is approximately at the top surface 
of the beam. For the connections considered in this study (see Figure 2–3), TSy  is given by: 
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 ( 1) / 2TSy s N= +  (5.12) 

In Eq. (5.12) N is the number of bolts and s = 76.2 mm (3 in) is the vertical spacing between bolts, which 
is assumed also to be the vertical distance from the top bolt to the top surface of the steel beam. 
Rotational capacities from Eq. (3.22) with TSy y= −  are shown in the last row of Table 5–3, and excellent 
agreement with the computed values is observed, with differences being 7 % or less (0.0346 rad / 
0.0372 rad = 0.930 for the E-W connection in building B).  

 
Table 5–3. Comparison of computed and predicted beam chord rotations corresponding to initial connection failure 

Source of Value 

Beam Chord Rotation, rad 

Building A, 4 bay × 4 bay Building B, 3 bay × 4 bay 

E-W N-S E-W N-S 

Computed for near-penultimate column loss 0.0319 0.0343 0.0372 0.0313 

Eq. (3.3), based on FEMA 355D 0.148 0.148 0.138 0.148 

Eq. (3.25), two connections per span 0.0569 0.0654 0.0630 0.0537 

Eq. (3.22), with exterior pin at top of flange 0.0312 0.0343 0.0346 0.0299 

 

5.4 ASSESSMENT OF STRUCTURAL INTEGRITY REQUIREMENTS 

5.4.1 2009 International Building Code 

The 2009 version of the International Building Code (IBC) (ICC 2009, Section 1614) introduced 
structural integrity requirements for design of high-rise buildings in occupancy categories III (buildings 
that represent a substantial hazard to human life in the event of a failure) and IV (essential facilities). For 
steel frame structures, as considered in this study, the requirement for end connections of beams and 
girders is as follows: 

1614.3.2.2 Beams. End connections of all beams and girders shall have a minimum nominal axial tensile 
strength equal to the required vertical shear strength for allowable stress design (ASD) or two-thirds of the 
required shear strength for load and resistance factor design (LRFD) but not less than 10 kips (45 kN). For the 
purpose of this section, the shear force and the axial tensile force need not be considered to act simultaneously. 

The requirement can be expressed as follows, using the notation of AISC 360-10 (AISC 2010) for LRFD: 

 2
3n uT V≥  (5.13) 

where Tn is the nominal tensile strength and Vu is the required shear strength. Geschwindner and 
Gustafson (2010) previously showed that all properly designed single-plate shear connections (designed 
for shear forces) comply with this requirement. Table 5–4 confirms that the requirement is indeed 
satisfied for the shear connections considered in this study. The values of Vu in Table 5–4 are from the 
third column of Table 2–4, while the values of Tn were obtained by multiplying the values of tu from 
Table 3–2 by the number of bolts for each connection. The ratio Tn ∕ Vu, which must not be less than 2∕3, is 
greater than 2 in all cases, indicating that the nominal tensile strength is more than three times greater 
than required for these connections. 
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Table 5–4 Comparison of required shear strength and nominal tensile strength values for shear tab connections 

Building Beam orientation 
Required shear strength, 

Vu, kN (kip) 
Nominal tensile strength, 

Tn, kN (kip) 
Strength ratio,  

Tn / Vu 

A East-West 153 (34.3) 308 kN (69.3 kip) 2.02 

 North-South 153 (34.3) 335 kN (75.3 kip) 2.20 

B East-West 292 (65.6) 598 kN (134.4 kip) 2.05 

 North-South 166 (37.4) 335 kN (75.3 kip) 2.01 

 
Although the shear tab connections considered in this study satisfy the structural integrity requirements of 
the 2009 IBC (ICC 2009), it was observed in Section 5.3.2 that the 3 bay × 4 bay floor system from 
building B is unable to sustain sudden column loss under the expected gravity loading. It can therefore be 
concluded that the structural integrity requirements of the 2009 IBC are not sufficient to prevent collapse 
under sudden column loss.  

It is also noted that for cases in which collapse of the floor system is arrested, the connections are called 
upon to carry axial forces that substantially exceed the tensile strength required by the 2009 IBC. 
Consider the 4 bay × 4 bay floor system from building A, which can sustain sudden loss of the center 
column under the expected gravity loading with a peak dynamic displacement of 324 mm (12.8 in). The 
connections in the North-South direction for this floor system fail at a displacement of about 210 mm 
(8.3 in), sustaining a peak tensile force of 314 kN (70.6 kip) prior to failure, which is about 94 % of the 
nominal tensile strength listed in Table 5–4. The required tensile strength for this connection is only 
102 kN (22.9 kip). Thus, the tensile demands on connections under column loss scenarios can 
substantially exceed the strength required by the 2009 IBC, in this case by a factor of 3.1. 

The 2009 IBC provides an exception whereby the required axial tensile strength can be reduced by 50 % 
if the slab and its reinforcement satisfy certain conditions. However, since the full strength requirement 
was found to be inadequate to prevent collapse under sudden column loss, no further consideration is 
given to this permitted reduction. It is noted that the area of the steel reinforcement in the prototype 
buildings is approximately one-third of what is required for this reduction in axial tensile strength to be 
permitted. 

5.4.2 Unified Facilities Criteria 4-023-03 

The tie force approach in the Unified Facilities Criteria (UFC) 4-023-03 (DOD 2009, Section 3-1), 
specifies that three types of horizontal ties must be provided (longitudinal, transverse, and peripheral) and 
provides restrictions on which structural elements can be used to carry these forces:  

Unless the structural members (beams, girders, spandrels) and their connections can be shown capable of 
carrying the required longitudinal, transverse, or peripheral tie force magnitudes while undergoing rotations of 
0.20-rad (11.3-deg), the longitudinal, transverse, and peripheral tie forces are to be carried by the floor and roof 
system. 

Because the shear tab connections considered in this study are unable to sustain axial forces under this 
level of rotation (see Section 5.3.3), the tie forces for the prototype buildings must be carried by the floor 
system. 

The required strength of transverse and longitudinal ties is given by (DOD 2009, Section 3-1.3.1.1): 

 13i FF w L=  (5.14) 



 Assessment of Collapse Resistance 

 79 

where wF = 1.2D + 0.5L is the uniform floor load, consistent with the load combination in Eq. (5.9), and 
L1 is the distance between the centers of the columns in the direction under consideration. The required 
strength of peripheral ties is given by (DOD 2009, Section 3-1.3.2): 

 16p F pF w L L=  (5.15) 

where Lp = 0.91 m (3 ft) (DOD 2009, Section 3-1.3.2). Calculated values of the required tie forces are 
listed in Table 5–5 for buildings A and B. These values were calculated by setting wF in Eqs. (5.14) and 
(5.15) equal to the combined floor load of 1.2D + 0.5Loffice listed in Table 5–2. 

 
Table 5–5. Tie force requirements from UFC 4-023-03 

Required tie force 

Building A Building B 

East-West  North-South East-West North-South 

Longitudinal/transverse, Fi , kN/m (kip/ft) 148 (10.1) 98 (6.8) 147 (10.0) 163 (11.2) 

Peripheral, Fp , kN (kip) 271 (60.9) 181 (40.6) 269 (60.5) 299 (67.2) 

 

To develop the required tie forces from Table 5–5 in the floor systems of the prototype buildings, 
reinforcing bars are incorporated in the floor slabs in addition to the welded wire reinforcement, as 
indicated in Table 5–6. The added reinforcing bars are designed to carry all of the required tie forces, and 
no contribution from the steel deck and welded wire reinforcement is considered. The yield capacities of 
the reinforcing bars listed in Table 5–6 are based on ASTM A615 grade 60 reinforcing steel with a 
minimum specified yield strength of 414 MPa (60 ksi). While UFC 4-023-03 (DOD 2009, Section 3-1.1) 
specifies the use of both a strength reduction factor and an over-strength factor in calculating the design 
strength of ties, both of these factors are taken as unity in calculating the yield capacities in Table 5–6, for 
consistency with the computational model, which uses the minimum specified yield strength of the 
reinforcing steel. The layout of the reinforcing bars is illustrated in Figure 5–14 for (a) the 4 bay × 4 bay 
framing system from building A and (b) the 3 bay × 4 bay framing system from building B. Horizontal 
ties parallel to floor beams are not placed directly above the floor beams, in accordance with the location 
restrictions in UFC 4-023-03 (DOD 2009, Section 3-1.3.1.1).  

Placement of the reinforcing bars poses challenges because the depth of concrete above the steel deck is 
only 83 mm (31∕4 in) (see Figure 2–2). Tranverse reinforcing bars (in the across-rib direction) could be 
placed above the steel deck on 19 mm (3∕4 in) bar supports, leaving 32 mm (11∕4 in) of concrete cover 
above the #10 bars, the largest bar size used. Longitudinal reinforcing bars could be placed beneath the 
transverse bars, along the ribs, where greater concrete depth is available. The limited concrete depth 
would make it difficult to implement the seismic hooks described in UFC 4-023-03 for linking the 
longitudinal and transverse ties to the peripheral ties (DOD 2009, Section 3-1.4). As an alternative, 
mechanical anchorage devices could potentially be used for the longitudinal and transverse ties to provide 
the required continuity for these tie bars along the perimeter of the slab.  

The reinforcing bars are represented in the computational model using beam elements that share common 
nodes with the shell elements representing the floor slab, assuming that the reinforcement remains fully 
bonded to the surrounding concrete. While the longitudinal bars would be placed beneath the transverse 
bars, as noted above, for simplicity all reinforcing bars are modeled in the same plane as the shell 
elements, at mid-height of the floor slab. The reinforcing steel is represented using a piecewise-linear 
plasticity model (material type 24 in LS-DYNA) calibrated to match the engineering stress-strain curves 
shown in Figure 5–15 for the different sizes of reinforcing bar. The yield strength of Fy = 414 MPa 
(60 ksi), the tensile strength of Fu = 621 MPa (90 ksi), and the elongation at fracture (8 % for #7 and #8 
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bars and 7 % for #10 bars) are based on the minimum specified values from the ASTM A615 standard 
(ASTM 2009) for grade 60 reinforcing steel.  
Table 5–6. Additional slab reinforcement used to develop required tie forces 

Building Type of tie Orientation Reinforcement type Yield capacity of tie 

A Longitudinal East-West 7 #7 bars between columns 184 kN/m (12.6 kip/ft) 

 Transverse North-South 7 #7 bars between columns 123 kN/m (8.4 kip/ft) 

 Peripheral East-West #10 bar 338 kN (76.0 kip) 

 Peripheral North-South #8 bar 210 kN (47.1 kip) 

B Transverse East-West 8 #8 bars between columns 165 kN/m (11.3 kip/ft) 

 Longitudinal North-South 11 #7 bars between columns 193 kN/m (13.2 kip/ft) 

 Peripheral East-West #10 bar 338 kN (76.0 kip) 

 Peripheral North-South #10 bar 338 kN (76.0 kip) 
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Figure 5–14. Layout of additional slab reinforcement to provide UFC 4-023-03 tie forces: (a) 4 bay × 4 bay framing 

system from building A; (b) 3 bay × 4 bay framing system from building B 
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Figure 5–15. Engineering stress-strain curves for steel reinforcing bars. 
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Figure 5–16 shows plots corresponding to those in Figure 5–11, but for the 4 bay × 4 bay floor system 
from building A shown in Figure 5–14(a), which incorporates additional reinforcement to satisfy the 
horizontal tie force requirements of UFC 4-023-03 (DOD 2009). Comparing Figure 5–16(a) with Figure 
5–11(a), for near-penultimate column loss, shows that the horizontal ties more than double the capacity of 
the system under static loading. The capacity under sudden column loss is increased by 49 %, enabling 
the system to sustain the gravity loading of 1.2D + 0.5Loffice with a peak dynamic displacement of about 
510 mm (20 in). Comparing Figure 5–16(b) with Figure 5–11(b), for penultimate column loss, shows 
similar increases in capacity due to the horizontal ties, enabling the system to sustain the gravity loading 
of 1.2D + 0.5Loffice with a peak dynamic displacement of about 580 mm (23 in) under sudden column loss. 
Since the gravity loading of 1.2D + 0.5Loffice could not be sustained without horizontal ties (see Figure 5–
11), the results in Figure 5–16 demonstrate the effectiveness of horizontal ties specified by UFC 4-023-03 
(DOD 2009). 
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Figure 5–16. Load-displacement curves for 4 bay × 4 bay floor system from building A with horizontal ties that 

satisfy UFC 4-023-03: (a) loss of near-penultimate column (D4); (b) loss of penultimate column (D5) 

Figure 5–17 shows plots corresponding to those in Figure 5–12, but for the 3 bay × 4 bay floor system 
from building B shown in Figure 5–14(b), which incorporates additional reinforcement to satisfy the 
horizontal tie force requirements of UFC 4-023-03 (DOD 2009). Comparing Figure 5–17(a) with Figure 
5–12(a), for near-penultimate column loss, shows that the horizontal ties approximately double the 
capacity of the system under static loading. The capacity under sudden column loss is increased by 49 %, 
enabling the system to sustain the gravity loading of 1.2D + 0.5Loffice with a peak dynamic displacement 
of about 820 mm (32 in). Comparing Figure 5–17(b) with Figure 5–12(b), for penultimate column loss, 
shows similar increases in capacity due to the horizontal ties, enabling the system to sustain the gravity 
loading of 1.2D + 0.5Loffice under sudden column loss with a peak dynamic displacement of about 
1030 mm (41 in). Since not even the expected gravity loading could be sustained under sudden column 
loss without horizontal ties (see Figure 5–12), the results in Figure 5–17 clearly demonstrate the 
effectiveness of horizontal ties specified by UFC 4-023-03 (DOD 2009). 
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Figure 5–17. Load-displacement curves for 3 bay × 4 bay floor system from building B with horizontal ties that 

satisfy UFC 4-023-03: (a) loss of near-penultimate column (D3); (b) loss of penultimate column (E3) 

5.5 EVALUATION OF REQUIRED TIE FORCES 

While the results of the previous section demonstrated the effectiveness of reinforcing bars in the floor 
slabs in preventing collapse, it is of interest to evaluate the extent to which increases in the thickness of 
the steel deck and the area of the welded wire reinforcement can enhance the collapse resistance of 
conventional composite floor slabs with only welded wire reinforcement. Alashker et al. (2010) 
investigated the effect of increasing both the deck thickness and the reinforcement area for a 2 bay × 
2 bay floor system and found that significant increases in capacity could be achieved by increasing the 
deck thickness, with increases in the reinforcement area producing a much smaller effect. Of particular 
interest in the present study are the tie forces that must be developed in the floor slab to sustain specified 
levels of gravity loading.  

To investigate these issues, enhanced floor slabs with increased deck thickness and reinforcement area are 
considered, as listed in Table 5–7. Floor slab S16-2.5 is considered for prototype building A, while floor 
slabs S16-5 and S16-14 are considered for building B. Since the original capacity of building B is 
significantly less than that of building A (compare Figure 5–11 and Figure 5–12), greater enhancement is 
required for building B. In all cases, a 16 gage steel deck is used, which is the maximum thickness listed 
in the American National Standards Institute/Steel Deck Institute C1.0 – 2006 Standard for Composite 
Steel Floor Deck (ANSI/SDI 2006). The 16 gage deck is 1.67 times thicker than the 20 gage deck used in 
the original design. Standard wire sizes from ASTM A82/A82M – 07 (ASTM 2007a) are considered for 
the welded wire reinforcement, where Aw in Table 5–7 denotes the cross-sectional area of the wire, with a 
grid spacing of  152 mm × 152 mm (6 in × 6 in). The largest wire size of W14 in Table 5–7 represents a 
tenfold increase in cross-sectional area relative to the W1.4 wire used in the original design. 

 
Table 5–7. Properties of steel deck and welded wire reinforcement for floor slabs 

Slab Designation* Steel Deck Thickness Welded Wire Reinforcement 

S20-1.4 (original) 20 gage: t = 0.91 mm (0.0358 in) 6×6 W1.4/1.4: Aw = 9.03 mm2 (0.014 in2) 

S16-2.5 16 gage: t = 1.52 mm (0.0598 in) 6×6 W2.5/2.5: Aw = 16.1 mm2 (0.025 in2) 

S16-5 16 gage: t = 1.52 mm (0.0598 in) 6×6 W5/5: Aw = 32.3 mm2 (0.05 in2) 

S16-14 16 gage: t = 1.52 mm (0.0598 in) 6×6 W14/14: Aw = 90.3 mm2 (0.14 in2) 

* This is not a standardized designation; it is simply used for convenience in this report. 
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Figure 5–18 shows plots corresponding to those in Figure 5–11 for the 4 bay × 4 bay floor system from 
building A, but with the properties of the enhanced floor slab S16-2.5 listed in Table 5–7. Figure 5–18 
shows that the enhanced slab enables the floor system to sustain the gravity loading of 1.2D + 0.5Loffice 
without collapse under sudden loss of the near-penultimate and penultimate columns. Figure 5–19 and 
Figure 5–20 show similar plots for the 3 bay × 4 bay floor system from building B with the properties of 
enhanced floor slabs S16-5 and S16-14, respectively. Figure 5–19 shows that enhanced slab S16-5 
enables the floor system to sustain the expected gravity loading, but not the higher gravity loading of 
1.2D + 0.5Loffice , under sudden loss of the near-penultimate and penultimate columns. Figure 5–20 shows 
that enhanced slab S16-14 enables the floor system to sustain the higher gravity loading of 
1.2D + 0.5Loffice under these sudden column loss scenarios. In summary, Figure 5–18, Figure 5–19, and 
Figure 5–20 show that by increasing the steel deck thickness and the welded wire reinforcement area, the 
capacity of composite floor systems can be increased to sustain the required gravity loads under sudden 
column loss scenarios, while the required increases in reinforcement are significant for the longer spans of 
building B. 
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Figure 5–18. Load-displacement curves for 4 bay × 4 bay floor system from building A with floor slab S16-2.5:  

(a) loss of near-penultimate column (D4); (b) loss of penultimate column (D5) 
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Figure 5–19. Load-displacement curves for 3 bay × 4 bay floor system from building B with floor slab S16-5:  

(a) loss of near-penultimate column (D3); (b) loss of penultimate column (E3) 
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Figure 5–20. Load-displacement curves for 3 bay × 4 bay floor system from building B with floor slab S16-14: 

(a) loss of near-penultimate column (D3); (b) loss of penultimate column (E3) 

Figure 5–21 summarizes the influence of floor slab reinforcement on the capacity of the 4 bay × 4 bay 
floor system from building A under sudden loss of the near penultimate and penultimate columns. Curves 
are presented for the original floor slab S20-1.4 (from Figure 5–11), the floor slab with reinforcing bars 
that satisfy the UFC 4-023-03 tie force requirements (from Figure 5–16), and the enhanced floor slab 
S16-2.5 (from Figure 5–18). Solid circles on each curve indicate the ultimate capacity under sudden 
column loss, wSCL,u from Eq. (5.6), while a gray vertical line indicates the column displacement at which 
initial connection failure occurs. The curves corresponding to different levels of reinforcement in Figure 
5–21 differ only slightly prior to the initial connection failure, which indicates that connection failures 
occur before the tie forces can contribute significantly to the structural resistance. This confirms the 
appropriateness of the requirement in UFC 4-023-03 (DOD 2009) that tie forces should be carried by the 
floor slab rather than by the beams, unless the beam-to-column connections can be shown to sustain the 
required tie forces while undergoing significant rotations. Figure 5–21 shows that even with the highest 
level of reinforcement, the floor system is unable to sustain the expected gravity loading prior to 
connection failure. For large displacements of the center column, after connection failures have occurred 
and membrane action in the slab has developed, the tie forces in the slab are found to significantly 
increase the ultimate capacity of the floor system.  

Similar results are evident in Figure 5–22, which summarizes the influence of floor slab reinforcement on 
the capacity of the 3 bay × 4 bay floor system from building B under sudden loss of the near penultimate 
and penultimate columns. Again, the curves corresponding to different levels of reinforcement differ only 
slightly prior to initial connection failure, and even with the highest level of reinforcement, the floor 
system is unable to sustain the expected gravity loading prior to connection failure.  
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Figure 5–21. Load-displacement curves for 4 bay × 4 bay floor system from building A with different levels of slab 

reinforcement: (a) sudden loss of near-penultimate column (D4); (b) sudden loss of penultimate column (D5) 
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Figure 5–22. Load-displacement curves for 3 bay × 4 bay floor system from building B with different levels of slab 

reinforcement: (a) sudden loss of near-penultimate column (D4); (b) sudden loss of penultimate column (D5) 

Figure 5–23 shows edge forces at the ultimate static load from the three analysis cases presented in Figure 
5–21. These plots were generated using the same procedure described previously for Figure 5–9 and 
Figure 5–10, isolating the bay immediately to the northwest of the missing column. Figure 5–24 shows a 
similar plot for three of the four analysis cases presented in Figure 5–22, again isolating the bay 
immediately to the northwest of the missing column. Both figures clearly show increases in the tensile 
forces along the slab edges with increasing levels of slab reinforcement. In all cases, the connections to 
the missing column failed prior to reaching the ultimate load, as indicated by zero forces at the beam 
ends. Composite action is also evident in all cases, with substantial compressive forces at the beam ends 
along the north and west edges being accompanied by tensile forces in the floor slab, together providing 
negative flexural resistance along these edges. In some cases, compressive axial forces that exceed the 
capacity of the connection are observed; these cases are associated with binding of the beam flange 
against the column, as represented in the model by the “gap spring” shown in Figure 4–8(b). Failures of 
the welded wire reinforcement (which has relatively low ductility, as shown in Figure 4–5) are evident in 
some cases, such as in Figure 5–24(a), where the tension is zero along much of the south edge of the slab 
because the fracture strain of the welded wire has been exceeded. 
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Figure 5–23. Axial forces at beam ends (arrows) and tensile force per length normal to slab edges (filled areas) at 
ultimate static load for 4 bay × 4 bay floor system from building A under loss of near-penultimate column (D4):  

(a) floor slab S20-1.4; (b) floor slab S16-2.5; (c) floor slab S20-1.4 with reinforcing bars from Table 5–6 
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Figure 5–24. Axial forces at beam ends (arrows) and tensile force per length normal to slab edges (filled areas) at 
ultimate static load for 3 bay × 4 bay floor system from building B under loss of near-penultimate column (D3):  

(a) floor slab S20-1.4; (b) floor slab S16-5; (c) floor slab S16-14 

The slab edge forces in Figure 5–23 and Figure 5–24 can be used to assess the tie forces necessary to 
sustain different levels of gravity loading without collapse. In making this assessment, it is useful to 
compare with the required strength of the transverse and longitudinal ties from UFC 4-023-03 (DOD 
2009), which are given in Eq. (5.14) and can be written in the following alternative form: 

 1/ 3i FF L w=  (5.16) 

The quantity 1/iF L , obtained by dividing the tie force per length by the span length, has units of force per 
area and will be denoted the “normalized tie force.” As shown in Table 5–8, peak values of the 
normalized tie force for each case in Figure 5–23 and Figure 5–24 are obtained by first identifying the 
peak value of iF  (the tie force per length) in each span direction and then dividing these values by the 
span length L1 in the corresponding direction. The larger of the two values of 1/iF L  in either span 
direction (shown in boldface in Table 5–8) is the governing value of the normalized tie force sustained by 
the floor system.  
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Table 5–8. Calculation of normalized tie forces Fi / L1 from analyses of near-penultimate column loss for prototype 
buildings with varying floor slab reinforcement 

Building Floor Slab 

Peak Tie Force/Length  
Fi (kN/m) 

Span Length  
L1 (m) 

Peak Normalized 
Tie Force 

Fi / L1 (kN/m2 ) 

E-W N-S E-W N-S E-W N-S 

A S20-1.4 32.6 56.1 9.14 6.10 3.56 9.21 

 S16-2.5 54.4 94.9 9.14 6.10 5.95 15.6 

 S20-1.4, with reinforcing bars* 403 225 9.14 6.10 44.1 36.9 

B S20-1.4 58.1 31.3 9.14 10.16 6.36 3.08 

 S16-5 149 124 9.14 10.16 16.3 12.2 

 S16-14 346 344 9.14 10.16 37.9 33.9 

* Reinforcing bars designed to satisfy tie force requirements from UFC 4-023-03; details listed in Table 5–6. 

 

Figure 5–25(a) shows a plot of the governing values of the normalized tie forces from Table 5–8 against 
the ultimate capacities of the floor systems under quasi-static loading, as listed in Table 5–9. These 
computed values indicate the relationship between the tie forces carried by the system and the uniform 
load that can be sustained. The computed values for buildings A and B collapse fairly well along a single 
curve that can be approximated by the following equation, shown with the computed values in Figure 5–
25(a): 
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Figure 5–25. Relationships between normalized tie forces in slab and uniform floor load intensity:  

(a) quasi-static loading; (b) sudden column loss 

Eq. (5.16) from UFC 4-023-03 (DOD 2009) is also shown in Figure 5–25(a) for comparison, as the intent 
of both relationships is to indicate the tie forces required to sustain a particular level of loading. The two 
expressions intersect at a load intensity of wF = 9.38 kN/m2 (196 lbf/ft2), which is about 1.73 times larger 
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than the combined gravity loading of 1.2D + 0.5Loffice listed in Table 5–2. For loads less than this value, 
the computed tie forces are less than required by Eq. (5.16), indicating that the UFC is conservative. For 
loads greater than this value, the computed tie forces exceed those required by Eq. (5.16), indicating that 
the UFC is not conservative.  

Table 5–9. Ultimate capacities of various floor systems under both quasi-static loading and sudden column loss, 
with corresponding values of the Dynamic Increase Factor (missing column is near-penultimate) 

Building Floor Slab 

Ultimate Capacity Dynamic 
Increase 
Factor, 
 Ω(∆u) 

Quasi-Static Pushdown, 
wstatic,u (kN/m2) 

Sudden Column Loss, 
wSCL,u (kN/m2) 

A S20-1.4 (original) 5.59 4.82 1.16 

 S16-2.5 7.41 6.04 1.23 

 S20-1.4, with reinforcing bars* 11.9 7.19 1.65 

B S20-1.4 (original) 4.99 3.88 1.29 

 S16-5 7.29 4.35 1.68 

 S16-14 11.0 6.56 1.68 

* Reinforcing bars designed to satisfy tie force requirements from UFC 4-023-03; details listed in Table 5–6. 

 

While the results in Figure 5–25(a) are for quasi-static loading, Figure 5–25(b) presents a corresponding 
plot for sudden column loss, in which the governing values of 1/iF L  from Table 5–8 are plotted against 
values of ,SCL uw  listed in Table 5–9. In the case of sudden column loss, the computed values from 
buildings A and B no longer collapse along a single curve. This is a consequence of the variability in the 
Dynamic Increase Factor , ,( ) /u static u SCL uw wΩ ∆ = , defined in Eq. (5.5) and listed in the last column of 
Table 5–9. A general trend of increasing ( )uΩ ∆  with increasing slab reinforcement is evident in Table 5–
9. Smaller values of Ω  for lightly reinforced floor slabs are a consequence of the fact that these systems 
exhibit a clear plateau in the load-displacement curve (e.g., Figure 5–11), where for an elastic-plastic 
response, Ω  decreases to approach unity at large displacements. Larger values of Ω  for more heavily 
reinforced slabs are a consequence of the stiffer, more linear response that these systems exhibit up to the 
ultimate load (e.g., Figure 5–16), where a linear response corresponds to a value of 2Ω = .  

Eq. (5.17) can be modified as follows to incorporate the Dynamic Increase Factor Ω : 
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Eq. (5.18) is plotted in Figure 5–25(b) for both 1.68Ω =  and 1.16Ω = , which represent the largest and 
smallest values of  Ω  in Table 5–9, and the two curves are seen to capture fairly well the upper and lower 
limits of the computed values for buildings A and B. Eq. (5.16) from UFC 4-023-03 (DOD 2009) is also 
shown in Figure 5–25(b), and the intersection points occur at load intensities of wF = 3.32 kN/m2 
(69.3 lbf/ft2) for 1.68Ω =  and wF = 6.97 kN/m2 (146 lbf/ft2) for 1.16Ω = . For particular value of Ω , Eq. 
(5.16) is conservative for loads below the intersection point and is not conservative for loads above this 
point. Eq. (5.18) is proposed as a replacement for Eq. (5.16) from UFC 4-023-03 for steel frame systems 
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with composite floor systems, as it more accurately captures the nonlinear  behavior observed in the 
computations and allows dynamic effects associated with sudden column loss to be incorporated directly 
through the parameter Ω . Different values of Ω  could be used in Eq. (5.18) as deemed appropriate for 
different structural systems. 
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Chapter 6 
CONCLUSIONS 

This report presented a computational assessment of the performance of steel gravity framing systems 
with single-plate shear (“shear tab”) connections and composite floor slabs under column loss scenarios. 
The computational assessment used a reduced modeling approach for the analyses, while comparisons 
with detailed model results and available experimental data were presented to establish confidence in the 
reduced modeling approach. The reduced modeling approach enables large multi-bay systems to be 
analyzed much more efficiently than the detailed modeling approach used in previous studies. Both quasi-
static and sudden column loss scenarios were considered, and an energy-based approximate procedure for 
analysis of sudden column loss was adopted, after verification through comparisons with direct dynamic 
analyses, further enhancing the efficiency of the reduced modeling approach. Reduced models were used 
to investigate the influence of factors such bay spacing, slab continuity, and the mode of connection 
failure on the collapse resistance of gravity frame systems. 

Based on the results of the analyses performed in this study, the following main conclusions were 
reached: 

1. Sudden fracture of shear tab connections after reaching the ultimate load, as a result of bolt shear 
failure or plate rupture in tension, reduces the ultimate capacity of gravity frame systems in 
column loss scenarios, as compared to a gradual softening behavior associated with bolt tear-out. 
Reductions in the ultimate capacity under quasi-static loading were as much as 23 % for bare 
steel framing (i.e., no slab) and as much as 13 % for systems with composite floor slabs. Because 
of the prevalence of sudden fracture in available experimental data, it is recommended that 
sudden fracture should be assumed in modeling and analysis of shear tab connections. 

2. Rotational capacities of shear tab connections under column loss scenarios were substantially 
smaller than those predicted based on seismic test data, due to the axial extension imposed on the 
connections in addition to rotation. Rotational capacities of connections in bare steel framing 
assemblies were slightly less than half of those predicted based on seismic test data, while 
rotational capacities of connections in composite floor systems were approximately one fourth of 
those same predictions. The significantly smaller rotational capacities in composite floor systems 
were associated with composite action, whereby axial compression developed in beam 
connections at the ends opposite to the missing column, imposing larger axial extensions on the 
connection to the missing column than if the axial extension were shared at both ends. Simple 
equations for the rotational capacities of the connections were derived as a function of a few 
parameters including the span length and the connection depth, and these equations yielded good 
agreement with the computational predictions. 

3. The effect of slab continuity beyond the bays adjoining the missing column was found to be 
significant, with the ultimate capacity of a 4 bay × 4 bay floor system under sudden loss of the 
central column being 71 % larger than that of a corresponding 2 bay × 2 bay system. Smaller, but 
still significant, increases in capacity relative to the 2 bay × 2 bay system were observed for the 
4 bay × 4 bay system under cases of penultimate and near-penultimate column loss, for which 
continuity of the slab is provided along some edges but not others. 

4. Longer span lengths, with correspondingly larger tributary areas for the columns, were found to 
result in reduced capacities under column loss scenarios, with the ultimate capacity under sudden 
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loss of a near-penultimate column being 18 % lower for prototype building B, with 10.16 m × 
9.14 m (331∕3 ft × 30 ft) bays, than for prototype building A, with 6.10 m × 9.14 m (20 ft × 30 ft) 
bays. 

5. The structural integrity requirements in the 2009 IBC (ICC 2009) were found to be insufficient 
for preventing collapse under column loss scenarios. Although the shear tab connections 
considered in this study satisfied the structural integrity requirements of the 2009 IBC (ICC 
2009), prototype building B was found unable to sustain even the expected gravity loading under 
sudden loss of penultimate and near-penultimate columns. While prototype building A was able 
to sustain sudden loss of these columns under the expected gravity loading without collapse, the 
tensile forces developed in the beam connections exceeded the 2009 IBC requirements by a factor 
of 3.1. 

6. The approach used in the UFC 4-023-03 (DOD 2009), to place tie forces in the slab, was found to 
be appropriate based on computational results that consistently indicated connection failures 
occurring before tie forces were able to significantly enhance the structural capacity. The tie force 
requirements in UFC 4-023-03 (DOD 2009) were found to be conservative under quasi-static 
column loss for uniform load intensities less than 9.38 kN/m2 (196 lbf/ft2), while for quasi-static 
loads exceeding this value, computed tie forces exceeded those required by the UFC.  Under 
sudden column loss, the computed tie forces exceeded UFC requirements at lower levels of 
loading. Based on the computational results presented in this study, an empirical equation was 
developed that relates the required tie force levels to the uniform load on the slab. This 
relationship, which captures well the observed nonlinearity in the computed structural responses 
and can account for dynamic enhancement due to sudden column loss, is proposed to replace the 
linear tie force equation in the current UFC for steel frame structures with composite floor 
systems. 

While this study addressed the tie forces necessary to prevent collapse under column loss scenarios, the 
analyses conducted in this study assumed that the slab, its reinforcement, and the steel deck were 
continuous. The floor slab was assumed to be connected to the floor beams and girders (including those 
along the perimeter) by shear studs designed for fully composite behavior, while it is noted that partially 
composite beams are common in practice. Detailing requirements to ensure adequate continuity of load 
paths through the composite floor system need to be considered to enable the required tie forces to be 
developed.
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