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The NIST Special Publication (SP) 800-90 series of documents supports the generation of high-
quality random bits for cryptographic and non-cryptographic use. SP 800-90A specifies several 
deterministic random bit generator (DRBG) mechanisms based on cryptographic algorithms. SP 
800-90B provides guidance for the development and validation of entropy sources. This 
document (SP 800-90C) specifies constructions for the implementation of random bit generators 
(RBGs) that include DRBG mechanisms as specified in SP 800-90A and that use entropy sources 
as specified in SP 800-90B. Constructions for four classes of RBGs — namely, RBG1, RBG2, RBG3, 
and RBGC — are specified in this document. 

Keywords 

deterministic random bit generator (DRBG); entropy; entropy source; random bit generator 
(RBG); randomness source; RBG1 construction; RBG2 construction; RBG3 construction; RBGC 
construction; subordinate DRBG (sub-DRBG). 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines 
for the cost-effective security and privacy of other than national security-related information in 
federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities 
with industry, government, and academic organizations. 
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1. This fourth public draft of SP 800-90C describes four RBG constructions: RBG1, RBG2, 
RBG3, and RBGC. The RBGC construction has been included since the last draft to specify 
chains or trees of DRBGs. Responses to the following questions are requested for the 
DRBG chains discussed in Sec. 7: 

• Should the initial randomness source for the root RBGC construction be required 
to be “part” of the computing platform on which the DRBG chains are used (i.e., 
non-removable during system operation), or should an external removable device 
be allowed as the initial randomness source? Please provide a rationale. 

• For the DRBG tree structure in Sec. 7, will a requirement for the initial randomness 
source to be reseeded before generating output for seeding or reseeding the root 
RBGC construction be a substantial problem if that source is an RBG2(P) or 
RBG2(NP) construction (e.g., when dev/random is serving as the initial 
randomness source)? Refer to Sec. 7.1.2.1 for an example. 

• What kind of guidance should be included for virtualized and cloud environments 
to avoid insecure implementations? 

• Should a limit be imposed on the length of a DRBG chain? If so, what limit would 
be appropriate? 

2. This draft distinguishes between a request for the execution of a function within a DRBG 
or RBG (e.g., by an application) and the execution of the requested function within the 
DRBG or RBG. However, note that the inputs and outputs of the request and the intended 
function are usually the same. 

3. A prediction-resistance request in a DRBG_Generate function is no longer provided as 
an input parameter. Instead, prediction resistance can be obtained prior to issuing a 
generate request by first issuing a reseed request using the DRBG_Reseed function. 

4. For an RBG2 construction (see Sec. 5), a capability for reseeding is optional. When a 
reseed capability is implemented, reseeding may be performed upon request by an 
application and/or in response to some trigger. When reseeding is supported, periodic 
reseeding is recommended to ensure recovery from a compromise. 

• Should a reseeding capability be required for an RBG2(P) or RBG2(NP) 
construction? 

• If an implementation has a reseeding capability, should reseeding be required? 

• If periodic reseeding is required, what advice should be included for reseeding an 
RBG2 construction? The example of reseeding after at most 219 output bits is 
suggested to align with the requirements in AIS 20/31 in case a developer would 
like to submit its implementation to both the NIST and BSI validation programs. 
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5. SHA-1 and the 224-bit hash functions (i.e., SHA-224, SHA-512/224, and SHA3-224) have 62 
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been removed from this version since NIST plans to disallow them after 2030 (see an 
upcoming revision of SP 800-131A). 

6. After the publication of SP 800-90C, SP 800-90A (Revision 1) will be revised to resolve 
inconsistencies with this document. The revision will include: 

• The Instantiate_function, Generate_function, and Reseed_function will be 
renamed to DRBG_Instantiate, DRBG_Generate, and DRBG_Reseed. These 
names have been used in SP 800-90C for clarity. 

• The Get_entropy_input call discussed in SP 800-90Ar1 will be renamed to the more 
general term “Get_randomness-source_input,” which is used in SP 800-90C. 

• SP 800-90Ar1 currently requires a nonce to be used during DRBG instantiation that is 
either 1) a value with at least (security_strength/2) bits of entropy or 2) a value that is 
expected to repeat no more often than a (security_strength/2)-bit random string 
would be expected to repeat. The use of the nonce (as defined in SP 800-90Ar1) will 
be replaced by additional bits provided by the randomness source. 

• Parameters needed to use the DRBGs in the constructions specified in SP 800-90C will 
be provided for each DRBG type in SP 800-90Ar1 (i.e., the Hash_DRBG, 
HMAC_DRBG, and CTR_DRBG). 

• Are there any other inconsistencies between this draft of SP 800-90C and the current 
version of SP 800-90Ar1 at https://doi.org/10.6028/NIST.SP.800-90Ar1? 

  

https://doi.org/10.6028/NIST.SP.800-90Ar1
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This public review includes a call for information on essential patent claims (claims whose use 
would be required for compliance with the guidance or requirements in this Information 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 
directly stated in this ITL Publication or by reference to another publication. This call also includes 
disclosure, where known, of the existence of pending U.S. or foreign patent applications relating 
to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 
in written or electronic form, either: 

a) assurance in the form of a general disclaimer to the effect that such party does not hold 
and does not currently intend holding any essential patent claim(s); or 

b) assurance that a license to such essential patent claim(s) will be made available to 
applicants desiring to utilize the license for the purpose of complying with the guidance 
or requirements in this ITL draft publication either: 

i. under reasonable terms and conditions that are demonstrably free of any unfair 
discrimination; or 

ii. without compensation and under reasonable terms and conditions that are 
demonstrably free of any unfair discrimination. 

Such assurance shall indicate that the patent holder (or third party authorized to make 
assurances on its behalf) will include in any documents transferring ownership of patents subject 
to the assurance, provisions sufficient to ensure that the commitments in the assurance are 
binding on the transferee, and that the transferee will similarly include appropriate provisions in 
the event of future transfers with the goal of binding each successor-in-interest. 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 
regardless of whether such provisions are included in the relevant transfer documents. 

Such statements should be addressed to: rbg_comments@nist.gov  

mailto:rbg_comments@nist.gov
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Cryptography and security applications make extensive use of random bits. However, the 
generation of random bits is challenging in many practical applications of cryptography. The 
National Institute of Standards and Technology (NIST) developed the Special Publication (SP) 800-
90 series to support the generation of high-quality random bits for both cryptographic and non-
cryptographic purposes. The SP 800-90 series consists of three parts: 

1. SP 800-90A, Recommendation for Random Number Generation Using Deterministic 
Random Bit Generators, specifies several approved deterministic random bit generator 
(DRBG) mechanisms based on approved cryptographic algorithms that — once provided 
with seed material that contains sufficient randomness — can be used to generate 
random bits suitable for cryptographic applications. 

2. SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation, 
provides guidance for the development and validation of entropy sources, which are 
mechanisms that generate entropy from physical or non-physical noise sources and that 
can be used to generate the input for the seed material needed by a DRBG or for input to 
an RBG. 

3. SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions, specifies 
constructions for random bit generators (RBGs) using 1) randomness sources (either 
entropy sources that comply with SP 800-90B or RBGs that comply with SP 800-90C) and 
2) DRBGs that comply with SP 800-90A. Four classes of RBGs are specified in this 
document (see Sec. 4–7). SP 800-90C also provides high-level guidance for testing RBGs 
for conformance to this recommendation. 

Throughout this document, the phrase “this recommendation” refers to the aggregate of SP 800-
90A, SP 800-90B, and SP 800-90C, while the phrase “this document” refers only to SP 800-90C. 

The RBG constructions defined in this recommendation are based on two components: the 
entropy sources that generate true random variables (i.e., variables that may be biased, where 
each possible outcome does not need to have the same chance of occurring) and the DRBGs that 
ensure that the outputs of the RBG are indistinguishable from the ideal distribution to a 
computationally bounded adversary. 

SP 800-90C has been developed in coordination with NIST’s Cryptographic Algorithm Validation 
Program (CAVP) and Cryptographic Module Validation Program (CMVP). The document uses 
“shall” and “must” to indicate requirements and uses “should” to indicate an important 
recommendation. The term “shall” is used when a requirement is testable by a testing lab during 
implementation validation using operational tests or a code review. The term “must” is used for 
requirements that may not be testable by the CAVP or CMVP. An example of such a requirement 
is one that demands certain actions and/or considerations from a system administrator. Meeting 
these requirements can be verified by a CMVP review of the cryptographic module’s 
documentation. If the requirement is determined to be testable at a later time (e.g., after SP 800-
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Guidance for FIPS 140-3 and the Cryptographic Module Validation Program [FIPS_ 140IG]. 

1.1. Audience  

The intended audience for this recommendation includes 1) developers who want to design and 
implement RBGs that can be validated by NIST’s CMVP and CAVP, 2) testing labs that are 
accredited to perform the validation tests and the evaluation of the RBG constructions, and 3) 
users who install RBGs in systems. 

1.2. Document Organization 

This document is organized as follows: 

• Section 2 provides background and preliminary information for understanding the 
remainder of the document. 

• Section 3 provides guidance on accessing and handling entropy sources, including the 
external conditioning of entropy-source output to reduce bias and obtain full entropy 
when needed. 

• Sections 4, 5, 6, and 7 specify the RBG constructions, namely the RBG1, RBG2, RBG3, and 
RBGC constructions, respectively. 

• Section 8 discusses health and implementation validation testing. 

• The References contain a list of papers and publications cited in this document. 

The following informational appendices are also provided: 

• Appendix A provides discussions on entropy versus security strength, generating output 
using the RBG3(RS) construction, and computing platforms, as required by DRBG chains 
using the RBGC construction. 

• Appendix B provides examples of each RBG construction. 

• Appendix C is an addendum for SP 800-90A that includes two additional derivation 
functions that may be used with the CTR_DRBG. These functions will be moved into SP 
800-90A as part of the next revision of that document. 

• Appendix D provides a list of abbreviations, symbols, functions, and notations used in this 
document. 

• Appendix E provides a glossary with definitions for terms used in this document.  
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2.1. RBG Security 

Ideal randomness sources generate identically distributed and independent uniform random bits 
that provide full-entropy outputs (i.e., one bit of entropy per output bit). Real-world RBGs are 
designed with a security goal of indistinguishability from the output of an ideal randomness 
source. That is, given some limits on an adversary’s data and computing power, it is expected 
that no adversary can reliably distinguish between RBG outputs and outputs from an ideal 
randomness source. 

Consider an adversary that can perform 2w computations (typically, these are guesses of the 
RBG’s internal state) and is given an output sequence from either an RBG with a security strength 
of s bits (where s ≥ w) or an ideal randomness source. It is expected that an adversary has no 
better probability of determining which source was used for its random bits than 

1/2 + 2w−s−1 + ε, 

where ε is negligible. In this recommendation, the size of the RBG output is limited to 264 output 
bits and ε  ≤ 2−32. 

An RBG that has been designed to support a security strength of s bits is suitable for any 
application with a targeted security strength that does not exceed s. An RBG that is compliant 
with this recommendation can support requests for output with a security strength of 128, 192, 
or 256 bits, except for an RBG3 construction (as described in Sec. 6), which can provide full-
entropy output.1

1 See Appendix A.1 for a discussion of entropy versus security strength. 

 

A bitstring with full entropy has an amount of entropy equal to its length. Full-entropy bitstrings 
are important for cryptographic applications, as these bitstrings have ideal randomness 
properties and may be used for any cryptographic purpose. They may be truncated to any length 
such that the amount of entropy in the truncated bitstring is equal to its length. However, due to 
the difficulty of generating and testing full-entropy bitstrings, this recommendation assumes that 
a bitstring has full entropy if the amount of entropy per bit is at least 1 − ε, where ε is at most 
2−32. NIST Internal Report (IR) 8427 [NISTIR _8427] provides a justification for the selection of ε. 

 

2.2. RBG Constructions 

A construction is a method of designing an RBG to accomplish a specific goal. Four classes of RBG 
constructions are defined in this document: RBG1, RBG2, RBG3, and RBGC (see Table 1). Each 
RBG includes a DRBG from SP 800-90A and is based on the use of a randomness source that is 
validated for compliance with SP 800-90B or SP 800-90C. Once instantiated, a DRBG can generate 
output at a security strength that does not exceed the DRBG’s instantiated security strength. 
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Table 1. RBG capabilities 426 
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444 

Construction 
Internal 
Entropy 
Source 

Available 
randomness 

source for 
reseeding 

 
Prediction 
Resistance 

Full Entropy 
Type of 

Randomness 
Source 

RBG1 No No No No RBG2(P) or RBG3 
construction 

RBG2(P) Yes Yes Optional No Physical entropy 
source 

RBG2(NP) Yes Yes Optional No Non-physical 
entropy source  

RBG3(XOR) or 
RBG3(RS) Yes Yes Yes Yes Physical entropy 

source 

(Root) RBGC Yes Yes Optional No 

RBG2 or RBG3 
construction or 

Full-entropy 
source 

(Non-root) RBGC No Yes No No Parent RBGC 
construction 

In Table 1: 

• Column 1 lists the RBG constructions specified in this document. 

• Column 2 indicates whether an entropy source is present within the construction. 

• Column 3 indicates whether the DRBG has an available randomness source for reseeding. 

• Column 4 indicates whether prediction resistance can be provided for the output of the 
RBG (see Sec. 2.4.2 for a discussion of prediction resistance). 

• Column 5 indicates whether full-entropy output can be provided by the RBG. 

• Column 6 indicates the types of randomness sources that are allowed for the RBG 
construction. 

An RBG1 construction does not have access to a randomness source after instantiation. It is 
instantiated once in its lifetime over a physically secure channel from an external RBG2(P) or 
RBG3 construction with appropriate security properties. An RBG1 construction does not support 
reseeding requests, prediction resistance cannot be provided for the output, and the 
construction cannot provide output with full entropy. The construction can be used to initialize 
subordinate DRBGs (sub-DRBGs) (see Sec. 4). 

An RBG2 construction includes one or more entropy sources that are used to instantiate the 
DRBG and may (optionally) be used for reseeding if a reseed capability is implemented. Prediction 
resistance may be provided to the RBG output when reseeding is performed. The construction 
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while an RBG2(NP) construction uses a non-physical entropy source. An RBG2 construction 
cannot provide full-entropy output (see Sec. 5). 

An RBG3 construction includes one or more physical entropy sources and is designed to provide 
an output with a security strength equal to the requested length of its output by producing 
outputs that have full entropy. Prediction resistance is provided for all outputs (see Sec. 6). 

This construction has two types: 

1. An RBG3(XOR) construction combines the output of one or more validated entropy 
sources with the output of an instantiated, approved DRBG using an exclusive-or (XOR) 
operation (see Sec. 6.4). 

2. An RBG3(RS) construction uses one or more validated entropy sources to provide seed 
material for the DRBG by continuously reseeding. 

An RBGC construction (see Sec. 7) allows the use of a chain of RBGs that consists of only RBGC 
constructions on the same computing platform. The initial RBGC construction in the chain is 
called the root RBGC construction; the root RBGC construction accesses an initial randomness 
source for instantiation and reseeding. Subsequent RBGC constructions in the chain are seeded 
(and may be reseeded) using their immediate predecessor RBGC construction (i.e., their parent). 
Prediction resistance may be provided for the root but not for subsequent RBGC constructions 
(see Sec. 6.5). 

This document also provides procedures for acquiring entropy from an entropy source and 
conditioning the output to provide a bitstring with full entropy (see Sec. 3.2). SP 800-90A provides 
constructions for instantiating and reseeding DRBGs and requesting the generation of 
pseudorandom bitstrings. 

All constructions in SP 800-90C are described in pseudocode as well as text. The pseudocode 
conventions are not intended to constrain real-world implementations but to provide a 
consistent notation to describe the constructions. 

For any of the specified processes, equivalent processes may be used. Two processes are 
equivalent if the same output is produced when the same values are input to each process (either 
as input parameters or as values made available during the process). 

By convention and unless otherwise specified, integers are unsigned 32-bit values. When used as 
bitstrings, they are represented in the big-endian format. 

2.3. Sources of Randomness for an RBG 

The RBG constructions specified in this document are based on the use of validated entropy 
sources — mechanisms that provide entropy for an RBG. Some RBG constructions access these 
entropy sources directly to obtain entropy. Other constructions fulfill their entropy requirements 
by accessing another RBG as a randomness source, in which case the RBG used as a randomness 
source may include an entropy source or have a predecessor that includes an entropy source. 
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entropy sources (i.e., entropy sources that have been successfully validated by the CMVP as 
complying with SP 800-90B) reliably provide fixed-length outputs and a specified minimum 
amount of entropy for each output (e.g., each 8-bit output has been validated as providing at 
least five bits of entropy).2

2 This document also discusses the use of non-validated entropy sources. When discussing such entropy sources, “non-validated” will always 
precedes “entropy sources.” The use of the term “validated entropy source” may be shortened to just “entropy source” to avoid repetition. 

 

An entropy source is a physical entropy source if the primary noise source within the entropy 
source is physical — that is, it uses a dedicated hardware design to provide entropy (e.g., from 
ring oscillators, thermal noise, shot noise, jitter, or metastability). Similarly, a validated entropy 
source is a non-physical entropy source if the primary noise source within the entropy source is 
non-physical — that is, entropy is provided by system data (e.g., system time or the entropy 
present in the RAM data) or human interaction (e.g., mouse movements). The entropy source 
type (i.e., physical or non-physical) is certified during SP 800-90B validation. 

One or more validated, independent entropy sources may be used to provide entropy for 
instantiating and reseeding the DRBGs in RBG2, RBG3, and (root) RBGC constructions or used by 
an RBG3 construction to generate output upon request by a consuming application. Appropriate 
validated RBGs may be used to provide seed material for RBG1 and RBGC constructions. 

An implementation could be designed to use a combination of physical and non-physical entropy 
sources. When requests are made to these sources, bitstring outputs may be concatenated until 
the amount of entropy in the concatenated bitstring meets or exceeds the request. Two methods 
are provided for counting the entropy provided in the concatenated bitstring: 

Method 1: The RBG implementation includes one or more independent, validated physical 
entropy sources; one or more validated non-physical entropy sources may also be included 
in the implementation. Only the entropy in a bitstring that is provided from physical entropy 
sources is counted toward fulfilling the amount of entropy requested in an entropy request. 
Any entropy in a bitstring that is provided by a non-physical entropy source is not counted, 
even if bitstrings produced by the non-physical entropy source are included in the 
concatenated bitstring that is used by the RBG. 

Method 2: The RBG implementation includes one or more independent, validated non-
physical entropy sources; one or more independent, validated physical entropy sources may 
also be included in the implementation. The entropy from both non-physical entropy sources 
and (if present) physical entropy sources is counted when fulfilling an entropy request. 

Example: Let pesi be the ith output of a physical entropy source and npesj be the jth output of 
a non-physical entropy source. If an implementation consists of one physical and one non-
physical entropy source, and a request has been made for 128 bits of entropy, the 
concatenated bitstring might be something like: 

pes1 || pes2 || npes1 || pes3 || ... || npesm || pesn, 

which is the concatenated output of the physical and non-physical entropy sources. 
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fulfilling the 128-bit entropy request. Any entropy in npes1, ..., npesm is not counted. 

According to Method 2, all the entropy in pes1, pes2, ..., pesn and in npes1, npes2, ..., npesm is 
counted. 

When multiple entropy sources are used, there is no requirement on the order in which the 
entropy sources are accessed or the number of times that each entropy source is accessed to 
fulfill an entropy request. For example, if two physical entropy sources are used, it is possible 
that a request would be fulfilled by only one of the entropy sources because entropy is not 
available at the time of the request from the other entropy source. However, the Method 1 or 
Method 2 criteria for counting entropy still apply, providing that the entropy sources are 
independent. 

This recommendation assumes that the entropy produced by a validated physical entropy source 
is generally more reliable than the entropy produced by a validated non-physical entropy source 
since non-physical entropy sources are typically influenced by human actions or network events, 
the unpredictability of which is difficult to accurately quantify. Therefore, Method 1 is considered 
to provide more assurance that the concatenated bitstring contains at least the requested 
amount of entropy (e.g., 128 bits for a 128-bit AES key). Note that the RBG2(P) and RBG3 
constructions only count entropy using Method 1 (see Sec. 5 and 6, respectively). 

2.4. DRBGs 

Approved DRBGs are specified in SP 800-90A. A DRBG includes instantiate, generate, and health-
testing functions and may also include reseed and uninstantiate functions. The instantiation of a 
DRBG involves acquiring sufficient randomness to initialize the DRBG to support a targeted 
security strength and establish the internal state, which includes the secret information for 
operating the DRBG. The generate function produces output upon request and updates the 
internal state. Health testing is used to determine that the DRBG continues to operate correctly. 
Reseeding introduces fresh randomness into the DRBG’s internal state and is used to recover 
from a potential (or actual) compromise (see Sec. 2.4.2 for an additional discussion). An 
uninstantiate function is used to terminate a DRBG instantiation and destroy the information in 
its internal state. 

2.4.1. DRBG Instantiations 

A DRBG implementation consists of software code, hardware, or both hardware and software 
that are used to implement a DRBG design. The same implementation can be used to create 
multiple (logical) “copies” of the same DRBG (e.g., for different purposes) without replicating the 
software code or hardware. Each “copy” is a separate instantiation of the DRBG with its own 
internal state that is accessed via a state handle (i.e., a pointer) that is unique to that instantiation 
(see Fig. 1). Each instantiation may be considered a different DRBG, even though it uses the same 
software code or hardware. 
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Fig. 1. DRBG instantiations 

Each DRBG instantiation is initialized with input from some randomness source that establishes 
the security strength(s) that can be supported by the DRBG. During this process, an optional but 
recommended personalization string may also be used to differentiate between instantiations in 
addition to the output of the randomness source. The personalization string could, for example, 
include information particular to the instantiation or contain entropy collected during system 
activity (e.g., from a non-validated entropy source). An implementation should allow the use of 
a personalization string. More information on personalization strings is provided in SP 800-90A. 

A DRBG may be implemented to accept additional input during operation from the randomness 
source (e.g., to reseed the DRBG) and/or additional input from inside or outside of the 
cryptographic module that contains the DRBG. This additional input could, for example, include 
information particular to a request for generation or reseeding or could contain entropy collected 
during system activity (e.g., from a validated or non-validated entropy source).3

3 Entropy provided in additional input does not affect the instantiated security strength of the DRBG instantiation. However, it is good practice to 
include any additional entropy when available to provide more security. 

 A capability to 
handle additional input is recommended for an implementation. 

2.4.2. Reseeding, Prediction Resistance, and Compromise Recovery 

Under some circumstances, the internal state of an RBG (containing the RBG’s secret 
information) could be leaked to an adversary. This might happen as the result of a side-channel 
attack or a serious compromise of the computer on which the DRBG runs and may not be 
detected by the DRBG or any consuming application. 
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backtracking resistance — that is, learning the DRBG’s current internal state does not provide 
knowledge of previous outputs. Since all RBGs in SP 800-90C are based on the use of the DRBGs 
in SP 800-90A, the RBGs specified in this document also inherit this property. 

DRBGs may be reseeded at any time to allow for recovery from a potential compromise. An 
adversary who knows the internal state of the DRBG before the reseed but who does not learn 
the seed material used for the reseed knows nothing about its internal state after the reseed. 
Reseeding allows a DRBG to recover from a leak of its internal state. 

In order to reseed a DRBG at a security of s bits, new seed material is provided to the DRBG from 
either an entropy source or an RBG. If the seed material is provided by an entropy source, it must 
contain at least s bits of min-entropy. If the seed material is provided by an RBG, the RBG must 
support at least a security strength of s bits, and the seed material must be at least s bits long. 
Seed material from an entropy source will always be unpredictable; seed material from an RBG 
will be unpredictable if that RBG has not been compromised. 

A DRBG output is said to have prediction resistance when the DRBG is reseeded with at least s 
bits of min-entropy immediately before the output is generated by the DRBG. The entropy for 
this reseeding process needs to be provided by either an entropy source or an RBG3 construction 
for prediction resistance to be provided. 

When a target DRBG is reseeded using another DRBG as a randomness source, the target DRBG 
is not guaranteed to have prediction resistance. If the source and target DRBGs are both 
compromised, then reseeding the target DRBG from the other DRBG will allow the adversary to 
know the target DRBG’s internal state. However, it is often a good idea to reseed a target DRBG 
from a source DRBG. If the source DRBG was not compromised, then the target DRBG’s state will 
be unknown to the adversary after the reseed. 

The RBG3 construction always provides prediction resistance on its outputs, as every n-bit output 
has n bits of entropy. The RBG2 construction can provide prediction resistance on its outputs 
when reseeding is supported. The RBG1 construction never provides prediction resistance since 
it cannot be reseeded. Prediction resistance may be provided for the root RBGC construction but 
not for any subsequent non-root RBGC construction. However, subsequent RBGCs can (and 
generally should) periodically reseed from their randomness source (i.e., their parent). 

The RBG1, RBG2, and RBGC constructions provide output with a security strength that depends 
on the security strength of the DRBG instantiation within the RBG and the length of the output. 
These constructions do not provide output with full entropy and must not be used by applications 
that require a higher security strength than has been instantiated in the DRBG of the 
construction. See Appendix A.1 for a discussion of entropy versus security strength. 

Although reseeding provides fresh randomness that is incorporated into an already instantiated 
DRBG at a security strength of s bits, the reseed process does not increase the DRBG’s security 
strength. For example, a reseed of a DRBG that has been instantiated to support a security 
strength of 128 bits does not increase the DRBG’s security strength to 256 bits when reseeding 
with 128 bits of fresh entropy. 
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An RBG exists within a conceptual RBG security boundary that should be defined with respect to 
one or more threat models that include an assessment of the applicability of an attack and the 
potential harm caused by the attack. The RBG security boundary must be designed to assist in 
the mitigation of these threats using physical or logical mechanisms or both. 

The primary components of an RBG are a randomness source, a DRBG, and health tests for the 
RBG. RBG input (e.g., entropy bits and a personalization string) shall enter an RBG only as 
specified in the functions described in Sec. 2.8. The security boundary of a DRBG is discussed in 
SP 800-90A, and the security boundary for an entropy source is discussed in SP 800-90B. Both the 
entropy source and the DRBG contain their own health tests within their respective security 
boundaries. 

 
Fig. 2. Example of an RBG security boundary within a cryptographic module 

Figure 2 shows an example RBG implemented within a FIPS 140-validated cryptographic module. 
In this figure, the RBG security boundary is completely contained within the cryptographic 
module boundary. The data input may be a personalization string or additional input (see Sec. 
2.4.1). The data output is status information and possibly random bits or a state handle. Within 
the RBG security boundary of the figure are an entropy source and a DRBG, each with its own 
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health tests, and (optionally) a conditioning component. A DRBG security boundary contains the 
chosen DRBG, memory for the internal state, and health tests. An RBG security boundary contains 
health tests and an (optional) external conditioning function. The RBG2 and RBG3 constructions 
in Sec. 5 and 6, respectively, use this model. 

In the case of the RBG1 construction in Sec. 4, the security boundary containing the DRBG does 
not include a randomness source (shown as an entropy source in Fig. 2). For an RBGC 
construction, the security boundary is the computing platform on which the chain of DRBGs is 
used. 

A cryptographic primitive (e.g., an approved hash function or block cipher) used by an RBG may 
be used by other applications within the same cryptographic module. However, these other 
applications shall not modify or reveal the RBG’s output, intermediate values, or internal state. 

2.6. Assumptions and Assertions 

The RBG constructions in SP 800-90C are based on the use of validated entropy sources and the 
following assumptions and assertions for properly functioning entropy sources: 

1. An entropy source is independent of another entropy source if their security boundaries 
do not overlap (e.g., they reside in separate cryptographic modules, or one is a physical 
entropy source and the other is a non-physical entropy source). 

2. Entropy sources that have been validated for conformance to SP 800-90B are used to 
provide seed material for seeding and reseeding a DRBG or providing entropy for an RBG3 
construction. The output of non-validated entropy sources is only used as additional 
input. 

The following assumptions and assertions pertain to the use of validated entropy sources for 
providing entropy bits: 

3. An entropy source outputs no more than 264 bits. The number of output bits from the 
RBG is at most 264 bits for a DRBG instantiation. In the case of an RBG1 construction with 
one or more subordinate DRBGs, the output limit applies to the total output provided by 
the RBG1 construction and its subordinate DRBGs. 

4. Each entropy-source output has a fixed length ES_len (in bits). 

5. Each entropy-source output is assumed to contain a fixed amount of entropy, denoted as 
ES_entropy, that was assessed during entropy-source implementation validation. See SP 
800-90B for entropy estimation. 

6. Each entropy source has been characterized as either a physical entropy source or a non-
physical entropy source upon successful validation. 

7. The outputs from a single entropy source can be concatenated. The entropy of the 
resultant bitstring is the sum of the entropy from each entropy-source output. For 
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example, if m outputs are concatenated, then the length of the bitstring is m × ES_len 
bits, and the entropy for that bitstring is assumed to be m × ES_entropy bits. This is a 
consequence of the model of entropy used in 
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SP 800-90B. 

8. The output of multiple independent entropy sources can be concatenated in an RBG. The 
entropy in the resultant bitstring is the sum of the entropy in each independent entropy-
source output that is contributing to the entropy in the bitstring (see Methods 1 and 2 in 
Sec. 2.3). For example, suppose that the outputs from independent physical entropy 
sources A and B and non-physical entropy source C are concatenated. The length of the 
concatenated bitstring is the sum of the lengths of the component bitstrings (i.e., ES_lenA 
+ ES_lenB + ES_lenC). 

• Using Method 1 in Sec. 2.3, the amount of entropy in the concatenated bitstring 
is ES_entropyA + ES_entropyB. 

• Using Method 2 in Sec. 2.3, the amount of entropy in the concatenated bitstring 
is the sum of all entropy in the bitstrings (i.e., ES_entropyA + ES_entropyB + 
ES_entropyC). 

9. Under certain conditions, the output of one or more entropy sources can be externally 
conditioned to provide full-entropy output. See Sec. 3.2.2.2, 6.4, and 7 for the use of this 
assumption and IR 8427 for the rationale. 

10. When entropy is requested, the entropy source responds as follows: 

• If the entropy source provides the requested amount of entropy, a status 
indication of success is returned along with a bitstring that contains the requested 
amount of entropy. 

• If the entropy source detects a failure of the primary noise source (i.e., an error 
from which it cannot recover), the entropy source returns a status indicating a 
failure. Other output is not provided. 

• If the entropy source indicates an error other than failure (e.g., entropy cannot be 
obtained in a timely manner, or there is an intermittent problem), the entropy 
source returns a status indicating that the entropy source cannot provide output 
at this time. Other output is not provided. 

The following assumptions and assertions pertain to the use of DRBGs and the RBG constructions: 

11. Full entropy bits can be extracted from the output block of a hash function or block cipher 
when the amount of fresh entropy inserted into the algorithm exceeds the number of bits 
that are extracted by at least 64 bits. In particular, for a DRBG that has been instantiated 
at a security strength of s bits, s full-entropy bits can be extracted from the output of that 
DRBG when at least s + 64 bits of fresh entropy are inserted into the DRBG before the 
output is generated (see IR 8427). 

12. To instantiate a DRBG at a security strength of s bits: 
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• For an RBG1 construction, a bitstring at least 3s/2 bits long is needed from a 
randomness source (an RBG) providing at least s bits of security strength (see Sec. 
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4). 

• For an RBG2 or RBG3 construction, bitstrings with at least 3s/2 bits of entropy are 
needed from the entropy source(s) (see Sec. 5 and 6, respectively). 

• For an RBGC construction that is the root of a tree of RBGC constructions, at least 
3s/2 bits of entropy are needed from the randomness source when the initial 
randomness source is a full-entropy source or RBG3 construction. If the initial 
randomness source is an RBG2 construction, a bitstring at least 3s/2 bits long is 
needed from the randomness source (see Sec. 7). 

• For an RBGC construction that is not the root of the tree, a bitstring at least 3s/2 
bits long is needed from the construction’s randomness source (see Sec. 7). 

13. One or more of the constructions provided herein are used in the design of an RBG. 

14. All components of an RBG2 and RBG3 construction (as specified in Sec. 5 and 6) reside 
within the physical boundary of a single FIPS 140-validated cryptographic module. 

15. All RBGC constructions in a DRBG chain reside on the same computing platform. 

16. The DRBGs specified in SP 800-90A are assumed to meet their explicit security claims (e.g., 
backtracking resistance, claimed security strength, etc.). 

17. A sub-DRBG is considered to be part of the RBG1 construction that initializes it. 

18. The RBG1 construction and its sub-DRBGs reside within the physical boundary of a single 
FIPS 140-validated cryptographic module. 

2.7. General Implementation and Use Requirements and Recommendations 

When implementing the RBG constructions specified in this recommendation, an 
implementation: 

1. Shall destroy intermediate values before exiting the function or routine in which they are 
used, 

2. Shall employ an “atomic” generate operation whereby a generate request is completed 
before using any of the requested bits, and 

3. Should be implemented with the capability to support a security strength of 256 bits or 
to provide full-entropy output. 

When using RBGs, the user or application requesting the generation of random or pseudorandom 
bits should request only the number of bits required for a specific immediate purpose rather than 
generating bits to be stored for future use. Since, in most cases, the bits are intended to be secret, 
the stored bits (if not properly protected) are potentially vulnerable to exposure, thus defeating 
the requirement for secrecy. 
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2.8. General Function Calls 742 
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Functions used within this document for accessing the DRBGs in SP 800-90A, the entropy sources 
in SP 800-90B, and the RBG3 constructions specified in SP 800-90C are provided below and in Fig. 
3. 

 

Each function returns a status code that must be checked (e.g., a status of success or failure by 
the function). 

• If the status code indicates a success, then additional information may also be returned, 
such as a state handle from an instantiate function or the bits that were requested to be 
generated during a generate function. 

• If the status code indicates a failure of an RBG component, then see item 10 in Sec. 2.6 
and Sec. 8.1.2 for error-handling guidance. Note that if the status code does not indicate 
a success, an invalid output (e.g., a null bitstring) shall be returned with the status code if 
information other than the status code could be returned. 

The distinction between a function within a DRBG or RBG and the request for the execution of 
that function by a requesting entity (e.g., an application) is needed for clarity. The requesting 
entity may not include an implementation of the function itself but needs to be able to request 
the DRBG or RBG to execute that function to obtain random values for its use. As used in this 
document, the request needs to provide some or all the input needed for the associated function. 
Relevant information output by that function needs to be returned in response to the request. 

Fig. 3. General function calls 
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2.8.1. DRBG Functions 763 
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SP 800-90A specifies several functions within a DRBG that indicate the input and output 
parameters and other implementation details. In some cases, some input parameters identified 
in SP 800-90A may be omitted, and some output information may not be returned (e.g., because 
the requested information was not generated). 

At least two functions are required in a DRBG: 

1. An instantiate function that seeds the DRBG using the output of a randomness source and 
other optional input (see Sec. 2.8.1.1) and 

2. A generate function that produces output for use by a consuming application (see Sec. 
2.8.1.2). 

A DRBG may also support a reseed function (see Sec. 2.8.1.3). 

A Get_randomness-source_input call is used in SP 800-90A to request output from a 
randomness source during instantiation and reseeding (see Sec. 2.8.1.4). The behavior of this 
function is specified in this document based on the type of randomness source used and the RBG 
construction. 

The use of the DRBG_Uninstantiate function  

A DRBG is instantiated prior to the generation of pseudorandom bits at the highest security 
strength to be supported by the DRBG instantiation using the following function: 

(status, state_handle) = DRBG_Instantiate (requested_instantiation_security_strength, 
personalization_string). 

 
Fig. 4. DRBG_Instantiate function 

The DRBG_Instantiate function (shown in Fig. 4) is used to instantiate a DRBG at the 
requested_instantiation_security_strength using the output of a randomness source4

4 The randomness source provides the seed material required to instantiate the security strength of the DRBG. 

 and an 
optional personalization_string to create a seed. As stated in Sec. 2.4.1, a personalization_string 
is optional but strongly recommended. Details about the DRBG_Instantiate function are 
provided in SP 800-90A. 

If the status code returned for the DRBG_Instantiate function indicates a success (i.e., the DRBG 
has been instantiated at the requested security strength), a state handle may5

5 In cases where only one instantiation of a DRBG will ever exist, a state handle need not be returned since only one internal state will be created. 

 be returned to 
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indicate the particular DRBG instance (i.e., pointing to the internal state to be used by this 792 
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instance). When provided by the DRBG_Instantiate function, the state handle is used in 
subsequent calls to the DRBG (e.g., during a DRBG_Generate call) to reference the internal state 
information for the instantiation. The information in the internal state includes the security 
strength of the instantiation and other information that changes during DRBG execution (see SP 
800-90A for each DRBG design). 

When the DRBG has been instantiated at the requested security strength, the DRBG will operate 
at that security strength even if the security strength requested in subsequent DRBG_Generate 
calls (see Sec. 2.8.1.2) is less than the instantiated security strength. For example, if a DRBG has 
been instantiated at a security strength of 256 bits, all output will be generated at that strength 
even when a request is received to generate bits at a strength of 128 bits. 

If the status code indicates an error and an implementation is designed to return a state handle, 
an invalid (e.g., Null) state handle is returned. 

The DRBG_Instantiate function is requested by an application using a 
DRBG_Instantiate_request: 

(status, state_handle) = DRBG_Instantiate_request(requested_instantiation_security_strength, 
personalization_string). 

As shown in Fig. 5, a DRBG_Instantiate request received by a DRBG results in the execution of 
the DRBG’s instantiate function, providing the input parameters for that function. The 
DRBG_Instantiate function then obtains seed_material from the randomness source(s), 
instantiates a DRBG and returns the status of the process and (if there is no error) a state_handle 
for the internal state to the application. 

  
Fig. 5. DRBG_Instantiate request 
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2.8.1.1. DRBG Generation Request 816 
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Pseudorandom bits are generated after DRBG instantiation using the following function: 

(status, returned_bits) = DRBG_Generate (state_handle, requested_number_of_bits, 
requested_security_strength, additional_input). 

 
Fig. 6. DRBG_Generate function 

The DRBG_Generate function (shown in Fig. 6) is used to generate a specified number of bits. 
If a suitable state_handle is available, it is included as input to indicate the DRBG instance to be 
used. The number of bits to be returned and the security strength that the DRBG needs to support 
for generating the bitstring are provided with (optional) additional input. As stated in Sec. 2.4.1, 
the ability to accept additional input is recommended. 

The DRBG_Generate function returns status information — either an indication of success or 
an error. If the returned status code indicates a success, the requested bits are returned. 

• If requested_number_of_bits is equal to or greater than the instantiated security strength, 
the security strength that the returned_bits can support (if used as a key) is: 

ss_key = the instantiated security strength, 

where ss_key is the security strength of the key. 

• If the requested_number of bits is less than the instantiated security strength, and the 
returned_bits are to be used as a key, the key is capable of supporting a security strength 
of: 

ss_key = requested_number_of_bits. 

If the status code indicates an error, the returned_bits consists of a Null bitstring. An example of 
a condition in which an error indication may be returned includes a request for a security strength 
that exceeds the instantiated security strength for the DRBG. 

Details about the DRBG_Generate function are provided in SP 800-90A. 

The DRBG_Generate function is requested by an application using a 
DRBG_Generate_request: 

(status, returned_bits) = DRBG_Generate_request(state_handle, requested_number_of_bits, 
requested_security_strength, additional_input). 
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As shown in Fig. 7, a DRBG_Generate_request received by a DRBG results in the execution of 845 
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the DRBG’s DRBG_Generate function, providing the input parameters for that function. The 
DRBG_Generate function generates the requested number of bits and returns the status of the 
process and (if there is no error) the newly generated bits. 

 
Fig. 7. DRBG_Generate_request 

2.8.1.2. DRBG Reseed 

The reseeding of a DRBG instantiation is intended to insert additional randomness into that DRBG 
instantiation (e.g., to recover from a possible compromise or to provide prediction resistance). 
This is accomplished using the following function:6

6 Note that this does not increase the security strength of the DRBG. 

 

status = DRBG_Reseed (state_handle, additional_input). 

 
Fig. 8. DRBG_Reseed function 

A DRBG_Reseed function (shown in Fig. 8) is used to acquire at least s bits of fresh randomness 
for the DRBG instance indicated by the state handle (or the only instance if no state handle has 
been provided), where s is the security strength of the DRBG to be reseeded.7

7 The value of s may be available in the DRBG’s internal state (see SP 800-90A). 

 In addition to the 
seed material provided from the DRBG’s randomness source(s) during reseeding, optional 
additional_input may be incorporated into the reseed process. As discussed in Sec. 2.4.1, the 
capability for handling and using additional input is recommended. Details about the 
DRBG_Reseed function are provided in SP 800-90A. 
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The DRBG_Reseed function is requested by an application using a DRBG_Reseed_request: 

status = DRBG_Reseed_request(state_handle, additional_input). 

As shown in Fig. 9, a DRBG_Reseed_request received by a DRBG results in the execution of the 
DRBG’s DRBG_Reseed function, providing the input parameters for that function. The 
DRBG_Reseed function then obtains seed_material from a randomness source, reseeds the 
DRBG instantiation, and returns the status of the process to the application. 

 
Fig. 9. DRBG_Reseed_request 

2.8.1.3. Get_randomness-source_input Call 

In SP 800-90A, a Get_randomness-source_input call is used in the DRBG_Instantiate function 
and DRBG_Reseed function to indicate when a randomness source needs to be accessed to 
obtain seed material. Details are not provided in SP 800-90A about how the Get_randomness-
source_input call needs to be implemented. SP 800-90C provides guidance on how the call 
should be implemented based on various situations (e.g., the randomness source and the RBG 
construction used). Sections 3.2.2, 4, 5, 6, and 7 provide instructions for obtaining input from a 
randomness source when the Get_randomness-source_input call is encountered in SP 800-90A. 

2.8.2. Interfacing With Entropy Sources 

A single entropy source request may not be sufficient to obtain the entropy required for seeding 
and reseeding a DRBG and for providing input for the exclusive-or operation in an RBG3(XOR) 
construction (see Sec. 6.4.1). SP 800-90C uses the term Get_entropy_bitstring to identify the 
process of obtaining the required entropy from one or more entropy sources. For convenience 
in describing the RBG constructions, this process is represented as a function whose input 
includes an indication of the amount of entropy that is needed from the entropy source(s) and 
whose output includes a status report on the success or failure of the process. If the process is 
successful, a bitstring containing the requested entropy is produced (see Fig. 10). The 
Get_entropy_bitstring function is invoked herein as: 
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(status, entropy_bitstring) = Get_entropy_bitstring(bits_of_entropy, counting method, 892 
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entropy_source_ID), 

where bits_of_entropy is the amount of entropy requested for return in the entropy_ bitstring, 
counting_method is the method to be used for counting entropy in the entropy source(s) (see 
Sec. 2.3), entropy_source_ID is an optional parameter that indicates the specific entropy source 
to be used, and status indicates whether the request has been satisfied. 

 
Fig. 10. Get_entropy_bitstring function 

The Get_entropy_bitstring process requests entropy from whatever validated entropy sources 
are available or the entropy source identified by entropy_source_ID (if present). Any acquisition 
of entropy from non-validated entropy sources is handled separately (e.g., by a different process) 
to avoid misuse. See Sec. 3.1 for additional discussion about the Get_entropy_bitstring process. 

2.8.3. Interfacing With an RBG3 Construction 

An RBG3 construction requires functions to instantiate its DRBG (see Sec. 2.8.3.1) and to request 
the generation of full-entropy bits (see Sec. 2.8.3.2). The functions needed to access the DRBG 
itself are provided in Sec. 2.8.1. 

2.8.3.1. Instantiating a DRBG Within an RBG3 Construction 

The instantiate functions for the DRBG within the RBG3 constructions use the following functions: 

(status, state_handle) = RBG3(XOR)_Instantiate(requested_security_strength, 
personalization_string) 

and 

(status, state_handle) = RBG3(RS)_Instantiate(requested_security_strength, 
personalization_string). 
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Fig. 11. RBG3 instantiate function 

The instantiate function of the RBG3 construction (shown in Fig. 11) will result in the execution 
of the DRBG’s instantiate function (provided in Sec. 2.8.1.1). A requested_security_strength may 
optionally be provided as an input parameter to indicate the minimum security strength to be 
supported by the DRBG within the RBG3 construction. An optional but recommended 
personalization_string (see Sec. 2.4.1) may be provided as an input parameter. If included as 
input to the RBG3 instantiation function, the personalization_string is passed to the DRBG that is 
instantiated by the instantiate function. See Sec. 6.4.1.1 and 6.5.1.1 for more specificity. 

If the returned status code indicates a success, a state handle may be returned to indicate the 
DRBG instance that is to be used by the construction (i.e., the state handle points to the internal 
state used by this instance of the DRBG within the RBG3 construction). If multiple instances of 
the DRBG are used (in addition to the DRBG instance used by the RBG3 construction), a separate 
state handle is returned for each instance. When provided, the state handle is used in subsequent 
calls to that RBG (e.g., during a call to the RBG3 generate function; see Sec. 2.8.3.2) or when 
accessing the DRBG directly (e.g., during a reseed of the DRBG; see Sec. 6.4.1.4). If the status 
code indicates an error (e.g., entropy is not currently available, or the entropy source has failed), 
an invalid (e.g., Null) state handle is returned. 

The instantiation of the DRBG within an RBG3(XOR) or RBG3(RS) construction is requested by an 
application using an Instantiate_RBG3_DRBG_request: 

(status, state_handle) = Instantiate_RBG3_DRBG_request(requested_security_strength, 
personalization_string). 

Both the requested_security_strength and a personalization_string are optional in the 
Instantiate_RBG3_DRBG_request. As shown in Fig. 12, an 
Instantiate_RBG3_DRBG_request received by an RBG3 construction results in the execution 
of the DRBG’s instantiate function. 

The security strength of the DRBG within an RBG3 construction is the highest security strength 
that can be supported by the DRBG design (see Sec. 6). The requested_security_strength 
parameter in the Instantiate_RBG3_DRBG_request should be interpreted (in the case of the 
RBG3 construction) as the minimum security strength that is required by the consuming 
application if entropy-source failures are undetected. Therefore, if the 
requested_security_strength parameter is provided as input, it is compared against the value of 
the highest security strength that can be supported by the DRBG. If the 
requested_security_strength exceeds the security strength that can be supported by the DRBG, 
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Instantiate_RBG3_DRBG_request. 

If no error is detected in the request, the Instantiate_RBG3_DRBG function obtains 
seed_material from the entropy source(s), instantiates the DRBG, and returns the status of the 
process and (possibly) a state_handle for the internal state to the application. 

 
Fig. 12. RBG3(XOR) or RBG3(RS) instantiation request 

2.8.3.2. Generation Using an RBG3 Construction 

The RBG3(XOR) and RBG3(RS) generate function calls are essentially the same, but the function 
designs are very different (see Sec. 6.4 for the RBG3(XOR)_Generate function and Sec. 6.5 for 
the RBG3(RS)_Generate function): 

(status, returned_bits) = RBG3(XOR)_Generate(state_handle, requested_number_of_bits, 
additional_input) 

and 

(status, returned_bits) = RBG3(RS)_Generate(state_handle, 
requested_number_of_bits, additional_input). 

 
Fig. 13. RBG3 generate functions 
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generate the requested_number_of_bits using any (optional) additional_input provided. If the 
returned status code from the RBG3(XOR)_Generate or RBG3(RS)_Generate function 
indicates a success, a bitstring that contains the newly generated bits is also returned. If the 
status code indicates an error (e.g., the entropy source has failed), a Null bitstring is returned as 
the returned_bits. 

The generation of random bits by an RBG3 construction is requested using the following: 

(status, returned_bits) = RBG3_Generate_ request(state_handle, requested_number_of_bits, 
requested_security_strength, additional_input). 

If a suitable state_handle is available (e.g., provided in response to an 
Instantiate_RBG3_DRBG_request; see Sec. 2.8.3.1), it is included in the 
RBG3_Generate_request. As shown in Fig. 14, an RBG3 generate request received by an RBG3 
construction results in the execution of the RBG’s generate function, providing the input 
parameters for that function. The entropy source is accessed, the requested number of bits are 
generated, and the status of the process and the newly generated bits are returned to the 
application. The RBG3 generate process for the RBG3(XOR) and RBG3(RS) construction are 
provided in Sec. 6.4 and 6.5, respectively. 

 
Fig. 14. Generic RBG3 generation process 
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The security provided by an RBG is based on the use of validated entropy sources. Section 3.1 
discusses the use of the Get_entropy_bitstring process to request entropy from one or more 
entropy sources. Section 3.2 discusses the conditioning of the output of one or more entropy 
sources before further use by an RBG. 

3.1. Get_entropy_bitstring Process 

The Get_entropy_bitstring process introduced in Sec. 2.8.2 obtains entropy from either 1) a 
designated entropy source or 2) one or more validated entropy sources in whatever manner is 
required (e.g., polling the entropy sources, waiting for an entropy source to provide output, or 
extracting bits that contain entropy from a pool of collected bits). The method for counting 
entropy from one or more entropy sources is indicated as an input parameter. 

In many cases, the Get_entropy_bitstring process will need to query an entropy source (or a set 
of entropy sources) multiple times to obtain the amount of entropy requested. The details of the 
process are not specified in this document but are left to the developer to implement 
appropriately for the selected entropy source(s). However, the following behavior of the 
Get_entropy_bitstring process includes the following: 

1. The Get_entropy_bitstring process shall only be used to access one or more validated 
entropy sources. Non-validated entropy sources shall be accessed by a separate process 
to avoid possible misuse. 

2. Each validated entropy source shall be independent of all other validated or non-
validated entropy sources used by the RBG. 

3. The output produced from multiple entropy-source calls to a single validated entropy 
source or by calls to multiple independent, validated entropy sources shall be 
concatenated into a single bitstring. The entropy in the bitstring is the sum of the entropy 
provided by the validated entropy sources that are to be credited for contributing entropy 
to the process. For Method 1 (see Sec. 2.3), only entropy contributed by one or more 
validated physical entropy sources is counted. For Method 2, the entropy from all 
validated entropy sources is counted. 

4. If a failure is reported during the Get_entropy_bitstring process by any physical or non-
physical entropy source whose entropy is counted toward fulfilling an entropy request, 
the Get_entropy_bitstring process shall behave as follows (note that a bitstring 
containing entropy should not have been provided by that entropy source when a failure 
was reported; see Sec. 2.6, item 10): 

a. Method 1 is used for counting the entropy from one or more physical entropy 
sources: 

1) If a physical entropy source reports a failure, the error shall be reported 
to the consuming application as soon as possible. Any entropy collected 
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error is reported shall not be used. This failed entropy source shall not 
be accessed to obtain entropy until the condition that caused the failure 
has been corrected and operational tests have been successfully passed. 

If multiple physical entropy sources are used, the report shall identify 
the entropy source that reported the failure. 

2) If a non-physical entropy source reports a failure, the failure may be 
ignored or reported to the consuming application along with a 
notification of the entropy source that failed. RBG operation may 
continue. 

3) If all physical entropy sources report failures, RBG operation shall be 
terminated (i.e., stopped). The RBG must not be returned to normal 
operation until the conditions that caused the failures have been 
corrected and operational tests have been successfully passed. 

4) If any physical entropy source is still “healthy” (i.e., the entropy source 
has not reported a failure), the RBG operations may continue using any 
healthy physical entropy source. 

b. Method 2 in Sec. 2.3 is used for counting the entropy from one or more non-
physical and/or physical entropy sources: 

1) A failure from any entropy source shall be reported to the consuming 
application. If multiple entropy sources are used, the report shall identify 
the entropy source that reported the failure. This failed entropy source 
shall not be accessed to obtain entropy until the condition that caused 
the failure has been corrected and operational tests have been 
successfully passed. 

2) If all entropy sources have reported failures, the RBG operation shall be 
terminated. The RBG must not be returned to normal operation until the 
conditions that caused the failures have been corrected and operational 
tests have been successfully passed. 

3) If any physical or non-physical entropy source is still “healthy” (i.e., the 
entropy source has not reported a failure), RBG operations may continue 
using any healthy entropy source. 

5. The Get_entropy_bitstring process shall not provide output for RBG operations unless 
the bitstring contains sufficient entropy to fulfill the entropy request. 

3.2. External Conditioning 

Entropy bits produced by one or more entropy sources are required for seeding and reseeding 
the DRBG in the RBG constructions specified in this document. Whether or not entropy-source 
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by the validated entropy source(s) may need to be conditioned prior to subsequent use by the 
RBG. For example: 

• The entropy source within an RBG2 or RBG3 construction (see Sec. 5 or 6, respectively) is 
used to seed and reseed its DRBG. The entropy source may, for example, produce 
bitstrings that are too long for the specific DRBG implementation. 

• Seed material with full entropy is required when the CTR_DRBG is implemented without 
a derivation function and an entropy source is used for seeding and reseeding the DRBG. 
If the entropy sources does not provide full-entropy output, the output needs to be 
conditioned prior to subsequent use by the DRBG to obtain full-entropy input for the 
DRBG. 

• When the root RBGC construction in a DRBG chain uses a full-entropy source as its initial 
randomness source (see Sec. 7), the output from the entropy source(s) may need to be 
conditioned to provide a full-entropy bitstring for seeding and reseeding the root (i.e., the 
entropy source itself may not provide full-entropy output). 

• If both physical and non-physical entropy sources are used to provide seed material, the 
entropy within the concatenated bitstring produced by these sources may not be 
distributed uniformly throughout the bitstring. 

Since this conditioning is performed outside an entropy source, the output is said to be externally 
conditioned. 

The conditioning function operates on a bitstring that is produced by the Get_entropy_bitstring 
process to produce an entropy_bitstring. Reasons to perform conditioning might include: 

• Reducing the bias in the entropy_bitstring, 

• Distributing entropy uniformly across the entropy_bitstring, 

• Reducing the length of the entropy_bitstring and compressing the entropy into a smaller 
bitstring, and/or 

• Ensuring the availability of full-entropy bits. 

When external conditioning is performed, a vetted conditioning function listed in SP 800-90B 
shall be used. Additional vetted conditioning functions may be approved in the future. 

3.2.1. Conditioning Function Calls 

The conditioning functions operate on bitstrings obtained using the Get_entropy_bitstring 
process (see Section 3.1) to obtain an entropy_bitstring from one or more entropy sources. 

The following format is used in Section 3.2.2 for a conditioning-function call: 

conditioned_output_block = Conditioning_function(input_parameters), 
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3.2.1.2 and 3.2.1.3, and conditioned_output_block is the output returned by the conditioning 
function. 

3.2.1.1. Keys Used in External Conditioning Functions 

The HMAC, CMAC, and CBC-MAC vetted conditioning functions require the input of a Key 
of a specific length (keylen), depending on the conditioning function and its primitive. Unlike 
other cryptographic applications, keys used in these external conditioning functions do not 
require secrecy to accomplish their purpose, so they may be hard-coded, fixed, or all zeros. 

For the CMAC and CBC-MAC conditioning functions, the length of the key shall be an 
approved key length for the block cipher used (e.g., keylen = 128, 192, or 256 bits for AES). 

For the HMAC conditioning function, the length of the key shall be equal to the length of the 
hash function’s output (i.e., output_len). 

Table 2. Key lengths for the hash-based conditioning functions 

Hash Function Length of the output (output_len) 
and key (keylen) 

SHA-256, SHA-512/256, SHA3-256 256 
SHA-384, SHA3-384 384 
SHA-512, SHA3-512 512 

Using random keys may provide some additional security in case the input is more predictable 
than expected. Thus, these keys should be chosen randomly (e.g., by obtaining bits directly from 
the entropy source and inserting them into the key or by providing entropy-source bits to a 
conditioning function with a fixed key to derive the new key). Any entropy used to randomize the 
key shall not be used for any other purpose. 

3.2.1.2. Hash Function-based Conditioning Functions 

Conditioning functions may be based on approved hash functions. 

One of the following calls shall be used for external conditioning when the conditioning function 
is based on a hash function: 

1. Using an approved hash function directly: 

conditioned_output_block = Hash(entropy_bitstring), 

where the hash function operates on the entropy_bitstring provided as input. 

2. Using HMAC with an approved hash function: 

conditioned_output_block = HMAC(Key, entropy_bitstring), 

where HMAC operates on the entropy_bitstring using a Key determined as specified in 
Sec. 3.2.1.1. 
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the selected hash function (i.e., output_len). 

3. Using Hash_df, as specified in SP 800-90A: 

conditioned_output_block = Hash_df(entropy_bitstring, output_len), 

where the derivation function operates on the entropy_bitstring provided as input to 
produce a bitstring of output_len bits. 

3.2.1.3. Block Cipher-Based Conditioning Functions 

Conditioning functions may be based on approved block ciphers.8

8 At the time of publication, only AES-128, AES-192, and AES-256 were approved as block ciphers for the conditioning functions (see SP 800-90B). 
In all three cases, the block length is 128 bits. 

 TDEA shall not be used as the 
block cipher. 

For block-cipher-based conditioning functions, one of the following calls shall be used for 
external conditioning: 

1. Using CMAC (as specified in SP 800-38B) with an approved block cipher: 

conditioned_output_block = CMAC(Key, entropy_bitstring), 

where CMAC operates on the entropy_bitstring using a Key determined as specified in 
Sec. 3.2.1.1. 

2. Using CBC-MAC (specified in SP 800-90B) with an approved block cipher: 

conditioned_output_block = CBC-MAC(Key, entropy_bitstring), 

where CBC-MAC operates on the entropy_bitstring using a Key determined as specified 
in Sec. 3.2.1.1. 

CBC-MAC shall only be used as an external conditioning function under the following 
conditions: 

1. The length of the input is an integer multiple of the block size of the block cipher 
(e.g., a multiple of 128 bits for AES). No padding is done by CBC-MAC itself.9

9 Any padding required could be done before submitting the entropy_bitstring to the CBC-MAC function. 

 

2. If the CBC-MAC conditioning function is used for the external conditioning of an 
entropy source output for CTR_DRBG instantiation or reseeding: 

• A personalization string shall not be used during instantiation. 

• Additional input shall not be used during the reseeding of the 
CTR_DRBG but may be used during the generate process. 

CBC-MAC is not approved for any use other than in an RBG. 

3. Using the Block_cipher_df as specified in SP 800-90A with an approved block cipher: 
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conditioned_output_block = Block_cipher_df(entropy_bitstring, block_length), 1154 
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where Block_cipher_df operates on the entropy_bitstring using a key specified within 
the function, and the block_length is 128 bits for AES. 

In all three cases, the length of the conditioned output is equal to the length of the output block 
(i.e., 128 bits for AES). 

3.2.2. Using a Vetted Conditioning Function 

There are several cases in which the use of an external conditioning function is required to 
prepare the entropy-source output for use by a DRBG mechanism. Section 3.2.2.1 provides a 
procedure for obtaining entropy from one or more entropy sources and subsequently processing 
it using an external conditioning function when full-entropy output is not required from the 
conditioning function (e.g., the conditioning function is used to compress the entropy into a 
shorter bitstring or to distribute the entropy across the output). Section 3.2.2.2 provides a 
procedure for obtaining full entropy from the entropy source(s) when needed. When full entropy 
is not required, either procedure may be used. 

3.2.2.1. External Conditioning When Full Entropy is Not Required 

The Get_conditioned_input procedure specified below iteratively requests entropy from the 
Get_entropy_bitstring process (represented as a Get_entropy_bitstring procedure; see Sec. 
2.8.2 and 3.1) and distributes the entropy in the newly acquired entropy_bitstring across the 
conditioning function’s output block. The output of the Get_conditioned_input procedure is the 
concatenation of the conditioning function output blocks. The entire output of the 
Get_conditioned_input procedure shall be provided as input to the DRBG mechanism (i.e., the 
output of the Get_conditioned_input function shall not be truncated). 

Let output_len be the length of the conditioning function’s output block. 

Get_conditioned_input: 

Input: 

1. n: The amount of entropy to be obtained. 

2. counting_method: The counting method to be used (i.e., either Method 1 or Method 
2, as described in Sec. 2.3). 

3. target_entropy_source: An optional parameter that indicates the specific entropy 
source to be queried. If the target_entropy_source is not indicated, output is to be 
obtained from any validated entropy sources producing output that have not 
reported a failure. 

Output: 

1. status: The status returned from the Get_conditioned_input process. 
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2. Conditioned_entropy_bitstring: A bitstring containing conditioned entropy or the Null 1188 
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string. 

Process: 

1. v = n/output_len. 

2. w = n/v. 

3. Conditioned_entropy_bitstring = the Null string. 

4. For i = 1, ..., v 

4.1 (status, entropy_bitstring) = Get_entropy_bitstring(w, counting_method, 
target_entropy_source). 

4.2 If (status ≠ SUCCESS), then return (status, Null). 

4.3 conditioned_output_block = Conditioning_function(input_parameters). 

4.4 Conditioned_entropy_bitstring = Conditioned_entropy_bitstring || 
conditioned_output_block. 

5. Return (SUCCESS, Conditioned_entropy_bitstring). 

Step 1 determines the number of output blocks (v) required to hold the requested amount of 
entropy. 

Step 2 determines the amount of entropy (w) that will be requested for each of the v output 
blocks. 

Step 3 sets the bitstring into which conditioned output will be collected (i.e., 
Conditioned_entropy_bitstring) to the Null string. 

Step 4 is iterated v times to obtain and condition the requested amount of entropy for each 
output block of the conditioning function. 

• Step 4.1 requests w bits of entropy from the entropy source(s) using the 
Get_entropy_bitstring call (see Sec. 2.8.2 and 3.1), indicating the method to be used for 
counting entropy (i.e., Method 1 or Method 2) and (if provided as input) the entropy 
source to be used (indicated by the target_entropy_source input parameter). 

• Step 4.2 checks whether the status returned in step 4.1 indicated a success. If the status 
did not indicate a success, the status is returned with a Null string as the 
Conditioned_entropy_bitstring. 

• Step 4.3 invokes the conditioning function for processing the entropy_bitstring obtained 
from step 4.1 to distribute the entropy throughout the conditioning function’s output 
block. The input_parameters for the selected Conditioning_function are specified in Sec. 
3.2.1.2 and 3.2.1.3 based on the conditioning function used. 

• Step 4.4 concatenates the conditioned_output_block from step 4.3 to the 
Conditioned_entropy_bitstring. 
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• If all the requested entropy has not been obtained and conditioned, then go to step 4.1 1223 
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with an updated value of v. 

Step 5 returns a status of SUCCESS and the value of Conditioned_entropy_bitstring. 

3.2.2.2. Conditioning Function to Obtain Full-Entropy Bitstrings 

The Get_conditioned_full_entropy_input procedure specified below produces a bitstring with 
full entropy using one of the conditioning functions identified in Sec. 3.2.1 whenever a bitstring 
with full entropy is required. This process is unnecessary if full-entropy output is provided by the 
the entropy source(s). 

The approach used by this procedure is to acquire sufficient entropy from the entropy source(s) 
to iteratively produce output_len bits with full entropy in the conditioning function’s output block, 
where output_len is the length of the output block. The amount of entropy required for each use 
of the conditioning function is output_len + 64 bits (see item 11 in Sec. 2.6). This process is 
repeated until the requested number of full-entropy bits has been produced. 

The Get_conditioned_full_entropy_input procedure obtains entropy from either 1) a 
designated entropy source (if a specific entropy source is identified as the target_entropy_source) 
or 2) any available entropy source using the Get_entropy_bitstring process (represented as a 
Get_entropy_bitstring procedure; see Sec. 2.8.2 and 3.1) and conditions the newly acquired 
entropy_bitstring to provide an n-bit string with full entropy. 

Get_conditioned_full_entropy_input: 

Input:  

1. n: The amount of entropy to be obtained. 

2. counting_method: The counting method to be used (i.e., either Method 1 or Method 
2, as described in Sec. 2.3). 

3. target_entropy_source: An optional parameter that indicates the specific entropy 
source to be queried. If the target_entropy_source is not indicated, output is to be 
obtained from any validated entropy sources producing output that have not 
reported a failure. 

Output: 

1. status: The status returned from the Get_conditioned_full_entropy_input process. 

2. Full_entropy_bitstring: An n-bit string with full entropy or the Null string. 

Process: 

1. temp = the Null string. 

2. ctr = 0. 

3. While ctr < n, do 
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3.1 (status, entropy_bitstring) = Get_entropy_bitstring(output_len + 64, 1257 
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counting_method, target_entropy_source). 

3.2 If (status ≠ SUCCESS), then return (status, Null). 

3.3 conditioned_output_block = Conditioning_function(input_parameters). 

3.4 temp = temp || conditioned_output_block. 

3.5 ctr = ctr + output_len. 

4. Full_entropy_bitstring = leftmost(temp, n). 

5. Return (SUCCESS, Full_entropy_bitstring). 

Steps 1 and 2 initialize the temporary bitstring (temp) for storing the full-entropy bitstring being 
assembled and the counter (ctr) that counts the number of full-entropy bits produced. 

Step 3 obtains and processes the entropy for each iteration. 

• Step 3.1 requests output_len + 64 bits of entropy from the validated entropy source(s) 
using the indicated method for counting entropy (i.e., Method 1 or Method 2) and (if 
present) using only the entropy source identified as the target_entropy_source. If the 
entropy source to be used is not identified, the entropy is to be obtained from all available 
entropy sources that have not reported a failure. 

• Step 3.2 checks whether the status returned in step 3.1 indicated a success. If the status 
did not indicate a success, the status is returned along with a Null bitstring as the 
Full_entropy_bitstring. 

• Step 3.3 invokes the conditioning function for processing the entropy_bitstring obtained 
from step 3.1. The input_parameters for the selected Conditioning_function are 
specified in Sec. 3.2.1.2 or 3.2.1.3, depending on the conditioning function used. 

• Step 3.4 concatenates the conditioned_output_block received in step 3.3 to the temporary 
bitstring (temp). 

• Step 3.5 increments the counter for the number of full-entropy bits that have been 
produced so far. 

• If less than n full-entropy bits have been produced, repeat the process starting at step 3.1. 

Step 4 truncates the full-entropy bitstring to n bits. 

• Step 5 returns an n-bit full-entropy bitstring as the Full_entropy_bitstring.   
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4. RBG1 Construction Based on RBGs With Physical Entropy Sources 1286 
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An RBG1 construction provides a source of cryptographic random bits from a device that has no 
internal randomness source. Its security depends entirely on its DRBG being instantiated securely 
from an RBG with access to a physical entropy source that resides outside of the device. 

The DRBG in an RBG1 construction is instantiated (i.e., seeded) only once using either an RBG2(P) 
construction (see Sec. 5) or an RBG3 construction (see Sec. 6). Since a randomness source is not 
available after DRBG instantiation, the DRBG within an RBG1 construction cannot be reseeded 
(i.e., prediction resistance and recovery from a compromise cannot be provided). 

An RBG1 construction may be useful for constrained devices in which an entropy source cannot 
be implemented or in any device in which access to a suitable source of randomness is not 
available after instantiation. Since the DRBG within an RBG1 construction cannot be reseeded, 
the use of the DRBG is limited to the DRBG’s seedlife (see SP 800-90A). 

Optionally, subordinate DRBGs (i.e., sub-DRBGs) may be used within the security boundary of an 
RBG1 construction (see Sec. 4.3). The use of one or more sub-DRBGs may be useful for 
implementations that use flash memory, such as when the number of write operations to the 
memory is limited (resulting in short device lifetimes) or when there is a need to use different 
DRBG instantiations for different purposes. The DRBG in the RBG1 construction is the source of 
the randomness that is used to instantiate one or more sub-DRBGs. Each sub-DRBG is a DRBG 
specified in SP 800-90A and is intended to be used for a limited time and a limited purpose, so 
reseeding of the DRBG within a sub-DRBG is not provided. A sub-DRBG may, in fact, be a different 
instantiation of the DRBG design implemented within the RBG1 construction (see Sec. 2.4.1). 

4.1. RBG1 Description 

As shown in Fig. 15, an RBG1 construction consists of a DRBG contained within a DRBG security 
boundary in one cryptographic module and an RBG (serving as a randomness source) contained 
within a separate cryptographic module from that of the RBG1 construction. For convenience 
and clarity, the DRBG within the RBG1 construction will sometimes be referred to as DRBG1. Note 
that the required health tests are not shown in the figure. 
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Fig. 15. Generic structure of the RBG1 construction 

The RBG for instantiating DRBG1 must be either an RBG2(P) construction that supports a reseed 
request from the RBG1 construction (see Sec. 5) or an RBG3 construction (see Sec. 6). A physically 
secure channel between the randomness source and DRBG1 is used to securely transport the 
seed material required for DRBG instantiation. An optional recommended personalization string 
and optional additional input may be provided from within the DRBG’s cryptographic module or 
from outside of that module (see Sec. 2.4.1). 

An external conditioning function is not needed for this design because the output of the RBG 
used as the randomness source has already been cryptographically processed. The output from 
an RBG1 construction may be used within the cryptographic module (e.g., to seed a sub-DRBG, 
as specified in Sec. 4.3) or by an application outside of the RBG1 security boundary. The security 
strength of the output produced by the RBG1 construction is the minimum of the security 
strengths provided by the DRBG within the construction and the RBG used as the randomness 
source to seed the DRBG. Examples of RBG1 and sub-DRBG constructions are provided in 
Appendices B.2 and B.3, respectively. 

4.2. Conceptual Interfaces 

Interfaces to the DRBG within an RBG1 construction include requests for instantiating the DRBG 
and generating pseudorandom bits (see Sec. 4.2.1 and 4.2.2, respectively). A reseed of the RBG1 
construction cannot be performed because the randomness source is not available after 
instantiation. 
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4.2.1. Instantiating the DRBG in the RBG1 Construction 1334 
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The DRBG within the RBG1 construction (DRBG1) may be instantiated by an application at any 
security strength possible for the DRBG design using the DRBG_Instantiate_request discussed 
in Sec. 2.8.1.1: 

(status, RBG1_DRBG1_state_handle) =  
DRBG_Instantiate_request (s, personalization_string). 

The DRBG_Instantiate_request received by DRBG1 from an application shall result in the 
execution of the DRBG_Instantiate function within DRBG1 (see Sec. 2.8.1.1): 

(status, RBG1_DRBG1_state_handle) =  
DRBG_Instantiate(s, personalization_string). 

The status returned by the DRBG_Instantiate function shall be returned to the requesting 
application in response to the DRBG_Instantiate_request. RBG1_ DRBG1_state_handle is the 
state handle for DRBG1’s internal state; the state handle may be Null. 

The DRBG_Instantiate function within DRBG1 shall use an external RBG (i.e., the randomness 
source) to obtain the seed_material necessary for establishing the DRBG’s security strength. 

In SP 800-90A, the DRBG_Instantiate function specifies the use of a Get_randomness-
source_input call to obtain seed material from the randomness source for instantiation (see Sec. 
2.8.1.4 in this document and SP 800-90A). For an RBG1 construction, an approved external 
RBG2(P) or RBG3 construction must be used as the randomness source (see Sec. 5 and 6, 
respectively). 

If the randomness source is an RBG2(P) construction (see Fig. 16), the RBG2(P) construction must 
be reseeded using its internal entropy source(s) before generating bits to be provided to DRBG1. 
The Get_randomness-source_input call in the DRBG_Instantiate function of DRBG1 shall be 
replaced by a reseed request followed by a generate request to the RBG2(P) construction serving 
as the randomness source (see steps 1a and 2a below). 
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Fig. 16. Instantiation using an RBG2(P) construction as a randomness source 

If the randomness source is an RBG3 construction (as shown in Fig. 17), the Get_randomness-
source_input call in the DRBG_Instantiate function of DRBG1 shall be replaced by the 
appropriate call to the RBG3 generate function (see Sec. 2.8.3.2, 6.4.1.2, and 6.5.1.2 and steps 
1b and 2b below). 

 
Fig. 17. Instantiation using an RBG3(XOR) or RBG3(RS) construction as a randomness source 

Let DRBG1 be the DRBG to be instantiated within the RBG1 construction and let DRBGR be the 
DRBG used within the randomness source (i.e., an RBG2(P) or RBG3 construction). Let s be the 
security strength to be instantiated for DRBG1. DRBG_Reseed_request and 
DRBG_Generate_request are used below by an application to request the generation and 
reseed of the DRBG within the randomness source (i.e., DRBGR). Let DRBGR_state_handle be the 
state handle for DRBGR. 
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1. When an RBG1 construction is instantiating a CTR_DRBG without a derivation function, 
s + 128 bits10

10 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90Ar1 requires the seed material from the 
randomness source to be key length + block length bits when a derivation function is not used. 

 shall be obtained from the randomness source as follows: 

a. If the randomness source is an RBG2(P) construction (see Fig. 16), the 
Get_randomness-source_input call in the DRBG_Instantiate function of DRBG1 
is replaced by a request to reseed DRBGR (the DRBG within the RBG2(P) 
construction), followed by a request to generate bits: 

• status = DRBG_Reseed_request(DRBGR_state_handle, additional_input). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

• (status, seed_material) = DRBG_Generate_request(DRBGR_state_handle, 
s + 128, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

DRBG_Reseed_request and DRBG_Generate_request are used here to 
indicate requests for the DRBG within the randomness source (DRBGR) to execute 
the DRBG_Reseed function and DRBG_Generate function within DRBGR (see 
Sec. 2.8.1.3, and 2.8.1.2, respectively). Also, see Sec. 5.2.3 and 5.2.2 for the 
handling of the reseed and generate requests by the RBG2(P) construction. 

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction (see Fig. 17), 
the Get_randomness-source_input call in the DRBG_Instantiate function of 
DRBG1 is replaced by a request for the generation of random bits: 

• (status, seed_material) = RBG3_Generate_ request(DRBGR_state_handle, 
s + 128, additional_input). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

RBG3_Generate_request is intended to result in the execution of the 
DRBG_Generate function in DRBGR (see Sec. 2.8.3.1). Also, see Sec. 6.4.1.2 and 
6.5.1.2.1 for the handling of the generate request by the RBG3(XOR) and RBG3(RS) 
constructions, respectively. 

2. When an RBG1 construction is instantiating any other DRBG (including a CTR_DRBG 
with a derivation function11

11 Although the use of a derivation function with the CTR_DRBG is allowed in an RBG1 construction, it is not needed to process output from the 
randomness source, since the randomness source is an RBG2(P) or RBG3 construction. 

), 3s/2 bits shall be obtained from a randomness source that 
provides a security strength of at least s bits. 

a. If the randomness source is an RBG2(P) construction (see Fig. 16), the 
Get_randomness-source_input call in DRBG1 is replaced by a request to reseed 
DRBGR, followed by a request to generate bits: 
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• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

• (status, seed_material) = DRBG_Generate_request(DRBGR_state_handle, 
3s/2, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

DRBG_Reseed_request and DRBG_Generate_request are used here to 
indicate requests for the DRBG within the randomness source (DRBGR) to execute 
the DRBG_Reseed function and DRBG_Generate function within DRBGR (see 
Sec. 2.8.1.3 and 2.8.1.2, respectively). Also, see Sec. 5.2.3 and 5.2.2 for the 
handling of the reseed and generate requests by the RBG2(P) construction. 

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction (see Fig. 17), 
the Get_randomness-source_input call in DRBG1 is replaced by a request for the 
generation of random bits: 

• (status, seed_material) = 
RBG3_DRBG_Generate_request(DRBGR_state_handle, 3s/2, 
additional_input). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

RBG3_DRBG_Generate_request is intended to result in the execution of the 
DRBG_Generate function in DRBGR (see Sec. 2.8.3.1). Also, see Sec. 6.4.1.2 and 
6.5.1.2.1 for the handling of the generate request by the RBG3(XOR) and RBG3(RS) 
constructions, respectively. 

4.2.2. Requesting Pseudorandom Bits 

As discussed in Sec. 2.8.1.2, an application requests the RBG1 construction to generate bits as 
follows: 

(status, returned_bits) = DRBG_Generate_request(RBG1_DRBG1_state_handle, 
requested_number_of_bits, s, additional_input). 

The DRBG_Generate_request results in the execution of the DRBG_Generate function within 
DRBG1: 

(status, returned_bits) = DRBG_Generate(RBG1_DRBG1_state_handle, 
requested_number_of_bits, s, additional_input). 

The status returned by the DRBG_Generate function shall be returned to the requesting 
application. If the status indicates a successful process, the returned_bits shall also be provided 
to the application in response to the request. 
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4.3. Using an RBG1 Construction With Subordinate DRBGs (Sub-DRBGs) 1439 
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Figure 18 depicts an example of the use of optional subordinate DRBGs (sub-DRBGs) within the 
security boundary of an RBG1 construction. The RBG1 construction is used as the randomness 
source to provide separate outputs to instantiate each of its sub-DRBGs. 

 
Fig. 18. RBG1 construction with sub-DRBGs 

The RBG1 construction and each of its sub-DRBGs shall be implemented as separate physical or 
logical entities (see Fig. 18). Let DRBG1 be the DRBG used by the RBG1 construction itself, with 
RBG1_DRBG1_state_handle used as the state handle for the internal state of DRBG1. Let sub-
DRBGx_state_handle be the state handle for the internal state of sub-DRBGx. 

• When implemented as separate physical entities, the DRBG algorithms used by DRBG1 
and the sub-DRBGs shall be the same DRBG algorithm (e.g., the RBG1 construction and 
all its sub-DRBGs use HMAC_DRBG with SHA-256). 

• When implemented as separate logical entities, the same software or hardware 
implementation of a DRBG algorithm is used but with a different internal state for each 
logical entity. 

The sub-DRBGs have the following characteristics: 

1. Only one layer of sub-DRBGs is allowed. 

2. Sub-DRBG outputs are considered outputs of the RBG1 construction. 

3. The security strength that can be provided by a sub-DRBG is no more than the security 
strength of DRBG1 (i.e., the DRBG within the RBG1 construction that is serving as the 
randomness source for the sub-DRBG). 

4. Sub-DRBGs cannot provide output with full entropy. 

5. The number of sub-DRBGs that can be instantiated by an RBG1 construction is limited 
only by the practical considerations associated with the implementation or application. 
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4.3.1. Instantiating a Sub-DRBG 1464 
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An application may request the RBG1 construction to instantiate a sub-DRBG. The following 
represents the form of the application’s request for sub-DRBG instantiation: 

(status, sub-DRBG_state_handle) =  
Instantiate_sub-DRBG_request(s, personalization_string). 

DRBG1 executes an Instantiate_sub-DRBG function. The status of the process is returned to the 
application with a state handle if the status indicates success. 

The value of max_personalization_string_length is specified in SP 800-90A. 

Instantiate_sub-DRBG: 

Input: 

1. s: the requested security strength for the sub-DRBG. 

2. (Optional) personalization_string: An input that provides personalization information. 

Output to a consuming application: 

1. status: The status returned from the Instantiate_sub-DRBG function (see steps 2, 3, 
6, and 10). If any status other than SUCCESS is returned, an invalid _state handle shall 
be returned. 

2. sub-DRBG_state_handle: Used to identify the internal state for this sub-DRBG 
instantiation in subsequent calls to the generate function (see Sec. 4.3.2). 

Information retained within the DRBG boundary after instantiation: 

The internal states for DRBG1 and the sub-DRBG instantiation. 

Process: 

1. Obtain the current internal state of DRBG1 to get its instantiated security strength 
(shown as RBG1_DRBG1_security_strength in step 2). 

2. If (s > RBG1_DRBG1_security_strength), then return (ERROR_FLAG, 
Invalid_state_handle). 

3. If the length of the personalization_string > max_personalization_string_length, 
return (ERROR_FLAG, Invalid_state_handle). 

4. If (s > 192), then s = 256 

Else, if (s ≤ 128), then s = 128. 

Else s = 192. 

Comment: See the instructions below for the value 
of number_of_bits_to_generate. 
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number_of_bits_to_generate, s). 

6. If (status ≠ SUCCESS), return (status, Invalid_state_handle). 

7. working_state_values = Instantiate_algorithm(seed_material, 
personalization_string). 

8. Get the sub-DRBG_state_handle for a currently empty internal state. If an empty 
internal state cannot be found, return (ERROR_FLAG, Invalid_state_handle). 

9. Set the internal state for the new instantiation (e.g., as indicated by  
sub-DRBG_state_handle): 

9.1 Record the working_state_values returned from step 7. 

9.2 Record any administrative information (e.g., the value of s). 

10. Return (SUCCESS, sub-DRBG_state_handle). 

Step 1 obtains DRBG1’s security strength. A description of the internal state for each DRBG type 
is provided in SP 800-90A. 

Steps 2 and 3 check the validity of the requested security strength s and the length of any 
personalization string provided for the instantiation request. An ERROR_FLAG and an invalid 
state handle are returned to the requesting application if either is unacceptable. 

Step 4 sets the security strength to be established for the sub-DRBG instantiation based on the 
requested security strength s. 

Step 5 requests the generation of seed_material at a security strength of s bits using DRBG1. The 
number_of_bits_to_generate depends on DRBG1’s type: 

• When CTR_DRBG without a derivation function is implemented for DRBG1, 
number_of_bits_to_generate = s + 128. 

• Otherwise, number_of_bits_to_generate = 3s/2. 

Step 6 checks the status returned from step 5. If a status of SUCCESS is not returned, the status 
and an invalid state handle are returned to the requesting application. 

Step 7 invokes the appropriate instantiate algorithm in SP 800-90A for DRBG1’s design. Values for 
the working state portion of the sub-DRBG’s internal state are returned by the instantiate 
algorithm. 

Step 8 assigns a state handle for an available internal state. If no internal state is currently 
available, an ERROR_FLAG and invalid state handle are returned to the requesting application. 

Step 9 enters the required values into the assigned internal state for the sub-DRBG. 

Step 10 returns a status of SUCCESS and the assigned state handle to the requesting application. 
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4.3.2. Requesting Random Bits From a Sub-DRBG 1529 
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As discussed in Sec. 2.8.1.2, pseudorandom bits may be requested from a sub-DRBG by an 
application: 

(status, returned_bits) = DRBG_Generate request(sub_DRBGx_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input). 

The generate request received by the sub-DRBG shall result in the execution of the 
DRBG_Generate function: 

(status, returned_bits) = DRBG_Generate(sub_DRBGx_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input). 

The status returned by the DRBG_Generate function shall be returned to the application in 
response to the request. If the process is successful, the newly generated bits (returned_bits) 
shall also be provided to the application in response to the DRBG_Generate_request. 

4.4. Requirements 

4.4.1. RBG1 Construction Requirements 

An RBG1 construction being instantiated has the following testable requirements (i.e., testable 
by the validation labs): 

1. An approved DRBG from SP 800-90A whose components can provide the targeted 
security strength for the RBG1 construction shall be employed. 

2. The components of the RBG1 construction shall be successfully validated for compliance 
with SP 800-90A, SP 800-90C, FIPS 140, and the specification of any other approved 
algorithm used within the RBG1 construction, as applicable. 

3. The RBG1 construction shall not produce any output until it is instantiated. 

4. The RBG1 construction shall not include a capability to be reseeded. 

5. The RBG1 construction shall not permit itself to be instantiated more than once.12

12 While it is technically possible to reseed the DRBG, doing so outside of very controlled conditions (e.g., “in the field”) might result in seeds with 
less than the required amount of randomness. 

 

6. The randomness source shall be in a separate device from that of the RBG1 construction. 

7. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, 3s/2 bits 
shall be obtained from a randomness source, where s is the targeted security strength for 
the DRBG used in the RBG1 construction (DRBG1). 
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8. For a CTR_DRBG without a derivation function within the RBG1 construction, s + 128 1557 
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bits13

13 Note that s + 128 = keylen + blocklen = seedlen, as specified in SP 800-90Ar1. 

 shall be obtained from the randomness source, where s is the targeted security 
strength for the DRBG used in the RBG1 construction (DRBG1). 

9. An implementation of an RBG1 construction shall verify that the internal state has been 
updated before the generated output is provided to the requesting entity. 

10. The RBG1 construction shall not provide output for generating requests that specify a 
security strength greater than the instantiated security strength of its DRBG. 

11. If the RBG1 construction can be used to instantiate a sub-DRBG, the RBG1 construction 
may directly produce output for an application in addition to instantiating a sub-DRBG. 

12. Seed material produced by the RBG1 construction to instantiate a sub-DRBG shall not be 
used to instantiate other sub-DRBGs nor be provided directly to a consuming application. 

13. If the seedlife of the DRBG within the RBG1 construction (DRBG1) is ever exceeded or a 
health test of the DRBG fails, the use of the RBG1 construction shall be terminated. 

The non-testable requirements for the RBG1 construction are listed below. If these requirements 
are not met, no assurance can be obtained about the security of the implementation. 

14. A validated RBG2(P) construction with support for reseeding requests or a validated RBG3 
construction must be used as the randomness source for the DRBG in the RBG1 
construction (DRBG1). 

15. The randomness source must provide the requested number of bits at a security strength 
of s bits or higher, where s is the targeted security strength for the DRBG within the RBG1 
construction (DRBG1). 

16. The specific output of the randomness source (or portion thereof) that is used for the 
instantiation of an RBG1 construction must not be used for any other purpose, including 
for seeding a different instantiation. 

17. If an RBG2(P) construction is used as the randomness source for the RBG1 construction, 
the RBG2(P) construction must be reseeded before generating bits for each RBG1 
instantiation. 

18. A physically secure channel must be used to insert the seed material from the 
randomness source into the DRBG of the RBG1 construction (DRBG1). 

4.4.2. Sub-DRBG Requirements 

A sub-DRBG has the following testable requirements (i.e., testable by the validation labs): 

1. The randomness source for a sub-DRBG shall be an RBG1 construction, and a sub-DRBG 
shall not serve as a randomness source for another sub-DRBG. 
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2. A sub-DRBG shall employ the same DRBG components as its randomness source (i.e., the 1590 
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RBG1 construction). 

3. A sub-DRBG shall reside in the same security boundary as the RBG1 construction that 
instantiates it. 

4. The output from the RBG1 construction that is used for sub-DRBG instantiation shall not 
be output from the security boundary that contains the RBG1 construction and sub-DRBG 
and shall not be used for any other purpose, including for seeding a different sub-DRBG. 

5. The security strength for a target sub-DRBG shall not exceed the security strength that is 
supported by the RBG1 construction. 

6. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, 3s/2 bits 
shall be obtained from the RBG1 construction for instantiation of the sub-DRBG, where s 
is the requested security strength for the target sub-DRBG. 

7. For a CTR_DRBG without a derivation function used by the sub-DRBG, s + 128 bits shall 
be obtained from the RBG1 construction for instantiation, where s is the requested 
security strength for the target sub-DRBG. 

8. A sub-DRBG shall not produce output until it is instantiated. 

9. A sub-DRBG shall not provide output for generating requests that specify a security 
strength greater than the instantiated security strength of the sub-DRBG. 

10. An implementation of a sub-DRBG shall verify that the internal state has been updated 
before the generated output is provided to the requesting entity. 

11. The sub-DRBG shall not be reseeded. 

12. If the seedlife of a sub-DRBG is ever exceeded or a health test of the sub-DRBG fails, the 
use of the sub-DRBG shall be terminated. 

A non-testable requirement for a sub-DRBG (i.e., not testable by the validation labs) is: 

13. The output of a sub-DRBG must not be used as seed material for other DRBGs (e.g., the 
DRBGs in other RBGs) or sub-DRBGs.  
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5. RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources 1616 

1617 
1618 
1619 
1620 
1621 
1622 

1623 
1624 

1625 
1626 

1627 

1628 
1629 
1630 
1631 
1632 

1633 
1634 

1635 
1636 

An RBG2 construction is a cryptographically secure RBG with continuous access to one or more 
validated entropy sources within its RBG security boundary. The RBG is instantiated before use 
and generates outputs on demand. An RBG2 construction may (optionally) be implemented to 
support reseeding requests from a consuming application (i.e., providing prediction resistance 
for the next output of the RBG2 construction to mitigate a possible compromise of previous 
internal states) and/or to be reseeded in accordance with implementation-selected criteria. 

If a consuming application requires full-entropy output, an RBG3 construction from Sec. 6 needs 
to be used rather than an RBG2 construction. 

An RBG2 construction may be useful for all devices in which an entropy source can be 
implemented. 

5.1. RBG2 Description 

The DRBG for an RBG2 construction is contained within the same RBG security boundary and 
cryptographic module as its validated entropy source(s) (see Fig. 19). One or more entropy 
sources are used to provide the entropy bits for both DRBG instantiation and any reseeding of 
the DRBG. The use of a personalization string and additional input is optional and may be 
provided from within the cryptographic module or from outside of that module. 

 
Fig. 19. Generic structure of the RBG2 construction 

The output from the RBG may be used within the cryptographic module or by an application 
outside of the module. 



NIST SP 800-90C 4pd (Fourth Public Draft)  Recommendation for RBG Constructions 
July 2024   
 

46 

 

An example of an RBG2 construction is provided in Appendix B.4. 1637 
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An RBG2 construction may be implemented to use one or more validated physical and/or non-
physical entropy sources for instantiation and reseeding. Two variants of the RBG2 construction 
may be implemented: 

1. An RBG2(P) construction uses the output of one or more validated physical entropy 
sources and (optionally) one or more validated non-physical entropy sources, as discussed 
in Method 1 of Sec. 2.3 (i.e., only the entropy produced by one or more  validated physical 
entropy sources is counted toward the entropy required for instantiating or reseeding the 
RBG). Any amount of entropy may be obtained from a non-physical entropy source as 
long as sufficient entropy has been obtained from the physical entropy sources to fulfill 
an entropy request. An RBG2(P) construction may exist as part of an RBG3 construction 
(see Sec. 6). 

2. An RBG2(NP) construction uses the output of any validated non-physical or physical 
entropy source(s), as discussed in Method 2 of Sec. 2.3 (i.e., the entropy produced by both 
validated physical and non-physical entropy sources is counted toward the entropy 
required for instantiating or reseeding the RBG). 

These variants may affect the implementation of a Get_entropy_bitstring process (represented 
as a Get_entropy_bitstring procedure; see Sec. 2.8.2 and 3.1), either accessing the entropy 
source(s) directly or via the Get_conditioned_input or Get_conditioned_full_entropy_input 
procedure specified in Sec. 3.2.2 during instantiation and reseeding (see Sec. 5.2.1 and 5.2.3). 
That is, when seeding and reseeding an RBG2(P) construction (including a DRBG within an RBG3 
construction, as discussed in Sec. 6), Method 1 in Sec. 2.3 is used to combine the entropy from 
the entropy source(s), and Method 2 is used when instantiating and reseeding an RBG2(NP) 
construction. 

5.2. Conceptual Interfaces 

The RBG2 construction includes requests for instantiating the DRBG (see Sec. 5.2.1) and 
generating pseudorandom bits (see Sec. 5.2.2). Once instantiated, an RBG2 construction may be 
reseeded when requested by a consuming application or when determined by implementation-
selected criteria if a reseed capability has been implemented (see Sec. 5.2.3). 

5.2.1. RBG2 Instantiation 

An RBG2 construction may be instantiated by an application at any valid14

14 The security strength must be 128, 192, or 256 bits. 

 security strength 
possible for the DRBG design and its components using an instantiation request (see Sec. 2.8.1.1): 

(status, RBG2_DRBG_state_handle) = DRBG_Instantiate_request(s, personalization_string). 

The request results in the execution of the DRBG_Instantiate function within the DRBG: 
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(status, RBG2_DRBG_state_handle) = DRBG_Instantiate(s, personalization_string). 1671 
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The DRBG_Instantiation function returns the status of the process, which is then provided to 
the application in response to the request. If the process is successful, a state handle for the 
instantiation (e.g., RBG2_DRBG_state_handle) is also returned from the DRBG_Instantiate 
function and may be forwarded to the application.15

15 If there is never more than one DRBG instantiation possible, then a state handle is not required. 

 

An RBG2 construction obtains entropy for its DRBG from one or more validated entropy sources 
within its boundary, either directly or using a conditioning function to obtain and process the 
output of the entropy source(s). 

SP 800-90A uses a Get_randomness-source_input call in the DRBG_Instantiate function to 
obtain the entropy needed for instantiation. Let counting_method indicate the method for 
counting entropy from the entropy source(s) (i.e., Method 1 counts only entropy provided by 
physical entropy sources, and Method 2 counts entropy from non-physical and physical entropy 
sources; see Sec. 2.3). 

1. When the DRBG is a CTR_DRBG without a derivation function, full-entropy bits shall be 
obtained from the entropy source(s) as follows: 

a. If all entropy sources provide full-entropy output, the Get_randomness-
source_input call is replaced by:  

• (status, seed_material) = Get_entropy_bitstring(s + 128, 
counting_method).16

16 For a CTR_DRBG using AES, s + 128 = the length of the key + the length of the AES block = seedlen (see Table 2 in SP 800-90Ar1). 

 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

The output of the entropy source(s) shall be concatenated to obtain the s + 128 
full-entropy bits to be returned as seed_material. 

b. If one or more entropy sources do not provide full-entropy output, the 
Get_randomness-source_input call is replaced by: 17

17 See Sec. 3.2.2.2 for a specification of the Get_conditioned_full_entropy_input function. 

 

• (status, seed_material) = Get_conditioned_full_entropy_input(s + 128, 
counting_method). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

3. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG used as 
the DRBG, the entropy source(s) shall provide 3s/2 bits of entropy to establish the security 
strength. 
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a. If the implementer wants full entropy in the bitstring to be provided to the DRBG, 1701 
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the Get_randomness-source_input call is replaced by: 

• (status, seed_material) = Get_conditioned_full_entropy_input(3s/2, 
counting_method). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

b. Otherwise, the Get_randomness-source_input call is replaced by either: 

• (status, seed material) = Get_entropy_bitstring(3s/2, counting_method) 

OR 

(status, seed_material) = Get_conditioned_ input(3s/2, counting_method). 

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

5.2.2. Requesting Pseudorandom Bits From an RBG2 Construction 

If prediction resistance is desired by a consuming application for the next RBG output to be 
generated so that previous internal states that may have been compromised cannot be used to 
determine the next RBG output, the application requests a reseed of the DRBG as discussed in 
Sec. 5.2.3 before requesting the generation of pseudorandom bits. Figure 20 depicts an (optional) 
reseed request before requesting the generation of pseudorandom bits. 

 
Fig. 20. RBG2 generate request following an optional reseed request 
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If a reseed of the RBG was not requested by the application prior to requesting the generation of 1719 
1720 
1721 

1722 
1723 

1724 
1725 

1726 
1727 

1728 

1729 
1730 
1731 
1732 

1733 

1734 
1735 
1736 
1737 
1738 

pseudorandom bits or a status of SUCCESS was returned by the DRBG_Reseed function in 
response to a reseed request, pseudorandom bits are requested as follows (see Sec. 2.8.1.2): 

(status, returned_bits) = DRBG_Generate_request(RBG2_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input). 

The request shall result in the execution of a DRBG_Generate function by the DRBG (see Sec. 
2.8.1.2) and checking the status returned by the DRBG_Generate function: 

• (status, returned_bits) = DRBG_Generate(RBG2_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input). 

• If (status ≠ SUCCESS), then return (status, Null). 

The DRBG_Generate function returns the status of the process, which shall also be returned to 
the application in response to the DRBG_Generate_request. If the status indicates that the 
generation was successful, the requested random bits (returned_bits) are also provided by the 
DRBG_Generate function and forwarded to the application. 

5.2.3. Reseeding an RBG2 Construction 

The capability to reseed an RBG2 construction is optional. If implemented, the reseeding of the 
DRBG may be performed 1) upon request from a consuming application or 2) based on 
implementation-selected criteria, such as time, number of outputs, events, or the availability of 
sufficient entropy. The DRBG should be reseeded occasionally (e.g., after 219 bits have been 
output). 
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Fig. 21. Reseed request from an application 

An application may request a reseed of the RBG2 construction (see Sec. 2.8.1.3): 

status = DRBG_Reseed_request(RBG2_DRBG_state_handle, additional_input). 

If the DRBG receives a DRBG_Reseed_Request or if the DRBG is scheduled for a reseed (see SP 
800-90A), the DRBG_Reseed function shall be executed (see Sec. 2.8.1.3): 

status = DRBG_Reseed(RBG2_DRBG_state_handle, additional_input). 

The DRBG_Reseed function returns the status of the reseed process, which shall be returned 
to the application if requested using a DRBG_Reseed_request. 

The DRBG_Reseed function uses a Get_randomness-source_input call to obtain the entropy 
needed for reseeding the DRBG (see Sec. 2.8.1.3 herein and SP 800-90A). The DRBG is reseeded 
at the instantiated security strength recorded in the DRBG’s internal state. The 
Get_randomness-source_input call in SP 800-90A shall be replaced with the following: 

1. For the CTR_DRBG without a derivation function, use the appropriate replacement as 
specified in step 1 of Sec. 5.2.1. 
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2. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, replace 1754 
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the Get_randomness-source_input call in the DRBG_Reseed function with the 
following:18

18 See Sec. 2.8.2 and 3.1 for discussions of the Get_entropy_bitstring function. 

 

a. If the implementer wants full entropy in the returned bitstring, the 
Get_randomness-source_input call is replaced by: 

(status, seed_material) = Get_conditioned_full_entropy_input(s, 
counting_method). 

b. Otherwise, the Get_randomness-source_input call is replaced by: 

(status, seed_material) = Get_entropy_bitstring(s, counting_method) 

OR 

(status, seed_material) = Get_conditioned_ input(s, counting_method). 

5.3. RBG2 Construction Requirements 

An RBG2 construction has the following requirements in addition to those specified in SP 800-
90A and SP 800-90B: 

1. The RBG shall employ an approved and validated DRBG from SP 800-90A whose 
components are capable of providing the targeted security strength for the RBG. 

2. The RBG and its components shall be successfully validated for compliance with SP 800-
90A, SP 800-90B, SP 800-90C, FIPS 140, and the specification of any other approved 
algorithm used within the RBG, as appropriate. 

3. One or more validated entropy sources shall be used to instantiate and reseed the DRBG. 
A non-validated entropy source shall not be used for this purpose. 

4. The DRBG shall be instantiated before first use (i.e., before providing output for use by a 
consuming application) and reseeded using the validated entropy source(s) used for 
instantiation (if a reseed capability is implemented). 

5. When instantiating and reseeding a CTR_DRBG without a derivation function, s + 128 
bits with full entropy shall be obtained either directly from the entropy source(s) or from 
the entropy source(s) via an external vetted conditioning function that provides full-
entropy output (see Sec. 3.2.2.2). 

6. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, a bitstring 
with at least 3s/2 bits of entropy shall be obtained from the entropy source(s) to 
instantiate the DRBG at a security strength of s bits. When reseeding is performed, a 
bitstring with at least s bits of entropy shall be obtained from the entropy source(s). The 
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entropy may be obtained directly from the entropy source(s) or via an external vetted 
conditioning function (see Sec. 
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3.2.2). 

7. The entropy source(s) used for the instantiation and reseeding of the DRBG within an 
RBG(P) construction shall include one or more validated physical entropy sources; the 
inclusion of one or more validated non-physical entropy sources is optional. A bitstring 
that contains entropy shall be assembled and the entropy in that bitstring determined as 
specified in Method 1 of Sec. 2.3 (i.e., only the entropy provided by validated physical 
entropy sources shall be counted toward fulfilling the amount of entropy in an entropy 
request). 

8. The entropy source(s) used for the instantiation and reseeding of the DRBG within an 
RBG2(NP) construction shall include one or more validated non-physical entropy sources; 
the inclusion of one or more validated physical entropy sources is optional. A bitstring 
containing entropy shall be assembled and the entropy in that bitstring determined as 
specified in Method 2 of Sec. 2.3 (i.e., the entropy provided by both validated non-
physical entropy sources and any validated physical entropy sources included in the 
implementation shall be counted toward fulfilling the requested amount of entropy). 

9. A specific entropy-source output (or portion thereof) shall not be reused (e.g., it is 
destroyed after use). 

10. When a validated entropy source reports a failure, the failure shall be handled as 
discussed in item 10 of Sec. 2.6. 
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6. RBG3 Constructions Based on the Use of Physical Entropy Sources 1807
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An RBG3 construction is designed to provide full entropy (i.e., an RBG3 construction can support  
all security strengths). An RBG3 construction is useful when bits with full entropy are required or  
a higher security strength than RBG1 and RBG2 constructions can support is needed.  

6.1. General RBG3 Description  

The RBG3 constructions specified in this recommendation include one or more physical entropy  
sources and an approved DRBG from SP 800-90A. One or more non-physical entropy sources may  
optionally be included, but any entropy they provide is not counted. That is, Method 1 of Sec. 2.3  
is used for counting entropy during RBG3 operation.  

Upon receipt of a request for random bits from a consuming application, the RBG3 construction  
accesses its entropy source(s) to obtain sufficient bits for the request. See Sec. 3.1 for further  
discussion about accessing entropy sources.  

An implementation may be designed so that the DRBG implementation used within an RBG3  
construction can be directly accessed by a consuming application using the same internal state  
as the RBG3 construction. Access to the DRBG using a different internal state than is used by the  
RBG3 construction is allowed as specified in Sec. 5 without the additional restrictions imposed in  
Sec. 6.3, Requirement 3, and Sec. 6.5.2, Requirements 2 and 3.  

The DRBG within an RBG3 construction is instantiated (i.e., seeded) at the highest security  
strength possible for its design (see Table 3). This is the fallback security strength if the entropy  
source fails in an undetected manner.  

Table 3. Highest security strength for the DRBG’s cryptographic primitive  

Cryptographic Primitive Highest Security Strength 
AES-128 128 
AES-192 192 
AES-256 256 

SHA-256/SHA3-256 256 
SHA-384/SHA3-384 256 
SHA-512/SHA3-512 256 

If a failure of all physical entropy sources is detected, the RBG operation is terminated. Operation  
must be resumed only after repair and successful testing by instantiating the DRBG with new  
entropy from the entropy source(s).  

If all physical entropy sources fail in an undetected manner, the RBG continues to operate as an  
RBG2(P) construction, providing outputs at the security strength instantiated for its DRBG (see  
Sec. 5). Although security strengths of 128 and 192 bits are allowed for the DRBG (depending on  
its cryptographic primitive), a DRBG that is capable of supporting a security strength of 256 bits  
and is instantiated at that strength is recommended so that the RBG will continue to operate at  
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a security strength of 256 bits in the event of an undetected failure of the physical entropy 1836 
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source(s). 

6.2. RBG3 Construction Types and Their Variants 

Two basic RBG3 constructions are specified: 

1. RBG3(XOR) — This construction is based on combining the output of one or more 
validated entropy sources with the output of an instantiated, approved DRBG using an 
exclusive-or operation (see Sec. 6.4). 

2. RBG3(RS) — This construction is based on using one or more validated entropy sources 
to continuously reseed the DRBG (see Sec. 6.5). 

6.3. General Requirements 

RBG3 constructions have the following general security requirements: 

1. An RBG3 construction shall be designed to provide outputs with full entropy using one or 
more validated, independent, physical entropy sources, as specified for Method 1 in Sec. 
2.3. Only the entropy provided by validated physical entropy sources shall be counted 
toward fulfilling entropy requests, although entropy provided by one or more validated 
non-physical entropy sources may be used but not counted. 

2. An RBG3 construction and its components shall be successfully validated for compliance 
with the corresponding requirements in SP 800-90A, SP 800-90B, SP 800-90C, FIPS 140, 
and the specification of any other approved algorithm used within the RBG, as 
appropriate. 

3. The DRBG shall be instantiated at its highest possible security strength before the first 
use of the RBG3 construction or direct access of the DRBG. A DRBG should support a 
security strength of 256 bits. 

4. The RBG shall employ an approved and validated DRBG from SP 800-90A whose highest 
possible security strength is the targeted fallback security strength for the DRBG (see Sec. 
6.1). 

5. A specific entropy-source output (or portion thereof) shall not be reused (e.g., the same 
entropy-source output shall not be used for an RBG3 request or for seeding or reseeding 
the DRBG). 

6. If the DRBG is directly accessible, the requirements in Sec. 5.3 for RBG2(P) constructions 
shall apply to the direct access of the DRBG. 

7. If a failure is detected within the RBG, see Sec. 2.6 (item 10) and 3.1. 

See Sec. 6.4.2 and 6.5.2 for additional requirements for the RBG3(XOR) and RBG3(RS) 
constructions, respectively. 
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6.4. RBG3(XOR) Construction 1870 
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An RBG3(XOR) construction contains one or more validated entropy sources and a DRBG whose 
outputs are XORed to produce full-entropy output during the generate process (see Fig. 22). 

In order to provide the required full-entropy output, the input to the XOR (shown as “⊕” in the 
figure) from the entropy-source side of the figure shall consist of bits with full entropy (see Sec. 
2.1). If the entropy source(s) cannot provide full-entropy output, then an external conditioning 
function shall be used to condition the output of the entropy source(s) to a full-entropy bitstring 
before XORing with the output of the DRBG (see Sec. 3.2.2.2). 

 
Fig. 22. Generic structure of the RBG3(XOR) construction 

When n bits of output are requested from an RBG3(XOR) construction, n bits of output from the 
DRBG are XORed with n full-entropy bits obtained either directly from the entropy source(s) or 
from the combination of validated entropy sources and an external vetted conditioning function 
that provides full-entropy output (see Sec. 3.2.2.2). When the entropy sources are working 
properly,19

19 The entropy source(s) provide(s) at least the amount of entropy determined during the entropy-source validation process. 

 an n-bit output from the RBG3(XOR) construction is said to provide n bits of entropy 
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or to support a security strength of n bits. An example of an RBG3(XOR) design is provided in 1885 
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Appendix B.5. 

6.4.1. Conceptual Interfaces 

The RBG interfaces include function calls for instantiating the DRBG (see Sec. 6.4.1.1), generating 
random bits on request (see Sec. 6.4.1.2), and reseeding the DRBG instantiation (see Sec. 6.4.1.3). 

6.4.1.1. Instantiation of the DRBG 

As discussed in Sec. 2.8.3.1, before the RBG3(XOR) construction can be used to generate bits, an 
application instantiates the DRBG within the construction: 

(status, state_handle) = Instantiate_RBG3_DRBG_request(requested_security_strength, 
personalization_string), 

where requested_security_strength and personalization_string are optional. If the 
requested_security_strength parameter is provided and exceeds the highest security strength 
that can be supported by the DRBG, an error indication shall be returned with an invalid 
state_handle (see Sec. 2.8.3.1). 

If the requested_security_strength is provided and is acceptable (i.e., requested_security_strength 
does not exceed the highest security strength that can be supported by the DRBG; see Sec. 
2.8.3.1) or if the requested_security_strength parameter is not provided, the 
Instantiate_RBG3_DRBG_request received by the RBG3(XOR) construction shall result in the 
execution of the RBG3(XOR)_Instantiate function below. The status returned by the 
RBG3(XOR)_Instantiate function shall be returned to the application in response to the 
Instantiate_RBG3_DRBG_request. The return of the state_handle is optional if only a single 
instantiation is allowed by an implementation. 

Let s be the highest security strength that can be supported by the DRBG. The DRBG in the 
RBG3(XOR) construction is instantiated as follows: 

RBG3(XOR)_Instantiate: 

Input: 

1. s: The security strength to be instantiated for the DRBG. 

2. personalization_string: An optional (but recommended) personalization string. 

Output: 

1. status: The status returned by the RBG3(XOR)_Instantiate function. 

2. RBG3_DRBG_state_handle: The returned state handle for the internal state of the 
DRBG or an invalid state handle. 
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1. (status, RBG3_DRBG_state_handle) = DRBG_Instantiate(s, 
personalization_string). 

2. If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

3. Return (SUCCESS, RBG3_DRBG_state_handle). 

In step 1, the DRBG is instantiated at a security strength of s bits. RBG3_DRBG_state_handle (if 
returned) is the state handle for the internal state of the DRBG used within the RBG3(XOR) 
construction. 

In step 2, if the status returned from step 1 does not indicate a success, then return the status 
with an invalid state handle. 

In step 3, the status and RBG3_DRBG_state_handle that were obtained in step 1 are returned to 
the requesting application. 

The handling of status codes is discussed in item 10 of Sec. 2.6 and in Sec. 2.8.3, 3.1, and 8.1.2. 

6.4.1.2. Random Bit Generation by the RBG3(XOR) Construction 

As discussed in Sec. 2.8.3.2, an application may request the generation of random bits from the 
RBG3(XOR) construction: 

(status, returned_bits) = RBG3_DRBG_Generate_request(RBG3_DRBG_state_handle, n, 
additional_input), 

where RBG3_DRBG_state_handle was provided during instantiation (see Sec. 6.4.1.1), n is the 
number of bits to be generated and returned to the application, and additional_input is optional. 

The RBG3_DRBG_Generate_request received by the RBG3(XOR) construction shall result in 
the execution of the RBG3(XOR)_Generate function below. The output of that function shall 
be returned to the application in response to the RBG3_DRBG_Generate_request. 

Let s be the security strength instantiated for the DRBG (i.e., the highest security strength that 
can be supported by the DRBG; see Sec. 6.4.1.1), and let the RBG3_DRBG_state_handle be the 
value returned by the instantiation function for RBG3(XOR)’s DRBG instantiation. Random bits 
with full entropy shall be generated by the RBG3(XOR) construction using the following generate 
function with the values of n and additional_input provided in the DRBG_Generate_request as 
input: 

RBG3(XOR)_Generate: 

Input: 

1. RBG3_DRBG_state_handle: The state handle of the DRBG used by the RBG3 
construction. 

2. n: The number of bits to be generated. 
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3. additional_input: Optional additional input. 1951 
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Output: 

1. status: The status returned by the RBG3(XOR)_Generate function. 

2. returned_bits: The n bits generated by the RBG3(XOR) construction or a Null string. 

Process: 

1. (status, ES_bits) = Request_entropy(n).  (See the notes below for  
 customizing this step.) 

2. If (status ≠ SUCCESS), then return (status, Null). 

3. (status, DRBG_bits) = DRBG_Generate(RBG3_DRBG_state_handle, n, s, 
additional_input). 

4. If (status ≠ SUCCESS), then return (status, Null). 

5. returned_bits = ES_bits ⊕ DRBG_bits. 

6. Return (SUCCESS, returned_bits). 

Step 1 requests that the entropy source(s) generate n bits. Since full-entropy bits are required, 
the (placeholder) Request_entropy call shall be replaced by one of the following: 

• If full-entropy output is provided by all validated physical entropy source(s) used by the 
RBG3(XOR) implementation, and non-physical entropy sources are not used, step 1 
becomes: 

(status, ES_bits) = Get_entropy_bitstring(n, Method_1). 

The Get_entropy_bitstring function20

20 See Sec. 2.8.2 and 3.2. 

 shall use Method 1 in Sec. 2.3 to obtain the n full-
entropy bits that were requested to produce ES-bits. 

• If full-entropy output is not provided by all physical entropy source(s), or the output of 
both physical and non-physical entropy sources is used by the implementation, step 1 
becomes: 

(status, ES_bits) = Get_conditioned_full_entopy_input(n, Method_1). 

The Get_conditioned_full_entropy_input procedure is specified in Sec. 3.2.2.2. It 
requests entropy from the entropy sources in step 3.1 of that procedure with a 
Get_entropy_bitstring call. The Get_entropy_bitstring call shall use Method 1 (as 
specified in Sec. 2.3) when collecting the output of the entropy source(s) (i.e., only the 
entropy provided by one or more physical entropy sources are counted). 

In step 2, if the request in step 1 is not successful, abort the RBG3(XOR)_Generate function, 
returning the status received in step 1 and a Null bitstring as the returned_bits. If status indicates 
a success, ES_bits is the full-entropy bitstring to be used in step 5. 
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In step 3, the RBG3(XOR)’s DRBG instantiation is requested to generate n bits at a security 1984 
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strength of s bits. The DRBG instantiation is indicated by the RBG3_DRBG_state_handle, which 
was obtained during instantiation (see Sec. 6.4.1.1). If additional input is provided in the 
RBG3(XOR)_Generate call, it shall be included in the DRBG_Generate function call to the 
DRBG. It is possible that the DRBG may require reseeding during the DRBG_Generate function 
call in step 3 (e.g., because the end of the seedlife of the DRBG has been reached). 

In step 4, if the DRBG_Generate function request is not successful, the RBG3(XOR)_Generate 
function is aborted, and the status received in step 3 and a Null bitstring are returned to the 
consuming application. If status indicates a success, DRBG_bits is the pseudorandom bitstring to 
be used in step 5. 

Step 5 combines the bitstrings returned from the entropy source(s) (from step 1) and the DRBG 
(from step 3) using an XOR operation. The resulting bitstring is returned to the consuming 
application in step 6. 

6.4.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG 

If prediction resistance is desired by a consuming application for the next DRBG output to be 
generated so that a previous internal state that may have been compromised cannot be used to 
determine the next DRBG output, the application requests a reseed of the DRBG before 
requesting the generation of pseudorandom bits directly from the DRBG, as discussed in Sec. 
6.4.1.4. This is the same process shown in Fig. 20 in Sec. 5.2.2. 

If a reseed of the DRBG was not requested by the application, or a status of SUCCESS was returned 
by the DRBG_Reseed function when the application requested a reseed, pseudorandom bits 
may be requested as follows: 

(status, returned_bits) = DRBG_Generate_request(RBG3(XOR)_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input), 

where RBG3(XOR)_state_handle was provided during instantiation and additional_input is 
optional. 

The DRBG_Generate_request received by the DRBG shall result in the execution of the 
DRBG_Generate function in the DRBG: 

(status, returned_bits) = DRBG_Generate(RBG3_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input), 

where: 

• RBG3_DRBG_state_handle is the state handle used by the DRBG within the RBG3(XOR) 
construction. 

• requested_security_strength is provided in the DRBG_Generate_request and must be ≤ 
the instantiated security strength of the DRBG. 
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• Any additional_input provided in a DRBG_Generate_request shall be provided as input 2019 
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to the DRBG_Generate function. Otherwise, the use of additional_input is optional. 

The output of the DRBG_Generate function shall be returned to the application in response to 
the DRBG_Generate_request. 

6.4.1.4. Reseeding the DRBG Instantiation 

As discussed in Sec. 2.4.2, the reseeding of the DRBG may be performed 1) upon request from a 
consuming application or 2) based on implementation-selected criteria, such as time, number of 
outputs, events, or the availability of sufficient entropy. 

An application may request the reseeding of the DRBG within the RBG3(XOR) construction: 

status = DRBG_Reseed_request(RBG3(XOR)_DRBG_state_handle, additional_input), 

where RBG3(XOR)_state_handle was provided during instantiation and additional_input is 
optional. 

The DRBG executes a DRBG_Reseed function in response to a DRBG_Reseed_request from an 
application or in accordance with implementation-selected criteria: 

status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input), 

where RBG3_DRBG_ state_handle (if used) was returned by the DRBG_Instantiate function 
(see Sec. 2.8.1.1 and 6.4.1.1). RBG3_DRBG_state_handle is the state handle for the internal state 
of the DRBG within the RBG3(XOR) construction. Any additional_input provided in a 
DRBG_Reseed_request shall be provided as input to the DRBG_Reseed function. Otherwise, 
the use of additional_input is optional. 

6.4.2. RBG3(XOR) Requirements 

An RBG3(XOR) construction has the following requirements in addition to those provided in Sec. 
6.3: 

1. Bitstrings with full entropy shall be provided to the XOR operation either directly from 
the concatenated output of one or more validated physical entropy sources or by an 
external conditioning function that provides full-entropy output using the output of one 
or more validated physical entropy sources. 

2. Entropy source output used for the RBG’s XOR operation shall not also be used to 
instantiate and reseed the RBG’s DRBG.21

21 However, the same entropy source(s) may be used to provide entropy for the XOR operation and to seed and reseed the RBG's DRBG. 

 

3. The DRBG instantiation should be reseeded occasionally (e.g., after a predetermined 
period of time or number of generation requests). 
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6.5. RBG3(RS) Construction 2050 
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The second RBG3 construction specified in this document is the RBG3(RS) construction shown in 
Fig. 23. An example of this construction is provided in Appendix B.6. 

 
Fig. 23. Generic structure of the RBG3(RS) construction 

External conditioning of the outputs from the entropy source(s) during instantiation and 
reseeding is required to provide bitstrings with full entropy when the DRBG is a CTR_DRBG 
without a derivation function and the entropy source(s) do not provide output with full entropy. 
Otherwise, the use of a conditioning function is optional. 

6.5.1. Conceptual Interfaces 

The RBG interfaces include function calls for instantiating the DRBG (see Sec. 6.5.1.1), generating 
random bits on request (see Sec. 6.5.1.2), and reseeding the DRBG instantiation (see Sec. 6.5.1.3). 

6.5.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction 

Before the RBG3(RS) construction can be used to generate bits, an application shall request the 
instantiation of the DRBG within the construction (see Sec. 2.8.3.1): 

(status, RBG3_DRBG_state_handle) = 
Instantiate_RBG3_DRBG_request(requested_security_strength, personalization_string), 

where requested_security_strength and personalization_string are optional. If the 
requested_security_strength parameter is provided and exceeds the highest security strength 
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that can be supported by the DRBG design, an error indication shall be returned with an invalid 2069 
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state_handle (see Sec. 2.8.3.1). 

If the requested_security_strength is provided and acceptable (see Sec. 2.8.3.1) or the 
requested_security_strength information is not provided, the 
Instantiate_RBG3_DRBG_request received by the RBG3(RS) construction shall result in the 
execution of the RBG3(RS)_Instantiate function below. The status returned by that function 
shall be returned to the application in response to the Instantiate_RBG3_DRBG_request. 

Let s be the highest security strength that can be supported by the DRBG, and let 
personalization_string be the value provided in the Instantiate_RBG3_DRBG_request (if any). 
The DRBG in the RBG3(RS) construction is instantiated as follows: 

RBG3(RS)_Instantiate: 

Input: 

1. s: The requested security strength for the DRBG in the RBG3(RS) construction. 

2. personalization_string: An optional (but recommended) personalization string. 

Output: 

1. status: The status returned from the RBG3(RS)_Instantiate function. 

2. RBG3_DRBG_state_handle: A pointer to the internal state of the DRBG if the status 
indicates a success. Otherwise, an invalid state handle. 

Process: 

1. (status, RBG3_DRBG_state_handle) = DRBG_Instantiate(s, 
personalization_string). 

2. If (status ≠ SUCCESS), then return (status, Invalid_state_handle). 

3. Return (SUCCESS, RBG3_DRBG_state_handle). 

In step 1, the DRBG is instantiated at a security strength of s bits. 

In step 2, if the status returned from step 1 does not indicate a success, then return the status 
and an invalid state handle. 

In step 3, the status and the RBG3_DRBG_state_handle are returned. 
RBG3_DRBG_state_handle is the state handle for the internal state of the DRBG used within the 
RBG3(RS) construction. 

The handling of status codes is discussed in Sec. 2.8.3 and 6.5.1.2. 
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6.5.1.2. Random and Pseudorandom Bit Generation 2099 
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6.5.1.2.1. Generation Using the RBG3(RS) Construction 

When the DRBG within an RBG3(RS) construction is instantiated at a security strength of s bits, s 
bits with full entropy can be extracted from its output if at least s + 64 bits of fresh entropy are 
inserted into the DRBG’s internal state before generating the output (see item 11 in Sec. 2.6). Per 
requirement 4 in Sec. 6.3, the security strength and the resulting length of the full-entropy 
bitstring (s) is the highest security strength possible for the cryptographic primitive used by the 
DRBG. If a consuming application requests more than s bits, multiple iterations of this process 
are required. 

Figure 24 depicts a sequence of RBG3(RS) generate operations. Full-entropy output from this 
construction is generated in s-bit strings, where s is the instantiated security strength of the DRBG 
used in an implementation. For each s bits of generated output, s + 64 bits of fresh entropy are 
obtained by reseeding (shown in red in the figure) and then inserted into the DRBG’s internal 
state before generating an s-bit string (shown in blue). Two generate requests using the RBG3(RS) 
construction are shown in the figure. The first generate request requires the generation of two 
iterations of the reseed-generate process (i.e., two strings of s bits are generated, each preceded 
by obtaining s + 64 bits of fresh entropy). The second generate request requires only a single 
string of s full-entropy bits to be generated (preceded by obtaining s + 64 bits of fresh entropy). 

 
Fig. 24. Sequence of RBG3(RS) generate requests 

Figure 25 provides a flow of the steps of the RBG3(RS)_Generate function. 
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Fig. 25. Flow of the RBG3(RS)_Generate function 

Figure 26 depicts a sequence of RBG3(RS) generate requests followed by a sequence of requests 
directly to the DRBG (shown in green) and another sequence of RBG3(RS) generate requests. As 
previously discussed, an RBG3(RS) generate request is preceded by obtaining s + 64 bits of fresh 
entropy. The first generate request directly to the DRBG following one or more RBG3(RS) 
generate requests is preceded by obtaining s + 64 bits of fresh entropy. Successive DRBG requests 
do not require the insertion of fresh entropy (except, for example, if requested by the consuming 
application). When a consuming application later requests that the RBG3(RS) construction 
generate full-entropy bits again, the reseed-generate process is resumed by first reseeding with 
s + 64 bits of entropy before the generation of each s-bit string by the RBG3(RS) construction. 
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Fig. 26. Direct DRBG generate requests 

As discussed in Sec. 2.8.3.2, an application may request the generation of random bits as follows: 

(status, returned_bits) = RBG3_ Generate_request(RBG3_DRBG_state_handle, n, 
additional_input), 

where RBG3_DRBG_state_handle was provided during instantiation (see Sec. 6.5.1.1), n is the 
number of bits to be generated and returned to the application, and additional_input is optional. 

The RBG3_Generate_request received by the RBG3(RS) construction shall result in the 
execution of the RBG3(RS)_Generate function below. The output of that function shall be 
returned to the application in response to the RBG3_DRBG_Generate_request. 

Let the input parameters provided in the request above also be provided as input to the 
RBG3(RS)_Generate function. Appendix A.2 is a reference for the appropriate values for each 
DRBG type. 

Random bits with full entropy shall be generated as follows: 

RBG3(RS)_ Generate: 

Input: 

1. RBG3_DRBG_state_handle: A pointer to the internal state of the DRBG used by the 
RBG3(RS) construction. 

2. n: The number of full-entropy bits to be generated. 

3. additional_input: Optional additional input. 

Output: 

1. status: The status returned by the RBG3(RS)_Generate function. 

2. returned_bits: The n full-entropy bits requested or a Null string. 

Process: 

1. temp = Null. 
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3. While (sum < n), 

3.1 Reseed with at least s + 64 bits of fresh entropy (see the notes below for 
customizing this step).  

3.2 (status, full_entropy_bits) = DRBG_Generate(RBG3_DRBG_state_handle, s, 
s, additional_input).  

3.3 If (status ≠ SUCCESS), then return (status, Null).  

3.4 temp = temp || full_entropy_bits.  

3.5 sum = sum + s.  

3.6 additional_input = Null string. 

4. Return (SUCCESS, leftmost(temp, n)). 

In steps 1 and 2, the bitstring intended to collect the generated bits (temp) is initialized to the 
Null bitstring, and the counter for the number of bits obtained for fulfilling the request (sum) is 
initialized to zero. 

Step 3 is iterated until at least n full-entropy bits have been generated. 

Step 3.1 obtains at least s + 64 bits of fresh entropy and inserts it into the internal state. 

• For CTR_DRBG without a derivation function, s + 128 bits of entropy are requested 
during reseeding using a randomness source that provides full-entropy output. Step 3.1 
becomes: 

o status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input). 

o If (status ≠ SUCCESS), then return (status, Null) 

with the Get_randomness-source_input call in the DRBG_Reseed function replaced 
by: 

o (status, seed_material) = Get_entropy_bitstring(s + 128, Method_1). 

o If (status ≠ SUCCESS), then return (status, Null), 

where Method_1 indicates that only the entropy from physical entropy sources is 
counted. 

• For a Hash_DRBG, HMAC_DRBG, or CTR_DRBG with a derivation function, s bits of 
fresh entropy are usually inserted into the internal state during a DRBG_Reseed 
function. To insert s + 64 bits into the internal state, two methods are provided: 

Method A is a modification of the DRBG_Reseed function that requests s + 64 bits of 
entropy from the entropy source(s) rather than (the usual) s bits (see Fig. 27). Making this 
change is straightforward, given access to the internals of a DRBG implementation. 



NIST SP 800-90C 4pd (Fourth Public Draft)  Recommendation for RBG Constructions 
July 2024   
 

67 

 

 2189 
2190 

2191 

2192 

2193 

2194 
2195 

2196 

2197 

2198 
2199 

2200 
2201 
2202 
2203 
2204 
2205 
2206 
2207 
2208 

Fig. 27. Modification of the DRBG_Reseed function 

 Step 3.1 becomes: 

o status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input) 

o If (status ≠ SUCCESS), then return (status, Null) 

with the Get_randomness-source_input call in the DRBG_Reseed function 
replaced by: 

o (status, seed_material) = Get_entropy_bitstring(s + 64, Method_1). 

o If (status ≠ SUCCESS), then return (status, Null). 

Method_1 indicates that only the entropy from physical entropy sources is to be 
counted. 

Method B (depicted in Fig. 28) first obtains a bitstring with 64 bits of entropy directly 
from the entropy source(s). It then invokes the DRBG_Reseed function using this 
bitstring as additional input (called extra_bits below to avoid confusion with the 
additional_input provided by the application when invoking the 
DRBG_Generate_request above). The DRBG_Reseed function will obtain s bits of 
entropy from the entropy source(s),22

22 The value of s is recorded in the DRBG’s internal state (see SP 800-90A). 

 combine it with the 64 bits of entropy provided 
as the extra_bits and incorporate the result into the DRBG’s internal state. This 
method is appropriate when the RBG3(RS) construction is being implemented using 
an existing DRBG implementation that cannot be altered. 
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Fig. 28. Request extra bits before reseeding 

Step 3.1 becomes: 

3.1.1 (status, extra_bits) = Get_entropy_bitstring(64, Method_1). 

3.1.2 If (status ≠ SUCCESS), then return (status, Null). 

3.1.3 status = DRBG_Reseed(RBG3_DRBG_state_handle, extra_bits || 
additional_input). 

3.1.4 If (status ≠ SUCCESS), then return (status, Null). 

In step 3.1.3, the Get_randomness-source_input call in the DRBG_Reseed 
function is replaced by: 

o (status, seed_material) = Get_entropy_bitstring(s, Method_1). 

o If (status ≠ SUCCESS), then return (status, Null). 

Method_1 indicates that only the entropy from physical entropy sources is to be counted. 

In step 3.2, request the generation of full_entropy_bits using the DRBG_Generate function, 
where: 

• The RBG3_DRBG_state_handle was obtained during DRBG instantiation (see Sec. 
6.5.1.1). 

• s is both the number of full-entropy bits to be produced during the DRBG_Generate 
function call and the security strength of the DRBG instantiation (see Sec. 2.8.1.2 and 
Table 4 in Appendix A.2). 

• additional_input is the current value of the additional_input string (initially provided in 
the DRBG_Generate call, used in the first iteration of step 3.2, and subsequently set to 
the Null string in step 3.6). 

In step 3.3, if step 3.2 returned a status value indicating that the DRBG_Generate function 
was not successful, then return the status to the calling application with a Null bitstring. 

In step 3.4, concatenate the full_entropy_bits obtained in step 3.2 to the temporary bitstring 
(temp). 
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entropy bits obtained in step 3.2). 

In step 3.6, to avoid reusing the additional_input, set its value to a Null string for subsequent 
iterations of step 3. 

If sum < n, go to step 3.1. 

Step 4 returns a status indicating SUCCESS to the calling application along with the leftmost n bits 
of temp as the returned_bitstring. 

6.5.1.2.2. Generation Using a Directly Accessible DRBG 

As discussed in Sec. 2.8.1.2, the DRBG used by the RBG3(RS) construction may be requested to 
generate output directly using the following request: 

(status, returned_bits) = DRBG_Generate_request(RBG3_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input), 

where RBG3_DRBG_state_handle was provided during instantiation (see Sec. 6.5.1.1) and 
additional_input is optional. 

Before generating the requested output, the DRBG needs to be reseeded in the following 
circumstances: 

1. Accessing a DRBG directly to generate output by the DRBG in the RBG3(RS) construction 
requires that the DRBG be reseeded with at least s + 64 bits of entropy from the entropy 
source(s) when the DRBG was previously used as a component of the 
RBG3(RS)_generate function. This requires that the RBG3(RS) implementation keep 
track of the type of generate request that was made previously (e.g., including this 
information in the DRBG’s internal state) so that the reseeding of the DRBG is 
automatically performed before generating the requested DRBG output. 

2. During a sequence of generate requests, the DRBG may reseed itself in response to some 
event. 

Reseeding is accomplished as specified in Sec. 6.5.1.3. 

If a reseed of the DRBG was not performed or a status of SUCCESS was returned by the 
DRBG_Reseed function when performed under conditions 1 or 2 above, the 
DRBG_Generate_request invokes the DRBG_Generate function (see Sec. 5.2.2), obtains the 
status of the operation and any generated bits (i.e., returned_bits), and forwards them to the 
application in response to the DRBG_Generate_request. 

6.5.1.3. Reseeding 

Reseeding the DRBG may be performed: 

1. When explicitly requested by the consuming application, 
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2. During an RBG3(RS)_generate request (see Sec. 6.5.1.2.1) or in response to a direct 2270 
2271 
2272 

2273 
2274 

2275 

2276 

2277 
2278 

2279 
2280 
2281 

2282 
2283 
2284 

2285 

2286 
2287 

2288 
2289 
2290 

2291 

2292 

2293 
2294 
2295 

2296 

2297 
2298 

2299 
2300 
2301 
2302 

DRBG generate request when the previous use of the DRBG was as a component of the 
RBG3(RS)_Generate function (see Sec. 6.5.1.2.2), or 

3. Based on implementation-selected criteria, such as time, number of outputs, events, or 
the availability of sufficient entropy. 

Case 1: An application sends a reseed request to the RBG: 

status = DRBG_Reseed_request(RBG3_DRBG_state_handle, additional_input), 

where RBG3_DRBG_state_handle was obtained during instantiation (see Sec. 6.5.1.1) and 
additional_input is optional. 

Any additional_input provided by a DRBG_Reseed request from the application shall be 
used as input to the DRBG_Reseed function. Otherwise, the use of additional_input is 
optional. 

The DRBG_Reseed_request results in the invocation of the DRBG_Reseed function (see 
Sec. 5.2.3). The status returned from the DRBG_Reseed function is forwarded to the 
application in response to the DRBG_Reseed_request. 

Case 2: The DRBG is reseeded as follows: 

• For CTR_DRBG without a derivation function, s + 128 bits of entropy are requested 
during reseeding in the same manner as for instantiation (see step 3.1 of Sec. 6.5.1.2.1). 

• For a Hash_DRBG, HMAC_DRBG, or CTR_DRBG with a derivation function, use 
Method A or Method B (as specified in step 3.1 of Sec. 6.5.1.2.1) to obtain s + 64 bits of 
fresh entropy in the DRBG. 

Case 3: A reseed of the DRBG is invoked based on implementation-selected criteria: 

status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input). 

For a CTR_DRBG, the DRBG is reseeded with s + 128 bits of fresh entropy. Otherwise, the 
DRBG is reseeded with either s or s + 64 bits of fresh entropy, depending on whether Method 
A or Method B was used in step 3.1 of Sec. 6.5.1.2.1. 

6.5.2. Requirements for an RBG3(RS) Construction 

An RBG3(RS) construction has the following requirements in addition to those provided in Sec. 
6.3: 

1. For each s bits generated by the RBG3(RS) construction, s + 64 bits of fresh entropy shall 
be acquired either directly from independent, validated entropy sources or from an 
external conditioning function that processes the output of the validated entropy sources 
to provide full-entropy, as specified in Sec. 3.2.2.2. 
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2. If the DRBG is directly accessible and the previous use of the DRBG was by the RBG3(RS) 2303 
2304 
2305 

2306 

2307 

construction, a reseed of the DRBG instantiation with at least s + 64 bits of entropy shall 
be performed before generating output. 

3. The DRBG shall be reseeded in accordance with Sec. 6.5.1.3. 
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7. RBGC Construction for DRBG Chains 2308 
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The RBGC construction allows the use of a chain of DRBGs in which one DRBG is used to provide 
seed material for another DRBG. This design is common on many computing platforms and allows 
some level of modularity (e.g., an operating system RBG can be designed and validated without 
knowing the randomness source that will be available on the particular hardware on which it will 
be used, or a software application can be designed with its own RBG but without knowing the 
operating system or hardware used by the application). 

7.1. RBGC Description 

7.1.1. RBGC Environment 

Figure 29 depicts RBGC constructions and the environment in which they will be used. An RBGC 
construction consists of an approved DRBG mechanism (from SP 800-90A) and the randomness 
source used for seeding and (optional) reseeding. This figure illustrates a tree of RBGC 
constructions that consists of two DRBG chains: 1) a chain consisting of DRBG1, DRBG2, and DRBG3 
and 2) a chain consisting of DRBG1 and DRBG4. 

 
Fig. 29. DRBG tree using the RBGC construction 

The core of this type of construction is called the root and is shown as RBGC1 within the solid red 
rectangle in the figure. Its DRBG is labeled as DRBG1, and its randomness source for seeding and 
(optionally) reseeding is labeled as the initial randomness source. 

For each of the other RBGC constructions (i.e., RBG2, RBG3, and RBG4), the DRBG within the 
construction is seeded by a DRBG within a “parent” RBGC construction (i.e., the parent is the 
randomness source used for seeding the DRBG). For RBGC2 (shown as a box outlined with long 
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green dashes [− − −]), the parent randomness source is the root (i.e., RBGC1). For RBGC3 (shown 2330 
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as a box with black dashes and dots [− • • − • • −]), the parent randomness source is RBGC2. For 
RBGC4 (shown within a box outlined with a solid blue rectangle), the parent randomness source 
is RBGC1 (i.e., the root). 

An RBGC construction may be used to Instantiate and reseed other RBGC constructions or to 
provide output for one or more applications (not shown in Fig. 29). All components of an RBGC 
tree — including the initial randomness source and the DRBG chains in that tree — reside on the 
same computing platform. The initial randomness source is not physically removable while the 
computing platform is operational, and the contents of the internal state of any DRBG in the tree 
are never relocated to another computer platform or output for external storage. See Appendix 
A.3 for a discussion about the intended meaning of a computing platform and implementation 
considerations. 

Each RBGC construction may be a parent for one or more child RBGC constructions. Each of the 
child RBGC constructions has only one parent that serves as its randomness source for seeding 
the DRBG within it. Using Fig. 29 as an example, RBGC1 is the only parent of both RBGC2 and 
RBGC4. RBGC2 is the randomness source (i.e., the only parent) of RBGC3. However, the parent 
may have siblings that may be used for reseeding under certain conditions (see Sec. 7.1.2.1) if 
the parent is not available to do so (e.g., the RBGC construction has been moved to a different 
core). In Fig. 29, RBGC2 and RBGC4 are siblings since they have the same parent (RBGC1). In this 
case, the alternative path for reseeding is shown as a line of black dots. 

An RBGC construction cannot have itself as a predecessor randomness source for reseeding. That 
is, there are no “seed loops” in which an RBGC construction provides seed material for a 
predecessor RBGC construction (e.g., a parent or grandparent). For example, in Fig. 29, RBGC2 
can be used as the randomness source for RBGC3, but RBGC3 cannot be used as the randomness 
source for reseeding RBGC1 or RBGC2. However, additional_input provided to the DRBG during a 
reseed or generate request may be anything, including the output of any RBGC construction of 
the tree. 

7.1.2. Instantiating and Reseeding Strategy 

7.1.2.1. Instantiating and Reseeding the Root RBGC Construction 

The root RBGC construction is instantiated and (optionally) reseeded using an initial randomness 
source, which is either a validated full-entropy source or a validated RBG2(P), RBG2(NP), 
RBG3(XOR), or RBG3(RS) construction. An RBG2(P) or RBG2(NP) construction used as the initial 
randomness source shall have a capability of being reseeded on demand by the root.23

23 A reseed of the initial randomness source is required for instantiation of the root before seed material is generated for the root’s DRBG and 
whenever the root is reseeded. 

 A 
validated full-entropy source is a validated entropy source that provides full-entropy output or 
the combination of a validated entropy source and an external vetted conditioning function that 
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provides full-entropy output (see Sec. 3.2.2.2). The root may provide prediction resistance if 2365 
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reseeded by the initial random source. 

7.1.2.2. Instantiating and Reseeding a Non-Root RBGC Construction 

Each non-root RBGC construction in a chain is instantiated by a single RBGC construction (i.e., its 
parent) using that parent as its randomness source. If the child RBGC construction can be 
reseeded, the parent normally serves as the randomness source during the reseeding process. 
However, if the parent is not available for reseeding (e.g., the implementation of the RBGC 
construction has been moved to a different core on the computing platform), a sibling of the 
parent may be used as an alternative randomness source provided that: 

1. The sibling has been validated for compliance with an RBGC construction, and  

2. The DRBG within the sibling supports the security strength of the DRBG to be reseeded. 

Using Fig. 29, consider RBGC3 as the target RBGC construction to be reseeded. RBGC2 is the parent 
of RBGC3 and would normally be used as the randomness source for reseeding RBGC3. If RBGC2 
is not available when RBGC3 needs to be reseeded, then a sibling of RBGC2 may be used as an 
alternative randomness source for reseeding if it meets conditions 1 and 2 above. In Fig. 29, 
RBGC4 is depicted as a sibling of RBGC2, so RBGC4 may be used as an alternative randomness 
source (as indicated by the path of black dots) if it is validated for that purpose and the DRBG 
within the RBGC4 construction can support the security strength of RBGC3’s DRBG. 

Implementers of an RBGC tree that use siblings for reseeding the DRBG of an RBGC construction 
will require a means of recognizing that the parent randomness source is not available and for 
the parent’s sibling(s) to recognize the validity of the request for the generation of seed material 
and the internal state (within the sibling) to be used for the generation process. Additionally, 
non-root RBGC constructions cannot guarantee prediction resistance since their randomness 
sources cannot provide fresh entropy. However, non-root RBGC constructions should be 
reseeded periodically to defend against a potential undetected compromise of the internal state. 

7.2. Conceptual Interfaces 

An RBGC construction can support instantiation and generation requests (see Sec. 7.2.1 and 
7.2.2, respectively) and may provide a capability to be reseeded (see Sec. 7.2.3). 

7.2.1. RBGC Instantiation 

The DRBG within an RBGC construction may be instantiated by an application at any security 
strength possible for the DRBG design that does not exceed the security strength of its 
randomness source. This is accomplished using the DRBG_Instantiate function discussed in Sec. 
2.8.1.1 and SP 800-90A. 

The (target) DRBG in an RBGC construction is instantiated by an application using the following 
request: 
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(status, RBGCx_DRBG_state_handle) =  2400 
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DRBG_Instantiate_request(s, personalization_string), 

where s is the requested security strength for the DRBG. The DRBG_Instantiate_request 
received by the DRBG results in the execution of the DRBG_Instantiate function in the DRBG 
with the input in the DRBG_Instantiate_request provided as input to the DRBG_Instantiate 
function. 

(status, RBGCx_DRBG_state_handle) =  
DRBG_Instantiate(s, personalization_string). 

The target DRBG in the RBGC construction cannot be instantiated at a higher security strength 
than that which is supported by its randomness source. If the target DRBG is successfully 
instantiated, RBGCx_DRBG_state_handle is the state handle returned to the application for 
subsequent access to the internal state of the DRBG instantiation within the RBGC construction. 
If the DRBG is implemented to only allow a single internal state, then a state handle is not 
required. If the instantiation request is invalid (e.g., the requested security strength cannot be 
provided by the DRBG design or the randomness source; see SP 800-90A), an error indication is 
returned as the status with an invalid state handle. 

7.2.1.1. Instantiation of the Root RBGC Construction 

The randomness source for the root RBGC construction (also referred to as the initial randomness 
source) is: 

• A validated RBG3(XOR) or RBG3(RS) construction, as specified in Sec. 6; 

• A validated RBG2(P) or RBG2(NP) construction, as specified in Sec. 5; or 

• A validated full-entropy source that is either: 

o An entropy source that provides output with full entropy, as specified in SP 800-
90B, or 

o The output of an SP 800-90B-compliant entropy source that has been externally 
conditioned by a vetted conditioning function (as specified in Sec. 3.2.2.2) to 
provide output with full entropy. 

When used as the initial randomness source, an RBG3 construction or a full-entropy source can 
support any valid security strength for the DRBG within the root RBGC construction (i.e., 128, 
192, or 256 bits). 

When used as the initial randomness source, an RBG2(P) or RBG2(NP) construction can support 
any security strength for the DRBG within the root RBGC construction that does not exceed the 
instantiated security strength of the DRBG within the RBG2(P) or RBG2(NP) construction. For 
example, if the initial randomness source is an RBG2(P) construction whose DRBG is instantiated 
at a security strength of 128 bits, then the DRBG within the root RBGC construction can only be 
instantiated at a security strength of 128 bits. 
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An RBGC designer must consider how to find an available randomness source and how to access 2436 
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it. 

7.2.1.1.1. Instantiating the DRBG in the Root Using an RBG2 or RBG3 Construction as the 
Initial Randomness Source 

 
Fig. 30. Instantiation of the DRBG in the root RBGC construction using an RBG2 or RBG3 construction as the 

randomness source 

Figure 30 depicts a request for instantiation of the root RBGC construction by an application. Let 
RBGC1 be the root and DRBG1 be its DRBG. In this section, the initial randomness source is either 
an RBG2 or RBG3 construction. 

Upon receiving a valid instantiation request from an application (see Sec. 7.2.1), the 
DRBG_Instantiate function within DRBG1 processes the request by obtaining seed material 
from the initial randomness source. Within the DRBG_Instantiate function (in DRBG1), the 
randomness source is accessed using a Get_randomness-source_input call (see SP 800-90A), 
which is replaced as specified below. 

Let s be the intended security strength of DRBG1 in the root RBGC construction. 

1. When the DRBG in the root RBGC construction uses a CTR_DRBG without a derivation 
function, s + 128 bits24

24 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90A requires the randomness input from the 
randomness source to be key length + block length bits when a derivation function is not used. 

 shall be obtained from the initial randomness source. 

a. If the randomness source is an RBG2(P) or RBG2(NP) construction, the RBG2 
construction shall be reseeded before requesting seed material. The 
Get_randomness-source_input call becomes: 

• status = DRBG_Reseed_request(RBG2_DRBG_state_handle, 
additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 
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• (status, seed_material) = 2460 
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DRBG_Generate_request(RBG2_DRBG_state_handle, 
s + 128, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

RBG2_DRBG_state_handle is the state handle for the internal state of the DRBG 
within the RBG2 construction. Reseed and generate requests received by an RBG2 
construction are discussed in Sec. 5.2.3 and 5.2.2, respectively. 

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction, the 
Get_randomness-source_input call becomes: 

• (status, seed_material) = RBG3_DRBG_Generate_request(s + 128, 
additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

RBG3_DRBG_state_handle is the state handle for the internal state of the DRBG 
within the RBG3 construction. An RBG3_DRBG_Generate_request received by 
an RBG3 construction is discussed in Sec. 6.4.1.2 and 6.5.1.2 (the RBG3(XOR) and 
RBG3(RS) constructions, respectively). 

2. For CTR_DRBG (with a derivation function), Hash_DRBG, and HMAC_DRBG, 3s/2 bits 
shall be obtained from a randomness source that provides a security strength of at least 
s bits. 

a. If the randomness source is an RBG2(P) or RBG2(NP) construction, the RBG2 
construction shall be reseeded before requesting seed material. The 
Get_randomness-source_input call becomes: 

• status = DRBG_Reseed(RBG2_DRBG_state_handle, additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

• (status, seed_material) = 
DRBG_Generate_request(RGB2_DRBG_state_handle, 3s/2, s, 
additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

RBG2_ DRBG_state_handle is the state handle for the internal state of the DRBG 
within the RBG2 construction. Reseed and generate requests received by an RBG2 
construction are discussed in Sec. 5.2.3 and 5.2.2, respectively. 

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction, the 
Get_randomness-source_input call becomes: 

• (status, seed material) = RBG3_DRBG_Generate_request(3s/2, 
additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 
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RBG3_DRBG_state_handle is the state handle for the internal state of the DRBG 2496 
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within the RBG3 construction. An RBG3_DRBG_Generate_request received by 
an RBG3 construction is discussed in Sec. 6.4.1.2 and 6.5.1.2 (the RBG3(XOR) and 
RBG3(RS) constructions, respectively). 

7.2.1.1.2. Instantiating the Root RBGC Construction Using a Full-Entropy Source as the 
Randomness Source 

 
Fig. 31. Instantiation of the DRBG in the root RBGC construction using a full-entropy source as a randomness 

source 

Figure 31 depicts a request for instantiation of the root RBGC construction by an application. Let 
RBGC1 be the root and DRBG1 be its DRBG. In this section, the initial randomness source is a full-
entropy source (see Sec. 7.2.1.1). 

Upon receiving a valid instantiation request from an application, the DRBG_Instantiate function 
within DRBG1 continues processing the request by obtaining seed material from the full-entropy 
source. The full-entropy source may consist of physical or non-physical entropy sources or both, 
and either Method 1 or Method 2 may be used to count entropy (see Sec. 2.3). Instantiation is 
performed for an RBG2 construction, as specified in Sec. 5.2.1. 
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7.2.1.2. Instantiating an RBGC Construction Other Than the Root 2513 
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Fig. 32. Instantiation of the DRBG in RBGCn using RBGCRS as the randomness source 

Figure 32 depicts a request by an application for the instantiation of the DRBG within an RBGC 
construction that is not the root. Let RBGCn be the RBGC construction receiving the instantiation 
request, and let DRBGn be its DRBG. RBGCn needs to determine the RBGC construction that will 
serve as its randomness source. The randomness source for a DRBG in an RBGC construction that 
is not the root of the DRBG chain is the RBGC construction that will immediately precede it in the 
chain as its parent. Let RBGCRS be the randomness source for RBGCn, and let DRBGRS be its DRBG 
(see Fig. 32). RBGRS could be the root RBGC construction. RBGC1 is outlined in gray in the figure. 

Upon receiving a valid instantiation request from an application, such as 

(status, RBGC_DRBGn_state_handle) =  
DRBG_Instantiate_request(s, personalization_string), 

DRBGn executes its DRBG_Instantiate function within DRBGn and processes the request by 
obtaining seed material from its intended parent randomness source (RBGCRS). The 
Get_randomness-source_input call in the DRBG_Instantiate function in DRBGn is replaced as 
specified below. 

Let s be the intended security strength of the DRBG in RBGCn (shown as DRBGn in the figure). 
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1. When RBGCn is instantiating a CTR_DRBG without a derivation function, s + 128 bits25

25 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90Ar1 requires the randomness input from 
the randomness source to be key length + block length bits when a derivation function is not used. 
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shall be obtained from the randomness source (i.e., RBGCRS) by replacing the 
Get_randomness-source_input call with: 

• (status, seed_material) = DRBG_Generate_request(RBGCRS_DRBG_state_handle, 
s + 128, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

RBGCRS_DRBG_state_handle is the state handle for the internal state of the DRBG within 
RBGCRS. Upon receiving the DRBG_Generate_request, RBGCRS executes its 
DRBG_Generate function (see Sec. 2.8.1.1 and 7.2.2) and checks its output That is,  

• (status, seed_material) = DRBG_Generate(RBGCRS_DRBG_state_handle, 
s + 128, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

2. For CTR_DRBG (with a derivation function), Hash_DRBG, and HMAC_DRBG, 3s/2 bits 
shall be obtained from the randomness source (RBGCRS) by replacing the 
Get_randomness-source_input call with: 

• (status, seed_material) = DRBG_Generate_request(RBGCRS_DRBG_state_handle, 
3s/2, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

RBGCRS_DRBG_state_handle is the state handle for the internal state of the DRBG within 
RBGCRS. Upon receiving the DRBG_Generate_request, RBGCRS executes its 
DRBG_Generate function (see Sec. 2.8.1.1 and 7.2.2) and checks its output. That is, 

• (status, seed_material) = DRBG_Generate(RBGCRS_DRBG_state_handle, 
3s/2, s, additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_state_handle). 

Section 7.2.2 specifies the behavior of the DRBG in an RBGC construction when it receives a 
generate request. The status and any generated seed_material are returned to the requesting 
DRBG (DRBGn) in response to the DRBG_Generate_request. 

 



NIST SP 800-90C 4pd (Fourth Public Draft)  Recommendation for RBG Constructions 
July 2024   
 

81 

 

7.2.2. Requesting the Generation of Pseudorandom Bits From an RBGC Construction 2558 
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Fig. 33. Generate request received by the DRBG in an RBGC construction 

Figure 33 depicts a generate request received by the DRBG in an RBGC construction (i.e., DRBGn 
in RBGCn) from a requesting entity (either an application or a DRBG in another RBGC construction, 
shown as DRBGm and RBGCm in the figure). When the requesting entity is DRBGm (rather than an 
application), DRBGm is attempting to be seeded or reseeded with seed material. DRBGn shall be 
either 1) the parent randomness source for DRBGm or 2) a sibling of DRBGm’s parent randomness 
source that meets the requirements of an alternative randomness source (see Sec. 7.1.2.2). 
RBGCn could be the root DRBG (the root is outlined in gray in the figure). 

The generate request from the requesting entity for this example is: 

(status, returned_bits) = DRBG_Generate_request(RBGCn_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input), 

where RBGCn_DRBG_state_handle is the state handle for the internal state of the DRBG in the 
RBGC construction receiving the generate request (RBGCn). If the DRBG_Generate_request 
received by RBGCn can be handled, the DRBG_Generate function in DRBGn is executed: 

(status, returned_bits) = DRBG_Generate(RBGCn_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength, additional_input). 

The DRBG_Generate function within DRBGn processes the generate request. 

1. If the generate request cannot be fulfilled (e.g., the requested security strength cannot 
be provided by the DRBG design used in DRBGn; see SP 800-90A), only an error status is 
returned to the requesting entity. No other output is provided. 
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2. Otherwise, DRBGn generates the requested_number_of_bits and provides them to the 2580 
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requesting entity in response to the DRBG_Generate_request with a status of SUCCESS. 

7.2.3. Reseeding an RBGC Construction 

The reseeding of an RBGC construction is optional. If a reseed capability is implemented within 
the DRBG of an RBGC construction, the RBGC construction may receive a reseed request from an 
application, or the DRBG within the construction may reseed itself based on implementation-
selected criteria, such as time, number of outputs, events, or — in the case of the root RBGC 
construction using a full-entropy source — the availability of sufficient entropy. 

Section 7.2.3.1 discusses the reseeding of the DRBG in the root RBGC construction. Section 
7.2.3.2 discusses the reseeding of the DRBG in an RBGC construction other than the root. 

A reseed request from an application is: 

(status) = DRBG_Reseed_request(RBGCx_DRBG_state_handle, additional_input), 

where RBGCx_DRBG_state_handle is the state handle for the internal state of the DRBG in the 
RBGC construction receiving the reseed request (RBGCx).26

26 For Fig. 34 in Sec. 7.2.3.1, x = 1. For Fig. 35 in Sec. 7.2.3.2, x = n. 

 The DRBG_Reseed_request received 
by RBGCx results in the execution of DRBGx’s DRBG_Reseed function (see Sec. 2.8.1.3). The 
status returned from the DRBG_Reseed function shall be returned to the application in response 
to the DRBG_Reseed_request. 

If the reseed request is invalid (e.g., the state handle is not correct or the DRBG does not have a 
reseed capability), an error indication is returned as the status to the application (i.e., the DRBG 
has not been reseeded). 

Reseeding based on implementation-selected criteria is not initiated by a 
DRBG_Reseed_request from an application but is addressed in Sec. 7.2.3.1 and 7.2.3.2. 

7.2.3.1. Reseed of the DRBG in the Root RBGC Construction 

 
Fig. 34. Reseed request received by the DRBG in the root RBGC construction 
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If the root RBGC construction includes a reseed capability (as shown in Fig. 34), the DRBG in the 2605 
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root RBGC construction (e.g., RBGC1) may receive a request from an application for reseeding. 

Upon the receipt of a valid reseed request or when reseeding is to be performed based on 
implementation-selected criteria, the DRBG in the root RBGC construction (e.g., DRBG1) executes 
its DRBG_Reseed function to obtain randomness from the initial randomness source for 
reseeding itself. This process results in fresh entropy provided by the initial randomness source 
so that the next output generated by DRBG1 has prediction resistance. 

1. When the DRBG in the root RBGC construction uses the CTR_DRBG without a derivation 
function, reseeding is performed in the same manner as for instantiation. 

• If the initial randomness source is an RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP) 
construction, input is obtained from the initial randomness source as specified in item 
1 of Sec. 7.2.1.1.1. 

• If the initial randomness source is a full-entropy source, input is obtained as specified 
in item 1 of Sec. 7.2.1.1.2. 

2. When the DRBG in the root RBGC construction uses the CTR_DRBG (with a derivation 
function), Hash_DRBG, or HMAC_DRBG, input is obtained from the initial randomness 
source in the same manner as for instantiation except that s bits are requested (instead 
of 3s/2 bits), where s is the instantiated security strength of the DRBG in the root. 

• If the initial randomness source is an RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP) 
construction, input is obtained from the initial randomness source as specified in item 
2 of Sec. 7.2.1.1.1. 

• If the initial randomness source is full-entropy source, input is obtained as specified 
in item 2 of Sec. 7.2.1.1.2. 
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7.2.3.2. Reseed of the DRBG in an RBGC Construction Other Than the Root 2628 
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Fig. 35. Reseed request received by an RBGC construction other than the root 

As shown in Fig. 35, a DRBG in an RBGC construction other than the root (e.g., RBGCn) may receive 
a request for reseeding from an application. DRBGn may also reseed itself based on 
implementation-selected criteria. 

Let DRBGRS be the randomness source to be used for reseeding. DRBGRS must be either DRBGn’s 
parent randomness source or a sibling of the parent (see Sec. 7.1.2.2). DRBGRS may be the DRBG 
of the root RBGC construction (outlined in gray in the figure). Prediction resistance is not 
provided for the DRBG being reseeded (DRBGn) since fresh entropy is not provided by the 
randomness source in this case (DRBGRS). 

Upon the receipt of a valid reseed request or when a reseed is to be performed based on 
implementation-selected criteria, the DRBG in RBGCn executes its DRBG_Reseed function (if 
implemented). The Get_randomness-source_input request in the DRBG_Reseed function is 
replaced by the following: 

• (status, seed_material) = DRBG_Generate_request(RBGCRS_DRBG_state_handle, s, s, 
additional_input). 

• If (status ≠ SUCCESS), then return (status, invalid_bitstring), 

where RBGCRS_DRBG_state_handle is the state handle for the internal state of the DRBG in the 
randomness source (i.e., RBGCRS). Upon receiving the request, RBGCRS executes its 
DRBG_Generate function. A status indication will be returned from RBGCRS along with seed 
material if the status indicates a success (see Sec. 7.2.2). 
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Upon the receipt of a response from the randomness source (RBGRS), the DRBG in RBGCn 2650 
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proceeds as follows: 

1. If an error indicator is received from the randomness source (RBGCRS) in response to the 
generate request, the error indicator is forwarded to the application as the status in the 
response to the reseed request. 

2. If an error indicator is not received from the randomness source (i.e., RBGCRS) and 
seed_material is provided, the seed_material is incorporated into the internal state of the 
DRBG in RBGCn as specified in its DRBG_Reseed function. If the reseeding of the DRBG 
in RBGCn was in response to a DRBG_Reseed_request from an application, the status 
received from the randomness source is returned to the application. 

7.3. RBGC Requirements 

7.3.1. General RBGC Construction Requirements 

An RBGC construction has the following general testable requirements (i.e., testable by the 
validation labs): 

1. An approved DRBG from SP 800-90A whose components are capable of providing the 
targeted security strength for an RBGC construction shall be employed. 

2. RBGC components shall be successfully validated for compliance with SP 800-90A, SP 800-
90B, SP 800-90C, FIPS 140, and the specification of any other approved algorithm used 
within the RBGC construction, as applicable. 

3. An RBGC construction shall not produce any output until it is instantiated. 

4. An RBGC construction shall not provide output for generating requests that specify a 
security strength greater than the instantiated security strength of its DRBG. 

5. If a health test on the DRBG in an RBGC construction fails, the DRBG instantiation shall be 
terminated. 

6. The seed material provided to the DRBG within an RBGC construction shall remain secret 
during transfer from the DRBG’s randomness source and remain unobservable from 
outside its RBG boundary. 

7. The internal state of the DRBG within an RBGC construction shall remain unobservable 
from outside its RBG boundary. 

8. A tree of RBGC constructions and the initial randomness source for the root RBGC 
construction shall be implemented and operated on a single, physical platform. See 
Appendix A.3 for further discussion. 

9. The initial randomness source shall not be removable from the computing platform 
during operation. If a replacement is required, the root shall be instantiated using the 
replaced randomness source. 
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10. The seed material shall not be output from the computing platform on which it was 2685 
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generated. 

11. The internal state of the DRBG within an RBGC construction shall not be removed from 
the computing platform on which it was created, including for storage, and shall only be 
available to the DRBG instantiation for which it was created. 

12. If the (parent) randomness source for an RBGC construction is not available for reseeding, 
the DRBG in the RBGC construction may continue to generate output without reseeding 
or may be reseeded using a sibling of the parent that has been appropriately validated. 
When used as an alternative randomness source for reseeding, the sibling shall have been 
validated as an RBGC construction. 

General requirements for an RBGC construction that are non-testable are: 

13. Each RBGC construction must be able to determine the type of randomness source 
available for its use and how to access it. 

14. The randomness source for an RBGC construction must provide the requested number of 
bits at a security strength of s bits or higher, where s is the targeted security strength for 
that RBGC construction. 

15. The specific output of the randomness source (or portion thereof) that is used for the 
instantiation or reseed of an RBGC construction must not be used for any other purpose, 
including for seeding or reseeding a different instantiation or RBGC construction. 

16. The output of an RBGC construction must not be used as seed material for a predecessor 
(e.g., ancestor) RBGC construction. 

7.3.2. Additional Requirements for the Root RBGC Construction 

An RBGC construction that is used as the root of a DRBG chain has the following additional 
testable requirements (i.e., testable by the validation labs): 

1. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, 3s/2 bits 
shall be obtained from the initial randomness source for instantiation, where s is the 
targeted security strength for the DRBG used in the RBGC construction. When reseeding, 
s bits shall be obtained from the initial randomness source. 

2. For a CTR_DRBG without a derivation function used as the DRBG within the root RBGC 
construction, s + 128 bits27

27 Note that s + 128 = keylen + blocklen = seedlen, as specified in SP 800-90Ar1. 

 shall be obtained from the randomness source for 
instantiation and reseeding, where s is the targeted security strength for the DRBG used 
in the RBGC construction. 
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3. If the randomness source for the root RBGC construction is an RBG2 construction, a 2717 
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request for reseeding the DRBG in the RBG2 construction shall precede a request for 
generating seed material. 

The non-testable requirements for the root RBGC construction are: 

4. The initial randomness source for the root RBGC construction must be a validated 
RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP) construction or a full-entropy source. 

5. A full-entropy source serving as the initial randomness source must be either an entropy 
source that has been validated as providing full-entropy output or a validated entropy 
source that uses the external conditioning function specified in Sec. 3.2.2.2. 

6. The DRBG in the root RBGC construction may be instantiated at any security strength for 
the design, subject to the following restriction: if the initial randomness source is an 
RBG2(P) or RBG2(NP) construction, the root must not be instantiated at a security 
strength greater than the security strength of the RBG2(P) or RBG2(NP) construction. 

7.3.3. Additional Requirements for an RBGC Construction That is NOT the Root of a DRBG Chain 

An RBGC construction that is NOT the root of a DRBG chain has no additional testable 
requirements beyond those in Sec. 7.3.1. 

The non-testable requirements for an RBGC construction that is not the root of a DRBG chain are: 

1. Each RBGC construction must have only one parent RBGC construction as a randomness 
source for instantiation and reseeding, although under certain conditions, a sibling of the 
parent may be used as a randomness source for reseeding (see requirement 12 in Sec. 
7.3.1). 

2. An RBGC construction must reside on the same computing platform as its parent and any 
alternative randomness source. 

3. Each RBGC construction may be instantiated at any security strength for the design that 
does not exceed the security strength of its parent randomness source. 
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8. Testing 2743 
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Two types of testing are specified in this recommendation: health testing and implementation-
validation testing. Health testing shall be performed on all RBGs that claim compliance with this 
recommendation (see Sec. 8.1). Section 8.2 provides requirements for implementation 
validation. 

8.1. Health Testing 

Health testing is the testing of an implementation prior to and during normal operations to 
determine whether the implementation continues to perform as expected and as validated. 
Health testing is performed by the RBG itself (i.e., the tests are designed into the RBG 
implementation). 

An RBG shall support the health tests specified in SP 800-90A and SP 800-90B as well as perform 
health tests on the components of SP 800-90C. FIPS 140 specifies the testing to be performed 
within a cryptographic module. 

8.1.1. Testing RBG Components 

Whenever an RBG receives a request to start up or perform health testing, a request for health 
testing shall be issued to the RBG components (e.g., the DRBG and any entropy source). 

8.1.2. Handling Failures 

Failures may occur during the use of entropy sources and during the operation of other 
components of an RBG. 

SP 800-90A and SP 800-90B discuss error handling for DRBGs and entropy sources, respectively. 

8.1.2.1. Entropy-Source Failures 

A failure of a validated entropy source is reported to the Get_entropy_bitstring process in 
response to entropy requests to the entropy source(s). The Get_entropy_bitstring function 
notifies the consuming application of such failures as soon as possible (see item 4 of Sec. 3.1). 
The consuming application may choose to terminate the RBG operation. Otherwise, the RBG may 
continue operation if any entropy source credited for providing entropy28

28 Only the entropy provided by physical entropy sources is credited for the RBG2(P) and RBG3 constructions. Entropy from both physical and 
non-physical entropy sources is credited for the RBG2(NP) construction. See Sec. 5 and 6. 

 is still healthy (i.e., a 
failure has not been reported by those entropy sources). 

If all entropy sources credited with providing entropy report failures, the RBG operation shall be 
terminated (e.g., stopped) until such time as the entropy source is repaired and successfully 
tested for correct operation. 

 



NIST SP 800-90C 4pd (Fourth Public Draft)  Recommendation for RBG Constructions 
July 2024   
 

89 

 

8.1.2.2. Failures by Non-Entropy-Source Components 2773 
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Failures by non-entropy-source components may be caused by either hardware or software 
failures. Some of these may be detected using known-answer health tests within the RBG. 
Failures could also be detected by the system in or on which the RBG resides. 

When such failures are detected that affect the RBG, the RBG operation shall be terminated. The 
RBG must not resume operations until the reasons for the failure have been determined, the 
failure has been repaired, and the RBG successfully tested for proper operation. 

8.2. Implementation Validation 

Implementation validation is the process of verifying that an RBG and its components fulfill the 
requirements of this recommendation. Validation is accomplished by: 

• Validating the components from SP 800-90A and SP 800-90B 

• Validating the use of the constructions in SP 800-90C via code inspection, known answer 
tests, or both, as appropriate 

• Validating that the appropriate documentation has been provided, as specified in SP 800-
90C 

Documentation shall be developed that will provide assurance to testers that an RBG that claims 
compliance with this recommendation has been implemented correctly. This documentation 
shall include the following as a minimum: 

• An identification of the constructions and components used by the RBG, including a 
diagram of the interaction between the constructions and components. 

• If an external conditioning function is used, an indication of the type of conditioning 
function and the method for obtaining any keys that are required by that function. 

• Appropriate documentation, as specified in SP 800-90A and SP 800-90B. The DRBG and 
the entropy sources shall be validated for compliance with SP 800-90A or SP 800-90B, 
respectively, and the validations successfully finalized before the completion of RBG 
implementation validation. 

• The maximum security-strength that can be supported by the DRBG. 

• A description of all validated and non-validated entropy sources used by the RBG, 
including identifying whether the entropy source is a physical or non-physical entropy 
source. 

• Documentation justifying the independence of all validated entropy sources from all 
other validated and non-validated entropy sources employed. 

• An identification of the features supported by the RBG (e.g., access to the underlying 
DRBG of an RBG3 construction). 
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• A description of the health tests performed, including an identification of the periodic 2807 
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intervals for performing the tests. 

• A description of any support functions other than health testing. 

• A description of the RBG components within the RBG security boundary (see Sec. 2.5). 

• For an RBG1 construction, a statement indicating that the randomness source must be a 
validated RBG2(P) or RBG3 construction (e.g., this could be provided in user 
documentation and/or in a security policy). 

• If sub-DRBGs can be used in an RBG1 construction, the maximum number of sub-DRBGs 
that can be supported by the implementation and the security strengths to be supported 
by the sub-DRBGs. 

• For RBG2 and RBG3 constructions, a statement that identifies the conditions under which 
the DRBG is reseeded (e.g., when requested by a consuming application, at a given time 
interval, etc.). 

• For an RBG3 construction, a statement that indicates whether the DRBG can be accessed 
directly (i.e., the DRBG internal state used by the RBG3 construction can be accessed using 
calls directly to the DRBG). 

• For an RBG3 construction, the security policy shall indicate the fallback security strength 
that can be supported by the DRBG if the entropy source fails (i.e., the fallback security 
strength is the instantiated security strength of the DRBG). 

• For an RBG3(RS) construction, when implementing CTR_DRBG (with a derivation 
function), Hash_DRBG, or HMAC_DRBG, the method used for obtaining s + 64 bits of 
entropy to produce s full-entropy bits (see Sec. 6.5.1.2.1) 

• For an RBGC construction, whether it is capable of serving as the root of a DRBG chain, 
how it “finds” an appropriate randomness source for seeding and reseeding (if 
implemented), whether it can instantiate child RBGC constructions, any restrictions on 
the number of child RBGC constructions in the implementation, whether it can be used 
as an alternative randomness source for another RBGC construction and how this is 
accomplished (see the note in Sec. 7.1.2.2), and whether it can be reseeded. 

• If an RBGC construction can serve as the root of a DRBG chain, identify the initial 
randomness source types that can be used. If the randomness source can be a full-entropy 
source, describe the entropy sources to be used. 

• Documentation specifying the guidance to users about fulfilling the non-testable 
requirements, as appropriate  (see Sec. 4.4, 5.3, 6.3, and 7.3).  
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A.1. Entropy vs. Security Strength 

This appendix compares and contrasts the concepts of entropy and security strength. 

A.1.1. Entropy 

Suppose that an entropy source produces n-bit strings with m bits of entropy in each bitstring. 
This means that when an n-bit string is obtained from that entropy source, the best possible 
guess of the value of the string has a probability of no more than 2−m of being correct. 

Entropy can be thought of as a property of a probability distribution, like the mean or variance. 
Entropy measures the unpredictability or randomness of the probability distribution on bitstrings 
produced by the entropy source, not a property of any particular bitstring. However, the 
terminology is sometimes slightly abused by referring to a bitstring as having m bits of entropy. 
This simply means that the bitstring came from a source that ensures m bits of entropy in its 
output bitstrings. 

Because of the inherent variability in the process, predicting future entropy-source outputs does 
not depend on an adversary’s amount of computing power. 

A.1.2. Security Strength 

A deterministic cryptographic mechanism (e.g., the DRBGs defined in SP 800-90A) has a security 
strength — a measure of how much computing power an adversary expects to need to defeat 
the security of the mechanism. If a DRBG has an s-bit security strength, an adversary who can 
make 2w computations of the underlying block cipher or hash function, where w < s, expects to 
have about a 2w-s probability of defeating the DRBG’s security. For example, an adversary who 
can perform 296 AES encryptions can expect to defeat the security of the CTR-DRBG that uses 
AES-128 with a probability of about 2−32 (i.e., 296−128). 

A.1.3. A Side-by-Side Comparison 

Informally, one way of thinking of the difference between security strength and entropy is the 
following: suppose that an adversary somehow obtains the internal state of an entropy source 
(e.g., the state of all the ring oscillators and any internal buffer). This might allow the adversary 
to predict the next few bits from the entropy source (assuming that there is some buffering of 
bits within the entropy source), but the entropy source outputs will once more become 
unpredictable to the adversary very quickly. For example, knowing what faces of the dice are 
currently showing does not allow a player to successfully predict the next roll of the dice. 
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In contrast, suppose that an adversary somehow obtains the internal state of a DRBG. Because 2962 
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the DRBG is deterministic, the adversary can then predict all future outputs from the DRBG until 
the next reseeding of the DRBG with a sufficient amount of entropy. 

An entropy source provides bitstrings that are hard for an adversary to guess correctly but usually 
have some detectable statistical flaws (e.g., they may have slightly biased bits, or successive bits 
may be correlated). However, a well-designed DRBG provides bitstrings that exhibit none of these 
properties. Rather, they have independent and identically distributed bits, with each bit taking 
on a value with a probability of exactly 0.5. These bitstrings are only unpredictable to an 
adversary who does not know the DRBG’s internal state and is computationally bounded. 

A.1.4. Entropy and Security Strength in This Recommendation 

The DRBG within the RBG1 construction is instantiated from either an RBG2(P) or an RBG3 
construction. To instantiate the RBG1 construction at a security strength of s bits, this 
recommendation requires the source RBG to support a security strength of at least s bits and 
provide a bitstring that is 3s/2 bits long for most of the DRBGs. However, for a CTR_DRBG 
without a derivation function, a bitstring that is s + 128 bits long is required. An RBG3 
construction supports any desired security strength. 

The DRBG within an RBG2 or RBG3 construction is instantiated using a bitstring with a certain 
amount of entropy obtained from a validated entropy source.29

29 However, the entropy-source output may be cryptographically processed by an approved conditioning function before being used. 

 In order to instantiate the DRBG 
to support an s-bit security strength, a bitstring with at least 3s/2 bits of entropy is required for 
the instantiation of most of the DRBGs. Reseeding requires a bitstring with at least s bits of 
entropy. However, instantiating and reseeding a CTR_DRBG without a derivation function 
requires a bitstring with exactly s + 128 full-entropy bits. This bitstring can either be obtained 
directly from an entropy source that provides full-entropy output or from an entropy source via 
an approved (i.e., vetted) conditioning function (see Sec. 3.2). 

RBG3 constructions are designed to provide full-entropy outputs but with a DRBG included in the 
design as a second security anchor in case the entropy source fails undetectably. Entropy bits are 
obtained either directly from an entropy source or from an entropy source via an approved (i.e., 
vetted) conditioning function. When the entropy source is working properly, an n-bit output from 
the RBG3 construction is said to provide n bits of entropy. The DRBG in an RBG3 construction is 
always required to support the highest security strength that can be provided by its design 
(highest_strength). If an entropy-source has an undetectable failure, the RBG3 construction 
outputs are generated at that security strength. In this case, the security strength of a bitstring 
produced by the RBG is the minimum of highest_strength and the length of the bitstring — that 
is, security_strength = min(highest_strength, length). 

The DRBG within an RBGC construction is instantiated using a bitstring from a randomness 
source. The randomness source for an RBGC construction will be either an initial randomness 
source (when the RBGC construction is the root of a tree of such constructions) or another RBGC 
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randomness source that is either a full-entropy source or an RBG2 or RBG3 construction, each of 
which includes a validated entropy source. 

In conclusion, entropy sources and properly functioning RBG3 constructions provide output with 
entropy. RBG1, RBG2, and RBGC constructions provide output with a security strength that 
depends on the security strength of the RBG instantiation and the length of the output. Likewise, 
if the entropy source used by an RBG3 construction fails undetectably, the output is then 
dependent on the DRBG within the construction (i.e., an RBG(P) construction) to produce output 
at the highest security strength for the DRBG design. 

Because of the difference between the use of “entropy” to describe the output of an entropy 
source and the use of “security strength” to describe the output of a DRBG, the term 
“randomness” is used as a general term to mean either “entropy” or “security strength,” as 
appropriate. A “randomness source” is the general term for an entropy source or RBG that 
provides the randomness used by an RBG. 

A.2. Generating Full-Entropy Output Using the RBG3(RS) Construction 

Table 4 provides information on generating full-entropy output using the RBG3(RS) construction 
with the DRBGs in SP 800-90A. 

Table 4. Values for generating full-entropy bits by an RBG3(RS) construction 

DRBG DRBG  
Primitives 

Highest Security 
Strength (s) that 

may be supported 
by the DRBG 

Entropy obtained 
during a normal 

reseed operation (r) 

Entropy required 
for s bits with full 
entropy (s + 64) 

CTR_DRBG 
(with no derivation 

function) 

AES-128 128 256 192 
AES-192 192 320 256 
AES-256 256 384 320 

CTR_DRBG (using a 
derivation function) 

AES-128 128 128 192 
AES-192 192 192 256 
AES-256 256 256 320 

SHA-256 
SHA3-256 256 256 320 

SHA-384 
SHA3-384 256 256 320 

SHA-512 
SHA3-512 256 256 320 

Each DRBG is based on the use of an approved hash function or block cipher algorithm as a 
cryptographic primitive. 

• Column 1 lists the DRBG types. 

• Column 2 identifies the cryptographic primitives that can be used by the DRBG(s) in 
column 1. 
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• Column 3 indicates the highest security strength (s) that can be supported by the 
cryptographic primitive in column 2.
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30 Columns 2 and 3 provide the same information as Table 3. 

 

• Column 4 indicates the amount of fresh entropy (r) that is obtained by a DRBG_Reseed 
function for the security strength identified in column 3, as specified in SP 800-90A. 

• Column 5 indicates the amount of entropy required to be inserted into the cryptographic 
primitive (s + 64) to produce s bits with full entropy. 

For the CTR_DRBG with no derivation function, the amount of entropy obtained during a 
reseed as specified in SP 800-90A (see column 4) exceeds the amount of entropy needed to 
subsequently generate s bits of output with full entropy (see column 5), where s is 128, 192, or 
256. Therefore, reseeding as specified in SP 800-90A is appropriate. 

However, for the CTR_DRBG that uses a derivation function or the Hash_DRBG or 
HMAC_DRBG, a reseed as specified in SP 800-90A does not provide sufficient entropy for 
producing s bits of full-entropy output for each execution of the DRBG_Generate function (see 
columns 4 and 5). Section 6.5.1.2.1 provides two methods for obtaining the required s + 64 bits 
of entropy needed to generate s bits of full-entropy output: 

1. Modify the DRBG_Reseed function to obtain s + 64 bits of entropy from the entropy 
source(s) rather than the s bits of entropy specified in SP 800-90A. This approach may be 
used in implementations that have access to the internals of the DRBG implementation.  

2. Obtain 64 bits of entropy directly from the entropy source(s) and provide it as additional 
input when invoking the DRBG_Reseed function. As specified in SP 800-90A, the 
DRBG_Reseed function obtains s bits of entropy from the entropy source(s) and 
concatenates the additional input to it before updating the internal state with the 
concatenated result (see the specification for the reseed algorithm for each DRBG type in 
SP 800-90A), thus incorporating s + 64 bits of fresh entropy into the DRBG’s internal state. 

A.3. Additional Considerations for RBGC Constructions 

The boundaries for an RBGC construction are more difficult to define than other constructions 
specified in this document, which makes validation more difficult. This difficulty arises from 
changes in the structure of the RBGC tree (e.g., RBGC constructions created in software at 
runtime) and the possibility that the module containing the DRBG of the RBGC construction may 
be validated separately from the module containing the randomness source that seeds and 
reseeds it. 

This section contains examples of acceptable RBGC constructions as well as designs that properly 
transmit seed material. To simplify the discussion, the figures show only the DRBG in each RBGC 
construction. For example, DRBG1 is the DRBG for the RBGC1, which is used in the examples as 
the root of the tree (i.e., the root DRBG), and DRBG2 is the DRBG for RBGC2. 
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A.3.1. RBGC Tree Composition 3057 
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When parts of an RBGC tree are validated separately, the tree can later be composed in a safe 
manner to ensure that the requirements given in Sec. 7 are met. An RBGC tree consists of an 
initial randomness source and a root RBGC construction (at a minimum) and may include 
descendent RBGC constructions (e.g., children and grandchildren). Additional RBGC 
constructions (called subtrees) may be added to form a more complex tree. Each subtree consists 
of at least one RBGC construction that may have its own descendants but is unable to access the 
initial randomness source. 

Consider two modules — A and B — that are evaluated separately (see Fig. 36). Module B does 
not contain a root DRBG, but module A does. Module A contains an initial randomness source 
and a DRBG that can access the initial randomness source to serve as the root of a tree (shown 
as DRBG1). Module B does not include an initial randomness source, so no DRBG in that module 
can serve as a root. The following examples show how DRBGs in module B can be evaluated as 
RBGC constructions. 

The simplest case for tree composition occurs when one RBGC construction satisfies the 
requirements for the root RBGC, and every other RBGC construction involved meets the 
requirements of a non-root RBGC construction. Figures 36 and 37 show compositions where 
module A has been validated as an RBGC tree containing an initial randomness source, a root 
(shown as DRBG1), two children of the root (DRBG2 and DRBG4), and DRBG3 (a child of DRBG2). 
Module B contains a subtree consisting of DRBG5 and two child DRBGs (DRBG6 and DRBG7). In 
these examples, all DRBGs meet the requirements for RBGC constructions. 

 
Fig. 36. Subtree in module B seeded by root RBGC of module A 
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Fig. 37. Subtree in module B seeded by a non-root DRBG of module A (i.e., DRBG4) 

In Fig. 36, the DRBGs in module B are added to the tree by using the root (DRBG1) as the 
randomness source for DRBG5. In Fig. 37, the DRBGs in module B are added to the tree by using 
DRBG4 as the randomness source for DRBG5. 

It is possible to compose trees where some of the DRBGs in module A do not meet the 
requirements of an RBGC-compliant tree. Figure 38 depicts two DRBGs — DRBG2 and DRBG3 — 
that do not meet RBGC requirements because a loop exists when DRBG3 is used to reseed DRBG2. 
The DRBGs in purple boxes connected to the parent through dashed lines do not meet the DRBG 
requirements for an RBGC construction. 

 
Fig. 38. Subtree in module B seeded by DRBG4 in module A 

If module B is added to the tree such that DRBG4 is the randomness source for DRBG5, the 
elements of module B’s subtree only depend on DRBGs that meet RBGC requirements (i.e., 
DRBG1 and DRBG4) and may therefore be validated as RBGC constructions when added to the 
tree in this manner. 
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However, if the DRBGs in module B are added to the tree so that DRBG2 is the randomness source 3096 
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for DRBG5 (see Fig. 39), then the resulting tree is not a compliant RBGC tree. 

 
Fig. 39. Subtree in module B seeded by DRBG2 of module A 

A.3.2. Changes in the Tree Structure 

New RBGC subtrees may be added to the tree during operation, and others may be removed. An 
RBGC construction may not be moved from one physical platform to another by any means, 
including backups, snapshots, and cloning. 

An RBGC construction could be copied via forking within a single computer platform. Such cases 
are permissible as long as the original and/or new processes are reseeded prior to fulfilling any 
requests. This ensures that multiple instances of the same RBGC construction are not operating 
simultaneously with the same internal states. Without this reseeding, the outputs of one RBGC 
construction could be used to learn subsequent outputs from its counterpart, voiding any claims 
of prediction resistance. 

A.3.3. Using Virtual Machines 

The phrase “same computing platform” (used in Sec. 7) is intended to restrict realizations of RBGC 
constructions to similar concepts of a randomness source and DRBGs that exist within the same 
RBG boundary. In particular, seed material must pass from a randomness source to a DRBG in a 
way that provides the same guarantees as using a physical secure channel. 

RBGC constructions used within virtual machines (VMs) pose a unique challenge because they 
can be on the same physical platform yet communicate through a local area network (LAN). 
Whether network traffic between VMs is routed solely by the hypervisor’s virtual LAN (VLAN) or 
is sent to the platform’s network for routing depends on the configuration of the VLAN. For 
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example, two VMs that are in different port groups or use different virtual switches may transmit 3119 
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the data outside of the physical system they reside on, as shown in Fig. 40 and 41. 

 
Fig. 40. VM1 and VM2 with different virtual switches 

 
Fig. 41. VM1 and VM2 with the same virtual switch but different port groups 

A DRBG within a virtual machine could potentially obtain seed material from sources outside of 
the virtual machine if the seed material originates on the same computing platform. In particular, 
seed material can be obtained from randomness sources that reside in levels below the virtual 
machine, such as a hypervisor, host operating system, or the platform hardware. Figure 42 shows 
an example in which all seed material is obtained from lower levels on the same system. 

 
Fig. 42. Acceptable external seeding for virtual machine RBGC constructions 

To comply with an RBGC tree as specified in SP 800-90C, virtual machines cannot provide seed 
material to each other via a virtual network (see Fig. 43). 
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Fig. 43. Acceptable external seeding for an RBGC construction in VM2 but not in VM1 and VM3 

This is a very important point in terms of local security guarantees. Virtual network configurations 
may change without being visible to a VM and alter the path of virtual network traffic. Therefore, 
it cannot be guaranteed that the seed material will never cross the physical network. Two 
configuration examples where data transmitted between virtual machines exits the host machine 
are shown in Fig. 40 and 41. 

A.3.4. Reseeding From Siblings of the Parent 

There may be situations in which it is acceptable for an RBGC construction to obtain reseeding 
material from an RBGC construction other than its parent. Figure 44 presents an example of a 
computing platform with an OS-level RBGC construction and tree containing an initial 
randomness source, root RBGC construction (containing DRBG1), and three child RBGC 
constructions, each associated with a different processor (shown as CPU1, CPU2, and CPU3). 
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Fig. 44. Application subtree obtaining reseed material from a sibling of its parent 

The DRBGs associated with these CPUs are DRBG2, DRBG3, and DRBG4, each of which can be used 
as a randomness source by application-level RBGC constructions. Application2 contains a subtree 
of RBGC constructions with DRBG6, DRBG7, and DRBG8. This subtree is composed of the OS-level 
RBGC at DRBG5 (i.e., DRBG5 is the parent of DRBG6). 

Ideally, DRBG6 would obtain bits for reseeding from its parent, DRBG5, but there may be reasons 
why this is either undesirable (e.g., because of load balancing) or not allowed by the RBGC 
requirements (e.g., seed material would exit the computing platform). Figure 44 provides an 
example in which a computing platform is a multi-processor system that performs load balancing 
to distribute tasks across processors. Application 2 (containing DRBG6) was originally located on 
CPU3 so that DRBG6 was originally seeded by DRBG5 (i.e., DRBG5 is the parent of DRBG6). If 
Application 2 is later moved to CPU2 and DRBG6 needs to be reseeded, it may be costly to reseed 
using DRBG5. For efficiency within the multi-processor system, DRBG6 can instead be reseeded 
using DRBG4 if DRBG4 has been designed and validated to meet the RBGC requirements. Note 
that DRBG4 and DRBG5 are siblings since they have the same parent (DRBG1).  
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Appendix B. RBG Examples (Informative) 3163 
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Appendix B.1 discusses and provides an example of the direct access to a DRBG used by an RBG3 
construction. Appendices B.2 – B.7 provide examples of each RBG construction.  

The figures do not show that if an error indicates an RBG failure (e.g., a noise source in the 
entropy source has failed), the RBG operation is terminated (see Sec. 2.6 and 8.1.2.1). For the 
examples below, all entropy sources are considered to be physical entropy sources. In order to 
simplify the examples, the additional_input parameter in the generate and reseed requests and 
generate functions is not used. 

B.1. Direct DRBG Access in an RBG3 Construction 

An implementation of an RBG3 construction may be designed so that the DRBG implementation 
used within the construction can be directly accessed by a consuming application using the same 
or separate instantiations from the instantiation used by the RBG3 construction (see the 
examples in Fig. 45). 

 
Fig. 45. DRBG Instantiations 

In the leftmost example in Fig. 45, the same internal state is used by the RBG3 construction and 
a directly accessible DRBG. The DRBG implementation is instantiated only once, and only a single 
state handle is obtained during instantiation (e.g., RBG3_DRBG_state handle). Generation and 
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reseeding for RBG3 operations use RBG3 function calls (see Sec. 6.4 and 6.5), while generation 3181 
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and reseeding for direct DRBG access use RBG2 function calls (see Sec. 5.2) with the 
RBG3_DRBG_state_handle. 

In the rightmost example in Fig. 45, the RBG3 construction and directly accessible DRBG use 
different internal states. The DRBG implementation is instantiated twice — once for RBG3 
operations and a second time for direct access to the DRBG. A different state handle needs to be 
obtained for each instantiation (e.g., RBG3_state_handle and RBG2_DRBG_state_handle). 
Generation and reseeding for RBG3 operations use RBG3 function calls and 
RBG3_DRBG_state_handle (see Sec. 6.4 and 6.5), while generation and reseeding for direct 
DRBG access use RBG2 function calls and RBG2_DRBG_state_handle (see Sec. 5.2). 

Multiple directly accessible DRBGs may also be incorporated into an implementation by creating 
multiple instantiations. However, no more than one directly accessible DRBG should share the 
same internal state with the RBG3 construction (i.e., if n directly accessible DRBGs are required, 
either n or n - 1 separate instantiations are required). 

The directly accessed DRBG instantiations are in the same security boundary as the RBG3 
construction. When accessed directly using the same internal state as the RBG3 construction 
(rather than operating as part of the RBG3 construction), the DRBG operates as an RBG2(P) 
construction. A DRBG instantiation using a different internal state than the DRBG used by the 
RBG3 construction may operate as either an RBG2(P) or RBG2(NP) construction. 

B.2. Example of an RBG1 Construction 

An RBG1 construction only has access to a randomness source during instantiation (i.e., when it 
is seeded; see Sec. 4). In Fig. 46, the DRBG used by the RBG1 construction and the randomness 
source reside in two different cryptographic modules with a physically secure channel connecting 
them during the instantiation process. 
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Fig. 46. Example of an RBG1 construction 

Following DRBG instantiation, the secure channel is no longer available. For this example, the 
randomness source is an RBG2(P) construction (see Sec. 5) with a state handle of 
RBG2_DRBG_state_handle. The targeted security strength for the RBG1 construction is 256 bits, 
so a DRBG from SP 800-90A that is able to support this security strength must be used. 
HMAC_DRBG using SHA-256 is used in the example. A personalization_string is provided during 
instantiation, as recommended in Sec. 2.4.1. 

As discussed in Sec. 4, the randomness source (i.e., the RBG2(P) construction in this example) is 
not available during normal operation, so reseeding cannot be provided. 

This example provides an RBG that is instantiated at a security strength of 256 bits. 

B.2.1. Instantiation of the RBG1 Construction 

A physically secure channel is required to transport the entropy bits from the randomness source 
(i.e., the RBG2(P) construction) to the HMAC_DRBG during instantiation; an example of an 
RBG2(P) construction is provided in Appendix B.4. After the instantiation of the RBG1 
construction, the randomness source and the secure channel are no longer available. 
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1. The HMAC_DRBG is instantiated by an application when sending an instantiate request 3221 
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to the DRBG: 

(status, RBG1_DRBG_state_handle) =  
DRBG_Instantiate_request(256, “Device 7056”), 

where: 

• A security strength of 256 bits is requested for the HMAC_DRBG used in the 
RBG1 construction. 

• The personalization string to be used for this example is “Device 7056”. 

2. The DRBG_Instantiate_request results in the execution of the DRBG_Instantiate 
function within the DRBG of the RBG1 construction (see Sec. 2.8.1.1): 

(status, RBG1_DRBG_state_handle) = DRBG_Instantiate(256, “Device 7056”). 

3. The instantiate function sends a reseed request to the RBG2(P) construction (i.e., the 
randomness source; see requirement 18 in Sec. 4.4.1). 

status = DRBG_Reseed_request(RBG2_DRBG_state_handle), 

where RBG2_DRBG_state_handle is the state handle for the internal state in the RBG2(P) 
construction. 

4. Upon receiving a reseed request, the RBG2(P) implementation executes a reseed 
function: 

status = DRBG_Reseed(RBG2_DRBG_state_handle). 

If an error is indicated by the returned status, the error is returned to the RBG1 
construction by the RBG2(P) construction in response to the reseed request and 
forwarded to the application by the RBG1 construction in response to the instantiate 
request. The DRBG within the RBG1 construction has NOT been instantiated. 

Otherwise, a status of success is returned to the RBG1 construction in response to the 
reseed request (i.e., the DRBG within the RBG2(P) construction has been successfully 
reseeded). 

5. Upon receiving a status of success in response to the reseed request, the RBG1 
construction then sends a generate request to the RBG2(P) construction (see Sec. 5.2.2). 

(status, seed_material) = DRBG_Generate_request(RBG2_DRBG_state_handle, 384, 
256), 

where 384 is the 3s/2 bits needed to instantiate the HMAC_DRBG at a security strength 
of 256 bits. 

6. Upon receiving a generate request, the RBG2(P) construction executes a generate 
function using information from the request: 

(status, seed_material) = DRBG_Generate(RBG2_DRBG_state_handle, 384, 256). 
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If an error is indicated by the returned status, the error is returned to the RBG1 3256 
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construction by the RBG2(P) construction in response to the generate request and 
forwarded to the application by the RBG1 construction in response to the instantiate 
request. The DRBG within the RBG1 construction is NOT instantiated. 

If a status of success is returned from the generate function, 384 bits of seed_material are 
also provided and sent to the RBG1 construction in response to the generate request. 

7. The DRBG within the RBG1 construction uses the seed_material provided by the RBG2(P) 
construction and the personalization_string provided by the application in the instantiate 
request (see step 1) to create the seed to instantiate the DRBG (see SP 800-90A). 

If the instantiation is not successful, an error is returned to the application in response to 
the instantiate request. The DRBG within the RBG1 construction has NOT been 
instantiated. 

If the instantiation is successful, the internal state is established. A status of SUCCESS and 
the RBG1_DRBG_state_handle are returned to the application requesting instantiation, 
and the RBG can be used to generate pseudorandom bits. 

B.2.2. Generation by the RBG1 Construction 

Assuming that the HMAC_DRBG in the RBG1 construction has been instantiated (see Appendix 
B.2.1), pseudorandom bits can be obtained as follows: 

1. A consuming application sends a generate request to the RBG1 construction: 

(status, returned_bits) = DRBG_Generate_request(RBG1_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength). 

• RBG1_DRBG_state_handle is returned as the state handle during instantiation 
(see Appendix B.2.1). 

• The requested_security_strength may be any value that is less than or equal to 256 
(i.e., the instantiated security strength recorded in the DRBG’s internal state). 

2. Upon receiving a generate request, the RBG1 construction executes a generate function, 
as specified in Sec. 2.8.1.2: 

(status, returned_bits) = DRBG_Generate(RBG1_DRBG_state_handle, 
requested_number_of_bits, requested_security_strength). 

If an error is returned as the status, the RBG1 construction forwards the error indication 
to the application (in response to the generate request). returned_bits is a Null string. 

If an indication of success is returned as the status, the requested_number_of_bits are 
provided as the returned_bits to the consuming application in response to the generate 
request. 
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B.3. Example Using Sub-DRBGs Based on an RBG1 Construction 3290 
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This example uses an RBG1 construction to instantiate two sub-DRBGs: sub-DRBG1 and sub-
DRBG2 (see Fig. 47). 

 
Fig. 47. Sub-DRBGs based on an RBG1 construction 

The instantiation of the RBG1 construction is discussed in Appendix B.2. The RBG1 construction 
that is used as the randomness source includes an HMAC_DRBG and has been instantiated to 
provide a security strength of 256 bits. The state handle for the construction is 
RBG1_DRBG_state_handle. 

For this example, sub-DRBG1 will be instantiated to provide a security strength of 128 bits, and 
sub-DRBG2 will be instantiated to provide a security strength of 256 bits. Both sub-DRBGs use 
the same DRBG algorithm as the RBG1 construction (i.e., HMAC_DRBG using SHA-256). Neither 
the RBG1 construction nor the sub-DRBGs can be reseeded. 

This example provides the following capabilities: 

• Access to the RBG1 construction to provide output generated at a security strength of 
256 bits (see Appendix B.2 for the RBG1 example), 

• Access to one sub-DRBG (i.e., sub-DRBG1) that provides output for an application that 
requires a security strength of no more than 128 bits, and 

• Access to a second sub-DRBG (i.e., sub-DRBG2) that provides output for a second 
application that requires a security strength of 256 bits. 

B.3.1. Instantiation of the Sub-DRBGs 

Each sub-DRBG is instantiated using output from an RBG1 construction that is discussed in 
Appendix B.2. 
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B.3.1.1. Instantiating Sub-DRBG1 3313 
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1. Sub-DRBG1 is instantiated when an application sends an instantiate request to the RBG1 
construction: 

(status, sub-DRBG1_state_handle) =  
Instantiate_sub-DRBG_request(128, “Sub-DRBG App 1”), 

where  

• A security strength of 128 bits is requested for sub-DRBG1, 

• The personalization string to be used for sub-DRBG1 is “Sub-DRBG App 1”, The 
comma is Nand 

• The returned state handle for sub-DRBG1 will be sub-DRBG1_state_handle. 

2. Upon receiving the instantiate request, the RBG1 construction executes its instantiate 
function for a sub-DRBG (see Sec. 4.3.1): 

(status, sub-DRBG1_state_handle) = Instantiate_sub-DRBG(128, 
“Sub-DRBG App 1”). 

As specified for the Instantiate_sub-DRBG function, the DRBG in the RBG1 construction 
will attempt to generate 3s/2 = 192 bits of seed material and combine it with “Sub-DRBG 
App 1” (i.e., the personalization string) to create a seed for the internal state of sub-
DRBG1. 

If an error is returned as the status, the RBG1 construction forwards the error indication 
to the application in response to the instantiate request. The sub-DRBG is NOT 
instantiated. 

If an indication of success is returned as the status, the RBG1 construction forwards the 
status to the application in response to the instantiate request. Sub-DRBG1 can now be 
requested directly to generate output. See Appendix B.3.2. 

B.3.1.2. Instantiating Sub-DRBG2 

Sub-DRBG2 is instantiated in the same manner as sub-DRBG1 but at a security strength of 256 
bits and with a different personalization string. 

1. The application sends an instantiate request to the RBG1 construction: 

(status, sub-DRBG2_state_handle) =  
Instantiate_sub-DRBG_request(256, “Sub-DRBG App 2”). 

2. The RBG1 construction executes an instantiate function for a sub-DRBG: 

(status, sub-DRBG2_state_handle) = Instantiate sub-DRBG(256, 
“Sub-DRBG App 2”). 
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The DRBG in the RBG1 construction will attempt to generate 3s/2 = 384 bits of seed 3346 
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material and combine it with “Sub-DRBG App 2” to create a seed for the internal state of 
sub-DRBG2. 

If an error is returned as the status, the RBG1 construction forwards the error indication 
to the application in response to the instantiate request. The sub-DRBG is NOT 
instantiated. 

If an indication of success is returned as the status, the RBG1 construction forwards the 
status to the application in response to the instantiate request. Sub-DRBG2 can now be 
requested directly to generate output. See Appendix B.3.2. 

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs 

Assuming that the sub-DRBG has been successfully instantiated (see Appendix B.3.1), 
pseudorandom bits can be requested from the sub-DRBG by a consuming application. 

1. An application sends the following generate request: 

(status, returned_bits) = DRBG_Generate_request(sub-DRBG_state_handle, 
requested_number_of_bits, requested_security_strength), 

• For sub_DRBG1, sub-DRBG_state_handle = sub-DRBG1_state_handle. 

• For sub-DRBG2, sub-DRBG_state_handle = sub-DRBG2_state_handle. 

• requested_number_of_bits must be ≤ 219 (see SP 800-90A for the HMAC_DRBG 
parameters). 

• For sub_DRBG1, security strength must be ≤ 128. 

• For sub_DRBG2, security strength must be ≤ 256. 

2. The sub-DRBG executes the generate request (see Sec. 2.8.1.2): 

(status, returned_bits) = DRBG_Generate(sub-DRBG_state_handle, 
requested_number_of_bits, security_strength). 

If an error is returned as the status, the sub-DRBG forwards the error indication to the 
application in response to the generate request. The returned_bits string is Null. 

If an indication of success is returned as the status, the sub-DRBG forwards the status to 
the application along with the requested number of newly generated bits. 

B.4. Example of an RBG2(P) Construction 

For this example of an RBG2(P) construction, no conditioning function is used, and only a single 
DRBG instantiation will be used (see Fig. 48), so a state handle is not needed. A physical and a 
non-physical entropy source are used. Full-entropy output is not provided by the entropy 
sources. 
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Fig. 48. Example of an RBG2 construction 

The targeted security strength is 256 bits, so a DRBG from SP 800-90A that can support this 
security strength must be used; HMAC_DRBG using SHA-256 is used in this example. A 
personalization_string may be provided, as recommended in Sec. 2.4.1. Reseeding is supported 
and will be available on demand. Method 1 is used for counting the entropy produced by the 
entropy sources (i.e., only entropy from the physical entropy source is counted). 

This example provides the following capabilities: 

• An RBG instantiated at a security strength of 256 bits and 

• Access to an entropy source to provide prediction resistance. 

B.4.1. Instantiation of an RBG2(P) Construction 

1. The RBG2(P) construction is instantiated by an application using an instantiate request: 

status = DRBG_Instantiate_request(256, “RBG2 42”). 

Since there is only a single instantiation, a state_handle is not used for this example. The 
personalization string to be used for this example is “RBG2 42”. 

2. Upon receiving the instantiate request, the RBG2(P) construction executes an instantiate 
function: 

status = DRBG_Instantiate(256, “RBG2 42”). 
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The seed material for establishing the security strength (s) of the DRBG (i.e., s = 256 bits) 3397 
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is requested using the following call to the entropy source (see Sec. 2.8.2 and item 2 in 
Sec. 5.2.1): 

(status, seed_material) = Get_entropy_bitstring(384, Method_1), 

where 3s/2 = 384 bits of entropy are requested from the entropy source, and Method 1 
is used to count only the entropy produced by the physical entropy source. 

If status = SUCCESS is returned in response to the Get_entropy_bitstring call, the 
HMAC_DRBG is seeded using seed_material and the personalization_string (“RBG2 
42”). The internal state is recorded (including the security strength of the instantiation), 
and status = SUCCESS is returned to the consuming application in response to the 
instantiation request. 

If the status returned in response to the Get_entropy_bitstring call indicates an error, 
then the internal state is not created, the status is returned to the consuming application 
in response to the instantiation request, and the RBG cannot be used to generate bits. 

B.4.2. Generation Using an RBG2(P) Construction 

Assuming that the RBG has been successfully instantiated (see Appendix B.4.1): 

1. Pseudorandom bits can be requested from the RBG by a consuming application: 

(status, returned_bits) = DRBG_Generate_request(requested_number_of_bits, 
requested_security_strength). 

• Since there is only a single instantiation of the HMAC_DRBG, a state_handle was 
not returned from the DRBG_Instantiate (see Appendix B.4.1) and is not used 
during the generate request. 

• The requested_security_strength may be any value that is ≤ 256 (i.e., the 
instantiated security strength recorded in the HMAC_DRBG’s internal state). 

2. Upon receiving the generate request, the RBG executes the generate function (see Sec. 
2.8.1.2): 

(status, returned_bits) = DRBG_Generate(requested_number_of_bits, 
security_strength). 

A status indication is returned to the requesting application in response to the 
DRBG_Generate call. If status = SUCCESS, a bitstring of at least 
requested_number_of_bits is provided as the returned_bits. If status = FAILURE, 
returned_bits is an empty bitstring. 
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The HMAC_DRBG will be reseeded 1) if explicitly requested by the consuming application or 2) 
automatically during a DRBG_Generate call at the end of the DRBG’s designed seedlife (see the 
DRBG_Generate function specification in SP 800-90A and Sec. 5.2.3 herein). 

1. An application may request a reseed of the DRBG using a reseed request: 

status = DRBG_Reseed_request(). 

Since there is only a single instantiation of the HMAC_DRBG, a state_handle was not 
returned from the DRBG_Instantiate function (see Appendix B.4.1) and is not used 
during the reseed request. 

2. Upon receiving the reseed request or when the end of the seedlife is determined, the RBG 
executes the reseed function (see Sec. 2.8.1.3): 

status = DRBG_Reseed(). 

The DRBG_Reseed function uses a Get_randomness-source_input call to access the 
entropy source. 

(status, seed_material) = Get_entropy_bitstring(256, Method_1). 

Method_1 indicates that only the entropy from the physical entropy source should be 
counted. 

If status = SUCCESS is returned by Get_entropy_bitstring, the seed_material contains 
at least 256 bits of entropy and is at least 256 bits long. Status = SUCCESS is returned to 
the RBG2 construction in response to the DRBG_Reseed call, and the status is forwarded 
to the application in response to the reseed request, if appropriate. 

If the status indicates an error, seed_material is an empty (e.g., null) bitstring. The 
HMAC_DRBG is not reseeded, the status is returned to the DRBG_Reseed function in 
the RBG2 construction, and the status is then forwarded to the application in response to 
the reseed request, if appropriate. Depending on the error, the DRBG operation may be 
terminated (see item 10 in Sec. 2.6). 

B.5. Example of an RBG3(XOR) Construction 

This construction is specified in Sec. 6.4 and requires a DRBG and a source of full-entropy bits. 
For this example, a single physical entropy source that does not provide full-entropy output is 
used, so the vetted hash conditioning function listed in SP 800-90B using SHA-256 is used as an 
external conditioning function. Since the type of entropy source is known, the counting method 
is known and need not be indicated when requesting entropy. 

The Hash_DRBG specified in SP 800-90A will be used as the DRBG with SHA-256 used as the 
underlying hash function for the DRBG (note the use of SHA-256 for both the Hash_DRBG and 
the vetted conditioning function). The DRBG will obtain input directly from the RBG’s entropy 
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source without conditioning (as shown in Fig. 49) since bits with full entropy are not required for 3464 
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input to the DRBG, even though full-entropy bits are required for input to the XOR operation 
(shown as “⊕” in the figure) from the entropy source via the conditioning function. 

 
Fig. 49. Example of an RBG3(XOR) construction 

The DRBG is instantiated and reseeded at a 256-bit security strength. In this example, only a 
single instantiation is used, and a personalization string is provided during instantiation. Calls are 
made to the RBG using the RBG3(XOR) calls specified in Sec. 6.4. The Hash_DRBG itself is not 
directly accessible. 

This example provides the following capabilities: 

• Full-entropy output by the RBG, 

• Fallback to the security strength provided by the Hash_DRBG (256 bits) if the entropy 
source has an undetected failure, and 

• Access to an entropy source to instantiate and reseed the Hash_DRBG. 

B.5.1. Instantiation of an RBG3(XOR) Construction 

1. An application instantiates an RBG3(XOR) construction using an instantiate request that 
will instantiate the DRBG within the RBG: 
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status = Instantiate_RBG3_DRBG_request(256, “RBG3(XOR)”). 3481 
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Since only a single instantiation is used, there is no need for a state handle. The 
HMAC_DRBG is requested to be instantiated at a security strength of 256 bits using 
“RBG3(XOR)” as a personalization string. 

2. Upon receiving an instantiate request, the RBG3(XOR) construction executes an 
instantiate function: 

status = RBG3(XOR)_Instantiate(256, “RBG3(XOR)”). 

The entropy for establishing the security strength (s) of the Hash_DRBG (i.e., where s = 
256 bits) is requested from the entropy source using the following 
Get_entropy_bitstring call: 

(status, seed_material) = Get_entropy_bitstring(384). 

If status = SUCCESS is returned from the Get_entropy_bitstring call, the Hash_DRBG 
is seeded using the seed_material and the personalization_string (i.e., “RBG3(XOR)”). The 
internal state is recorded (including the 256-bit security strength of the instantiation), and 
status = SUCCESS is returned to the RBG3(XOR) construction and forwarded to the 
consuming application in response to the instantiate request (from step 1). The RBG can 
be used to generate full-entropy bits. 

If the status returned from the Get_entropy_bitstring call indicates an error, the status 
is forwarded by the RBG3(XOR) construction to the consuming application. The 
Hash_DRBG’s internal state is not established, and the RBG cannot be used to generate 
bits. 

B.5.2. Generation by an RBG3(XOR) Construction 

Assuming that the Hash_DRBG has been instantiated (see Appendix B.5.1), the RBG can be 
called by a consuming application to generate output with full entropy. 

B.5.2.1. Generation 

1. An application requests the generation of full-entropy bits using: 

(status, returned_bits) = RBG3_DRBG_Generate_request(n), 

where n indicates the requested number of bits to generate. A state handle is not included 
since a state handle was not returned during instantiation (see Appendix B.5.1). 

2. Upon receiving a generate request, the RBG3(XOR) construction executes a call to the 
generate function: 

(status, returned_bits) = RBG3(XOR)_Generate(n). 

The construction of the RBG3(XOR)_Generate function in Sec. 6.4.1.2 is used as 
follows: 
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RBG3(XOR)_Generate: 

Input: 

n: The number of bits to be generated. 

Output: 

status: The status returned by the RBG3(XOR)_Generate function. 

returned_bits: The newly generated bits or a Null bitstring. 

Process: 

2.1 (status, ES_bits) = Get_conditioned_full-entropy_input(n).  

2.2 If (status ≠ SUCCESS), then return(status, Null). 

2.3 (status, DRBG_bits) = DRBG_Generate(n, 256). 

2.4 If (status ≠ SUCCESS), then return(status, Null). 

2.5 returned_bits = ES_bits ⊕ DRBG_bits. 

2.6 Return (SUCCESS, returned_bits). 

The state_handle parameter is not used in the RBG3(XOR)_Generate call or the 
DRBG_Generate function call (in step 2.3) for this example since a state_handle was not 
returned from the RBG3(XOR)_ Instantiate function (see Appendix B.5.1). 

In step 2.1, the entropy source is accessed via the conditioning function using the 
Get_conditioned_full-entropy_input routine (see Appendix B.5.2.2) to obtain n bits with 
full entropy, which are returned as the ES_bits. 

Step 2.2 checks that the Get_conditioned_full-entropy_input call in step 2.1 was 
successful. If it was not successful, the RBG3(XOR)_Generate function is aborted, 
returning status ≠ SUCCESS and a Null bitstring to the RBG3(XOR) construction. The 
status and Null bitstring are then forwarded to the application in response to the generate 
request (in step 1). 

Step 2.3 calls the Hash_DRBG to generate n bits at a security strength of 256 bits. The 
generated bitstring is returned as DRBG_bits. 

Step 2.4 checks that the DRBG_Generate function invoked in step 2.3 was successful. If 
it was not successful, the RBG3(XOR)_Generate function is aborted, returning status ≠ 
SUCCESS and a Null bitstring to the RBG3(XOR) construction. The status and Null 
bitstring are then forwarded to the application in response to the generate request (in 
step 1). 

If step 2.3 returns an indication of success, the ES_bits returned in step 2.1 and the 
DRBG_bits obtained in step 2.3 are XORed together in step 2.5. The result is returned to 
the RBG3(XOR) construction in step 2.6 and forwarded to the application in response to 
the generate request (in step 1). 
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B.5.2.2. Get_conditioned_full-entropy_input Function 3550 
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The Get_conditioned_full-entropy_input procedure is specified in Sec. 3.2.2.2. For this 
example, the routine becomes the following: 

Get_conditioned_full_entropy_input: 

Input: 

n: The number of full-entropy bits to be provided. 

Output: 

1. status: The status returned from the Get_conditioned_full_entropy_input function. 

2. Full-Entropy_bitstring: The newly acquired n-bit string with full entropy or a Null 
bitstring. 

Process: 

1. temp = the Null string. 

2. ctr = 0. 

3. While ctr < n, do 

3.1 (status, Entropy_bitstring) = Get_entropy_bitstring (320).  

3.2 If (status ≠ SUCCESS), then return (status, Null).  

3.3 conditioned_output = HashSHA_256(Entropy_bitstring).  

3.4 temp = temp || conditioned_output.  

3.5 ctr = ctr + 256. 

4. Full-Entropy_bitstring = leftmost(temp, n). 

5. Return (SUCCESS, Full-Entropy_bitstring). 

Steps 1 and 2 initialize the temporary bitstring (temp) for holding the full-entropy bitstring being 
assembled and the counter (ctr) that counts the number of full-entropy bits produced so far. 

Step 3 obtains and processes the entropy for each iteration. 

• Step 3.1 requests 320 bits from the entropy source (i.e., output_len + 64 bits, where 
output_len = 256 for SHA-256). 

• Step 3.2 checks whether the status returned in step 3.1 indicated a success. If the status 
did not indicate a success, the status is returned to the RBG3(XOR)_Generate function 
(in Appendix B.5.2.1) along with a Null bitstring. 

• Step 3.3 invokes the hash conditioning function (see Sec. 3.2.1.2) using SHA-256 for 
processing the Entropy_bitstring obtained from step 3.1. 
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• Step 3.4 concatenates the conditioned_output received in step 3.3 to the temporary 3581 
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bitstring (temp). 

• Step 3.5 increments the counter for the number of full-entropy bits that have been 
produced so far. 

After at least n bits have been produced in step 3, step 4 selects the leftmost n bits of the 
temporary string (temp) to be returned as the bitstring with full entropy. 

Step 5 returns the result from step 4 (i.e., Full-Entropy_bitstring). 

B.5.3. Reseeding an RBG3(XOR) Construction 

The Hash_DRBG within the RBG3(XOR) construction must be reseeded at the end of its designed 
seedlife and may be reseeded on demand (e.g., by the consuming application). Reseeding will be 
automatic whenever the end of the DRBG’s seedlife is reached during a DRBG_Generate call 
(see SP 800-90A and step 2.3 in Appendix B.5.2.1). 

The consuming application uses a reseed request to reseed the DRBG within the RBG3(XOR) 
construction: 

status = DRBG_Reseed_request(). 

A state handle is not provided for this example since none was provided during instantiation. 

Whether reseeding is done automatically during a DRBG_Generate call or is specifically 
requested by a consuming application, the DRBG_Reseed call for this example is: 

status = DRBG_Reseed(). 

Again, a state handle is not provided since none was provided during instantiation. 

A Get_entropy_bitstring call to the entropy source is used to obtain the entropy for reseeding: 

(status, seed_material) = Get_entropy_bitstring(256). 

If status = SUCCESS is returned by the Get_entropy_bitstring call, seed_material consists of at 
least 256 bits that contain at least 256 bits of entropy. These bits are used by the DRBG_Reseed 
function to reseed the Hash_DRBG. If the reseed was requested by an application, the status is 
returned to that application. 

If the status indicates an error, the seed_material is a Null bitstring, and the Hash_DRBG is not 
reseeded. If the reseed was requested by an application, the error status is returned to the 
application. 

B.6.  Example of an RBG3(RS) Construction 

This construction is specified in Sec. 6.5 and requires an entropy source and a DRBG, which is 
shown in the left half of Fig. 50 outlined in green with long dashes (− − − −). The DRBG is directly 
accessible using the same instantiation that is used by the RBG3(RS) construction (i.e., they share 
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the same internal state). When accessed directly, the DRBG behaves as an RBG2(P) construction, 3614 
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which is shown in the right half of Fig. 50 outlined in blue with alternating dots and dashes (- • - • 

-). 

 
Fig. 50. Example of an RBG3(RS) construction 

The CTR_DRBG specified in SP 800-90A will be used as the DRBG with AES-256 used as the 
underlying block cipher for the DRBG. The CTR_DRBG will be implemented using a derivation 
function located inside of the CTR_DRBG implementation. In this case, full-entropy output will 
not be required from the entropy source (see SP 800-90A). 

As specified in Sec. 6.5, a DRBG used as part of the RBG must be instantiated and reseeded at a 
security strength of 256 bits when AES-256 is used in the DRBG. 

For this example, the DRBG has a fixed security strength (i.e., 256 bits), which is hard-coded into 
the implementation so will not be used as an input parameter. 

Calls are made to the RBG3(RS) construction, as specified in Sec. 6.5. Calls made to the directly 
accessible DRBG (part of the RBG2(P) construction) use the RBG calls specified in Sec. 5. Since an 
entropy source is always available, the directly accessed DRBG can be reseeded. 

If the entropy source produces output at a slow rate, a consuming application might call the 
RBG3(RS) construction only when full-entropy bits are required, obtaining all other output from 
the directly accessible DRBG. Requirement 2 in Sec. 6.5.2 requires that the DRBG be reseeded 
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whenever a request for generation by a directly accessible DRBG follows a request for generation 3633 
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by the RBG3(RS) construction. For this example, a global variable (last_call) within the RBG3(RS) 
security boundary is used to indicate whether the last use of the DRBG was as part of the 
RBG3(RS) construction or directly accessed:  

• last_call = 1 if the DRBG was last used as part of the RBG3(RS) construction to provide 
full entropy output. If the next request is for generation by the DRBG directly, the DRBG 
must be reseeded before the requested output is generated. 

• last_call = 0 otherwise. A reseed of the DRBG when accessed directly is not necessary. 
When the DRBG is first instantiated with entropy, last_call is set to zero. 

See SP 800-90Ar1 for information about the internal state of the CTR_DRBG. 

This example provides the following capabilities: 

• Full-entropy output by the RBG3(RS) construction, 

• Fallback to the security strength of the RBG3(RS)’s DRBG instantiation (i.e., 256 bits) if the 
entropy source has an undetected failure, 

• Direct access to the DRBG with a security strength of 256 bits for faster output when full-
entropy output is not required, 

• Access to an entropy source to instantiate and reseed the DRBG, and 

• On-demand reseeding of the DRBG (e.g., to provide prediction resistance for requests to 
the directly accessed DRBG). 

B.6.1. Instantiation of an RBG3(RS) Construction 

Instantiation for this example consists of the instantiation of the CTR_DRBG used by the 
RBG3(RS) construction. 

1. An application requests the instantiation of the RBG3(RS) construction using: 

(status, RBG3_DRBG_state_handle) = Instantiate_RBG3_DRBG_request(“RBG3(RS) 
2024”), 

which requests the instantiation of the DRBG within the RBG3(RS) construction using 
“RBG3(RS) 2024” as the personalization string. In this example, the request does not 
include an indication of the security strength to be instantiated that would need to be 
checked against the security strength implemented for the DRBG (see Sec. 2.8.3.1 for a 
discussion). 

2. Upon receiving the request, the RBG3(RS) construction executes the instantiate function: 

(status, RBG3_DRBG_state_handle) = RBG3(RS)_ Instantiate(“RBG3(RS) 2024”). 

For this example, the RBG3(RS)_Instantiate function (see Sec. 6.5.1.1) in the DRBG includes an 
additional step to set the initial value of last_call to zero (i.e., if the first use of the DRBG is for 
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direct access, a reseed of the DRBG before generating bits is not required). Setting the initial 3667 
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value of last_call is an implementation decision, but some method for this process is required: 

2.1 (status, RBG3_DRBG_state_handle) = DRBG_Instantiate(personalization_string).  

2.2 last_call = 0.  

2.3 Return(status, RBG3_DRBG_state_handle). 

In step 2.1, the DRBG_Instantiate function is used to instantiate the CTR_DRBG using 
“RBG3(RS) 2024” as the personalization string. Since the required security strength is known (i.e., 
256 bits) and a derivation function is used in the CTR_DRBG implementation, the required 
entropy (s + 128 = 384 bits) is obtained from the entropy source using: 

(status, seed_material) = Get_entropy_bitstring(s + 128). 

The seed_material and personalization string are used to seed the CTR_DRBG. Since the 
entropy source is known to be a physical entropy source, the counting method is known and not 
included as an input parameter. 

Step 2.2 sets last_call = 0 so that if the initial request is for direct access to the DRBG, a reseed 
will not be initially required before generating bits (i.e., entropy has just been acquired as a result 
of the instantiation process). 

In step 2.3, the status and the state handle for the DRBG’s internal state are returned to the 
RBG3(RS)_Instantiate function and forwarded to the application in response to the instantiate 
request in step 1. 

B.6.2. Generation by an RBG3(RS) Construction 

Assuming that the DRBG in the RBG3(RS) construction has been instantiated (see Appendix 
B.6.1), the RBG can be invoked by a consuming application to generate outputs with full entropy. 

1. An application requests the generation of full-entropy bits using: 

(status, returned_bits) = RBG3_ Generate_request(RBG3_DRBG_state_handle, n), 

where RBG3_DRBG_state_handle was provided during DRBG instantiation (see Appendix B.6.1), 
and n is the number of requested bits. 

2. Upon receiving the generate request, the RBG3(RS) construction executes the generate 
function (see Sec. 6.5.1.2.1): 

(status, returned_bits) = RBG3(RS)_Generate(RBG3_DRBG_state_handle, n). 

A few modifications to the RBG3(RS)_Generate function have been made, resulting in 
the following: 

RBG3(RS)_ Generate: 

Input:  
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• RBG3_DRBG_state_handle: The state handle for the DRBG’s internal state 3700 
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(see Appendix B.6.1). 

• n: The number of full-entropy bits to be generated. 

Output: 

• status: The status returned from the RBG3(RS)_Generate function. 

• returned_bits: The newly generated bits or a Null bitstring. 

Process: 

2.1 temp = Null.  

2.2 sum = 0.  

2.3 While (sum < n),  

2.3.1 status = DRBG_Reseed(RBG3_DRBG_state_handle).  

2.3.2 If (status ≠ SUCCESS), then return (status, Null).  

2.3.3 (status, full_entropy_bits = 
DRBG_Generate(RBG3_DRBG_state_handle, 256).  

2.3.4 If (status ≠ SUCCESS), then return (status, Null).  

2.3.5 temp = temp || full_entropy_bits.  

2.3.6 sum = sum + s. 

2.4 last_call = 1.  

2.5 Return (SUCCESS, leftmost(temp, n)). 

Steps 2.1 and 2.2 initialize temp to a Null string for accumulating the requested output 
and sum to zero for counting the entropy generated. 

Step 2.3 generates the requested output with full entropy. 

Step 2.3.1 reseeds the DRBG. Whenever the RBG3(RS) construction is requested to 
generate bits, the DRBG is always reseeded with s + 64 = 320 bits directly from the 
entropy source (see Appendix B.6.4). 

Step 2.3.2 checks the status of the reseed process and returns the status and a Null 
string if the reseed process was not successful. 

Step 2.3.3 requests the generation of 256 bits. 

Step 2.3.4 checks the status of the generate process and returns the status and a Null 
string if the generate process was not successful. The “256” could be omitted since it 
is known to be the same as the hard-coded security strength. 

Step 2.3.5 assembles the full-entropy bitstring. 

Step 2.3.6 counts the number of bits assembled so far. 
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In step 2.4, the last_call value is set to one to indicate that the requested bits were 3733 
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generated by the RBG3(RS) construction rather than by direct use of the DRBG. 

3. The status and generated bits from the RBG3(RS)_Generate function in step 2 are 
returned to the RBG3(RS) construction and forwarded to the application in response to 
the generate request in step 1. 

B.6.3. Generation by the Directly Accessible DRBG 

Assuming that the DRBG has been instantiated (see Appendix B.6.1), it can be accessed directly 
by a consuming application in the same manner as the RBG2(P) example in Appendix B.4.2 using 
the RBG3_DRBG_state_handle obtained during instantiation (see Appendix B.6.1). 
Pseudorandom bits can be generated directly by the CTR_DRBG as follows: 

1. An application requests the generation of pseudorandom bits directly from the DRBG 
within the RBG3(RS) construction: 

(status, returned_bits) = DRBG_Generate_request(RBG3_DRBG_state_handle, n, s), 

where RBG3_DRBG_state_handle was obtained during instantiation (see Appendix 
B.6.1), n is the requested number of bits to be returned, and s is the requested security 
strength. 

2. Upon receiving the generate request, the RBG3(RS) construction executes a 
DRBG_Generate function rather than an RBG3(RS)_Generate function: 

(status, returned_bits) = DRBG_Generate(RBG3_DRBG_state_handle, n). 

The security strength parameter (i.e., 256) is omitted since its value has been hard-coded. 

The DRBG_Generate function specified in SP 800-90A has been modified to determine 
whether a reseed is required before generating the requested output by checking the 
value of last_call. An extraction31

31 The complete DRBG_Generate function is significantly longer. 

 of the DRBG_Generate function in SP 800-90A is: 

[After other preliminary checks have been performed] 

If ((last_call = 1) OR (reseed_counter > reseed_interval)), then 

status = DRBG_Reseed(RBG3_DRBG_state_handle). 

If (status ≠ SUCCESS), then return (status, Null). 

... 

(returned_bits, new_working_state_values) = 
Generate_algorithm(current_working_state_values, requested_number_of_bits). 

last_call = 0. 

[Closing steps to update the internal state] 
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An additional step has also been included above to indicate that this use of the DRBG is direct 3765 
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rather than part of the RBG3(RS) construction (i.e., setting last_call = 0). This step is used to 
indicate that if the next use of the DRBG is also by direct access, a reseed is not required before 
generating bits. 

B.6.4. Reseeding a DRBG 

When operating as part of the RBG3(RS) construction, the DRBG_Reseed function is invoked 
one or more times to produce full-entropy output when the RBG3(RS)_Generate function is 
invoked by a consuming application (see Sec. 6.5.1.3). 

When operating as the directly accessible DRBG, the DRBG is reseeded 1) if explicitly requested 
by the consuming application, 2) whenever the previous use of the DRBG was by the 
RBG3(RS)_Generate function (see Appendix B.6.2), or 3) automatically during a 
DRBG_Generate call at the end of the seedlife of the RBG2(P) construction (see the 
DRBG_Generate function specification in SP 800-90A). 

1. The reseed function is requested by an application using: 

status = DRBG_Reseed_request(RBG3_DRBG_state_handle), 

where RBG3_DRBG_state_handle was obtained during instantiation.  

2. The DRBG_Reseed function is executed in response to a reseed request by an 
application (see step 1) or during the generation process (see Appendices B.6.2 and B.6.3): 

status = DRBG_Reseed(RBG3_DRBG_state_handle). 

For this example, the DRBG_Reseed function is modified to obtain s + 64 bits of entropy 
rather than the “normal” s bits of entropy (see method A for step 3.1 in Sec. 6.5.1.2.1). 

(status, seed_material) = Get_entropy_bitstring(s + 64). 

If status = SUCCESS is returned by the DRBG_Reseed function, the internal state has 
been updated with at least 320 bits of fresh entropy (i.e., 256 + 64 = 320). Status = 
SUCCESS is returned to the calling application by the DRBG_Reseed function. 

If status ≠ SUCCESS (e.g., the entropy source has failed), the DRBG has not reseeded, 
and an error indication is returned as the status from DRBG_Reseed function to the 
calling application. 

B.7. DRBG Chains Using the RBGC Construction 

A chain of DRBGs consists of RBGC constructions and an initial randomness source on the same 
computing platform. For this example, the initial randomness source is a physical entropy source 
that provides output with full entropy (i.e., the initial randomness source is a full-entropy source). 
The chain includes two RBGC constructions: the root RBGC construction (RBGC1) and a child 
(RBGC2) (see Fig. 51). 
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Fig. 51. Example of DRBG chains 

In this example, a CTR_DRBG with no derivation function is used in the root (RBGC1). It will be 
seeded and reseeded at a security strength of 192 bits using the initial randomness source. 

RBGC2 is implemented using SHA-256 and the HMAC_DRBG. RBGC2 will be seeded and 
reseeded at a security strength of 128 bits using the root (RBGC1) as its randomness source. 

B.7.1. Instantiation of the RBGC Constructions 

The DRBG in each RBGC construction is instantiated by an application using a known randomness 
source, starting with the instantiation of the DRBG in the root using the initial randomness source 
(see Appendix B.7.1.1). Subsequent layers in the chain can be instantiated when an already-
instantiated RBGC construction is available. For this example, after the root has been 
instantiated, the DRBG in a child RBGC construction (RBGC2) can be instantiated using the root 
as its randomness source (see Sec. 7.2.1.2). 

B.7.1.1. Instantiation of the Root RBGC Construction 

The root of the DRBG chain is instantiated using the initial randomness source, which for this 
example is an entropy source that provides output with full entropy. The instantiation is 
requested by an application (i.e., ApplicationA in Fig. 51). The CTR_DRBG in the root is 
implemented using AES-192, so a maximum security strength of 192 bits can be instantiated. 
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1. The application (ApplicationA) sends an instantiate request to the root requesting that the 3817 
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DRBG within the root be instantiated at a security strength of 192 bits: 

(status, Root_DRBG_state_handle) =  
DRBG_Instantiate_request(192, “Root RBGC”), 

where “Root RBGC” is the personalization string, and Root_DRBG_state_handle is the 
name of the state handle to be assigned to the internal state of the root’s DRBG. 

2. Upon receiving the instantiate request, the root (RBGC1) executes the instantiate function 
for its DRBG: 

(status, Root_DRBG_state_handle) = DRBG_Instantiate(192, “Root RBGC”). 

The DRBG_Instantiate function in the root determines that its DRBG (CTR_DRBG) 
needs to obtain 192 + 128 = 320 bits with full entropy from the full-entropy source. The 
root sends a Get_entropy_bitstring request to the randomness source to obtain 320 bits 
of seed material: 

(status, seed_material) = Get_entropy_bitstring(320, Method_1). 

Method_1 indicates that only entropy from a physical entropy source is to be counted. 

If the status indicates success and seed_material is returned from the initial randomness 
source (i.e., the full-entropy source), the CTR_DRBG is seeded using the seed_material 
and the personalization_string (i.e., “Root RBGC”) (see SP 800-90A). The internal state is 
recorded (including the security strength of the instantiation), and the status and a state 
handle are returned to the root (RBC1) and forwarded to the application in response to 
the instantiate request. 

If the status indicates an error, the internal state is not created. The status and an invalid 
state handle are returned to the root (RBC1) and forwarded to the application in response 
to the instantiate request. 

B.7.1.2. Instantiation of a Child RBGC Construction (RBGC2) 

A child RBGC construction can be instantiated by an application (i.e., ApplicationB in Fig. 51) after 
the root has been successfully instantiated. In this example, the HMAC_DRBG in RBGC2 is 
implemented using SHA-256, so a maximum security strength of 256 bits is possible. However, 
since the root RBGC construction (i.e., the randomness source for RBGC2) can only support a 
security strength of 192 bits (see Appendix B.7.1.1), only requests for security strengths of 192 
or 128 bits can be instantiated for RBGC2. 

The DRBG in RBGC2 is instantiated as follows: 

1. An application (ApplicationB) requests the instantiation of the DRBG in RBGC2 at a security 
strength of 128 bits: 

(status, RBGC2_DRBG_state_handle) =  
DRBG_Instantiate_request(128, “RBGC2 DRBG”), 
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where “RBGC2 DRBG” is the personalization string, and RBGC2_DRBG_state_handle is 3853 
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the name of the state handle to be assigned to the DRBG in the RBGC2 construction. 

2. Upon receiving the instantiate request, the RBGC2 construction executes the instantiate 
function for its DRBG: 

(status, RBGC2_DRBG_state_handle) = DRBG_Instantiate(128, “RBGC2 DRBG”). 

The DRBG_Instantiate function in the DRBG sends a generate request to the root: 

(status, seed_material) = DRBG_Generate(Root_DRBG_state_handle, 192, 128), 

where 

• Root_DRBG_state_handle is the state handle for the internal state of the DRBG in 
the root (see Sec. 7.1.1). 

• The requested security strength is 128 bits, so for the HMAC_DRBG in RBGC2, 
the number of bits requested from the root (i.e., RBGC2’s randomness source) is 
3s/2 = 192 bits. 

See Appendix B.7.2 for the handling of a generate request by an RBGC construction. 

If the status returned from the randomness source (RBGC1) in response to the generate 
request indicates a success, the HMAC_DRBG in RBGC2 is seeded using the 
seed_material returned from the generate request (Appendix B.7.2) and the 
personalization_string (“RBGC2 DRBG”) from the instantiate request in step 1 (see SP 800-
90A). The internal state is recorded (including the security strength of the instantiation), 
and the status and the state handle are returned to the RBGC2 construction to be 
forwarded to the application that requested the instantiation of the DRBG in the RBGC2 
construction. 

If the status indicates an error, then the internal state is not created. The status and an 
invalid state handle are returned to the RBGC2 construction to be forwarded to the 
application that requested the instantiation of the DRBG in the RBGC2 construction. 

B.7.2. Requesting the Generation of Pseudorandom Bits 

1. An application or a child RBGC construction requests the generation of pseudorandom 
bits as follows: 

(status, seed_material) = DRBG_Generate_request(DRBG_state_handle, n, s), 

where 

• DRBG_state_handle is the state handle for the internal state of the DRBG in the 
RBGC construction requested to generate the bits. For this example, the state 
handle is Root_DRBG_state_handle for the DRBG in the root RBGC construction. 
For RBGC2, the state handle is RBGC2_DRBG_state_handle. 

• n is the number of bits to be generated using the DRBG in the RBGC construction.  
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• s is the required security strength to be supported by the DRBG in the RBGC 3888 
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construction. 

2. Upon receiving the generate request, the RBGC construction executes the generate 
function for its DRBG: 

(status, seed_material) = DRBG_Generate(DRBG_state_handle, n, s). 

If the returned status indicates success, the requested number of bits are returned 
(seed_material) to the RBGC construction and forwarded to the requesting entity with the 
status. The requesting entity is either an application or a child of the RBGC construction. 

If the returned status indicates an error, seed_material is a Null bitstring. This could, for 
example, be the result of requesting a higher security strength than is instantiated for the 
DRBG requested to generate bits. The status and the Null bitstring are returned to the 
RBGC construction and forwarded to the requesting entity. 

B.7.3. Reseeding an RBGC Construction 

The DRBG in an RBGC construction may be explicitly requested to be reseeded by an application, 
or the DRBG may automatically reseed itself (e.g., at the end of its seedlife or after some system 
interrupt). 

1. An application requests the reseed of the DRBG in an RBGC construction as follows: 

(status) = DRBG_Reseed_request(DRBG_state_handle). 

DRBG_state_handle is Root_DRBG_state_handle for RBGC1 and 
RBG2_DRBG_state_handle for RBGC2. 

2. Upon receiving a reseed request or if scheduled for automatic reseeding, the RBGC 
construction executes the reseed function for its DRBG: 

status = DRBG_Reseed(DRBG_state_handle). 

Appendix B.7.3.1 discusses the reseed function in the root’s DRBG, and Appendix B.7.3.2 
discusses the reseed function in the DRBG of RBGC2. 

B.7.3.1. Reseeding the Root RBGC Construction 

The DRBG_Reseed function in the root uses the initial randomness source to reseed in the same 
manner as for instantiation (i.e., by sending a Get_entropy_bitstring request to the entropy 
source). For the CTR_DRBG in the root, 320 bits are again requested: 

(status, seed_material) = Get_entropy_bitstring(320, Method_1). 

If the returned status indicates a success, seed_material is returned from the initial randomness 
source, and the CTR_DRBG within the root is reseeded using the seed_material (see SP 800-
90A). The DRBG’s internal state is updated, and the status is returned to the application by the 
DRBG_Reseed function in the root RBGC construction. 
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If the status indicates an error, then the internal state is not updated. The status is returned to 3922 
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the application. 

B.7.3.2. Reseeding a Child RBGC Construction 

The DRBG_Reseed function in the RBGC construction uses its randomness source in the same 
manner as for instantiation (i.e., by sending a DRBG_Generate_request to its randomness 
source, which is the root in this example). 

For the HMAC_DRBG in RBGC2, s = 128 bits are requested from the root RBGC construction 
(where s is the security strength of the DRBG instantiation in RBGC2; see Appendix B.7.1.2). 

(status, seed_material) = DRBG_Generate(Root_DRBG_state_handle, 128, 128), 

where: 

• Root_DRBG_state_handle is the state handle for the internal state of the DRBG in the 
root (see Appendix B.7.1.1). 

• The requested security strength is 128 bits, so for the HMAC_DRBG in RBGC2, the 
number of bits requested from the root (RBGC2’s randomness source) is s = 128 bits. 

Appendix B.7.2 discusses the handling of a generate request by an RBGC construction. 
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Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG 3937 
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The derivation functions in this appendix will be included in the next revision of SP 800-90A along 
with other changes that are needed for consistency with this version of SP 800-90C. 

C.1. Background and Scope 

The CTR_DRBG, specified in SP 800-90A, uses the AES block cipher in FIPS 197 and has two 
versions that may be implemented: with or without a derivation function. 

When a derivation function is not used, SP 800-90A requires the use of seed material with full 
entropy for instantiating and reseeding a CTR_DRBG. This addendum permits the use of an RBG 
compliant with SP 800-90C to provide the required seed material for the CTR_DRBG when 
implemented as specified in SP 800-90C (see Appendix C.2). 

When a derivation function is used in a CTR_DRBG implementation, SP 800-90A specifies the 
use of the block cipher derivation function. This addendum modifies the requirements in SP 800-
90A for the CTR_DRBG by specifying two additional derivation functions that may be used 
instead of the block cipher derivation function (see Appendix C.3). 

C.2. CTR_DRBG Without a Derivation Function 

When a derivation function is not used, SP 800-90A requires that seedlen full-entropy bits be 
provided as the seed material (e.g., from an entropy source that provides full-entropy output), 
where seedlen is the length of the key to be used by the CTR_DRBG plus the length of the output 
block (i.e., 128 bits for AES). SP 800-90C includes an approved method for externally conditioning 
the output of an entropy source to provide a bitstring with full entropy when using an entropy 
source that does not provide full-entropy output. 

SP 800-90C also permits the use of seed material from an RBG when the DRBG to be instantiated 
and reseeded is implemented and used as specified in SP 800-90C. 

C.3. CTR_DRBG Using a Derivation Function 

When a derivation function is used within a CTR_DRBG, SP 800-90A specifies the use of the 
Block_cipher_df included in that document during instantiation and reseeding to adjust the 
length of the seed material to seedlen bits, where  

seedlen = the security strength + the block length. 

For AES, seedlen = 256, 320, or 384 bits (see SP 800-90A). During generation, the length of any 
additional input provided during the generation request is also adjusted to seedlen bits. 

Two alternative derivation functions are specified in Appendices C.3.2 and C.3.3. Appendix C.3.1 
discusses the keys and constants for use with the alternative derivation functions specified in 
Appendices C.3.2 and C.3.3. 
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C.3.1. Derivation Keys and Constants 3970 
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Both of the derivation methods specified in Appendices C.3.2 and C.3.3 use an AES derivation key 
(df_Key) whose length shall meet or exceed the instantiated security strength of the DRBG 
instantiation. The df_Key may be set to any value and may be the current value of a key used by 
the DRBG. 

These alternative methods use three 128-bit constants C1, C2, and C3, which are defined as: 

C1 = 000000...00 
C2 = 101010...10 
C3 = 010101...01 

The value of B used in Appendices C.3.2 and C.3.3 depends on the length of the AES derivation 
key (df_Key). When the length of df_Key = 128 bits, then B = 2. Otherwise, B = 3. 

C.3.2. Derivation Function Using CMAC 

CMAC is a block-cipher mode of operation specified in SP 800-38B. The CMAC_df derivation 
function is specified as follows: 

CMAC_df: 

Input: bitstring input_string, integer number_of_bits_to_return. 

Output: bitstring Z. 

Process: 

1. Let C1, C2, and C3 be 128-bit blocks defined as 000000...0, 101010...10, and 010101...01, 
respectively. 

2. Get df_Key.      Comment: See Appendix C.3.1. 

3. Z = the Null string. 

4. For i = 1 to B: 

Z = Z || CMAC(df_Key, Ci || input_string). 

5. Z = leftmost(Z, number_of_bits_to_return). 

6. Return(Z). 

C.3.3. Derivation Function Using CBC-MAC 

This CBC-MAC derivation function shall only be used when the input_string has the following 
properties: 

• The length of the input_string is always a fixed length. 
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• The length of the input_string is an integer multiple of 128 bits. Let m be the number of 4000 
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128-bit blocks in the input_string. 

This derivation function is specified as follows: 

CBC-MAC_df: 

Input: bitstring input_string, integer number_of_bits_to_return. 

Output: bitstring Z. 

Process: 

1. Let C1, C2, and C3 be 128-bit blocks defined as 000000...0, 101010...10, and 010101...01, 
respectively. 

2. Get df_Key.      Comment: See Appendix C.3.1. 

3. Z = the Null string. 

4. Let input_string = S1 || S2 || ... || Sm, where the Si are contiguous 128-bit blocks. 

5. For j = 1 to B: 

5.1 S0 = Cj. 

5.2 V = 128-bit block of all zeroes. 

5.3 For i = 0 to m: 

V = Encrypt(df_Key, V ⊕ Si). Comment: Perform the cipher 
operation specified in FIPS 197. 

5.4 Z = Z || V.  

6. Z = leftmost(Z, number_of_bit_to_return). 

7. Return(Z). 
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Appendix D. List of Abbreviations and Acronyms 4022 

4023 
4024 

4025 
4026 

4027 
4028 

4029 
4030 

4031 
4032 

4033 
4034 

4035 
4036 

4037 
4038 

4039 
4040 

4041 
4042 

4043 
4044 

4045 
4046 

4047 

4048 
4049 

4050 
4051 
4052 

4053 
4054 

AES 
Advanced Encryption Standard32

32 As specified in FIPS 197. 

 

CAVP 
Cryptographic Algorithm Validation Program 

CMVP 
Cryptographic Module Validation Program 

DRBG 
Deterministic Random Bit Generator33

33 Mechanism specified in SP 800-90A. 

  

FIPS 
Federal Information Processing Standard 

MAC 
Message Authentication Code 

NIST 
National Institute of Standards and Technology 

RBG 
Random Bit Generator 

SP 
(NIST) Special Publication 

Sub-DRBG 
Subordinate DRBG 

TDEA 
Triple Data Encryption Algorithm34

34 As specified in SP 800-67, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher. 

 

XOR 
Exclusive-Or (operation) 

D.1. List of Symbols 

0x 
A string of x zeroes. 

x 
The ceiling of x; the least integer number that is not less than the real number x. For example, 3 = 3, and 5.5 = 
6. 

ε 
A positive constant that is assumed to be smaller than 2−32. 

 



NIST SP 800-90C 4pd (Fourth Public Draft)  Recommendation for RBG Constructions 
July 2024   
 

135 

 

min(a, b) 4055 
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4057 
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4059 
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4065 
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4067 

The minimum of a and b. 

output_len 
The bit length of the output block of a cryptographic primitive. 

s 
The security strength. 

X ⊕ Y 
Boolean bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and Y of the same length. 

+ 
Addition over real numbers. 

X || Y 
The concatenation of two bitstrings X and Y. 
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Appendix E. Glossary 4068 

4069 
4070 

4071 
4072 

4073 
4074 
4075 

4076 
4077 
4078 

4079 
4080 
4081 
4082 

4083 
4084 
4085 

4086 
4087 
4088 

4089 
4090 

4091 
4092 
4093 

4094 
4095 
4096 
4097 

4098 
4099 
4100 

4101 
4102 

4103 
4104 
4105 
4106 

additional input 
Optional additional information that could be provided in a generate or reseed request by a consuming application. 

adversary 
A malicious entity whose goal is to determine, guess, or influence the output of an RBG. 

alternative randomness source 
A sibling of the parent randomness that may be used by a non-root RBGC construction for reseeding when the parent 
randomness source is unavailable. 

approved 
An algorithm or technique for a specific cryptographic use that is specified in a FIPS or NIST recommendation, 
adopted in a FIPS or NIST recommendation, or specified in a list of NIST-approved security functions. 

backtracking resistance 
A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not 
weaken previously generated outputs. See SP 800-90A for a more complete discussion. Contrast with prediction 
resistance. 

biased 
A random variable is said to be biased if values of the finite sample space are selected with unequal probability. 
Contrast with unbiased. 

big-endian format 
A format in which the most significant bytes (the bytes containing the high-order or leftmost bits) are stored in the 
lowest address with the following bytes in sequentially higher addresses. 

bitstring 
An ordered sequence (string) of 0s and 1s. The leftmost bit is the most significant bit. 

block cipher 
A parameterized family of permutations on bitstrings of a fixed length; the parameter that determines the 
permutation is a bitstring called the key. 

computing platform 
A system’s hardware, firmware, operating system, and all applications and libraries executed by that operating 
system. Components that communicate with the operating system through a peripheral bus or a network, either 
physical or virtual, are not considered to be part of the same computing platform. 

conditioning function (external) 
As used in SP 800-90C, a deterministic function that is used to produce a bitstring with full entropy or to distribute 
entropy. 

consuming application 
An application that uses random outputs from an RBG. 

cryptographic boundary 
An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical bounds of a 
cryptographic module and contains all the hardware, software, and/or firmware components of a cryptographic 
module. 
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cryptographic module 4107 
4108 
4109 

4110 
4111 
4112 

4113 
4114 
4115 

4116 
4117 

4118 
4119 
4120 
4121 
4122 
4123 

4124 
4125 
4126 

4127 
4128 
4129 
4130 

4131 
4132 
4133 
4134 

4135 
4136 
4137 

4138 
4139 
4140 

4141 
4142 
4143 
4144 

The set of hardware, software, and/or firmware that implements cryptographic functions (including cryptographic 
algorithms and key generation) and is contained within the cryptographic boundary. 

deterministic random bit generator (DRBG) 
An RBG that produces random bitstrings by applying a deterministic algorithm to seed material. 

Note: A DRBG at least has access to a randomness source initially. 

digitization 
The process of generating raw discrete digital values from non-deterministic events (e.g., analog noise sources) 
within a noise source. 

DRBG chain 
A chain of DRBGs in which one DRBG is used to provide seed material for another DRBG. 

entropy 
A measure of disorder, randomness, or variability in a closed system. 

Note1: The entropy of a random variable X is a mathematical measure of the amount of information gained 
by an observation of X. 

Note2: The most common concepts are Shannon entropy and min-entropy. Min-entropy is the measure 
used in SP 800-90. 

entropy rate 
The validated rate at which an entropy source provides entropy in terms of bits per entropy-source output (e.g., five 
bits of entropy per 8-bit output sample). 

entropy source 
The combination of a noise source, health tests, and an optional conditioning component that produce bitstrings 
containing entropy. A distinction is made between entropy sources with physical noise sources and those having 
non-physical noise sources. 

fresh entropy 
A bitstring that is output from a non-deterministic randomness source that has not been previously used to generate 
output or has not otherwise been made externally available. 

Note: The randomness source should be an entropy source or RBG3 construction. 

fresh randomness 
A bitstring that is output from a randomness source that has not been previously used to generate output or has not 
otherwise been made externally available. 

full-entropy bitstring 
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This recommendation assumes 
that a bitstring has full entropy if the entropy rate is at least 1 − ε, where ε is at most 2−32. 

full-entropy source 
An SP 800-90B-compliant entropy source that has been validated as providing output with full entropy or the 
validated combination of an SP 800-90B-compliant entropy source and an external conditioning function that 
provides full-entropy output. 
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hash function 4145 
4146 
4147 
4148 
4149 

4150 
4151 
4152 
4153 

4154 
4155 
4156 
4157 
4158 
4159 

4160 
4161 
4162 

4163 
4164 

4165 
4166 
4167 

4168 
4169 
4170 

4171 
4172 
4173 

4174 
4175 
4176 
4177 

4178 
4179 
4180 

4181 
4182 
4183 

4184 
4185 

A (mathematical) function that maps values from a large (possibly very large) domain into a smaller range. The 
function satisfies the following properties: 

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output. 

2. (Collision-free) It is computationally infeasible to find any two distinct inputs that map to the same output. 

health testing 
Testing within an implementation immediately prior to or during normal operation to obtain assurance that the 
implementation continues to perform as implemented and validated. 

Note: Health tests are comprised of continuous tests and startup tests. 

ideal randomness source 
The source of an ideal random sequence of bits. Each bit of an ideal random sequence is unpredictable and unbiased 
with a value that is independent of the values of the other bits in the sequence. Prior to an observation of the 
sequence, the value of each bit is equally likely to be 0 or 1, and the probability that a particular bit will have a 
particular value is unaffected by knowledge of the values of any or all the other bits. An ideal random sequence of n 
bits contains n bits of entropy. 

independent entropy sources 
Two entropy sources are independent if knowledge of the output of one entropy source provides no information 
about the output of the other entropy source. 

initial randomness source 
The randomness source for the root RBGC construction in a DRBG chain of RBGC constructions. 

instantiate 
The process of initializing a DRBG with sufficient randomness to generate pseudorandom bits at the desired security 
strength. 

internal state (of a DRBG) 
The collection of all secret and non-secret information about an RBG or entropy source that is stored in memory at 
a given point in time. 

known answer test 
A test that uses a fixed input/output pair to detect whether a deterministic component was implemented correctly 
or continues to operate correctly. 

min-entropy 
A lower bound on the entropy of a random variable. The precise formulation for min-entropy is (-log2 max pi) for a 
discrete distribution having probabilities p1, ..., pk. Min-entropy is often used as a measure of the unpredictability of 
a random variable. 

must 
Used to indicate a requirement that may not be testable by a CMVP testing lab.  

Note: Must may be coupled with not to become must not. 

noise source 
A source of unpredictable data that outputs raw discrete digital values. The digitization mechanism is considered 
part of the noise source. A distinction is made between physical noise sources and non-physical noise sources. 

non-physical entropy source 
An entropy source whose primary noise source is non-physical. 
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non-physical noise source 4186 
4187 

4188 
4189 

4190 
4191 

4192 
4193 

4194 
4195 

4196 
4197 

4198 
4199 
4200 
4201 

4202 
4203 
4204 
4205 
4206 

4207 
4208 
4209 
4210 
4211 
4212 

4213 
4214 
4215 

4216 
4217 
4218 

4219 
4220 
4221 
4222 
4223 

4224 
4225 

A noise source that typically exploits system data and/or user interaction to produce digitized random data. 

non-validated entropy source 
An entropy source that has not been validated by the CMVP as conforming to SP 800-90B. 

null string 
An empty bitstring. 

parent randomness source 
The randomness source used to seed a non-root RBGC construction. 

personalization string 
An optional input value to a DRBG during instantiation. 

physical entropy source 
An entropy source whose primary noise source is physical. 

physical noise source 
A noise source that exploits physical phenomena (e.g., thermal noise, shot noise, jitter, metastability, radioactive 
decay, etc.) from dedicated hardware designs (using diodes, ring oscillators, etc.) or physical experiments to produce 
digitized random data. 

physically secure channel 
A physical trusted and safe communication link established between an implementation of an RBG1 construction 
and its randomness source to securely communicate unprotected seed material without relying on cryptography. A 
physically secure channel protects against eavesdropping as well as physical or logical tampering by unwanted 
operators/entities, processes, or other devices between the endpoints. 

prediction resistance 
For a DRBG, a property of a DRBG that provides assurance that compromising the current internal state of the DRBG 
does not allow future DRBG outputs to be predicted past the point where the DRBG has been reseeded with 
sufficient entropy from an entropy source or RBG3 construction. See SP 800-90A for a more complete discussion. 
(Contrast with backtracking resistance.) 

For an RBG, compromising the output of the RBG does not allow future outputs of the RBG to be predicted. 

pseudocode 
An informal, high-level description of a computer program, algorithm, or function that resembles a simplified 
programming language. 

random bit generator (RBG) 
A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically 
independent and unbiased bits. 

randomness 
The unpredictability of a bitstring. If the randomness is produced by a non-deterministic source (e.g., an entropy 
source or RBG3 construction), the unpredictability is dependent on the quality of the source. If the randomness is 
produced by a deterministic source (e.g., a DRBG), the unpredictability is based on the capability of an adversary to 
break the cryptographic algorithm for producing the pseudorandom bitstring. 

randomness source 
A source of randomness for an RBG. The randomness source may be an entropy source or an RBG construction. 
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RBG1 construction 4226 
4227 

4228 
4229 
4230 
4231 

4232 
4233 
4234 
4235 

4236 
4237 
4238 
4239 

4240 
4241 
4242 
4243 

4244 
4245 
4246 

4247 
4248 

4249 
4250 

4251 
4252 

4253 
4254 
4255 
4256 
4257 
4258 
4259 

4260 
4261 
4262 
4263 
4264 
4265 
4266 

An RBG construction with the DRBG and the randomness source in separate cryptographic modules. 

RBG2 construction 
An RBG construction with one or more entropy sources and a DRBG within the same cryptographic module. This RBG 
construction does not provide full-entropy output. 

Note: An RBG2 construction may be either an RBG2(P) or RBG2(NP) construction. 

RBG2(NP) construction 
A non-physical RBG2 construction that obtains entropy from one or more validated non-physical entropy sources 
and possibly from one or more validated physical entropy sources. This RBG construction does not provide full-
entropy output. 

RBG2(P) construction 
A physical RBG2 construction that includes a DRBG and one or more entropy sources in the same cryptographic 
module. Only the entropy from validated physical entropy sources is counted when fulfilling an entropy request 
within the RBG. This RBG construction does not provide full-entropy output. 

RBG3 construction 
An RBG construction that includes a DRBG and one or more entropy sources in the same cryptographic module. 
When working properly, bitstrings that have full entropy are produced. Sometimes called a non-deterministic 
random bit generator (NRBG) or true random number (or bit) generator. 

RBGC construction 
An RBG construction used within a DRBG chain in which one DRBG is used to provide seed material for another 
DRBG. The construction does not provide full-entropy output. 

reseed 
To refresh the internal state of a DRBG with seed material from a randomness source. 

root RBGC construction 
The first RBGC construction in a DRBG chain of RBGC constructions. 

sample space 
The set of all possible outcomes of an experiment. 

security boundary 
For an entropy source, a conceptual boundary that is used to assess the amount of entropy provided by the values 
output from the entropy source. The entropy assessment is performed under the assumption that any observer 
(including any adversary) is outside of that boundary during normal operation. 

For a DRBG, a conceptual boundary that contains the required DRBG functions and the DRBG’s internal state. 

For an RBG, a conceptual boundary that is defined with respect to one or more threat models that includes an 
assessment of the applicability of an attack and the potential harm caused by the attack. 

security strength 
A number associated with the amount of work (i.e., the number of basic operations of some sort) that is required to 
“break” a cryptographic algorithm or system in some way. In this recommendation, the security strength is specified 
in bits and is a specific value from the set {128, 192, 256}. If the security strength associated with an algorithm or 
system is s bits, then it is expected that (roughly) 2s basic operations are required to break it. 

Note: This is a classical definition that does not consider quantum attacks. This definition will be revised to 
address quantum issues in the future. 
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seed 4267 
4268 
4269 
4270 

4271 
4272 
4273 

4274 
4275 
4276 

4277 
4278 
4279 

4280 
4281 
4282 
4283 

4284 
4285 
4286 
4287 

4288 
4289 

4290 
4291 
4292 

4293 
4294 
4295 

4296 
4297 
4298 

4299 
4300 
4301 

4302 
4303 
4304 

4305 
4306 
4307 

Verb: To initialize or update the internal state of a DRBG with seed material and (optionally) a personalization string 
or additional input. The seed material should contain sufficient randomness to meet security requirements. 

Noun: The combination of seed material and (optional) personalization or additional input. 

seed material 
An input bitstring from a randomness source that provides an assessed minimum amount of randomness (e.g., 
entropy) for a DRBG. 

seedlife 
The period of time between instantiating or reseeding a DRBG with seed material and either reseeding the DRBG 
with seed material containing new, unused randomness or uninstantiating the DRBG. 

shall 
The term used to indicate a requirement that is testable by a testing lab. See testable requirement. 

Note: Shall may be coupled with not to become shall not. 

should 
The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable 
results. 

Note: Should may be coupled with not to become should not. 

sibling (randomness source) 
A sibling of the parent randomness source for a non-root RBGC construction (i.e., the sibling can be considered the 
“aunt” or “uncle” in “human family” terms). The “grandparent” of the non-root RBGC construction is the parent of 
both the parent randomness source and the sibling. 

state handle 
A pointer to the internal state information for a particular DRBG instantiation. 

subordinate DRBG (sub-DRBG) 
A DRBG that is instantiated by an RBG1 construction and contained within the same security boundary as the RBG1 
construction. 

support a security strength (by a DRBG) 
The DRBG has been instantiated at a security strength that is equal to or greater than the security strength requested 
for the generation of random bits. 

targeted security strength 
The security strength that is intended to be supported by one or more implementation-related choices (e.g., 
algorithms, cryptographic primitives, auxiliary functions, parameter sizes, and/or actual parameters). 

testable requirement 
A requirement that can be tested for compliance by a testing lab via operational testing, code review, or a review of 
relevant documentation provided for validation. A testable requirement is indicated using a shall statement. 

threat model 
A description of a set of security aspects that need to be considered. A threat model can be defined by listing a set 
of possible attacks along with the probability of success and the potential harm from each attack. 

unbiased 
A random variable is said to be unbiased if all values of the finite sample space are chosen with the same probability. 
Contrast with biased. 
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uninstantiate 4308 
4309 

4310 
4311 

The termination of a DRBG instantiation. 

validated entropy source 
An entropy source that has been successfully validated by the CAVP and CMVP for conformance to SP 800-90B. 
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