

NIST Special Publication 800
NIST SP 800-90C 4pd

Recommendation for Random Bit
Generator (RBG) Constructions

Fourth Public Draft

Elaine Barker

John Kelsey
Kerry McKay

Allen Roginsky
Meltem Sönmez Turan

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-90C.4pd

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-90C.4pd

NIST Special Publication 800
NIST SP 800-90C 4pd

Recommendation for Random Bit
Generator (RBG) Constructions

Fourth Public Draft

Elaine Barker

John Kelsey
Kerry McKay

Allen Roginsky
Meltem Sönmez Turan
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-90C.4pd

July 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper
in order to specify the experimental procedure adequately. Such identification does not imply recommendation or
endorsement of any product or service by NIST, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus,
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of
these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Authority
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is
responsible for developing information security standards and guidelines, including minimum requirements for
federal information systems, but such standards and guidelines shall not apply to national security systems without
the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is
consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding
on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be
interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB,
or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis
and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on YYYY-MM-DD [will be added in final published version]
Supersedes NIST Series XXX (Month Year) DOI [Will be added to final publication.]

How to Cite this NIST Technical Series Publication:
Barker EB, Kelsey JM, McKay KA, Roginsky AL, Sönmez Turan M (2024) Recommendation for Random Bit Generator
(RBG) Constructions. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) NIST SP 800-90C 4pd. https://doi.org/10.6028/NIST.SP.800-90C.4pd

Author ORCID iDs
Elaine Barker: 000-0003-0454-0461
John Kelsey: 000-0002-3427-1744
Kerry McKay: 000-0002-5956-587X
Allen Roginsky: 0000-0003-2684-6736
Meltem Sönmez Turan: 0000-0002-1950-7130

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

Recommendation for RBG Constructions NIST SP 800-90C 4pd (Fourth Public Draft)
July 2024

Public Comment Period
July 3, 2024 – September 30, 2024

Submit Comments
rbg_comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/90/c/4pd, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

mailto:rbg_comments@nist.gov
https://csrc.nist.gov/pubs/sp/800/90/c/4pd

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

i

Abstract 1

2
3
4
5
6
7
8
9

10

11
12
13

14

15
16
17
18
19
20
21
22
23
24

25

The NIST Special Publication (SP) 800-90 series of documents supports the generation of high-
quality random bits for cryptographic and non-cryptographic use. SP 800-90A specifies several
deterministic random bit generator (DRBG) mechanisms based on cryptographic algorithms. SP
800-90B provides guidance for the development and validation of entropy sources. This
document (SP 800-90C) specifies constructions for the implementation of random bit generators
(RBGs) that include DRBG mechanisms as specified in SP 800-90A and that use entropy sources
as specified in SP 800-90B. Constructions for four classes of RBGs — namely, RBG1, RBG2, RBG3,
and RBGC — are specified in this document.

Keywords

deterministic random bit generator (DRBG); entropy; entropy source; random bit generator
(RBG); randomness source; RBG1 construction; RBG2 construction; RBG3 construction; RBGC
construction; subordinate DRBG (sub-DRBG).

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines
for the cost-effective security and privacy of other than national security-related information in
federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

ii

Note to Reviewers 26

27
28
29
30

31
32
33
34

35
36
37
38
39

40
41

42
43

44
45
46
47

48
49
50

51
52
53
54

55
56

57

58
59
60
61

1. This fourth public draft of SP 800-90C describes four RBG constructions: RBG1, RBG2,
RBG3, and RBGC. The RBGC construction has been included since the last draft to specify
chains or trees of DRBGs. Responses to the following questions are requested for the
DRBG chains discussed in Sec. 7:

• Should the initial randomness source for the root RBGC construction be required
to be “part” of the computing platform on which the DRBG chains are used (i.e.,
non-removable during system operation), or should an external removable device
be allowed as the initial randomness source? Please provide a rationale.

• For the DRBG tree structure in Sec. 7, will a requirement for the initial randomness
source to be reseeded before generating output for seeding or reseeding the root
RBGC construction be a substantial problem if that source is an RBG2(P) or
RBG2(NP) construction (e.g., when dev/random is serving as the initial
randomness source)? Refer to Sec. 7.1.2.1 for an example.

• What kind of guidance should be included for virtualized and cloud environments
to avoid insecure implementations?

• Should a limit be imposed on the length of a DRBG chain? If so, what limit would
be appropriate?

2. This draft distinguishes between a request for the execution of a function within a DRBG
or RBG (e.g., by an application) and the execution of the requested function within the
DRBG or RBG. However, note that the inputs and outputs of the request and the intended
function are usually the same.

3. A prediction-resistance request in a DRBG_Generate function is no longer provided as
an input parameter. Instead, prediction resistance can be obtained prior to issuing a
generate request by first issuing a reseed request using the DRBG_Reseed function.

4. For an RBG2 construction (see Sec. 5), a capability for reseeding is optional. When a
reseed capability is implemented, reseeding may be performed upon request by an
application and/or in response to some trigger. When reseeding is supported, periodic
reseeding is recommended to ensure recovery from a compromise.

• Should a reseeding capability be required for an RBG2(P) or RBG2(NP)
construction?

• If an implementation has a reseeding capability, should reseeding be required?

• If periodic reseeding is required, what advice should be included for reseeding an
RBG2 construction? The example of reseeding after at most 219 output bits is
suggested to align with the requirements in AIS 20/31 in case a developer would
like to submit its implementation to both the NIST and BSI validation programs.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

iii

5. SHA-1 and the 224-bit hash functions (i.e., SHA-224, SHA-512/224, and SHA3-224) have 62
63
64

65
66

67
68
69

70
71

72
73
74
75
76

77
78
79

80
81

82

been removed from this version since NIST plans to disallow them after 2030 (see an
upcoming revision of SP 800-131A).

6. After the publication of SP 800-90C, SP 800-90A (Revision 1) will be revised to resolve
inconsistencies with this document. The revision will include:

• The Instantiate_function, Generate_function, and Reseed_function will be
renamed to DRBG_Instantiate, DRBG_Generate, and DRBG_Reseed. These
names have been used in SP 800-90C for clarity.

• The Get_entropy_input call discussed in SP 800-90Ar1 will be renamed to the more
general term “Get_randomness-source_input,” which is used in SP 800-90C.

• SP 800-90Ar1 currently requires a nonce to be used during DRBG instantiation that is
either 1) a value with at least (security_strength/2) bits of entropy or 2) a value that is
expected to repeat no more often than a (security_strength/2)-bit random string
would be expected to repeat. The use of the nonce (as defined in SP 800-90Ar1) will
be replaced by additional bits provided by the randomness source.

• Parameters needed to use the DRBGs in the constructions specified in SP 800-90C will
be provided for each DRBG type in SP 800-90Ar1 (i.e., the Hash_DRBG,
HMAC_DRBG, and CTR_DRBG).

• Are there any other inconsistencies between this draft of SP 800-90C and the current
version of SP 800-90Ar1 at https://doi.org/10.6028/NIST.SP.800-90Ar1?

https://doi.org/10.6028/NIST.SP.800-90Ar1

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

iv

Call for Patent Claims 83

84
85
86
87
88
89

90
91

92
93

94
95
96

97
98

99
100

101
102
103
104
105

106
107

108

This public review includes a call for information on essential patent claims (claims whose use
would be required for compliance with the guidance or requirements in this Information
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be
directly stated in this ITL Publication or by reference to another publication. This call also includes
disclosure, where known, of the existence of pending U.S. or foreign patent applications relating
to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf,
in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not hold
and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to
applicants desiring to utilize the license for the purpose of complying with the guidance
or requirements in this ITL draft publication either:

i. under reasonable terms and conditions that are demonstrably free of any unfair
discrimination; or

ii. without compensation and under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make
assurances on its behalf) will include in any documents transferring ownership of patents subject
to the assurance, provisions sufficient to ensure that the commitments in the assurance are
binding on the transferee, and that the transferee will similarly include appropriate provisions in
the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest
regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: rbg_comments@nist.gov

mailto:rbg_comments@nist.gov

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

v

Table of Contents 109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

1. Introduction and Purpose ...1

2. General Information ...3

2.4.1. DRBG Instantiations .. 7

2.4.2. Reseeding, Prediction Resistance, and Compromise Recovery ... 8

2.8.1. DRBG Functions .. 15

2.8.1.1. DRBG Generation Request .. 17

2.8.1.2. DRBG Reseed .. 18

2.8.1.3. Get_randomness-source_input Call ... 19

2.8.2. Interfacing With Entropy Sources .. 19

2.8.3. Interfacing With an RBG3 Construction ... 20

2.8.3.1. Instantiating a DRBG Within an RBG3 Construction ... 20

2.8.3.2. Generation Using an RBG3 Construction .. 22

3. Accessing Entropy Source Output ... 24

3.2.1. Conditioning Function Calls .. 26

3.2.1.1. Keys Used in External Conditioning Functions.. 27

3.2.1.2. Hash Function-based Conditioning Functions .. 27

3.2.1.3. Block Cipher-Based Conditioning Functions ... 28

3.2.2. Using a Vetted Conditioning Function .. 29

3.2.2.1. External Conditioning When Full Entropy is Not Required ... 29

3.2.2.2. Conditioning Function to Obtain Full-Entropy Bitstrings .. 31

4. RBG1 Construction Based on RBGs With Physical Entropy Sources ... 33

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

vi

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

4.2.1. Instantiating the DRBG in the RBG1 Construction ... 35

4.2.2. Requesting Pseudorandom Bits ... 38

4.3.1. Instantiating a Sub-DRBG ... 40

4.3.2. Requesting Random Bits From a Sub-DRBG ... 42

4.4.1. RBG1 Construction Requirements .. 42

4.4.2. Sub-DRBG Requirements .. 43

5. RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources 45

5.2.1. RBG2 Instantiation .. 46

5.2.2. Requesting Pseudorandom Bits From an RBG2 Construction .. 48

5.2.3. Reseeding an RBG2 Construction ... 49

6. RBG3 Constructions Based on the Use of Physical Entropy Sources .. 53

6.4.1. Conceptual Interfaces... 56

6.4.1.1. Instantiation of the DRBG ... 56

6.4.1.2. Random Bit Generation by the RBG3(XOR) Construction .. 57

6.4.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG 59

6.4.1.4. Reseeding the DRBG Instantiation .. 60

6.4.2. RBG3(XOR) Requirements .. 60

6.5.1. Conceptual Interfaces... 61

6.5.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction .. 61

6.5.1.2. Random and Pseudorandom Bit Generation .. 63

6.5.1.3. Reseeding .. 69

6.5.2. Requirements for an RBG3(RS) Construction ... 70

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

vii

7. RBGC Construction for DRBG Chains ... 72 177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

7.1.1. RBGC Environment ... 72

7.1.2. Instantiating and Reseeding Strategy ... 73

7.1.2.1. Instantiating and Reseeding the Root RBGC Construction ... 73

7.1.2.2. Instantiating and Reseeding a Non-Root RBGC Construction .. 74

7.2.1. RBGC Instantiation ... 74

7.2.1.1. Instantiation of the Root RBGC Construction ... 75

7.2.1.2. Instantiating an RBGC Construction Other Than the Root ... 79

7.2.2. Requesting the Generation of Pseudorandom Bits From an RBGC Construction 81

7.2.3. Reseeding an RBGC Construction ... 82

7.2.3.1. Reseed of the DRBG in the Root RBGC Construction ... 82

7.2.3.2. Reseed of the DRBG in an RBGC Construction Other Than the Root 84

7.3.1. General RBGC Construction Requirements .. 85

7.3.2. Additional Requirements for the Root RBGC Construction ... 86

7.3.3. Additional Requirements for an RBGC Construction That is NOT the Root of a DRBG Chain 87

8. Testing ... 88

8.1.1. Testing RBG Components ... 88

8.1.2. Handling Failures .. 88

8.1.2.1. Entropy-Source Failures .. 88

8.1.2.2. Failures by Non-Entropy-Source Components ... 89

References ... 91

Appendix A. Auxiliary Discussions (Informative) ... 94

A.1.1. Entropy ... 94

A.1.2. Security Strength .. 94

A.1.3. A Side-by-Side Comparison .. 94

A.1.4. Entropy and Security Strength in This Recommendation .. 95

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

viii

A.3.1. RBGC Tree Composition ... 98 211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

A.3.2. Changes in the Tree Structure .. 100

A.3.3. Using Virtual Machines .. 100

A.3.4. Reseeding From Siblings of the Parent .. 102

Appendix B. RBG Examples (Informative).. 104

B.2.1. Instantiation of the RBG1 Construction ... 106

B.2.2. Generation by the RBG1 Construction ... 108

B.3.1. Instantiation of the Sub-DRBGs .. 109

B.3.1.1. Instantiating Sub-DRBG1 .. 110

B.3.1.2. Instantiating Sub-DRBG2 .. 110

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs ... 111

B.4.1. Instantiation of an RBG2(P) Construction .. 112

B.4.2. Generation Using an RBG2(P) Construction ... 113

B.4.3. Reseeding an RBG2(P) Construction .. 114

B.5.1. Instantiation of an RBG3(XOR) Construction ... 115

B.5.2. Generation by an RBG3(XOR) Construction ... 116

B.5.2.1. Generation .. 116

B.5.2.2. Get_conditioned_full-entropy_input Function .. 118

B.5.3. Reseeding an RBG3(XOR) Construction ... 119

B.6.1. Instantiation of an RBG3(RS) Construction .. 121

B.6.2. Generation by an RBG3(RS) Construction .. 122

B.6.3. Generation by the Directly Accessible DRBG ... 124

B.6.4. Reseeding a DRBG .. 125

B.7.1. Instantiation of the RBGC Constructions ... 126

B.7.1.1. Instantiation of the Root RBGC Construction ... 126

B.7.1.2. Instantiation of a Child RBGC Construction (RBGC2) .. 127

B.7.2. Requesting the Generation of Pseudorandom Bits ... 128

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

ix

B.7.3. Reseeding an RBGC Construction ... 129 245
246
247
248
249
250
251
252
253
254
255
256
257

258

259
260
261
262

263

264
265
266
267
268
269
270
271
272
273
274
275
276

B.7.3.1. Reseeding the Root RBGC Construction ... 129

B.7.3.2. Reseeding a Child RBGC Construction .. 130

Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG 131

C.3.1. Derivation Keys and Constants ... 132

C.3.2. Derivation Function Using CMAC ... 132

C.3.3. Derivation Function Using CBC-MAC .. 132

Appendix D. List of Abbreviations and Acronyms .. 134

Appendix E. Glossary .. 136

List of Tables

Table 1. RBG capabilities ..4

Table 2. Key lengths for the hash-based conditioning functions ... 27

Table 3. Highest security strength for the DRBG’s cryptographic primitive ... 53

Table 4. Values for generating full-entropy bits by an RBG3(RS) construction 96

List of Figures

Fig. 1. DRBG instantiations ...8

Fig. 2. Example of an RBG security boundary within a cryptographic module 10

Fig. 3. General function calls ... 14

Fig. 4. DRBG_Instantiate function ... 15

Fig. 5. DRBG_Instantiate request .. 16

Fig. 6. DRBG_Generate function ... 17

Fig. 7. DRBG_Generate_request ... 18

Fig. 8. DRBG_Reseed function... 18

Fig. 9. DRBG_Reseed_request ... 19

Fig. 10. Get_entropy_bitstring function .. 20

Fig. 11. RBG3 instantiate function ... 21

Fig. 12. RBG3(XOR) or RBG3(RS) instantiation request ... 22

Fig. 13. RBG3 generate functions .. 22

https://nistgov.sharepoint.com/sites/Div773Pubs/Shared%20Documents/Cyber-pubs-repo/SPs/800-90C/4pd/NIST.SP.800-90C.4pd-markup.docx#_Toc170210469

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

x

Fig. 14. Generic RBG3 generation process ... 23 277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

Fig. 15. Generic structure of the RBG1 construction .. 34

Fig. 16. Instantiation using an RBG2(P) construction as a randomness source 36

Fig. 17. Instantiation using an RBG3(XOR) or RBG3(RS) construction as a randomness source 36

Fig. 18. RBG1 construction with sub-DRBGs .. 39

Fig. 19. Generic structure of the RBG2 construction .. 45

Fig. 20. RBG2 generate request following an optional reseed request .. 48

Fig. 21. Reseed request from an application .. 50

Fig. 22. Generic structure of the RBG3(XOR) construction .. 55

Fig. 23. Generic structure of the RBG3(RS) construction .. 61

Fig. 24. Sequence of RBG3(RS) generate requests .. 63

Fig. 25. Flow of the RBG3(RS)_Generate function .. 64

Fig. 26. Direct DRBG generate requests ... 65

Fig. 27. Modification of the DRBG_Reseed function .. 67

Fig. 28. Request extra bits before reseeding .. 68

Fig. 29. DRBG tree using the RBGC construction .. 72

Fig. 30. Instantiation of the DRBG in the root RBGC construction using an RBG2 or RBG3 construction
as the randomness source .. 76

Fig. 31. Instantiation of the DRBG in the root RBGC construction using a full-entropy source as a
randomness source .. 78

Fig. 32. Instantiation of the DRBG in RBGCn using RBGCRS as the randomness source 79

Fig. 33. Generate request received by the DRBG in an RBGC construction .. 81

Fig. 34. Reseed request received by the DRBG in the root RBGC construction 82

Fig. 35. Reseed request received by an RBGC construction other than the root 84

Fig. 36. Subtree in module B seeded by root RBGC of module A... 98

Fig. 37. Subtree in module B seeded by a non-root DRBG of module A (i.e., DRBG4) 99

Fig. 38. Subtree in module B seeded by DRBG4 in module A ... 99

Fig. 39. Subtree in module B seeded by DRBG2 of module A .. 100

Fig. 40. VM1 and VM2 with different virtual switches ... 101

Fig. 41. VM1 and VM2 with the same virtual switch but different port groups 101

Fig. 42. Acceptable external seeding for virtual machine RBGC constructions 101

Fig. 43. Acceptable external seeding for an RBGC construction in VM2 but not in VM1 and VM3 102

Fig. 44. Application subtree obtaining reseed material from a sibling of its parent 103

Fig. 45. DRBG Instantiations ... 104

Fig. 46. Example of an RBG1 construction ... 106

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

xi

Fig. 47. Sub-DRBGs based on an RBG1 construction .. 109 312
313
314
315
316

317

Fig. 48. Example of an RBG2 construction ... 112

Fig. 49. Example of an RBG3(XOR) construction .. 115

Fig. 50. Example of an RBG3(RS) construction ... 120

Fig. 51. Example of DRBG chains ... 126

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

xii

Acknowledgments 318

319
320
321
322
323
324

The National Institute of Standards and Technology (NIST) gratefully acknowledges and
appreciates contributions from Chris Celi and Hamilton Silberg (NIST); Darryl Buller, Aaron Kaufer,
and Mike Boyle (National Security Agency); Werner Schindler, Matthias Peter, and Johannes
Mittmann (Bundesamt für Sicherheit in der Informationstechnik); and the members of the
Cryptographic Module User Forum (CMUF) for assistance in the development of this
recommendation. NIST also thanks the many contributions by the public and private sectors.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

1

1. Introduction and Purpose 325

326
327
328
329
330

331
332
333
334
335

336
337
338
339
340

341
342
343
344
345
346

347
348

349
350
351
352
353

354
355
356
357
358
359
360
361
362

Cryptography and security applications make extensive use of random bits. However, the
generation of random bits is challenging in many practical applications of cryptography. The
National Institute of Standards and Technology (NIST) developed the Special Publication (SP) 800-
90 series to support the generation of high-quality random bits for both cryptographic and non-
cryptographic purposes. The SP 800-90 series consists of three parts:

1. SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, specifies several approved deterministic random bit generator
(DRBG) mechanisms based on approved cryptographic algorithms that — once provided
with seed material that contains sufficient randomness — can be used to generate
random bits suitable for cryptographic applications.

2. SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation,
provides guidance for the development and validation of entropy sources, which are
mechanisms that generate entropy from physical or non-physical noise sources and that
can be used to generate the input for the seed material needed by a DRBG or for input to
an RBG.

3. SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions, specifies
constructions for random bit generators (RBGs) using 1) randomness sources (either
entropy sources that comply with SP 800-90B or RBGs that comply with SP 800-90C) and
2) DRBGs that comply with SP 800-90A. Four classes of RBGs are specified in this
document (see Sec. 4–7). SP 800-90C also provides high-level guidance for testing RBGs
for conformance to this recommendation.

Throughout this document, the phrase “this recommendation” refers to the aggregate of SP 800-
90A, SP 800-90B, and SP 800-90C, while the phrase “this document” refers only to SP 800-90C.

The RBG constructions defined in this recommendation are based on two components: the
entropy sources that generate true random variables (i.e., variables that may be biased, where
each possible outcome does not need to have the same chance of occurring) and the DRBGs that
ensure that the outputs of the RBG are indistinguishable from the ideal distribution to a
computationally bounded adversary.

SP 800-90C has been developed in coordination with NIST’s Cryptographic Algorithm Validation
Program (CAVP) and Cryptographic Module Validation Program (CMVP). The document uses
“shall” and “must” to indicate requirements and uses “should” to indicate an important
recommendation. The term “shall” is used when a requirement is testable by a testing lab during
implementation validation using operational tests or a code review. The term “must” is used for
requirements that may not be testable by the CAVP or CMVP. An example of such a requirement
is one that demands certain actions and/or considerations from a system administrator. Meeting
these requirements can be verified by a CMVP review of the cryptographic module’s
documentation. If the requirement is determined to be testable at a later time (e.g., after SP 800-

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

2

90C is published and before it is revised), the CMVP will so indicate in the Implementation 363
364

365

366
367
368
369

370

371

372
373

374
375
376

377
378

379

380

381

382
383
384

385

386
387
388

389
390

391

Guidance for FIPS 140-3 and the Cryptographic Module Validation Program [FIPS_ 140IG].

1.1. Audience

The intended audience for this recommendation includes 1) developers who want to design and
implement RBGs that can be validated by NIST’s CMVP and CAVP, 2) testing labs that are
accredited to perform the validation tests and the evaluation of the RBG constructions, and 3)
users who install RBGs in systems.

1.2. Document Organization

This document is organized as follows:

• Section 2 provides background and preliminary information for understanding the
remainder of the document.

• Section 3 provides guidance on accessing and handling entropy sources, including the
external conditioning of entropy-source output to reduce bias and obtain full entropy
when needed.

• Sections 4, 5, 6, and 7 specify the RBG constructions, namely the RBG1, RBG2, RBG3, and
RBGC constructions, respectively.

• Section 8 discusses health and implementation validation testing.

• The References contain a list of papers and publications cited in this document.

The following informational appendices are also provided:

• Appendix A provides discussions on entropy versus security strength, generating output
using the RBG3(RS) construction, and computing platforms, as required by DRBG chains
using the RBGC construction.

• Appendix B provides examples of each RBG construction.

• Appendix C is an addendum for SP 800-90A that includes two additional derivation
functions that may be used with the CTR_DRBG. These functions will be moved into SP
800-90A as part of the next revision of that document.

• Appendix D provides a list of abbreviations, symbols, functions, and notations used in this
document.

• Appendix E provides a glossary with definitions for terms used in this document.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

3

2. General Information 392

393

394
395
396
397
398
399

400
401
402
403

404

405
406

407
408
409
410
411

412
413
414
415
416
417
418

419

420

421
422
423
424
425

2.1. RBG Security

Ideal randomness sources generate identically distributed and independent uniform random bits
that provide full-entropy outputs (i.e., one bit of entropy per output bit). Real-world RBGs are
designed with a security goal of indistinguishability from the output of an ideal randomness
source. That is, given some limits on an adversary’s data and computing power, it is expected
that no adversary can reliably distinguish between RBG outputs and outputs from an ideal
randomness source.

Consider an adversary that can perform 2w computations (typically, these are guesses of the
RBG’s internal state) and is given an output sequence from either an RBG with a security strength
of s bits (where s ≥ w) or an ideal randomness source. It is expected that an adversary has no
better probability of determining which source was used for its random bits than

1/2 + 2w−s−1 + ε,

where ε is negligible. In this recommendation, the size of the RBG output is limited to 264 output
bits and ε ≤ 2−32.

An RBG that has been designed to support a security strength of s bits is suitable for any
application with a targeted security strength that does not exceed s. An RBG that is compliant
with this recommendation can support requests for output with a security strength of 128, 192,
or 256 bits, except for an RBG3 construction (as described in Sec. 6), which can provide full-
entropy output.1

1 See Appendix A.1 for a discussion of entropy versus security strength.

A bitstring with full entropy has an amount of entropy equal to its length. Full-entropy bitstrings
are important for cryptographic applications, as these bitstrings have ideal randomness
properties and may be used for any cryptographic purpose. They may be truncated to any length
such that the amount of entropy in the truncated bitstring is equal to its length. However, due to
the difficulty of generating and testing full-entropy bitstrings, this recommendation assumes that
a bitstring has full entropy if the amount of entropy per bit is at least 1 − ε, where ε is at most
2−32. NIST Internal Report (IR) 8427 [NISTIR _8427] provides a justification for the selection of ε.

2.2. RBG Constructions

A construction is a method of designing an RBG to accomplish a specific goal. Four classes of RBG
constructions are defined in this document: RBG1, RBG2, RBG3, and RBGC (see Table 1). Each
RBG includes a DRBG from SP 800-90A and is based on the use of a randomness source that is
validated for compliance with SP 800-90B or SP 800-90C. Once instantiated, a DRBG can generate
output at a security strength that does not exceed the DRBG’s instantiated security strength.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

4

Table 1. RBG capabilities 426

427

428

429

430

431
432

433

434
435

436
437
438
439
440
441

442
443
444

Construction
Internal
Entropy
Source

Available
randomness

source for
reseeding

Prediction
Resistance

Full Entropy
Type of

Randomness
Source

RBG1 No No No No RBG2(P) or RBG3
construction

RBG2(P) Yes Yes Optional No Physical entropy
source

RBG2(NP) Yes Yes Optional No Non-physical
entropy source

RBG3(XOR) or
RBG3(RS) Yes Yes Yes Yes Physical entropy

source

(Root) RBGC Yes Yes Optional No

RBG2 or RBG3
construction or

Full-entropy
source

(Non-root) RBGC No Yes No No Parent RBGC
construction

In Table 1:

• Column 1 lists the RBG constructions specified in this document.

• Column 2 indicates whether an entropy source is present within the construction.

• Column 3 indicates whether the DRBG has an available randomness source for reseeding.

• Column 4 indicates whether prediction resistance can be provided for the output of the
RBG (see Sec. 2.4.2 for a discussion of prediction resistance).

• Column 5 indicates whether full-entropy output can be provided by the RBG.

• Column 6 indicates the types of randomness sources that are allowed for the RBG
construction.

An RBG1 construction does not have access to a randomness source after instantiation. It is
instantiated once in its lifetime over a physically secure channel from an external RBG2(P) or
RBG3 construction with appropriate security properties. An RBG1 construction does not support
reseeding requests, prediction resistance cannot be provided for the output, and the
construction cannot provide output with full entropy. The construction can be used to initialize
subordinate DRBGs (sub-DRBGs) (see Sec. 4).

An RBG2 construction includes one or more entropy sources that are used to instantiate the
DRBG and may (optionally) be used for reseeding if a reseed capability is implemented. Prediction
resistance may be provided to the RBG output when reseeding is performed. The construction

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

5

has two variants: an RBG2(P) construction uses a physical entropy source to provide entropy, 445
446
447

448
449
450

451

452
453
454

455
456

457
458
459
460
461
462
463

464
465
466
467

468
469
470

471
472
473

474
475

476

477
478
479
480
481

while an RBG2(NP) construction uses a non-physical entropy source. An RBG2 construction
cannot provide full-entropy output (see Sec. 5).

An RBG3 construction includes one or more physical entropy sources and is designed to provide
an output with a security strength equal to the requested length of its output by producing
outputs that have full entropy. Prediction resistance is provided for all outputs (see Sec. 6).

This construction has two types:

1. An RBG3(XOR) construction combines the output of one or more validated entropy
sources with the output of an instantiated, approved DRBG using an exclusive-or (XOR)
operation (see Sec. 6.4).

2. An RBG3(RS) construction uses one or more validated entropy sources to provide seed
material for the DRBG by continuously reseeding.

An RBGC construction (see Sec. 7) allows the use of a chain of RBGs that consists of only RBGC
constructions on the same computing platform. The initial RBGC construction in the chain is
called the root RBGC construction; the root RBGC construction accesses an initial randomness
source for instantiation and reseeding. Subsequent RBGC constructions in the chain are seeded
(and may be reseeded) using their immediate predecessor RBGC construction (i.e., their parent).
Prediction resistance may be provided for the root but not for subsequent RBGC constructions
(see Sec. 6.5).

This document also provides procedures for acquiring entropy from an entropy source and
conditioning the output to provide a bitstring with full entropy (see Sec. 3.2). SP 800-90A provides
constructions for instantiating and reseeding DRBGs and requesting the generation of
pseudorandom bitstrings.

All constructions in SP 800-90C are described in pseudocode as well as text. The pseudocode
conventions are not intended to constrain real-world implementations but to provide a
consistent notation to describe the constructions.

For any of the specified processes, equivalent processes may be used. Two processes are
equivalent if the same output is produced when the same values are input to each process (either
as input parameters or as values made available during the process).

By convention and unless otherwise specified, integers are unsigned 32-bit values. When used as
bitstrings, they are represented in the big-endian format.

2.3. Sources of Randomness for an RBG

The RBG constructions specified in this document are based on the use of validated entropy
sources — mechanisms that provide entropy for an RBG. Some RBG constructions access these
entropy sources directly to obtain entropy. Other constructions fulfill their entropy requirements
by accessing another RBG as a randomness source, in which case the RBG used as a randomness
source may include an entropy source or have a predecessor that includes an entropy source.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

6

SP 800-90B provides guidance for the development and validation of entropy sources. Validated 482
483
484
485
486

487
488
489
490
491
492
493

494
495
496
497

498
499
500
501

502
503
504
505
506
507
508

509
510
511
512

513
514
515
516

517

518

entropy sources (i.e., entropy sources that have been successfully validated by the CMVP as
complying with SP 800-90B) reliably provide fixed-length outputs and a specified minimum
amount of entropy for each output (e.g., each 8-bit output has been validated as providing at
least five bits of entropy).2

2 This document also discusses the use of non-validated entropy sources. When discussing such entropy sources, “non-validated” will always
precedes “entropy sources.” The use of the term “validated entropy source” may be shortened to just “entropy source” to avoid repetition.

An entropy source is a physical entropy source if the primary noise source within the entropy
source is physical — that is, it uses a dedicated hardware design to provide entropy (e.g., from
ring oscillators, thermal noise, shot noise, jitter, or metastability). Similarly, a validated entropy
source is a non-physical entropy source if the primary noise source within the entropy source is
non-physical — that is, entropy is provided by system data (e.g., system time or the entropy
present in the RAM data) or human interaction (e.g., mouse movements). The entropy source
type (i.e., physical or non-physical) is certified during SP 800-90B validation.

One or more validated, independent entropy sources may be used to provide entropy for
instantiating and reseeding the DRBGs in RBG2, RBG3, and (root) RBGC constructions or used by
an RBG3 construction to generate output upon request by a consuming application. Appropriate
validated RBGs may be used to provide seed material for RBG1 and RBGC constructions.

An implementation could be designed to use a combination of physical and non-physical entropy
sources. When requests are made to these sources, bitstring outputs may be concatenated until
the amount of entropy in the concatenated bitstring meets or exceeds the request. Two methods
are provided for counting the entropy provided in the concatenated bitstring:

Method 1: The RBG implementation includes one or more independent, validated physical
entropy sources; one or more validated non-physical entropy sources may also be included
in the implementation. Only the entropy in a bitstring that is provided from physical entropy
sources is counted toward fulfilling the amount of entropy requested in an entropy request.
Any entropy in a bitstring that is provided by a non-physical entropy source is not counted,
even if bitstrings produced by the non-physical entropy source are included in the
concatenated bitstring that is used by the RBG.

Method 2: The RBG implementation includes one or more independent, validated non-
physical entropy sources; one or more independent, validated physical entropy sources may
also be included in the implementation. The entropy from both non-physical entropy sources
and (if present) physical entropy sources is counted when fulfilling an entropy request.

Example: Let pesi be the ith output of a physical entropy source and npesj be the jth output of
a non-physical entropy source. If an implementation consists of one physical and one non-
physical entropy source, and a request has been made for 128 bits of entropy, the
concatenated bitstring might be something like:

pes1 || pes2 || npes1 || pes3 || ... || npesm || pesn,

which is the concatenated output of the physical and non-physical entropy sources.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

7

According to Method 1, only the entropy in pes1, pes2, ..., pesn would be counted toward 519
520

521
522

523
524
525
526
527
528
529

530
531
532
533
534
535
536

537

538
539
540
541
542
543
544
545
546
547

548

549
550
551
552
553
554
555

fulfilling the 128-bit entropy request. Any entropy in npes1, ..., npesm is not counted.

According to Method 2, all the entropy in pes1, pes2, ..., pesn and in npes1, npes2, ..., npesm is
counted.

When multiple entropy sources are used, there is no requirement on the order in which the
entropy sources are accessed or the number of times that each entropy source is accessed to
fulfill an entropy request. For example, if two physical entropy sources are used, it is possible
that a request would be fulfilled by only one of the entropy sources because entropy is not
available at the time of the request from the other entropy source. However, the Method 1 or
Method 2 criteria for counting entropy still apply, providing that the entropy sources are
independent.

This recommendation assumes that the entropy produced by a validated physical entropy source
is generally more reliable than the entropy produced by a validated non-physical entropy source
since non-physical entropy sources are typically influenced by human actions or network events,
the unpredictability of which is difficult to accurately quantify. Therefore, Method 1 is considered
to provide more assurance that the concatenated bitstring contains at least the requested
amount of entropy (e.g., 128 bits for a 128-bit AES key). Note that the RBG2(P) and RBG3
constructions only count entropy using Method 1 (see Sec. 5 and 6, respectively).

2.4. DRBGs

Approved DRBGs are specified in SP 800-90A. A DRBG includes instantiate, generate, and health-
testing functions and may also include reseed and uninstantiate functions. The instantiation of a
DRBG involves acquiring sufficient randomness to initialize the DRBG to support a targeted
security strength and establish the internal state, which includes the secret information for
operating the DRBG. The generate function produces output upon request and updates the
internal state. Health testing is used to determine that the DRBG continues to operate correctly.
Reseeding introduces fresh randomness into the DRBG’s internal state and is used to recover
from a potential (or actual) compromise (see Sec. 2.4.2 for an additional discussion). An
uninstantiate function is used to terminate a DRBG instantiation and destroy the information in
its internal state.

2.4.1. DRBG Instantiations

A DRBG implementation consists of software code, hardware, or both hardware and software
that are used to implement a DRBG design. The same implementation can be used to create
multiple (logical) “copies” of the same DRBG (e.g., for different purposes) without replicating the
software code or hardware. Each “copy” is a separate instantiation of the DRBG with its own
internal state that is accessed via a state handle (i.e., a pointer) that is unique to that instantiation
(see Fig. 1). Each instantiation may be considered a different DRBG, even though it uses the same
software code or hardware.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

8

 556
557

558
559
560
561
562
563
564

565
566
567
568
569
570

571

572
573
574
575

Fig. 1. DRBG instantiations

Each DRBG instantiation is initialized with input from some randomness source that establishes
the security strength(s) that can be supported by the DRBG. During this process, an optional but
recommended personalization string may also be used to differentiate between instantiations in
addition to the output of the randomness source. The personalization string could, for example,
include information particular to the instantiation or contain entropy collected during system
activity (e.g., from a non-validated entropy source). An implementation should allow the use of
a personalization string. More information on personalization strings is provided in SP 800-90A.

A DRBG may be implemented to accept additional input during operation from the randomness
source (e.g., to reseed the DRBG) and/or additional input from inside or outside of the
cryptographic module that contains the DRBG. This additional input could, for example, include
information particular to a request for generation or reseeding or could contain entropy collected
during system activity (e.g., from a validated or non-validated entropy source).3

3 Entropy provided in additional input does not affect the instantiated security strength of the DRBG instantiation. However, it is good practice to
include any additional entropy when available to provide more security.

 A capability to
handle additional input is recommended for an implementation.

2.4.2. Reseeding, Prediction Resistance, and Compromise Recovery

Under some circumstances, the internal state of an RBG (containing the RBG’s secret
information) could be leaked to an adversary. This might happen as the result of a side-channel
attack or a serious compromise of the computer on which the DRBG runs and may not be
detected by the DRBG or any consuming application.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

9

In order to limit damage due to a compromised state, all DRBGs in SP 800-90A are designed with 576
577
578
579

580
581
582
583

584
585
586
587
588
589

590
591
592
593

594
595
596
597
598
599

600
601
602
603
604
605

606
607
608
609
610

611
612
613
614
615

backtracking resistance — that is, learning the DRBG’s current internal state does not provide
knowledge of previous outputs. Since all RBGs in SP 800-90C are based on the use of the DRBGs
in SP 800-90A, the RBGs specified in this document also inherit this property.

DRBGs may be reseeded at any time to allow for recovery from a potential compromise. An
adversary who knows the internal state of the DRBG before the reseed but who does not learn
the seed material used for the reseed knows nothing about its internal state after the reseed.
Reseeding allows a DRBG to recover from a leak of its internal state.

In order to reseed a DRBG at a security of s bits, new seed material is provided to the DRBG from
either an entropy source or an RBG. If the seed material is provided by an entropy source, it must
contain at least s bits of min-entropy. If the seed material is provided by an RBG, the RBG must
support at least a security strength of s bits, and the seed material must be at least s bits long.
Seed material from an entropy source will always be unpredictable; seed material from an RBG
will be unpredictable if that RBG has not been compromised.

A DRBG output is said to have prediction resistance when the DRBG is reseeded with at least s
bits of min-entropy immediately before the output is generated by the DRBG. The entropy for
this reseeding process needs to be provided by either an entropy source or an RBG3 construction
for prediction resistance to be provided.

When a target DRBG is reseeded using another DRBG as a randomness source, the target DRBG
is not guaranteed to have prediction resistance. If the source and target DRBGs are both
compromised, then reseeding the target DRBG from the other DRBG will allow the adversary to
know the target DRBG’s internal state. However, it is often a good idea to reseed a target DRBG
from a source DRBG. If the source DRBG was not compromised, then the target DRBG’s state will
be unknown to the adversary after the reseed.

The RBG3 construction always provides prediction resistance on its outputs, as every n-bit output
has n bits of entropy. The RBG2 construction can provide prediction resistance on its outputs
when reseeding is supported. The RBG1 construction never provides prediction resistance since
it cannot be reseeded. Prediction resistance may be provided for the root RBGC construction but
not for any subsequent non-root RBGC construction. However, subsequent RBGCs can (and
generally should) periodically reseed from their randomness source (i.e., their parent).

The RBG1, RBG2, and RBGC constructions provide output with a security strength that depends
on the security strength of the DRBG instantiation within the RBG and the length of the output.
These constructions do not provide output with full entropy and must not be used by applications
that require a higher security strength than has been instantiated in the DRBG of the
construction. See Appendix A.1 for a discussion of entropy versus security strength.

Although reseeding provides fresh randomness that is incorporated into an already instantiated
DRBG at a security strength of s bits, the reseed process does not increase the DRBG’s security
strength. For example, a reseed of a DRBG that has been instantiated to support a security
strength of 128 bits does not increase the DRBG’s security strength to 256 bits when reseeding
with 128 bits of fresh entropy.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

10

2.5. RBG Security Boundaries 616

617
618
619
620

621
622
623
624
625
626

627
628

629
630
631
632
633

An RBG exists within a conceptual RBG security boundary that should be defined with respect to
one or more threat models that include an assessment of the applicability of an attack and the
potential harm caused by the attack. The RBG security boundary must be designed to assist in
the mitigation of these threats using physical or logical mechanisms or both.

The primary components of an RBG are a randomness source, a DRBG, and health tests for the
RBG. RBG input (e.g., entropy bits and a personalization string) shall enter an RBG only as
specified in the functions described in Sec. 2.8. The security boundary of a DRBG is discussed in
SP 800-90A, and the security boundary for an entropy source is discussed in SP 800-90B. Both the
entropy source and the DRBG contain their own health tests within their respective security
boundaries.

Fig. 2. Example of an RBG security boundary within a cryptographic module

Figure 2 shows an example RBG implemented within a FIPS 140-validated cryptographic module.
In this figure, the RBG security boundary is completely contained within the cryptographic
module boundary. The data input may be a personalization string or additional input (see Sec.
2.4.1). The data output is status information and possibly random bits or a state handle. Within
the RBG security boundary of the figure are an entropy source and a DRBG, each with its own

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

11

conceptual security boundary. An entropy-source security boundary includes a noise source, 634
635
636
637
638

639
640
641
642

643
644
645

646

647
648

649
650
651

652
653
654
655

656
657

658
659
660
661

662

663
664
665

666
667

668
669

health tests, and (optionally) a conditioning component. A DRBG security boundary contains the
chosen DRBG, memory for the internal state, and health tests. An RBG security boundary contains
health tests and an (optional) external conditioning function. The RBG2 and RBG3 constructions
in Sec. 5 and 6, respectively, use this model.

In the case of the RBG1 construction in Sec. 4, the security boundary containing the DRBG does
not include a randomness source (shown as an entropy source in Fig. 2). For an RBGC
construction, the security boundary is the computing platform on which the chain of DRBGs is
used.

A cryptographic primitive (e.g., an approved hash function or block cipher) used by an RBG may
be used by other applications within the same cryptographic module. However, these other
applications shall not modify or reveal the RBG’s output, intermediate values, or internal state.

2.6. Assumptions and Assertions

The RBG constructions in SP 800-90C are based on the use of validated entropy sources and the
following assumptions and assertions for properly functioning entropy sources:

1. An entropy source is independent of another entropy source if their security boundaries
do not overlap (e.g., they reside in separate cryptographic modules, or one is a physical
entropy source and the other is a non-physical entropy source).

2. Entropy sources that have been validated for conformance to SP 800-90B are used to
provide seed material for seeding and reseeding a DRBG or providing entropy for an RBG3
construction. The output of non-validated entropy sources is only used as additional
input.

The following assumptions and assertions pertain to the use of validated entropy sources for
providing entropy bits:

3. An entropy source outputs no more than 264 bits. The number of output bits from the
RBG is at most 264 bits for a DRBG instantiation. In the case of an RBG1 construction with
one or more subordinate DRBGs, the output limit applies to the total output provided by
the RBG1 construction and its subordinate DRBGs.

4. Each entropy-source output has a fixed length ES_len (in bits).

5. Each entropy-source output is assumed to contain a fixed amount of entropy, denoted as
ES_entropy, that was assessed during entropy-source implementation validation. See SP
800-90B for entropy estimation.

6. Each entropy source has been characterized as either a physical entropy source or a non-
physical entropy source upon successful validation.

7. The outputs from a single entropy source can be concatenated. The entropy of the
resultant bitstring is the sum of the entropy from each entropy-source output. For

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

12

example, if m outputs are concatenated, then the length of the bitstring is m × ES_len
bits, and the entropy for that bitstring is assumed to be m × ES_entropy bits. This is a
consequence of the model of entropy used in

670
671
672

673
674
675
676
677
678
679

680
681

682
683
684

685
686
687

688

689
690
691

692
693
694

695
696
697
698

699

700
701
702
703
704
705

706

SP 800-90B.

8. The output of multiple independent entropy sources can be concatenated in an RBG. The
entropy in the resultant bitstring is the sum of the entropy in each independent entropy-
source output that is contributing to the entropy in the bitstring (see Methods 1 and 2 in
Sec. 2.3). For example, suppose that the outputs from independent physical entropy
sources A and B and non-physical entropy source C are concatenated. The length of the
concatenated bitstring is the sum of the lengths of the component bitstrings (i.e., ES_lenA
+ ES_lenB + ES_lenC).

• Using Method 1 in Sec. 2.3, the amount of entropy in the concatenated bitstring
is ES_entropyA + ES_entropyB.

• Using Method 2 in Sec. 2.3, the amount of entropy in the concatenated bitstring
is the sum of all entropy in the bitstrings (i.e., ES_entropyA + ES_entropyB +
ES_entropyC).

9. Under certain conditions, the output of one or more entropy sources can be externally
conditioned to provide full-entropy output. See Sec. 3.2.2.2, 6.4, and 7 for the use of this
assumption and IR 8427 for the rationale.

10. When entropy is requested, the entropy source responds as follows:

• If the entropy source provides the requested amount of entropy, a status
indication of success is returned along with a bitstring that contains the requested
amount of entropy.

• If the entropy source detects a failure of the primary noise source (i.e., an error
from which it cannot recover), the entropy source returns a status indicating a
failure. Other output is not provided.

• If the entropy source indicates an error other than failure (e.g., entropy cannot be
obtained in a timely manner, or there is an intermittent problem), the entropy
source returns a status indicating that the entropy source cannot provide output
at this time. Other output is not provided.

The following assumptions and assertions pertain to the use of DRBGs and the RBG constructions:

11. Full entropy bits can be extracted from the output block of a hash function or block cipher
when the amount of fresh entropy inserted into the algorithm exceeds the number of bits
that are extracted by at least 64 bits. In particular, for a DRBG that has been instantiated
at a security strength of s bits, s full-entropy bits can be extracted from the output of that
DRBG when at least s + 64 bits of fresh entropy are inserted into the DRBG before the
output is generated (see IR 8427).

12. To instantiate a DRBG at a security strength of s bits:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

13

• For an RBG1 construction, a bitstring at least 3s/2 bits long is needed from a
randomness source (an RBG) providing at least s bits of security strength (see Sec.

707
708
709

710
711

712
713
714
715
716

717
718

719

720
721

722

723
724

725

726
727

728

729
730

731
732

733
734

735
736

737
738
739
740
741

4).

• For an RBG2 or RBG3 construction, bitstrings with at least 3s/2 bits of entropy are
needed from the entropy source(s) (see Sec. 5 and 6, respectively).

• For an RBGC construction that is the root of a tree of RBGC constructions, at least
3s/2 bits of entropy are needed from the randomness source when the initial
randomness source is a full-entropy source or RBG3 construction. If the initial
randomness source is an RBG2 construction, a bitstring at least 3s/2 bits long is
needed from the randomness source (see Sec. 7).

• For an RBGC construction that is not the root of the tree, a bitstring at least 3s/2
bits long is needed from the construction’s randomness source (see Sec. 7).

13. One or more of the constructions provided herein are used in the design of an RBG.

14. All components of an RBG2 and RBG3 construction (as specified in Sec. 5 and 6) reside
within the physical boundary of a single FIPS 140-validated cryptographic module.

15. All RBGC constructions in a DRBG chain reside on the same computing platform.

16. The DRBGs specified in SP 800-90A are assumed to meet their explicit security claims (e.g.,
backtracking resistance, claimed security strength, etc.).

17. A sub-DRBG is considered to be part of the RBG1 construction that initializes it.

18. The RBG1 construction and its sub-DRBGs reside within the physical boundary of a single
FIPS 140-validated cryptographic module.

2.7. General Implementation and Use Requirements and Recommendations

When implementing the RBG constructions specified in this recommendation, an
implementation:

1. Shall destroy intermediate values before exiting the function or routine in which they are
used,

2. Shall employ an “atomic” generate operation whereby a generate request is completed
before using any of the requested bits, and

3. Should be implemented with the capability to support a security strength of 256 bits or
to provide full-entropy output.

When using RBGs, the user or application requesting the generation of random or pseudorandom
bits should request only the number of bits required for a specific immediate purpose rather than
generating bits to be stored for future use. Since, in most cases, the bits are intended to be secret,
the stored bits (if not properly protected) are potentially vulnerable to exposure, thus defeating
the requirement for secrecy.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

14

2.8. General Function Calls 742

743
744
745

746

747
748
749

750
751
752

753
754
755
756

757
758
759
760
761
762

Functions used within this document for accessing the DRBGs in SP 800-90A, the entropy sources
in SP 800-90B, and the RBG3 constructions specified in SP 800-90C are provided below and in Fig.
3.

Each function returns a status code that must be checked (e.g., a status of success or failure by
the function).

• If the status code indicates a success, then additional information may also be returned,
such as a state handle from an instantiate function or the bits that were requested to be
generated during a generate function.

• If the status code indicates a failure of an RBG component, then see item 10 in Sec. 2.6
and Sec. 8.1.2 for error-handling guidance. Note that if the status code does not indicate
a success, an invalid output (e.g., a null bitstring) shall be returned with the status code if
information other than the status code could be returned.

The distinction between a function within a DRBG or RBG and the request for the execution of
that function by a requesting entity (e.g., an application) is needed for clarity. The requesting
entity may not include an implementation of the function itself but needs to be able to request
the DRBG or RBG to execute that function to obtain random values for its use. As used in this
document, the request needs to provide some or all the input needed for the associated function.
Relevant information output by that function needs to be returned in response to the request.

Fig. 3. General function calls

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

15

2.8.1. DRBG Functions 763

764
765
766
767

768

769
770

771
772

773

774
775
776
777

778

779
780

781
782

783
784

785
786
787
788
789

790
791

SP 800-90A specifies several functions within a DRBG that indicate the input and output
parameters and other implementation details. In some cases, some input parameters identified
in SP 800-90A may be omitted, and some output information may not be returned (e.g., because
the requested information was not generated).

At least two functions are required in a DRBG:

1. An instantiate function that seeds the DRBG using the output of a randomness source and
other optional input (see Sec. 2.8.1.1) and

2. A generate function that produces output for use by a consuming application (see Sec.
2.8.1.2).

A DRBG may also support a reseed function (see Sec. 2.8.1.3).

A Get_randomness-source_input call is used in SP 800-90A to request output from a
randomness source during instantiation and reseeding (see Sec. 2.8.1.4). The behavior of this
function is specified in this document based on the type of randomness source used and the RBG
construction.

The use of the DRBG_Uninstantiate function

A DRBG is instantiated prior to the generation of pseudorandom bits at the highest security
strength to be supported by the DRBG instantiation using the following function:

(status, state_handle) = DRBG_Instantiate (requested_instantiation_security_strength,
personalization_string).

Fig. 4. DRBG_Instantiate function

The DRBG_Instantiate function (shown in Fig. 4) is used to instantiate a DRBG at the
requested_instantiation_security_strength using the output of a randomness source4

4 The randomness source provides the seed material required to instantiate the security strength of the DRBG.

 and an
optional personalization_string to create a seed. As stated in Sec. 2.4.1, a personalization_string
is optional but strongly recommended. Details about the DRBG_Instantiate function are
provided in SP 800-90A.

If the status code returned for the DRBG_Instantiate function indicates a success (i.e., the DRBG
has been instantiated at the requested security strength), a state handle may5

5 In cases where only one instantiation of a DRBG will ever exist, a state handle need not be returned since only one internal state will be created.

 be returned to

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

16

indicate the particular DRBG instance (i.e., pointing to the internal state to be used by this 792
793
794
795
796
797

798
799
800
801
802

803
804

805
806

807
808

809
810
811
812
813

814
815

instance). When provided by the DRBG_Instantiate function, the state handle is used in
subsequent calls to the DRBG (e.g., during a DRBG_Generate call) to reference the internal state
information for the instantiation. The information in the internal state includes the security
strength of the instantiation and other information that changes during DRBG execution (see SP
800-90A for each DRBG design).

When the DRBG has been instantiated at the requested security strength, the DRBG will operate
at that security strength even if the security strength requested in subsequent DRBG_Generate
calls (see Sec. 2.8.1.2) is less than the instantiated security strength. For example, if a DRBG has
been instantiated at a security strength of 256 bits, all output will be generated at that strength
even when a request is received to generate bits at a strength of 128 bits.

If the status code indicates an error and an implementation is designed to return a state handle,
an invalid (e.g., Null) state handle is returned.

The DRBG_Instantiate function is requested by an application using a
DRBG_Instantiate_request:

(status, state_handle) = DRBG_Instantiate_request(requested_instantiation_security_strength,
personalization_string).

As shown in Fig. 5, a DRBG_Instantiate request received by a DRBG results in the execution of
the DRBG’s instantiate function, providing the input parameters for that function. The
DRBG_Instantiate function then obtains seed_material from the randomness source(s),
instantiates a DRBG and returns the status of the process and (if there is no error) a state_handle
for the internal state to the application.

Fig. 5. DRBG_Instantiate request

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

17

2.8.1.1. DRBG Generation Request 816

817

818
819

820
821

822
823
824
825
826

827
828

829
830

831

832

833
834
835

836

837
838
839

840

841
842

843
844

Pseudorandom bits are generated after DRBG instantiation using the following function:

(status, returned_bits) = DRBG_Generate (state_handle, requested_number_of_bits,
requested_security_strength, additional_input).

Fig. 6. DRBG_Generate function

The DRBG_Generate function (shown in Fig. 6) is used to generate a specified number of bits.
If a suitable state_handle is available, it is included as input to indicate the DRBG instance to be
used. The number of bits to be returned and the security strength that the DRBG needs to support
for generating the bitstring are provided with (optional) additional input. As stated in Sec. 2.4.1,
the ability to accept additional input is recommended.

The DRBG_Generate function returns status information — either an indication of success or
an error. If the returned status code indicates a success, the requested bits are returned.

• If requested_number_of_bits is equal to or greater than the instantiated security strength,
the security strength that the returned_bits can support (if used as a key) is:

ss_key = the instantiated security strength,

where ss_key is the security strength of the key.

• If the requested_number of bits is less than the instantiated security strength, and the
returned_bits are to be used as a key, the key is capable of supporting a security strength
of:

ss_key = requested_number_of_bits.

If the status code indicates an error, the returned_bits consists of a Null bitstring. An example of
a condition in which an error indication may be returned includes a request for a security strength
that exceeds the instantiated security strength for the DRBG.

Details about the DRBG_Generate function are provided in SP 800-90A.

The DRBG_Generate function is requested by an application using a
DRBG_Generate_request:

(status, returned_bits) = DRBG_Generate_request(state_handle, requested_number_of_bits,
requested_security_strength, additional_input).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

18

As shown in Fig. 7, a DRBG_Generate_request received by a DRBG results in the execution of 845
846
847
848

849
850

851

852
853
854

855

856
857

858
859
860
861
862
863
864

the DRBG’s DRBG_Generate function, providing the input parameters for that function. The
DRBG_Generate function generates the requested number of bits and returns the status of the
process and (if there is no error) the newly generated bits.

Fig. 7. DRBG_Generate_request

2.8.1.2. DRBG Reseed

The reseeding of a DRBG instantiation is intended to insert additional randomness into that DRBG
instantiation (e.g., to recover from a possible compromise or to provide prediction resistance).
This is accomplished using the following function:6

6 Note that this does not increase the security strength of the DRBG.

status = DRBG_Reseed (state_handle, additional_input).

Fig. 8. DRBG_Reseed function

A DRBG_Reseed function (shown in Fig. 8) is used to acquire at least s bits of fresh randomness
for the DRBG instance indicated by the state handle (or the only instance if no state handle has
been provided), where s is the security strength of the DRBG to be reseeded.7

7 The value of s may be available in the DRBG’s internal state (see SP 800-90A).

 In addition to the
seed material provided from the DRBG’s randomness source(s) during reseeding, optional
additional_input may be incorporated into the reseed process. As discussed in Sec. 2.4.1, the
capability for handling and using additional input is recommended. Details about the
DRBG_Reseed function are provided in SP 800-90A.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

19

An indication of the status is returned. 865

866

867

868
869
870
871

872
873

874

875
876
877
878
879
880
881

882

883
884
885
886
887
888
889
890
891

The DRBG_Reseed function is requested by an application using a DRBG_Reseed_request:

status = DRBG_Reseed_request(state_handle, additional_input).

As shown in Fig. 9, a DRBG_Reseed_request received by a DRBG results in the execution of the
DRBG’s DRBG_Reseed function, providing the input parameters for that function. The
DRBG_Reseed function then obtains seed_material from a randomness source, reseeds the
DRBG instantiation, and returns the status of the process to the application.

Fig. 9. DRBG_Reseed_request

2.8.1.3. Get_randomness-source_input Call

In SP 800-90A, a Get_randomness-source_input call is used in the DRBG_Instantiate function
and DRBG_Reseed function to indicate when a randomness source needs to be accessed to
obtain seed material. Details are not provided in SP 800-90A about how the Get_randomness-
source_input call needs to be implemented. SP 800-90C provides guidance on how the call
should be implemented based on various situations (e.g., the randomness source and the RBG
construction used). Sections 3.2.2, 4, 5, 6, and 7 provide instructions for obtaining input from a
randomness source when the Get_randomness-source_input call is encountered in SP 800-90A.

2.8.2. Interfacing With Entropy Sources

A single entropy source request may not be sufficient to obtain the entropy required for seeding
and reseeding a DRBG and for providing input for the exclusive-or operation in an RBG3(XOR)
construction (see Sec. 6.4.1). SP 800-90C uses the term Get_entropy_bitstring to identify the
process of obtaining the required entropy from one or more entropy sources. For convenience
in describing the RBG constructions, this process is represented as a function whose input
includes an indication of the amount of entropy that is needed from the entropy source(s) and
whose output includes a status report on the success or failure of the process. If the process is
successful, a bitstring containing the requested entropy is produced (see Fig. 10). The
Get_entropy_bitstring function is invoked herein as:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

20

(status, entropy_bitstring) = Get_entropy_bitstring(bits_of_entropy, counting method, 892
893

894
895
896
897

898
899

900
901
902
903

904

905
906
907

908

909

910
911

912

913
914

entropy_source_ID),

where bits_of_entropy is the amount of entropy requested for return in the entropy_ bitstring,
counting_method is the method to be used for counting entropy in the entropy source(s) (see
Sec. 2.3), entropy_source_ID is an optional parameter that indicates the specific entropy source
to be used, and status indicates whether the request has been satisfied.

Fig. 10. Get_entropy_bitstring function

The Get_entropy_bitstring process requests entropy from whatever validated entropy sources
are available or the entropy source identified by entropy_source_ID (if present). Any acquisition
of entropy from non-validated entropy sources is handled separately (e.g., by a different process)
to avoid misuse. See Sec. 3.1 for additional discussion about the Get_entropy_bitstring process.

2.8.3. Interfacing With an RBG3 Construction

An RBG3 construction requires functions to instantiate its DRBG (see Sec. 2.8.3.1) and to request
the generation of full-entropy bits (see Sec. 2.8.3.2). The functions needed to access the DRBG
itself are provided in Sec. 2.8.1.

2.8.3.1. Instantiating a DRBG Within an RBG3 Construction

The instantiate functions for the DRBG within the RBG3 constructions use the following functions:

(status, state_handle) = RBG3(XOR)_Instantiate(requested_security_strength,
personalization_string)

and

(status, state_handle) = RBG3(RS)_Instantiate(requested_security_strength,
personalization_string).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

21

 915
916

917
918
919
920
921
922
923

924
925
926
927
928
929
930
931
932

933
934

935
936

937
938
939
940

941
942
943
944
945
946
947
948

Fig. 11. RBG3 instantiate function

The instantiate function of the RBG3 construction (shown in Fig. 11) will result in the execution
of the DRBG’s instantiate function (provided in Sec. 2.8.1.1). A requested_security_strength may
optionally be provided as an input parameter to indicate the minimum security strength to be
supported by the DRBG within the RBG3 construction. An optional but recommended
personalization_string (see Sec. 2.4.1) may be provided as an input parameter. If included as
input to the RBG3 instantiation function, the personalization_string is passed to the DRBG that is
instantiated by the instantiate function. See Sec. 6.4.1.1 and 6.5.1.1 for more specificity.

If the returned status code indicates a success, a state handle may be returned to indicate the
DRBG instance that is to be used by the construction (i.e., the state handle points to the internal
state used by this instance of the DRBG within the RBG3 construction). If multiple instances of
the DRBG are used (in addition to the DRBG instance used by the RBG3 construction), a separate
state handle is returned for each instance. When provided, the state handle is used in subsequent
calls to that RBG (e.g., during a call to the RBG3 generate function; see Sec. 2.8.3.2) or when
accessing the DRBG directly (e.g., during a reseed of the DRBG; see Sec. 6.4.1.4). If the status
code indicates an error (e.g., entropy is not currently available, or the entropy source has failed),
an invalid (e.g., Null) state handle is returned.

The instantiation of the DRBG within an RBG3(XOR) or RBG3(RS) construction is requested by an
application using an Instantiate_RBG3_DRBG_request:

(status, state_handle) = Instantiate_RBG3_DRBG_request(requested_security_strength,
personalization_string).

Both the requested_security_strength and a personalization_string are optional in the
Instantiate_RBG3_DRBG_request. As shown in Fig. 12, an
Instantiate_RBG3_DRBG_request received by an RBG3 construction results in the execution
of the DRBG’s instantiate function.

The security strength of the DRBG within an RBG3 construction is the highest security strength
that can be supported by the DRBG design (see Sec. 6). The requested_security_strength
parameter in the Instantiate_RBG3_DRBG_request should be interpreted (in the case of the
RBG3 construction) as the minimum security strength that is required by the consuming
application if entropy-source failures are undetected. Therefore, if the
requested_security_strength parameter is provided as input, it is compared against the value of
the highest security strength that can be supported by the DRBG. If the
requested_security_strength exceeds the security strength that can be supported by the DRBG,

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

22

then an error indication is returned as the status in response to the 949
950

951
952
953

954
955

956

957
958
959

960
961

962

963
964

965
966

Instantiate_RBG3_DRBG_request.

If no error is detected in the request, the Instantiate_RBG3_DRBG function obtains
seed_material from the entropy source(s), instantiates the DRBG, and returns the status of the
process and (possibly) a state_handle for the internal state to the application.

Fig. 12. RBG3(XOR) or RBG3(RS) instantiation request

2.8.3.2. Generation Using an RBG3 Construction

The RBG3(XOR) and RBG3(RS) generate function calls are essentially the same, but the function
designs are very different (see Sec. 6.4 for the RBG3(XOR)_Generate function and Sec. 6.5 for
the RBG3(RS)_Generate function):

(status, returned_bits) = RBG3(XOR)_Generate(state_handle, requested_number_of_bits,
additional_input)

and

(status, returned_bits) = RBG3(RS)_Generate(state_handle,
requested_number_of_bits, additional_input).

Fig. 13. RBG3 generate functions

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

23

The RBG3 generate functions are requested to use the DRBG indicated by the state_handle to 967
968
969
970
971
972

973

974
975

976
977
978
979
980
981
982
983

984
985

986

generate the requested_number_of_bits using any (optional) additional_input provided. If the
returned status code from the RBG3(XOR)_Generate or RBG3(RS)_Generate function
indicates a success, a bitstring that contains the newly generated bits is also returned. If the
status code indicates an error (e.g., the entropy source has failed), a Null bitstring is returned as
the returned_bits.

The generation of random bits by an RBG3 construction is requested using the following:

(status, returned_bits) = RBG3_Generate_ request(state_handle, requested_number_of_bits,
requested_security_strength, additional_input).

If a suitable state_handle is available (e.g., provided in response to an
Instantiate_RBG3_DRBG_request; see Sec. 2.8.3.1), it is included in the
RBG3_Generate_request. As shown in Fig. 14, an RBG3 generate request received by an RBG3
construction results in the execution of the RBG’s generate function, providing the input
parameters for that function. The entropy source is accessed, the requested number of bits are
generated, and the status of the process and the newly generated bits are returned to the
application. The RBG3 generate process for the RBG3(XOR) and RBG3(RS) construction are
provided in Sec. 6.4 and 6.5, respectively.

Fig. 14. Generic RBG3 generation process

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

24

3. Accessing Entropy Source Output 987

988
989
990
991

992

993
994
995
996
997

998
999

1000
1001
1002

1003
1004
1005

1006
1007

1008
1009
1010
1011
1012
1013
1014

1015
1016
1017
1018
1019

1020
1021

1022
1023

The security provided by an RBG is based on the use of validated entropy sources. Section 3.1
discusses the use of the Get_entropy_bitstring process to request entropy from one or more
entropy sources. Section 3.2 discusses the conditioning of the output of one or more entropy
sources before further use by an RBG.

3.1. Get_entropy_bitstring Process

The Get_entropy_bitstring process introduced in Sec. 2.8.2 obtains entropy from either 1) a
designated entropy source or 2) one or more validated entropy sources in whatever manner is
required (e.g., polling the entropy sources, waiting for an entropy source to provide output, or
extracting bits that contain entropy from a pool of collected bits). The method for counting
entropy from one or more entropy sources is indicated as an input parameter.

In many cases, the Get_entropy_bitstring process will need to query an entropy source (or a set
of entropy sources) multiple times to obtain the amount of entropy requested. The details of the
process are not specified in this document but are left to the developer to implement
appropriately for the selected entropy source(s). However, the following behavior of the
Get_entropy_bitstring process includes the following:

1. The Get_entropy_bitstring process shall only be used to access one or more validated
entropy sources. Non-validated entropy sources shall be accessed by a separate process
to avoid possible misuse.

2. Each validated entropy source shall be independent of all other validated or non-
validated entropy sources used by the RBG.

3. The output produced from multiple entropy-source calls to a single validated entropy
source or by calls to multiple independent, validated entropy sources shall be
concatenated into a single bitstring. The entropy in the bitstring is the sum of the entropy
provided by the validated entropy sources that are to be credited for contributing entropy
to the process. For Method 1 (see Sec. 2.3), only entropy contributed by one or more
validated physical entropy sources is counted. For Method 2, the entropy from all
validated entropy sources is counted.

4. If a failure is reported during the Get_entropy_bitstring process by any physical or non-
physical entropy source whose entropy is counted toward fulfilling an entropy request,
the Get_entropy_bitstring process shall behave as follows (note that a bitstring
containing entropy should not have been provided by that entropy source when a failure
was reported; see Sec. 2.6, item 10):

a. Method 1 is used for counting the entropy from one or more physical entropy
sources:

1) If a physical entropy source reports a failure, the error shall be reported
to the consuming application as soon as possible. Any entropy collected

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

25

during the execution of the Get_entropy_bitstring process in which the 1024
1025
1026
1027

1028
1029

1030
1031
1032
1033

1034
1035
1036
1037

1038
1039
1040

1041
1042

1043
1044
1045
1046
1047
1048

1049
1050
1051
1052

1053
1054
1055

1056
1057

1058

1059
1060

error is reported shall not be used. This failed entropy source shall not
be accessed to obtain entropy until the condition that caused the failure
has been corrected and operational tests have been successfully passed.

If multiple physical entropy sources are used, the report shall identify
the entropy source that reported the failure.

2) If a non-physical entropy source reports a failure, the failure may be
ignored or reported to the consuming application along with a
notification of the entropy source that failed. RBG operation may
continue.

3) If all physical entropy sources report failures, RBG operation shall be
terminated (i.e., stopped). The RBG must not be returned to normal
operation until the conditions that caused the failures have been
corrected and operational tests have been successfully passed.

4) If any physical entropy source is still “healthy” (i.e., the entropy source
has not reported a failure), the RBG operations may continue using any
healthy physical entropy source.

b. Method 2 in Sec. 2.3 is used for counting the entropy from one or more non-
physical and/or physical entropy sources:

1) A failure from any entropy source shall be reported to the consuming
application. If multiple entropy sources are used, the report shall identify
the entropy source that reported the failure. This failed entropy source
shall not be accessed to obtain entropy until the condition that caused
the failure has been corrected and operational tests have been
successfully passed.

2) If all entropy sources have reported failures, the RBG operation shall be
terminated. The RBG must not be returned to normal operation until the
conditions that caused the failures have been corrected and operational
tests have been successfully passed.

3) If any physical or non-physical entropy source is still “healthy” (i.e., the
entropy source has not reported a failure), RBG operations may continue
using any healthy entropy source.

5. The Get_entropy_bitstring process shall not provide output for RBG operations unless
the bitstring contains sufficient entropy to fulfill the entropy request.

3.2. External Conditioning

Entropy bits produced by one or more entropy sources are required for seeding and reseeding
the DRBG in the RBG constructions specified in this document. Whether or not entropy-source

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

26

output was conditioned within a validated entropy source prior to output, the entropy provided 1061
1062
1063

1064
1065
1066

1067
1068
1069
1070
1071

1072
1073
1074
1075

1076
1077
1078

1079
1080

1081
1082

1083

1084

1085
1086

1087

1088
1089

1090

1091
1092

1093

1094

by the validated entropy source(s) may need to be conditioned prior to subsequent use by the
RBG. For example:

• The entropy source within an RBG2 or RBG3 construction (see Sec. 5 or 6, respectively) is
used to seed and reseed its DRBG. The entropy source may, for example, produce
bitstrings that are too long for the specific DRBG implementation.

• Seed material with full entropy is required when the CTR_DRBG is implemented without
a derivation function and an entropy source is used for seeding and reseeding the DRBG.
If the entropy sources does not provide full-entropy output, the output needs to be
conditioned prior to subsequent use by the DRBG to obtain full-entropy input for the
DRBG.

• When the root RBGC construction in a DRBG chain uses a full-entropy source as its initial
randomness source (see Sec. 7), the output from the entropy source(s) may need to be
conditioned to provide a full-entropy bitstring for seeding and reseeding the root (i.e., the
entropy source itself may not provide full-entropy output).

• If both physical and non-physical entropy sources are used to provide seed material, the
entropy within the concatenated bitstring produced by these sources may not be
distributed uniformly throughout the bitstring.

Since this conditioning is performed outside an entropy source, the output is said to be externally
conditioned.

The conditioning function operates on a bitstring that is produced by the Get_entropy_bitstring
process to produce an entropy_bitstring. Reasons to perform conditioning might include:

• Reducing the bias in the entropy_bitstring,

• Distributing entropy uniformly across the entropy_bitstring,

• Reducing the length of the entropy_bitstring and compressing the entropy into a smaller
bitstring, and/or

• Ensuring the availability of full-entropy bits.

When external conditioning is performed, a vetted conditioning function listed in SP 800-90B
shall be used. Additional vetted conditioning functions may be approved in the future.

3.2.1. Conditioning Function Calls

The conditioning functions operate on bitstrings obtained using the Get_entropy_bitstring
process (see Section 3.1) to obtain an entropy_bitstring from one or more entropy sources.

The following format is used in Section 3.2.2 for a conditioning-function call:

conditioned_output_block = Conditioning_function(input_parameters),

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

27

where the input_parameters for the selected conditioning function are discussed in Sections 1095
1096
1097

1098

1099
1100
1101
1102

1103
1104

1105
1106

1107

1108
1109
1110
1111
1112

1113

1114

1115
1116

1117

1118

1119

1120

1121

1122
1123

3.2.1.2 and 3.2.1.3, and conditioned_output_block is the output returned by the conditioning
function.

3.2.1.1. Keys Used in External Conditioning Functions

The HMAC, CMAC, and CBC-MAC vetted conditioning functions require the input of a Key
of a specific length (keylen), depending on the conditioning function and its primitive. Unlike
other cryptographic applications, keys used in these external conditioning functions do not
require secrecy to accomplish their purpose, so they may be hard-coded, fixed, or all zeros.

For the CMAC and CBC-MAC conditioning functions, the length of the key shall be an
approved key length for the block cipher used (e.g., keylen = 128, 192, or 256 bits for AES).

For the HMAC conditioning function, the length of the key shall be equal to the length of the
hash function’s output (i.e., output_len).

Table 2. Key lengths for the hash-based conditioning functions

Hash Function Length of the output (output_len)
and key (keylen)

SHA-256, SHA-512/256, SHA3-256 256
SHA-384, SHA3-384 384
SHA-512, SHA3-512 512

Using random keys may provide some additional security in case the input is more predictable
than expected. Thus, these keys should be chosen randomly (e.g., by obtaining bits directly from
the entropy source and inserting them into the key or by providing entropy-source bits to a
conditioning function with a fixed key to derive the new key). Any entropy used to randomize the
key shall not be used for any other purpose.

3.2.1.2. Hash Function-based Conditioning Functions

Conditioning functions may be based on approved hash functions.

One of the following calls shall be used for external conditioning when the conditioning function
is based on a hash function:

1. Using an approved hash function directly:

conditioned_output_block = Hash(entropy_bitstring),

where the hash function operates on the entropy_bitstring provided as input.

2. Using HMAC with an approved hash function:

conditioned_output_block = HMAC(Key, entropy_bitstring),

where HMAC operates on the entropy_bitstring using a Key determined as specified in
Sec. 3.2.1.1.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

28

In both cases, the length of the conditioned output is equal to the length of the output block of 1124
1125

1126

1127

1128
1129

1130

1131
1132

1133
1134

1135

1136

1137
1138

1139

1140

1141
1142

1143
1144

1145
1146

1147
1148

1149

1150
1151

1152

1153

the selected hash function (i.e., output_len).

3. Using Hash_df, as specified in SP 800-90A:

conditioned_output_block = Hash_df(entropy_bitstring, output_len),

where the derivation function operates on the entropy_bitstring provided as input to
produce a bitstring of output_len bits.

3.2.1.3. Block Cipher-Based Conditioning Functions

Conditioning functions may be based on approved block ciphers.8

8 At the time of publication, only AES-128, AES-192, and AES-256 were approved as block ciphers for the conditioning functions (see SP 800-90B).
In all three cases, the block length is 128 bits.

 TDEA shall not be used as the
block cipher.

For block-cipher-based conditioning functions, one of the following calls shall be used for
external conditioning:

1. Using CMAC (as specified in SP 800-38B) with an approved block cipher:

conditioned_output_block = CMAC(Key, entropy_bitstring),

where CMAC operates on the entropy_bitstring using a Key determined as specified in
Sec. 3.2.1.1.

2. Using CBC-MAC (specified in SP 800-90B) with an approved block cipher:

conditioned_output_block = CBC-MAC(Key, entropy_bitstring),

where CBC-MAC operates on the entropy_bitstring using a Key determined as specified
in Sec. 3.2.1.1.

CBC-MAC shall only be used as an external conditioning function under the following
conditions:

1. The length of the input is an integer multiple of the block size of the block cipher
(e.g., a multiple of 128 bits for AES). No padding is done by CBC-MAC itself.9

9 Any padding required could be done before submitting the entropy_bitstring to the CBC-MAC function.

2. If the CBC-MAC conditioning function is used for the external conditioning of an
entropy source output for CTR_DRBG instantiation or reseeding:

• A personalization string shall not be used during instantiation.

• Additional input shall not be used during the reseeding of the
CTR_DRBG but may be used during the generate process.

CBC-MAC is not approved for any use other than in an RBG.

3. Using the Block_cipher_df as specified in SP 800-90A with an approved block cipher:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

29

conditioned_output_block = Block_cipher_df(entropy_bitstring, block_length), 1154

1155
1156

1157
1158

1159

1160
1161
1162
1163
1164
1165
1166
1167

1168

1169
1170
1171
1172
1173
1174
1175

1176

1177

1178

1179

1180
1181

1182
1183
1184
1185

1186

1187

where Block_cipher_df operates on the entropy_bitstring using a key specified within
the function, and the block_length is 128 bits for AES.

In all three cases, the length of the conditioned output is equal to the length of the output block
(i.e., 128 bits for AES).

3.2.2. Using a Vetted Conditioning Function

There are several cases in which the use of an external conditioning function is required to
prepare the entropy-source output for use by a DRBG mechanism. Section 3.2.2.1 provides a
procedure for obtaining entropy from one or more entropy sources and subsequently processing
it using an external conditioning function when full-entropy output is not required from the
conditioning function (e.g., the conditioning function is used to compress the entropy into a
shorter bitstring or to distribute the entropy across the output). Section 3.2.2.2 provides a
procedure for obtaining full entropy from the entropy source(s) when needed. When full entropy
is not required, either procedure may be used.

3.2.2.1. External Conditioning When Full Entropy is Not Required

The Get_conditioned_input procedure specified below iteratively requests entropy from the
Get_entropy_bitstring process (represented as a Get_entropy_bitstring procedure; see Sec.
2.8.2 and 3.1) and distributes the entropy in the newly acquired entropy_bitstring across the
conditioning function’s output block. The output of the Get_conditioned_input procedure is the
concatenation of the conditioning function output blocks. The entire output of the
Get_conditioned_input procedure shall be provided as input to the DRBG mechanism (i.e., the
output of the Get_conditioned_input function shall not be truncated).

Let output_len be the length of the conditioning function’s output block.

Get_conditioned_input:

Input:

1. n: The amount of entropy to be obtained.

2. counting_method: The counting method to be used (i.e., either Method 1 or Method
2, as described in Sec. 2.3).

3. target_entropy_source: An optional parameter that indicates the specific entropy
source to be queried. If the target_entropy_source is not indicated, output is to be
obtained from any validated entropy sources producing output that have not
reported a failure.

Output:

1. status: The status returned from the Get_conditioned_input process.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

30

2. Conditioned_entropy_bitstring: A bitstring containing conditioned entropy or the Null 1188
1189

1190

1191

1192

1193

1194

1195
1196

1197

1198

1199
1200

1201

1202
1203

1204
1205

1206
1207

1208
1209

1210
1211
1212
1213

1214
1215
1216

1217
1218
1219
1220

1221
1222

string.

Process:

1. v = n/output_len.

2. w = n/v.

3. Conditioned_entropy_bitstring = the Null string.

4. For i = 1, ..., v

4.1 (status, entropy_bitstring) = Get_entropy_bitstring(w, counting_method,
target_entropy_source).

4.2 If (status ≠ SUCCESS), then return (status, Null).

4.3 conditioned_output_block = Conditioning_function(input_parameters).

4.4 Conditioned_entropy_bitstring = Conditioned_entropy_bitstring ||
conditioned_output_block.

5. Return (SUCCESS, Conditioned_entropy_bitstring).

Step 1 determines the number of output blocks (v) required to hold the requested amount of
entropy.

Step 2 determines the amount of entropy (w) that will be requested for each of the v output
blocks.

Step 3 sets the bitstring into which conditioned output will be collected (i.e.,
Conditioned_entropy_bitstring) to the Null string.

Step 4 is iterated v times to obtain and condition the requested amount of entropy for each
output block of the conditioning function.

• Step 4.1 requests w bits of entropy from the entropy source(s) using the
Get_entropy_bitstring call (see Sec. 2.8.2 and 3.1), indicating the method to be used for
counting entropy (i.e., Method 1 or Method 2) and (if provided as input) the entropy
source to be used (indicated by the target_entropy_source input parameter).

• Step 4.2 checks whether the status returned in step 4.1 indicated a success. If the status
did not indicate a success, the status is returned with a Null string as the
Conditioned_entropy_bitstring.

• Step 4.3 invokes the conditioning function for processing the entropy_bitstring obtained
from step 4.1 to distribute the entropy throughout the conditioning function’s output
block. The input_parameters for the selected Conditioning_function are specified in Sec.
3.2.1.2 and 3.2.1.3 based on the conditioning function used.

• Step 4.4 concatenates the conditioned_output_block from step 4.3 to the
Conditioned_entropy_bitstring.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

31

• If all the requested entropy has not been obtained and conditioned, then go to step 4.1 1223
1224

1225

1226

1227
1228
1229
1230

1231
1232
1233
1234
1235

1236
1237
1238
1239
1240

1241

1242

1243

1244
1245

1246
1247
1248
1249

1250

1251

1252

1253

1254

1255

1256

with an updated value of v.

Step 5 returns a status of SUCCESS and the value of Conditioned_entropy_bitstring.

3.2.2.2. Conditioning Function to Obtain Full-Entropy Bitstrings

The Get_conditioned_full_entropy_input procedure specified below produces a bitstring with
full entropy using one of the conditioning functions identified in Sec. 3.2.1 whenever a bitstring
with full entropy is required. This process is unnecessary if full-entropy output is provided by the
the entropy source(s).

The approach used by this procedure is to acquire sufficient entropy from the entropy source(s)
to iteratively produce output_len bits with full entropy in the conditioning function’s output block,
where output_len is the length of the output block. The amount of entropy required for each use
of the conditioning function is output_len + 64 bits (see item 11 in Sec. 2.6). This process is
repeated until the requested number of full-entropy bits has been produced.

The Get_conditioned_full_entropy_input procedure obtains entropy from either 1) a
designated entropy source (if a specific entropy source is identified as the target_entropy_source)
or 2) any available entropy source using the Get_entropy_bitstring process (represented as a
Get_entropy_bitstring procedure; see Sec. 2.8.2 and 3.1) and conditions the newly acquired
entropy_bitstring to provide an n-bit string with full entropy.

Get_conditioned_full_entropy_input:

Input:

1. n: The amount of entropy to be obtained.

2. counting_method: The counting method to be used (i.e., either Method 1 or Method
2, as described in Sec. 2.3).

3. target_entropy_source: An optional parameter that indicates the specific entropy
source to be queried. If the target_entropy_source is not indicated, output is to be
obtained from any validated entropy sources producing output that have not
reported a failure.

Output:

1. status: The status returned from the Get_conditioned_full_entropy_input process.

2. Full_entropy_bitstring: An n-bit string with full entropy or the Null string.

Process:

1. temp = the Null string.

2. ctr = 0.

3. While ctr < n, do

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

32

3.1 (status, entropy_bitstring) = Get_entropy_bitstring(output_len + 64, 1257
1258

1259

1260

1261

1262

1263

1264

1265
1266

1267

1268
1269
1270
1271
1272

1273
1274
1275

1276
1277
1278

1279
1280

1281
1282

1283

1284

1285

counting_method, target_entropy_source).

3.2 If (status ≠ SUCCESS), then return (status, Null).

3.3 conditioned_output_block = Conditioning_function(input_parameters).

3.4 temp = temp || conditioned_output_block.

3.5 ctr = ctr + output_len.

4. Full_entropy_bitstring = leftmost(temp, n).

5. Return (SUCCESS, Full_entropy_bitstring).

Steps 1 and 2 initialize the temporary bitstring (temp) for storing the full-entropy bitstring being
assembled and the counter (ctr) that counts the number of full-entropy bits produced.

Step 3 obtains and processes the entropy for each iteration.

• Step 3.1 requests output_len + 64 bits of entropy from the validated entropy source(s)
using the indicated method for counting entropy (i.e., Method 1 or Method 2) and (if
present) using only the entropy source identified as the target_entropy_source. If the
entropy source to be used is not identified, the entropy is to be obtained from all available
entropy sources that have not reported a failure.

• Step 3.2 checks whether the status returned in step 3.1 indicated a success. If the status
did not indicate a success, the status is returned along with a Null bitstring as the
Full_entropy_bitstring.

• Step 3.3 invokes the conditioning function for processing the entropy_bitstring obtained
from step 3.1. The input_parameters for the selected Conditioning_function are
specified in Sec. 3.2.1.2 or 3.2.1.3, depending on the conditioning function used.

• Step 3.4 concatenates the conditioned_output_block received in step 3.3 to the temporary
bitstring (temp).

• Step 3.5 increments the counter for the number of full-entropy bits that have been
produced so far.

• If less than n full-entropy bits have been produced, repeat the process starting at step 3.1.

Step 4 truncates the full-entropy bitstring to n bits.

• Step 5 returns an n-bit full-entropy bitstring as the Full_entropy_bitstring.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

33

4. RBG1 Construction Based on RBGs With Physical Entropy Sources 1286

1287
1288
1289

1290
1291
1292
1293

1294
1295
1296
1297

1298
1299
1300
1301
1302
1303
1304
1305
1306

1307

1308
1309
1310
1311
1312

An RBG1 construction provides a source of cryptographic random bits from a device that has no
internal randomness source. Its security depends entirely on its DRBG being instantiated securely
from an RBG with access to a physical entropy source that resides outside of the device.

The DRBG in an RBG1 construction is instantiated (i.e., seeded) only once using either an RBG2(P)
construction (see Sec. 5) or an RBG3 construction (see Sec. 6). Since a randomness source is not
available after DRBG instantiation, the DRBG within an RBG1 construction cannot be reseeded
(i.e., prediction resistance and recovery from a compromise cannot be provided).

An RBG1 construction may be useful for constrained devices in which an entropy source cannot
be implemented or in any device in which access to a suitable source of randomness is not
available after instantiation. Since the DRBG within an RBG1 construction cannot be reseeded,
the use of the DRBG is limited to the DRBG’s seedlife (see SP 800-90A).

Optionally, subordinate DRBGs (i.e., sub-DRBGs) may be used within the security boundary of an
RBG1 construction (see Sec. 4.3). The use of one or more sub-DRBGs may be useful for
implementations that use flash memory, such as when the number of write operations to the
memory is limited (resulting in short device lifetimes) or when there is a need to use different
DRBG instantiations for different purposes. The DRBG in the RBG1 construction is the source of
the randomness that is used to instantiate one or more sub-DRBGs. Each sub-DRBG is a DRBG
specified in SP 800-90A and is intended to be used for a limited time and a limited purpose, so
reseeding of the DRBG within a sub-DRBG is not provided. A sub-DRBG may, in fact, be a different
instantiation of the DRBG design implemented within the RBG1 construction (see Sec. 2.4.1).

4.1. RBG1 Description

As shown in Fig. 15, an RBG1 construction consists of a DRBG contained within a DRBG security
boundary in one cryptographic module and an RBG (serving as a randomness source) contained
within a separate cryptographic module from that of the RBG1 construction. For convenience
and clarity, the DRBG within the RBG1 construction will sometimes be referred to as DRBG1. Note
that the required health tests are not shown in the figure.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

34

 1313
1314

1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328

1329

1330
1331
1332
1333

Fig. 15. Generic structure of the RBG1 construction

The RBG for instantiating DRBG1 must be either an RBG2(P) construction that supports a reseed
request from the RBG1 construction (see Sec. 5) or an RBG3 construction (see Sec. 6). A physically
secure channel between the randomness source and DRBG1 is used to securely transport the
seed material required for DRBG instantiation. An optional recommended personalization string
and optional additional input may be provided from within the DRBG’s cryptographic module or
from outside of that module (see Sec. 2.4.1).

An external conditioning function is not needed for this design because the output of the RBG
used as the randomness source has already been cryptographically processed. The output from
an RBG1 construction may be used within the cryptographic module (e.g., to seed a sub-DRBG,
as specified in Sec. 4.3) or by an application outside of the RBG1 security boundary. The security
strength of the output produced by the RBG1 construction is the minimum of the security
strengths provided by the DRBG within the construction and the RBG used as the randomness
source to seed the DRBG. Examples of RBG1 and sub-DRBG constructions are provided in
Appendices B.2 and B.3, respectively.

4.2. Conceptual Interfaces

Interfaces to the DRBG within an RBG1 construction include requests for instantiating the DRBG
and generating pseudorandom bits (see Sec. 4.2.1 and 4.2.2, respectively). A reseed of the RBG1
construction cannot be performed because the randomness source is not available after
instantiation.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

35

4.2.1. Instantiating the DRBG in the RBG1 Construction 1334

1335
1336
1337

1338
1339

1340
1341

1342
1343

1344
1345
1346

1347
1348

1349
1350
1351
1352
1353

1354
1355
1356
1357
1358

The DRBG within the RBG1 construction (DRBG1) may be instantiated by an application at any
security strength possible for the DRBG design using the DRBG_Instantiate_request discussed
in Sec. 2.8.1.1:

(status, RBG1_DRBG1_state_handle) =
DRBG_Instantiate_request (s, personalization_string).

The DRBG_Instantiate_request received by DRBG1 from an application shall result in the
execution of the DRBG_Instantiate function within DRBG1 (see Sec. 2.8.1.1):

(status, RBG1_DRBG1_state_handle) =
DRBG_Instantiate(s, personalization_string).

The status returned by the DRBG_Instantiate function shall be returned to the requesting
application in response to the DRBG_Instantiate_request. RBG1_ DRBG1_state_handle is the
state handle for DRBG1’s internal state; the state handle may be Null.

The DRBG_Instantiate function within DRBG1 shall use an external RBG (i.e., the randomness
source) to obtain the seed_material necessary for establishing the DRBG’s security strength.

In SP 800-90A, the DRBG_Instantiate function specifies the use of a Get_randomness-
source_input call to obtain seed material from the randomness source for instantiation (see Sec.
2.8.1.4 in this document and SP 800-90A). For an RBG1 construction, an approved external
RBG2(P) or RBG3 construction must be used as the randomness source (see Sec. 5 and 6,
respectively).

If the randomness source is an RBG2(P) construction (see Fig. 16), the RBG2(P) construction must
be reseeded using its internal entropy source(s) before generating bits to be provided to DRBG1.
The Get_randomness-source_input call in the DRBG_Instantiate function of DRBG1 shall be
replaced by a reseed request followed by a generate request to the RBG2(P) construction serving
as the randomness source (see steps 1a and 2a below).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

36

 1359
1360

1361
1362
1363
1364

1365
1366

1367
1368
1369
1370
1371
1372

Fig. 16. Instantiation using an RBG2(P) construction as a randomness source

If the randomness source is an RBG3 construction (as shown in Fig. 17), the Get_randomness-
source_input call in the DRBG_Instantiate function of DRBG1 shall be replaced by the
appropriate call to the RBG3 generate function (see Sec. 2.8.3.2, 6.4.1.2, and 6.5.1.2 and steps
1b and 2b below).

Fig. 17. Instantiation using an RBG3(XOR) or RBG3(RS) construction as a randomness source

Let DRBG1 be the DRBG to be instantiated within the RBG1 construction and let DRBGR be the
DRBG used within the randomness source (i.e., an RBG2(P) or RBG3 construction). Let s be the
security strength to be instantiated for DRBG1. DRBG_Reseed_request and
DRBG_Generate_request are used below by an application to request the generation and
reseed of the DRBG within the randomness source (i.e., DRBGR). Let DRBGR_state_handle be the
state handle for DRBGR.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

37

Upon receiving the instantiation request from the application, DRBG1 is instantiated as follows: 1373

1374
1375

1376
1377
1378
1379

1380

1381

1382
1383

1384

1385
1386
1387
1388
1389

1390
1391
1392

1393
1394

1395

1396
1397
1398
1399

1400
1401
1402

1403
1404
1405

1. When an RBG1 construction is instantiating a CTR_DRBG without a derivation function,
s + 128 bits10

10 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90Ar1 requires the seed material from the
randomness source to be key length + block length bits when a derivation function is not used.

 shall be obtained from the randomness source as follows:

a. If the randomness source is an RBG2(P) construction (see Fig. 16), the
Get_randomness-source_input call in the DRBG_Instantiate function of DRBG1
is replaced by a request to reseed DRBGR (the DRBG within the RBG2(P)
construction), followed by a request to generate bits:

• status = DRBG_Reseed_request(DRBGR_state_handle, additional_input).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

• (status, seed_material) = DRBG_Generate_request(DRBGR_state_handle,
s + 128, s, additional_input).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

DRBG_Reseed_request and DRBG_Generate_request are used here to
indicate requests for the DRBG within the randomness source (DRBGR) to execute
the DRBG_Reseed function and DRBG_Generate function within DRBGR (see
Sec. 2.8.1.3, and 2.8.1.2, respectively). Also, see Sec. 5.2.3 and 5.2.2 for the
handling of the reseed and generate requests by the RBG2(P) construction.

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction (see Fig. 17),
the Get_randomness-source_input call in the DRBG_Instantiate function of
DRBG1 is replaced by a request for the generation of random bits:

• (status, seed_material) = RBG3_Generate_ request(DRBGR_state_handle,
s + 128, additional_input).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

RBG3_Generate_request is intended to result in the execution of the
DRBG_Generate function in DRBGR (see Sec. 2.8.3.1). Also, see Sec. 6.4.1.2 and
6.5.1.2.1 for the handling of the generate request by the RBG3(XOR) and RBG3(RS)
constructions, respectively.

2. When an RBG1 construction is instantiating any other DRBG (including a CTR_DRBG
with a derivation function11

11 Although the use of a derivation function with the CTR_DRBG is allowed in an RBG1 construction, it is not needed to process output from the
randomness source, since the randomness source is an RBG2(P) or RBG3 construction.

), 3s/2 bits shall be obtained from a randomness source that
provides a security strength of at least s bits.

a. If the randomness source is an RBG2(P) construction (see Fig. 16), the
Get_randomness-source_input call in DRBG1 is replaced by a request to reseed
DRBGR, followed by a request to generate bits:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

38

• status = DRBG_Reseed_request(DRBGR_state_handle, additional_input). 1406

1407

1408
1409

1410

1411
1412
1413
1414
1415

1416
1417
1418

1419
1420
1421

1422

1423
1424
1425
1426

1427

1428
1429

1430
1431

1432
1433

1434
1435

1436
1437
1438

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

• (status, seed_material) = DRBG_Generate_request(DRBGR_state_handle,
3s/2, s, additional_input).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

DRBG_Reseed_request and DRBG_Generate_request are used here to
indicate requests for the DRBG within the randomness source (DRBGR) to execute
the DRBG_Reseed function and DRBG_Generate function within DRBGR (see
Sec. 2.8.1.3 and 2.8.1.2, respectively). Also, see Sec. 5.2.3 and 5.2.2 for the
handling of the reseed and generate requests by the RBG2(P) construction.

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction (see Fig. 17),
the Get_randomness-source_input call in DRBG1 is replaced by a request for the
generation of random bits:

• (status, seed_material) =
RBG3_DRBG_Generate_request(DRBGR_state_handle, 3s/2,
additional_input).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

RBG3_DRBG_Generate_request is intended to result in the execution of the
DRBG_Generate function in DRBGR (see Sec. 2.8.3.1). Also, see Sec. 6.4.1.2 and
6.5.1.2.1 for the handling of the generate request by the RBG3(XOR) and RBG3(RS)
constructions, respectively.

4.2.2. Requesting Pseudorandom Bits

As discussed in Sec. 2.8.1.2, an application requests the RBG1 construction to generate bits as
follows:

(status, returned_bits) = DRBG_Generate_request(RBG1_DRBG1_state_handle,
requested_number_of_bits, s, additional_input).

The DRBG_Generate_request results in the execution of the DRBG_Generate function within
DRBG1:

(status, returned_bits) = DRBG_Generate(RBG1_DRBG1_state_handle,
requested_number_of_bits, s, additional_input).

The status returned by the DRBG_Generate function shall be returned to the requesting
application. If the status indicates a successful process, the returned_bits shall also be provided
to the application in response to the request.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

39

4.3. Using an RBG1 Construction With Subordinate DRBGs (Sub-DRBGs) 1439

1440
1441
1442

1443
1444

1445
1446
1447
1448

1449
1450
1451

1452
1453
1454

1455

1456

1457

1458
1459
1460

1461

1462
1463

Figure 18 depicts an example of the use of optional subordinate DRBGs (sub-DRBGs) within the
security boundary of an RBG1 construction. The RBG1 construction is used as the randomness
source to provide separate outputs to instantiate each of its sub-DRBGs.

Fig. 18. RBG1 construction with sub-DRBGs

The RBG1 construction and each of its sub-DRBGs shall be implemented as separate physical or
logical entities (see Fig. 18). Let DRBG1 be the DRBG used by the RBG1 construction itself, with
RBG1_DRBG1_state_handle used as the state handle for the internal state of DRBG1. Let sub-
DRBGx_state_handle be the state handle for the internal state of sub-DRBGx.

• When implemented as separate physical entities, the DRBG algorithms used by DRBG1
and the sub-DRBGs shall be the same DRBG algorithm (e.g., the RBG1 construction and
all its sub-DRBGs use HMAC_DRBG with SHA-256).

• When implemented as separate logical entities, the same software or hardware
implementation of a DRBG algorithm is used but with a different internal state for each
logical entity.

The sub-DRBGs have the following characteristics:

1. Only one layer of sub-DRBGs is allowed.

2. Sub-DRBG outputs are considered outputs of the RBG1 construction.

3. The security strength that can be provided by a sub-DRBG is no more than the security
strength of DRBG1 (i.e., the DRBG within the RBG1 construction that is serving as the
randomness source for the sub-DRBG).

4. Sub-DRBGs cannot provide output with full entropy.

5. The number of sub-DRBGs that can be instantiated by an RBG1 construction is limited
only by the practical considerations associated with the implementation or application.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

40

4.3.1. Instantiating a Sub-DRBG 1464

1465
1466

1467
1468

1469
1470

1471

1472

1473

1474

1475

1476

1477
1478
1479

1480
1481

1482

1483

1484

1485
1486

1487
1488

1489
1490

1491

1492

1493

1494
1495

An application may request the RBG1 construction to instantiate a sub-DRBG. The following
represents the form of the application’s request for sub-DRBG instantiation:

(status, sub-DRBG_state_handle) =
Instantiate_sub-DRBG_request(s, personalization_string).

DRBG1 executes an Instantiate_sub-DRBG function. The status of the process is returned to the
application with a state handle if the status indicates success.

The value of max_personalization_string_length is specified in SP 800-90A.

Instantiate_sub-DRBG:

Input:

1. s: the requested security strength for the sub-DRBG.

2. (Optional) personalization_string: An input that provides personalization information.

Output to a consuming application:

1. status: The status returned from the Instantiate_sub-DRBG function (see steps 2, 3,
6, and 10). If any status other than SUCCESS is returned, an invalid _state handle shall
be returned.

2. sub-DRBG_state_handle: Used to identify the internal state for this sub-DRBG
instantiation in subsequent calls to the generate function (see Sec. 4.3.2).

Information retained within the DRBG boundary after instantiation:

The internal states for DRBG1 and the sub-DRBG instantiation.

Process:

1. Obtain the current internal state of DRBG1 to get its instantiated security strength
(shown as RBG1_DRBG1_security_strength in step 2).

2. If (s > RBG1_DRBG1_security_strength), then return (ERROR_FLAG,
Invalid_state_handle).

3. If the length of the personalization_string > max_personalization_string_length,
return (ERROR_FLAG, Invalid_state_handle).

4. If (s > 192), then s = 256

Else, if (s ≤ 128), then s = 128.

Else s = 192.

Comment: See the instructions below for the value
of number_of_bits_to_generate.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

41

5. (status, seed_material) = DRBG_Generate(RBG1_DRBG1_state_handle, 1496
1497

1498

1499
1500

1501
1502

1503
1504

1505

1506

1507

1508
1509

1510
1511
1512

1513
1514

1515
1516

1517
1518

1519

1520
1521

1522
1523
1524

1525
1526

1527

1528

number_of_bits_to_generate, s).

6. If (status ≠ SUCCESS), return (status, Invalid_state_handle).

7. working_state_values = Instantiate_algorithm(seed_material,
personalization_string).

8. Get the sub-DRBG_state_handle for a currently empty internal state. If an empty
internal state cannot be found, return (ERROR_FLAG, Invalid_state_handle).

9. Set the internal state for the new instantiation (e.g., as indicated by
sub-DRBG_state_handle):

9.1 Record the working_state_values returned from step 7.

9.2 Record any administrative information (e.g., the value of s).

10. Return (SUCCESS, sub-DRBG_state_handle).

Step 1 obtains DRBG1’s security strength. A description of the internal state for each DRBG type
is provided in SP 800-90A.

Steps 2 and 3 check the validity of the requested security strength s and the length of any
personalization string provided for the instantiation request. An ERROR_FLAG and an invalid
state handle are returned to the requesting application if either is unacceptable.

Step 4 sets the security strength to be established for the sub-DRBG instantiation based on the
requested security strength s.

Step 5 requests the generation of seed_material at a security strength of s bits using DRBG1. The
number_of_bits_to_generate depends on DRBG1’s type:

• When CTR_DRBG without a derivation function is implemented for DRBG1,
number_of_bits_to_generate = s + 128.

• Otherwise, number_of_bits_to_generate = 3s/2.

Step 6 checks the status returned from step 5. If a status of SUCCESS is not returned, the status
and an invalid state handle are returned to the requesting application.

Step 7 invokes the appropriate instantiate algorithm in SP 800-90A for DRBG1’s design. Values for
the working state portion of the sub-DRBG’s internal state are returned by the instantiate
algorithm.

Step 8 assigns a state handle for an available internal state. If no internal state is currently
available, an ERROR_FLAG and invalid state handle are returned to the requesting application.

Step 9 enters the required values into the assigned internal state for the sub-DRBG.

Step 10 returns a status of SUCCESS and the assigned state handle to the requesting application.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

42

4.3.2. Requesting Random Bits From a Sub-DRBG 1529

1530
1531

1532
1533

1534
1535

1536
1537

1538
1539
1540

1541

1542

1543
1544

1545
1546

1547
1548
1549

1550

1551

1552

1553

1554
1555
1556

As discussed in Sec. 2.8.1.2, pseudorandom bits may be requested from a sub-DRBG by an
application:

(status, returned_bits) = DRBG_Generate request(sub_DRBGx_state_handle,
requested_number_of_bits, requested_security_strength, additional_input).

The generate request received by the sub-DRBG shall result in the execution of the
DRBG_Generate function:

(status, returned_bits) = DRBG_Generate(sub_DRBGx_state_handle,
requested_number_of_bits, requested_security_strength, additional_input).

The status returned by the DRBG_Generate function shall be returned to the application in
response to the request. If the process is successful, the newly generated bits (returned_bits)
shall also be provided to the application in response to the DRBG_Generate_request.

4.4. Requirements

4.4.1. RBG1 Construction Requirements

An RBG1 construction being instantiated has the following testable requirements (i.e., testable
by the validation labs):

1. An approved DRBG from SP 800-90A whose components can provide the targeted
security strength for the RBG1 construction shall be employed.

2. The components of the RBG1 construction shall be successfully validated for compliance
with SP 800-90A, SP 800-90C, FIPS 140, and the specification of any other approved
algorithm used within the RBG1 construction, as applicable.

3. The RBG1 construction shall not produce any output until it is instantiated.

4. The RBG1 construction shall not include a capability to be reseeded.

5. The RBG1 construction shall not permit itself to be instantiated more than once.12

12 While it is technically possible to reseed the DRBG, doing so outside of very controlled conditions (e.g., “in the field”) might result in seeds with
less than the required amount of randomness.

6. The randomness source shall be in a separate device from that of the RBG1 construction.

7. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, 3s/2 bits
shall be obtained from a randomness source, where s is the targeted security strength for
the DRBG used in the RBG1 construction (DRBG1).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

43

8. For a CTR_DRBG without a derivation function within the RBG1 construction, s + 128 1557
1558
1559

1560
1561

1562
1563

1564
1565

1566
1567

1568
1569

1570
1571

1572
1573
1574

1575
1576
1577

1578
1579
1580

1581
1582
1583

1584
1585

1586

1587

1588
1589

bits13

13 Note that s + 128 = keylen + blocklen = seedlen, as specified in SP 800-90Ar1.

 shall be obtained from the randomness source, where s is the targeted security
strength for the DRBG used in the RBG1 construction (DRBG1).

9. An implementation of an RBG1 construction shall verify that the internal state has been
updated before the generated output is provided to the requesting entity.

10. The RBG1 construction shall not provide output for generating requests that specify a
security strength greater than the instantiated security strength of its DRBG.

11. If the RBG1 construction can be used to instantiate a sub-DRBG, the RBG1 construction
may directly produce output for an application in addition to instantiating a sub-DRBG.

12. Seed material produced by the RBG1 construction to instantiate a sub-DRBG shall not be
used to instantiate other sub-DRBGs nor be provided directly to a consuming application.

13. If the seedlife of the DRBG within the RBG1 construction (DRBG1) is ever exceeded or a
health test of the DRBG fails, the use of the RBG1 construction shall be terminated.

The non-testable requirements for the RBG1 construction are listed below. If these requirements
are not met, no assurance can be obtained about the security of the implementation.

14. A validated RBG2(P) construction with support for reseeding requests or a validated RBG3
construction must be used as the randomness source for the DRBG in the RBG1
construction (DRBG1).

15. The randomness source must provide the requested number of bits at a security strength
of s bits or higher, where s is the targeted security strength for the DRBG within the RBG1
construction (DRBG1).

16. The specific output of the randomness source (or portion thereof) that is used for the
instantiation of an RBG1 construction must not be used for any other purpose, including
for seeding a different instantiation.

17. If an RBG2(P) construction is used as the randomness source for the RBG1 construction,
the RBG2(P) construction must be reseeded before generating bits for each RBG1
instantiation.

18. A physically secure channel must be used to insert the seed material from the
randomness source into the DRBG of the RBG1 construction (DRBG1).

4.4.2. Sub-DRBG Requirements

A sub-DRBG has the following testable requirements (i.e., testable by the validation labs):

1. The randomness source for a sub-DRBG shall be an RBG1 construction, and a sub-DRBG
shall not serve as a randomness source for another sub-DRBG.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

44

2. A sub-DRBG shall employ the same DRBG components as its randomness source (i.e., the 1590
1591

1592
1593

1594
1595
1596

1597
1598

1599
1600
1601

1602
1603
1604

1605

1606
1607

1608
1609

1610

1611
1612

1613

1614
1615

RBG1 construction).

3. A sub-DRBG shall reside in the same security boundary as the RBG1 construction that
instantiates it.

4. The output from the RBG1 construction that is used for sub-DRBG instantiation shall not
be output from the security boundary that contains the RBG1 construction and sub-DRBG
and shall not be used for any other purpose, including for seeding a different sub-DRBG.

5. The security strength for a target sub-DRBG shall not exceed the security strength that is
supported by the RBG1 construction.

6. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, 3s/2 bits
shall be obtained from the RBG1 construction for instantiation of the sub-DRBG, where s
is the requested security strength for the target sub-DRBG.

7. For a CTR_DRBG without a derivation function used by the sub-DRBG, s + 128 bits shall
be obtained from the RBG1 construction for instantiation, where s is the requested
security strength for the target sub-DRBG.

8. A sub-DRBG shall not produce output until it is instantiated.

9. A sub-DRBG shall not provide output for generating requests that specify a security
strength greater than the instantiated security strength of the sub-DRBG.

10. An implementation of a sub-DRBG shall verify that the internal state has been updated
before the generated output is provided to the requesting entity.

11. The sub-DRBG shall not be reseeded.

12. If the seedlife of a sub-DRBG is ever exceeded or a health test of the sub-DRBG fails, the
use of the sub-DRBG shall be terminated.

A non-testable requirement for a sub-DRBG (i.e., not testable by the validation labs) is:

13. The output of a sub-DRBG must not be used as seed material for other DRBGs (e.g., the
DRBGs in other RBGs) or sub-DRBGs.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

45

5. RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources 1616

1617
1618
1619
1620
1621
1622

1623
1624

1625
1626

1627

1628
1629
1630
1631
1632

1633
1634

1635
1636

An RBG2 construction is a cryptographically secure RBG with continuous access to one or more
validated entropy sources within its RBG security boundary. The RBG is instantiated before use
and generates outputs on demand. An RBG2 construction may (optionally) be implemented to
support reseeding requests from a consuming application (i.e., providing prediction resistance
for the next output of the RBG2 construction to mitigate a possible compromise of previous
internal states) and/or to be reseeded in accordance with implementation-selected criteria.

If a consuming application requires full-entropy output, an RBG3 construction from Sec. 6 needs
to be used rather than an RBG2 construction.

An RBG2 construction may be useful for all devices in which an entropy source can be
implemented.

5.1. RBG2 Description

The DRBG for an RBG2 construction is contained within the same RBG security boundary and
cryptographic module as its validated entropy source(s) (see Fig. 19). One or more entropy
sources are used to provide the entropy bits for both DRBG instantiation and any reseeding of
the DRBG. The use of a personalization string and additional input is optional and may be
provided from within the cryptographic module or from outside of that module.

Fig. 19. Generic structure of the RBG2 construction

The output from the RBG may be used within the cryptographic module or by an application
outside of the module.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

46

An example of an RBG2 construction is provided in Appendix B.4. 1637

1638
1639
1640

1641
1642
1643
1644
1645
1646
1647
1648

1649
1650
1651
1652

1653
1654
1655
1656
1657
1658
1659
1660

1661

1662
1663
1664
1665

1666

1667
1668

1669

1670

An RBG2 construction may be implemented to use one or more validated physical and/or non-
physical entropy sources for instantiation and reseeding. Two variants of the RBG2 construction
may be implemented:

1. An RBG2(P) construction uses the output of one or more validated physical entropy
sources and (optionally) one or more validated non-physical entropy sources, as discussed
in Method 1 of Sec. 2.3 (i.e., only the entropy produced by one or more validated physical
entropy sources is counted toward the entropy required for instantiating or reseeding the
RBG). Any amount of entropy may be obtained from a non-physical entropy source as
long as sufficient entropy has been obtained from the physical entropy sources to fulfill
an entropy request. An RBG2(P) construction may exist as part of an RBG3 construction
(see Sec. 6).

2. An RBG2(NP) construction uses the output of any validated non-physical or physical
entropy source(s), as discussed in Method 2 of Sec. 2.3 (i.e., the entropy produced by both
validated physical and non-physical entropy sources is counted toward the entropy
required for instantiating or reseeding the RBG).

These variants may affect the implementation of a Get_entropy_bitstring process (represented
as a Get_entropy_bitstring procedure; see Sec. 2.8.2 and 3.1), either accessing the entropy
source(s) directly or via the Get_conditioned_input or Get_conditioned_full_entropy_input
procedure specified in Sec. 3.2.2 during instantiation and reseeding (see Sec. 5.2.1 and 5.2.3).
That is, when seeding and reseeding an RBG2(P) construction (including a DRBG within an RBG3
construction, as discussed in Sec. 6), Method 1 in Sec. 2.3 is used to combine the entropy from
the entropy source(s), and Method 2 is used when instantiating and reseeding an RBG2(NP)
construction.

5.2. Conceptual Interfaces

The RBG2 construction includes requests for instantiating the DRBG (see Sec. 5.2.1) and
generating pseudorandom bits (see Sec. 5.2.2). Once instantiated, an RBG2 construction may be
reseeded when requested by a consuming application or when determined by implementation-
selected criteria if a reseed capability has been implemented (see Sec. 5.2.3).

5.2.1. RBG2 Instantiation

An RBG2 construction may be instantiated by an application at any valid14

14 The security strength must be 128, 192, or 256 bits.

 security strength
possible for the DRBG design and its components using an instantiation request (see Sec. 2.8.1.1):

(status, RBG2_DRBG_state_handle) = DRBG_Instantiate_request(s, personalization_string).

The request results in the execution of the DRBG_Instantiate function within the DRBG:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

47

(status, RBG2_DRBG_state_handle) = DRBG_Instantiate(s, personalization_string). 1671

1672
1673
1674
1675

1676
1677
1678

1679
1680
1681
1682
1683

1684
1685

1686
1687

1688
1689

1690

1691
1692

1693
1694

1695
1696

1697

1698
1699
1700

The DRBG_Instantiation function returns the status of the process, which is then provided to
the application in response to the request. If the process is successful, a state handle for the
instantiation (e.g., RBG2_DRBG_state_handle) is also returned from the DRBG_Instantiate
function and may be forwarded to the application.15

15 If there is never more than one DRBG instantiation possible, then a state handle is not required.

An RBG2 construction obtains entropy for its DRBG from one or more validated entropy sources
within its boundary, either directly or using a conditioning function to obtain and process the
output of the entropy source(s).

SP 800-90A uses a Get_randomness-source_input call in the DRBG_Instantiate function to
obtain the entropy needed for instantiation. Let counting_method indicate the method for
counting entropy from the entropy source(s) (i.e., Method 1 counts only entropy provided by
physical entropy sources, and Method 2 counts entropy from non-physical and physical entropy
sources; see Sec. 2.3).

1. When the DRBG is a CTR_DRBG without a derivation function, full-entropy bits shall be
obtained from the entropy source(s) as follows:

a. If all entropy sources provide full-entropy output, the Get_randomness-
source_input call is replaced by:

• (status, seed_material) = Get_entropy_bitstring(s + 128,
counting_method).16

16 For a CTR_DRBG using AES, s + 128 = the length of the key + the length of the AES block = seedlen (see Table 2 in SP 800-90Ar1).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

The output of the entropy source(s) shall be concatenated to obtain the s + 128
full-entropy bits to be returned as seed_material.

b. If one or more entropy sources do not provide full-entropy output, the
Get_randomness-source_input call is replaced by: 17

17 See Sec. 3.2.2.2 for a specification of the Get_conditioned_full_entropy_input function.

• (status, seed_material) = Get_conditioned_full_entropy_input(s + 128,
counting_method).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

3. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG used as
the DRBG, the entropy source(s) shall provide 3s/2 bits of entropy to establish the security
strength.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

48

a. If the implementer wants full entropy in the bitstring to be provided to the DRBG, 1701
1702

1703
1704

1705

1706

1707

1708

1709

1710

1711

1712
1713
1714
1715
1716

1717
1718

the Get_randomness-source_input call is replaced by:

• (status, seed_material) = Get_conditioned_full_entropy_input(3s/2,
counting_method).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

b. Otherwise, the Get_randomness-source_input call is replaced by either:

• (status, seed material) = Get_entropy_bitstring(3s/2, counting_method)

OR

(status, seed_material) = Get_conditioned_ input(3s/2, counting_method).

• If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

5.2.2. Requesting Pseudorandom Bits From an RBG2 Construction

If prediction resistance is desired by a consuming application for the next RBG output to be
generated so that previous internal states that may have been compromised cannot be used to
determine the next RBG output, the application requests a reseed of the DRBG as discussed in
Sec. 5.2.3 before requesting the generation of pseudorandom bits. Figure 20 depicts an (optional)
reseed request before requesting the generation of pseudorandom bits.

Fig. 20. RBG2 generate request following an optional reseed request

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

49

If a reseed of the RBG was not requested by the application prior to requesting the generation of 1719
1720
1721

1722
1723

1724
1725

1726
1727

1728

1729
1730
1731
1732

1733

1734
1735
1736
1737
1738

pseudorandom bits or a status of SUCCESS was returned by the DRBG_Reseed function in
response to a reseed request, pseudorandom bits are requested as follows (see Sec. 2.8.1.2):

(status, returned_bits) = DRBG_Generate_request(RBG2_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input).

The request shall result in the execution of a DRBG_Generate function by the DRBG (see Sec.
2.8.1.2) and checking the status returned by the DRBG_Generate function:

• (status, returned_bits) = DRBG_Generate(RBG2_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input).

• If (status ≠ SUCCESS), then return (status, Null).

The DRBG_Generate function returns the status of the process, which shall also be returned to
the application in response to the DRBG_Generate_request. If the status indicates that the
generation was successful, the requested random bits (returned_bits) are also provided by the
DRBG_Generate function and forwarded to the application.

5.2.3. Reseeding an RBG2 Construction

The capability to reseed an RBG2 construction is optional. If implemented, the reseeding of the
DRBG may be performed 1) upon request from a consuming application or 2) based on
implementation-selected criteria, such as time, number of outputs, events, or the availability of
sufficient entropy. The DRBG should be reseeded occasionally (e.g., after 219 bits have been
output).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

50

 1739
1740

1741

1742

1743
1744

1745

1746
1747

1748
1749
1750
1751

1752
1753

Fig. 21. Reseed request from an application

An application may request a reseed of the RBG2 construction (see Sec. 2.8.1.3):

status = DRBG_Reseed_request(RBG2_DRBG_state_handle, additional_input).

If the DRBG receives a DRBG_Reseed_Request or if the DRBG is scheduled for a reseed (see SP
800-90A), the DRBG_Reseed function shall be executed (see Sec. 2.8.1.3):

status = DRBG_Reseed(RBG2_DRBG_state_handle, additional_input).

The DRBG_Reseed function returns the status of the reseed process, which shall be returned
to the application if requested using a DRBG_Reseed_request.

The DRBG_Reseed function uses a Get_randomness-source_input call to obtain the entropy
needed for reseeding the DRBG (see Sec. 2.8.1.3 herein and SP 800-90A). The DRBG is reseeded
at the instantiated security strength recorded in the DRBG’s internal state. The
Get_randomness-source_input call in SP 800-90A shall be replaced with the following:

1. For the CTR_DRBG without a derivation function, use the appropriate replacement as
specified in step 1 of Sec. 5.2.1.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

51

2. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, replace 1754
1755
1756

1757
1758

1759
1760

1761

1762

1763

1764

1765

1766
1767

1768
1769

1770
1771
1772

1773
1774

1775
1776
1777

1778
1779
1780
1781

1782
1783
1784
1785

the Get_randomness-source_input call in the DRBG_Reseed function with the
following:18

18 See Sec. 2.8.2 and 3.1 for discussions of the Get_entropy_bitstring function.

a. If the implementer wants full entropy in the returned bitstring, the
Get_randomness-source_input call is replaced by:

(status, seed_material) = Get_conditioned_full_entropy_input(s,
counting_method).

b. Otherwise, the Get_randomness-source_input call is replaced by:

(status, seed_material) = Get_entropy_bitstring(s, counting_method)

OR

(status, seed_material) = Get_conditioned_ input(s, counting_method).

5.3. RBG2 Construction Requirements

An RBG2 construction has the following requirements in addition to those specified in SP 800-
90A and SP 800-90B:

1. The RBG shall employ an approved and validated DRBG from SP 800-90A whose
components are capable of providing the targeted security strength for the RBG.

2. The RBG and its components shall be successfully validated for compliance with SP 800-
90A, SP 800-90B, SP 800-90C, FIPS 140, and the specification of any other approved
algorithm used within the RBG, as appropriate.

3. One or more validated entropy sources shall be used to instantiate and reseed the DRBG.
A non-validated entropy source shall not be used for this purpose.

4. The DRBG shall be instantiated before first use (i.e., before providing output for use by a
consuming application) and reseeded using the validated entropy source(s) used for
instantiation (if a reseed capability is implemented).

5. When instantiating and reseeding a CTR_DRBG without a derivation function, s + 128
bits with full entropy shall be obtained either directly from the entropy source(s) or from
the entropy source(s) via an external vetted conditioning function that provides full-
entropy output (see Sec. 3.2.2.2).

6. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, a bitstring
with at least 3s/2 bits of entropy shall be obtained from the entropy source(s) to
instantiate the DRBG at a security strength of s bits. When reseeding is performed, a
bitstring with at least s bits of entropy shall be obtained from the entropy source(s). The

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

52

entropy may be obtained directly from the entropy source(s) or via an external vetted
conditioning function (see Sec.

1786
1787

1788
1789
1790
1791
1792
1793
1794

1795
1796
1797
1798
1799
1800
1801

1802
1803

1804
1805

1806

3.2.2).

7. The entropy source(s) used for the instantiation and reseeding of the DRBG within an
RBG(P) construction shall include one or more validated physical entropy sources; the
inclusion of one or more validated non-physical entropy sources is optional. A bitstring
that contains entropy shall be assembled and the entropy in that bitstring determined as
specified in Method 1 of Sec. 2.3 (i.e., only the entropy provided by validated physical
entropy sources shall be counted toward fulfilling the amount of entropy in an entropy
request).

8. The entropy source(s) used for the instantiation and reseeding of the DRBG within an
RBG2(NP) construction shall include one or more validated non-physical entropy sources;
the inclusion of one or more validated physical entropy sources is optional. A bitstring
containing entropy shall be assembled and the entropy in that bitstring determined as
specified in Method 2 of Sec. 2.3 (i.e., the entropy provided by both validated non-
physical entropy sources and any validated physical entropy sources included in the
implementation shall be counted toward fulfilling the requested amount of entropy).

9. A specific entropy-source output (or portion thereof) shall not be reused (e.g., it is
destroyed after use).

10. When a validated entropy source reports a failure, the failure shall be handled as
discussed in item 10 of Sec. 2.6.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

53

6. RBG3 Constructions Based on the Use of Physical Entropy Sources 1807

1808
1809
1810

1811

1812
1813
1814
1815

1816
1817
1818

1819
1820
1821
1822
1823

1824
1825
1826

1827

1828
1829
1830

1831
1832
1833
1834
1835

An RBG3 construction is designed to provide full entropy (i.e., an RBG3 construction can support
all security strengths). An RBG3 construction is useful when bits with full entropy are required or
a higher security strength than RBG1 and RBG2 constructions can support is needed.

6.1. General RBG3 Description

The RBG3 constructions specified in this recommendation include one or more physical entropy
sources and an approved DRBG from SP 800-90A. One or more non-physical entropy sources may
optionally be included, but any entropy they provide is not counted. That is, Method 1 of Sec. 2.3
is used for counting entropy during RBG3 operation.

Upon receipt of a request for random bits from a consuming application, the RBG3 construction
accesses its entropy source(s) to obtain sufficient bits for the request. See Sec. 3.1 for further
discussion about accessing entropy sources.

An implementation may be designed so that the DRBG implementation used within an RBG3
construction can be directly accessed by a consuming application using the same internal state
as the RBG3 construction. Access to the DRBG using a different internal state than is used by the
RBG3 construction is allowed as specified in Sec. 5 without the additional restrictions imposed in
Sec. 6.3, Requirement 3, and Sec. 6.5.2, Requirements 2 and 3.

The DRBG within an RBG3 construction is instantiated (i.e., seeded) at the highest security
strength possible for its design (see Table 3). This is the fallback security strength if the entropy
source fails in an undetected manner.

Table 3. Highest security strength for the DRBG’s cryptographic primitive

Cryptographic Primitive Highest Security Strength
AES-128 128
AES-192 192
AES-256 256

SHA-256/SHA3-256 256
SHA-384/SHA3-384 256
SHA-512/SHA3-512 256

If a failure of all physical entropy sources is detected, the RBG operation is terminated. Operation
must be resumed only after repair and successful testing by instantiating the DRBG with new
entropy from the entropy source(s).

If all physical entropy sources fail in an undetected manner, the RBG continues to operate as an
RBG2(P) construction, providing outputs at the security strength instantiated for its DRBG (see
Sec. 5). Although security strengths of 128 and 192 bits are allowed for the DRBG (depending on
its cryptographic primitive), a DRBG that is capable of supporting a security strength of 256 bits
and is instantiated at that strength is recommended so that the RBG will continue to operate at

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

54

a security strength of 256 bits in the event of an undetected failure of the physical entropy 1836
1837

1838

1839

1840
1841
1842

1843
1844

1845

1846

1847
1848
1849
1850
1851

1852
1853
1854
1855

1856
1857
1858

1859
1860
1861

1862
1863
1864

1865
1866

1867

1868
1869

source(s).

6.2. RBG3 Construction Types and Their Variants

Two basic RBG3 constructions are specified:

1. RBG3(XOR) — This construction is based on combining the output of one or more
validated entropy sources with the output of an instantiated, approved DRBG using an
exclusive-or operation (see Sec. 6.4).

2. RBG3(RS) — This construction is based on using one or more validated entropy sources
to continuously reseed the DRBG (see Sec. 6.5).

6.3. General Requirements

RBG3 constructions have the following general security requirements:

1. An RBG3 construction shall be designed to provide outputs with full entropy using one or
more validated, independent, physical entropy sources, as specified for Method 1 in Sec.
2.3. Only the entropy provided by validated physical entropy sources shall be counted
toward fulfilling entropy requests, although entropy provided by one or more validated
non-physical entropy sources may be used but not counted.

2. An RBG3 construction and its components shall be successfully validated for compliance
with the corresponding requirements in SP 800-90A, SP 800-90B, SP 800-90C, FIPS 140,
and the specification of any other approved algorithm used within the RBG, as
appropriate.

3. The DRBG shall be instantiated at its highest possible security strength before the first
use of the RBG3 construction or direct access of the DRBG. A DRBG should support a
security strength of 256 bits.

4. The RBG shall employ an approved and validated DRBG from SP 800-90A whose highest
possible security strength is the targeted fallback security strength for the DRBG (see Sec.
6.1).

5. A specific entropy-source output (or portion thereof) shall not be reused (e.g., the same
entropy-source output shall not be used for an RBG3 request or for seeding or reseeding
the DRBG).

6. If the DRBG is directly accessible, the requirements in Sec. 5.3 for RBG2(P) constructions
shall apply to the direct access of the DRBG.

7. If a failure is detected within the RBG, see Sec. 2.6 (item 10) and 3.1.

See Sec. 6.4.2 and 6.5.2 for additional requirements for the RBG3(XOR) and RBG3(RS)
constructions, respectively.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

55

6.4. RBG3(XOR) Construction 1870

1871
1872

1873
1874
1875
1876
1877

1878
1879

1880
1881
1882
1883
1884

An RBG3(XOR) construction contains one or more validated entropy sources and a DRBG whose
outputs are XORed to produce full-entropy output during the generate process (see Fig. 22).

In order to provide the required full-entropy output, the input to the XOR (shown as “⊕” in the
figure) from the entropy-source side of the figure shall consist of bits with full entropy (see Sec.
2.1). If the entropy source(s) cannot provide full-entropy output, then an external conditioning
function shall be used to condition the output of the entropy source(s) to a full-entropy bitstring
before XORing with the output of the DRBG (see Sec. 3.2.2.2).

Fig. 22. Generic structure of the RBG3(XOR) construction

When n bits of output are requested from an RBG3(XOR) construction, n bits of output from the
DRBG are XORed with n full-entropy bits obtained either directly from the entropy source(s) or
from the combination of validated entropy sources and an external vetted conditioning function
that provides full-entropy output (see Sec. 3.2.2.2). When the entropy sources are working
properly,19

19 The entropy source(s) provide(s) at least the amount of entropy determined during the entropy-source validation process.

 an n-bit output from the RBG3(XOR) construction is said to provide n bits of entropy

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

56

or to support a security strength of n bits. An example of an RBG3(XOR) design is provided in 1885
1886

1887

1888
1889

1890

1891
1892

1893
1894

1895
1896
1897
1898

1899
1900
1901
1902
1903
1904
1905
1906

1907
1908

1909

1910

1911

1912

1913

1914

1915
1916

Appendix B.5.

6.4.1. Conceptual Interfaces

The RBG interfaces include function calls for instantiating the DRBG (see Sec. 6.4.1.1), generating
random bits on request (see Sec. 6.4.1.2), and reseeding the DRBG instantiation (see Sec. 6.4.1.3).

6.4.1.1. Instantiation of the DRBG

As discussed in Sec. 2.8.3.1, before the RBG3(XOR) construction can be used to generate bits, an
application instantiates the DRBG within the construction:

(status, state_handle) = Instantiate_RBG3_DRBG_request(requested_security_strength,
personalization_string),

where requested_security_strength and personalization_string are optional. If the
requested_security_strength parameter is provided and exceeds the highest security strength
that can be supported by the DRBG, an error indication shall be returned with an invalid
state_handle (see Sec. 2.8.3.1).

If the requested_security_strength is provided and is acceptable (i.e., requested_security_strength
does not exceed the highest security strength that can be supported by the DRBG; see Sec.
2.8.3.1) or if the requested_security_strength parameter is not provided, the
Instantiate_RBG3_DRBG_request received by the RBG3(XOR) construction shall result in the
execution of the RBG3(XOR)_Instantiate function below. The status returned by the
RBG3(XOR)_Instantiate function shall be returned to the application in response to the
Instantiate_RBG3_DRBG_request. The return of the state_handle is optional if only a single
instantiation is allowed by an implementation.

Let s be the highest security strength that can be supported by the DRBG. The DRBG in the
RBG3(XOR) construction is instantiated as follows:

RBG3(XOR)_Instantiate:

Input:

1. s: The security strength to be instantiated for the DRBG.

2. personalization_string: An optional (but recommended) personalization string.

Output:

1. status: The status returned by the RBG3(XOR)_Instantiate function.

2. RBG3_DRBG_state_handle: The returned state handle for the internal state of the
DRBG or an invalid state handle.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

57

Process: 1917

1918
1919

1920

1921

1922
1923
1924

1925
1926

1927
1928

1929

1930

1931
1932

1933
1934

1935
1936

1937
1938
1939

1940
1941
1942
1943
1944
1945

1946

1947

1948
1949

1950

1. (status, RBG3_DRBG_state_handle) = DRBG_Instantiate(s,
personalization_string).

2. If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

3. Return (SUCCESS, RBG3_DRBG_state_handle).

In step 1, the DRBG is instantiated at a security strength of s bits. RBG3_DRBG_state_handle (if
returned) is the state handle for the internal state of the DRBG used within the RBG3(XOR)
construction.

In step 2, if the status returned from step 1 does not indicate a success, then return the status
with an invalid state handle.

In step 3, the status and RBG3_DRBG_state_handle that were obtained in step 1 are returned to
the requesting application.

The handling of status codes is discussed in item 10 of Sec. 2.6 and in Sec. 2.8.3, 3.1, and 8.1.2.

6.4.1.2. Random Bit Generation by the RBG3(XOR) Construction

As discussed in Sec. 2.8.3.2, an application may request the generation of random bits from the
RBG3(XOR) construction:

(status, returned_bits) = RBG3_DRBG_Generate_request(RBG3_DRBG_state_handle, n,
additional_input),

where RBG3_DRBG_state_handle was provided during instantiation (see Sec. 6.4.1.1), n is the
number of bits to be generated and returned to the application, and additional_input is optional.

The RBG3_DRBG_Generate_request received by the RBG3(XOR) construction shall result in
the execution of the RBG3(XOR)_Generate function below. The output of that function shall
be returned to the application in response to the RBG3_DRBG_Generate_request.

Let s be the security strength instantiated for the DRBG (i.e., the highest security strength that
can be supported by the DRBG; see Sec. 6.4.1.1), and let the RBG3_DRBG_state_handle be the
value returned by the instantiation function for RBG3(XOR)’s DRBG instantiation. Random bits
with full entropy shall be generated by the RBG3(XOR) construction using the following generate
function with the values of n and additional_input provided in the DRBG_Generate_request as
input:

RBG3(XOR)_Generate:

Input:

1. RBG3_DRBG_state_handle: The state handle of the DRBG used by the RBG3
construction.

2. n: The number of bits to be generated.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

58

3. additional_input: Optional additional input. 1951

1952

1953

1954

1955

1956
1957

1958

1959
1960

1961

1962

1963

1964
1965

1966
1967
1968

1969

1970
1971

1972
1973
1974

1975

1976
1977
1978
1979
1980

1981
1982
1983

Output:

1. status: The status returned by the RBG3(XOR)_Generate function.

2. returned_bits: The n bits generated by the RBG3(XOR) construction or a Null string.

Process:

1. (status, ES_bits) = Request_entropy(n). (See the notes below for
 customizing this step.)

2. If (status ≠ SUCCESS), then return (status, Null).

3. (status, DRBG_bits) = DRBG_Generate(RBG3_DRBG_state_handle, n, s,
additional_input).

4. If (status ≠ SUCCESS), then return (status, Null).

5. returned_bits = ES_bits ⊕ DRBG_bits.

6. Return (SUCCESS, returned_bits).

Step 1 requests that the entropy source(s) generate n bits. Since full-entropy bits are required,
the (placeholder) Request_entropy call shall be replaced by one of the following:

• If full-entropy output is provided by all validated physical entropy source(s) used by the
RBG3(XOR) implementation, and non-physical entropy sources are not used, step 1
becomes:

(status, ES_bits) = Get_entropy_bitstring(n, Method_1).

The Get_entropy_bitstring function20

20 See Sec. 2.8.2 and 3.2.

 shall use Method 1 in Sec. 2.3 to obtain the n full-
entropy bits that were requested to produce ES-bits.

• If full-entropy output is not provided by all physical entropy source(s), or the output of
both physical and non-physical entropy sources is used by the implementation, step 1
becomes:

(status, ES_bits) = Get_conditioned_full_entopy_input(n, Method_1).

The Get_conditioned_full_entropy_input procedure is specified in Sec. 3.2.2.2. It
requests entropy from the entropy sources in step 3.1 of that procedure with a
Get_entropy_bitstring call. The Get_entropy_bitstring call shall use Method 1 (as
specified in Sec. 2.3) when collecting the output of the entropy source(s) (i.e., only the
entropy provided by one or more physical entropy sources are counted).

In step 2, if the request in step 1 is not successful, abort the RBG3(XOR)_Generate function,
returning the status received in step 1 and a Null bitstring as the returned_bits. If status indicates
a success, ES_bits is the full-entropy bitstring to be used in step 5.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

59

In step 3, the RBG3(XOR)’s DRBG instantiation is requested to generate n bits at a security 1984
1985
1986
1987
1988
1989

1990
1991
1992
1993

1994
1995
1996

1997

1998
1999
2000
2001
2002

2003
2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014

2015
2016

2017
2018

strength of s bits. The DRBG instantiation is indicated by the RBG3_DRBG_state_handle, which
was obtained during instantiation (see Sec. 6.4.1.1). If additional input is provided in the
RBG3(XOR)_Generate call, it shall be included in the DRBG_Generate function call to the
DRBG. It is possible that the DRBG may require reseeding during the DRBG_Generate function
call in step 3 (e.g., because the end of the seedlife of the DRBG has been reached).

In step 4, if the DRBG_Generate function request is not successful, the RBG3(XOR)_Generate
function is aborted, and the status received in step 3 and a Null bitstring are returned to the
consuming application. If status indicates a success, DRBG_bits is the pseudorandom bitstring to
be used in step 5.

Step 5 combines the bitstrings returned from the entropy source(s) (from step 1) and the DRBG
(from step 3) using an XOR operation. The resulting bitstring is returned to the consuming
application in step 6.

6.4.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG

If prediction resistance is desired by a consuming application for the next DRBG output to be
generated so that a previous internal state that may have been compromised cannot be used to
determine the next DRBG output, the application requests a reseed of the DRBG before
requesting the generation of pseudorandom bits directly from the DRBG, as discussed in Sec.
6.4.1.4. This is the same process shown in Fig. 20 in Sec. 5.2.2.

If a reseed of the DRBG was not requested by the application, or a status of SUCCESS was returned
by the DRBG_Reseed function when the application requested a reseed, pseudorandom bits
may be requested as follows:

(status, returned_bits) = DRBG_Generate_request(RBG3(XOR)_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input),

where RBG3(XOR)_state_handle was provided during instantiation and additional_input is
optional.

The DRBG_Generate_request received by the DRBG shall result in the execution of the
DRBG_Generate function in the DRBG:

(status, returned_bits) = DRBG_Generate(RBG3_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input),

where:

• RBG3_DRBG_state_handle is the state handle used by the DRBG within the RBG3(XOR)
construction.

• requested_security_strength is provided in the DRBG_Generate_request and must be ≤
the instantiated security strength of the DRBG.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

60

• Any additional_input provided in a DRBG_Generate_request shall be provided as input 2019
2020

2021
2022

2023

2024
2025
2026

2027

2028

2029
2030

2031
2032

2033

2034
2035
2036
2037
2038

2039

2040
2041

2042
2043
2044
2045

2046
2047

2048
2049

to the DRBG_Generate function. Otherwise, the use of additional_input is optional.

The output of the DRBG_Generate function shall be returned to the application in response to
the DRBG_Generate_request.

6.4.1.4. Reseeding the DRBG Instantiation

As discussed in Sec. 2.4.2, the reseeding of the DRBG may be performed 1) upon request from a
consuming application or 2) based on implementation-selected criteria, such as time, number of
outputs, events, or the availability of sufficient entropy.

An application may request the reseeding of the DRBG within the RBG3(XOR) construction:

status = DRBG_Reseed_request(RBG3(XOR)_DRBG_state_handle, additional_input),

where RBG3(XOR)_state_handle was provided during instantiation and additional_input is
optional.

The DRBG executes a DRBG_Reseed function in response to a DRBG_Reseed_request from an
application or in accordance with implementation-selected criteria:

status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input),

where RBG3_DRBG_ state_handle (if used) was returned by the DRBG_Instantiate function
(see Sec. 2.8.1.1 and 6.4.1.1). RBG3_DRBG_state_handle is the state handle for the internal state
of the DRBG within the RBG3(XOR) construction. Any additional_input provided in a
DRBG_Reseed_request shall be provided as input to the DRBG_Reseed function. Otherwise,
the use of additional_input is optional.

6.4.2. RBG3(XOR) Requirements

An RBG3(XOR) construction has the following requirements in addition to those provided in Sec.
6.3:

1. Bitstrings with full entropy shall be provided to the XOR operation either directly from
the concatenated output of one or more validated physical entropy sources or by an
external conditioning function that provides full-entropy output using the output of one
or more validated physical entropy sources.

2. Entropy source output used for the RBG’s XOR operation shall not also be used to
instantiate and reseed the RBG’s DRBG.21

21 However, the same entropy source(s) may be used to provide entropy for the XOR operation and to seed and reseed the RBG's DRBG.

3. The DRBG instantiation should be reseeded occasionally (e.g., after a predetermined
period of time or number of generation requests).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

61

6.5. RBG3(RS) Construction 2050

2051
2052

2053
2054

2055
2056
2057
2058

2059

2060
2061

2062

2063
2064

2065
2066

2067
2068

The second RBG3 construction specified in this document is the RBG3(RS) construction shown in
Fig. 23. An example of this construction is provided in Appendix B.6.

Fig. 23. Generic structure of the RBG3(RS) construction

External conditioning of the outputs from the entropy source(s) during instantiation and
reseeding is required to provide bitstrings with full entropy when the DRBG is a CTR_DRBG
without a derivation function and the entropy source(s) do not provide output with full entropy.
Otherwise, the use of a conditioning function is optional.

6.5.1. Conceptual Interfaces

The RBG interfaces include function calls for instantiating the DRBG (see Sec. 6.5.1.1), generating
random bits on request (see Sec. 6.5.1.2), and reseeding the DRBG instantiation (see Sec. 6.5.1.3).

6.5.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction

Before the RBG3(RS) construction can be used to generate bits, an application shall request the
instantiation of the DRBG within the construction (see Sec. 2.8.3.1):

(status, RBG3_DRBG_state_handle) =
Instantiate_RBG3_DRBG_request(requested_security_strength, personalization_string),

where requested_security_strength and personalization_string are optional. If the
requested_security_strength parameter is provided and exceeds the highest security strength

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

62

that can be supported by the DRBG design, an error indication shall be returned with an invalid 2069
2070

2071
2072
2073
2074
2075

2076
2077
2078

2079

2080

2081

2082

2083

2084

2085
2086

2087

2088
2089

2090

2091

2092

2093
2094

2095
2096
2097

2098

state_handle (see Sec. 2.8.3.1).

If the requested_security_strength is provided and acceptable (see Sec. 2.8.3.1) or the
requested_security_strength information is not provided, the
Instantiate_RBG3_DRBG_request received by the RBG3(RS) construction shall result in the
execution of the RBG3(RS)_Instantiate function below. The status returned by that function
shall be returned to the application in response to the Instantiate_RBG3_DRBG_request.

Let s be the highest security strength that can be supported by the DRBG, and let
personalization_string be the value provided in the Instantiate_RBG3_DRBG_request (if any).
The DRBG in the RBG3(RS) construction is instantiated as follows:

RBG3(RS)_Instantiate:

Input:

1. s: The requested security strength for the DRBG in the RBG3(RS) construction.

2. personalization_string: An optional (but recommended) personalization string.

Output:

1. status: The status returned from the RBG3(RS)_Instantiate function.

2. RBG3_DRBG_state_handle: A pointer to the internal state of the DRBG if the status
indicates a success. Otherwise, an invalid state handle.

Process:

1. (status, RBG3_DRBG_state_handle) = DRBG_Instantiate(s,
personalization_string).

2. If (status ≠ SUCCESS), then return (status, Invalid_state_handle).

3. Return (SUCCESS, RBG3_DRBG_state_handle).

In step 1, the DRBG is instantiated at a security strength of s bits.

In step 2, if the status returned from step 1 does not indicate a success, then return the status
and an invalid state handle.

In step 3, the status and the RBG3_DRBG_state_handle are returned.
RBG3_DRBG_state_handle is the state handle for the internal state of the DRBG used within the
RBG3(RS) construction.

The handling of status codes is discussed in Sec. 2.8.3 and 6.5.1.2.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

63

6.5.1.2. Random and Pseudorandom Bit Generation 2099

2100

2101
2102
2103
2104
2105
2106
2107

2108
2109
2110
2111
2112
2113
2114
2115
2116

2117
2118

2119

6.5.1.2.1. Generation Using the RBG3(RS) Construction

When the DRBG within an RBG3(RS) construction is instantiated at a security strength of s bits, s
bits with full entropy can be extracted from its output if at least s + 64 bits of fresh entropy are
inserted into the DRBG’s internal state before generating the output (see item 11 in Sec. 2.6). Per
requirement 4 in Sec. 6.3, the security strength and the resulting length of the full-entropy
bitstring (s) is the highest security strength possible for the cryptographic primitive used by the
DRBG. If a consuming application requests more than s bits, multiple iterations of this process
are required.

Figure 24 depicts a sequence of RBG3(RS) generate operations. Full-entropy output from this
construction is generated in s-bit strings, where s is the instantiated security strength of the DRBG
used in an implementation. For each s bits of generated output, s + 64 bits of fresh entropy are
obtained by reseeding (shown in red in the figure) and then inserted into the DRBG’s internal
state before generating an s-bit string (shown in blue). Two generate requests using the RBG3(RS)
construction are shown in the figure. The first generate request requires the generation of two
iterations of the reseed-generate process (i.e., two strings of s bits are generated, each preceded
by obtaining s + 64 bits of fresh entropy). The second generate request requires only a single
string of s full-entropy bits to be generated (preceded by obtaining s + 64 bits of fresh entropy).

Fig. 24. Sequence of RBG3(RS) generate requests

Figure 25 provides a flow of the steps of the RBG3(RS)_Generate function.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

64

 2120
2121

2122
2123
2124
2125
2126
2127
2128
2129
2130

Fig. 25. Flow of the RBG3(RS)_Generate function

Figure 26 depicts a sequence of RBG3(RS) generate requests followed by a sequence of requests
directly to the DRBG (shown in green) and another sequence of RBG3(RS) generate requests. As
previously discussed, an RBG3(RS) generate request is preceded by obtaining s + 64 bits of fresh
entropy. The first generate request directly to the DRBG following one or more RBG3(RS)
generate requests is preceded by obtaining s + 64 bits of fresh entropy. Successive DRBG requests
do not require the insertion of fresh entropy (except, for example, if requested by the consuming
application). When a consuming application later requests that the RBG3(RS) construction
generate full-entropy bits again, the reseed-generate process is resumed by first reseeding with
s + 64 bits of entropy before the generation of each s-bit string by the RBG3(RS) construction.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

65

 2131
2132

2133

2134
2135

2136
2137

2138
2139
2140

2141
2142
2143

2144

2145

2146

2147
2148

2149

2150

2151

2152

2153

2154

2155

Fig. 26. Direct DRBG generate requests

As discussed in Sec. 2.8.3.2, an application may request the generation of random bits as follows:

(status, returned_bits) = RBG3_ Generate_request(RBG3_DRBG_state_handle, n,
additional_input),

where RBG3_DRBG_state_handle was provided during instantiation (see Sec. 6.5.1.1), n is the
number of bits to be generated and returned to the application, and additional_input is optional.

The RBG3_Generate_request received by the RBG3(RS) construction shall result in the
execution of the RBG3(RS)_Generate function below. The output of that function shall be
returned to the application in response to the RBG3_DRBG_Generate_request.

Let the input parameters provided in the request above also be provided as input to the
RBG3(RS)_Generate function. Appendix A.2 is a reference for the appropriate values for each
DRBG type.

Random bits with full entropy shall be generated as follows:

RBG3(RS)_ Generate:

Input:

1. RBG3_DRBG_state_handle: A pointer to the internal state of the DRBG used by the
RBG3(RS) construction.

2. n: The number of full-entropy bits to be generated.

3. additional_input: Optional additional input.

Output:

1. status: The status returned by the RBG3(RS)_Generate function.

2. returned_bits: The n full-entropy bits requested or a Null string.

Process:

1. temp = Null.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

66

2. sum = 0. 2156

2157

2158
2159

2160
2161

2162

2163

2164

2165

2166

2167
2168
2169

2170

2171

2172
2173
2174

2175

2176

2177
2178

2179

2180

2181
2182

2183
2184
2185

2186
2187
2188

3. While (sum < n),

3.1 Reseed with at least s + 64 bits of fresh entropy (see the notes below for
customizing this step).

3.2 (status, full_entropy_bits) = DRBG_Generate(RBG3_DRBG_state_handle, s,
s, additional_input).

3.3 If (status ≠ SUCCESS), then return (status, Null).

3.4 temp = temp || full_entropy_bits.

3.5 sum = sum + s.

3.6 additional_input = Null string.

4. Return (SUCCESS, leftmost(temp, n)).

In steps 1 and 2, the bitstring intended to collect the generated bits (temp) is initialized to the
Null bitstring, and the counter for the number of bits obtained for fulfilling the request (sum) is
initialized to zero.

Step 3 is iterated until at least n full-entropy bits have been generated.

Step 3.1 obtains at least s + 64 bits of fresh entropy and inserts it into the internal state.

• For CTR_DRBG without a derivation function, s + 128 bits of entropy are requested
during reseeding using a randomness source that provides full-entropy output. Step 3.1
becomes:

o status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input).

o If (status ≠ SUCCESS), then return (status, Null)

with the Get_randomness-source_input call in the DRBG_Reseed function replaced
by:

o (status, seed_material) = Get_entropy_bitstring(s + 128, Method_1).

o If (status ≠ SUCCESS), then return (status, Null),

where Method_1 indicates that only the entropy from physical entropy sources is
counted.

• For a Hash_DRBG, HMAC_DRBG, or CTR_DRBG with a derivation function, s bits of
fresh entropy are usually inserted into the internal state during a DRBG_Reseed
function. To insert s + 64 bits into the internal state, two methods are provided:

Method A is a modification of the DRBG_Reseed function that requests s + 64 bits of
entropy from the entropy source(s) rather than (the usual) s bits (see Fig. 27). Making this
change is straightforward, given access to the internals of a DRBG implementation.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

67

 2189
2190

2191

2192

2193

2194
2195

2196

2197

2198
2199

2200
2201
2202
2203
2204
2205
2206
2207
2208

Fig. 27. Modification of the DRBG_Reseed function

 Step 3.1 becomes:

o status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input)

o If (status ≠ SUCCESS), then return (status, Null)

with the Get_randomness-source_input call in the DRBG_Reseed function
replaced by:

o (status, seed_material) = Get_entropy_bitstring(s + 64, Method_1).

o If (status ≠ SUCCESS), then return (status, Null).

Method_1 indicates that only the entropy from physical entropy sources is to be
counted.

Method B (depicted in Fig. 28) first obtains a bitstring with 64 bits of entropy directly
from the entropy source(s). It then invokes the DRBG_Reseed function using this
bitstring as additional input (called extra_bits below to avoid confusion with the
additional_input provided by the application when invoking the
DRBG_Generate_request above). The DRBG_Reseed function will obtain s bits of
entropy from the entropy source(s),22

22 The value of s is recorded in the DRBG’s internal state (see SP 800-90A).

 combine it with the 64 bits of entropy provided
as the extra_bits and incorporate the result into the DRBG’s internal state. This
method is appropriate when the RBG3(RS) construction is being implemented using
an existing DRBG implementation that cannot be altered.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

68

 2209
2210

2211

2212

2213

2214
2215

2216

2217
2218

2219

2220

2221

2222
2223

2224
2225

2226
2227
2228

2229
2230
2231

2232
2233

2234
2235

Fig. 28. Request extra bits before reseeding

Step 3.1 becomes:

3.1.1 (status, extra_bits) = Get_entropy_bitstring(64, Method_1).

3.1.2 If (status ≠ SUCCESS), then return (status, Null).

3.1.3 status = DRBG_Reseed(RBG3_DRBG_state_handle, extra_bits ||
additional_input).

3.1.4 If (status ≠ SUCCESS), then return (status, Null).

In step 3.1.3, the Get_randomness-source_input call in the DRBG_Reseed
function is replaced by:

o (status, seed_material) = Get_entropy_bitstring(s, Method_1).

o If (status ≠ SUCCESS), then return (status, Null).

Method_1 indicates that only the entropy from physical entropy sources is to be counted.

In step 3.2, request the generation of full_entropy_bits using the DRBG_Generate function,
where:

• The RBG3_DRBG_state_handle was obtained during DRBG instantiation (see Sec.
6.5.1.1).

• s is both the number of full-entropy bits to be produced during the DRBG_Generate
function call and the security strength of the DRBG instantiation (see Sec. 2.8.1.2 and
Table 4 in Appendix A.2).

• additional_input is the current value of the additional_input string (initially provided in
the DRBG_Generate call, used in the first iteration of step 3.2, and subsequently set to
the Null string in step 3.6).

In step 3.3, if step 3.2 returned a status value indicating that the DRBG_Generate function
was not successful, then return the status to the calling application with a Null bitstring.

In step 3.4, concatenate the full_entropy_bits obtained in step 3.2 to the temporary bitstring
(temp).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

69

In step 3.5, increment the output-length counter (sum) by s bits (i.e., the number of full-2236
2237

2238
2239

2240

2241
2242

2243

2244
2245

2246
2247

2248
2249

2250
2251

2252
2253
2254
2255
2256
2257
2258

2259
2260

2261

2262
2263
2264
2265
2266

2267

2268

2269

entropy bits obtained in step 3.2).

In step 3.6, to avoid reusing the additional_input, set its value to a Null string for subsequent
iterations of step 3.

If sum < n, go to step 3.1.

Step 4 returns a status indicating SUCCESS to the calling application along with the leftmost n bits
of temp as the returned_bitstring.

6.5.1.2.2. Generation Using a Directly Accessible DRBG

As discussed in Sec. 2.8.1.2, the DRBG used by the RBG3(RS) construction may be requested to
generate output directly using the following request:

(status, returned_bits) = DRBG_Generate_request(RBG3_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input),

where RBG3_DRBG_state_handle was provided during instantiation (see Sec. 6.5.1.1) and
additional_input is optional.

Before generating the requested output, the DRBG needs to be reseeded in the following
circumstances:

1. Accessing a DRBG directly to generate output by the DRBG in the RBG3(RS) construction
requires that the DRBG be reseeded with at least s + 64 bits of entropy from the entropy
source(s) when the DRBG was previously used as a component of the
RBG3(RS)_generate function. This requires that the RBG3(RS) implementation keep
track of the type of generate request that was made previously (e.g., including this
information in the DRBG’s internal state) so that the reseeding of the DRBG is
automatically performed before generating the requested DRBG output.

2. During a sequence of generate requests, the DRBG may reseed itself in response to some
event.

Reseeding is accomplished as specified in Sec. 6.5.1.3.

If a reseed of the DRBG was not performed or a status of SUCCESS was returned by the
DRBG_Reseed function when performed under conditions 1 or 2 above, the
DRBG_Generate_request invokes the DRBG_Generate function (see Sec. 5.2.2), obtains the
status of the operation and any generated bits (i.e., returned_bits), and forwards them to the
application in response to the DRBG_Generate_request.

6.5.1.3. Reseeding

Reseeding the DRBG may be performed:

1. When explicitly requested by the consuming application,

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

70

2. During an RBG3(RS)_generate request (see Sec. 6.5.1.2.1) or in response to a direct 2270
2271
2272

2273
2274

2275

2276

2277
2278

2279
2280
2281

2282
2283
2284

2285

2286
2287

2288
2289
2290

2291

2292

2293
2294
2295

2296

2297
2298

2299
2300
2301
2302

DRBG generate request when the previous use of the DRBG was as a component of the
RBG3(RS)_Generate function (see Sec. 6.5.1.2.2), or

3. Based on implementation-selected criteria, such as time, number of outputs, events, or
the availability of sufficient entropy.

Case 1: An application sends a reseed request to the RBG:

status = DRBG_Reseed_request(RBG3_DRBG_state_handle, additional_input),

where RBG3_DRBG_state_handle was obtained during instantiation (see Sec. 6.5.1.1) and
additional_input is optional.

Any additional_input provided by a DRBG_Reseed request from the application shall be
used as input to the DRBG_Reseed function. Otherwise, the use of additional_input is
optional.

The DRBG_Reseed_request results in the invocation of the DRBG_Reseed function (see
Sec. 5.2.3). The status returned from the DRBG_Reseed function is forwarded to the
application in response to the DRBG_Reseed_request.

Case 2: The DRBG is reseeded as follows:

• For CTR_DRBG without a derivation function, s + 128 bits of entropy are requested
during reseeding in the same manner as for instantiation (see step 3.1 of Sec. 6.5.1.2.1).

• For a Hash_DRBG, HMAC_DRBG, or CTR_DRBG with a derivation function, use
Method A or Method B (as specified in step 3.1 of Sec. 6.5.1.2.1) to obtain s + 64 bits of
fresh entropy in the DRBG.

Case 3: A reseed of the DRBG is invoked based on implementation-selected criteria:

status = DRBG_Reseed(RBG3_DRBG_state_handle, additional_input).

For a CTR_DRBG, the DRBG is reseeded with s + 128 bits of fresh entropy. Otherwise, the
DRBG is reseeded with either s or s + 64 bits of fresh entropy, depending on whether Method
A or Method B was used in step 3.1 of Sec. 6.5.1.2.1.

6.5.2. Requirements for an RBG3(RS) Construction

An RBG3(RS) construction has the following requirements in addition to those provided in Sec.
6.3:

1. For each s bits generated by the RBG3(RS) construction, s + 64 bits of fresh entropy shall
be acquired either directly from independent, validated entropy sources or from an
external conditioning function that processes the output of the validated entropy sources
to provide full-entropy, as specified in Sec. 3.2.2.2.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

71

2. If the DRBG is directly accessible and the previous use of the DRBG was by the RBG3(RS) 2303
2304
2305

2306

2307

construction, a reseed of the DRBG instantiation with at least s + 64 bits of entropy shall
be performed before generating output.

3. The DRBG shall be reseeded in accordance with Sec. 6.5.1.3.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

72

7. RBGC Construction for DRBG Chains 2308

2309
2310
2311
2312
2313
2314

2315

2316

2317
2318
2319
2320
2321

2322
2323

2324
2325
2326

2327
2328
2329

The RBGC construction allows the use of a chain of DRBGs in which one DRBG is used to provide
seed material for another DRBG. This design is common on many computing platforms and allows
some level of modularity (e.g., an operating system RBG can be designed and validated without
knowing the randomness source that will be available on the particular hardware on which it will
be used, or a software application can be designed with its own RBG but without knowing the
operating system or hardware used by the application).

7.1. RBGC Description

7.1.1. RBGC Environment

Figure 29 depicts RBGC constructions and the environment in which they will be used. An RBGC
construction consists of an approved DRBG mechanism (from SP 800-90A) and the randomness
source used for seeding and (optional) reseeding. This figure illustrates a tree of RBGC
constructions that consists of two DRBG chains: 1) a chain consisting of DRBG1, DRBG2, and DRBG3
and 2) a chain consisting of DRBG1 and DRBG4.

Fig. 29. DRBG tree using the RBGC construction

The core of this type of construction is called the root and is shown as RBGC1 within the solid red
rectangle in the figure. Its DRBG is labeled as DRBG1, and its randomness source for seeding and
(optionally) reseeding is labeled as the initial randomness source.

For each of the other RBGC constructions (i.e., RBG2, RBG3, and RBG4), the DRBG within the
construction is seeded by a DRBG within a “parent” RBGC construction (i.e., the parent is the
randomness source used for seeding the DRBG). For RBGC2 (shown as a box outlined with long

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

73

green dashes [− − −]), the parent randomness source is the root (i.e., RBGC1). For RBGC3 (shown 2330
2331
2332
2333

2334
2335
2336
2337
2338
2339
2340
2341

2342
2343
2344
2345
2346
2347
2348
2349

2350
2351
2352
2353
2354
2355
2356

2357

2358

2359
2360
2361
2362
2363
2364

as a box with black dashes and dots [− • • − • • −]), the parent randomness source is RBGC2. For
RBGC4 (shown within a box outlined with a solid blue rectangle), the parent randomness source
is RBGC1 (i.e., the root).

An RBGC construction may be used to Instantiate and reseed other RBGC constructions or to
provide output for one or more applications (not shown in Fig. 29). All components of an RBGC
tree — including the initial randomness source and the DRBG chains in that tree — reside on the
same computing platform. The initial randomness source is not physically removable while the
computing platform is operational, and the contents of the internal state of any DRBG in the tree
are never relocated to another computer platform or output for external storage. See Appendix
A.3 for a discussion about the intended meaning of a computing platform and implementation
considerations.

Each RBGC construction may be a parent for one or more child RBGC constructions. Each of the
child RBGC constructions has only one parent that serves as its randomness source for seeding
the DRBG within it. Using Fig. 29 as an example, RBGC1 is the only parent of both RBGC2 and
RBGC4. RBGC2 is the randomness source (i.e., the only parent) of RBGC3. However, the parent
may have siblings that may be used for reseeding under certain conditions (see Sec. 7.1.2.1) if
the parent is not available to do so (e.g., the RBGC construction has been moved to a different
core). In Fig. 29, RBGC2 and RBGC4 are siblings since they have the same parent (RBGC1). In this
case, the alternative path for reseeding is shown as a line of black dots.

An RBGC construction cannot have itself as a predecessor randomness source for reseeding. That
is, there are no “seed loops” in which an RBGC construction provides seed material for a
predecessor RBGC construction (e.g., a parent or grandparent). For example, in Fig. 29, RBGC2
can be used as the randomness source for RBGC3, but RBGC3 cannot be used as the randomness
source for reseeding RBGC1 or RBGC2. However, additional_input provided to the DRBG during a
reseed or generate request may be anything, including the output of any RBGC construction of
the tree.

7.1.2. Instantiating and Reseeding Strategy

7.1.2.1. Instantiating and Reseeding the Root RBGC Construction

The root RBGC construction is instantiated and (optionally) reseeded using an initial randomness
source, which is either a validated full-entropy source or a validated RBG2(P), RBG2(NP),
RBG3(XOR), or RBG3(RS) construction. An RBG2(P) or RBG2(NP) construction used as the initial
randomness source shall have a capability of being reseeded on demand by the root.23

23 A reseed of the initial randomness source is required for instantiation of the root before seed material is generated for the root’s DRBG and
whenever the root is reseeded.

 A
validated full-entropy source is a validated entropy source that provides full-entropy output or
the combination of a validated entropy source and an external vetted conditioning function that

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

74

provides full-entropy output (see Sec. 3.2.2.2). The root may provide prediction resistance if 2365
2366

2367

2368
2369
2370
2371
2372
2373

2374

2375

2376
2377
2378
2379
2380
2381
2382

2383
2384
2385
2386
2387
2388
2389

2390

2391
2392

2393

2394
2395
2396
2397

2398
2399

reseeded by the initial random source.

7.1.2.2. Instantiating and Reseeding a Non-Root RBGC Construction

Each non-root RBGC construction in a chain is instantiated by a single RBGC construction (i.e., its
parent) using that parent as its randomness source. If the child RBGC construction can be
reseeded, the parent normally serves as the randomness source during the reseeding process.
However, if the parent is not available for reseeding (e.g., the implementation of the RBGC
construction has been moved to a different core on the computing platform), a sibling of the
parent may be used as an alternative randomness source provided that:

1. The sibling has been validated for compliance with an RBGC construction, and

2. The DRBG within the sibling supports the security strength of the DRBG to be reseeded.

Using Fig. 29, consider RBGC3 as the target RBGC construction to be reseeded. RBGC2 is the parent
of RBGC3 and would normally be used as the randomness source for reseeding RBGC3. If RBGC2
is not available when RBGC3 needs to be reseeded, then a sibling of RBGC2 may be used as an
alternative randomness source for reseeding if it meets conditions 1 and 2 above. In Fig. 29,
RBGC4 is depicted as a sibling of RBGC2, so RBGC4 may be used as an alternative randomness
source (as indicated by the path of black dots) if it is validated for that purpose and the DRBG
within the RBGC4 construction can support the security strength of RBGC3’s DRBG.

Implementers of an RBGC tree that use siblings for reseeding the DRBG of an RBGC construction
will require a means of recognizing that the parent randomness source is not available and for
the parent’s sibling(s) to recognize the validity of the request for the generation of seed material
and the internal state (within the sibling) to be used for the generation process. Additionally,
non-root RBGC constructions cannot guarantee prediction resistance since their randomness
sources cannot provide fresh entropy. However, non-root RBGC constructions should be
reseeded periodically to defend against a potential undetected compromise of the internal state.

7.2. Conceptual Interfaces

An RBGC construction can support instantiation and generation requests (see Sec. 7.2.1 and
7.2.2, respectively) and may provide a capability to be reseeded (see Sec. 7.2.3).

7.2.1. RBGC Instantiation

The DRBG within an RBGC construction may be instantiated by an application at any security
strength possible for the DRBG design that does not exceed the security strength of its
randomness source. This is accomplished using the DRBG_Instantiate function discussed in Sec.
2.8.1.1 and SP 800-90A.

The (target) DRBG in an RBGC construction is instantiated by an application using the following
request:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

75

(status, RBGCx_DRBG_state_handle) = 2400
2401

2402
2403
2404
2405

2406
2407

2408
2409
2410
2411
2412
2413
2414
2415

2416

2417
2418

2419

2420

2421

2422
2423

2424
2425
2426

2427
2428
2429

2430
2431
2432
2433
2434
2435

DRBG_Instantiate_request(s, personalization_string),

where s is the requested security strength for the DRBG. The DRBG_Instantiate_request
received by the DRBG results in the execution of the DRBG_Instantiate function in the DRBG
with the input in the DRBG_Instantiate_request provided as input to the DRBG_Instantiate
function.

(status, RBGCx_DRBG_state_handle) =
DRBG_Instantiate(s, personalization_string).

The target DRBG in the RBGC construction cannot be instantiated at a higher security strength
than that which is supported by its randomness source. If the target DRBG is successfully
instantiated, RBGCx_DRBG_state_handle is the state handle returned to the application for
subsequent access to the internal state of the DRBG instantiation within the RBGC construction.
If the DRBG is implemented to only allow a single internal state, then a state handle is not
required. If the instantiation request is invalid (e.g., the requested security strength cannot be
provided by the DRBG design or the randomness source; see SP 800-90A), an error indication is
returned as the status with an invalid state handle.

7.2.1.1. Instantiation of the Root RBGC Construction

The randomness source for the root RBGC construction (also referred to as the initial randomness
source) is:

• A validated RBG3(XOR) or RBG3(RS) construction, as specified in Sec. 6;

• A validated RBG2(P) or RBG2(NP) construction, as specified in Sec. 5; or

• A validated full-entropy source that is either:

o An entropy source that provides output with full entropy, as specified in SP 800-
90B, or

o The output of an SP 800-90B-compliant entropy source that has been externally
conditioned by a vetted conditioning function (as specified in Sec. 3.2.2.2) to
provide output with full entropy.

When used as the initial randomness source, an RBG3 construction or a full-entropy source can
support any valid security strength for the DRBG within the root RBGC construction (i.e., 128,
192, or 256 bits).

When used as the initial randomness source, an RBG2(P) or RBG2(NP) construction can support
any security strength for the DRBG within the root RBGC construction that does not exceed the
instantiated security strength of the DRBG within the RBG2(P) or RBG2(NP) construction. For
example, if the initial randomness source is an RBG2(P) construction whose DRBG is instantiated
at a security strength of 128 bits, then the DRBG within the root RBGC construction can only be
instantiated at a security strength of 128 bits.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

76

An RBGC designer must consider how to find an available randomness source and how to access 2436
2437

2438
2439

2440
2441
2442

2443
2444
2445

2446
2447
2448
2449
2450

2451

2452
2453

2454
2455
2456

2457
2458

2459

it.

7.2.1.1.1. Instantiating the DRBG in the Root Using an RBG2 or RBG3 Construction as the
Initial Randomness Source

Fig. 30. Instantiation of the DRBG in the root RBGC construction using an RBG2 or RBG3 construction as the

randomness source

Figure 30 depicts a request for instantiation of the root RBGC construction by an application. Let
RBGC1 be the root and DRBG1 be its DRBG. In this section, the initial randomness source is either
an RBG2 or RBG3 construction.

Upon receiving a valid instantiation request from an application (see Sec. 7.2.1), the
DRBG_Instantiate function within DRBG1 processes the request by obtaining seed material
from the initial randomness source. Within the DRBG_Instantiate function (in DRBG1), the
randomness source is accessed using a Get_randomness-source_input call (see SP 800-90A),
which is replaced as specified below.

Let s be the intended security strength of DRBG1 in the root RBGC construction.

1. When the DRBG in the root RBGC construction uses a CTR_DRBG without a derivation
function, s + 128 bits24

24 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90A requires the randomness input from the
randomness source to be key length + block length bits when a derivation function is not used.

 shall be obtained from the initial randomness source.

a. If the randomness source is an RBG2(P) or RBG2(NP) construction, the RBG2
construction shall be reseeded before requesting seed material. The
Get_randomness-source_input call becomes:

• status = DRBG_Reseed_request(RBG2_DRBG_state_handle,
additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

77

• (status, seed_material) = 2460
2461
2462

2463

2464
2465
2466

2467
2468

2469
2470

2471

2472
2473
2474
2475

2476
2477
2478

2479
2480
2481

2482

2483

2484
2485
2486

2487

2488
2489
2490

2491
2492

2493
2494

2495

DRBG_Generate_request(RBG2_DRBG_state_handle,
s + 128, s, additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

RBG2_DRBG_state_handle is the state handle for the internal state of the DRBG
within the RBG2 construction. Reseed and generate requests received by an RBG2
construction are discussed in Sec. 5.2.3 and 5.2.2, respectively.

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction, the
Get_randomness-source_input call becomes:

• (status, seed_material) = RBG3_DRBG_Generate_request(s + 128,
additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

RBG3_DRBG_state_handle is the state handle for the internal state of the DRBG
within the RBG3 construction. An RBG3_DRBG_Generate_request received by
an RBG3 construction is discussed in Sec. 6.4.1.2 and 6.5.1.2 (the RBG3(XOR) and
RBG3(RS) constructions, respectively).

2. For CTR_DRBG (with a derivation function), Hash_DRBG, and HMAC_DRBG, 3s/2 bits
shall be obtained from a randomness source that provides a security strength of at least
s bits.

a. If the randomness source is an RBG2(P) or RBG2(NP) construction, the RBG2
construction shall be reseeded before requesting seed material. The
Get_randomness-source_input call becomes:

• status = DRBG_Reseed(RBG2_DRBG_state_handle, additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

• (status, seed_material) =
DRBG_Generate_request(RGB2_DRBG_state_handle, 3s/2, s,
additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

RBG2_ DRBG_state_handle is the state handle for the internal state of the DRBG
within the RBG2 construction. Reseed and generate requests received by an RBG2
construction are discussed in Sec. 5.2.3 and 5.2.2, respectively.

b. If the randomness source is an RBG3(XOR) or RBG3(RS) construction, the
Get_randomness-source_input call becomes:

• (status, seed material) = RBG3_DRBG_Generate_request(3s/2,
additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

78

RBG3_DRBG_state_handle is the state handle for the internal state of the DRBG 2496
2497
2498
2499

2500
2501

2502
2503
2504

2505
2506
2507

2508
2509
2510
2511
2512

within the RBG3 construction. An RBG3_DRBG_Generate_request received by
an RBG3 construction is discussed in Sec. 6.4.1.2 and 6.5.1.2 (the RBG3(XOR) and
RBG3(RS) constructions, respectively).

7.2.1.1.2. Instantiating the Root RBGC Construction Using a Full-Entropy Source as the
Randomness Source

Fig. 31. Instantiation of the DRBG in the root RBGC construction using a full-entropy source as a randomness

source

Figure 31 depicts a request for instantiation of the root RBGC construction by an application. Let
RBGC1 be the root and DRBG1 be its DRBG. In this section, the initial randomness source is a full-
entropy source (see Sec. 7.2.1.1).

Upon receiving a valid instantiation request from an application, the DRBG_Instantiate function
within DRBG1 continues processing the request by obtaining seed material from the full-entropy
source. The full-entropy source may consist of physical or non-physical entropy sources or both,
and either Method 1 or Method 2 may be used to count entropy (see Sec. 2.3). Instantiation is
performed for an RBG2 construction, as specified in Sec. 5.2.1.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

79

7.2.1.2. Instantiating an RBGC Construction Other Than the Root 2513

2514
2515

2516
2517
2518
2519
2520
2521
2522

2523

2524
2525

2526
2527
2528
2529

2530

Fig. 32. Instantiation of the DRBG in RBGCn using RBGCRS as the randomness source

Figure 32 depicts a request by an application for the instantiation of the DRBG within an RBGC
construction that is not the root. Let RBGCn be the RBGC construction receiving the instantiation
request, and let DRBGn be its DRBG. RBGCn needs to determine the RBGC construction that will
serve as its randomness source. The randomness source for a DRBG in an RBGC construction that
is not the root of the DRBG chain is the RBGC construction that will immediately precede it in the
chain as its parent. Let RBGCRS be the randomness source for RBGCn, and let DRBGRS be its DRBG
(see Fig. 32). RBGRS could be the root RBGC construction. RBGC1 is outlined in gray in the figure.

Upon receiving a valid instantiation request from an application, such as

(status, RBGC_DRBGn_state_handle) =
DRBG_Instantiate_request(s, personalization_string),

DRBGn executes its DRBG_Instantiate function within DRBGn and processes the request by
obtaining seed material from its intended parent randomness source (RBGCRS). The
Get_randomness-source_input call in the DRBG_Instantiate function in DRBGn is replaced as
specified below.

Let s be the intended security strength of the DRBG in RBGCn (shown as DRBGn in the figure).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

80

1. When RBGCn is instantiating a CTR_DRBG without a derivation function, s + 128 bits25

25 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90Ar1 requires the randomness input from
the randomness source to be key length + block length bits when a derivation function is not used.

 2531
2532
2533

2534
2535

2536

2537
2538
2539

2540
2541

2542

2543
2544
2545

2546
2547

2548

2549
2550
2551

2552
2553

2554

2555
2556
2557

shall be obtained from the randomness source (i.e., RBGCRS) by replacing the
Get_randomness-source_input call with:

• (status, seed_material) = DRBG_Generate_request(RBGCRS_DRBG_state_handle,
s + 128, s, additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

RBGCRS_DRBG_state_handle is the state handle for the internal state of the DRBG within
RBGCRS. Upon receiving the DRBG_Generate_request, RBGCRS executes its
DRBG_Generate function (see Sec. 2.8.1.1 and 7.2.2) and checks its output That is,

• (status, seed_material) = DRBG_Generate(RBGCRS_DRBG_state_handle,
s + 128, s, additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

2. For CTR_DRBG (with a derivation function), Hash_DRBG, and HMAC_DRBG, 3s/2 bits
shall be obtained from the randomness source (RBGCRS) by replacing the
Get_randomness-source_input call with:

• (status, seed_material) = DRBG_Generate_request(RBGCRS_DRBG_state_handle,
3s/2, s, additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

RBGCRS_DRBG_state_handle is the state handle for the internal state of the DRBG within
RBGCRS. Upon receiving the DRBG_Generate_request, RBGCRS executes its
DRBG_Generate function (see Sec. 2.8.1.1 and 7.2.2) and checks its output. That is,

• (status, seed_material) = DRBG_Generate(RBGCRS_DRBG_state_handle,
3s/2, s, additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_state_handle).

Section 7.2.2 specifies the behavior of the DRBG in an RBGC construction when it receives a
generate request. The status and any generated seed_material are returned to the requesting
DRBG (DRBGn) in response to the DRBG_Generate_request.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

81

7.2.2. Requesting the Generation of Pseudorandom Bits From an RBGC Construction 2558

2559
2560

2561
2562
2563
2564
2565
2566
2567

2568

2569
2570

2571
2572
2573

2574
2575

2576

2577
2578
2579

Fig. 33. Generate request received by the DRBG in an RBGC construction

Figure 33 depicts a generate request received by the DRBG in an RBGC construction (i.e., DRBGn
in RBGCn) from a requesting entity (either an application or a DRBG in another RBGC construction,
shown as DRBGm and RBGCm in the figure). When the requesting entity is DRBGm (rather than an
application), DRBGm is attempting to be seeded or reseeded with seed material. DRBGn shall be
either 1) the parent randomness source for DRBGm or 2) a sibling of DRBGm’s parent randomness
source that meets the requirements of an alternative randomness source (see Sec. 7.1.2.2).
RBGCn could be the root DRBG (the root is outlined in gray in the figure).

The generate request from the requesting entity for this example is:

(status, returned_bits) = DRBG_Generate_request(RBGCn_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input),

where RBGCn_DRBG_state_handle is the state handle for the internal state of the DRBG in the
RBGC construction receiving the generate request (RBGCn). If the DRBG_Generate_request
received by RBGCn can be handled, the DRBG_Generate function in DRBGn is executed:

(status, returned_bits) = DRBG_Generate(RBGCn_DRBG_state_handle,
requested_number_of_bits, requested_security_strength, additional_input).

The DRBG_Generate function within DRBGn processes the generate request.

1. If the generate request cannot be fulfilled (e.g., the requested security strength cannot
be provided by the DRBG design used in DRBGn; see SP 800-90A), only an error status is
returned to the requesting entity. No other output is provided.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

82

2. Otherwise, DRBGn generates the requested_number_of_bits and provides them to the 2580
2581

2582

2583
2584
2585
2586
2587

2588
2589

2590

2591

2592
2593
2594
2595
2596

2597
2598
2599

2600
2601

2602

2603
2604

requesting entity in response to the DRBG_Generate_request with a status of SUCCESS.

7.2.3. Reseeding an RBGC Construction

The reseeding of an RBGC construction is optional. If a reseed capability is implemented within
the DRBG of an RBGC construction, the RBGC construction may receive a reseed request from an
application, or the DRBG within the construction may reseed itself based on implementation-
selected criteria, such as time, number of outputs, events, or — in the case of the root RBGC
construction using a full-entropy source — the availability of sufficient entropy.

Section 7.2.3.1 discusses the reseeding of the DRBG in the root RBGC construction. Section
7.2.3.2 discusses the reseeding of the DRBG in an RBGC construction other than the root.

A reseed request from an application is:

(status) = DRBG_Reseed_request(RBGCx_DRBG_state_handle, additional_input),

where RBGCx_DRBG_state_handle is the state handle for the internal state of the DRBG in the
RBGC construction receiving the reseed request (RBGCx).26

26 For Fig. 34 in Sec. 7.2.3.1, x = 1. For Fig. 35 in Sec. 7.2.3.2, x = n.

 The DRBG_Reseed_request received
by RBGCx results in the execution of DRBGx’s DRBG_Reseed function (see Sec. 2.8.1.3). The
status returned from the DRBG_Reseed function shall be returned to the application in response
to the DRBG_Reseed_request.

If the reseed request is invalid (e.g., the state handle is not correct or the DRBG does not have a
reseed capability), an error indication is returned as the status to the application (i.e., the DRBG
has not been reseeded).

Reseeding based on implementation-selected criteria is not initiated by a
DRBG_Reseed_request from an application but is addressed in Sec. 7.2.3.1 and 7.2.3.2.

7.2.3.1. Reseed of the DRBG in the Root RBGC Construction

Fig. 34. Reseed request received by the DRBG in the root RBGC construction

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

83

If the root RBGC construction includes a reseed capability (as shown in Fig. 34), the DRBG in the 2605
2606

2607
2608
2609
2610
2611

2612
2613

2614
2615
2616

2617
2618

2619
2620
2621
2622

2623
2624
2625

2626
2627

root RBGC construction (e.g., RBGC1) may receive a request from an application for reseeding.

Upon the receipt of a valid reseed request or when reseeding is to be performed based on
implementation-selected criteria, the DRBG in the root RBGC construction (e.g., DRBG1) executes
its DRBG_Reseed function to obtain randomness from the initial randomness source for
reseeding itself. This process results in fresh entropy provided by the initial randomness source
so that the next output generated by DRBG1 has prediction resistance.

1. When the DRBG in the root RBGC construction uses the CTR_DRBG without a derivation
function, reseeding is performed in the same manner as for instantiation.

• If the initial randomness source is an RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP)
construction, input is obtained from the initial randomness source as specified in item
1 of Sec. 7.2.1.1.1.

• If the initial randomness source is a full-entropy source, input is obtained as specified
in item 1 of Sec. 7.2.1.1.2.

2. When the DRBG in the root RBGC construction uses the CTR_DRBG (with a derivation
function), Hash_DRBG, or HMAC_DRBG, input is obtained from the initial randomness
source in the same manner as for instantiation except that s bits are requested (instead
of 3s/2 bits), where s is the instantiated security strength of the DRBG in the root.

• If the initial randomness source is an RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP)
construction, input is obtained from the initial randomness source as specified in item
2 of Sec. 7.2.1.1.1.

• If the initial randomness source is full-entropy source, input is obtained as specified
in item 2 of Sec. 7.2.1.1.2.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

84

7.2.3.2. Reseed of the DRBG in an RBGC Construction Other Than the Root 2628

2629
2630

2631
2632
2633

2634
2635
2636
2637
2638

2639
2640
2641
2642

2643
2644

2645

2646
2647
2648
2649

Fig. 35. Reseed request received by an RBGC construction other than the root

As shown in Fig. 35, a DRBG in an RBGC construction other than the root (e.g., RBGCn) may receive
a request for reseeding from an application. DRBGn may also reseed itself based on
implementation-selected criteria.

Let DRBGRS be the randomness source to be used for reseeding. DRBGRS must be either DRBGn’s
parent randomness source or a sibling of the parent (see Sec. 7.1.2.2). DRBGRS may be the DRBG
of the root RBGC construction (outlined in gray in the figure). Prediction resistance is not
provided for the DRBG being reseeded (DRBGn) since fresh entropy is not provided by the
randomness source in this case (DRBGRS).

Upon the receipt of a valid reseed request or when a reseed is to be performed based on
implementation-selected criteria, the DRBG in RBGCn executes its DRBG_Reseed function (if
implemented). The Get_randomness-source_input request in the DRBG_Reseed function is
replaced by the following:

• (status, seed_material) = DRBG_Generate_request(RBGCRS_DRBG_state_handle, s, s,
additional_input).

• If (status ≠ SUCCESS), then return (status, invalid_bitstring),

where RBGCRS_DRBG_state_handle is the state handle for the internal state of the DRBG in the
randomness source (i.e., RBGCRS). Upon receiving the request, RBGCRS executes its
DRBG_Generate function. A status indication will be returned from RBGCRS along with seed
material if the status indicates a success (see Sec. 7.2.2).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

85

Upon the receipt of a response from the randomness source (RBGRS), the DRBG in RBGCn 2650
2651

2652
2653
2654

2655
2656
2657
2658
2659

2660

2661

2662
2663

2664
2665

2666
2667
2668

2669

2670
2671

2672
2673

2674
2675
2676

2677
2678

2679
2680
2681

2682
2683
2684

proceeds as follows:

1. If an error indicator is received from the randomness source (RBGCRS) in response to the
generate request, the error indicator is forwarded to the application as the status in the
response to the reseed request.

2. If an error indicator is not received from the randomness source (i.e., RBGCRS) and
seed_material is provided, the seed_material is incorporated into the internal state of the
DRBG in RBGCn as specified in its DRBG_Reseed function. If the reseeding of the DRBG
in RBGCn was in response to a DRBG_Reseed_request from an application, the status
received from the randomness source is returned to the application.

7.3. RBGC Requirements

7.3.1. General RBGC Construction Requirements

An RBGC construction has the following general testable requirements (i.e., testable by the
validation labs):

1. An approved DRBG from SP 800-90A whose components are capable of providing the
targeted security strength for an RBGC construction shall be employed.

2. RBGC components shall be successfully validated for compliance with SP 800-90A, SP 800-
90B, SP 800-90C, FIPS 140, and the specification of any other approved algorithm used
within the RBGC construction, as applicable.

3. An RBGC construction shall not produce any output until it is instantiated.

4. An RBGC construction shall not provide output for generating requests that specify a
security strength greater than the instantiated security strength of its DRBG.

5. If a health test on the DRBG in an RBGC construction fails, the DRBG instantiation shall be
terminated.

6. The seed material provided to the DRBG within an RBGC construction shall remain secret
during transfer from the DRBG’s randomness source and remain unobservable from
outside its RBG boundary.

7. The internal state of the DRBG within an RBGC construction shall remain unobservable
from outside its RBG boundary.

8. A tree of RBGC constructions and the initial randomness source for the root RBGC
construction shall be implemented and operated on a single, physical platform. See
Appendix A.3 for further discussion.

9. The initial randomness source shall not be removable from the computing platform
during operation. If a replacement is required, the root shall be instantiated using the
replaced randomness source.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

86

10. The seed material shall not be output from the computing platform on which it was 2685
2686

2687
2688
2689

2690
2691
2692
2693
2694

2695

2696
2697

2698
2699
2700

2701
2702
2703

2704
2705

2706

2707
2708

2709
2710
2711
2712

2713
2714
2715
2716

generated.

11. The internal state of the DRBG within an RBGC construction shall not be removed from
the computing platform on which it was created, including for storage, and shall only be
available to the DRBG instantiation for which it was created.

12. If the (parent) randomness source for an RBGC construction is not available for reseeding,
the DRBG in the RBGC construction may continue to generate output without reseeding
or may be reseeded using a sibling of the parent that has been appropriately validated.
When used as an alternative randomness source for reseeding, the sibling shall have been
validated as an RBGC construction.

General requirements for an RBGC construction that are non-testable are:

13. Each RBGC construction must be able to determine the type of randomness source
available for its use and how to access it.

14. The randomness source for an RBGC construction must provide the requested number of
bits at a security strength of s bits or higher, where s is the targeted security strength for
that RBGC construction.

15. The specific output of the randomness source (or portion thereof) that is used for the
instantiation or reseed of an RBGC construction must not be used for any other purpose,
including for seeding or reseeding a different instantiation or RBGC construction.

16. The output of an RBGC construction must not be used as seed material for a predecessor
(e.g., ancestor) RBGC construction.

7.3.2. Additional Requirements for the Root RBGC Construction

An RBGC construction that is used as the root of a DRBG chain has the following additional
testable requirements (i.e., testable by the validation labs):

1. For CTR_DRBG (with a derivation function), Hash_DRBG, or HMAC_DRBG, 3s/2 bits
shall be obtained from the initial randomness source for instantiation, where s is the
targeted security strength for the DRBG used in the RBGC construction. When reseeding,
s bits shall be obtained from the initial randomness source.

2. For a CTR_DRBG without a derivation function used as the DRBG within the root RBGC
construction, s + 128 bits27

27 Note that s + 128 = keylen + blocklen = seedlen, as specified in SP 800-90Ar1.

 shall be obtained from the randomness source for
instantiation and reseeding, where s is the targeted security strength for the DRBG used
in the RBGC construction.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

87

3. If the randomness source for the root RBGC construction is an RBG2 construction, a 2717
2718
2719

2720

2721
2722

2723
2724
2725

2726
2727
2728
2729

2730

2731
2732

2733

2734
2735
2736
2737

2738
2739

2740
2741

2742

request for reseeding the DRBG in the RBG2 construction shall precede a request for
generating seed material.

The non-testable requirements for the root RBGC construction are:

4. The initial randomness source for the root RBGC construction must be a validated
RBG3(XOR), RBG3(RS), RBG2(P), or RBG2(NP) construction or a full-entropy source.

5. A full-entropy source serving as the initial randomness source must be either an entropy
source that has been validated as providing full-entropy output or a validated entropy
source that uses the external conditioning function specified in Sec. 3.2.2.2.

6. The DRBG in the root RBGC construction may be instantiated at any security strength for
the design, subject to the following restriction: if the initial randomness source is an
RBG2(P) or RBG2(NP) construction, the root must not be instantiated at a security
strength greater than the security strength of the RBG2(P) or RBG2(NP) construction.

7.3.3. Additional Requirements for an RBGC Construction That is NOT the Root of a DRBG Chain

An RBGC construction that is NOT the root of a DRBG chain has no additional testable
requirements beyond those in Sec. 7.3.1.

The non-testable requirements for an RBGC construction that is not the root of a DRBG chain are:

1. Each RBGC construction must have only one parent RBGC construction as a randomness
source for instantiation and reseeding, although under certain conditions, a sibling of the
parent may be used as a randomness source for reseeding (see requirement 12 in Sec.
7.3.1).

2. An RBGC construction must reside on the same computing platform as its parent and any
alternative randomness source.

3. Each RBGC construction may be instantiated at any security strength for the design that
does not exceed the security strength of its parent randomness source.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

88

8. Testing 2743

2744
2745
2746
2747

2748

2749
2750
2751
2752

2753
2754
2755

2756

2757
2758

2759

2760
2761

2762

2763

2764
2765
2766
2767
2768
2769

2770
2771
2772

Two types of testing are specified in this recommendation: health testing and implementation-
validation testing. Health testing shall be performed on all RBGs that claim compliance with this
recommendation (see Sec. 8.1). Section 8.2 provides requirements for implementation
validation.

8.1. Health Testing

Health testing is the testing of an implementation prior to and during normal operations to
determine whether the implementation continues to perform as expected and as validated.
Health testing is performed by the RBG itself (i.e., the tests are designed into the RBG
implementation).

An RBG shall support the health tests specified in SP 800-90A and SP 800-90B as well as perform
health tests on the components of SP 800-90C. FIPS 140 specifies the testing to be performed
within a cryptographic module.

8.1.1. Testing RBG Components

Whenever an RBG receives a request to start up or perform health testing, a request for health
testing shall be issued to the RBG components (e.g., the DRBG and any entropy source).

8.1.2. Handling Failures

Failures may occur during the use of entropy sources and during the operation of other
components of an RBG.

SP 800-90A and SP 800-90B discuss error handling for DRBGs and entropy sources, respectively.

8.1.2.1. Entropy-Source Failures

A failure of a validated entropy source is reported to the Get_entropy_bitstring process in
response to entropy requests to the entropy source(s). The Get_entropy_bitstring function
notifies the consuming application of such failures as soon as possible (see item 4 of Sec. 3.1).
The consuming application may choose to terminate the RBG operation. Otherwise, the RBG may
continue operation if any entropy source credited for providing entropy28

28 Only the entropy provided by physical entropy sources is credited for the RBG2(P) and RBG3 constructions. Entropy from both physical and
non-physical entropy sources is credited for the RBG2(NP) construction. See Sec. 5 and 6.

 is still healthy (i.e., a
failure has not been reported by those entropy sources).

If all entropy sources credited with providing entropy report failures, the RBG operation shall be
terminated (e.g., stopped) until such time as the entropy source is repaired and successfully
tested for correct operation.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

89

8.1.2.2. Failures by Non-Entropy-Source Components 2773

2774
2775
2776

2777
2778
2779

2780

2781
2782

2783

2784
2785

2786
2787

2788
2789
2790

2791
2792

2793
2794

2795
2796
2797
2798

2799

2800
2801
2802

2803
2804

2805
2806

Failures by non-entropy-source components may be caused by either hardware or software
failures. Some of these may be detected using known-answer health tests within the RBG.
Failures could also be detected by the system in or on which the RBG resides.

When such failures are detected that affect the RBG, the RBG operation shall be terminated. The
RBG must not resume operations until the reasons for the failure have been determined, the
failure has been repaired, and the RBG successfully tested for proper operation.

8.2. Implementation Validation

Implementation validation is the process of verifying that an RBG and its components fulfill the
requirements of this recommendation. Validation is accomplished by:

• Validating the components from SP 800-90A and SP 800-90B

• Validating the use of the constructions in SP 800-90C via code inspection, known answer
tests, or both, as appropriate

• Validating that the appropriate documentation has been provided, as specified in SP 800-
90C

Documentation shall be developed that will provide assurance to testers that an RBG that claims
compliance with this recommendation has been implemented correctly. This documentation
shall include the following as a minimum:

• An identification of the constructions and components used by the RBG, including a
diagram of the interaction between the constructions and components.

• If an external conditioning function is used, an indication of the type of conditioning
function and the method for obtaining any keys that are required by that function.

• Appropriate documentation, as specified in SP 800-90A and SP 800-90B. The DRBG and
the entropy sources shall be validated for compliance with SP 800-90A or SP 800-90B,
respectively, and the validations successfully finalized before the completion of RBG
implementation validation.

• The maximum security-strength that can be supported by the DRBG.

• A description of all validated and non-validated entropy sources used by the RBG,
including identifying whether the entropy source is a physical or non-physical entropy
source.

• Documentation justifying the independence of all validated entropy sources from all
other validated and non-validated entropy sources employed.

• An identification of the features supported by the RBG (e.g., access to the underlying
DRBG of an RBG3 construction).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

90

• A description of the health tests performed, including an identification of the periodic 2807
2808

2809

2810

2811
2812
2813

2814
2815
2816

2817
2818
2819

2820
2821
2822

2823
2824
2825

2826
2827
2828

2829
2830
2831
2832
2833
2834

2835
2836
2837

2838
2839

intervals for performing the tests.

• A description of any support functions other than health testing.

• A description of the RBG components within the RBG security boundary (see Sec. 2.5).

• For an RBG1 construction, a statement indicating that the randomness source must be a
validated RBG2(P) or RBG3 construction (e.g., this could be provided in user
documentation and/or in a security policy).

• If sub-DRBGs can be used in an RBG1 construction, the maximum number of sub-DRBGs
that can be supported by the implementation and the security strengths to be supported
by the sub-DRBGs.

• For RBG2 and RBG3 constructions, a statement that identifies the conditions under which
the DRBG is reseeded (e.g., when requested by a consuming application, at a given time
interval, etc.).

• For an RBG3 construction, a statement that indicates whether the DRBG can be accessed
directly (i.e., the DRBG internal state used by the RBG3 construction can be accessed using
calls directly to the DRBG).

• For an RBG3 construction, the security policy shall indicate the fallback security strength
that can be supported by the DRBG if the entropy source fails (i.e., the fallback security
strength is the instantiated security strength of the DRBG).

• For an RBG3(RS) construction, when implementing CTR_DRBG (with a derivation
function), Hash_DRBG, or HMAC_DRBG, the method used for obtaining s + 64 bits of
entropy to produce s full-entropy bits (see Sec. 6.5.1.2.1)

• For an RBGC construction, whether it is capable of serving as the root of a DRBG chain,
how it “finds” an appropriate randomness source for seeding and reseeding (if
implemented), whether it can instantiate child RBGC constructions, any restrictions on
the number of child RBGC constructions in the implementation, whether it can be used
as an alternative randomness source for another RBGC construction and how this is
accomplished (see the note in Sec. 7.1.2.2), and whether it can be reseeded.

• If an RBGC construction can serve as the root of a DRBG chain, identify the initial
randomness source types that can be used. If the randomness source can be a full-entropy
source, describe the entropy sources to be used.

• Documentation specifying the guidance to users about fulfilling the non-testable
requirements, as appropriate (see Sec. 4.4, 5.3, 6.3, and 7.3).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

91

References 2840

2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865

2866
2867
2868
2869
2870

2871
2872
2873
2874
2875
2876
2877
2878
2879
2880

[AdversarialInput] Hoang, V.T., Shen, Y. (2020) Security Analysis of NIST CTR-DRBG. In:
Micciancio, D., Ristenpart, T. (eds) Advances in Cryptology – CRYPTO 2020.
CRYPTO 2020. Lecture Notes in Computer Science(), vol 12170. Springer,
Cham. https://doi.org/10.1007/978-3-030-56784-2_8

[AIS20] AIS 20: Funktionalitätsklassen und Evaluationsmethodologie für
deterministische Zufallszahlengeneratoren (Version 3) (Bundesamt für
Sicherheit in der Informationstechnik (BSI)) (2013), Report. Available at
https://www.bsi.bund.de/dok/66138618284.

[AIS31] AIS 31: Funktionalitätsklassen und Evaluationsmethodologie für
physikalische Zufallszahlengeneratoren (Version 3) (Bundesamt für
Sicherheit in der Informationstechnik (BSI)) (2013), Report. Available at
https://www.bsi.bund.de/dok/6618252.

[BSIFunc] Peter M, Schindler W (2022) A Proposal for Functionality Classes for
Random Number Generators (Version 2.35, DRAFT) (Bundesamt für
Sicherheit in der Informationstechnik (BSI)), Report. Available at
https://www.bsi.bund.de/dok/ais-20-31-appx-2022.

[FIPS_140] National Institute of Standards and Technology (2001) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-2, Change Notice 2 December 03, 2002.
https://doi.org/10.6028/NIST.FIPS.140-2
National Institute of Standards and Technology (2010) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-3. https://doi.org/10.6028/NIST.FIPS.140-3

[FIPS_140IG] National Institute of Standards and Technology, Canadian Centre for Cyber
Security Implementation Guidance for FIPS 140-2 and the Cryptographic
Module Validation Program, [Amended]. Available at
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-
validation-program/documents/fips140-2/FIPS1402IG.pdf

[FIPS_180] National Institute of Standards and Technology (2015) Secure Hash
Standard (SHS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 180-4.
https://doi.org/10.6028/NIST.FIPS.180-4

[FIPS_197] National Institute of Standards and Technology (2001) Advanced
Encryption Standard (AES). (U.S. Department of Commerce, Washington,
DC), Federal Information Processing Standards Publication (FIPS) 197.
https://doi.org/10.6028/NIST.FIPS.197

[FIPS_198] National Institute of Standards and Technology (2008) The Keyed-Hash
Message Authentication Code (HMAC). (U.S. Department of Commerce,

https://doi.org/10.1007/978-3-030-56784-2_8
https://www.bsi.bund.de/dok/66138618284
https://www.bsi.bund.de/dok/6618252
https://www.bsi.bund.de/dok/ais-20-31-appx-2022
https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-3
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.197

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

92

Washington, DC), Federal Information Processing Standards Publication 2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923

(FIPS) 198-1. https://doi.org/10.6028/NIST.FIPS.198-1.
[FIPS_202] National Institute of Standards and Technology (2015) SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions. (U.S.
Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 202.
https://doi.org/10.6028/NIST.FIPS.202

[InputLengths] Thomas Shrimpton, R. Seth Terashima: A Provable-Security Analysis of
Intel’s Secure Key RNG. EUROCRYPT (1) 2015: 77-100. Available at
https://eprint.iacr.org/2014/504.pdf

[ISO_18031] ISO Central Secretary (2011) ISO/IEC 18031:2011 Information technology
— Security techniques — Random bit generation (International
Organization for Standardization, Geneva, CH), Standard ISO/IEC
18031:2011. Available at https://www.iso.org/standard/54945.html.

[NISTIR_8427] Buller D, Kaufer A, Roginsky AL, Sonmez Turan M (2022) Discussion on the
Full Entropy Assumption of SP 800-90 Series. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Internal Report (NIST
IR) 8427. https://doi.org/10.6028/NIST.IR.8427

[SP_800-22] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M,
Vangel M, Banks D, Heckert N, Dray J, Vo S, Bassham L (2010) SP 800-22
Rev. 1a A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications (National Institute of Standards
and Technology), Available at https://doi.org/10.6028/NIST.SP.800-22r1a

[SP_800-38B] Dworkin MJ (2005) Recommendation for Block Cipher Modes of Operation:
the CMAC Mode for Authentication. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38B,
Includes updates as of October 6, 2016.
https://doi.org/10.6028/NIST.SP.800-38B

[SP_800-57Part1] Barker EB (2020) Recommendation for Key Management: Part 1 – General.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-57 Part 1, Rev. 5.
https://doi.org/10.6028/NIST.SP.800-57pt1r5

[SP_800-90A] Barker EB, Kelsey JM (2015) Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-90A, Rev. 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

[SP_800-90B] Sönmez Turan M, Barker EB, Kelsey JM, McKay KA, Baish ML, Boyle M
(2018) Recommendation for the Entropy Sources Used for Random Bit
Generation. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-90B.
https://doi.org/10.6028/NIST.SP.800-90B

[SP_800-131A] Barker EB, Roginsky AL (2019) Transitioning the Use of Cryptographic
Algorithms and Key Lengths. (National Institute of Standards and

https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://eprint.iacr.org/2014/504.pdf
https://www.iso.org/standard/54945.html
https://doi.org/10.6028/NIST.IR.8427
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

93

Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-131A, 2924
2925
2926
2927
2928
2929
2930

Rev. 2. https://doi.org/10.6028/NIST.SP.800-131Ar2
[WS19] Woodage J, Shumow D (2019) An Analysis of NIST SP 800-90A. In: Ishai Y,

Rijmen V (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT
2019. Lecture Notes in Computer Science, vol 11477. Springer, Cham.
https://doi.org/10.1007/978-3-030-17656-3_6

https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.1007/978-3-030-17656-3_6

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

94

Appendix A. Auxiliary Discussions (Informative) 2931

2932

2933

2934

2935
2936
2937

2938
2939
2940
2941
2942
2943

2944
2945

2946

2947
2948
2949
2950
2951
2952
2953

2954

2955
2956
2957
2958
2959
2960
2961

A.1. Entropy vs. Security Strength

This appendix compares and contrasts the concepts of entropy and security strength.

A.1.1. Entropy

Suppose that an entropy source produces n-bit strings with m bits of entropy in each bitstring.
This means that when an n-bit string is obtained from that entropy source, the best possible
guess of the value of the string has a probability of no more than 2−m of being correct.

Entropy can be thought of as a property of a probability distribution, like the mean or variance.
Entropy measures the unpredictability or randomness of the probability distribution on bitstrings
produced by the entropy source, not a property of any particular bitstring. However, the
terminology is sometimes slightly abused by referring to a bitstring as having m bits of entropy.
This simply means that the bitstring came from a source that ensures m bits of entropy in its
output bitstrings.

Because of the inherent variability in the process, predicting future entropy-source outputs does
not depend on an adversary’s amount of computing power.

A.1.2. Security Strength

A deterministic cryptographic mechanism (e.g., the DRBGs defined in SP 800-90A) has a security
strength — a measure of how much computing power an adversary expects to need to defeat
the security of the mechanism. If a DRBG has an s-bit security strength, an adversary who can
make 2w computations of the underlying block cipher or hash function, where w < s, expects to
have about a 2w-s probability of defeating the DRBG’s security. For example, an adversary who
can perform 296 AES encryptions can expect to defeat the security of the CTR-DRBG that uses
AES-128 with a probability of about 2−32 (i.e., 296−128).

A.1.3. A Side-by-Side Comparison

Informally, one way of thinking of the difference between security strength and entropy is the
following: suppose that an adversary somehow obtains the internal state of an entropy source
(e.g., the state of all the ring oscillators and any internal buffer). This might allow the adversary
to predict the next few bits from the entropy source (assuming that there is some buffering of
bits within the entropy source), but the entropy source outputs will once more become
unpredictable to the adversary very quickly. For example, knowing what faces of the dice are
currently showing does not allow a player to successfully predict the next roll of the dice.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

95

In contrast, suppose that an adversary somehow obtains the internal state of a DRBG. Because 2962
2963
2964

2965
2966
2967
2968
2969
2970

2971

2972
2973
2974
2975
2976
2977

2978
2979
2980
2981
2982
2983
2984
2985

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995

2996
2997
2998

the DRBG is deterministic, the adversary can then predict all future outputs from the DRBG until
the next reseeding of the DRBG with a sufficient amount of entropy.

An entropy source provides bitstrings that are hard for an adversary to guess correctly but usually
have some detectable statistical flaws (e.g., they may have slightly biased bits, or successive bits
may be correlated). However, a well-designed DRBG provides bitstrings that exhibit none of these
properties. Rather, they have independent and identically distributed bits, with each bit taking
on a value with a probability of exactly 0.5. These bitstrings are only unpredictable to an
adversary who does not know the DRBG’s internal state and is computationally bounded.

A.1.4. Entropy and Security Strength in This Recommendation

The DRBG within the RBG1 construction is instantiated from either an RBG2(P) or an RBG3
construction. To instantiate the RBG1 construction at a security strength of s bits, this
recommendation requires the source RBG to support a security strength of at least s bits and
provide a bitstring that is 3s/2 bits long for most of the DRBGs. However, for a CTR_DRBG
without a derivation function, a bitstring that is s + 128 bits long is required. An RBG3
construction supports any desired security strength.

The DRBG within an RBG2 or RBG3 construction is instantiated using a bitstring with a certain
amount of entropy obtained from a validated entropy source.29

29 However, the entropy-source output may be cryptographically processed by an approved conditioning function before being used.

 In order to instantiate the DRBG
to support an s-bit security strength, a bitstring with at least 3s/2 bits of entropy is required for
the instantiation of most of the DRBGs. Reseeding requires a bitstring with at least s bits of
entropy. However, instantiating and reseeding a CTR_DRBG without a derivation function
requires a bitstring with exactly s + 128 full-entropy bits. This bitstring can either be obtained
directly from an entropy source that provides full-entropy output or from an entropy source via
an approved (i.e., vetted) conditioning function (see Sec. 3.2).

RBG3 constructions are designed to provide full-entropy outputs but with a DRBG included in the
design as a second security anchor in case the entropy source fails undetectably. Entropy bits are
obtained either directly from an entropy source or from an entropy source via an approved (i.e.,
vetted) conditioning function. When the entropy source is working properly, an n-bit output from
the RBG3 construction is said to provide n bits of entropy. The DRBG in an RBG3 construction is
always required to support the highest security strength that can be provided by its design
(highest_strength). If an entropy-source has an undetectable failure, the RBG3 construction
outputs are generated at that security strength. In this case, the security strength of a bitstring
produced by the RBG is the minimum of highest_strength and the length of the bitstring — that
is, security_strength = min(highest_strength, length).

The DRBG within an RBGC construction is instantiated using a bitstring from a randomness
source. The randomness source for an RBGC construction will be either an initial randomness
source (when the RBGC construction is the root of a tree of such constructions) or another RBGC

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

96

construction. The tree of RBGC constructions will always originate from an approved initial 2999
3000
3001

3002
3003
3004
3005
3006
3007

3008
3009
3010
3011
3012

3013

3014
3015

3016

3017
3018

3019

3020
3021

randomness source that is either a full-entropy source or an RBG2 or RBG3 construction, each of
which includes a validated entropy source.

In conclusion, entropy sources and properly functioning RBG3 constructions provide output with
entropy. RBG1, RBG2, and RBGC constructions provide output with a security strength that
depends on the security strength of the RBG instantiation and the length of the output. Likewise,
if the entropy source used by an RBG3 construction fails undetectably, the output is then
dependent on the DRBG within the construction (i.e., an RBG(P) construction) to produce output
at the highest security strength for the DRBG design.

Because of the difference between the use of “entropy” to describe the output of an entropy
source and the use of “security strength” to describe the output of a DRBG, the term
“randomness” is used as a general term to mean either “entropy” or “security strength,” as
appropriate. A “randomness source” is the general term for an entropy source or RBG that
provides the randomness used by an RBG.

A.2. Generating Full-Entropy Output Using the RBG3(RS) Construction

Table 4 provides information on generating full-entropy output using the RBG3(RS) construction
with the DRBGs in SP 800-90A.

Table 4. Values for generating full-entropy bits by an RBG3(RS) construction

DRBG DRBG
Primitives

Highest Security
Strength (s) that

may be supported
by the DRBG

Entropy obtained
during a normal

reseed operation (r)

Entropy required
for s bits with full
entropy (s + 64)

CTR_DRBG
(with no derivation

function)

AES-128 128 256 192
AES-192 192 320 256
AES-256 256 384 320

CTR_DRBG (using a
derivation function)

AES-128 128 128 192
AES-192 192 192 256
AES-256 256 256 320

SHA-256
SHA3-256 256 256 320

SHA-384
SHA3-384 256 256 320

SHA-512
SHA3-512 256 256 320

Each DRBG is based on the use of an approved hash function or block cipher algorithm as a
cryptographic primitive.

• Column 1 lists the DRBG types.

• Column 2 identifies the cryptographic primitives that can be used by the DRBG(s) in
column 1.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

97

• Column 3 indicates the highest security strength (s) that can be supported by the
cryptographic primitive in column 2.

3022
3023

3024
3025

3026
3027

3028
3029
3030
3031

3032
3033
3034
3035
3036

3037
3038
3039

3040
3041
3042
3043
3044
3045

3046

3047
3048
3049
3050
3051
3052

3053
3054
3055
3056

30

30 Columns 2 and 3 provide the same information as Table 3.

• Column 4 indicates the amount of fresh entropy (r) that is obtained by a DRBG_Reseed
function for the security strength identified in column 3, as specified in SP 800-90A.

• Column 5 indicates the amount of entropy required to be inserted into the cryptographic
primitive (s + 64) to produce s bits with full entropy.

For the CTR_DRBG with no derivation function, the amount of entropy obtained during a
reseed as specified in SP 800-90A (see column 4) exceeds the amount of entropy needed to
subsequently generate s bits of output with full entropy (see column 5), where s is 128, 192, or
256. Therefore, reseeding as specified in SP 800-90A is appropriate.

However, for the CTR_DRBG that uses a derivation function or the Hash_DRBG or
HMAC_DRBG, a reseed as specified in SP 800-90A does not provide sufficient entropy for
producing s bits of full-entropy output for each execution of the DRBG_Generate function (see
columns 4 and 5). Section 6.5.1.2.1 provides two methods for obtaining the required s + 64 bits
of entropy needed to generate s bits of full-entropy output:

1. Modify the DRBG_Reseed function to obtain s + 64 bits of entropy from the entropy
source(s) rather than the s bits of entropy specified in SP 800-90A. This approach may be
used in implementations that have access to the internals of the DRBG implementation.

2. Obtain 64 bits of entropy directly from the entropy source(s) and provide it as additional
input when invoking the DRBG_Reseed function. As specified in SP 800-90A, the
DRBG_Reseed function obtains s bits of entropy from the entropy source(s) and
concatenates the additional input to it before updating the internal state with the
concatenated result (see the specification for the reseed algorithm for each DRBG type in
SP 800-90A), thus incorporating s + 64 bits of fresh entropy into the DRBG’s internal state.

A.3. Additional Considerations for RBGC Constructions

The boundaries for an RBGC construction are more difficult to define than other constructions
specified in this document, which makes validation more difficult. This difficulty arises from
changes in the structure of the RBGC tree (e.g., RBGC constructions created in software at
runtime) and the possibility that the module containing the DRBG of the RBGC construction may
be validated separately from the module containing the randomness source that seeds and
reseeds it.

This section contains examples of acceptable RBGC constructions as well as designs that properly
transmit seed material. To simplify the discussion, the figures show only the DRBG in each RBGC
construction. For example, DRBG1 is the DRBG for the RBGC1, which is used in the examples as
the root of the tree (i.e., the root DRBG), and DRBG2 is the DRBG for RBGC2.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

98

A.3.1. RBGC Tree Composition 3057

3058
3059
3060
3061
3062
3063
3064

3065
3066
3067
3068
3069
3070

3071
3072
3073
3074
3075
3076
3077

3078
3079

When parts of an RBGC tree are validated separately, the tree can later be composed in a safe
manner to ensure that the requirements given in Sec. 7 are met. An RBGC tree consists of an
initial randomness source and a root RBGC construction (at a minimum) and may include
descendent RBGC constructions (e.g., children and grandchildren). Additional RBGC
constructions (called subtrees) may be added to form a more complex tree. Each subtree consists
of at least one RBGC construction that may have its own descendants but is unable to access the
initial randomness source.

Consider two modules — A and B — that are evaluated separately (see Fig. 36). Module B does
not contain a root DRBG, but module A does. Module A contains an initial randomness source
and a DRBG that can access the initial randomness source to serve as the root of a tree (shown
as DRBG1). Module B does not include an initial randomness source, so no DRBG in that module
can serve as a root. The following examples show how DRBGs in module B can be evaluated as
RBGC constructions.

The simplest case for tree composition occurs when one RBGC construction satisfies the
requirements for the root RBGC, and every other RBGC construction involved meets the
requirements of a non-root RBGC construction. Figures 36 and 37 show compositions where
module A has been validated as an RBGC tree containing an initial randomness source, a root
(shown as DRBG1), two children of the root (DRBG2 and DRBG4), and DRBG3 (a child of DRBG2).
Module B contains a subtree consisting of DRBG5 and two child DRBGs (DRBG6 and DRBG7). In
these examples, all DRBGs meet the requirements for RBGC constructions.

Fig. 36. Subtree in module B seeded by root RBGC of module A

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

99

 3080
3081

3082
3083
3084

3085
3086
3087
3088
3089

3090
3091

3092
3093
3094
3095

Fig. 37. Subtree in module B seeded by a non-root DRBG of module A (i.e., DRBG4)

In Fig. 36, the DRBGs in module B are added to the tree by using the root (DRBG1) as the
randomness source for DRBG5. In Fig. 37, the DRBGs in module B are added to the tree by using
DRBG4 as the randomness source for DRBG5.

It is possible to compose trees where some of the DRBGs in module A do not meet the
requirements of an RBGC-compliant tree. Figure 38 depicts two DRBGs — DRBG2 and DRBG3 —
that do not meet RBGC requirements because a loop exists when DRBG3 is used to reseed DRBG2.
The DRBGs in purple boxes connected to the parent through dashed lines do not meet the DRBG
requirements for an RBGC construction.

Fig. 38. Subtree in module B seeded by DRBG4 in module A

If module B is added to the tree such that DRBG4 is the randomness source for DRBG5, the
elements of module B’s subtree only depend on DRBGs that meet RBGC requirements (i.e.,
DRBG1 and DRBG4) and may therefore be validated as RBGC constructions when added to the
tree in this manner.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

100

However, if the DRBGs in module B are added to the tree so that DRBG2 is the randomness source 3096
3097

3098
3099

3100

3101
3102
3103

3104
3105
3106
3107
3108
3109

3110

3111
3112
3113
3114

3115
3116
3117
3118

for DRBG5 (see Fig. 39), then the resulting tree is not a compliant RBGC tree.

Fig. 39. Subtree in module B seeded by DRBG2 of module A

A.3.2. Changes in the Tree Structure

New RBGC subtrees may be added to the tree during operation, and others may be removed. An
RBGC construction may not be moved from one physical platform to another by any means,
including backups, snapshots, and cloning.

An RBGC construction could be copied via forking within a single computer platform. Such cases
are permissible as long as the original and/or new processes are reseeded prior to fulfilling any
requests. This ensures that multiple instances of the same RBGC construction are not operating
simultaneously with the same internal states. Without this reseeding, the outputs of one RBGC
construction could be used to learn subsequent outputs from its counterpart, voiding any claims
of prediction resistance.

A.3.3. Using Virtual Machines

The phrase “same computing platform” (used in Sec. 7) is intended to restrict realizations of RBGC
constructions to similar concepts of a randomness source and DRBGs that exist within the same
RBG boundary. In particular, seed material must pass from a randomness source to a DRBG in a
way that provides the same guarantees as using a physical secure channel.

RBGC constructions used within virtual machines (VMs) pose a unique challenge because they
can be on the same physical platform yet communicate through a local area network (LAN).
Whether network traffic between VMs is routed solely by the hypervisor’s virtual LAN (VLAN) or
is sent to the platform’s network for routing depends on the configuration of the VLAN. For

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

101

example, two VMs that are in different port groups or use different virtual switches may transmit 3119
3120

3121
3122

3123
3124

3125
3126
3127
3128
3129

3130
3131

3132
3133

the data outside of the physical system they reside on, as shown in Fig. 40 and 41.

Fig. 40. VM1 and VM2 with different virtual switches

Fig. 41. VM1 and VM2 with the same virtual switch but different port groups

A DRBG within a virtual machine could potentially obtain seed material from sources outside of
the virtual machine if the seed material originates on the same computing platform. In particular,
seed material can be obtained from randomness sources that reside in levels below the virtual
machine, such as a hypervisor, host operating system, or the platform hardware. Figure 42 shows
an example in which all seed material is obtained from lower levels on the same system.

Fig. 42. Acceptable external seeding for virtual machine RBGC constructions

To comply with an RBGC tree as specified in SP 800-90C, virtual machines cannot provide seed
material to each other via a virtual network (see Fig. 43).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

102

 3134
3135

3136
3137
3138
3139
3140

3141

3142
3143
3144
3145
3146

Fig. 43. Acceptable external seeding for an RBGC construction in VM2 but not in VM1 and VM3

This is a very important point in terms of local security guarantees. Virtual network configurations
may change without being visible to a VM and alter the path of virtual network traffic. Therefore,
it cannot be guaranteed that the seed material will never cross the physical network. Two
configuration examples where data transmitted between virtual machines exits the host machine
are shown in Fig. 40 and 41.

A.3.4. Reseeding From Siblings of the Parent

There may be situations in which it is acceptable for an RBGC construction to obtain reseeding
material from an RBGC construction other than its parent. Figure 44 presents an example of a
computing platform with an OS-level RBGC construction and tree containing an initial
randomness source, root RBGC construction (containing DRBG1), and three child RBGC
constructions, each associated with a different processor (shown as CPU1, CPU2, and CPU3).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

103

 3147
3148

3149
3150
3151
3152

3153
3154
3155
3156
3157
3158
3159
3160
3161
3162

Fig. 44. Application subtree obtaining reseed material from a sibling of its parent

The DRBGs associated with these CPUs are DRBG2, DRBG3, and DRBG4, each of which can be used
as a randomness source by application-level RBGC constructions. Application2 contains a subtree
of RBGC constructions with DRBG6, DRBG7, and DRBG8. This subtree is composed of the OS-level
RBGC at DRBG5 (i.e., DRBG5 is the parent of DRBG6).

Ideally, DRBG6 would obtain bits for reseeding from its parent, DRBG5, but there may be reasons
why this is either undesirable (e.g., because of load balancing) or not allowed by the RBGC
requirements (e.g., seed material would exit the computing platform). Figure 44 provides an
example in which a computing platform is a multi-processor system that performs load balancing
to distribute tasks across processors. Application 2 (containing DRBG6) was originally located on
CPU3 so that DRBG6 was originally seeded by DRBG5 (i.e., DRBG5 is the parent of DRBG6). If
Application 2 is later moved to CPU2 and DRBG6 needs to be reseeded, it may be costly to reseed
using DRBG5. For efficiency within the multi-processor system, DRBG6 can instead be reseeded
using DRBG4 if DRBG4 has been designed and validated to meet the RBGC requirements. Note
that DRBG4 and DRBG5 are siblings since they have the same parent (DRBG1).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

104

Appendix B. RBG Examples (Informative) 3163

3164
3165

3166
3167
3168
3169
3170

3171

3172
3173
3174
3175

3176
3177

3178
3179
3180

Appendix B.1 discusses and provides an example of the direct access to a DRBG used by an RBG3
construction. Appendices B.2 – B.7 provide examples of each RBG construction.

The figures do not show that if an error indicates an RBG failure (e.g., a noise source in the
entropy source has failed), the RBG operation is terminated (see Sec. 2.6 and 8.1.2.1). For the
examples below, all entropy sources are considered to be physical entropy sources. In order to
simplify the examples, the additional_input parameter in the generate and reseed requests and
generate functions is not used.

B.1. Direct DRBG Access in an RBG3 Construction

An implementation of an RBG3 construction may be designed so that the DRBG implementation
used within the construction can be directly accessed by a consuming application using the same
or separate instantiations from the instantiation used by the RBG3 construction (see the
examples in Fig. 45).

Fig. 45. DRBG Instantiations

In the leftmost example in Fig. 45, the same internal state is used by the RBG3 construction and
a directly accessible DRBG. The DRBG implementation is instantiated only once, and only a single
state handle is obtained during instantiation (e.g., RBG3_DRBG_state handle). Generation and

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

105

reseeding for RBG3 operations use RBG3 function calls (see Sec. 6.4 and 6.5), while generation 3181
3182
3183

3184
3185
3186
3187
3188
3189
3190

3191
3192
3193
3194

3195
3196
3197
3198
3199

3200

3201
3202
3203
3204

and reseeding for direct DRBG access use RBG2 function calls (see Sec. 5.2) with the
RBG3_DRBG_state_handle.

In the rightmost example in Fig. 45, the RBG3 construction and directly accessible DRBG use
different internal states. The DRBG implementation is instantiated twice — once for RBG3
operations and a second time for direct access to the DRBG. A different state handle needs to be
obtained for each instantiation (e.g., RBG3_state_handle and RBG2_DRBG_state_handle).
Generation and reseeding for RBG3 operations use RBG3 function calls and
RBG3_DRBG_state_handle (see Sec. 6.4 and 6.5), while generation and reseeding for direct
DRBG access use RBG2 function calls and RBG2_DRBG_state_handle (see Sec. 5.2).

Multiple directly accessible DRBGs may also be incorporated into an implementation by creating
multiple instantiations. However, no more than one directly accessible DRBG should share the
same internal state with the RBG3 construction (i.e., if n directly accessible DRBGs are required,
either n or n - 1 separate instantiations are required).

The directly accessed DRBG instantiations are in the same security boundary as the RBG3
construction. When accessed directly using the same internal state as the RBG3 construction
(rather than operating as part of the RBG3 construction), the DRBG operates as an RBG2(P)
construction. A DRBG instantiation using a different internal state than the DRBG used by the
RBG3 construction may operate as either an RBG2(P) or RBG2(NP) construction.

B.2. Example of an RBG1 Construction

An RBG1 construction only has access to a randomness source during instantiation (i.e., when it
is seeded; see Sec. 4). In Fig. 46, the DRBG used by the RBG1 construction and the randomness
source reside in two different cryptographic modules with a physically secure channel connecting
them during the instantiation process.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

106

 3205
3206

3207
3208
3209
3210
3211
3212

3213
3214

3215

3216

3217
3218
3219
3220

Fig. 46. Example of an RBG1 construction

Following DRBG instantiation, the secure channel is no longer available. For this example, the
randomness source is an RBG2(P) construction (see Sec. 5) with a state handle of
RBG2_DRBG_state_handle. The targeted security strength for the RBG1 construction is 256 bits,
so a DRBG from SP 800-90A that is able to support this security strength must be used.
HMAC_DRBG using SHA-256 is used in the example. A personalization_string is provided during
instantiation, as recommended in Sec. 2.4.1.

As discussed in Sec. 4, the randomness source (i.e., the RBG2(P) construction in this example) is
not available during normal operation, so reseeding cannot be provided.

This example provides an RBG that is instantiated at a security strength of 256 bits.

B.2.1. Instantiation of the RBG1 Construction

A physically secure channel is required to transport the entropy bits from the randomness source
(i.e., the RBG2(P) construction) to the HMAC_DRBG during instantiation; an example of an
RBG2(P) construction is provided in Appendix B.4. After the instantiation of the RBG1
construction, the randomness source and the secure channel are no longer available.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

107

1. The HMAC_DRBG is instantiated by an application when sending an instantiate request 3221
3222

3223
3224

3225

3226
3227

3228

3229
3230

3231

3232
3233

3234

3235
3236

3237
3238

3239

3240
3241
3242
3243

3244
3245
3246

3247
3248

3249
3250

3251
3252

3253
3254

3255

to the DRBG:

(status, RBG1_DRBG_state_handle) =
DRBG_Instantiate_request(256, “Device 7056”),

where:

• A security strength of 256 bits is requested for the HMAC_DRBG used in the
RBG1 construction.

• The personalization string to be used for this example is “Device 7056”.

2. The DRBG_Instantiate_request results in the execution of the DRBG_Instantiate
function within the DRBG of the RBG1 construction (see Sec. 2.8.1.1):

(status, RBG1_DRBG_state_handle) = DRBG_Instantiate(256, “Device 7056”).

3. The instantiate function sends a reseed request to the RBG2(P) construction (i.e., the
randomness source; see requirement 18 in Sec. 4.4.1).

status = DRBG_Reseed_request(RBG2_DRBG_state_handle),

where RBG2_DRBG_state_handle is the state handle for the internal state in the RBG2(P)
construction.

4. Upon receiving a reseed request, the RBG2(P) implementation executes a reseed
function:

status = DRBG_Reseed(RBG2_DRBG_state_handle).

If an error is indicated by the returned status, the error is returned to the RBG1
construction by the RBG2(P) construction in response to the reseed request and
forwarded to the application by the RBG1 construction in response to the instantiate
request. The DRBG within the RBG1 construction has NOT been instantiated.

Otherwise, a status of success is returned to the RBG1 construction in response to the
reseed request (i.e., the DRBG within the RBG2(P) construction has been successfully
reseeded).

5. Upon receiving a status of success in response to the reseed request, the RBG1
construction then sends a generate request to the RBG2(P) construction (see Sec. 5.2.2).

(status, seed_material) = DRBG_Generate_request(RBG2_DRBG_state_handle, 384,
256),

where 384 is the 3s/2 bits needed to instantiate the HMAC_DRBG at a security strength
of 256 bits.

6. Upon receiving a generate request, the RBG2(P) construction executes a generate
function using information from the request:

(status, seed_material) = DRBG_Generate(RBG2_DRBG_state_handle, 384, 256).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

108

If an error is indicated by the returned status, the error is returned to the RBG1 3256
3257
3258
3259

3260
3261

3262
3263
3264

3265
3266
3267

3268
3269
3270

3271

3272
3273

3274

3275
3276

3277
3278

3279
3280

3281
3282

3283
3284

3285
3286

3287
3288
3289

construction by the RBG2(P) construction in response to the generate request and
forwarded to the application by the RBG1 construction in response to the instantiate
request. The DRBG within the RBG1 construction is NOT instantiated.

If a status of success is returned from the generate function, 384 bits of seed_material are
also provided and sent to the RBG1 construction in response to the generate request.

7. The DRBG within the RBG1 construction uses the seed_material provided by the RBG2(P)
construction and the personalization_string provided by the application in the instantiate
request (see step 1) to create the seed to instantiate the DRBG (see SP 800-90A).

If the instantiation is not successful, an error is returned to the application in response to
the instantiate request. The DRBG within the RBG1 construction has NOT been
instantiated.

If the instantiation is successful, the internal state is established. A status of SUCCESS and
the RBG1_DRBG_state_handle are returned to the application requesting instantiation,
and the RBG can be used to generate pseudorandom bits.

B.2.2. Generation by the RBG1 Construction

Assuming that the HMAC_DRBG in the RBG1 construction has been instantiated (see Appendix
B.2.1), pseudorandom bits can be obtained as follows:

1. A consuming application sends a generate request to the RBG1 construction:

(status, returned_bits) = DRBG_Generate_request(RBG1_DRBG_state_handle,
requested_number_of_bits, requested_security_strength).

• RBG1_DRBG_state_handle is returned as the state handle during instantiation
(see Appendix B.2.1).

• The requested_security_strength may be any value that is less than or equal to 256
(i.e., the instantiated security strength recorded in the DRBG’s internal state).

2. Upon receiving a generate request, the RBG1 construction executes a generate function,
as specified in Sec. 2.8.1.2:

(status, returned_bits) = DRBG_Generate(RBG1_DRBG_state_handle,
requested_number_of_bits, requested_security_strength).

If an error is returned as the status, the RBG1 construction forwards the error indication
to the application (in response to the generate request). returned_bits is a Null string.

If an indication of success is returned as the status, the requested_number_of_bits are
provided as the returned_bits to the consuming application in response to the generate
request.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

109

B.3. Example Using Sub-DRBGs Based on an RBG1 Construction 3290

3291
3292

3293
3294

3295
3296
3297
3298

3299
3300
3301
3302

3303

3304
3305

3306
3307

3308
3309

3310

3311
3312

This example uses an RBG1 construction to instantiate two sub-DRBGs: sub-DRBG1 and sub-
DRBG2 (see Fig. 47).

Fig. 47. Sub-DRBGs based on an RBG1 construction

The instantiation of the RBG1 construction is discussed in Appendix B.2. The RBG1 construction
that is used as the randomness source includes an HMAC_DRBG and has been instantiated to
provide a security strength of 256 bits. The state handle for the construction is
RBG1_DRBG_state_handle.

For this example, sub-DRBG1 will be instantiated to provide a security strength of 128 bits, and
sub-DRBG2 will be instantiated to provide a security strength of 256 bits. Both sub-DRBGs use
the same DRBG algorithm as the RBG1 construction (i.e., HMAC_DRBG using SHA-256). Neither
the RBG1 construction nor the sub-DRBGs can be reseeded.

This example provides the following capabilities:

• Access to the RBG1 construction to provide output generated at a security strength of
256 bits (see Appendix B.2 for the RBG1 example),

• Access to one sub-DRBG (i.e., sub-DRBG1) that provides output for an application that
requires a security strength of no more than 128 bits, and

• Access to a second sub-DRBG (i.e., sub-DRBG2) that provides output for a second
application that requires a security strength of 256 bits.

B.3.1. Instantiation of the Sub-DRBGs

Each sub-DRBG is instantiated using output from an RBG1 construction that is discussed in
Appendix B.2.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

110

B.3.1.1. Instantiating Sub-DRBG1 3313

3314
3315

3316
3317

3318

3319

3320
3321

3322

3323
3324

3325
3326

3327
3328
3329
3330

3331
3332
3333

3334
3335
3336

3337

3338
3339

3340

3341
3342

3343

3344
3345

1. Sub-DRBG1 is instantiated when an application sends an instantiate request to the RBG1
construction:

(status, sub-DRBG1_state_handle) =
Instantiate_sub-DRBG_request(128, “Sub-DRBG App 1”),

where

• A security strength of 128 bits is requested for sub-DRBG1,

• The personalization string to be used for sub-DRBG1 is “Sub-DRBG App 1”, The
comma is Nand

• The returned state handle for sub-DRBG1 will be sub-DRBG1_state_handle.

2. Upon receiving the instantiate request, the RBG1 construction executes its instantiate
function for a sub-DRBG (see Sec. 4.3.1):

(status, sub-DRBG1_state_handle) = Instantiate_sub-DRBG(128,
“Sub-DRBG App 1”).

As specified for the Instantiate_sub-DRBG function, the DRBG in the RBG1 construction
will attempt to generate 3s/2 = 192 bits of seed material and combine it with “Sub-DRBG
App 1” (i.e., the personalization string) to create a seed for the internal state of sub-
DRBG1.

If an error is returned as the status, the RBG1 construction forwards the error indication
to the application in response to the instantiate request. The sub-DRBG is NOT
instantiated.

If an indication of success is returned as the status, the RBG1 construction forwards the
status to the application in response to the instantiate request. Sub-DRBG1 can now be
requested directly to generate output. See Appendix B.3.2.

B.3.1.2. Instantiating Sub-DRBG2

Sub-DRBG2 is instantiated in the same manner as sub-DRBG1 but at a security strength of 256
bits and with a different personalization string.

1. The application sends an instantiate request to the RBG1 construction:

(status, sub-DRBG2_state_handle) =
Instantiate_sub-DRBG_request(256, “Sub-DRBG App 2”).

2. The RBG1 construction executes an instantiate function for a sub-DRBG:

(status, sub-DRBG2_state_handle) = Instantiate sub-DRBG(256,
“Sub-DRBG App 2”).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

111

The DRBG in the RBG1 construction will attempt to generate 3s/2 = 384 bits of seed 3346
3347
3348

3349
3350
3351

3352
3353
3354

3355

3356
3357

3358

3359
3360

3361

3362

3363
3364

3365

3366

3367

3368
3369

3370
3371

3372
3373

3374

3375
3376
3377
3378

material and combine it with “Sub-DRBG App 2” to create a seed for the internal state of
sub-DRBG2.

If an error is returned as the status, the RBG1 construction forwards the error indication
to the application in response to the instantiate request. The sub-DRBG is NOT
instantiated.

If an indication of success is returned as the status, the RBG1 construction forwards the
status to the application in response to the instantiate request. Sub-DRBG2 can now be
requested directly to generate output. See Appendix B.3.2.

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs

Assuming that the sub-DRBG has been successfully instantiated (see Appendix B.3.1),
pseudorandom bits can be requested from the sub-DRBG by a consuming application.

1. An application sends the following generate request:

(status, returned_bits) = DRBG_Generate_request(sub-DRBG_state_handle,
requested_number_of_bits, requested_security_strength),

• For sub_DRBG1, sub-DRBG_state_handle = sub-DRBG1_state_handle.

• For sub-DRBG2, sub-DRBG_state_handle = sub-DRBG2_state_handle.

• requested_number_of_bits must be ≤ 219 (see SP 800-90A for the HMAC_DRBG
parameters).

• For sub_DRBG1, security strength must be ≤ 128.

• For sub_DRBG2, security strength must be ≤ 256.

2. The sub-DRBG executes the generate request (see Sec. 2.8.1.2):

(status, returned_bits) = DRBG_Generate(sub-DRBG_state_handle,
requested_number_of_bits, security_strength).

If an error is returned as the status, the sub-DRBG forwards the error indication to the
application in response to the generate request. The returned_bits string is Null.

If an indication of success is returned as the status, the sub-DRBG forwards the status to
the application along with the requested number of newly generated bits.

B.4. Example of an RBG2(P) Construction

For this example of an RBG2(P) construction, no conditioning function is used, and only a single
DRBG instantiation will be used (see Fig. 48), so a state handle is not needed. A physical and a
non-physical entropy source are used. Full-entropy output is not provided by the entropy
sources.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

112

 3379
3380

3381
3382
3383
3384
3385

3386

3387

3388

3389

3390

3391

3392
3393

3394
3395

3396

Fig. 48. Example of an RBG2 construction

The targeted security strength is 256 bits, so a DRBG from SP 800-90A that can support this
security strength must be used; HMAC_DRBG using SHA-256 is used in this example. A
personalization_string may be provided, as recommended in Sec. 2.4.1. Reseeding is supported
and will be available on demand. Method 1 is used for counting the entropy produced by the
entropy sources (i.e., only entropy from the physical entropy source is counted).

This example provides the following capabilities:

• An RBG instantiated at a security strength of 256 bits and

• Access to an entropy source to provide prediction resistance.

B.4.1. Instantiation of an RBG2(P) Construction

1. The RBG2(P) construction is instantiated by an application using an instantiate request:

status = DRBG_Instantiate_request(256, “RBG2 42”).

Since there is only a single instantiation, a state_handle is not used for this example. The
personalization string to be used for this example is “RBG2 42”.

2. Upon receiving the instantiate request, the RBG2(P) construction executes an instantiate
function:

status = DRBG_Instantiate(256, “RBG2 42”).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

113

The seed material for establishing the security strength (s) of the DRBG (i.e., s = 256 bits) 3397
3398
3399

3400

3401
3402

3403
3404
3405
3406
3407

3408
3409
3410

3411

3412

3413

3414
3415

3416
3417
3418

3419
3420

3421
3422

3423
3424

3425
3426
3427
3428

is requested using the following call to the entropy source (see Sec. 2.8.2 and item 2 in
Sec. 5.2.1):

(status, seed_material) = Get_entropy_bitstring(384, Method_1),

where 3s/2 = 384 bits of entropy are requested from the entropy source, and Method 1
is used to count only the entropy produced by the physical entropy source.

If status = SUCCESS is returned in response to the Get_entropy_bitstring call, the
HMAC_DRBG is seeded using seed_material and the personalization_string (“RBG2
42”). The internal state is recorded (including the security strength of the instantiation),
and status = SUCCESS is returned to the consuming application in response to the
instantiation request.

If the status returned in response to the Get_entropy_bitstring call indicates an error,
then the internal state is not created, the status is returned to the consuming application
in response to the instantiation request, and the RBG cannot be used to generate bits.

B.4.2. Generation Using an RBG2(P) Construction

Assuming that the RBG has been successfully instantiated (see Appendix B.4.1):

1. Pseudorandom bits can be requested from the RBG by a consuming application:

(status, returned_bits) = DRBG_Generate_request(requested_number_of_bits,
requested_security_strength).

• Since there is only a single instantiation of the HMAC_DRBG, a state_handle was
not returned from the DRBG_Instantiate (see Appendix B.4.1) and is not used
during the generate request.

• The requested_security_strength may be any value that is ≤ 256 (i.e., the
instantiated security strength recorded in the HMAC_DRBG’s internal state).

2. Upon receiving the generate request, the RBG executes the generate function (see Sec.
2.8.1.2):

(status, returned_bits) = DRBG_Generate(requested_number_of_bits,
security_strength).

A status indication is returned to the requesting application in response to the
DRBG_Generate call. If status = SUCCESS, a bitstring of at least
requested_number_of_bits is provided as the returned_bits. If status = FAILURE,
returned_bits is an empty bitstring.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

114

B.4.3. Reseeding an RBG2(P) Construction 3429

3430
3431
3432

3433

3434

3435
3436
3437

3438
3439

3440

3441
3442

3443

3444
3445

3446
3447
3448
3449

3450
3451
3452
3453
3454

3455

3456
3457
3458
3459
3460

3461
3462
3463

The HMAC_DRBG will be reseeded 1) if explicitly requested by the consuming application or 2)
automatically during a DRBG_Generate call at the end of the DRBG’s designed seedlife (see the
DRBG_Generate function specification in SP 800-90A and Sec. 5.2.3 herein).

1. An application may request a reseed of the DRBG using a reseed request:

status = DRBG_Reseed_request().

Since there is only a single instantiation of the HMAC_DRBG, a state_handle was not
returned from the DRBG_Instantiate function (see Appendix B.4.1) and is not used
during the reseed request.

2. Upon receiving the reseed request or when the end of the seedlife is determined, the RBG
executes the reseed function (see Sec. 2.8.1.3):

status = DRBG_Reseed().

The DRBG_Reseed function uses a Get_randomness-source_input call to access the
entropy source.

(status, seed_material) = Get_entropy_bitstring(256, Method_1).

Method_1 indicates that only the entropy from the physical entropy source should be
counted.

If status = SUCCESS is returned by Get_entropy_bitstring, the seed_material contains
at least 256 bits of entropy and is at least 256 bits long. Status = SUCCESS is returned to
the RBG2 construction in response to the DRBG_Reseed call, and the status is forwarded
to the application in response to the reseed request, if appropriate.

If the status indicates an error, seed_material is an empty (e.g., null) bitstring. The
HMAC_DRBG is not reseeded, the status is returned to the DRBG_Reseed function in
the RBG2 construction, and the status is then forwarded to the application in response to
the reseed request, if appropriate. Depending on the error, the DRBG operation may be
terminated (see item 10 in Sec. 2.6).

B.5. Example of an RBG3(XOR) Construction

This construction is specified in Sec. 6.4 and requires a DRBG and a source of full-entropy bits.
For this example, a single physical entropy source that does not provide full-entropy output is
used, so the vetted hash conditioning function listed in SP 800-90B using SHA-256 is used as an
external conditioning function. Since the type of entropy source is known, the counting method
is known and need not be indicated when requesting entropy.

The Hash_DRBG specified in SP 800-90A will be used as the DRBG with SHA-256 used as the
underlying hash function for the DRBG (note the use of SHA-256 for both the Hash_DRBG and
the vetted conditioning function). The DRBG will obtain input directly from the RBG’s entropy

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

115

source without conditioning (as shown in Fig. 49) since bits with full entropy are not required for 3464
3465
3466

3467
3468

3469
3470
3471
3472

3473

3474

3475
3476

3477

3478

3479
3480

input to the DRBG, even though full-entropy bits are required for input to the XOR operation
(shown as “⊕” in the figure) from the entropy source via the conditioning function.

Fig. 49. Example of an RBG3(XOR) construction

The DRBG is instantiated and reseeded at a 256-bit security strength. In this example, only a
single instantiation is used, and a personalization string is provided during instantiation. Calls are
made to the RBG using the RBG3(XOR) calls specified in Sec. 6.4. The Hash_DRBG itself is not
directly accessible.

This example provides the following capabilities:

• Full-entropy output by the RBG,

• Fallback to the security strength provided by the Hash_DRBG (256 bits) if the entropy
source has an undetected failure, and

• Access to an entropy source to instantiate and reseed the Hash_DRBG.

B.5.1. Instantiation of an RBG3(XOR) Construction

1. An application instantiates an RBG3(XOR) construction using an instantiate request that
will instantiate the DRBG within the RBG:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

116

status = Instantiate_RBG3_DRBG_request(256, “RBG3(XOR)”). 3481

3482
3483
3484

3485
3486

3487

3488
3489
3490

3491

3492
3493
3494
3495
3496
3497

3498
3499
3500
3501

3502

3503
3504

3505

3506

3507

3508
3509

3510
3511

3512

3513
3514

Since only a single instantiation is used, there is no need for a state handle. The
HMAC_DRBG is requested to be instantiated at a security strength of 256 bits using
“RBG3(XOR)” as a personalization string.

2. Upon receiving an instantiate request, the RBG3(XOR) construction executes an
instantiate function:

status = RBG3(XOR)_Instantiate(256, “RBG3(XOR)”).

The entropy for establishing the security strength (s) of the Hash_DRBG (i.e., where s =
256 bits) is requested from the entropy source using the following
Get_entropy_bitstring call:

(status, seed_material) = Get_entropy_bitstring(384).

If status = SUCCESS is returned from the Get_entropy_bitstring call, the Hash_DRBG
is seeded using the seed_material and the personalization_string (i.e., “RBG3(XOR)”). The
internal state is recorded (including the 256-bit security strength of the instantiation), and
status = SUCCESS is returned to the RBG3(XOR) construction and forwarded to the
consuming application in response to the instantiate request (from step 1). The RBG can
be used to generate full-entropy bits.

If the status returned from the Get_entropy_bitstring call indicates an error, the status
is forwarded by the RBG3(XOR) construction to the consuming application. The
Hash_DRBG’s internal state is not established, and the RBG cannot be used to generate
bits.

B.5.2. Generation by an RBG3(XOR) Construction

Assuming that the Hash_DRBG has been instantiated (see Appendix B.5.1), the RBG can be
called by a consuming application to generate output with full entropy.

B.5.2.1. Generation

1. An application requests the generation of full-entropy bits using:

(status, returned_bits) = RBG3_DRBG_Generate_request(n),

where n indicates the requested number of bits to generate. A state handle is not included
since a state handle was not returned during instantiation (see Appendix B.5.1).

2. Upon receiving a generate request, the RBG3(XOR) construction executes a call to the
generate function:

(status, returned_bits) = RBG3(XOR)_Generate(n).

The construction of the RBG3(XOR)_Generate function in Sec. 6.4.1.2 is used as
follows:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528
3529
3530

3531
3532
3533

3534
3535
3536
3537
3538

3539
3540

3541
3542
3543
3544
3545

3546
3547
3548
3549

117

RBG3(XOR)_Generate:

Input:

n: The number of bits to be generated.

Output:

status: The status returned by the RBG3(XOR)_Generate function.

returned_bits: The newly generated bits or a Null bitstring.

Process:

2.1 (status, ES_bits) = Get_conditioned_full-entropy_input(n).

2.2 If (status ≠ SUCCESS), then return(status, Null).

2.3 (status, DRBG_bits) = DRBG_Generate(n, 256).

2.4 If (status ≠ SUCCESS), then return(status, Null).

2.5 returned_bits = ES_bits ⊕ DRBG_bits.

2.6 Return (SUCCESS, returned_bits).

The state_handle parameter is not used in the RBG3(XOR)_Generate call or the
DRBG_Generate function call (in step 2.3) for this example since a state_handle was not
returned from the RBG3(XOR)_ Instantiate function (see Appendix B.5.1).

In step 2.1, the entropy source is accessed via the conditioning function using the
Get_conditioned_full-entropy_input routine (see Appendix B.5.2.2) to obtain n bits with
full entropy, which are returned as the ES_bits.

Step 2.2 checks that the Get_conditioned_full-entropy_input call in step 2.1 was
successful. If it was not successful, the RBG3(XOR)_Generate function is aborted,
returning status ≠ SUCCESS and a Null bitstring to the RBG3(XOR) construction. The
status and Null bitstring are then forwarded to the application in response to the generate
request (in step 1).

Step 2.3 calls the Hash_DRBG to generate n bits at a security strength of 256 bits. The
generated bitstring is returned as DRBG_bits.

Step 2.4 checks that the DRBG_Generate function invoked in step 2.3 was successful. If
it was not successful, the RBG3(XOR)_Generate function is aborted, returning status ≠
SUCCESS and a Null bitstring to the RBG3(XOR) construction. The status and Null
bitstring are then forwarded to the application in response to the generate request (in
step 1).

If step 2.3 returns an indication of success, the ES_bits returned in step 2.1 and the
DRBG_bits obtained in step 2.3 are XORed together in step 2.5. The result is returned to
the RBG3(XOR) construction in step 2.6 and forwarded to the application in response to
the generate request (in step 1).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

118

B.5.2.2. Get_conditioned_full-entropy_input Function 3550

3551
3552

3553

3554

3555

3556

3557

3558
3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571
3572

3573

3574
3575

3576
3577
3578

3579
3580

The Get_conditioned_full-entropy_input procedure is specified in Sec. 3.2.2.2. For this
example, the routine becomes the following:

Get_conditioned_full_entropy_input:

Input:

n: The number of full-entropy bits to be provided.

Output:

1. status: The status returned from the Get_conditioned_full_entropy_input function.

2. Full-Entropy_bitstring: The newly acquired n-bit string with full entropy or a Null
bitstring.

Process:

1. temp = the Null string.

2. ctr = 0.

3. While ctr < n, do

3.1 (status, Entropy_bitstring) = Get_entropy_bitstring (320).

3.2 If (status ≠ SUCCESS), then return (status, Null).

3.3 conditioned_output = HashSHA_256(Entropy_bitstring).

3.4 temp = temp || conditioned_output.

3.5 ctr = ctr + 256.

4. Full-Entropy_bitstring = leftmost(temp, n).

5. Return (SUCCESS, Full-Entropy_bitstring).

Steps 1 and 2 initialize the temporary bitstring (temp) for holding the full-entropy bitstring being
assembled and the counter (ctr) that counts the number of full-entropy bits produced so far.

Step 3 obtains and processes the entropy for each iteration.

• Step 3.1 requests 320 bits from the entropy source (i.e., output_len + 64 bits, where
output_len = 256 for SHA-256).

• Step 3.2 checks whether the status returned in step 3.1 indicated a success. If the status
did not indicate a success, the status is returned to the RBG3(XOR)_Generate function
(in Appendix B.5.2.1) along with a Null bitstring.

• Step 3.3 invokes the hash conditioning function (see Sec. 3.2.1.2) using SHA-256 for
processing the Entropy_bitstring obtained from step 3.1.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

119

• Step 3.4 concatenates the conditioned_output received in step 3.3 to the temporary 3581
3582

3583
3584

3585
3586

3587

3588

3589
3590
3591
3592

3593
3594

3595

3596

3597
3598

3599

3600

3601

3602

3603
3604
3605
3606

3607
3608
3609

3610

3611
3612
3613

bitstring (temp).

• Step 3.5 increments the counter for the number of full-entropy bits that have been
produced so far.

After at least n bits have been produced in step 3, step 4 selects the leftmost n bits of the
temporary string (temp) to be returned as the bitstring with full entropy.

Step 5 returns the result from step 4 (i.e., Full-Entropy_bitstring).

B.5.3. Reseeding an RBG3(XOR) Construction

The Hash_DRBG within the RBG3(XOR) construction must be reseeded at the end of its designed
seedlife and may be reseeded on demand (e.g., by the consuming application). Reseeding will be
automatic whenever the end of the DRBG’s seedlife is reached during a DRBG_Generate call
(see SP 800-90A and step 2.3 in Appendix B.5.2.1).

The consuming application uses a reseed request to reseed the DRBG within the RBG3(XOR)
construction:

status = DRBG_Reseed_request().

A state handle is not provided for this example since none was provided during instantiation.

Whether reseeding is done automatically during a DRBG_Generate call or is specifically
requested by a consuming application, the DRBG_Reseed call for this example is:

status = DRBG_Reseed().

Again, a state handle is not provided since none was provided during instantiation.

A Get_entropy_bitstring call to the entropy source is used to obtain the entropy for reseeding:

(status, seed_material) = Get_entropy_bitstring(256).

If status = SUCCESS is returned by the Get_entropy_bitstring call, seed_material consists of at
least 256 bits that contain at least 256 bits of entropy. These bits are used by the DRBG_Reseed
function to reseed the Hash_DRBG. If the reseed was requested by an application, the status is
returned to that application.

If the status indicates an error, the seed_material is a Null bitstring, and the Hash_DRBG is not
reseeded. If the reseed was requested by an application, the error status is returned to the
application.

B.6. Example of an RBG3(RS) Construction

This construction is specified in Sec. 6.5 and requires an entropy source and a DRBG, which is
shown in the left half of Fig. 50 outlined in green with long dashes (− − − −). The DRBG is directly
accessible using the same instantiation that is used by the RBG3(RS) construction (i.e., they share

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

120

the same internal state). When accessed directly, the DRBG behaves as an RBG2(P) construction, 3614
3615
3616

3617
3618

3619
3620
3621
3622

3623
3624

3625
3626

3627
3628
3629

3630
3631
3632

which is shown in the right half of Fig. 50 outlined in blue with alternating dots and dashes (- • - •

-).

Fig. 50. Example of an RBG3(RS) construction

The CTR_DRBG specified in SP 800-90A will be used as the DRBG with AES-256 used as the
underlying block cipher for the DRBG. The CTR_DRBG will be implemented using a derivation
function located inside of the CTR_DRBG implementation. In this case, full-entropy output will
not be required from the entropy source (see SP 800-90A).

As specified in Sec. 6.5, a DRBG used as part of the RBG must be instantiated and reseeded at a
security strength of 256 bits when AES-256 is used in the DRBG.

For this example, the DRBG has a fixed security strength (i.e., 256 bits), which is hard-coded into
the implementation so will not be used as an input parameter.

Calls are made to the RBG3(RS) construction, as specified in Sec. 6.5. Calls made to the directly
accessible DRBG (part of the RBG2(P) construction) use the RBG calls specified in Sec. 5. Since an
entropy source is always available, the directly accessed DRBG can be reseeded.

If the entropy source produces output at a slow rate, a consuming application might call the
RBG3(RS) construction only when full-entropy bits are required, obtaining all other output from
the directly accessible DRBG. Requirement 2 in Sec. 6.5.2 requires that the DRBG be reseeded

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

121

whenever a request for generation by a directly accessible DRBG follows a request for generation 3633
3634
3635
3636

3637
3638
3639

3640
3641

3642

3643

3644

3645
3646

3647
3648

3649

3650
3651

3652

3653
3654

3655

3656
3657

3658
3659
3660
3661
3662

3663

3664

3665
3666

by the RBG3(RS) construction. For this example, a global variable (last_call) within the RBG3(RS)
security boundary is used to indicate whether the last use of the DRBG was as part of the
RBG3(RS) construction or directly accessed:

• last_call = 1 if the DRBG was last used as part of the RBG3(RS) construction to provide
full entropy output. If the next request is for generation by the DRBG directly, the DRBG
must be reseeded before the requested output is generated.

• last_call = 0 otherwise. A reseed of the DRBG when accessed directly is not necessary.
When the DRBG is first instantiated with entropy, last_call is set to zero.

See SP 800-90Ar1 for information about the internal state of the CTR_DRBG.

This example provides the following capabilities:

• Full-entropy output by the RBG3(RS) construction,

• Fallback to the security strength of the RBG3(RS)’s DRBG instantiation (i.e., 256 bits) if the
entropy source has an undetected failure,

• Direct access to the DRBG with a security strength of 256 bits for faster output when full-
entropy output is not required,

• Access to an entropy source to instantiate and reseed the DRBG, and

• On-demand reseeding of the DRBG (e.g., to provide prediction resistance for requests to
the directly accessed DRBG).

B.6.1. Instantiation of an RBG3(RS) Construction

Instantiation for this example consists of the instantiation of the CTR_DRBG used by the
RBG3(RS) construction.

1. An application requests the instantiation of the RBG3(RS) construction using:

(status, RBG3_DRBG_state_handle) = Instantiate_RBG3_DRBG_request(“RBG3(RS)
2024”),

which requests the instantiation of the DRBG within the RBG3(RS) construction using
“RBG3(RS) 2024” as the personalization string. In this example, the request does not
include an indication of the security strength to be instantiated that would need to be
checked against the security strength implemented for the DRBG (see Sec. 2.8.3.1 for a
discussion).

2. Upon receiving the request, the RBG3(RS) construction executes the instantiate function:

(status, RBG3_DRBG_state_handle) = RBG3(RS)_ Instantiate(“RBG3(RS) 2024”).

For this example, the RBG3(RS)_Instantiate function (see Sec. 6.5.1.1) in the DRBG includes an
additional step to set the initial value of last_call to zero (i.e., if the first use of the DRBG is for

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

122

direct access, a reseed of the DRBG before generating bits is not required). Setting the initial 3667
3668

3669

3670

3671

3672
3673
3674
3675

3676

3677
3678
3679

3680
3681
3682

3683
3684
3685

3686

3687
3688

3689

3690

3691
3692

3693
3694

3695

3696
3697

3698

3699

value of last_call is an implementation decision, but some method for this process is required:

2.1 (status, RBG3_DRBG_state_handle) = DRBG_Instantiate(personalization_string).

2.2 last_call = 0.

2.3 Return(status, RBG3_DRBG_state_handle).

In step 2.1, the DRBG_Instantiate function is used to instantiate the CTR_DRBG using
“RBG3(RS) 2024” as the personalization string. Since the required security strength is known (i.e.,
256 bits) and a derivation function is used in the CTR_DRBG implementation, the required
entropy (s + 128 = 384 bits) is obtained from the entropy source using:

(status, seed_material) = Get_entropy_bitstring(s + 128).

The seed_material and personalization string are used to seed the CTR_DRBG. Since the
entropy source is known to be a physical entropy source, the counting method is known and not
included as an input parameter.

Step 2.2 sets last_call = 0 so that if the initial request is for direct access to the DRBG, a reseed
will not be initially required before generating bits (i.e., entropy has just been acquired as a result
of the instantiation process).

In step 2.3, the status and the state handle for the DRBG’s internal state are returned to the
RBG3(RS)_Instantiate function and forwarded to the application in response to the instantiate
request in step 1.

B.6.2. Generation by an RBG3(RS) Construction

Assuming that the DRBG in the RBG3(RS) construction has been instantiated (see Appendix
B.6.1), the RBG can be invoked by a consuming application to generate outputs with full entropy.

1. An application requests the generation of full-entropy bits using:

(status, returned_bits) = RBG3_ Generate_request(RBG3_DRBG_state_handle, n),

where RBG3_DRBG_state_handle was provided during DRBG instantiation (see Appendix B.6.1),
and n is the number of requested bits.

2. Upon receiving the generate request, the RBG3(RS) construction executes the generate
function (see Sec. 6.5.1.2.1):

(status, returned_bits) = RBG3(RS)_Generate(RBG3_DRBG_state_handle, n).

A few modifications to the RBG3(RS)_Generate function have been made, resulting in
the following:

RBG3(RS)_ Generate:

Input:

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

123

• RBG3_DRBG_state_handle: The state handle for the DRBG’s internal state 3700
3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712
3713

3714

3715

3716

3717

3718

3719
3720

3721

3722
3723
3724

3725
3726

3727

3728
3729
3730

3731

3732

(see Appendix B.6.1).

• n: The number of full-entropy bits to be generated.

Output:

• status: The status returned from the RBG3(RS)_Generate function.

• returned_bits: The newly generated bits or a Null bitstring.

Process:

2.1 temp = Null.

2.2 sum = 0.

2.3 While (sum < n),

2.3.1 status = DRBG_Reseed(RBG3_DRBG_state_handle).

2.3.2 If (status ≠ SUCCESS), then return (status, Null).

2.3.3 (status, full_entropy_bits =
DRBG_Generate(RBG3_DRBG_state_handle, 256).

2.3.4 If (status ≠ SUCCESS), then return (status, Null).

2.3.5 temp = temp || full_entropy_bits.

2.3.6 sum = sum + s.

2.4 last_call = 1.

2.5 Return (SUCCESS, leftmost(temp, n)).

Steps 2.1 and 2.2 initialize temp to a Null string for accumulating the requested output
and sum to zero for counting the entropy generated.

Step 2.3 generates the requested output with full entropy.

Step 2.3.1 reseeds the DRBG. Whenever the RBG3(RS) construction is requested to
generate bits, the DRBG is always reseeded with s + 64 = 320 bits directly from the
entropy source (see Appendix B.6.4).

Step 2.3.2 checks the status of the reseed process and returns the status and a Null
string if the reseed process was not successful.

Step 2.3.3 requests the generation of 256 bits.

Step 2.3.4 checks the status of the generate process and returns the status and a Null
string if the generate process was not successful. The “256” could be omitted since it
is known to be the same as the hard-coded security strength.

Step 2.3.5 assembles the full-entropy bitstring.

Step 2.3.6 counts the number of bits assembled so far.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

124

In step 2.4, the last_call value is set to one to indicate that the requested bits were 3733
3734

3735
3736
3737

3738

3739
3740
3741
3742

3743
3744

3745

3746
3747
3748

3749
3750

3751

3752

3753
3754
3755

3756

3757

3758

3759

3760

3761
3762

3763

3764

generated by the RBG3(RS) construction rather than by direct use of the DRBG.

3. The status and generated bits from the RBG3(RS)_Generate function in step 2 are
returned to the RBG3(RS) construction and forwarded to the application in response to
the generate request in step 1.

B.6.3. Generation by the Directly Accessible DRBG

Assuming that the DRBG has been instantiated (see Appendix B.6.1), it can be accessed directly
by a consuming application in the same manner as the RBG2(P) example in Appendix B.4.2 using
the RBG3_DRBG_state_handle obtained during instantiation (see Appendix B.6.1).
Pseudorandom bits can be generated directly by the CTR_DRBG as follows:

1. An application requests the generation of pseudorandom bits directly from the DRBG
within the RBG3(RS) construction:

(status, returned_bits) = DRBG_Generate_request(RBG3_DRBG_state_handle, n, s),

where RBG3_DRBG_state_handle was obtained during instantiation (see Appendix
B.6.1), n is the requested number of bits to be returned, and s is the requested security
strength.

2. Upon receiving the generate request, the RBG3(RS) construction executes a
DRBG_Generate function rather than an RBG3(RS)_Generate function:

(status, returned_bits) = DRBG_Generate(RBG3_DRBG_state_handle, n).

The security strength parameter (i.e., 256) is omitted since its value has been hard-coded.

The DRBG_Generate function specified in SP 800-90A has been modified to determine
whether a reseed is required before generating the requested output by checking the
value of last_call. An extraction31

31 The complete DRBG_Generate function is significantly longer.

 of the DRBG_Generate function in SP 800-90A is:

[After other preliminary checks have been performed]

If ((last_call = 1) OR (reseed_counter > reseed_interval)), then

status = DRBG_Reseed(RBG3_DRBG_state_handle).

If (status ≠ SUCCESS), then return (status, Null).

...

(returned_bits, new_working_state_values) =
Generate_algorithm(current_working_state_values, requested_number_of_bits).

last_call = 0.

[Closing steps to update the internal state]

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

125

An additional step has also been included above to indicate that this use of the DRBG is direct 3765
3766
3767
3768

3769

3770
3771
3772

3773
3774
3775
3776
3777

3778

3779

3780

3781
3782

3783

3784
3785

3786

3787
3788
3789

3790
3791
3792

3793

3794
3795
3796
3797
3798

rather than part of the RBG3(RS) construction (i.e., setting last_call = 0). This step is used to
indicate that if the next use of the DRBG is also by direct access, a reseed is not required before
generating bits.

B.6.4. Reseeding a DRBG

When operating as part of the RBG3(RS) construction, the DRBG_Reseed function is invoked
one or more times to produce full-entropy output when the RBG3(RS)_Generate function is
invoked by a consuming application (see Sec. 6.5.1.3).

When operating as the directly accessible DRBG, the DRBG is reseeded 1) if explicitly requested
by the consuming application, 2) whenever the previous use of the DRBG was by the
RBG3(RS)_Generate function (see Appendix B.6.2), or 3) automatically during a
DRBG_Generate call at the end of the seedlife of the RBG2(P) construction (see the
DRBG_Generate function specification in SP 800-90A).

1. The reseed function is requested by an application using:

status = DRBG_Reseed_request(RBG3_DRBG_state_handle),

where RBG3_DRBG_state_handle was obtained during instantiation.

2. The DRBG_Reseed function is executed in response to a reseed request by an
application (see step 1) or during the generation process (see Appendices B.6.2 and B.6.3):

status = DRBG_Reseed(RBG3_DRBG_state_handle).

For this example, the DRBG_Reseed function is modified to obtain s + 64 bits of entropy
rather than the “normal” s bits of entropy (see method A for step 3.1 in Sec. 6.5.1.2.1).

(status, seed_material) = Get_entropy_bitstring(s + 64).

If status = SUCCESS is returned by the DRBG_Reseed function, the internal state has
been updated with at least 320 bits of fresh entropy (i.e., 256 + 64 = 320). Status =
SUCCESS is returned to the calling application by the DRBG_Reseed function.

If status ≠ SUCCESS (e.g., the entropy source has failed), the DRBG has not reseeded,
and an error indication is returned as the status from DRBG_Reseed function to the
calling application.

B.7. DRBG Chains Using the RBGC Construction

A chain of DRBGs consists of RBGC constructions and an initial randomness source on the same
computing platform. For this example, the initial randomness source is a physical entropy source
that provides output with full entropy (i.e., the initial randomness source is a full-entropy source).
The chain includes two RBGC constructions: the root RBGC construction (RBGC1) and a child
(RBGC2) (see Fig. 51).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

126

 3799
3800

3801
3802

3803
3804

3805

3806
3807
3808
3809
3810
3811

3812

3813
3814
3815
3816

Fig. 51. Example of DRBG chains

In this example, a CTR_DRBG with no derivation function is used in the root (RBGC1). It will be
seeded and reseeded at a security strength of 192 bits using the initial randomness source.

RBGC2 is implemented using SHA-256 and the HMAC_DRBG. RBGC2 will be seeded and
reseeded at a security strength of 128 bits using the root (RBGC1) as its randomness source.

B.7.1. Instantiation of the RBGC Constructions

The DRBG in each RBGC construction is instantiated by an application using a known randomness
source, starting with the instantiation of the DRBG in the root using the initial randomness source
(see Appendix B.7.1.1). Subsequent layers in the chain can be instantiated when an already-
instantiated RBGC construction is available. For this example, after the root has been
instantiated, the DRBG in a child RBGC construction (RBGC2) can be instantiated using the root
as its randomness source (see Sec. 7.2.1.2).

B.7.1.1. Instantiation of the Root RBGC Construction

The root of the DRBG chain is instantiated using the initial randomness source, which for this
example is an entropy source that provides output with full entropy. The instantiation is
requested by an application (i.e., ApplicationA in Fig. 51). The CTR_DRBG in the root is
implemented using AES-192, so a maximum security strength of 192 bits can be instantiated.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

127

1. The application (ApplicationA) sends an instantiate request to the root requesting that the 3817
3818

3819
3820

3821
3822

3823
3824

3825

3826
3827
3828
3829

3830

3831

3832
3833
3834
3835
3836
3837

3838
3839
3840

3841

3842
3843
3844
3845
3846
3847

3848

3849
3850

3851
3852

DRBG within the root be instantiated at a security strength of 192 bits:

(status, Root_DRBG_state_handle) =
DRBG_Instantiate_request(192, “Root RBGC”),

where “Root RBGC” is the personalization string, and Root_DRBG_state_handle is the
name of the state handle to be assigned to the internal state of the root’s DRBG.

2. Upon receiving the instantiate request, the root (RBGC1) executes the instantiate function
for its DRBG:

(status, Root_DRBG_state_handle) = DRBG_Instantiate(192, “Root RBGC”).

The DRBG_Instantiate function in the root determines that its DRBG (CTR_DRBG)
needs to obtain 192 + 128 = 320 bits with full entropy from the full-entropy source. The
root sends a Get_entropy_bitstring request to the randomness source to obtain 320 bits
of seed material:

(status, seed_material) = Get_entropy_bitstring(320, Method_1).

Method_1 indicates that only entropy from a physical entropy source is to be counted.

If the status indicates success and seed_material is returned from the initial randomness
source (i.e., the full-entropy source), the CTR_DRBG is seeded using the seed_material
and the personalization_string (i.e., “Root RBGC”) (see SP 800-90A). The internal state is
recorded (including the security strength of the instantiation), and the status and a state
handle are returned to the root (RBC1) and forwarded to the application in response to
the instantiate request.

If the status indicates an error, the internal state is not created. The status and an invalid
state handle are returned to the root (RBC1) and forwarded to the application in response
to the instantiate request.

B.7.1.2. Instantiation of a Child RBGC Construction (RBGC2)

A child RBGC construction can be instantiated by an application (i.e., ApplicationB in Fig. 51) after
the root has been successfully instantiated. In this example, the HMAC_DRBG in RBGC2 is
implemented using SHA-256, so a maximum security strength of 256 bits is possible. However,
since the root RBGC construction (i.e., the randomness source for RBGC2) can only support a
security strength of 192 bits (see Appendix B.7.1.1), only requests for security strengths of 192
or 128 bits can be instantiated for RBGC2.

The DRBG in RBGC2 is instantiated as follows:

1. An application (ApplicationB) requests the instantiation of the DRBG in RBGC2 at a security
strength of 128 bits:

(status, RBGC2_DRBG_state_handle) =
DRBG_Instantiate_request(128, “RBGC2 DRBG”),

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

128

where “RBGC2 DRBG” is the personalization string, and RBGC2_DRBG_state_handle is 3853
3854

3855
3856

3857

3858

3859

3860

3861
3862

3863
3864
3865

3866

3867
3868
3869
3870
3871
3872
3873
3874

3875
3876
3877

3878

3879
3880

3881

3882

3883
3884
3885
3886

3887

the name of the state handle to be assigned to the DRBG in the RBGC2 construction.

2. Upon receiving the instantiate request, the RBGC2 construction executes the instantiate
function for its DRBG:

(status, RBGC2_DRBG_state_handle) = DRBG_Instantiate(128, “RBGC2 DRBG”).

The DRBG_Instantiate function in the DRBG sends a generate request to the root:

(status, seed_material) = DRBG_Generate(Root_DRBG_state_handle, 192, 128),

where

• Root_DRBG_state_handle is the state handle for the internal state of the DRBG in
the root (see Sec. 7.1.1).

• The requested security strength is 128 bits, so for the HMAC_DRBG in RBGC2,
the number of bits requested from the root (i.e., RBGC2’s randomness source) is
3s/2 = 192 bits.

See Appendix B.7.2 for the handling of a generate request by an RBGC construction.

If the status returned from the randomness source (RBGC1) in response to the generate
request indicates a success, the HMAC_DRBG in RBGC2 is seeded using the
seed_material returned from the generate request (Appendix B.7.2) and the
personalization_string (“RBGC2 DRBG”) from the instantiate request in step 1 (see SP 800-
90A). The internal state is recorded (including the security strength of the instantiation),
and the status and the state handle are returned to the RBGC2 construction to be
forwarded to the application that requested the instantiation of the DRBG in the RBGC2
construction.

If the status indicates an error, then the internal state is not created. The status and an
invalid state handle are returned to the RBGC2 construction to be forwarded to the
application that requested the instantiation of the DRBG in the RBGC2 construction.

B.7.2. Requesting the Generation of Pseudorandom Bits

1. An application or a child RBGC construction requests the generation of pseudorandom
bits as follows:

(status, seed_material) = DRBG_Generate_request(DRBG_state_handle, n, s),

where

• DRBG_state_handle is the state handle for the internal state of the DRBG in the
RBGC construction requested to generate the bits. For this example, the state
handle is Root_DRBG_state_handle for the DRBG in the root RBGC construction.
For RBGC2, the state handle is RBGC2_DRBG_state_handle.

• n is the number of bits to be generated using the DRBG in the RBGC construction.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

129

• s is the required security strength to be supported by the DRBG in the RBGC 3888
3889

3890
3891

3892

3893
3894
3895

3896
3897
3898
3899

3900

3901
3902
3903

3904

3905

3906
3907

3908
3909

3910

3911
3912

3913

3914
3915
3916

3917

3918
3919
3920
3921

construction.

2. Upon receiving the generate request, the RBGC construction executes the generate
function for its DRBG:

(status, seed_material) = DRBG_Generate(DRBG_state_handle, n, s).

If the returned status indicates success, the requested number of bits are returned
(seed_material) to the RBGC construction and forwarded to the requesting entity with the
status. The requesting entity is either an application or a child of the RBGC construction.

If the returned status indicates an error, seed_material is a Null bitstring. This could, for
example, be the result of requesting a higher security strength than is instantiated for the
DRBG requested to generate bits. The status and the Null bitstring are returned to the
RBGC construction and forwarded to the requesting entity.

B.7.3. Reseeding an RBGC Construction

The DRBG in an RBGC construction may be explicitly requested to be reseeded by an application,
or the DRBG may automatically reseed itself (e.g., at the end of its seedlife or after some system
interrupt).

1. An application requests the reseed of the DRBG in an RBGC construction as follows:

(status) = DRBG_Reseed_request(DRBG_state_handle).

DRBG_state_handle is Root_DRBG_state_handle for RBGC1 and
RBG2_DRBG_state_handle for RBGC2.

2. Upon receiving a reseed request or if scheduled for automatic reseeding, the RBGC
construction executes the reseed function for its DRBG:

status = DRBG_Reseed(DRBG_state_handle).

Appendix B.7.3.1 discusses the reseed function in the root’s DRBG, and Appendix B.7.3.2
discusses the reseed function in the DRBG of RBGC2.

B.7.3.1. Reseeding the Root RBGC Construction

The DRBG_Reseed function in the root uses the initial randomness source to reseed in the same
manner as for instantiation (i.e., by sending a Get_entropy_bitstring request to the entropy
source). For the CTR_DRBG in the root, 320 bits are again requested:

(status, seed_material) = Get_entropy_bitstring(320, Method_1).

If the returned status indicates a success, seed_material is returned from the initial randomness
source, and the CTR_DRBG within the root is reseeded using the seed_material (see SP 800-
90A). The DRBG’s internal state is updated, and the status is returned to the application by the
DRBG_Reseed function in the root RBGC construction.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

130

If the status indicates an error, then the internal state is not updated. The status is returned to 3922
3923

3924

3925
3926
3927

3928
3929

3930

3931

3932
3933

3934
3935

3936

the application.

B.7.3.2. Reseeding a Child RBGC Construction

The DRBG_Reseed function in the RBGC construction uses its randomness source in the same
manner as for instantiation (i.e., by sending a DRBG_Generate_request to its randomness
source, which is the root in this example).

For the HMAC_DRBG in RBGC2, s = 128 bits are requested from the root RBGC construction
(where s is the security strength of the DRBG instantiation in RBGC2; see Appendix B.7.1.2).

(status, seed_material) = DRBG_Generate(Root_DRBG_state_handle, 128, 128),

where:

• Root_DRBG_state_handle is the state handle for the internal state of the DRBG in the
root (see Appendix B.7.1.1).

• The requested security strength is 128 bits, so for the HMAC_DRBG in RBGC2, the
number of bits requested from the root (RBGC2’s randomness source) is s = 128 bits.

Appendix B.7.2 discusses the handling of a generate request by an RBGC construction.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

131

Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG 3937

3938
3939

3940

3941
3942

3943
3944
3945
3946

3947
3948
3949
3950

3951

3952
3953
3954
3955
3956
3957

3958
3959

3960

3961
3962
3963

3964

3965
3966

3967
3968
3969

The derivation functions in this appendix will be included in the next revision of SP 800-90A along
with other changes that are needed for consistency with this version of SP 800-90C.

C.1. Background and Scope

The CTR_DRBG, specified in SP 800-90A, uses the AES block cipher in FIPS 197 and has two
versions that may be implemented: with or without a derivation function.

When a derivation function is not used, SP 800-90A requires the use of seed material with full
entropy for instantiating and reseeding a CTR_DRBG. This addendum permits the use of an RBG
compliant with SP 800-90C to provide the required seed material for the CTR_DRBG when
implemented as specified in SP 800-90C (see Appendix C.2).

When a derivation function is used in a CTR_DRBG implementation, SP 800-90A specifies the
use of the block cipher derivation function. This addendum modifies the requirements in SP 800-
90A for the CTR_DRBG by specifying two additional derivation functions that may be used
instead of the block cipher derivation function (see Appendix C.3).

C.2. CTR_DRBG Without a Derivation Function

When a derivation function is not used, SP 800-90A requires that seedlen full-entropy bits be
provided as the seed material (e.g., from an entropy source that provides full-entropy output),
where seedlen is the length of the key to be used by the CTR_DRBG plus the length of the output
block (i.e., 128 bits for AES). SP 800-90C includes an approved method for externally conditioning
the output of an entropy source to provide a bitstring with full entropy when using an entropy
source that does not provide full-entropy output.

SP 800-90C also permits the use of seed material from an RBG when the DRBG to be instantiated
and reseeded is implemented and used as specified in SP 800-90C.

C.3. CTR_DRBG Using a Derivation Function

When a derivation function is used within a CTR_DRBG, SP 800-90A specifies the use of the
Block_cipher_df included in that document during instantiation and reseeding to adjust the
length of the seed material to seedlen bits, where

seedlen = the security strength + the block length.

For AES, seedlen = 256, 320, or 384 bits (see SP 800-90A). During generation, the length of any
additional input provided during the generation request is also adjusted to seedlen bits.

Two alternative derivation functions are specified in Appendices C.3.2 and C.3.3. Appendix C.3.1
discusses the keys and constants for use with the alternative derivation functions specified in
Appendices C.3.2 and C.3.3.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

132

C.3.1. Derivation Keys and Constants 3970

3971
3972
3973
3974

3975

3976

3977

3978

3979
3980

3981

3982
3983

3984

3985

3986

3987

3988
3989

3990

3991

3992

3993

3994

3995

3996

3997
3998

3999

Both of the derivation methods specified in Appendices C.3.2 and C.3.3 use an AES derivation key
(df_Key) whose length shall meet or exceed the instantiated security strength of the DRBG
instantiation. The df_Key may be set to any value and may be the current value of a key used by
the DRBG.

These alternative methods use three 128-bit constants C1, C2, and C3, which are defined as:

C1 = 000000...00
C2 = 101010...10
C3 = 010101...01

The value of B used in Appendices C.3.2 and C.3.3 depends on the length of the AES derivation
key (df_Key). When the length of df_Key = 128 bits, then B = 2. Otherwise, B = 3.

C.3.2. Derivation Function Using CMAC

CMAC is a block-cipher mode of operation specified in SP 800-38B. The CMAC_df derivation
function is specified as follows:

CMAC_df:

Input: bitstring input_string, integer number_of_bits_to_return.

Output: bitstring Z.

Process:

1. Let C1, C2, and C3 be 128-bit blocks defined as 000000...0, 101010...10, and 010101...01,
respectively.

2. Get df_Key. Comment: See Appendix C.3.1.

3. Z = the Null string.

4. For i = 1 to B:

Z = Z || CMAC(df_Key, Ci || input_string).

5. Z = leftmost(Z, number_of_bits_to_return).

6. Return(Z).

C.3.3. Derivation Function Using CBC-MAC

This CBC-MAC derivation function shall only be used when the input_string has the following
properties:

• The length of the input_string is always a fixed length.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

133

• The length of the input_string is an integer multiple of 128 bits. Let m be the number of 4000
4001

4002

4003

4004

4005

4006

4007
4008

4009

4010

4011

4012

4013

4014

4015

4016
4017

4018

4019

4020

4021

128-bit blocks in the input_string.

This derivation function is specified as follows:

CBC-MAC_df:

Input: bitstring input_string, integer number_of_bits_to_return.

Output: bitstring Z.

Process:

1. Let C1, C2, and C3 be 128-bit blocks defined as 000000...0, 101010...10, and 010101...01,
respectively.

2. Get df_Key. Comment: See Appendix C.3.1.

3. Z = the Null string.

4. Let input_string = S1 || S2 || ... || Sm, where the Si are contiguous 128-bit blocks.

5. For j = 1 to B:

5.1 S0 = Cj.

5.2 V = 128-bit block of all zeroes.

5.3 For i = 0 to m:

V = Encrypt(df_Key, V ⊕ Si). Comment: Perform the cipher
operation specified in FIPS 197.

5.4 Z = Z || V.

6. Z = leftmost(Z, number_of_bit_to_return).

7. Return(Z).

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

134

Appendix D. List of Abbreviations and Acronyms 4022

4023
4024

4025
4026

4027
4028

4029
4030

4031
4032

4033
4034

4035
4036

4037
4038

4039
4040

4041
4042

4043
4044

4045
4046

4047

4048
4049

4050
4051
4052

4053
4054

AES
Advanced Encryption Standard32

32 As specified in FIPS 197.

CAVP
Cryptographic Algorithm Validation Program

CMVP
Cryptographic Module Validation Program

DRBG
Deterministic Random Bit Generator33

33 Mechanism specified in SP 800-90A.

FIPS
Federal Information Processing Standard

MAC
Message Authentication Code

NIST
National Institute of Standards and Technology

RBG
Random Bit Generator

SP
(NIST) Special Publication

Sub-DRBG
Subordinate DRBG

TDEA
Triple Data Encryption Algorithm34

34 As specified in SP 800-67, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher.

XOR
Exclusive-Or (operation)

D.1. List of Symbols

0x
A string of x zeroes.

x
The ceiling of x; the least integer number that is not less than the real number x. For example, 3 = 3, and 5.5 =
6.

ε
A positive constant that is assumed to be smaller than 2−32.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

135

min(a, b) 4055
4056

4057
4058

4059
4060

4061
4062

4063
4064

4065
4066
4067

The minimum of a and b.

output_len
The bit length of the output block of a cryptographic primitive.

s
The security strength.

X ⊕ Y
Boolean bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and Y of the same length.

+
Addition over real numbers.

X || Y
The concatenation of two bitstrings X and Y.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

136

Appendix E. Glossary 4068

4069
4070

4071
4072

4073
4074
4075

4076
4077
4078

4079
4080
4081
4082

4083
4084
4085

4086
4087
4088

4089
4090

4091
4092
4093

4094
4095
4096
4097

4098
4099
4100

4101
4102

4103
4104
4105
4106

additional input
Optional additional information that could be provided in a generate or reseed request by a consuming application.

adversary
A malicious entity whose goal is to determine, guess, or influence the output of an RBG.

alternative randomness source
A sibling of the parent randomness that may be used by a non-root RBGC construction for reseeding when the parent
randomness source is unavailable.

approved
An algorithm or technique for a specific cryptographic use that is specified in a FIPS or NIST recommendation,
adopted in a FIPS or NIST recommendation, or specified in a list of NIST-approved security functions.

backtracking resistance
A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not
weaken previously generated outputs. See SP 800-90A for a more complete discussion. Contrast with prediction
resistance.

biased
A random variable is said to be biased if values of the finite sample space are selected with unequal probability.
Contrast with unbiased.

big-endian format
A format in which the most significant bytes (the bytes containing the high-order or leftmost bits) are stored in the
lowest address with the following bytes in sequentially higher addresses.

bitstring
An ordered sequence (string) of 0s and 1s. The leftmost bit is the most significant bit.

block cipher
A parameterized family of permutations on bitstrings of a fixed length; the parameter that determines the
permutation is a bitstring called the key.

computing platform
A system’s hardware, firmware, operating system, and all applications and libraries executed by that operating
system. Components that communicate with the operating system through a peripheral bus or a network, either
physical or virtual, are not considered to be part of the same computing platform.

conditioning function (external)
As used in SP 800-90C, a deterministic function that is used to produce a bitstring with full entropy or to distribute
entropy.

consuming application
An application that uses random outputs from an RBG.

cryptographic boundary
An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical bounds of a
cryptographic module and contains all the hardware, software, and/or firmware components of a cryptographic
module.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

137

cryptographic module 4107
4108
4109

4110
4111
4112

4113
4114
4115

4116
4117

4118
4119
4120
4121
4122
4123

4124
4125
4126

4127
4128
4129
4130

4131
4132
4133
4134

4135
4136
4137

4138
4139
4140

4141
4142
4143
4144

The set of hardware, software, and/or firmware that implements cryptographic functions (including cryptographic
algorithms and key generation) and is contained within the cryptographic boundary.

deterministic random bit generator (DRBG)
An RBG that produces random bitstrings by applying a deterministic algorithm to seed material.

Note: A DRBG at least has access to a randomness source initially.

digitization
The process of generating raw discrete digital values from non-deterministic events (e.g., analog noise sources)
within a noise source.

DRBG chain
A chain of DRBGs in which one DRBG is used to provide seed material for another DRBG.

entropy
A measure of disorder, randomness, or variability in a closed system.

Note1: The entropy of a random variable X is a mathematical measure of the amount of information gained
by an observation of X.

Note2: The most common concepts are Shannon entropy and min-entropy. Min-entropy is the measure
used in SP 800-90.

entropy rate
The validated rate at which an entropy source provides entropy in terms of bits per entropy-source output (e.g., five
bits of entropy per 8-bit output sample).

entropy source
The combination of a noise source, health tests, and an optional conditioning component that produce bitstrings
containing entropy. A distinction is made between entropy sources with physical noise sources and those having
non-physical noise sources.

fresh entropy
A bitstring that is output from a non-deterministic randomness source that has not been previously used to generate
output or has not otherwise been made externally available.

Note: The randomness source should be an entropy source or RBG3 construction.

fresh randomness
A bitstring that is output from a randomness source that has not been previously used to generate output or has not
otherwise been made externally available.

full-entropy bitstring
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This recommendation assumes
that a bitstring has full entropy if the entropy rate is at least 1 − ε, where ε is at most 2−32.

full-entropy source
An SP 800-90B-compliant entropy source that has been validated as providing output with full entropy or the
validated combination of an SP 800-90B-compliant entropy source and an external conditioning function that
provides full-entropy output.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

138

hash function 4145
4146
4147
4148
4149

4150
4151
4152
4153

4154
4155
4156
4157
4158
4159

4160
4161
4162

4163
4164

4165
4166
4167

4168
4169
4170

4171
4172
4173

4174
4175
4176
4177

4178
4179
4180

4181
4182
4183

4184
4185

A (mathematical) function that maps values from a large (possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output.

2. (Collision-free) It is computationally infeasible to find any two distinct inputs that map to the same output.

health testing
Testing within an implementation immediately prior to or during normal operation to obtain assurance that the
implementation continues to perform as implemented and validated.

Note: Health tests are comprised of continuous tests and startup tests.

ideal randomness source
The source of an ideal random sequence of bits. Each bit of an ideal random sequence is unpredictable and unbiased
with a value that is independent of the values of the other bits in the sequence. Prior to an observation of the
sequence, the value of each bit is equally likely to be 0 or 1, and the probability that a particular bit will have a
particular value is unaffected by knowledge of the values of any or all the other bits. An ideal random sequence of n
bits contains n bits of entropy.

independent entropy sources
Two entropy sources are independent if knowledge of the output of one entropy source provides no information
about the output of the other entropy source.

initial randomness source
The randomness source for the root RBGC construction in a DRBG chain of RBGC constructions.

instantiate
The process of initializing a DRBG with sufficient randomness to generate pseudorandom bits at the desired security
strength.

internal state (of a DRBG)
The collection of all secret and non-secret information about an RBG or entropy source that is stored in memory at
a given point in time.

known answer test
A test that uses a fixed input/output pair to detect whether a deterministic component was implemented correctly
or continues to operate correctly.

min-entropy
A lower bound on the entropy of a random variable. The precise formulation for min-entropy is (-log2 max pi) for a
discrete distribution having probabilities p1, ..., pk. Min-entropy is often used as a measure of the unpredictability of
a random variable.

must
Used to indicate a requirement that may not be testable by a CMVP testing lab.

Note: Must may be coupled with not to become must not.

noise source
A source of unpredictable data that outputs raw discrete digital values. The digitization mechanism is considered
part of the noise source. A distinction is made between physical noise sources and non-physical noise sources.

non-physical entropy source
An entropy source whose primary noise source is non-physical.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

139

non-physical noise source 4186
4187

4188
4189

4190
4191

4192
4193

4194
4195

4196
4197

4198
4199
4200
4201

4202
4203
4204
4205
4206

4207
4208
4209
4210
4211
4212

4213
4214
4215

4216
4217
4218

4219
4220
4221
4222
4223

4224
4225

A noise source that typically exploits system data and/or user interaction to produce digitized random data.

non-validated entropy source
An entropy source that has not been validated by the CMVP as conforming to SP 800-90B.

null string
An empty bitstring.

parent randomness source
The randomness source used to seed a non-root RBGC construction.

personalization string
An optional input value to a DRBG during instantiation.

physical entropy source
An entropy source whose primary noise source is physical.

physical noise source
A noise source that exploits physical phenomena (e.g., thermal noise, shot noise, jitter, metastability, radioactive
decay, etc.) from dedicated hardware designs (using diodes, ring oscillators, etc.) or physical experiments to produce
digitized random data.

physically secure channel
A physical trusted and safe communication link established between an implementation of an RBG1 construction
and its randomness source to securely communicate unprotected seed material without relying on cryptography. A
physically secure channel protects against eavesdropping as well as physical or logical tampering by unwanted
operators/entities, processes, or other devices between the endpoints.

prediction resistance
For a DRBG, a property of a DRBG that provides assurance that compromising the current internal state of the DRBG
does not allow future DRBG outputs to be predicted past the point where the DRBG has been reseeded with
sufficient entropy from an entropy source or RBG3 construction. See SP 800-90A for a more complete discussion.
(Contrast with backtracking resistance.)

For an RBG, compromising the output of the RBG does not allow future outputs of the RBG to be predicted.

pseudocode
An informal, high-level description of a computer program, algorithm, or function that resembles a simplified
programming language.

random bit generator (RBG)
A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically
independent and unbiased bits.

randomness
The unpredictability of a bitstring. If the randomness is produced by a non-deterministic source (e.g., an entropy
source or RBG3 construction), the unpredictability is dependent on the quality of the source. If the randomness is
produced by a deterministic source (e.g., a DRBG), the unpredictability is based on the capability of an adversary to
break the cryptographic algorithm for producing the pseudorandom bitstring.

randomness source
A source of randomness for an RBG. The randomness source may be an entropy source or an RBG construction.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

140

RBG1 construction 4226
4227

4228
4229
4230
4231

4232
4233
4234
4235

4236
4237
4238
4239

4240
4241
4242
4243

4244
4245
4246

4247
4248

4249
4250

4251
4252

4253
4254
4255
4256
4257
4258
4259

4260
4261
4262
4263
4264
4265
4266

An RBG construction with the DRBG and the randomness source in separate cryptographic modules.

RBG2 construction
An RBG construction with one or more entropy sources and a DRBG within the same cryptographic module. This RBG
construction does not provide full-entropy output.

Note: An RBG2 construction may be either an RBG2(P) or RBG2(NP) construction.

RBG2(NP) construction
A non-physical RBG2 construction that obtains entropy from one or more validated non-physical entropy sources
and possibly from one or more validated physical entropy sources. This RBG construction does not provide full-
entropy output.

RBG2(P) construction
A physical RBG2 construction that includes a DRBG and one or more entropy sources in the same cryptographic
module. Only the entropy from validated physical entropy sources is counted when fulfilling an entropy request
within the RBG. This RBG construction does not provide full-entropy output.

RBG3 construction
An RBG construction that includes a DRBG and one or more entropy sources in the same cryptographic module.
When working properly, bitstrings that have full entropy are produced. Sometimes called a non-deterministic
random bit generator (NRBG) or true random number (or bit) generator.

RBGC construction
An RBG construction used within a DRBG chain in which one DRBG is used to provide seed material for another
DRBG. The construction does not provide full-entropy output.

reseed
To refresh the internal state of a DRBG with seed material from a randomness source.

root RBGC construction
The first RBGC construction in a DRBG chain of RBGC constructions.

sample space
The set of all possible outcomes of an experiment.

security boundary
For an entropy source, a conceptual boundary that is used to assess the amount of entropy provided by the values
output from the entropy source. The entropy assessment is performed under the assumption that any observer
(including any adversary) is outside of that boundary during normal operation.

For a DRBG, a conceptual boundary that contains the required DRBG functions and the DRBG’s internal state.

For an RBG, a conceptual boundary that is defined with respect to one or more threat models that includes an
assessment of the applicability of an attack and the potential harm caused by the attack.

security strength
A number associated with the amount of work (i.e., the number of basic operations of some sort) that is required to
“break” a cryptographic algorithm or system in some way. In this recommendation, the security strength is specified
in bits and is a specific value from the set {128, 192, 256}. If the security strength associated with an algorithm or
system is s bits, then it is expected that (roughly) 2s basic operations are required to break it.

Note: This is a classical definition that does not consider quantum attacks. This definition will be revised to
address quantum issues in the future.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

141

seed 4267
4268
4269
4270

4271
4272
4273

4274
4275
4276

4277
4278
4279

4280
4281
4282
4283

4284
4285
4286
4287

4288
4289

4290
4291
4292

4293
4294
4295

4296
4297
4298

4299
4300
4301

4302
4303
4304

4305
4306
4307

Verb: To initialize or update the internal state of a DRBG with seed material and (optionally) a personalization string
or additional input. The seed material should contain sufficient randomness to meet security requirements.

Noun: The combination of seed material and (optional) personalization or additional input.

seed material
An input bitstring from a randomness source that provides an assessed minimum amount of randomness (e.g.,
entropy) for a DRBG.

seedlife
The period of time between instantiating or reseeding a DRBG with seed material and either reseeding the DRBG
with seed material containing new, unused randomness or uninstantiating the DRBG.

shall
The term used to indicate a requirement that is testable by a testing lab. See testable requirement.

Note: Shall may be coupled with not to become shall not.

should
The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable
results.

Note: Should may be coupled with not to become should not.

sibling (randomness source)
A sibling of the parent randomness source for a non-root RBGC construction (i.e., the sibling can be considered the
“aunt” or “uncle” in “human family” terms). The “grandparent” of the non-root RBGC construction is the parent of
both the parent randomness source and the sibling.

state handle
A pointer to the internal state information for a particular DRBG instantiation.

subordinate DRBG (sub-DRBG)
A DRBG that is instantiated by an RBG1 construction and contained within the same security boundary as the RBG1
construction.

support a security strength (by a DRBG)
The DRBG has been instantiated at a security strength that is equal to or greater than the security strength requested
for the generation of random bits.

targeted security strength
The security strength that is intended to be supported by one or more implementation-related choices (e.g.,
algorithms, cryptographic primitives, auxiliary functions, parameter sizes, and/or actual parameters).

testable requirement
A requirement that can be tested for compliance by a testing lab via operational testing, code review, or a review of
relevant documentation provided for validation. A testable requirement is indicated using a shall statement.

threat model
A description of a set of security aspects that need to be considered. A threat model can be defined by listing a set
of possible attacks along with the probability of success and the potential harm from each attack.

unbiased
A random variable is said to be unbiased if all values of the finite sample space are chosen with the same probability.
Contrast with biased.

NIST SP 800-90C 4pd (Fourth Public Draft) Recommendation for RBG Constructions
July 2024

142

uninstantiate 4308
4309

4310
4311

The termination of a DRBG instantiation.

validated entropy source
An entropy source that has been successfully validated by the CAVP and CMVP for conformance to SP 800-90B.

	1. Introduction and Purpose
	1.1. Audience
	1.2. Document Organization

	2. General Information
	2.1. RBG Security
	2.2. RBG Constructions
	2.3. Sources of Randomness for an RBG
	2.4. DRBGs
	2.4.1. DRBG Instantiations
	2.4.2. Reseeding, Prediction Resistance, and Compromise Recovery

	2.5. RBG Security Boundaries
	2.6. Assumptions and Assertions
	2.7. General Implementation and Use Requirements and Recommendations
	2.8. General Function Calls
	2.8.1. DRBG Functions
	2.8.1.1. DRBG Generation Request
	2.8.1.2. DRBG Reseed
	2.8.1.3. Get_randomness-source_input Call

	2.8.2. Interfacing With Entropy Sources
	2.8.3. Interfacing With an RBG3 Construction
	2.8.3.1. Instantiating a DRBG Within an RBG3 Construction
	2.8.3.2. Generation Using an RBG3 Construction

	3. Accessing Entropy Source Output
	3.1. Get_entropy_bitstring Process
	3.2. External Conditioning
	3.2.1. Conditioning Function Calls
	3.2.1.1. Keys Used in External Conditioning Functions
	3.2.1.2. Hash Function-based Conditioning Functions
	3.2.1.3. Block Cipher-Based Conditioning Functions

	3.2.2. Using a Vetted Conditioning Function
	3.2.2.1. External Conditioning When Full Entropy is Not Required
	3.2.2.2. Conditioning Function to Obtain Full-Entropy Bitstrings

	4. RBG1 Construction Based on RBGs With Physical Entropy Sources
	4.1. RBG1 Description
	4.2. Conceptual Interfaces
	4.2.1. Instantiating the DRBG in the RBG1 Construction
	4.2.2. Requesting Pseudorandom Bits

	4.3. Using an RBG1 Construction With Subordinate DRBGs (Sub-DRBGs)
	4.3.1. Instantiating a Sub-DRBG
	4.3.2. Requesting Random Bits From a Sub-DRBG

	4.4. Requirements
	4.4.1. RBG1 Construction Requirements
	4.4.2. Sub-DRBG Requirements

	5. RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources
	5.1. RBG2 Description
	5.2. Conceptual Interfaces
	5.2.1. RBG2 Instantiation
	5.2.2. Requesting Pseudorandom Bits From an RBG2 Construction
	5.2.3. Reseeding an RBG2 Construction

	5.3. RBG2 Construction Requirements

	6. RBG3 Constructions Based on the Use of Physical Entropy Sources
	6.1. General RBG3 Description
	6.2. RBG3 Construction Types and Their Variants
	6.3. General Requirements
	6.4. RBG3(XOR) Construction
	6.4.1. Conceptual Interfaces
	6.4.1.1. Instantiation of the DRBG
	6.4.1.2. Random Bit Generation by the RBG3(XOR) Construction
	6.4.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG
	6.4.1.4. Reseeding the DRBG Instantiation

	6.4.2. RBG3(XOR) Requirements

	6.5. RBG3(RS) Construction
	6.5.1. Conceptual Interfaces
	6.5.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction
	6.5.1.2. Random and Pseudorandom Bit Generation
	6.5.1.2.1. Generation Using the RBG3(RS) Construction
	6.5.1.2.2. Generation Using a Directly Accessible DRBG

	6.5.1.3. Reseeding

	6.5.2. Requirements for an RBG3(RS) Construction

	7. RBGC Construction for DRBG Chains
	7.1. RBGC Description
	7.1.1. RBGC Environment
	7.1.2. Instantiating and Reseeding Strategy
	7.1.2.1. Instantiating and Reseeding the Root RBGC Construction
	7.1.2.2. Instantiating and Reseeding a Non-Root RBGC Construction

	7.2. Conceptual Interfaces
	7.2.1. RBGC Instantiation
	7.2.1.1. Instantiation of the Root RBGC Construction
	7.2.1.1.1. Instantiating the DRBG in the Root Using an RBG2 or RBG3 Construction as the Initial Randomness Source
	7.2.1.1.2. Instantiating the Root RBGC Construction Using a Full-Entropy Source as the Randomness Source

	7.2.1.2. Instantiating an RBGC Construction Other Than the Root

	7.2.2. Requesting the Generation of Pseudorandom Bits From an RBGC Construction
	7.2.3. Reseeding an RBGC Construction
	7.2.3.1. Reseed of the DRBG in the Root RBGC Construction
	7.2.3.2. Reseed of the DRBG in an RBGC Construction Other Than the Root

	7.3. RBGC Requirements
	7.3.1. General RBGC Construction Requirements
	7.3.2. Additional Requirements for the Root RBGC Construction
	7.3.3. Additional Requirements for an RBGC Construction That is NOT the Root of a DRBG Chain

	8. Testing
	8.1. Health Testing
	8.1.1. Testing RBG Components
	8.1.2. Handling Failures
	8.1.2.1. Entropy-Source Failures
	8.1.2.2. Failures by Non-Entropy-Source Components

	8.2. Implementation Validation

	References
	Appendix A. Auxiliary Discussions (Informative)
	A.1. Entropy vs. Security Strength
	A.1.1. Entropy
	A.1.2. Security Strength
	A.1.3. A Side-by-Side Comparison
	A.1.4. Entropy and Security Strength in This Recommendation

	A.2. Generating Full-Entropy Output Using the RBG3(RS) Construction
	A.3. Additional Considerations for RBGC Constructions
	A.3.1. RBGC Tree Composition
	A.3.2. Changes in the Tree Structure
	A.3.3. Using Virtual Machines
	A.3.4. Reseeding From Siblings of the Parent

	Appendix B. RBG Examples (Informative)
	B.1. Direct DRBG Access in an RBG3 Construction
	B.2. Example of an RBG1 Construction
	B.2.1. Instantiation of the RBG1 Construction
	B.2.2. Generation by the RBG1 Construction

	B.3. Example Using Sub-DRBGs Based on an RBG1 Construction
	B.3.1. Instantiation of the Sub-DRBGs
	B.3.1.1. Instantiating Sub-DRBG1
	B.3.1.2. Instantiating Sub-DRBG2

	B.3.2. Pseudorandom Bit Generation by Sub-DRBGs

	B.4. Example of an RBG2(P) Construction
	B.4.1. Instantiation of an RBG2(P) Construction
	B.4.2. Generation Using an RBG2(P) Construction
	B.4.3. Reseeding an RBG2(P) Construction

	B.5. Example of an RBG3(XOR) Construction
	B.5.1. Instantiation of an RBG3(XOR) Construction
	B.5.2. Generation by an RBG3(XOR) Construction
	B.5.2.1. Generation
	B.5.2.2. Get_conditioned_full-entropy_input Function

	B.5.3. Reseeding an RBG3(XOR) Construction

	B.6. Example of an RBG3(RS) Construction
	B.6.1. Instantiation of an RBG3(RS) Construction
	B.6.2. Generation by an RBG3(RS) Construction
	B.6.3. Generation by the Directly Accessible DRBG
	B.6.4. Reseeding a DRBG

	B.7. DRBG Chains Using the RBGC Construction
	B.7.1. Instantiation of the RBGC Constructions
	B.7.1.1. Instantiation of the Root RBGC Construction
	B.7.1.2. Instantiation of a Child RBGC Construction (RBGC2)

	B.7.2. Requesting the Generation of Pseudorandom Bits
	B.7.3. Reseeding an RBGC Construction
	B.7.3.1. Reseeding the Root RBGC Construction
	B.7.3.2. Reseeding a Child RBGC Construction

	Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG
	C.1. Background and Scope
	C.2. CTR_DRBG Without a Derivation Function
	C.3. CTR_DRBG Using a Derivation Function
	C.3.1. Derivation Keys and Constants
	C.3.2. Derivation Function Using CMAC
	C.3.3. Derivation Function Using CBC-MAC

	Appendix D. List of Abbreviations and Acronyms
	D.1. List of Symbols

	Appendix E. Glossary

