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ABSTRACT 

This report presents an experimental and computational study of two reinforced concrete beam-
column assemblies, each comprising three columns and two beams.  The two beam-column 
assemblies represent portions of the structural framing system of two ten-story reinforced 
concrete frame buildings, which were designed as part of the National Institute of Standards and 
Technology research program aimed at mitigating disproportionate structural collapse.  One 
building was designed for Seismic Design Category C (SDC C) and the other for Seismic Design 
Category D (SDC D). The beam-column assemblies were taken from the exterior moment-
resisting frames of these buildings. The assembly from the SDC C building was part of an 
intermediate moment frame (IMF) and the assembly from the SDC D building was part of a 
special moment frame (SMF).  The full-scale test assemblies were subjected to monotonically 
increasing vertical displacement of the center column to simulate a column removal scenario. 
The test was terminated when a collapse mechanism of each assembly was developed and the 
vertical load carrying capacity of the assembly was depleted. The primary test specimen response 
characteristics were measured. These included vertical and horizontal displacements at specific 
locations, rotations at beam ends, and strains in reinforcing bars at various locations. In addition, 
concrete surface strains were recorded by measuring the change in length between prepositioned 
targets at pre-selected critical zones of the beams. The failure of both the IMF and SMF 
assemblies was characterized by (1) crushing of concrete at the top of the beam near the center 
column, (2) development of major flexural cracks (deepening and widening), and (3) fracture of 
the bottom longitudinal beam reinforcing bars at a major crack opening near the center column. 

Computational analyses of the beam-column assembly tests were carried out using two levels of 
modeling: (1) detailed models with a large number of elements: solid elements for concrete and 
beam elements for both longitudinal and transverse reinforcement, and (2) reduced models with a 
limited number of elements: beam elements for beams and columns and rigid links connected by 
nonlinear rotational springs for the beam-column joints. The analyses conducted using these 
models provided insight into the overall behavior and failure modes of the test assemblies. Good 
agreement was observed between the experimental and computational results.  Both detailed and 
reduced models were capable of capturing the primary response characteristics. The reduced 
models developed in this study will be valuable in the analysis of complete structural systems for 
assessing the reserve capacity and robustness of building structures. The analyses confirm that 
the ultimate loads under the column removal scenario are primarily resisted through catenary 
action, wherein axial tension develops in the beams. The tensile force increase is limited by the 
fracture strength of the tensile reinforcement of the beams. 

 

Keywords: buildings; computational model; computer simulation; design standards; 
disproportionate collapse; finite element analysis; progressive collapse; reinforced concrete 
structures; structural robustness; testing. 
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PREFACE 

The experimental and computational study reported herein is part of a comprehensive research 
program being carried out by the National Institute of Standard and Technology (NIST) on 
prevention of disproportionate collapse of building structures. To meet the critical need for 
experimental data, NIST developed a plan to test a series of full-scale structural assemblies of 
common building types.  

This report presents the results from an experimental and computational study of two reinforced 
concrete beam-column assemblies. NIST developed the test plan and designed the specimens.   
The specimens represent portions of concrete moment frame buildings designed for Seismic 
Design Categories C and D, respectively. Detailed design of the buildings was carried out by S. 
K. Ghosh and Associates. The design was guided by a panel of experts who reviewed the design 
and provided valuable comments. The following experts served on the panel: David R. 
Bonneville (Degenkolb Engineers, San Francisco, CA), Donald O. Dusenberry (Simpson, 
Gumpertz & Heger, Waltham, MA), Ramon Gilsanz (Gilsanz, Murray, Steficek, LLP, New 
York, NY), Thomas A. Sabol (Englekirk & Sabol, Los Angeles, CA), and Andrew W. Taylor 
(KPFF Consulting Engineers, Seattle, WA). 

The Applied Technology Council (ATC) and the Consortium of Universities for Research in 
Earthquake Engineering (CUREE) Joint Venture provided technical services under a contract to 
NIST. The Bowen Laboratory of Purdue University, under contract to the ATC/CUREE Joint 
Venture, fabricated and erected the test specimens, deployed the instruments, performed the test, 
and collected the test data.   

The study reported herein was partially supported by the Department of Homeland Security.  
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EXECUTIVE SUMMARY 

In recent years, the engineering community has paid greater attention to the vulnerability of 
multistory buildings to disproportionate collapse, which is a structural collapse that is 
disproportionate to the initiating event. Disproportionate collapse may be initiated by a variety of 
abnormal loading conditions, such as blast, uncontrolled fire, or vehicle impact. To enhance 
structural performance under such abnormal loading conditions, the 2009 version of the 
International Building Code introduced structural integrity requirements for design of multistory 
buildings. In addition, both the U.S. Department of Defense and the General Services 
Administration stipulate mandatory requirements for design of multistory buildings to resist 
disproportionate collapse. The American Society of Civil Engineers Standard 7 (ASCE 7) 
provides general guidelines to be considered for design of buildings to minimize the risk of 
disproportionate collapse.  In general, these documents provide guidance to prevent spreading of 
an initial local failure progressively to cause total collapse or collapse of a disproportionately 
large part of a building. ASCE 7 recommends that resistance to disproportionate collapse be 
accomplished either implicitly, by providing minimum levels of strength, continuity, and 
ductility; or explicitly, by (1) providing sufficient strength to structural members that are critical 
to global stability or (2) providing alternate load paths so that local damage is absorbed and 
major collapse is averted. For concrete structures, the American Concrete Institute Building 
Code 318 (ACI 318) requires minimum continuity reinforcement to enhance overall structural 
integrity. At present these guidelines and code requirements are mainly based on engineering 
experience with limited experimental basis.  

This report presents an experimental and computational study of two reinforced concrete beam-
column assemblies, each comprising three columns and two beams. The two beam-column 
assemblies represent portions of the structural framing system of two ten-story concrete moment-
frame buildings. One building was designed for Seismic Design Category C (SDC C) and the 
other for Seismic Design Category D (SDC D).  The beam-column assemblies were taken from 
the exterior moment resisting frames of these buildings, designed in accordance with the 
requirements in ACI 318. The moment resisting frames of the SDC C and SDC D buildings 
employed intermediate moment frames (IMFs) and special moment frames SMFs), respectively. 
The assemblies were subjected to monotonically increasing vertical displacement of the 
unsupported center column to observe their behavior under a simulated column removal 
scenario, including the development of catenary action in the beams. The vertical displacement 
of the center column was increased until the vertical load-carrying capacity of each assembly 
was depleted. 

The overall behavior of each beam-column assembly was analyzed using two levels of modeling 
complexity: (1) detailed models with a large number of elements: solid elements to represent the 
concrete and beam elements to represent the reinforcement, and (2) reduced models with a 
limited number of elements: beam elements to represent the beams and columns, and rigid links 
connected by nonlinear rotational springs to represent the beam-column joints. The analyses 

xvii 
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conducted using these models provided insight into the behavior and failure modes of the joints 
and the development of catenary action in the beams.  

Based on the study reported herein, the following conclusions are reached. 

1. For both the IMF and SMF assemblies, the behavior of the assemblies was dominated by 
flexure in the early stages of the response. With increased vertical displacement of the 
center column, resistance was provided through the development of compressive 
diagonal axial forces, or “arching action,” due to the restraint on axial elongation of the 
beams by the end columns. With further increase in the vertical displacement, tensile 
axial forces developed in the beams and the behavior was dominated by catenary action. 

2. The failure of both the IMF and SMF assemblies was characterized by: (1) crushing of 
concrete at the top of the beam section near the center column, (2) development of major 
flexural cracks (deepening and widening), and (3) fracture of one of the bottom 
reinforcing bars at a major crack opening near the center column. 

3. The test results show that the rotational capacities of both the IMF and SMF beam-to-
column joints under monotonic column displacement are about seven to eight times as 
large as those based on seismic test data. The rotations at peak load in this study were 
about 0.185 rad and 0.200 rad for the IMF and SMF assemblies, respectively, whereas the 
rotational capacities of these connections based on seismic testing data are approximately 
0.026 rad and 0.025 rad, respectively.   

4. This study indicates generally good agreement between the experimental and the 
computational results. Both the detailed and reduced models were capable of capturing 
the primary response characteristics and failure modes of the test specimens.   

This study shows that analysis using reduced models consisting of beam and spring elements can 
accurately predict the response characteristics of both the IMF and SMF beam-column 
assemblies. Furthermore, the reduced models developed in this study will be valuable in the 
analysis of complete structural systems for assessing the reserve capacity and robustness of 
building structures. 



  

Chapter 1 
INTRODUCTION 

1.1 BACKGROUND 

In recent years, the engineering community has paid greater attention to the vulnerability of 
multistory buildings to disproportionate collapse, which could pose a substantial hazard to 
human life. Disproportionate collapse is a structural collapse in which the final extent of damage 
is disproportionate to the cause. Disproportionate collapse may be initiated by a variety of 
abnormal loading conditions, such as blast, vehicle impact, and uncontrolled fire. To enhance 
structural performance under such abnormal loading conditions, the 2009 version of the 
International Building Code (ICC 2009) introduced structural integrity requirements for design 
of multistory buildings assigned to specific occupancy categories, including buildings with 
occupancy of greater than 300, schools, hospitals, police stations and aviation control towers. In 
addition, both the U.S. Department of Defense (DoD 2009) and the General Services 
Administration (GSA 2003) stipulate mandatory requirements for design of multistory buildings 
to resist disproportionate collapse. The American Society of Civil Engineers Standard 7 (ASCE 
2010) provides general guidelines for design of buildings to minimize the risk of 
disproportionate collapse. For concrete building structures, the American Concrete Institute 
Building Code 318 (ACI 2008) requires minimum continuity reinforcement to enhance overall 
structural integrity. Currently, these guidelines and code requirements are based mainly on 
engineering experience with limited experimental basis. 

In general, these documents provide guidance to prevent progressive spreading of an initial local 
failure to cause total collapse or collapse of a disproportionately large part of a building. The 
ASCE 7 Standard recommends that resistance to disproportionate collapse be accomplished 
either implicitly, by providing minimum levels of strength, continuity, and ductility; or 
explicitly, by (1) providing sufficient strength to structural members that are critical to global 
stability or (2) providing alternate load paths so that local damage is absorbed and major collapse 
is averted through adequate connections and ties. In this latter approach, the structural integrity is 
assessed by analysis to ascertain whether alternate load paths exist around failed structural 
members. The analysis must demonstrate the adequacy of undamaged members to redistribute 
the loads previously carried by the damaged member(s). In this regard, physical tests are 
indispensible to validate the analytical models used to represent the nonlinear, large-deformation 
behavior associated with the transfer of forces through structural members and their connections. 

The National Institute of Standards and Technology (NIST) is carrying out a comprehensive 
analytical and experimental research program to study the vulnerability of multistory building 
structures to disproportionate collapse and to develop guidance to reduce the risk of 
disproportionate collapse. As part of this research, prototype ten-story buildings have been 
designed with various structural systems, including steel frame, cast-in-place concrete frame, and 
precast concrete frame buildings. Beam-column assemblies representing portions of these 
structural systems have been tested at full scale under simulated column removal. In addition to 
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providing insight into the behavior and failure modes of these structural systems under column 
removal scenarios, an important objective of these tests was to provide experimental data for 
validation of finite element-based modeling approaches for collapse analysis. Sadek et al. (2010) 
describe testing and analysis of steel beam-column assemblies with moment connections, while 
this report focuses on cast-in-place concrete beam-column assemblies.  Reduced models 
developed as part of this research are being incorporated into three-dimensional models of the 
prototype ten-story buildings, which will be used to assess the vulnerability of different structural 
systems to disproportionate collapse.  

1.2 SCOPE OF STUDY 

The study presented herein includes full-scale testing and finite-element based analysis of two 
reinforced concrete beam-column assemblies. One is taken from a ten-story building designed 
for Seismic Design Category C (SDC C) and the other is taken from a ten-story building 
designed for Seismic Design Category D (SDC D).  The design of these two prototype buildings 
was based on the ACI 318 building code (ACI 2002). The building designed for SDC C 
employed intermediate moment frames (IMFs) for the lateral force resisting system, and the 
building designed for SDC D employed special moment frames (SMFs). Each beam-column 
assembly consisted of three columns and two beam spans taken from the exterior lateral load 
resisting frames of the prototype buildings. The columns spanned from mid-height of the second 
story to mid-height of the third story, while the beams connected the three columns at the third 
floor level. Both assemblies were subjected to monotonically increasing downward displacement 
of the unsupported center column, simulating a column removal scenario. Each test was 
terminated upon reaching the collapse mechanism of the assembly. Both detailed and reduced 
finite element models of the test specimens were developed. The instrumentation plan and the 
testing were guided by pre-test predictions of the detailed model. The tests and associated 
computational models help fill the gap in defining the response characteristics of the moment-
resisting beam-column joints under collapse scenarios. 

1.3 REPORT OUTLINE 

This report describes the test program and the modeling approaches used in this study and 
presents and compares the experimental and computational results for the two beam-column 
assemblies. Chapter 2 describes the design of the two ten-story prototype reinforced-concrete 
buildings. The dimensions and reinforcing details of the test specimens were taken directly from 
the prototype buildings. Chapter 3 presents the test setup for both specimens, including the test 
configuration, the loading apparatus and sequence, and the instrumentation used. Chapter 4 
summarizes the test results, including the observed behavior and failure modes of each specimen, 
and presents the measured responses, including displacements, rotations, strains, and loads. 
Chapter 5 describes both detailed and reduced finite element models used in the analysis of the 
test specimens and presents the results of these analyses, including validation of the models 
against experimental results. Chapter 6 presents a summary and conclusions of the report. 
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Chapter 2 
DESCRIPTION OF PROTOTYPE BUILDING DESIGNS 

2.1 PROTOTYPE BUILDING DESIGNS 

The National Institute of Standards and Technology (NIST), working with a panel of practicing 
structural engineers, developed the overall configuration and dimensions of two ten-story 
prototype reinforced concrete buildings for office occupancy. A rectangular plan was chosen for 
the buildings with plan dimensions of 100 ft × 150 ft (30.5 m × 45.7 m).  To examine the 
effectiveness of seismic design and detailing in resisting disproportionate collapse, one building 
was designed for Seismic Design Category (SDC) C and the other for SDC D.  The SDC C 
building was designed for Atlanta, Georgia and used intermediate moment frames (IMFs) for the 
lateral force resisting system, while the SDC D building was designed for Seattle, Washington 
and used special moment frames (SMFs) for the lateral force resisting system.  Figures 2.1 and 
2.2 show the plan layouts of the SDC C and SDC D buildings, respectively. The story heights of 
the buildings are shown in Figure 2.3.  The detailed design of the buildings was carried out by a 
consulting engineering firm (Shen and Ghosh 2006). 

The prototype buildings were designed in accordance with the following code and standards: 

• International Code Council (ICC), 2003 International Building Code (ICC 2003) 

• American Society of Civil Engineers (ASCE) Standard 7-02, Minimum Design Loads for 
Buildings and Other Structures (ASCE 2002) 

• American Concrete Institute (ACI), Building Code Requirements for Structural Concrete (ACI 
318-02) and Commentary (ACI 318R-02) (ACI 2002) 

Superimposed dead loads, live loads, wind forces, and earthquake forces were determined in 
accordance with ASCE 7-02 (ASCE 2002).  The reduction of live loads was based on Section 
1607.9.1 of the IBC (ICC 2003). The following superimposed dead loads and live loads were 
used in the design of both buildings, assuming Category II occupancy (see ASCE 7-02 
Table 1-1): 

• Superimposed roof dead load:  10 psf (0.48 kN/m2) 

• Superimposed floor dead load:   30 psf (1.44 kN/m2) 

• Roof live load:    25 psf (1.20 kN/m2)  

• Floor live load:    100 psf (4.79 kN/m2) 

 
Normal weight concrete with a specific weight of 150 lbf/ft3, (23.6 kN/m3) and a nominal 
compressive strength of 4000 psi (27.6 MPa) and ASTM 615-Grade 60 reinforcing bars with a 
minimum specified yield strength of fy = 60 ksi (414 MPa) were used for all structural members.  
A 10 in (254 mm) thick normal-weight concrete slab was used at all floor levels in both 
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buildings. The slab thickness was selected on the basis of Table 9.5(c) in ACI 318-02 (ACI 
2002) for a two-way slab with edge beams.  
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                               Figure 2.1    Plan layout and member sizes of SDC C Building 
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                                  Figure 2.2    Plan layout and member sizes of SDC D Building 
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                                Figure 2.3    Elevation of SDC C Building and SDC D Building 

 
The design was carried out for the combined effects of gravity and lateral loads according to 
ASCE 7-02 (ASCE 2002). The equivalent lateral force procedure of ASCE 7-02, Section 9.5.5 
was used to compute the seismic base shear, and the design procedure outlined in Section 6.5.3 
was used to determine the wind forces on the building in both principal directions. The prototype 
buildings are classified as Seismic Use Group I based on the Occupancy Category of  II. The 
design assumed a wind importance factor Iw = 1.0, a wind exposure category B (suburban 
terrain), an earthquake importance factor IE = 1.0, and Site Class D soil (stiff soil). The design 
data used for analysis of the two prototype buildings are listed in Table 2.1, in which Ss and S1 
are the mapped maximum considered earthquake spectral acceleration at short period and at a 
period of 1 s, respectively, R is the response modification coefficient, and Cd is the deflection 
amplification factor.  

A summary of seismic design parameters for the two buildings is shown in Table 2.2, in which 
SDS and SD1 are the design spectral response accelerations at short periods and at a period of 1 s, 
respectively, and CS is the seismic response coefficient. A summary of the design seismic and 
wind forces is shown in Table 2.3. For both the SDC C (Atlanta, GA) and SDC D (Seattle, WA) 
buildings, the design was controlled by the load combination of gravity and seismic loads. 

                                                             Table 2.1    Design data 

Location 
Wind Seismic 

Speed, mph (m/s) Exposure IW SS, g S1, g Site Class IE R Cd 
Atlanta, GA 90 (40) B 1.0 0.276 0.117 D 1.0 5 4.5 

Seattle, WA 85 (38) B 1.0 1.580 0.549 D 1.0 8 5.5 
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                             Table 2.2    Seismic design parameters for SDC C and D buildings 

 
Building Approx. Period, 

Ta s 
SDS  
g 

SD1 
g Cs 

Seismic Weight, W  
kip (kN) 

Design Base Shear, V 
kip (kN) 

SDC C − 1.216 − 0.291 − 0.182 − 0.0299 32 690 (145 400) − 978 (4350) 

SDC D − 1.216 − 1.053 − 0.549 − 0.0564 36 600 (162 800) − 2065 (9186) 

 
 
                                  Table 2.3    Summary of design seismic and wind forces 

 

Building Location Story Seismic Force at Each Floor Level
kip (kN) 

Wind Force at Each Floor Level
kip (kN) 

E-W N-S 

SDC C Atlanta, GA 

10 179 (796) 11 (50) 18 (80) 
9 180 (801) 22 (100) 36 (160) 
8 154 (685) 22 (100) 36 (160) 
7 130 (578) 22 (100) 35 (155) 
6 106 (472) 21 (95) 34 (150) 
5 84 (374) 20 (90) 33 (145) 
4 63 (280) 20 (90) 31 (140) 
3 44 (196) 19 (85) 30 (135) 
2 26 (116) 18 (80) 28 (125) 

1 12 (53) 17 (75) 27 (120) 

∑ 978 (4350) 194 (863) 307 (1366) 

SDC D Seattle, WA 

10 377 (1677) 10 (44) 16 (71) 
9 381 (1695) 20 (89) 32 (142) 
8 326 (1450) 20 (89) 32 (142) 
7 274 (1219) 20 (89) 31 (138) 
6 224 (996) 19 (85) 30 (133) 
5 177 (787) 18 (80) 29 (129) 
4 133 (592) 18 (80) 28 (125) 
3 92 (409) 17 (76) 27 (120) 

2 56 (249) 16 (71) 25 (111) 

1 26 (116) 15 (67) 24 (107) 

∑ 2066 (9190) 173 (770) 274 (1219) 

 

2.2 DESIGN OF MOMENT RESISTING FRAMES 

Design of the moment-resisting frames for the buildings was based on three-dimensional 
analyses of the buildings using a commercially available computer program for linear elastic 
analysis.  Fixed-base connections were assumed at the structure-foundation interface. The 
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designs of both IMFs and SMFs followed the requirements of the ACI 318-02 code (ACI 2002). 
Specifically, the flexural members of IMFs met the requirements of Sections 21.2 and 21.12, 
whereas the flexural members of SMFs satisfied the requirements of Sections 21.2 through 21.5.  

The flexural reinforcement satisfied the limits prescribed in Section 10.3.5 of ACI 318-02 for 
maximum reinforcement and Section 10.5.1 for minimum reinforcement, as well as Sections 
3.3.2 and 7.6.1 (minimum spacing for concrete placement), Section 7.7.1 (minimum cover for 
protection of reinforcement), and Section 10.6.4 (maximum spacing for control of flexural 
cracking). 

The columns in the IMFs satisfied the requirements of Section 21.12.3 and the columns in SMFs 
satisfied Section 21.4.5 of ACI 318-02. Transverse reinforcement consisted of rectangular hoops, 
ties, and crossties. 
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Chapter 3 
TEST PROGRAM 

3.1 INTRODUCTION 

This chapter describes the overall test program, which includes the design of full-scale test 
specimens, the test setup including test apparatus and instrumentation, and the test procedure. 
The primary objectives of these tests are to (1) characterize the response of the beam-column 
assemblies under a column removal scenario, including the capacity of the beams and the beam-
to-column joints to carry loads through catenary action, and (2) provide experimental data for 
validation of computational models to be used in assessing the robustness of structural systems. 
The test specimens were beam-column assemblies from the third-floor framing system of the 
ten-story buildings described in Chapter 2. Thus, the specimen from the SDC C building was 
part of an intermediate moment frame (IMF), while the specimen from the SDC D building was 
part of a special moment frame (SMF). Throughout the remainder of this report, these two 
specimens will be referred to as the IMF specimen and the SMF specimen, respectively. 

Section 3.2 presents in detail the description of the test specimens, while Section 3.3 describes 
the test setup for both specimens including boundary conditions, test apparatus, and loading 
sequence. Section 3.4 presents the instrumentation plan for each of the two tests. 

3.2 TEST SPECIMENS 

Figures 3.1 and 3.2 show member cross section and beam-to-column joint details of the IMF 
specimen and the SMF specimen, respectively. All beams and columns were designed with 
concrete having a nominal compressive strength of 4000 psi (27.6 MPa) with ASTM A706-
Grade 60 reinforcing bars with a minimum specified yield strength of fy = 60 ksi (413.7 MPa).  
Table 3.1 shows the average compressive and tensile strengths of the concrete measured at the 
time of testing using 6×12 cylinders, and Table 3.2 shows mean values of the measured 
mechanical properties of the reinforcing bars used to fabricate the specimens. As indicated in 
Figures 3.1 and 3.2, top and bottom longitudinal reinforcing bars in the beams were spliced with 
threaded couplers located at mid-span to avoid premature lap splice failure (see Figure 3.3). All 
beam longitudinal bars were anchored at the exterior beam-column joints by means of threaded 
mechanical anchorage devices to simulate continuity of the longitudinal bars. These anchorage 
devices were supplemented with ¾ in (19 mm) thick steel plates (see Figure 3.4). The concrete 
adjacent to the devices was confined with spirals made with Grade 40 plain wire. 

The footings for the end columns were cast prior to casting of the beams and columns (see 
Figure 3.5). The footings for both specimens were 88 in (2235 mm) long in the direction of the 
beam, 64 in (1626 mm) wide and 42 in (1067 mm) high. The longitudinal bars in the columns 
were fully embedded in the footings with 24 in (610 mm) long 90º hooks placed near the bottom 
of the footings (see Figures 3.1 and 3.2). Each footing was clamped down to the strong floor 
using ten 1¼ in (32 mm) post tensioning bars. Each bar was post tensioned to 150 kip (667 kN), 
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for a total clamping force of 1500 kip (6670 kN) on each footing. To restrain the inward 
movement of the end columns, a concrete slab with a 28 in × 10 in (711 mm × 254 mm) cross 
section was cast between the two footings as a buttress. It was reinforced with six Grade 60 #8 
bars in the longitudinal direction and hoops made with Grade 60 #4 bars in the transverse 
direction spaced at 6 in (152 mm) on center. Additional confinement was provided by spirals at 
the ends of the slab in contact with the footings (see Figure 3.6).  

Since the SMF specimen was tested first and experienced some slippage at the north footing (see 
Section 4.3.3), the footings for the IMF specimen were cast against the reaction walls to 
minimize their movement during testing.  The north footing was further restrained with two steel 
reaction blocks that were butted against the footing using threaded spacers (see Figure 3.7).  The 
possible movement between the anchor bolts used to attach these blocks to the strong floor and 
the holes in the strong floor was eliminated by shimming before post-tensioning the anchor bolts. 

 
Table 3.1    Average compressive and tensile strengths of 6x12 concrete cylinders at the time of testing 

 

Specimen 
Compressive Strength 

psi (MPa) 
Split-Cylinder Tensile Strength

psi (MPa) 

Footings Beams and Columns Beams and Columns 

IMF 5700 (39) 4700 (32) 450 (3.1) 

SMF 5300 (37) 5200 (36) 420 (2.9) 

 
                   Table 3.2    Average mechanical properties of reinforcing bars 

 
Heat Bar Size Yield Strength, fy 

ksi (MPa) 
Ultimate Strength, fu 

ksi (MPa) Rupture Strain† 

A1 8 69 (476) 94 (648) 21 % 

B2 9 67 (462) 93 (641) 18 % 

C3 9 70 (483) 100 (690) 17 % 

D4 10 73 (503) 106 (731) 16 % 

E5 4 76 (524)* 103 (710) 14 % 

F6 4 79 (545)* 98 (676) 15 % 
 
* 0.2 % offset yield strength 
† Gage length: 8 in (203 mm) 
1 Top bars in beam of IMF specimen and all beam reinforcement in SMF specimen 
2 Bottom bars in beam of IMF specimen 
3 Vertical bars in columns of IMF specimen 
4 Vertical bars in columns of SMF specimen 
5 Ties and stirrups in IMF specimen 
6 Ties and stirrups in SMF specimen 
 



  

 

 
                                                                                      Figure 3.1    Details of IMF specimen
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                                                                                     Figure 3.2    Details of SMF specimen
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                Figure 3.3    Threaded mechanical couplers for splicing longitudinal bars of beams 

 
 
 

 
 
                                   Figure 3.4    Anchorage of beam longitudinal reinforcement 
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                          Figure 3.5    Reinforcing cage for beams and columns (SMF specimen) 

 
 
 

 
 
                                           Figure 3.6    Reinforcement in buttressing slab 
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                               Figure 3.7    Steel blocks used to prevent footing from sliding 

 

3.3 TEST SETUP 

Figure 3.8 shows a photograph of the SMF specimen. The test setup for the IMF specimen was 
essentially the same as that of the SMF specimen. A schematic view of the test setup for both the 
IMF specimen and the SMF specimen is shown in Figure 3.9. For each specimen, the tops of the 
two end columns were restrained from horizontal movement by a two-roller fixture.  One roller 
was placed on the interior (beam side) face of the column and the other on the exterior face (see 
Figure 3.10). These rollers reacted against 2 in (51 mm) thick steel plates which were cemented 
with hydrostone to the interior and exterior faces of the column.  Recesses with a depth of ½ in 
(13 mm) were formed on the column faces to accommodate these plates and improve their 
connection to the concrete. The plates that fitted in these recesses transferred forces from the 
rollers to the columns. The rollers were suspended by ½ in (13 mm) steel rods from the tops of 
the columns.  Horizontal movement of the steel plates on the exterior face of each column was 
restrained by four 1¼ in (32 mm) post-tensioning bars which were anchored to a reinforced 
concrete block that was clamped to the reaction wall by post-tensioning bars with a total 
clamping force of 600 kip (2669 kN). The tops of the columns were allowed to move in the 
vertical direction. 

As shown in Figure 3.9, four 120 kip (534 kN) hydraulic rams with a 20 in (508 mm) stroke 
were placed below the strong floor of the laboratory to apply load at the top of the center 
column. Figure 3.11 shows a photograph of the ram arrangement below the strong floor. The 
load was transferred to the specimen using four 22 ft (6.6 m) long, 1¼ in (31.6 mm) diameter 
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post-tensioning rods.  These rods were connected to two 6 ft (1.8 m) long 10 in × 4 in × ½ in 
(254 mm × 102 mm × 12.7 mm) hollow structural section (HSS) rectangular tubes resting on a 
34 in × 34 in × 2 in (864 mm × 864 mm × 51 mm) steel plate that transferred the load to the top 
of the center column. The weight of the rams, rods, tubes, and plates used to load to the 
specimens was approximately 2500 lbf (11 120 N). The load was applied under displacement 
control at a rate of approximately 1 in/min (25 mm/min).  

Use of the four hydraulic rams to apply the load enabled control of any possible in-plane rotation 
of the center column in the advanced stages of loading. Pulling down the beam with the rams 
below the strong floor, rather than pushing it from a support above, minimized the tendency for 
lateral movement of the beam. Out-of-plane movement of the specimen was also restrained by 
four steel channels fixed to the reaction wall as seen in Figure 3.8. 

Vertical downward displacement of the center column was applied in small increments of 2.5 in 
to 3 in (64 mm to 76 mm). After each increment in displacement, the specimen and the 
instrumentation were inspected, cracks were marked, and photographs were taken. The rams 
were reset when the stroke of the rams reached about 18 in to 20 in (457 mm to 508 mm). The 
displacement of the center column was increased until one or more of the longitudinal 
reinforcing bars in the beams fractured. 

 

 
 
                                                      Figure 3.8    SMF specimen 

3.4 INSTRUMENTATION 

Seven types of measurements were taken for each specimen. The types of instruments used are 
summarized in Table 3.3. Figure 3.12 shows the layout of the linear variable differential 
transformers (LVDTs), load cells, position transducers, and inclinometers. The locations of the 
Whittemore gage targets, Optotrak targets, and strain gages are presented in Chapter 4 together 
with the test results. 
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                                                                Figure 3.9    Test configuration for IMF and SMF specimens 
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                                           Figure 3.10   Support arrangement near column top 

 
 

 
 
                            Figure 3.11   Hydraulic rams arrangement below the strong floor 
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                         Figure 3.12   Instrument layouts (INC-inclinometer, ENC-position transducer, LC-load cell, other sensors are LVDTs). 
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                                               Table 3.3    Summary of instrumentation 

Instrument Type Location Measurement 

LVDT North & south columns Horizontal displacement  
(column top and beam mid-height) 

LVDT North & south footings Vertical displacement 
(movement of footing) 

Load cell North & south columns Horizontal load (reaction at top) 

Load cell Center column Vertical load (applied load) 

Position transducer Beams & center column Vertical displacement  
(beam deflections) 

Position transducer Beams Horizontal displacement 
(length change) 

Inclinometers Beam ends Rotation 

Whittemore gages* Beam-column joints Horizontal strain 

Optotrak** Beam-column joints Horizontal strain 

Strain gages Beam & column reinforcing bars Axial strain of reinforcement 

Dial gages Base of footing Horizontal displacement 
*Used only for the SMF specimen 
**Electronic coordinate measurement device, used only for the IMF specimen 
 
 
The uncertainty in the measured values of load, deflection, surface deformation, rotation, and 
strain was within ± 1 %.  In addition to these digital measurements, digital cameras were used to 
capture the deformed shape of the specimens, surface cracks of concrete, and failure of 
components. 

3.4.1 Displacement Transducers (Position transducers and LVDTs) 

Based on pre-test analysis of the test specimen, the center column was expected to undergo large 
displacements of over 40 in (1000 mm) prior to final failure. To accommodate such large 
displacements, two spring-loaded string-type position transducers having a 6 ft (1.8 m) range and 
a 0.004 in (0.1 mm) accuracy were used to measure the vertical displacement of the center 
column. An additional six position transducers were used to measure the vertical displacement at 
different locations along the beam spans, and two position transducers were used to measure the 
change in length of the beam spans. Eight LVDTs having an accuracy of 0.005 in (0.127 mm) 
were used to measure horizontal displacements of the end columns and vertical displacements of 
the footings.  

3.4.2 Inclinometers 

To measure the rotation of the beam ends, four digital inclinometers were attached to the tops of 
the beams, about 30 in (760 mm) away from the column faces. The locations of the four 
inclinometers are shown in Figure 3.12, designated as SS INC, SM INC, NM INC, and NN INC. 
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3.4.3 Surface Deformation Measurement Devices 

To document the formation of concrete cracks, surface deformations were measured in the beam-
column joint region using an electronic coordinate measurement device (Optotrak) for the IMF 
specimen and an electronic Whittemore gage device for the SMF specimen. The locations of the 
Optotrak target points are shown in Figure 4.9(a) and the locations of the Whittemore gage 
targets are shown in Figure 4.23(a). A photograph of the Optotrak target points in the beam-
column joint region of the IMF specimen is shown in Figure 3.13. A change in the distance 
between any two target points is determined by measuring the coordinates of the targets. 

3.4.4 Strain Gages 

Uniaxial strain gauges were attached to the surface of reinforcing bars in beams and columns. 
The locations of strain gages are shown in Figures 4.9 and 4.23 for the IMF specimen and the 
SMF specimen, respectively. The primary purpose of the strain measurements was to observe 
experimentally the development of axial forces and bending moments in the beams and columns, 
including the onset of catenary action in the beams. 

 
 

 
 
                                      Figure 3.13   Optotrak target points for IMF specimen 
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Chapter 4 
EXPERIMENTAL RESULTS 

4.1 INTRODUCTION 

This chapter presents the test results of both the IMF and SMF specimens, described in Chapter 
3. The test results include the observed behavior and failure modes of each specimen, along with 
the primary response parameters of the test specimens measured during the experiment. Such 
measurements include vertical and horizontal deflections of beams and columns, rotations at 
beam ends, and strains (reinforcing bars and concrete). The response parameters also include the 
vertical load applied by the hydraulic rams to pull down the center column, measured using load 
cells. Both the observed behavior and the measured response provide insights into the behavior 
of the specimens prior to and during the failure process. Sections 4.2 and 4.3 provide 
experimental results obtained from the IMF and SMF specimens, respectively, while Section 4.4 
presents a summary and discussion of the test results. 

4.2 IMF SPECIMEN 

4.2.1 Observed Behavior and Failure Modes 

Under monotonic vertical displacement of the center column, the IMF specimen experienced 
large deflections and rotations at the ends of the beams prior to failure (Figure 4.1). The failure 
was characterized by the following sequence (see Figure 4.2): (1) crushing and spalling of 
concrete at the top of the beams near the center column, (2) development of major flexural 
cracks (deepening and widening), and (3) fracture of one of the bottom reinforcing bars at a 
major crack opening near the center column. A south beam-bottom reinforcing bar near the 
center column first fractured at a vertical displacement of the center column of about 43.0 in 
(1092 mm), with a corresponding beam chord rotation of about 0.179 rad (10.3°), obtained by 
dividing the center column displacement by the centerline-to-centerline beam span of 240.0 in 
(6096 mm). At that displacement, the applied vertical load was approximately 123 kip (547 kN). 
A second bar fractured when the center column deflection reached 44.5 in (1130 mm) at which 
point the test was terminated. 
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                                  Figure 4.1    IMF specimen subjected to large displacement 

 
 

 

 
 
                                                 Figure 4.2    Failure mode of IMF specimen 
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4.2.2 Crack Patterns 

When shores were removed prior to testing, small vertical flexural cracks developed at the ends 
of both the south and north beams. The maximum width of the cracks measured was 0.008 in 
(0.2 mm). When testing commenced with downward displacement of the center column, more 
flexural cracks developed along the beams, as well as along the lower halves of the end columns 
(below the beams). As the vertical displacement of the center column approached 3.5 in 
(90 mm), with a vertical load approaching 60 kip (267 kN), shear cracks started to develop in the 
bottom halves of the columns, and inclined cracks developed at the beam-column joints at the 
end columns. At a center column displacement of about 4.3 in (110 mm), with a load of about 
63 kip (280 kN), splitting cracks were noted at the top of the beams near the end columns. When 
the center column was displaced about 6.8 in (173 mm), corresponding to a vertical load of about 
61 kip (271 kN), splitting cracks also appeared at the top of the beam next to the north face of the 
center column. As the center column displaced further, concrete began to crush at the beam ends. 
It was noted that the crushing was more intense in the north beam than the south beam. Figure 
4.3(a) shows a map of cracks at a center column displacement of about 24 in (610 mm). At this 
displacement, the maximum crack width of the north beam near the center column was about 
1.3 in (33 mm). As the center column displacement was increased further, full-depth cracks 
appeared in the beams near both sides of the center column. After the fracture of the second 
longitudinal bar of the south beam, wide gaps were visible in the beams near the center column 
and also at the reinforcement cutoff points. Full-depth cracks were visible at the middle segments 
of the beams. Figure 4.3(b) shows a map of the final crack pattern. 

(a) 

N

N

  

 

(b) 

 
Figure 4.3    Crack patterns of IMF specimen at center column deflections of (a) 24 in (610 mm) and (b) 43 in 
(1092 mm) 
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4.2.3 Displacement Measurements 

Figure 4.4 shows the vertical load versus vertical deflections at (a) ¼ span of the beams (ENC0 
and ENC7), (b) mid-span of the beams (ENC1 and ENC6), (c) ¾ span of the beams (ENC2 and 
ENC5), and (d) the center column (ENC3 and ENC4). The locations of the position transducers 
were shown previously in Figure 3.12.  As the plots indicate, the specimen was slightly unloaded 
when the hydraulic rams were halted every 2.5 in to 3.0 in (64 mm to 76 mm) to take instrument 
measurements and photographs. Figure 4.4(d) shows that the load reached an initial peak of 
66.5 kip (296 kN) at a center column displacement of about 5 in (127 mm) and started to 
decrease with increasing displacement. At a displacement of about 16 in (406 mm), the load had 
leveled off at 44 kip (196 kN). With further increase in the center column displacement, the load 
started to increase again until it reached a maximum value of approximate 123 kip (547 kN) at a 
displacement of 43 in (1092 mm). At that displacement, the first longitudinal bar of the south 
beam fractured at the face of the center column, which was followed by a second bar fracture at 
the same crack location when the displacement reached 44.5 in (1130 mm). Each of the four 
pairs of load-displacement curves plotted in Figure 4.4 shows good agreement between the 
measurements of symmetrically placed position transducers, which indicates that symmetry was 
largely maintained during the experiment. In subsequent plots, the average of ENC3 and ENC4 
is used to represent the vertical displacement of the center column.  

Figure 4.5 depicts the deflection profile of the beams (ENC0 through ENC7) at different load 
values. In the figure, dotted lines are used to connect the measured deflections. Note that the 
straight lines do not accurately represent the deflected shape of the beams. The small differences 
between the displacement measurements on each side of the center column indicate a slight 
rotation of the center column during the experiment. 

The plots in Figure 4.6 show the horizontal displacements at the tops of the end columns 
(SCOL T and NCOL T), where the rollers were placed to restrain the movement, and the 
horizontal displacement at the beam mid-height (SCOL M and NCOL M) versus the vertical 
displacement of the center column. In the plots, positive values represent inward movement. 
Figure 4.6(a) shows that a small deflection was observed at the top of the columns. This is 
mainly due to slack in the support system at the top of the columns.  A maximum outward 
deflection (average of SCOL T and NCOL T) of about 0.1 in (2.5 mm) was recorded at a vertical 
displacement of the center column of about 10 in (254 mm). As the vertical displacement was 
increased, the columns started to move inward and reached a maximum average deflection of 
about 0.04 in (1 mm) at the top. Figure 4.6(b) shows similar movement of the columns at beam 
mid-height with a peak outward deflection (average of SCOL M and NCOL M) of about 0.24 in 
(6.1 mm) at a vertical displacement of about 9 in (230 mm) and a maximum inward deflection of 
about 0.17 in (4.3 mm) at the end of the test. 
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Figure 4.4    Vertical load versus vertical deflections of IMF specimen at (a) ¼ span of beams (ENC0 and ENC7), (b) mid-span of beams (ENC1 and 
ENC6), (c) ¾ span of beams (ENC2 and ENC5),and (d) center column (ENC3 and ENC4) 
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Figure 4.6    Horizontal displacement of end columns at (a) top (SCOL T, NCOL T), and (b) beam mid-height 
(SCOL M, NCOL M) versus vertical displacement of center column for IMF specimen. 
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4.2.4 Rotation Measurements 

Figure 4.7 shows the vertical load plotted against the rotations measured at the beam ends near 
the north and south end columns (inclinometers NN INC and SS INC, respectively, see Figure 
3.12). Figure 4.8 presents the same rotation measurements plotted against the vertical 
displacement of the center column. Rotations of the north and south beams agreed closely until a 
vertical displacement of about 20 in (508 mm). As the displacement increased, the bottom of the 
south beam near the south end column exhibited significant crushing of concrete which caused a 
reduction of the effective cross section of the south beam near the end column. This condition 
led the south beam to undergo a larger rotation than the north beam. This disparity in beam-end 
rotation is evident in Figures 4.7 and 4.8. The average of the two measured beam-end rotations 
near the end columns (NN INC and SS INC) was calculated and plotted in Figures 4.7 and 4.8. 
These figures show that the maximum average rotation before failure was about 0.159 rad (9.1°).  
The other two inclinometers, which were near the center column (NM INC and SM INC, see 
Figure 3.12), did not provide meaningful data.  
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                     Figure 4.7    Applied vertical load versus beam end rotations for IMF specimen 
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   Figure 4.8    Beam end rotations versus vertical displacement of center column for IMF specimen 
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4.2.5 Strain Measurements 

Concrete surface strains were calculated using position transducer (Optotrak) readings which 
recorded a relative displacement between two targets cemented on the concrete surface as shown 
in Figure 4.9(a). The horizontal gage length between Optotrak targets was 8 in (203 mm), and 
the vertical spacing was 5 in (127 mm). Reinforcing bar strains were measured by electrical 
resistance strain gages attached to reinforcing bars embedded into concrete. The strain gage 
locations are shown in Figure 4.9(b). In the figure, the cross sections where strain gages were 
installed are labeled as S1 through S3 in the south column, N1 through N3 in the north column, 
and B1 through B10 in the beams. 

Gages at sections B3 and B8 provide information about the reinforcement strains at mid-span of 
the beams.  Figure 4.10 shows negative (compressive) strain in both top and bottom reinforcing 
bars of the beams before the vertical displacement exceeded about 20 in (508 mm), which 
indicates that a compressive axial force developed in the beams during this stage of loading. It 
was observed that although the applied load started to decrease, the compressive strain of the top 
and bottom bars continued to increase until the vertical displacement of the center column 
reached about 10 in (254 mm). Transition of beam axial forces from compression to tension 
occurred as the vertical displacement of the center column increased from 20 in (508 mm) to 
30 in (762 mm). As the vertical displacement increased beyond 30 in (762 mm), all longitudinal 
reinforcement at the mid-span sections (B3 and B8) of the beams exhibited positive (tensile) 
strain, which clearly indicates the development of catenary action in the beams. Enlargements of 
the strain development in the early stages of loading are shown on the right hand side of the 
plots. 

Gages at sections S1 and N1 provide information about strain in the longitudinal reinforcement 
at the base of the end columns.  Figure 4.11(a) shows strains in the longitudinal bars located near 
the interior face at these sections, indicating that these bars were in tension initially and gradually 
changed to compression after reaching a peak tensile strain.  On the other hand, Figure 4.11(b) 
shows that the reinforcing bars near the outer face were in compression initially and gradually 
changed to tension. These sign changes in the measured strains indicate a reversal of the in-plane 
curvature of the end columns, which was associated with the development of tensile axial forces 
in the beams due to catenary action. 

At sections B1 and B10, near the end column interfaces, the measured strain in the top 
reinforcing bars of the beams exceeded the nominal yield strain (0.002) in tension at a vertical 
displacement of about 2 in (51 mm). Soon after the vertical displacement exceeded about 5 in 
(127 mm), these gages failed. The measured strain in the bottom reinforcing bars at sections B1 
and B10 exceeded the nominal yield strain in compression at a vertical displacement of about 
15  in (381 mm). Strain readings in these bars gradually changed from compression to tension 
beyond a vertical displacement of 30 in (762 mm). The bottom longitudinal reinforcing bars at 
sections B5 and B6 exceeded the nominal yield strain in tension at a vertical displacement of the 
center column of about 1.5 in (38 mm). 
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Figure 4.9    Strain measurements for IMF specimen: (a) Optotrak target locations and b) reinforcing bar strain gage locations   
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Figure 4.10   Beam mid-span (Section B3 and B8) reinforcing bar strains versus vertical displacement of center column for IMF specimen: (a) top 
reinforcing bars and (b) bottom reinforcing bars
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Figure 4.11   Column-bottom (Section S1 and N1) reinforcing bar strains versus vertical displacement of 
center column for IMF specimen: (a) interior reinforcing bars and (b) exterior reinforcing bars 
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A number of strain gages malfunctioned from the early stage of loading. These include gages 
5EB and 5WB, which failed when the vertical displacement exceeded 2.0 in (51 mm), and gages 
6EB and 6WB, which failed at vertical displacements of about 9 in (229 mm) and 14 in 
(356 mm) with maximum tensile strains of about 0.04 and 0.06, respectively.  Gages 5ET and 
5WT malfunctioned and did not provide data. Gages 6ET and 6WT failed at a vertical 
displacement of 12 in (305 mm), with maximum compressive strains of about 0.005 and 0.01, 
respectively. See Figure 4.9 for the locations of these gages. 

Strain gage measurements at bar-cutoff sections, where the shorter top reinforcing bars in the 
beams terminate (B2, B4, B7, and B9 in Figure 4.9), are presented in Figure 4.12. Strain readings 
at bar-cutoff sections B2 and B9 show that the top bars yielded in tension when the bottom bars 
were still in compression. This spreading of yielding in the longitudinal bars is the reason that 
the displacement profile in Figure 4.5 exhibits curvature along the beam spans, rather than 
consisting simply of straight line segments between plastic hinges at the beam ends.  

Plots of average computed concrete surface strain based on Optotrak readings at beam-end 
sections near the end columns are presented in Figure 4.13. Strain distributions correspond to 
applied vertical loads of 49 kip, 63 kip, 59 kip, 44 kip, and 108 kip (218 kN, 280 kN, 262 kN, 
196 kN, and 480 kN). These loads correspond to center column vertical displacements of 2.2 in, 
4.3 in, 6.8 in, 14.2 in, and 38.5 in (56 mm, 109 mm, 173 mm, 361 mm, and 978 mm).  Similar 
plots are shown in Figure 4.14 for the beam-end sections near the center column.  Enlargements 
of the cross-sectional strain distributions during the early stage of loading are shown on the right-
hand side of these figures. Figure 4.13 shows that the neutral axis moved upward during the 
initial stage of loading, for center column displacements less than 5 in (127 mm). Then the 
neutral axis moved downward as the center column displacement increased. This suggests that 
compressive axial force developed in the beams during the initial stages of loading, which later 
changed to tensile axial force as the center column displacement increased. The cross-sectional 
strain profiles shown in Figure 4.14(a) and (b) indicate that the north beam rotated more than the 
south beam at the center beam-column joint until the onset of catenary action. Subsequently, a 
large crack developed at the beam-column interface on the south side of the joint (see Figure 
4.2). As a result, the rotation of the south beam increased rapidly and the difference in the end 
rotations of the north and the south beams diminished. With further increases in the center 
column displacement, considerable localized reduction in the cross-sectional area of the bottom 
reinforcing bars developed and these bars eventually fractured.
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Figure 4.12   Beam reinforcement strains at bar-cutoff sections versus vertical displacement of center column for IMF specimen: (a) top bars at sections 
B2 and B9, (b) top bars at sections B4 and B7, (c) bottom bars at sections B2 and B9, and (d) bottom bars at sections B4 and B7 
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Figure 4.13   Concrete surface strain distributions of IMF specimen at beam ends: (a) near north   end 
column and (b) near south end column 
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Figure 4.14   Concrete surface strain distributions of IMF specimen at beam ends: (a) near north side of 
center column and (b) near south side of center column 

 
 
 
 
 
 
 

‐254

‐203.2

‐152.4

‐101.6

‐50.8

0

50.8

101.6

152.4

203.2

254

‐10

‐8

‐6

‐4

‐2

0

2

4

6

8

10

‐20 20 60 100 140

Strain (x10‐3)
V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(m

m
)

V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(in

)

2.2 in, 49 kip

4.3 in, 63 kip

6.8 in, 59 kip

14.2 in, 44 kip

38.5 in, 108 kip

101.6

127

152.4

177.8

203.2

4

5

6

7

8

‐10 ‐5 0 5 10

Strain (x10‐3)

V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(m

m
)

V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(in

)

(a) 

‐254

‐203.2

‐152.4

‐101.6

‐50.8

0

50.8

101.6

152.4

203.2

254

‐10

‐8

‐6

‐4

‐2

0

2

4

6

8

10

‐20 20 60 100 140

Strain (x10‐3)

V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(m

m
)

V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(in

)

2.2 in, 49 kip

4.3 in, 63 kip

6.8 in, 59 kip

14.2 in, 44 kip

38.5 in, 108 kip

101.6

127

152.4

177.8

203.2

4

5

6

7

8

‐10 ‐5 0 5 10

Strain (x10‐3)
V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(m

m
)

V
er
ti
ca
l D

is
ta
nc
e 
fr
om

 B
ea
m
 C
en

tr
oi
d 
(in

)
(b) 

39 



 

4.3 SMF SPECIMEN 

4.3.1 Observed Behavior and Failure Modes 

Under monotonic vertical displacement of the center column, the SMF specimen (see Figure 
4.15) experienced larger deflections and rotations than the IMF specimen before failure. The 
SMF specimen failed at a vertical displacement of the center column of about 48 in (1219 mm), 
with a corresponding beam chord rotation of about 0.20 rad (11.5°), obtained by dividing the 
center column displacement at failure by the centerline-to-centerline beam span of 240.0 in 
(6096 mm). The applied vertical load corresponding to that displacement was approximately 
277 kip (1232 kN). The failure was initiated by fracture of one of the beam-bottom reinforcing 
bars in tension near the north face of the center column (see Fig. 4.16). As loading continued, all 
of the reinforcing bars in the bottom layer fractured. Compared with the IMF specimen, the 
larger rupture strain of the longitudinal reinforcement (21% versus 18% for SMF and IMF, 
respectively, see Table 3.2) at the bottom of the beams of the SMF specimen may have 
contributed to the larger deflections and rotations that were achieved. 

 

 
 
                          Figure 4.15   View of SMF specimen subjected to large displacement 
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                                              Figure 4.16   Failure mode of SMF specimen 

 

4.3.2 Crack Patterns 

During shore removal before testing, small cracks were noted at the beam ends close to the end 
columns and the center column. When testing commenced with downward displacement of the 
center column, flexural cracks developed along the beam and along the lower halves of the 
columns (below the beams). When the vertical displacement of the center column approached 
1.4 in (36 mm), with a vertical load approaching 105 kip (467 kN), flexural-shear cracks started 
to develop in the beams and the lower halves of the columns. Inclined cracks developed in the 
beam-column joints, and horizontal cracks developed in the center column when the center 
column displacement approached 1.7 in (44 mm), with the load approaching 150 kip (667 kN). 
Splitting cracks due to compression were observed in the beam near the center column at a center 
column displacement of about 3.1 in (80 mm), with a load of nearly 192 kip (854 kN). Splitting 
cracks were also observed in the beam near the end columns at a center column displacement of 
about 3.8 in (96 mm), with a vertical load of about 200 kip (890 kN). At that load, the maximum 
width of flexural beam cracks near the center column was 0.25 in (6.35 mm). Figure 4.17(a) 
shows a map of the cracks that had formed at a center column displacement of 24.5 in (622 mm). 
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In the beams, cracks concentrated in the beam-end zones, while some cracks developed near the 
reinforcement cutoff points where half of the top reinforcing bars working in tension were 
discontinued. In the columns, cracks were concentrated in the lower halves. The maximum crack 
width was approximately 0.7 in (18 mm). As the center column displacement was increased 
further, full-depth cracks appeared in the beams near the center column. After fracture of the 
bottom layer reinforcement, wide gaps were visible in the beams near the center column and at 
the reinforcement cutoff points. Full-depth cracks were also visible at the middle segments of the 
beams. Figure 4.17(b) shows a map of the final crack pattern. 

 
(a) 

N

N

    

 

(b) 

 
Figure 4.17   Crack patterns of SMF specimen at center column deflections of (a) 24.5 in (622 mm) and (b) 48 
in (1219 mm). 

4.3.3 Displacement Measurements 

The plots in Figure 4.18 show the vertical load versus vertical displacements at (a) ¼ span of the 
beams (ENC0 and ENC7), (b) mid-span of the beams (ENC1 and ENC6), (c) ¾ span of the 
beams (ENC2 and ENC5), and (d) the center column (ENC3 and ENC4). The locations of the 
position transducers were shown in Figure 3.12. As the plots indicate, the specimen was slightly 
unloaded when the hydraulic rams were halted every 2.5 in to 3.0 in (64 mm to 76 mm) to take 
measurements and photographs. The pairs of load-displacement curves are nearly the same in 
each of the four plots in Figure 4.18, which indicates that symmetry was largely maintained 
during the experiment. In subsequent plots, the average of ENC3 and ENC4 is used to represent 
the vertical displacement of the center column.  
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Figure 4.18   Vertical load versus vertical displacements of SMF specimen at (a) ¼ span of beams (ENC 0 and ENC 7), (b) mid-span of beams (ENC 1 
and ENC 6), (c) ¾ span of beams (ENC 2 and ENC 5), and (d) center column (ENC 3 and ENC 4)  
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Figure 4.18(d) indicates that the load reached an initial peak of 203 kip (903 kN) at a center 
column displacement of 4.4 in (112 mm). The load started to decrease as the vertical 
displacement increased further. At the time that the initial peak load was reached, a northward 
movement of the north footing was detected (see Figure 4.19). The footing initially moved 
approximately 0.25 in (6.4 mm). As the displacement of the center column increased up to 20 in 
(508 mm), additional northward movement of the footing was observed.  When the load was 
144 kip (641 kN), the movement of the north footing stopped, reaching a maximum northward 
displacement of about 0.77 in (19.6 mm). The vertical load reached a maximum of 277 kip 
(1232 kN) at a center column displacement of 48 in (1219 mm), when one of the outermost 
bottom bars near the north face of the center column fractured (see Figure 4.16). All bottom layer 
bars ruptured instantaneously as additional displacement of the center column was attempted.  

Figure 4.20 depicts the deflection profile of the beams (ENC0 through ENC7, see Figure 3.12) at 
different load values. In the figure, dotted lines are used to connect the measured deflections, 
while it is noted that straight lines do not accurately represent the deflected shape of the beams.  
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Figure 4.19   North footing displacement versus vertical displacement of center column 
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Figure 4.20   Vertical deflection profiles of beams corresponding to indicated vertical loads for SMF specimen  

 
 
The plots in Figure 4.21 show the horizontal movement at the tops of the end columns (SCOL T 
and NCOL T, see Figure 3.12), where the rollers were placed to restrain the movement, and at 
the beam mid-height (SCOL M and NCOL M, see Figure 3.12) versus the vertical displacement 
of the center column. In the plots, positive values represent inward movement of the end 
columns. Due to the horizontal movement of the north footing, horizontal displacements of the 
north column were larger than those of the south column. The maximum outward displacements 
at the top and beam mid-height of the south column were about 0.13 in (3.3 mm) and 0.29 in 
(7.4 mm), respectively. When the north footing started to move, the displacements of the south 
column ceased to increase while the displacements at the top and beam mid-height of the north 
column continued to increase. The maximum outward displacements at the top and beam mid-
height of the north column were about 0.15 in (3.8 mm) and 0.71 in (18.0 mm), respectively. As 
the vertical displacement of the center column increased, the end columns tended to be pulled 
inward due to catenary action. The south column at the beam mid-height was pulled inward 
(toward the center column) about 0.1 in (2.5 mm) relative to the original position, whereas the 
north column at the beam mid-height was pushed outward (away from the center column) about 
0.23 in (5.8 mm) due to the movement of the north column footing. 

4.3.4 Rotation Measurements 

Figure 4.22(a) shows the vertical load plotted against the rotations measured at the beam ends 
near the north and south columns (inclinometers NN INC and SS INC, respectively, see Figure 
3.12), while Figure 4.22(b) shows the vertical load plotted against the rotations measured at the 
beam ends near the north and south sides of the center column (NM INC and SM INC, 
respectively, see Figure 3.12). Rotations of the north and south beams matched closely until the 
final stages of loading. The average of the two rotation measurements at the beam ends near the 
end columns (NN INC and SS INC) at failure was about 0.183 rad (10.5°), and the average of the 
two rotation measurements at the beam ends near the center column (NM INC and SM INC) at 
failure was about 0.195 rad (11.2°). Figure 4.23 presents the measured rotations of the beam ends 
versus the vertical displacement of the center column. The rotations were essentially linearly 
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proportional to the vertical displacement of the center column until the displacement reached 
30 in (762 mm).  
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Figure 4.21   Horizontal displacement of end columns at (a) top (SCOL T, NCOL T), and (b) beam mid-
height (SCOL M, NCOL M) versus vertical displacement of center column for SMF specimen 
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Figure 4.22   Vertical loads versus beam end rotations for SMF specimen: (a) near end columns and (b) near 
center column 
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Figure 4.23   Beam end rotation versus vertical displacement of center column for SMF specimen: (a) near 
end columns and (b) near center column 

 

4.3.5 Strain Measurements 

Concrete surface strains were estimated using Whittemore gage readings which recorded the 
relative displacement between the targets cemented on the concrete surface as shown in Figure 
4.24(a). The horizontal gage length between the Whittemore gage targets was 8 in (203 mm), and 
the vertical spacing was 10 in (254 mm). Reinforcing bar strains were measured by electrical 
resistance strain gages attached to steel bars embedded into concrete. The strain gage locations 
are shown in Figure 4.24(b). In the figure, the cross sections where strain gages were installed 
are labeled as S1 through S3 in the south column, N1 through N3 in the north column, and B1 
through B10 in the beams. 

Gages at Sections B3 and B8 provide information about the reinforcement strains at mid-span of 
the beams. Figure 4.25 shows negative (compressive) strains in both top and bottom reinforcing 
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bars before the vertical displacement exceeded 25 in (635 mm), which indicates that a 
compressive axial force had developed in the beams. The transition of beam axial forces from 
compression to tension occurred as the vertical displacement of the center column increased 
from 25 in (635 mm) to 30 in (762 mm). Positive (tensile) strain in all reinforcements at the mid-
span sections indicates the development of catenary action in the beams as the vertical 
displacement of the center column exceeded 30 in (762 mm). When the vertical displacement of 
the center column exceeded 30 in (762 mm), reinforcement strains at sections B3 and B8 
exceeded the nominal yield strain of the steel (0.002) in tension. Enlargements of the strain 
development in the early stages of loading are shown on the right hand side of the plots. 

Gages at Sections S1 and N1 provided information about the reinforcement strains at the base of 
the end columns. Figure 4.26(a) shows strains in the longitudinal reinforcing bars located near 
the interior face at these sections, indicating that these bars were all in tension initially and 
gradually changed to compression after reaching a peak tensile strain. On the other hand, Figure 
4.26(b) shows that the reinforcing bars near the outer face were in compression initially and 
gradually changed to tension. These sign changes in the measured strains indicate a reversal of 
the in-plane curvature of the end columns, which was associated with the development of tensile 
axial forces in the beams due to catenary action. A sudden drop in strain was observed in each 
plot when the vertical displacement was close to 4.4 in (112 mm), which was due to the 
movement of the north footing. Some of the exterior reinforcing bars at Sections S1 and N1 
yielded in tension, with strains exceeding the nominal yield strain of the steel (0.002) at a center 
column displacement of about 30 in (762 mm).  

At sections B1 and B10, strain readings on the top reinforcing bars exceeded the nominal yield 
strain (0.002) in tension at a vertical displacement of the center column of about 2 in (51 mm). 
Soon after the vertical displacement exceeded about 5 in (127 mm), these gages failed. Strains in 
the outermost bottom layer of reinforcement at Sections B1 and B10 exceeded the nominal yield 
strain in compression at a center column displacement of about 4 in (102 mm), while positive 
(tensile) strains were measured for reinforcements located in the second bottom layer. Strain 
measurements on the reinforcing bars located in the outermost bottom layer at Sections B5 and 
B6 exceeded the nominal yield strain in tension at a vertical displacement of about 1.5 in 
(38 mm). The maximum recorded tensile strain was about 0.007 at gage W5B when the vertical 
displacement of the center column was close to 40 in (1016 mm). Strains in the reinforcements 
located in the outermost top layer exceeded the nominal yield strain in compression at a vertical 
displacement of about 3 in (76 mm). The maximum recorded compressive strain was about 0.004 
at gage E5T when the vertical displacement of the center column was close to 10 in (254 mm). 
Positive (tensile) strains were measured for reinforcements located in the second top layer. Most 
gages at sections B1 and B10 stopped working before the deflection reached 10 in (254 mm). 

Strain gage measurements at bar-cutoff sections (B2, B4, B7, and B9) are presented in Figure 
4.27. The strain measurements at bar-cutoff sections B2 and B9 show that the top reinforcing 
bars yielded in tension when the bottom reinforcing bars were still in compression. Similarly, at 
bar-cutoff sections B4 and B7, the bottom reinforcing bars yielded in tension when the top 
reinforcements were still in compression. This spreading of yielding in the longitudinal bars is 
the reason that the displacement profile in Figure 4.20 exhibits curvature along the beam spans, 
rather than consisting simply of straight line segments between plastic hinges at the beam ends.  



 

(a) 

 

  

(b) 

 
Figure 4.24   Stain measurements for SMF specimen: (a) Whittemore gage target locations and (b) reinforcing bar strain gage locations
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Figure 4.25   Mid-span (Sections B3 and B8) strain gage measurements versus vertical displacement of center column for SMF specimen: (a) top 
reinforcing bars and (b) bottom reinforcing bars
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Figure 4.26   Column reinforcement strains at sections S1 and N1 versus vertical displacement of center 
column for SMF specimen: (a) interior reinforcing bars and (b) exterior reinforcing bars 
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Figure 4.27   Beam reinforcement strains at bar-cutoff sections versus vertical displacement of center column for SMF specimen: (a) top bars at sections 
B2 and B9, (b) top bars at sections B4 and B7, (c) bottom bars at sections B2 and B9, and (d) bottom bars at sections B4 and B7 
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Plots of concrete surface strain measurements along beam-end sections near the end columns are 
presented in Figure 4.28. Strain distributions correspond to applied vertical loads of 150 kip, 
200 kip, 182 kip, 163 kip, and 145 kip (667 kN, 890 kN, 810 kN, 725 kN, and 645 kN). These 
loads correspond to center column vertical displacements of 1.7 in, 4.0 in, 6.5 in, 11.5 in, and 
21.5 in (43 mm, 102 mm, 165 mm, 292 mm, and 546 mm). In these figures, enlargements of the 
cross sectional strain distributions during the early stage of loading are shown on the right-hand 
side of the plots. Similar plots are shown in Figure 4.29 for the beam-end sections near the center 
column. In Figure 4.28, the neutral axis was shifted to the tension side in the initial stages of 
loading. This verified the presence of compressive axial forces in the beams. Due to crushing of 
concrete at the beam ends, not enough data were obtained to characterize the strain distribution 
after the vertical displacement exceeded 21.5 in (546 mm). 
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Figure 4.28   Concrete surface strain distributions of SMF specimen at beam ends: (a) near north end column 
and (b) near south end column  
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Figure 4.29   Concrete surface strain distributions of SMF specimen at beam ends: (a) near north side of 
center column and (b) near south side of center column 

 

4.4 SUMMARY AND DISCUSSION OF TEST RESULTS 

This chapter presented the experimental results of two reinforced concrete beam-column 
assemblies tested under a simulated column removal scenario. The assemblies represented 
portions of the moment resisting frames of two ten-story prototype buildings designed and 
detailed in accordance with the ACI 318 requirements for Seismic Design Category (SDC) C and 
SDC D. For the lateral force resisting system, intermediate moment frames (IMFs) and special 
moment frames (SMFs) were selected for the SDC C and D buildings, respectively. The center 
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column of each three-column assembly was subjected to monotonically increasing downward 
vertical displacement until failure.  The experimental results included the photographic 
documentation of crack formation and modes of failure, as well as response measurements taken 
using various instruments. The instruments used were displacement transducers, inclinometers, 
position transducers, strain gages, an Optotrak coordinate measurement system, Whittemore 
gages, dial gages, and load cells. 

For both the IMF and SMF specimens, minor flexural cracks developed in the beams during the 
early stages of loading. However, these cracks did not cause a significant decrease in the overall 
stiffness of the beams. This was due to the restraint to horizontal movements of the beams 
provided by the end columns, which induced the development of arching action in the beams. 
Similar behavior was previously observed in axially restrained two-span beam tests (Su et al.  
2009). Pronounced degradation of the beam stiffness was observed in both specimens when 
yielding of the beam bottom reinforcing bars near the center column and the top reinforcing bars 
near the end columns commenced. As a result, while the rate of vertical displacement of the 
center column remained constant, the load level increased gradually at a lower rate.  For the IMF 
specimen the load reached a peak value of 66.5 kip (296 kN) with a corresponding center column 
displacement of about 5 in (127 mm), and for the SMF specimen the load reached a peak value 
of 203 kip (903 kN) with a corresponding center column displacement of about 4.4 in (112 mm). 
For both specimens, after reaching the initial peak load, the load began to drop with increasing 
vertical displacement of the center column. The load leveled off and started to increase again 
when the vertical displacement of the center column exceeded the depth of the beam. Catenary 
forces developed in the beams as full-depth cracks developed. The catenary force development 
was evidenced by tensile strains in both top and bottom reinforcing bars at mid-span of the 
beams. Both specimens failed due to fracture of beam-bottom reinforcing bars near the center 
column at an ultimate load greater than the initial peak load reported above. The ultimate load of 
the IMF specimen was 123 kip (547 kN), with a corresponding center column displacement of 
43.0 in (1092 mm), while the ultimate load of the SMF specimen was 277 kip (1232 kN), with a 
corresponding center column displacement of 48.0 in (1219 mm). The ultimate load of the SMF 
specimen was thus 2.25 times greater than that of the IMF specimen, reflecting the more 
stringent seismic design and detailing of the SMF specimen. However, the ultimate load of the 
IMF specimen exceeded the initial peak load by a factor of 1.85, whereas the ultimate load of the 
SMF specimen exceeded the initial peak load by a factor of only 1.36. 

The behavior described above can be summarized as a three-stage process (Figure 4.30): (1) an 
arching action stage, in which compressive arching forces developed due to horizontal restraint 
at the beam ends, providing additional stiffness and load-carrying capacity; (2) a plastic hinging 
stage, in which flexural bending caused reinforcing bars to yield in tension, and concrete to 
soften and crush in compression, causing a reduction in load-carrying capacity; and (3) a 
catenary action stage, in which tensile catenary forces were mobilized as the deflection of the 
center column exceeded the depth of the beam, supplying additional load-carrying capacity. 
While beam-end rotations continued to increase during the third stage, the overall load carrying 
capacity of the assembly was dominated by the development of catenary action, which prevented 
a further drop in load.  As described above, the ultimate failure of the assemblies resulted from 
fracture of the bottom reinforcing bars at the beam ends near the center column.  While strain 
measurements in the top and bottom reinforcing bars show that yielding did occur even at mid-
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span of the beams, fracture of the reinforcing bars occurred only near the center column. These 
fractures occurred due mainly to concentrated rotation of the beams near the beam-column 
interface (see Figures 4.1, 4.2, 4.15 and 4.16). The results of these tests suggest that the 
rotational capacity of concrete beams at the beam-column joints controls the development of 
catenary (or tensile) forces.    

 

 
 
Figure 4.30   Three stages of load transfer: (a) arching action, (b) plastic hinge formation, and (c) catenary 
action (Fs: force in steel, Fc: force in concrete, Fc,s: force in concrete and steel) 

 
Table 4.1 summarizes the rotational capacities based on the tests conducted in this study and on 
ASCE/SEI 41-06 (ASCE 2006), which is based on prior seismic test data (FEMA 2000). As the 
table indicates, the rotations at peak load based on the experimental results in this study were 
about 0.185 rad for the IMF specimen, corresponding to a center column displacement of 44.5 in 
(1130 mm) at failure, and 0.200 rad for the SMF specimen, corresponding to a center column 
displacement of 48.0 in (1219 mm) at failure. These values are obtained by dividing the center 
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column displacement at failure by the centerline-to-centerline beam span of 240.0 in (6096 mm). 
The permitted plastic rotation angles (or rotation capacities) of the IMF and SMF beam column-
column-joint assemblies based on seismic testing data are 0.026 rad  and 0.025 rad, respectively, 
corresponding to the collapse prevention criterion according to Table 6-7 of ASCE/SEI 41-06 
(ASCE 2006). These results show that the rotational capacities of these beam-column-joints 
under monotonic column displacement are about 7~8 times as large as those based on seismic 
test data generated under cyclic loading condition. This difference may be attributed to (1) 
degradation of strength and stiffness of the beam-column joint regions due to different loading 
effects, cyclic loading versus monotonic loading, and (2) the presence of large axial tension in 
the beams due to the development of catenary action under a column removal scenario. Thus, if 
the acceptance criteria based on seismic test data are used for column removal scenarios, a very 
conservative design of beam-column joints would result. 

 
Table 4.1    Comparison of rotation capacities of IMF and SMF beam-column joints based on seismic data 
and monotonic column displacement 

 

Connection Type 
Rotation Capacities (rad) 

Seismic Data 
(ASCE/SEI 41-06) 

Monotonic Loading 
(This Study) 

IMF 0.026 0.185 

SMF 0.025 0.200 
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Chapter 5 
COMPUTATIONAL MODELING AND ANALYSIS OF TEST SPECIMENS 

5.1 INTRODUCTION 

This chapter presents a computational study of the response of the Intermediate Moment Frame 
(IMF) and Special Moment Frame (SMF) reinforced concrete beam-column assemblies. The 
objectives of the analyses are to: (1) develop and validate detailed finite element models of the 
assemblies that can reproduce the behavior and failure modes of the test specimens, (2) develop 
and validate reduced finite element models of the assemblies that can accurately predict the 
response and failure modes of the test specimens, and (3) gain insight into the behavior and 
failure modes of moment resisting frames, including the process of member force redistribution 
due to loss of structural members and the development of tie forces within structural members to 
enhance continuity, ductility, and maintain structural integrity.  

The finite element analyses presented in this study are conducted using explicit time integration 
in LS-DYNA (Hallquist 2007), a general-purpose finite element software package. The analyses 
account for both geometrical and material nonlinearities, including fracture using element 
erosion. In all analyses, the center column is pushed down under displacement control until 
failure occurs. Displacements are increased at a slow rate to ensure a static response (no dynamic 
amplification), similar to the test conditions. Comparisons between the computational and 
experimental results are presented to validate the detailed and reduced models developed herein.  

Section 5.2 provides an overview of the material models used in the analyses. Section 5.3 
presents a description of the detailed and reduced models used in this study. Section 5.4 provides 
the analysis results for both the IMF and SMF specimens. Section 5.5 presents a summary and 
discussion of the analysis results. 

5.2 MATERIAL MODELS 

5.2.1 Reinforcement 

The primary material model used in the analyses presented in this study was an isotropic elastic-
plastic model (MAT_PLASTICITY_COMPRESSION_TENSION or MAT_124 in LS-DYNA). 
In this model, effective stress versus plastic strain curves are defined, along with a plastic strain 
to failure. Once the failure strain is reached, the element is eroded, simulating fracture of the 
steel bar. One advantage of using this model is that the compressive and tensile stress-strain 
curves can be defined individually, which is desirable in developing a modified stress-strain 
relationship incorporating bond-slip effects for the reduced models (see Section 5.2.4). While 
this model was developed for solid and shell elements only, it has been extended to support beam 
elements by the software vender for the purposes of this study. 
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For various sizes of reinforcing bars used in the test specimens, the material model parameters 
were developed based on the engineering stress-strain curves obtained from standard tensile tests 
of reinforcing bars used for fabrication of the test specimens (see Chapter 3). For both the IMF 
and SMF specimens, the tensile tests provided data for beam longitudinal reinforcement (No. 8 
and No. 9 bars), column longitudinal reinforcement (No. 9 and No. 10 bars), and ties and stirrups 
(No. 4 bars). Due to the lack of data for the softening branch of stress-strain curves beyond the 
ultimate stress, a linear descending branch of the stress-strain relationship was assumed (see 
Figure 5.2). 

For beam elements representing reinforcing bars in the detailed models (Section 5.3.1), the 
engineering stress-strain curve cannot be converted directly to the true stress versus effective 
plastic strain curve because the cross-sectional area of the beam element remains constant (true 
stress σt is equal to engineering stress σE in this case). To determine the input curves, iterative 
finite element analyses of the tensile strength tests were carried out. Effective plastic strains were 
adjusted until quantitative agreement of the measured and calculated engineering stress-strain 
behavior was attained.  

Figure 5.1 shows examples of finite element models of a No. 9 reinforcing bar used in the IMF 
specimen. The length was determined by the gage length of 8 in (203 mm) used in the tensile 
tests. In Example (a) a single beam element was used. The input curves were determined by 
iterative finite element analysis until a close match between the engineering stress-strain curve 
from the tensile strength test and from the analysis was attained as shown in Figure 5.2. The 
results of Examples (b) and (c) using two and four beam elements, respectively, and the same 
input curve used in Example (a) are also plotted in Figure 5.2. The curves agreed well with the 
test results except for the softening branches. Since the softening behavior was essentially 
associated with the necking of the bar, the beam element with constant cross-sectional area 
cannot capture the necking behavior.  Plasticity tended to be localized in one element, which is 
affected by the mesh size. To avoid this type of spurious localization, the softening portion of the 
input stress-strain curve was adjusted based on the element size. In this manner, consistency with 
the experimental rupture strain can be achieved as shown in Figure 5.3. 

 

 
 
Figure 5.1    Example finite element models of No. 9 reinforcing bar: (a) beam element with 8 in (203 mm) 
mesh size, (b) beam element with 4 in (102 mm) mesh size and (c) beam element with 2 in (51 mm) mesh size 
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Figure 5.2    (a) Input stress-strain curve and (b) engineering stress-strain curves for a No. 9 reinforcing bar 
obtained from a standard tensile test and from finite element analyses using different sizes of beam elements 
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Figure 5.3    (a) Input stress-strain curves and (b) engineering stress-strain curves for a No. 9 reinforcing bar 
obtained from a standard tensile test and from finite element analyses using different sizes of beam elements 

 

5.2.2 Concrete 

For the solid elements used in the detailed models (Section 5.3.1), a continuous surface cap 
model (MAT_CSCM_CONCRETE or MAT_159 in LS-DYNA) was used as the material model 
for concrete. In this model, a smooth and continuous intersection is formulated between the 
failure surface and the hardening cap. The main features of the model are isotropic constitutive 
equations, a yield surface formulated in terms of three stress invariants with translation for pre-
peak hardening, a hardening cap that expands and contracts, and damage-based softening with 
erosion and modulus reduction. This model can capture confinement effects and softening 
behavior both in tension and compression.  By using a regulation technique, it can achieve 
convergent softening behavior with reasonable mesh refinement.  

To demonstrate the capability of the concrete model to handle confinement effects, a single 
element example is shown in Figure 5.4. Boundary conditions and load conditions are imposed 
to simulate a lateral confinement to the concrete element block. The element is pushed down by 

61 



 

applying a controlled displacement to the top four nodes. Stress-strain curves are compared for 
the cases with zero confinement pressure and with 150 psi (1034 kPa) confinement pressure. 
Figure 5.4 shows that the confined concrete has higher compressive strength. More details about 
this model can be found in a report published by the Federal Highway Administration (FHWA 
2007). 
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      Figure 5.4    Compressive stress-strain curves of concrete with and without confinement 

or the beam elements representing concrete in the reduced models (Section 5.3.2), two material 
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The softening branch of the stress-strain curve for concrete could not be obtained experimentally 

 

  

 
F
models (MAT_PLASTICITY_COMPRESSION_TENSION or MAT_124, and 
MAT_RC_BEAM or MAT_174) were considered. Important features of each of
models are listed in Table 5.1. Because the current version of LS-DYNA does not support the 
use of different types of materials to define concrete and reinforcement with type 1 beam 
formulation (Hughes-Liu beam with cross-section integration), MAT_124 was selected as 
concrete material model for critical beam elements representing beam segments with highly 
nonlinear behavior expected. MAT_124 is generally suitable for defining a uniaxial stress-str
relationship under monotonic loading condition. It is noted in Table 5.1 that MAT_124 does not 
provide a regulation on softening behavior by itself. Therefore, a modification of the input stress-
strain curve based on mesh size is required. For noncritical beam elements, MAT_174 was used 
in place of MAT_124. 

due to limitations on the stiffness of the machine used for compression testing of the concrete 
cylinders. In order to develop input stress-strain curves for concrete to be used in the reduced 
models, a basic stress-strain curve was generated first from available information such as the 
compressive strength  and the strain εc1 corresponding to the compressive strength. 
Subsequently, the basic stress-strain curve was modified based on the mesh size. 

Single Point Constraints (SPC) 

Unit length brick element 

Displacement controlled loading 

F       Applied force to simulate confined pressure 

Deformed shape

y 

x 
z 
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                             Table 5.1    Features of two material models used for concrete 

 
Feature MAT_124 MAT_174 

Can be used for concrete rcing bars and reinfo Y Y 
Can define failure Y N 
Compressive and tensile behavior can be defined separately Y N 
Regulation for mesh size sensitivity N Y 
Support user defined compressive and tensile curves Y N 

 
he compressive stress-strain relationship for unconfined concrete was estimated as follows: 

 the 

                                                     

T

1. The ascending portion can be calculated by various equations in the literature, such as
one proposed by Popovics (1973): 

 (5.1) 

 
εci is the compressivwhere  σc is the compressive stress, e strain, Eci is the tangent 

secant 

2. The cutoff 
 

         Table 5.2    Coefficient n of concrete cutoff strain from CEB-FIP model code (CEB 1991) 

modulus calculated based on the CEB-FIP model code (CEB 1991), and Ec1 is the 
modulus from the origin to the peak compressive stress (see Figure 5.5). 

The descending portion was approximated by a straight line (Figure 5.5). 
strain nεc1 depends on the concrete strength, and the coefficient n was estimated from
Table 5.2, which is from the CEB-FIP model code (CEB 1991). 

 
  

 
Compressive strength of concrete Cutoff strain coefficient, n 

2900 psi (20 MPa) 3 

5800 psi (40 MPa) 2 

8700 psi (60 MPa) 1.5 

11600 psi (80 MPa) 1.2 

 
hen experimental data are not available, Equation (5.1) may be used to develop a stress-strain 

ent 
the 

W
curve. To reduce the mesh size effects, a constant fracture energy approach was used. To 
maintain constant fracture energy, the shaded area in Figure 5.5 needs to be adjusted by 
modifying the cutoff strain (through adjustment of the coefficient n) according to the elem
characteristic length Lchar. The compressive fracture energy Gf,c can be estimated as 100 times 
tensile fracture energy Gf,t (see Table 5.3). 
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Confinement effects were calculated using a modified Kent and Park model proposed by Scott et 
al. (1982), which was based on experimental data from monotonically loaded full-sized column 
samples. The enhancement of concrete strength and ductility as a result of the confinement of 
rectangular-shaped transverse reinforcement were taken into account in this model.  

 

0.2 cf ′

cf ′
σ

ε1cε 1cnε

, (constant)char f cL A G× =

Eci
Ec1

L1 L2

L3 Lines L1 , L2, and L3
are parallel, 
with slope Eci

 
 
                        Figure 5.5    Compressive stress-strain relationship of unconfined concrete 

 
The tensile stress-strain relationship for concrete was estimated as follows: 

1. For uncracked concrete subject to tension, a bilinear curve defined by the following 
equations in the CEB-FIP model code (CEB 1991) was used to estimate the ascending 
branch of the tensile stress-strain curve: 

for 0 0.9
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− <⎪ −⎩

≤
  (5.2) 

where Eci is the tangent modulus of elasticity, ft is the tensile strength, σct is the tensile 
stress, and εct is the tensile strain (see Figure 5.6). 

2. For cracked concrete, a straight line was used to describe the descending branch of the 
stress-strain curve. The ultimate crack strain  was calculated based on tensile fracture 
energy Gf,t (see Table 5.3) in this smeared crack model as: 

                                                                ,  (5.3) 
 
where h is the crack bandwidth (for beam elements, h is the length of the element). 
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                     Table 5.3    Tensile fracture energy from CEB-FIP model code (CEB 1991) 

 
Maximum aggregate size, dmax Fracture energy, Gf,t 

0.315 in (8 mm) 0.143 lbf·in/in2 (0.025 N·mm/mm2) 

0.630 in (16 mm) 0.171 lbf·in/in2 (0.030 N·mm/mm2) 

1.260 in (32 mm) 0.331 lbf·in/in2 (0.058 N·mm/mm2) 

 
 

σ

εc r
uε0.00015

 
 
                                      Figure 5.6    Tensile stress-strain relationship of concrete 

 

5.2.3 Shear in Concrete 

For the detailed models (Section 5.3.1), shear behavior of the concrete material is modeled 
explicitly using the continuous surface cap model (MAT_159). For the reduced models (Section 
5.3.2), although the Hughes-Liu beam element is able to include finite transverse shear strains in 
its formulation, the shear behavior of the joint panel zones needs to be modeled using separate 
spring elements. The shear behavior of joint panel zones in the reduced models was represented 
using rigid links connected by rotational springs with a symmetric multi-linear moment-rotation 
relationship.  The shear stress (τ) versus shear strain (γ) relationship under monotonic load was 
calculated following the approach proposed by Vecchio and Collins (1986). Figure 5.7 shows a 
comparison between the calculated shear stress-strain relationship and experimental data 
(specimen PV20, Vecchio and Collins 1986). The equivalent moment (M) and corresponding 
joint rotation (θ) for the rotationa e estl springs ar imated as: 

                                                     ·  , tan   (5.4) 
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where Vjoint is the gross volume of the joint, which is computed as a product of the column width, 
depth and beam height. Since no beam shear failure was observed in similar tests conducted 
recently (Yi et al. 2008, Su et al. 2009, Yu and Tan 2010), a distinct shear spring representing the 
shear behavior of the beam-joint interface was not included in the reduced models. 
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Figure 5.7    Comparison of calculated and observed response (Vecchio et al. 1986) 

 

5.2.4 Bond-Slip Effects 

The bond-slip effect is an important feature that needs to be considered in developing the 
computational model. If bond slip is neglected, the model cannot capture the bond failure mode. 
A fully bonded assumption will also lead to premature bar fracture in certain circumstances. For 
the detailed models (Section 5.3.1), bond-slip behavior was modeled by defining a one-
dimensional contact interface (CONTACT_1D in LS-DYNA) between the solid elements 
representing concrete and the beam elements representing reinforcing bars. The bond-slip 
relationship is assumed to be bilinear, and bond stress deterioration after reaching the maximum 
bond stress is considered through setting a positive value of the exponent in the damage curve 
(see Hallquist 2007).  

Recommended values of the maximum bond stress τmax and the slip so under τmax can be found in 
references as the DIANA User’s Manual (de Witte 2005) or the CEB-FIP model code (CEB 
1991). In this study, τmax is defined as 1.9ft, where ft is the tensile strength of concrete, so is equal 
to 0.0024 in (0.06 mm), and the value of the exponent in the damage curve is set to 4 (see 
Hallquist 2007). 

For the reduced models (Section 5.3.2), the stress-strain relationship of reinforcing bars of 
critical beam elements, representing beam segments with highly nonlinear behavior expected, is 
modified for bond-slip effects as shown in Equation (5.6). It is assumed that the stress-strain 
relationship without the bond-slip effect is expressed as:  
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                                                                    (5.5) 
 
The modified stress-strain relationship can then be defined as: 

                                             ,  (5.6) 
 
where s is the slip under axial stress σ,  L0 is the original length of the reinforcing bar, and  L is 
the “deformed” length of the reinforcing bar including slip. All stresses and strains are expressed 
in engineering terms. The input curves for MAT_124 are generated based on the modified stress-
strain curves by following the iterative procedure described in Section 5.2.1. The slip s is 
calculated using an approach proposed by Lowes et al. (2003). An average bond stress of τe is 
assumed if σs ≤ fy, where σs is the stress in the reinforcing bar and fy is the yield strength of the 
bar. An average bond stress of τy is assumed if σs > fy. Expressions for τe and τy are given in 
Table 5.4, based on Lowes et al. (2003). If sufficient anchorage length can be provided, which is 
shown in Figure 5.8(a), bond slip s is defined as the deformation of the reinforcing bar along the 
anchorage length Ly.  

            Table 5.4    Average bond strengths as a function of steel stress (Lowes et al. 2003) 

 
Bar stress σs 

Average bond strength (psi) 
(fc in psi)

Average bond strength (MPa) 
(fc in MPa) 

Tension σs ≤ fy ce f ′= 21τ  ce f ′= 8.1τ  

Tension σs > fy cyc ff ′≤≤′ 8.46.0 τ  cyc ff ′≤≤′ 4.005.0 τ  

 
For the convenience of modeling with more generalized stress-strain curves obtained from 
tensile tests, the calculation of slip s is simplified from an integrated form (Lowes et al. 2003) to 
a discretized form. Let ([εs]n,[σs]n) denote a point on a discretized, monotonically-increasing 
stress-strain curve, where n = 1, 2, 3, … , and [εs]1 = [σs]1 = 0. Letting sn denote the value of slip 
associated with the point ([εs]n,[σs]n), where s1 = 0, and letting db denote the diameter of the 
reinforcing bar, values of slip corresponding to each point on the stress strain curve can be 
calculated as follows: 
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 (5.7) 

 
For the case with insufficient ancho g ure 5.8b), bond slip s' can be obtained by ra e length (see Fig

                                                           (5.8) 
 
Figure 5.9 illustrates modeling the tensile behavior of a reinforcing bar of a critical beam 
element. Assuming that the original length of the steel bar is L0, the deformed length L including 
bond slip is calculated as: 
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                                                                   (5.9) 
 
where L′ is the deformed length caused by bar elongation, and s1 and s2 are the amounts of bond 
slip at each end. In Equation (5.9), s1 and s2 can be computed based on their anchorage 
conditions, and L' can be computed based on the stress-strain relationship of the reinforcing bar. 
A more sophisticated calculation of  would need to consider the tension stiffening effect by 
using a modified stress-strain relationship for the embedded reinforcing bar in concrete, as 
suggested in the CEB-FIP model code (CEB 1991). For simplicity, the tension stiffening effect is 
not included in this study, as its effect is considered negligible compared to the bond-slip effect. 
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     Figure 5.8    Bond stress distribution (a) with full anchorage and (b) without full anchorage 
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                  Figure 5.9    Bond-slip effects of reinforcement fiber at critical beam elements 
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5.3 FINITE ELEMENT MODELS 

Two finite element models of each specimen tested in Chapter 4 were developed to study the 
response characteristics of the beam–column assemblies. The first was a detailed model with 
approximately 70,000 solid and beam elements for the IMF specimen and about 60,000 elements 
for the SMF specimen (fewer elements due to the relative larger mesh size). The second was a 
reduced model with about 80 beam and zero-length elements for both IMF and SMF specimens. 
The following sections provide detail descriptions of the both models. 

5.3.1 Detailed Models 

An overview of the detailed models used in the analysis of the IMF and SMF specimens is 
shown in Figure 5.10. Solid elements in the right-hand portion of each model are removed to 
show the embedded reinforcing bars.  The detailed models consist of solid elements representing 
the concrete and the steel plate at the top of the center column, beam elements representing 
longitudinal and transverse reinforcing bars, and rigid elements representing the steel rollers. 
Enlarged views of portions of the detailed model are shown in Figure 5.11. The characteristic 
length of the solid elements used to represent concrete is between 1.75 in to 2 in (44 mm to 
51 mm) for the IMF specimen, and 1.2 in to 3 in (30 mm to 76 mm) for the SMF specimen. The 
aspect ratio of solid elements is in a range of 1 to 2.3 for the IMF specimen and 1 to 2.8 for the 
SMF specimen. The length of the beam elements representing beam longitudinal reinforcement 
is 4 in (102 mm), while the beam elements representing transverse and column longitudinal 
reinforcement range in length from 3.25 in to 4 in (83 mm to 102 mm) for the IMF specimen and 
3.5 in to 5 in (89 mm to 127 mm) for the SMF specimen. 

Bond slip is modeled between beam-longitudinal reinforcing bars and surrounding concrete as 
described in Section 5.2.4. Two sets of nodes are required to define the contact, with the concrete 
nodes specified as master nodes and the reinforcement nodes specified as slave nodes. Bond slip 
is not considered for the transverse and column longitudinal reinforcement.  Beam elements 
representing these reinforcing bars are constrained within the solid elements using the 
CONSTRAINED_LAGRANGE_IN_SOLID card. Beam elements can be eroded when a pre-
specified failure strain is reached, representing the fracture of reinforcing bars. Solid elements 
are not eroded in this analysis in order to avoid excessive loss of stiffness. 

Very fine meshing of solid elements would be required to directly capture the progress of 
concrete cracking, which could also cause a nonobjective (divergent) response due to 
localization. Since simulation of cracking is not a focus of this study, the level of refinement of 
the solid element mesh described above is considered reasonable. While cracks are not modeled 
explicitly, concrete cracking can be reflected by contours of the damage index computed by the 
concrete material model. Mechanical bar couplers are assumed to have a higher ultimate strength 
than the longitudinal reinforcing bars and thus modeled using elastic elements. End nodes of the 
beam longitudinal reinforcements within the end columns are constrained by the surrounding 
concrete nodes using the CONSTRAINED_INTERPOLATION card, simulating the effect of 
mechanical anchorage devices (see Section 3.2).  
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All nodes are fixed at the bases of the end columns. The steel rollers which are used to restrain 
the horizontal movement near the top of the end columns are modeled by non-deformable 
cylinders (RIGIDWALL_GEOMETRIC_CYLINDER in LS-DYNA). Contact between the 
concrete column and the steel roller is automatically considered as a feature of the rigid wall 
interface in LS-DYNA. In the test, a steel plate was placed on the top of the center column to 
avoid local damage to concrete. This plate is represented using solid elements with an elastic 
material model. All top surface nodes of the steel plate are pushed downward following a 
prescribed time-displacement curve. 
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                         Figure 5.10   Overview of detailed model of (a) IMF and (b) SMF specimen 
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                                   Figure 5.11   Enlarged views of portions of the detailed model 

 

5.3.2 Reduced Models 

The reduced models of the IMF and SMF specimens are shown in Figure 5.12. Both models 
make use of Hughes-Liu beam elements (Hallquist 2007) to represent the beams and columns. 
The Hughes-Liu beam elements use cross section integration with each integration point 
assigned to a discretized cross-sectional geometry component (fiber). Integration of the cross 
section is performed at mid-length of each beam element. Because integration is performed at 
only one section along the axis of each beam, a fairly small mesh size is required at critical 
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locations (such as beam ends) in order to obtain acceptable accuracy. However, very small mesh 
sizes will cause a non-objective material response as well as computational inefficiency. In this 
study, the mesh size of critical elements is selected as one half of the beam depth. Ten beam 
elements in total were used to model each beam with varying section properties. The beam 
elements used cross section integration with the proper cross-sectional geometry defined for each 
section type. Uniaxial stress-strain relationships for concrete and reinforcing bars are defined as 
discussed in Section 5.2. 

The beam-column joints were modeled by a deformable rectangular frame with rigid sides and 
nonlinear springs located at the corners (Figure 5.13). Zero-length discrete beam elements were 
used to connect the rigid links at their ends. Independent curves can be defined for all degrees of 
freedom (three translational and three rotational DOFs) of these zero-length elements using the 
MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM card in LS-DYNA. The in-plane 
moment-rotation relationship is presented in Section 5.2.3, accounting for joint panel shear 
behavior. Beams and columns were connected to the joints by interpolating beam (or column) 
nodal DOFs from the translational DOFs of a pair of joint nodes, one at each end of the rigid 
element, using the CONSTRAINED_INTERPOLATION card in LS-DYNA. The column bases 
were modeled as fixed. 
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                        Figure 5.12   Overview of reduced model of (a) IMF and (b) SMF specimens 
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             Figure 5.13   Detailed view of beam-column joint in reduced model of IMF specimen 

 

5.4 ANALYSIS RESULTS 

The IMF and SMF test specimens were analyzed using both the detailed and reduced models. 
The gravity load (self-weight) of the specimen was applied first, which was followed by 
displacement-controlled loading applied at the top of the center column. The analysis results of 
the detailed and reduced models are presented in the following sections. 

5.4.1 IMF Specimen 

The final deflected shapes of the IMF specimen based on the detailed and reduced models are 
shown in Figure 5.14. In the detailed model, beam elements representing bottom reinforcing bars 
near the center column exceeded the fracture strain and were eroded (see Figure 5.15) at a center 
column vertical displacement of 42.2 in (1072 mm). In the reduced model, strains of the 
integration points representing the bottom reinforcing bars in the critical elements near the center 
column exceeded the fracture strain at a center column displacement of about 42.8 in (1087 mm). 
Such a failure mode is consistent with that observed in the experiment (see Figure 4.2) at a 
measured center column vertical displacement of 43 in (1092 mm). 
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(a) 

(b) 

 
Figure 5.14   Deflected shape of IMF specimen: (a) detailed model at a center column vertical displacement of 
42.2 in (1072 mm) and (b) reduced model at a center column vertical displacement of 42.8 in (1087 mm) 
(contours represent vertical displacements in inches) 

 

 
 
            Figure 5.15   Failure mode of IMF detailed model (contours represent plastic strains) 

 
Concrete damage distributions at two levels of vertical displacement of the center column are 
shown in Figure 5.16 along with the observed crack patterns. The contours depict the degree of 
damage of the concrete, with a value of 0 representing no damage and a value of 1 representing 
complete damage. At a displacement of 24 in (610 mm), about at the onset of catenary action 
(see Section 4.4), the analysis shows that the damage is concentrated at the beam ends and the 
longitudinal reinforcing bar cutoff points in the beam. Inclined damage contours are seen at 
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exterior beam-column joints and the lower half of the columns, which represent the formation of 
diagonal shear cracks.  At the final stage of the response, with a displacement of about 42 in 
(1076 mm), damage is widespread along the entire length of the beams. The computed damage 
distributions are in agreement with the observed crack patterns.  

 

 

(a) 

(b) 

 
Figure 5.16   Concrete damage index contours compared with observed crack patterns at center column 
displacement of (a) 24 in (610 mm) and (b) 42 in (1067 mm) for IMF specimen (contours represent damage 
index: 0 = no damage, 1 = complete damage) 

 
Figure 5.17 shows plots of (a) the applied vertical load and (b) the measured horizontal 
displacement of the end columns at beam mid-height versus the measured vertical displacement 
of the center column. Curves computed from the detailed and the reduced models are also shown 
in the figures and generally good agreement with the experimental curve is observed. The 
applied load on the center column began to decrease after reaching a peak at a vertical 
displacement of about 5 in (127 mm).  The applied load leveled off after the center column was 
pulled down to a displacement of about 20 in (508 mm), then increased again with increasing 
displacement until the specimen failed at a displacement of about 42.8 in (1087 mm).  Similar to 
the experimental observations, the end columns at beam mid-height initially moved outward and 
subsequently moved inward when the displacement of the center column was about 10 in 
(254 mm). This change in the direction of movement of the end columns indicates a change in 
the beam axial force from compression to tension. 
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Figure 5.17   (a) Applied vertical load and (b) horizontal displacement of end column at beam mid-height 
versus vertical displacement of center column for IMF specimen 

 
Computed axial stresses in longitudinal reinforcing bars at the beam mid-span from the detailed 
model are shown in Figure 5.18, which indicates a shift in the beam axial force from 
compression to tension. Figure 5.18(a) shows that both top and bottom reinforcing bars were 
predominantly in compression in the early stages of loading, when the vertical displacement of 
the center column was less than 4.6 in (117 mm). The stresses in the bars gradually changed to 
tension as the center column displacement was increased. Figure 5.18(b) shows the state of stress 
of these reinforcing bars when the vertical displacement was 42 in (1067 mm).  Detailed and 
reduced model calculations of beam axial force versus the center column displacement are 
shown in Figure 5.19, in which the change from compression to tension is evident.  

A diagonal compression zone extending from the bottom corner of the beam near the end column 
to the upper corner near the center column is seen in Figure 5.20, which shows the minimum 
principal stress contours for concrete at a center column displacement of 4.6 in (117 mm). The 
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plot indicates the development of “arching action” in the beams (see Section 4.4), which was 
also reported by Su et al. (2009) in their experimental work. 

Similar to the experimental results, the computational models indicate that as the displacement of 
the center column increased, yielding initiated in the bottom reinforcing bars of the beams near 
the center column, followed by yielding of the top reinforcing bars near the end columns. With 
further increase in the displacement, yielding of both the top and bottom reinforcing bars 
propagated from the beam ends toward mid-span. 

 

        

(a) (b) 

 
Figure 5.18   Axial stresses in reinforcing bars along a beam segment near mid-span at center column 
displacements of (a) 4.6 in (117 mm) and (b) 42 in (1067 mm) for IMF specimen (contours represent stress in 
psi) 
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Figure 5.19   Beam axial force versus vertical displacement of center column for IMF specimen 
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Figure 5.20   Minimum principal stress contours of concrete at a center column displacement of 4.6 in (117 
mm) for IMF specimen (Contours represent stress in psi) 

 

5.4.2 SMF Specimen 

Figure 5.21 shows the final deformed shapes of the SMF specimen based on the detailed and 
reduced models. This specimen experienced a movement of the north footing during the test as 
described in Section 4.3.3. This movement of the footing was considered in the analysis by 
applying the measured displacement in Figure 4.19 as a prescribed displacement at the base of 
the north column. In the detailed model, beam elements representing bottom reinforcing bars 
near the north side of the center column exceeded the fracture strain and were eroded (see Figure 
5.22) at a center column displacement of 48.2 in (1224 mm). In the reduced model, strains of the 
integration points representing bottom reinforcing bars in the critical elements near the north side 
of the center column exceeded the fracture strain at a center column displacement of 47.0 in 
(1194 mm). This failure mode is consistent with that observed in the experiment (see Figure 
4.16) at a measured center column displacement of 48 in (1219 mm). 

Concrete damage distributions at two levels of center column displacement are shown in Figure 
5.23 along with the observed crack patterns. At a displacement of 24.5 in (622 mm), the analysis 
shows that the damage is concentrated at beam ends and at the longitudinal reinforcing bar cutoff 
points. Inclined damage contours are seen at the exterior beam-column joints and within the 
lower half of the columns. At the final stage of the response, with a displacement of about 
48.2 in (1224 mm), damage is widespread along the entire length of the beams. The computed 
damage distributions are in good agreement with the observed crack patterns. 
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(a) 

(b) 

 
Figure 5.21   Deflected shape of SMF specimen: (a) detailed model at a center column vertical displacement of 
48.2 in (1224 mm) and (b) reduced model at a center column vertical displacement of 47.0 in (1194 mm) 
(Contours represent vertical displacements in inches) 

 

 
 

Figure 5.22   Failure mode of the SMF detailed model (Contours represent plastic strains) 
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(a) 

(b) 

 
Figure 5.23   Concrete damage index contours compared with observed crack patterns at center column 
displacement of (a) 24.5 in (622 mm) and (b) 48.2 in (1224 mm) for SMF specimen (contours represent 
damage index: 0 = no damage, 1 = complete damage) 

 
Figure 5.24 shows plots of (a) the applied vertical load, (b) the horizontal displacement of the 
south column at beam mid-height, and (c) the horizontal displacement of the north column at 
beam mid-height versus the vertical displacement of the center column. Curves computed from 
the detailed and reduced models are also shown in the figures. Similar to the experimental 
results, the computational models indicate that as the displacement of the center column 
increased, yielding initiated in the bottom reinforcing bars of the beams near the center column, 
followed by yielding of the top reinforcing bars near the end columns. After reaching a peak load 
of about 200 kip (890 kN) at a vertical displacement of 4 in (102 mm), the load began to 
decrease as the center column displacement increased. At the same time, yielding of both the top 
and bottom reinforcing bars propagated from the beam ends toward mid-span.  The load leveled 
off at a center column displacement of about 25 in (635 mm). As the displacement was further 
increased, the load began to increase again with the development of catenary action until the 
specimen failed at a displacement of 47 in (1194 mm). As shown in Figure 5.24(b), the south 
column initially moved outward at beam mid-height and subsequently began to move inward 
when the displacement of the center column was about 10 in (254 mm). This change in direction 
of the movement of the end columns indicates a change in the beam axial force from 
compression to tension. Movement of the north column at beam mid-height, which is shown 
in Figure 5.24(c), was not symmetric to that of the south column due to the movement of the 
north footing; however, a similar trend can be seen. 
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Figure 5.24   (a) Vertical load, (b) horizontal displacement of south column at beam mid-height and (c) 
horizontal displacement of north column at beam mid-height versus center column displacement for SMF 
specimen 
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Computed axial stresses in longitudinal reinforcing bars at the beam mid-span from the detailed 
model are shown in Figure 5.25, which indicates a shift in the beam axial force from 
compression to tension. Figure 5.25(a) shows that both top and bottom reinforcing bars were 
predominantly in compression when the vertical displacement of the center column was 4.4 in 
(112 mm), while Figure 5.25(b) shows that tensile stress eventually developed in the longitudinal 
reinforcements when the vertical displacement was increased to 48 in (1219 mm).  

Detailed and reduced model calculations of beam axial force versus the center column 
displacement are shown in Figure 5.26. Similar to the IMF specimen, the analysis results show 
that the compressive axial force continued to increase beyond the initial peak vertical load. A 
diagonal compression zone extending from the bottom corner of the beam near the end column 
to the upper corner near the center column is seen in Figure 5.27 at a center column displacement 
of 4.4 in (112 mm), indicating the development of “arching action” in the beams. 

 

       

(a) (b) 

 
Figure 5.25   Axial stresses in reinforcing bars along a beam segment near mid-span beam at center column 
displacement of (a) 4.4 in (112 mm) and (b) 48 in (1219 mm) for SMF specimen (Contours represent stress in 
psi) 
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Figure 5.26   Beam axial force versus vertical displacement of center column for SMF specimen 
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Figure 5.27   Minimum principal stress contours of concrete at a center column displacement of 4.4 in (112 
mm) for SMF specimen (Contours represent stress in psi) 

 

5.5 SUMMARY 

This chapter presented a computational assessment of the performance of beam-column 
assemblies designed and detailed for Seismic Design Categories C and D under the monotonic 
loading conditions expected in column removal scenarios. Two different modeling approaches 
were considered in this study: (1) detailed models with a large number of elements, primarily 
solid and beam elements, and (2) reduced models with much fewer elements, primarily beam and 
zero-length elements. The analyses conducted using these models provided insight into the 
behavior and failure modes of the moment resisting concrete frames.  

This study indicates good agreement between the experimental results and the computational 
predictions. Both detailed and reduced models were able to capture the primary response 
characteristics and failure modes. The reduced models developed in this study will serve as a 
valuable tool to analyze complete structural systems for assessing the reserve capacity and 
robustness of building structures. 

The analyses also indicated the development of “arching action” in the beams as a result of the 
restraint of axial elongation of the beams provided by the end columns. Axial compressive forces 
in the beams diminished as the vertical column displacement approached the depth of the beam.  
Eventually, the axial compressive forces in the beams changed to tensile forces as a result of the 
formation of catenary action in the beam. The tensile forces increased with increasing 
displacement of the center column until the bottom reinforcing bars near the center column 
fractured and the specimen lost its load-carrying capacity. 
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Chapter 6 
SUMMARY AND CONCLUSIONS 

This report presented an experimental and computational study of two reinforced concrete beam-
column assemblies, each comprising three columns and two beams. The two beam-column 
assemblies represent portions of the structural framing system of two ten-story concrete frame 
buildings. One building was designed for Seismic Design Category C (SDC C) and the other for 
Seismic Design Category D (SDC D). The beam-column assemblies were taken from the exterior 
moment resisting frames of these buildings. One test specimen, which was part of the SDC C 
building, had intermediate moment frames (IMFs) for the lateral force resisting system and the 
other, which was part of the SDC D building, had special moment frames (SMFs). The 
specimens were subjected to monotonically increasing vertical displacement of the center 
column to observe their behavior under a simulated column removal scenario, including the 
development of catenary action in the beams. The vertical displacement of the center column 
was increased until the vertical load-carrying capacity of each specimen was depleted. 

The overall behavior of each beam-column assembly was analyzed using two levels of modeling 
complexity: (1) detailed models with solid elements representing concrete and beam elements 
representing steel reinforcement, and (2) reduced models with beam elements representing 
beams and columns and rigid links connected by nonlinear rotational springs representing the 
beam-column joints. The analyses conducted using these models provided insight into the 
behavior and failure modes of the test specimens, including the development of catenary action 
in the beams. 

Based on the study reported herein, the following conclusions are reached. 

1. For both the IMF and SMF specimens, the behavior was dominated by flexure in the 
early stages of the response. With increased vertical displacement of the center column, 
resistance was provided through the development of compressive diagonal axial forces or 
“arching action” due to the restraint on axial elongation of the beams by the end columns. 
With further increase in the vertical displacement, tensile axial forces developed in the 
beams and the behavior was dominated by catenary action. 

2. The failure of both the IMF and SMF specimens was characterized by: (1) crushing and 
spalling of concrete at the top of the beams near the center column, (2) development of 
major flexural cracks (deepening and widening), and (3) fracture of one of the bottom 
reinforcing bars at a major crack opening near the center column. 

3. The test results show that the rotational capacities of both the IMF and SMF beam-to-
column joints under monotonic column displacement are about seven to eight times as 
large as those based on seismic test data.  The rotations at peak load in this study were 
about 0.185 rad and 0.200 rad for the IMF and SMF specimens, respectively, whereas the 
rotational capacities of these connections based on seismic testing data are approximately 
0.026 rad and 0.025 rad, respectively. 
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4. This study indicates generally good agreement between the experimental and the 
computational results. Both the detailed and reduced models were capable of capturing 
the primary response characteristics and failure modes of the test specimens. 

This study shows that analysis using reduced models consisting of beam and spring elements can 
accurately predict the response characteristics of both the IMF and SMF beam-column 
assemblies. Furthermore, the reduced models developed in this study will be valuable in the 
analysis of complete structural systems for assessing the reserve capacity and robustness of 
building structures. 
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