

NIST Special Publication 800-90A
Revision 1

Recommendation for Random
Number Generation Using

Deterministic Random Bit Generators

Elaine Barker
John Kelsey

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

C O M P U T E R S E C U R I T Y

http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

NIST Special Publication 800-90A
Revision 1

Recommendation for Random
Number Generation Using

Deterministic Random Bit Generators

Elaine Barker
John Kelsey

Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

June 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Under Secretary of Commerce for Standards and Technology and Director

http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Authority

This publication has been developed by NIST to further its statutory responsibilities under the Federal
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law (P.L.)
113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for Federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate Federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of
Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as
analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental information is
provided in Circular A-130, Appendix III, Security of Federal Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other Federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-90A Revision 1

Natl. Inst. Stand. Technol. Spec. Publ. 800-90A Rev. 1, 109 pages (June 2015)

CODEN: NSPUE2

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST Computer Security Division publications, other than the ones
noted above, are available at http://csrc.nist.gov/publications.

Comments may be provided to:
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: rbg_comments@nist.gov

ii

mailto:rbg_comments@nist.gov
http://csrc.nist.gov/publications
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analyses to advance the development and productive use of
information technology. ITL’s responsibilities include the development of management, administrative,
technical, and physical standards and guidelines for the cost-effective security and privacy of other than
national security-related information in Federal information systems. The Special Publication 800-series
reports on ITL’s research, guidelines, and outreach efforts in information system security, and its
collaborative activities with industry, government, and academic organizations.

Abstract
This Recommendation specifies mechanisms for the generation of random bits using
deterministic methods. The methods provided are based on either hash functions or block cipher
algorithms.

Keywords
Deterministic random bit generator (DRBG); entropy; hash function; random number generator.

Acknowledgements
The National Institute of Standards and Technology (NIST) gratefully acknowledges and
appreciates contributions by Mike Boyle and Mary Baish from NSA for assistance in the
development of this Recommendation. NIST also thanks the many contributions by the public
and private sectors.

iii

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Table of Contents
1 Introduction .. 1

2 Conformance Testing .. 1

3 Scope .. 1

4 Terms and Definitions ... 3

5 Symbols and Abbreviated Terms ... 9

6 Document Organization... 10

7 Functional Model of a DRBG... 11
7.1 Entropy Input .. 11

7.2 Other Inputs .. 12

7.3 The Internal State ... 12

7.4 The DRBG Mechanism Functions... 12

8. DRBG Mechanism Concepts and General Requirements........................ 13
8.1 DRBG Mechanism Functions .. 13

8.2 DRBG Instantiations... 13

8.3 Internal States... 13

8.4 Security Strengths Supported by an Instantiation.. 14

8.5 DRBG Mechanism Boundaries.. 15

8.6 Seeds... 17

8.6.1 Seed Construction for Instantiation .. 18

8.6.2 Seed Construction for Reseeding ... 18

8.6.3 Entropy Requirements for the Entropy Input ... 18

8.6.4 Seed Length... 19

8.6.5 Randomness Source... 19

8.6.6 Entropy Input and Seed Privacy .. 19

8.6.7 Nonce.. 19

8.6.8 Reseeding .. 20

8.6.9 Seed Use .. 21

8.6.10 Entropy Input and Seed Separation .. 21

8.7 Other Input to the DRBG Mechanism .. 21

8.7.1 Personalization String... 21

8.7.2 Additional Input ... 22

iv

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

8.8 Prediction Resistance and Backtracking Resistance... 23

9 DRBG Mechanism Functions .. 25
9.1 Instantiating a DRBG.. 26

9.2 Reseeding a DRBG Instantiation .. 29

9.3 Generating Pseudorandom Bits Using a DRBG .. 31

9.3.1 The Generate Function ... 32

9.3.2 Reseeding at the End of the Seedlife .. 35

9.3.3 Handling Prediction Resistance Requests ... 35

9.4 Removing a DRBG Instantiation ... 36

10 DRBG Algorithm Specifications ... 37
10.1 DRBG Mechanisms Based on Hash Functions ... 37

10.1.1 Hash_DRBG ... 38

10.1.1.1 Hash_DRBG Internal State .. 39

10.1.1.2 Instantiation of Hash_DRBG .. 39

10.1.1.3 Reseeding a Hash_DRBG Instantiation ... 40

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG 41

10.1.2 HMAC_DRBG ... 43

10.1.2.1 HMAC_DRBG Internal State .. 43

10.1.2.2 The HMAC_DRBG Update Function (Update)................................ 44

10.1.2.3 Instantiation of HMAC_DRBG ... 45

10.1.2.4 Reseeding an HMAC_DRBG Instantiation 46

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG 46

10.2 DRBG Mechanism Based on Block Ciphers .. 48

10.2.1 CTR_DRBG... 48

10.2.1.1 CTR_DRBG Internal State.. 50

10.2.1.2 The Update Function (CTR_DRBG_Update) 51

10.2.1.3 Instantiation of CTR_DRBG... 52

10.2.1.4 Reseeding a CTR_DRBG Instantiation... 54

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG 55

10.3 Auxiliary Functions ... 58

10.3.1 Derivation Function Using a Hash Function (Hash_df) 58

10.3.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df).... 59

v

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

10.3.3 BCC and Block_Encrypt ... 60

11 Assurance ... 62
11.1 Minimal Documentation Requirements... 62

11.2 Implementation Validation Testing.. 63

11.3 Health Testing... 63

11.3.1 Known Answer Testing... 64

11.3.2 Testing the Instantiate Function .. 64

11.3.3 Testing the Generate Function .. 64

11.3.4 Testing the Reseed Function ... 65

11.3.5 Testing the Uninstantiate Function ... 65

11.4 Error Handling... 65

11.4.1 Errors Encountered During Normal Operation... 65

11.4.2 Errors Encountered During Health Testing .. 65

Appendix A: (Normative) Conversion and Auxiliary Routines 67
A.1 Bitstring to an Integer .. 67

A.2 Integer to a Bitstring .. 67

A.3 Integer to a Byte String.. 68

A.4 Byte String to an Integer.. 68

A.5 Converting Random Bits into a Random Number... 68

A.5.1 The Simple Discard Method ... 69

A.5.2 The Complex Discard Method.. 69

A.5.3 The Simple Modular Method .. 70

Appendix B: (Informative) Example Pseudocode for Each DRBG Mechanism
... 71

B.1 Hash_DRBG Example .. 71

B.1.1 Instantiation of Hash_DRBG... 72

B.1.2 Reseeding a Hash_DRBG Instantiation... 73

B.1.3 Generating Pseudorandom Bits Using Hash_DRBG 74

B.2 HMAC_DRBG Example .. 76

B.2.1 Instantiation of HMAC_DRBG... 77

B.2.2 Generating Pseudorandom Bits Using HMAC_DRBG 78

B.3 CTR_DRBG Example Using a Derivation Function ... 80

B.3.1 The CTR_DRBG_Update Function... 80

vi

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

B.3.2 Instantiation of CTR_DRBG Using a Derivation Function 81

B.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function 82

B.3.4 Generating Pseudorandom Bits Using CTR_DRBG....................................... 84

B.4 CTR_DRBG Example Without a Derivation Function.. 86

B.4.1 The CTR_DRBG_Update Function... 86

B.4.2 Instantiation of CTR_DRBG Without a Derivation Function.......................... 86

B.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function........ 86

B.4.4 Generating Pseudorandom Bits Using CTR_DRBG....................................... 87

Appendix C: (Informative) DRBG Mechanism Selection................................. 88
C.1 Hash_DRBG .. 88

C.2 HMAC_DRBG .. 89

C.3 CTR_DRBG.. 90

C.4 Summary for DRBG Selection... 92

Appendix D : (Informative) References.. 93

Appendix E : (Informative) Revisions .. 95

List of Figures

Figure 1: DRBG Functional Model..11

Figure 2: DRBG Instantiation..13

Figure 3: DRBG Mechanism Functions within a Single Device...16

Figure 4: Distributed DRBG Mechanism Functions ...17

Figure 5: Seed Construction for Instantiation...18

Figure 6: Seed Construction for Reseeding..18

Figure 7: Sequence of DRBG States ..23

Figure 8: Hash_DRBG ...39

Figure 9: HMAC_DRBG Generate Function...43

Figure 10: HMAC_DRBG_Update Function ...44

Figure 11: CTR_DRBG Update Function ...48

Figure 12: CTR-DRBG..50

List of Tables
Table 1: Possible Instantiated Security Strengths ...14

Table 2: Definitions for Hash-Based DRBG Mechanisms..38

Table 3: Definitions for the CTR_DRBG...49

vii

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Table C-1: DRBG Mechanism Summary..92

viii

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

1 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be used
directly or converted to random numbers when random values are required by applications using
cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to
produce bits non-deterministically, where every bit of output is based on a physical process that is
unpredictable; this class of random bit generators (RBGs) is commonly known as non-deterministic
random bit generators (NRBGs)1. The other strategy is to compute bits deterministically using an
algorithm; this class of RBGs is known as Deterministic Random Bit Generators (DRBGs)2.
A DRBG is based on a DRBG mechanism as specified in this Recommendation and includes a
source of randomness. A DRBG mechanism uses an algorithm (i.e., a DRBG algorithm) that
produces a sequence of bits from an initial value that is determined by a seed that is determined
from the output of the randomness source. Once the seed is provided and the initial value is
determined, the DRBG is said to be instantiated and may be used to produce output. Because of
the deterministic nature of the process, a DRBG is said to produce pseudorandom bits, rather than
random bits. The seed used to instantiate the DRBG must contain sufficient entropy to provide an
assurance of randomness. If the seed is kept secret, and the algorithm is well designed, the bits
output by the DRBG will be unpredictable, up to the instantiated security strength of the DRBG.

The security provided by an RBG that uses a DRBG mechanism is a system implementation
issue; both the DRBG mechanism and its randomness source must be considered when
determining whether the RBG is appropriate for use by consuming applications.

2 Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the
framework of the Cryptographic Module Validation Program (CMVP) and the Cryptographic
Algorithm Validation Program (CAVP). The requirements of this Recommendation are indicated
by the word “shall.” Some of these requirements may be out-of-scope for CMVP or CAVP
validation testing, and thus are the responsibility of entities using, implementing, installing or
configuring applications that incorporate this Recommendation.

3 Scope

This Recommendation includes:

1. Requirements for the use of DRBG mechanisms,
2. Specifications for DRBG mechanisms that use hash functions and block ciphers,

3. Implementation issues, and
4. Assurance considerations.

1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number Generators.
2 DRBGS have also been called Pseudorandom Number (or Bit) Generators.

1

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

This Recommendation specifies several DRBG mechanisms, all of which provided acceptable
security when this Recommendation was published. However, in the event that new attacks are
found on a particular class of DRBG mechanisms, a diversity of approved mechanisms will
allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, i.e.,
communicating entities may use different DRBG mechanisms without affecting their ability to
communicate. Therefore, an entity may choose a single, appropriate DRBG mechanism for their
consuming applications; see Appendix C for a discussion of DRBG mechanism selection.

The precise structure, design and development of a random bit generator is outside the scope of
this document.

NIST Special Publication (SP) 800-90B [SP 800-90B] provides guidance on designing and
validating entropy sources. SP 800-90C [SP 800-90C] provides guidance on the construction of
an RBG from a randomness source and an approved DRBG mechanism from this document (i.e.,
SP 800-90A).

2

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

4 Terms and Definitions

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS-approved, NIST-Recommended and/or validated by the
Cryptographic Algorithm Validation Program (CAVP).

Approved entropy source An entropy source that has been validated as conforming to
[SP 800-90B].

Backtracking Resistance An RBG provides backtracking resistance relative to time T if
it provides assurance that an adversary that has knowledge of
the state of the RBG at some time(s) subsequent to time T (but
incapable of performing work that matches the claimed
security strength of the RBG) would be unable to distinguish
between observations of ideal random bitstrings and
(previously unseen) bitstrings that are output by the RBG at or
prior to time T. In particular, an RBG whose design allows the
adversary to "backtrack" from the initially-compromised RBG
state(s) to obtain knowledge of prior RBG states and the
corresponding outputs (including the RBG state and output at
time T) would not provide backtracking resistance relative to
time T. (Contrast with prediction resistance.)

Biased A value that is chosen from a sample space is said to be biased
if one value is more likely to be chosen than another value.
Contrast with unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1’s.

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines
corresponding bits of each bitstring using an exclusive-or
operation.

Block Cipher A symmetric-key cryptographic algorithm that transforms one
block of information at a time using a cryptographic key. For
a block cipher algorithm, the length of the input block is the
same as the length of the output block.

Consuming Application The application (including middleware) that uses random
numbers or bits obtained from an approved random bit
generator.

Cryptographic Key (Key) A parameter that determines the operation of a cryptographic
function, such as:

1. The transformation from plaintext to ciphertext and
vice versa,

3

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

2. The generation of keying material, or
3. A digital signature computation or verification.

Deterministic Algorithm An algorithm that, given the same inputs, always produces the
same outputs.

Deterministic Random
Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least
initially) has access to a randomness source. The DRBG
produces a sequence of bits from a secret initial value called a
seed, along with other possible inputs. A DRBG is often
called a Pseudorandom Number (or Bit) Generator. Contrast
with NRBG.

DRBG Mechanism The portion of an RBG that includes the functions necessary
to instantiate and uninstantiate the RBG, generate
pseudorandom bits, (optionally) reseed the RBG and test the
health of the the DRBG mechanism.

DRBG Mechanism
Boundary

A conceptual boundary that is used to explain the operations
of a DRBG mechanism and its interaction with and relation to
other processes. (See min-entropy.)

Entropy A measure of the disorder, randomness or variability in a
closed system. Min-entropy is the measure used in this
Recommendation.

Entropy Input An input bitstring that provides an assessed minimum amount
of unpredictability for a DRBG mechanism. (See min-
entropy.)

Entropy Source A combination of a noise source (e.g., thermal noise or hard
drive seek times), health tests, and an optional conditioning
component. The entropy source produces random bitstrings to
be used by an RBG.

Equivalent Process Two processes are equivalent if, when the same values are
input to each process, the same output is produced.

Exclusive-or A mathematical operation; the symbol ⊕, defined as:
0 ⊕ 0 = 0 1 ⊕ 0 = 1
0 ⊕ 1 = 1 1 ⊕ 1 = 0

Equivalent to binary addition without carry.

Fresh Entropy A bitstring output from an entropy source, an NRBG or a
DRBG that has access to a Live Entropy Source that is being
used to provide prediction resistance.

Full Entropy For the purposes of this Recommendation, a source of full-
entropy bitstrings serves as a practical approximation to a

4

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

source of ideal random bitstrings of the same length (see ideal
random sequence).

Hash Function A (mathematical) function that maps values from a large
(possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any
input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Health Testing Testing within an implementation immediately prior to or
during normal operation to determine that the implementation
continues to perform as implemented and as validated.

Ideal Random Bitstring See Ideal Random Sequence.

Ideal Random Sequence Each bit of an ideal random sequence is unpredictable and
unbiased, with a value that is independent of the values of the
other bits in the sequence. Prior to the observation of the
sequence, the value of each bit is equally likely to be 0 or 1,
and the probability that a particular bit will have a particular
value is unaffected by knowledge of the values of any or all of
the other bits. An ideal random sequence of n bits contains n
bits of entropy.

Implementation An implementation of an RBG is a cryptographic device or
portion of a cryptographic device that is the physical
embodiment of the RBG design, for example, some code
running on a computing platform.

Implementation Testing
for Validation

Testing by an independent and accredited party to ensure that
an implementation of this Recommendation conforms to the
specifications of this Recommendation.

Instantiation of an RBG An instantiation of an RBG is a specific, logically
independent, initialized RBG. One instantiation is
distinguished from another by a “handle” (e.g., an identifying
number).

Internal State The collection of stored information about a DRBG
instantiation. This can include both secret and non-secret
information. Compare to working state.

Key See Cryptographic Key.

Live Entropy Source An approved entropy source (see [SP 800-90B]) that can
provide an RBG with bits having a specified amount of

5

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

entropy immediately upon request or within an acceptable
amount of time, as determined by the user or application
relying upon that RBG.

Min-entropy The min-entropy (in bits) of a random variable X is the largest
value m having the property that each observation of X
provides at least m bits of information (i.e., the min-entropy of
X is the greatest lower bound for the information content of
potential observations of X). The min-entropy of a random
variable is a lower bound on its entropy. The precise
formulation for min-entropy is −(log2 max pi) for a discrete
distribution having n possible outputs with probabilities p1,…,
pn. Min-entropy is often used as a worst-case measure of the
unpredictability of a random variable. Also see [SP 800-90B].

Non-Deterministic An RBG that always has access to an entropy source and
Random Bit Generator (when working properly) produces output bitstrings that have
(Non-deterministic RBG) full entropy. Often called a True Random Number (or Bit)
(NRBG) Generator. (Contrast with a deterministic random bit

generator).

Nonce A time-varying value that has at most a negligible chance of
repeating, e.g., a random value that is generated anew for each
use, a timestamp, a sequence number, or some combination of
these.

Personalization String An optional string of bits that is combined with a secret
entropy input and (possibly) a nonce to produce a seed.

Prediction Resistance An RBG provides prediction resistance relative to time T if it
provides assurance that an adversary with knowledge of the
state of the RBG at some time(s) prior to T (but incapable of
performing work that matches the claimed security strength of
the RBG) would be unable to distinguish between
observations of ideal random bitstrings and (previously
unseen) bitstrings output by the RBG at or subsequent to time
T. In particular, an RBG whose design allows the adversary to
step forward from the initially compromised RBG state(s) to
obtain knowledge of subsequent RBG states and the
corresponding outputs (including the RBG state and output at
time T) would not provide prediction resistance relative to
time T. (Contrast with backtracking resistance.)

Pseudorandom A process (or data produced by a process) is said to be
pseudorandom when the outcome is deterministic, yet also
effectively random, as long as the internal action of the
process is hidden from observation. For cryptographic
purposes, “effectively” means “within the limits of the

6

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

intended cryptographic strength.”

Pseudorandom Number
Generator

See Deterministic Random Bit Generator.

Random Number For the purposes of this Recommendation, a value in a set that
has an equal probability of being selected from the total
population of possibilities and, hence, is unpredictable. A
random number is an instance of an unbiased random variable,
that is, the output produced by a uniformly distributed random
process.

Random Bit Generator
(RBG)

A device or algorithm that outputs a sequence of binary bits
that appears to be statistically independent and unbiased. An
RBG is either a DRBG or an NRBG.

Randomness Source A component of a DRBG (which consists of a DRBG
mechanism and a randomness source) that outputs bitstrings
that are used as entropy input by the DRBG mechanism. The
randomness source can be an entropy source or an RBG.

Reseed To acquire additional bits that will affect the internal state of
the DRBG mechanism.

Secure Channel A path for transferring data between two entities or
components that ensures confidentiality, integrity and replay
protection, as well as mutual authentication between the
entities or components. The secure channel may be provided
using approved cryptographic, physical or procedural
methods, or a combination thereof. Sometimes called a trusted
channel.

Security Strength A number associated with the amount of work (that is, the
number of operations of some sort) that is required to break a
cryptographic algorithm or system in some way. In this
Recommendation, the security strength is specified in bits and
is a specific value from the set {112, 128, 192, 256}. If the
security strength associated with an algorithm or system is S
bits, then it is expected that (roughly) 2S basic operations are
required to break it.

Seed Noun : A string of bits that is used as input to a DRBG
mechanism. The seed will determine a portion of the internal
state of the DRBG, and its entropy must be sufficient to
support the security strength of the DRBG.
Verb : To acquire bits with sufficient entropy for the desired
security strength. These bits will be used as input to a DRBG
mechanism to determine a portion of the initial internal state.

7

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Also see reseed.

Seedlife The length of the seed period.

Seed Period The period of time between instantiating or reseeding a DRBG
with one seed and reseeding that DRBG with another seed.

Sequence An ordered set of quantities.

Shall Used to indicate a requirement of this Recommendation.
"Shall" may be coupled with "not" to become "shall not."

Should Used to indicate a highly desirable feature for a DRBG
mechanism that is not necessarily required by this
Recommendation. "Should" may be coupled with "not" to
become "should not."

Source of Randomness See Randomness Source.

String See Bitstring.

Unbiased A value that is chosen from a sample space is said to be
unbiased if all potential values have the same probability of
being chosen. Contrast with biased.

Uninstantiate The termination of a DRBG instantiation.

Unpredictable In the context of random bit generation, an output bit is
unpredictable if an adversary has only a negligible advantage
(that is, essentially not much better than chance) in predicting
it correctly.

Working State A subset of the internal state that is used by a DRBG
mechanism to produce pseudorandom bits at a given point in
time. The working state (and thus, the internal state) is
updated to the next state prior to producing another string of
pseudorandom bits.

8

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

5 Symbols and Abbreviated Terms

The following abbreviations are used in this Recommendation:

Abbreviation Meaning
AES Advanced Encryption Standard, as specified in [FIPS 197] .
DRBG Deterministic Random Bit Generator.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code, as specified in [FIPS 198].
NIST National Institute of Standards and Technology.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.
SP NIST Special Publication.
TDEA Triple Data Encryption Algorithm, as specified in [SP 800-67].

The following symbols are used in this Recommendation:

Symbol Meaning

+ Addition.

X ⊕ Y Bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings
X and Y of the same length.

X || Y Concatenation of two strings X and Y. X and Y are either both bitstrings
or both byte strings.

⎡x⎤ The ceiling of x; the smallest integer ≥ x. For example, ⎡5⎤ = 5, and
⎡5.3⎤ = 6.

leftmost (V, a) The leftmost a bits of V.

len (a) The length in bits of string a.

min (a, b) The minimum of a and b.

x mod n The unique remainder r (where 0 ≤ r ≤ n-1) when integer x is divided
by n. For example, 23 mod 7 = 2.

rightmost (V, a) The rightmost a bits of V.
select (V, a, b) A substring of string V consisting of bit a through bit b.

Used in a figure to illustrate a "switch" between input sources.

{a1, ...ai} The internal state of the DRBG at a point in time. The types and
number of the ai values depends on the specific DRBG mechanism.

9

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Symbol Meaning

0xab Hexadecimal notation that is used to define a byte (i.e., eight bits) of
information, where a and b each specify four bits of information and
have values from the range {0, 1, 2,…F}. For example, 0xc6 is used to
represent 11000110, where c is 1100, and 6 is 0110.

0x A string of x zero bits.

6	 Document Organization

This Recommendation is organized as follows:

⎯	 Section 7 provides a functional model for a DRBG that uses a DRBG mechanism and
discusses the major components of the DRBG mechanism.

⎯	 Section 8 provides concepts and general requirements for the implementation and use of a
DRBG mechanism.

⎯	 Section 9 specifies the functions of a DRBG mechanism that were introduced in Section 8.
These functions use the DRBG algorithms specified in Section 10.

⎯	 Section 10 specifies approved DRBG algorithms. Algorithms have been specified that are
based on the hash functions specified in [FIPS 180], and the block cipher algorithms
specified in [FIPS 197] and [SP 800-67] (AES and TDEA, respectively).

⎯	 Section 11 addresses assurance issues for DRBG mechanisms, including documentation
requirements, and implementation validation and health testing.

This Recommendation also includes the following appendices:

⎯	 Appendix A provides conversion routines.

⎯	 Appendix B provides example pseudocode for each DRBG mechanism. Examples of the
values computed for the DRBGs using each approved cryptographic algorithm and key
size are available at http://csrc.nist.gov/groups/ST/toolkit/examples.html under the entries
for SP 800-90A.

⎯	 Appendix C provides a discussion on DRBG mechanism selection.

⎯	 Appendix D provides references.

⎯	 Appendix E provides a list of modifications to SP 800-90A since it was first published.

10

http://csrc.nist.gov/groups/ST/toolkit/examples.html

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

7 Functional Model of a DRBG

Figure 1 provides a functional model of a DRBG (i.e., one type of RBG). A DRBG shall
implement an approved DRBG mechanism from SP 800-90A and at least one approved
randomness source (see Section 8.6.5), and may include additional optional sources, including
sources for nonces, personalization strings, and additional input. The components of this model
are discussed in the following subsections. DRBG constructions are also discussed in [SP 800-
90C].

Figure 1: DRBG Functional Model

7.1 Entropy Input

Entropy input is provided to a DRBG mechanism for the seed (see Section 8.6) using a
randomness source. The entropy input and the seed shall be kept secret. The secrecy of this
information provides the basis for the security of the DRBG. At a minimum, the randomness
source shall provide input that supports the security strength requested by the DRBG mechanism.
Appropriate randomness sources are discussed in Section 8.6.5.
Ideally, the entropy input would have full entropy; however, the DRBG mechanisms have been
specified so that input with full entropy is not required. This is accommodated by allowing the
length of the entropy input to be longer than the required entropy (expressed in bits), as long as
the total entropy meets the requirements of the DRBG mechanism. The entropy input can be
defined to be of variable length (within specified limits), as well as fixed length. In all cases, the
DRBG mechanism expects that when entropy input is requested, the returned bitstring will
contain at least the requested amount of entropy. Additional entropy beyond the amount requested
is not required, but is desirable.

11

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

7.2 Other Inputs

Other information may be obtained by a DRBG mechanism as input. This information may or
may not be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be checked
for validity when possible; for example, if time is used as an input, the format and reasonableness
of the time could be checked. In most cases, a nonce is required during instantiation (see Sections
8.6.1 and 8.6.7). When required, the nonce is combined with the entropy input to create the initial
DRBG seed.

A personalization string should be used during DRBG instantiation; when used, the
personalization string is combined with the entropy input bits and possibly a nonce to create the
initial DRBG seed. The personalization string should be unique for all instantiations of the same
DRBG mechanism type (e.g., all instantiations of HMAC_DRBG). See Section 8.7.1 for
additional discussion on personalization strings.
Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.7.2 for a discussion of this input.

7.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters, variables and
other stored values that the DRBG mechanism uses or acts upon. The internal state contains both
administrative data (e.g., the security strength) and data that is acted upon and/or modified during
the generation of pseudorandom bits (i.e., the working state).

7.4 The DRBG Mechanism Functions

The DRBG mechanism functions handle the DRBG’s internal state. The DRBG mechanisms in
this Recommendation have five separate functions:

1.	 The instantiate function acquires entropy input and may combine it with a nonce and a
personalization string to create a seed from which the initial internal state is created.

2.	 The generate function generates pseudorandom bits upon request, using the current
internal state and possibly additional input; a new internal state for the next request is also
generated.

3.	 The reseed function acquires new entropy input and combines it with the current internal
state and any additional input that is provided to create a new seed and a new internal
state.

4.	 The uninstantiate function zeroizes (i.e., erases) the internal state.
5.	 The health test function determines that the DRBG mechanism continues to function

correctly.

12

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

8. DRBG Mechanism Concepts and General Requirements

8.1 DRBG Mechanism Functions

A DRBG mechanism requires instantiate, uninstantiate, generate, and health testing functions. A
DRBG mechanism includes an optional reseed function. A DRBG shall be instantiated prior to
the generation of output by the DRBG. These functions are specified in Section 9.

8.2 DRBG Instantiations

A DRBG may be used to obtain
pseudorandom bits for different purposes
(e.g., DSA private keys and AES keys)
and may be separately instantiated for
each purpose, thus effectively creating
two DRBGs.
A DRBG is instantiated using a seed and
may be reseeded; when reseeded, the seed
shall be different than the seed used for
instantiation. Each seed defines a seed
period for the DRBG instantiation; an
instantiation consists of one or more seed
periods that begin when a new seed is
acquired and end when the next seed is
obtained or the DRBG is no longer used (see Figure 2).

Figure 2: DRBG Instantiation

8.3 Internal States

During instantiation, an initial internal state is derived from the seed. The internal state for an
instantiation includes:

1. The working state:
a.	 One or more values that are derived from the seed and become part of the internal

state; these values shall remain secret, and
b.	 A count of the number of requests produced since the instantiation was seeded or

reseeded.
2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the pseudorandom
output bits requested by the consuming application. A DRBG mechanism implementation may
be designed to handle multiple instantiations. Each DRBG instantiation shall have its own
internal state. The internal state for one DRBG instantiation shall not be used as the internal
state for a different instantiation.

13

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

8.4 Security Strengths Supported by an Instantiation

The DRBG mechanisms specified in this Recommendation support four security strengths: 112,
128, 192 or 256 bits. The security strength for the instantiation is requested during DRBG
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Each DRBG mechanism has restrictions on the security strength it
can support, based on its design (see Section 10).

The actual security strength supported by a given instantiation depends on the DRBG
implementation and on the amount of entropy provided to the instantiate function. Note that the
security strength actually supported by a particular instantiation could be less than the maximum
security strength possible for that DRBG implementation (see Table 1). For example, a DRBG
that is designed to support a maximum security strength of 256 bits could, instead, be
instantiated to support only a 128-bit security strength if the additional security provided by the
256-bit security strength is not required (e.g., by requesting only 128 bits of entropy during
instantiation, rather than 256 bits of entropy).

Table 1: Possible Instantiated Security Strengths

Maximum Designed
Security Strength

112 128 192 256

Possible Instantiated
Security Strengths

112 112, 128 112, 128, 192 112, 128, 192,
256

Following instantiation, a request can be made to the generate function for pseudorandom bits
(see Section 9.3). The pseudorandom bits returned from a DRBG shall not be used for any
application that requires a higher security strength than the DRBG is instantiated to support. The
security strength provided in these returned bits is the minimum of the security strength
supported by the DRBG and the length of the bit string returned, i.e.:

Security_strength_of_output = min(output_length, DRBG_security_strength).
A concatenation of bit strings resulting from multiple calls to a DRBG will not provide a security
strength for the concatenated string that is greater than the instantiated security strength of the
DRBG. For example, two 128-bit output strings requested from a DRBG that supports a128-bit
security strength cannot be concatenated to form a 256-bit string with a security strength of 256
bits. A more complete discussion of this issue is provided in [SP 800-90C].

For each generate request, the security strength to be provided for the bits is requested. Any
security strength can be requested during a call to the generate function, up to the security
strength of the instantiation, e.g., an instantiation could be instantiated at the 128-bit security
strength, but a request for pseudorandom bits could indicate that a lesser security strength is
actually required for the bits to be generated. Assuming that the request is valid, the requested
number of bits is returned.

When an instantiation is used for multiple purposes, the minimum security strength requirement
for each purpose must be considered. The DRBG needs to be instantiated for the highest security
strength required. For example, if one purpose requires a security strength of 112 bits, and

14

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

another purpose requires a security strength of 256 bits, then the DRBG needs to be instantiated
to support the 256-bit security strength.

8.5 DRBG Mechanism Boundaries

As a convenience, this Recommendation uses the notion of a “DRBG mechanism boundary” to
explain the operations of a DRBG mechanism and its interaction with and relation to other
processes; a DRBG mechanism boundary contains all DRBG mechanism functions and internal
states required for a DRBG. Data enters a DRBG mechanism boundary via the DRBG’s public
interfaces, which are made available to consuming applications.

The DRBG mechanism boundary should not be confused with a cryptographic module
boundary, as specified in [FIPS 140]; the relationship between a cryptographic module
boundary and a DRBG boundary is mentioned below, but is more fully discussed in [SP
800-90C].

Within a DRBG mechanism boundary,
1.	 The DRBG internal state and the operation of the DRBG mechanism functions shall only

be affected according to the DRBG mechanism specification.

2.	 The DRBG internal state shall exist solely within the DRBG mechanism boundary. The
internal state shall not be accessible by non-DRBG functions or other instantiations of
that DRBG or other DRBGs.

3.	 Information about secret parts of the DRBG internal state and intermediate values in
computations involving these secret parts shall not affect any information that leaves the
DRBG mechanism boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG mechanism includes one or more cryptographic primitives (i.e., a hash function or
block cipher algorithm). Other applications may use the same cryptographic primitive, but the
DRBG’s internal state and the DRBG mechanism functions shall not be affected by these other
applications. For example, a DRBG mechanism may use the same hash-function code as a
digital-signature application.

A DRBG mechanism’s functions may be contained within a single device, or may be distributed
across multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. As further discussed in [SP 800-90C], the DRBG
mechanism boundary (in this case) is contained within a cryptographic module boundary.

15

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Figure 3: DRBG Mechanism Functions within a Single Device

Figure 4 provides an example of DRBG mechanism functions that are distributed across multiple
devices. In this case, each device has a DRBG mechanism sub-boundary that contains the DRBG
mechanism functions implemented on that device, and the DRBG mechanism sub-boundary is
contained within a cryptographic module boundary, as is further discussed in [SP 800-90C]. The
boundary around the entire DRBG mechanism includes the aggregation of sub-boundaries
providing the DRBG mechanism functionality. Each sub-boundary may be contained within a
different cryptographic module boundary, or multiple sub-boundaries may be contained within
the same cryptographic module boundary.

The use of distributed DRBG-mechanism functions may be convenient for restricted
environments (e.g., smart card applications) in which the primary use of the DRBG does not
require repeated use of the instantiate or reseed functions.
Each DRBG mechanism boundary or sub-boundary shall contain a health test function to test the
“health” of other DRBG-mechanism functions within that boundary. In addition, a boundary or
sub-boundary that contains an instantiate function shall contain an uninstantiate function in order
to terminate an instantiation.

16

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Figure 4: Distributed DRBG Mechanism Functions

When DRBG mechanism functions are distributed, a physically or cryptographically secure
channel shall be used to protect the confidentiality and integrity of the internal state or parts of
the internal state that are transferred between the distributed DRBG mechanism sub-boundaries.
The security provided by the secure channel shall be consistent with the security required by the
consuming application. See Section 4 for a more complete definition of a secure channel.

For distributed DRBGs, each sub-boundary is the same as or is fully contained within a
cryptographic module boundary.

8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and determine
the initial internal state that is used when calling the DRBG to obtain the first output bits.
Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the internal
state becomes known. Periodic reseeding is a good way of addressing the threat of either the
DRBG seed, entropy input or working state being compromised over time. In some
implementations (e.g., smartcards), an adequate reseeding process may not be possible. In these
cases, the best policy might be to replace the DRBG, obtaining a new seed in the process (e.g.,
obtain a new smart card).
The seed and its use by a DRBG mechanism shall be generated and handled as specified in the
following subsections.

17

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

8.6.1	 Seed Construction for Instantiation

Figure 5 depicts the seed-construction
process for instantiation. The seed material
used to determine a seed for instantiation
consists of entropy input from a randomness
source, a nonce and an optional (but
recommended) personalization string.
Entropy input shall always be used in the
construction of a seed; requirements for the
entropy input are discussed in Section 8.6.3.
Except for the case noted below, a nonce
shall be used; requirements for the nonce
are discussed in Section 8.6.7. A

personalization string should also be used;

requirements for the personalization string are discussed in Section 8.7.1.

Figure 5: Seed Construction for Instantiation

Depending on the DRBG mechanism and the randomness source, a derivation function may be
required to derive a seed from the seed material. However, in certain circumstances, the
CTR_DRBG mechanism based on block cipher algorithms (see Section 10.2) may be
implemented without a derivation function. When implemented in this manner, a (separate)
nonce (as shown in Figure 5) is not used. Note, however, that the personalization string could
contain a nonce, if desired.

8.6.2	 Seed Construction for
Reseeding

Figure 6 depicts the seed construction process
for reseeding an instantiation. The seed
material for reseeding consists of a value that is
carried in the internal state3, new entropy input
and, optionally, additional input. The internal
state value and the entropy input are required;
requirements for the entropy input are
discussed in Section 8.6.3. Requirements for
the additional input are discussed in Section
8.7.2. As in Section 8.6.1, a derivation function may be required for reseeding.

Figure 6: Seed Construction for Reseeding

8.6.3	 Entropy Requirements for the Entropy Input

The entropy input shall have entropy that is equal to or greater than the security strength of the
instantiation. Additional entropy may be provided in the nonce or the optional personalization
string during instantiation, or in the additional input during reseeding and generation, but this is
not required and does not increase the “official” security strength of the DRBG instantiation that
is recorded in the internal state. The use of more entropy than the minimum value will offer a

3 See each DRBG mechanism specification for the value that is used.

18

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

security “cushion”. This may be useful if the assessment of the entropy provided in the entropy
input is incorrect. Having more entropy than the assessed amount is acceptable; having less entropy
than the assessed amount could be fatal to security. The presence of more entropy than is required,
especially during the instantiation, will provide a higher level of assurance than the minimum
required entropy.

8.6.4 Seed Length

The minimum length of the seed depends on the DRBG mechanism and the security strength
required by the consuming application, but shall be at least the number of bits of entropy
required. See the tables in Section 10.

8.6.5 Randomness Source

A DRBG mechanism requires an approved randomness source during instantiation and
reseeding, including whenever prediction resistance is requested (see Section 8.8). This input is
requested using the Get_entropy_input function introduced in Section 9 and is specified in
more detail in [SP 800-90C].

An approved randomness source is an entropy source that conforms to [SP 800-90B], or an
RBG that conforms to [SP 800-90C] − either a DRBG or an NRBG.

8.6.6 Entropy Input and Seed Privacy

The entropy input and the resulting seed shall be handled in a manner that is consistent with the
security required for the data protected by the consuming application. For example, if the DRBG
is used to generate keys, then the entropy inputs and seeds used to generate the keys shall (at a
minimum) be protected at the same security strength as the keys.

The security of the DRBG depends on the secrecy of the entropy input. For this reason, the
entropy input shall be treated as a critical security parameter (CSP) during cryptographic module
validation. The entropy input for the DRBG function requiring the entropy input shall be
obtained either from within the cryptographic module containing that function or from another
cryptographic module and transported to the DRBG function's cryptographic module via a secure
channel.

8.6.7 Nonce

A nonce may be required in the construction of a seed during instantiation in order to provide a
security cushion to block certain attacks. The nonce shall be either:

a.	 A value with at least (security_strength/2) bits of entropy, or
b.	 A value that is expected to repeat no more often than a (security_strength/2)-bit random

string would be expected to repeat.
Each nonce shall be unique to the cryptographic module in which instantiation is performed, but
need not be secret. When used, the nonce shall be considered to be a critical security parameter.
A nonce may be composed of one (or more) of the following components (other components
may also be appropriate):

19

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

1.	 A random value that is generated anew for each nonce, using an approved random bit
generator.

2.	 A timestamp of sufficient resolution (detail) so that it is different each time it is used.
3.	 A monotonically increasing sequence number, or

4.	 A combination of a timestamp and a monotonically increasing sequence number, such
that the sequence number is reset when and only when the timestamp changes. For
example, a timestamp may show the date but not the time of day, so a sequence number
is appended that will not repeat during a particular day.

For case 1 above, the random value could be acquired from the same source and at the same time
as the entropy input. In this case, the seed could be considered to be constructed from an “extra
strong” entropy input and the optional personalization string, where the entropy for the entropy
input is equal to or greater than (3/2 security_strength) bits.

For case 2 above, the timestamp must be trusted. A trusted timestamp is generated and signed by
an entity that is trusted to provide accurate time information.

The nonce provides greater assurance that the DRBG provides security_strength bits of security
to the consuming application. If a DRBG were instantiated many times without a nonce, a
compromise could become more likely. In some consuming applications, a single DRBG
compromise could reveal long-term secrets (e.g., a compromise of the DSA per-message secret
could reveal the signing key).
A nonce shall be generated within a cryptographic module boundary. This requirement does not
preclude the generation of the nonce within a cryptographic module that is different from the
cryptographic boundary containing the DRBG function with which the nonce is used (e.g., the
cryptographic module boundary containing an instantiate function). However, in this scenario,
there needs to be a secure channel to transport the nonce between the cryptographic-module
boundaries. See the discussion of distributed DRBGs in Section 8.5 and distributed RBGs in [SP
800-90C].

8.6.8 Reseeding

Generating too many outputs from a seed (and other input information) may provide sufficient
information for successfully predicting future outputs (see Section 8.8). Periodic reseeding will
reduce security risks, reducing the likelihood of a compromise of the data that is protected by
cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the number of outputs that are produced during a seed period);
the maximum seedlife is dependent on the DRBG mechanism used. Implementations shall
enforce the limits on seedlife specified for the DRBG mechanism used or more stringent limits
selected by the implementer. When a DRBG's maximum seedlife is reached, the DRBG shall
not generate outputs until it has been reseeded.
Reseeding is accomplished 1) by an explicit reseeding of the DRBG by the consuming
application, 2) by the generate function when prediction resistance is requested (see Section 8.8)
or 3) when the end of the seed life is determined during the generate function (see Section 9.3.1).

The reseeding of the DRBG shall be performed in accordance with the specification for a given
DRBG mechanism. The DRBG reseed specifications within this Recommendation are designed

20

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

to produce a new seed that is determined by both the old seed and newly obtained entropy input
that will support the desired security strength.

An alternative to reseeding would be to create an entirely new instantiation. However, reseeding
is preferred over creating a new instantiation. If a DRBG instantiation was initially seeded with
sufficient entropy, and the randomness source subsequently fails without being detected, then a
new instantiation using the same (failed) source would not have sufficient entropy to operate
securely. However, if there is an undetected failure in the randomness source of an already
properly seeded DRBG instantiation, the DRBG instantiation will still retain any previous
entropy when the reseed operation fails to introduce new entropy.

8.6.9 Seed Use

The seed that is used to initialize one instantiation of a DRBG shall not be intentionally used to
reseed the same instantiation or used as the seed for another DRBG instantiation. In addition, a
DRBG instantiation shall not reseed itself. Note that a DRBG does not provide output until a
seed is available, and the internal state has been initialized (see Section 10).

8.6.10 Entropy Input and Seed Separation

The seed used by a DRBG and the entropy input used to create that seed shall not intentionally
be used for other purposes (e.g., domain parameter or prime number generation).

8.7 Other Input to the DRBG Mechanism

Other input may be provided during DRBG instantiation, generation and reseeding. This input
may contain entropy, but this is not required. During instantiation, a personalization string may
be provided and combined with entropy input and a nonce to derive a seed (see Section 8.6.1).
When pseudorandom bits are requested and when reseeding is performed, additional input may
be provided (see Section 8.7.2).

Depending on the method for acquiring the input, the exact value of the input may or may not be
known to the user or consuming application. For example, the input could be derived directly
from values entered by the user or consuming application, or the input could be derived from
information introduced by the user or consuming application (e.g., from timing statistics based
on key strokes), or the input could be the output of another RBG.

8.7.1 Personalization String

A personalization string is an optional (but recommended) input to the instantiate function and is
used to derive the seed (see Section 8.6.1). The personalization string may be obtained from
inside or outside a cryptographic module, and may be an empty string. Note that a DRBG does
not rely on a personalization string to provide entropy, even though entropy could be provided in
the personalization string, and knowledge of the personalization string by an adversary does not
degrade the security strength of a DRBG instantiation, as long as the entropy input is unknown.
When used within a cryptographic module, a personalization string is not considered to be a
critical security parameter.

21

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

The personalization string may contain secret information, but shall not include secret
information that requires protection at a higher security strength than the DRBG being
instantiated will support. For example, a personalization string to be used to instantiate a DRBG
at 112 bits of security strength shall not include information requiring 128 bits of protection. A
given implementation of a DRBG may support the use of a personalization string, but is not
required to do so.

The intent of a personalization string is to introduce additional input into the instantiation of a
DRBG. This personalization string might contain values unknown to an attacker, or values that
tend to differentiate this DRBG instantiation from all others. Ideally, a personalization string will
be set to some bitstring that is as unique as possible. Good sources for the personalization string
contents include:

• Application identifiers, •	 Special key values for this specific
• Device serial numbers,	 DRBG instantiation,
• User identification, •	 Protocol version identifiers,
• Per-module or per-device values, •	 Random numbers,
• Timestamps, •	 Nonces, and
•	 Network addresses, • Outputs from other approved or non-

approved random bit generators.

8.7.2 Additional Input

Additional input may optionally be provided to the reseed and generate functions during
requests. The additional input may be obtained from inside or outside a cryptographic module,
and may include secret or public information. Note that a DRBG does not rely on additional
input to provide entropy, even though entropy could be provided in the additional input, and
knowledge of the additional input by an adversary does not degrade the security strength of a
DRBG. However, if the additional input contains secret/private information (e.g., a social
security number), that information shall not require protection at a higher security strength than
the security strength supported by the DRBG. A given implementation of a DRBG may include
the additional input, but is not required to do so. When used within a cryptographic module, the
additional input used in DRBG requests is not considered to be a critical security parameter
unless any secret information included in the additional input qualifies as a critical security
parameter.

Additional input is optional for both the DRBG and the consuming application, and the ability to
enter additional input may or may not be included in an implementation. The value of the
additional input may be either secret or publicly known; its value is arbitrary, although its length
may be restricted, depending on the implementation and the DRBG mechanism. The use of
additional input may be a means of providing more entropy for the DRBG internal state that will
increase assurance that the entropy requirements are met. If the additional input is kept secret and
has sufficient entropy, the input can provide more assurance when recovering from the
compromise of the entropy input, the seed or one or more DRBG internal states.

22

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

8.8 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some subset
of bits from each internal state are used to generate pseudorandom bits upon request by a user.
The following discussions will use the figure to explain backtracking and prediction resistance.

Suppose that a compromise occurs at Statex, where Statex contains both secret and non-secret
information.

Figure 7: Sequence of DRBG States

Backtracking Resistance: Backtracking resistance is provided relative to time T if there is
assurance that an adversary who has knowledge of the internal state of the DRBG at some time
subsequent to time T would be unable to distinguish between observations of ideal random
bitstrings and (previously unseen) bitstrings that were output by the DRBG prior to time T. This
assumes that the adversary is incapable of performing the work required to negate the claimed
security strength of the DRBG. Backtracking resistance means that a compromise of the DRBG
internal state has no effect on the security of prior outputs. That is, an adversary who is given
access to all of the prior output sequence cannot distinguish it from random output with less
work than is associated with the security strength of the instantiation; if the adversary knows
only part of the prior output, he cannot determine any bit of that prior output sequence that he
has not already seen with better than a 50-50 chance.

For example, suppose that an adversary knows Statex. Backtracking resistance means that:
a.	 The output bits from State1 to Statex-1 cannot be distinguished from random output, and

b.	 The prior internal state values themselves (State1 to Statex-1) cannot be recovered, given
knowledge of the secret information in Statex.

Backtracking resistance can be provided by ensuring that the DRBG generation algorithm is a
one-way function. All DRBG mechanisms in this Recommendation have been designed to
provide backtracking resistance.
Prediction Resistance: Prediction resistance means that a compromise of the DRBG internal

state has no effect on the security of future DRBG outputs. That is, an adversary who is given
access to all of the output sequence after the compromise cannot distinguish it from random
output with less work than is associated with the security strength of the instantiation; if the
adversary knows only part of the future output sequence, he cannot predict any bit of that future
output sequence that he does not already know (with better than a 50-50 chance).
For example, suppose that an adversary knows Statex. Prediction resistance means that:

a.	 The output bits from Statex+1 and forward cannot be distinguished from an ideal random
bitstring by the adversary, and

23

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

b.	 The future internal state values themselves (Statex+1 and forward) cannot be predicted
(with better than a 50-50 chance), given knowledge of Statex.

Prediction resistance is provided relative to time T if there is assurance that an adversary with
knowledge of the state of the RBG at some time(s) prior to T (but incapable of performing work
that matches the claimed security strength of the RBG) would be unable to distinguish between
observations of ideal random bitstrings and (previously unseen) bitstrings output by the RBG at
or subsequent to time T. In particular, an RBG whose design allows the adversary to step forward
from the initially compromised RBG state(s) to obtain knowledge of subsequent RBG states and
the corresponding outputs (including the RBG state and output at time T) would not provide
prediction resistance relative to time T.

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded with
fresh entropy between producing output for consecutive DRBG requests. That is, an amount of
entropy that is sufficient to support the security strength of the DRBG being reseeded (i.e., an
amount that is at least equal to the security strength) must be provided to the DRBG in a way that
ensures that knowledge of the current DRBG internal state does not allow an adversary any
useful knowledge about future DRBG internal states or outputs. Prediction resistance can be
provided when the randomness source is or has direct or indirect access to an entropy source or
an NRBG (see Section 8.6.5).

For example, suppose that an adversary knows internal Statex-2 (see Figure 7). If the adversary
also knows the DRBG mechanism used, he then has enough information to compute Statex-1 and
Statex. If prediction is then requested for the next bits that are to be output from the DRBG, new
entropy bits will be inserted into the DRBG instantiation before Statex+1 is produced that will
create a separation between Statex and Statex+1, i.e., the adversary will not be able to compute
Statex+1, simply by knowing Statex; the work required will be greatly increased by the entropy
inserted during the prediction request.
The introduction of fresh entropy via reseeding will also make the DRBG less susceptible to
cryptanalytic attack. Whenever an entropy source is available, it is strongly recommended
that DRBGs be requested to provide prediction resistance as often as is practical.

24

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

9 DRBG Mechanism Functions

All DRBG mechanisms and algorithms are described in this document in pseudocode, which is
intended to explain functionality. The pseudocode is not intended to constrain real-world
implementations.

Except for the health test function, which is discussed in Section 11.3, the functions of the
DRBG mechanisms in this Recommendation are specified as an algorithm and an “envelope” of
pseudocode around that algorithm. The pseudocode in each envelope (provided in this section)
checks the input parameters, obtains input not provided via the input parameters, accesses the
appropriate DRBG algorithm and manages the internal state. A function need not be
implemented using such envelopes, but the function shall have equivalent functionality.

During instantiation and reseeding (see Sections 9.1 and 9.2), entropy input and (usually) a
nonce are acquired for constructing a seed as discussed in Sections 8.6.1 and 8.6.2. In the
specifications of this Recommendation, a Get_entropy_input function is used for this purpose.
The entropy input and nonce shall be provided as discussed in Sections 8.6.5 and 8.6.7 and in
[SP 800-90C].
The Get_entropy_input function is specified in pseudocode in [SP 800-90C] for various RBG
constructions; however, in general, the function has the following meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length, max_
length, prediction_resistance_request),

which requests a string of bits (entropy_input) with at least min_entropy bits of entropy. The
length for the string shall be equal to or greater than min_length bits, and less than or equal
to max_length bits. The prediction_resistance_request parameter indicates whether or not
prediction resistance is to be provided during the request (i.e., whether fresh entropy is
required4). A status code is returned from the function.

Note that an implementation may choose to define this functionality differently by omitting some
of the parameters; for example, for many of the DRBG mechanisms, min_length = min_entropy
for the Get_entropy_input function, in which case, the second parameter could be omitted.

In the pseudocode in this section, two classes of error codes are returned: ERROR_FLAG and
CATASTROPHIC_ERROR_FLAG. The handling of these classes of error codes is discussed
in Section 11.4. The error codes may, in fact, provide information about the reason for the error;
for example, when ERROR_FLAG is returned because of an incorrect input parameter, the
ERROR_FLAG may indicate the problem.
Consuming applications should check the status returned from DRBG functions to determine
whether or not the request was successful or if remediary action is required. For example, when

4 Entropy input may be obtained from an entropy source or an NRBG, both of which provide fresh entropy. Entropy
input could also be obtained from a DRBG that has access to an entropy source or NRBG.

The request for prediction resistance rules out the use of a DRBG that does not have access to either an entropy
source or NRBG.

25

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

the instantiate function returns an error, an instantiation will not have been created, and an
invalid state_handle will be returned (see Section 9.1); however, the lack of a state_handle will
be detected in a subsequent reseed or generate request. When the reseed function returns an error
(see Section 9.2), the indicated instantiation will not have been reseeded (i.e., the internal state
will not have been injected with fresh entropy). When the generate function returns an error, a
null string is returned as the output string (see Section 9.3.1) and shall not be used as
pseudorandom output.
Comments are often included in the pseudocode in this Recommendation. A comment placed on
a line that includes pseudocode applies to that line; a comment placed on a line containing no
pseudocode applies to one or more lines of pseudocode immediately below that comment.

9.1 Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:

1.	 Checks the validity of the input parameters,

2.	 Determines the security strength for the DRBG instantiation,
3.	 Obtains entropy input with entropy sufficient to support the security strength,

4.	 Obtains the nonce (if required),
5.	 Determines the initial internal state using the instantiate algorithm, and

6.	 If an implementation supports multiple simultaneous instantiations of the same DRBG, a
state_handle for the internal state is returned to the consuming application (see below).

Let working_state be the working state for the particular DRBG mechanism (e.g.,
HMAC_DRBG), and let min_length, max_ length, and highest_supported_security_strength be
defined for each DRBG mechanism (see Section 10). Let Instantiate_algorithm be a call to the
appropriate instantiate algorithm for the DRBG mechanism (see Section 10).
The following or an equivalent process shall be used to instantiate a DRBG.

Instantiate_function (requested_instantiation_security_strength, prediction_resistance_flag,
personalization_string):

1. 	 requested_instantiation_security_strength: A requested security strength for the
instantiation. Implementations that support only one security strength do not require this
parameter; however, any consuming application using that implementation must be aware
of the security strength that is supported.

2.	 prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for pseudorandom
bits. Implementations that always provide or do not support prediction resistance may not
need to support this parameter if the intent is implicitly known. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the consuming application before electing to use such an implementation. If
the prediction_resistance_flag is not needed (i.e., it is known that prediction resistance is
always performed or is not supported), then the prediction_resistance_flag input

26

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

parameter and instantiate process step 2 are omitted, and the prediction_resistance_flag is
omitted from the internal state in step 11 of the instantiate process. In addition, step 6 can
be modified to not perform a check for the prediction_resistance_flag when the flag is
not used in an implementation; in this case, the Get_entropy_input call need not include
the prediction_resistance_request parameter.

3.	 personalization_string: An optional input that provides personalization information (see
Sections 8.6.1 and 8.7.1). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be less than
or equal to the maximum length specified for the given DRBG mechanism (see Section
10). If the input of a personalization string is not supported, then the
personalization_string input parameter and step 3 of the instantiate process are omitted,
and instantiate process step 9 is modified to omit the personalization string.

Required information not provided by the consuming application during instantiation
(This information shall not be provided by the consuming application as an input parameter
during the instantiate request):

1.	 entropy_input: Input bits containing entropy. The maximum length of the entropy_input
is implementation dependent, but shall be less than or equal to the specified maximum
length for the selected DRBG mechanism (see Section 10).

2.	 nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used in the
nonce, the entropy_input and random portion of the nonce could be acquired using a
single Get_entropy_input call (see step 6 of the instantiate process); in this case, the
first parameter of the Get_entropy_input call is adjusted to include the entropy for the
nonce (i.e., the security_strength is increased by at least ½ security_strength, and min-
length is increased to accommodate the length of the nonce), instantiate process step 8 is
omitted, and the nonce is omitted from the parameter list in instantiate process step 9.

Note that in some cases, a nonce will not be used by a DRBG mechanism; in this case,
step 8 is omitted, and the nonce is omitted from the parameter list in instantiate process
step 9.

Output to a consuming application after instantiation:

1.	 status: The status returned from the instantiate function. If any status other than
SUCCESS is returned, either no state_handle or an invalid state_handle shall be returned
to the consuming application. A consuming application should check the status to
determine that the DRBG has been correctly instantiated.

2.	 state_handle: Used to identify the internal state for this instantiation in subsequent calls
to the generate, reseed, uninstantiate and health test functions.

If a state handle is not required for an implementation because the implementation does
not support multiple simultaneous instantiations, a state_handle need not be returned. In
this case, instantiate process step 10 is omitted, process step 11 is revised to save the only
internal state, and process step 12 is altered to omit the state_handle.

Information retained within the DRBG mechanism boundary after instantiation:

27

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

The internal state for the DRBG, including the working_state and administrative information
(see Sections 8.3 and 10 for definitions of the working_state and administrative information).

Instantiate Process:
Comment: Check the validity of the input
parameters.

1.	 If requested_instantiation_security_strength > highest_supported_security_strength, then
return (ERROR_FLAG, Invalid).

2.	 If prediction_resistance_flag is set, and prediction resistance is not supported, then return
(ERROR_FLAG, Invalid).

3.	 If the length of the personalization_string > max_personalization_string_length, return
(ERROR_FLAG, Invalid).

4.	 Set security_strength to the lowest security strength greater than or equal to

requested_instantiation_security_strength from the set {112, 128, 192, 256}.

5.	 Null step. Comment: This null step replaces a step from the
original version of SP 800-90 without changing the
step numbers.

Comment: Obtain the entropy input.
6.	 (status, entropy_input) = Get_entropy_input (security_strength, min_length,

max_length, prediction_resistance_request).

Comment: status indications other than SUCCESS
could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in which
case, the status is returned to the consuming
application to handle. The Get_entropy_input call
could return a status of ERROR_FLAG to indicate
that entropy is currently unavailable, and could
return CATASTROPHIC_ERROR_FLAG to
indicate that an entropy source failed.

7.	 If (status ≠ SUCCESS), return (status, Invalid).
8.	 Obtain a nonce. Comment: This step shall include any appropriate

checks on the acceptability of the nonce. See
Section 8.6.7.

Comment: Call the appropriate instantiate algorithm
in Section 10 to obtain values for the initial
working_state.

9.	 initial_working_state = Instantiate_algorithm (entropy_input, nonce,

personalization_string, security_strength).

10. Get a state_handle for a currently empty internal state. If an empty internal state cannot
be found, return (ERROR_FLAG, Invalid).

28

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

11. Set the internal state for the new instantiation (e.g., as indicated by state_handle) to the
initial values for the internal state (i.e., set the working_state to the values returned as
initial_working_state in step 9) and any other values required for the working_state (see
Section 10), and set the administrative information to the appropriate values (e.g., the
values of security_strength and the prediction_resistance_flag).

12. Return (SUCCESS, state_handle).

9.2 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever a consuming
application and implementation are able to perform this process. Reseeding will insert additional
entropy into the generation of pseudorandom bits. Reseeding may be:

•	 Explicitly requested by a consuming application,

•	 Performed when prediction resistance is requested by a consuming application,

•	 Triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have been
made (i.e., at the end of the seedlife), or

•	 Triggered by external events (e.g., whenever entropy is available).

The reseed function:
1.	 Checks the validity of the input parameters,

2.	 Obtains entropy input from a randomness source that supports the security strength of the
DRBG, and

3.	 Using the reseed algorithm, combines the current working state with the new entropy
input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG instantiation (e.g.,
HMAC_DRBG) , let min_length and max_ length be defined for each DRBG mechanism, and
let Reseed_algorithm be a call to the appropriate reseed algorithm for the DRBG mechanism
(see Section 10).
The following or an equivalent process shall be used to reseed the DRBG instantiation.

Reseed_function (state_handle, prediction_resistance_request, additional_input):
1)	 state_handle: A pointer or index that indicates the internal state to be reseeded. If a state

handle is not used by an implementation because the implementation does not support
multiple simultaneous instantiations, a state_handle is not provided as input. Since there
is only a single internal state in this case, reseed process step 1 obtains the contents of the
internal state, and reseed process step 6 replaces the working_state of this internal state.

29

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

2)	 prediction_resistance_request: Indicates whether or not prediction resistance is to be
provided during the request (i.e., whether or not fresh entropy bits are required)5. Without
the explicit prediction resistance request, the entropy input could be provided from either
a DRBG with no access to an entropy source (i.e., fresh entropy would not be provided),
or the entropy input could be provided by an entropy source or by an RBG with access to
an entropy source (i.e., fresh entropy would be provided in these cases).

DRBGs that are implemented to always support prediction resistance or to never support
prediction resistance do not require this parameter. However, when prediction resistance
is not supported, the user of a consuming application must determine whether or not
prediction resistance may be required by the application before electing to use such a
DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request input
parameter and step 2 of the reseed process is omitted, and reseed process step 4 is
modified to omit the prediction_resistance_request parameter.

If prediction resistance is always performed, then the prediction_resistance_request input
parameter and reseed process step 2 may be omitted, and reseed process step 4 is replaced
by:

(status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length)

3)	 additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than or
equal to the maximum value specified for the given DRBG mechanism (see Section 10).
If the input by a consuming application of additional_input is not supported, then the
input parameter and step 2 of the reseed process are omitted, and step 5 of the reseed
process is modified to remove the additional_input from the parameter list.

Required information not provided by the consuming application during reseeding (This
information shall not be provided by the consuming application as an input parameter during the
reseed request):

1.	 entropy_input: Input bits containing entropy. This input shall not be provided by the
DRBG instantiation being reseeded. The maximum length of the entropy_input is
implementation dependent, but shall be less than or equal to the specified maximum
length for the selected DRBG mechanism (see Section 10).

2.	 Internal state values required by the DRBG for the working_state and administrative
information, as appropriate.

Output to a consuming application after reseeding:
1.	 status: The status returned from the function.

5 A DRBG may be reseeded by an entropy source or an NRBG, both of which provide fresh entropy. A DRBG
could also be reseeded by a DRBG that has access to an entropy source or NRBG. The request for prediction
resistance during reseeding rules out the use of a DRBG that does not have access to either an entropy source or
NRBG. See [SP 800-90C] for further discussion.

30

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Information retained within the DRBG mechanism boundary after reseeding:
Replaced internal state values (i.e., the working_state).

Reseed Process:
Comment: Get the current internal state and check
the input parameters.

1.	 Using state_handle, obtain the current internal state. If state_handle indicates an invalid
or unused internal state, return (ERROR_FLAG).

2.	 If prediction_resistance_request is set, and prediction_resistance_flag is not set, then
return (ERROR_FLAG).

3.	 If the length of the additional_input > max_additional_input_length, return

(ERROR_FLAG).

Comment: Obtain the entropy input.

4.	 (status, entropy_input) = Get_entropy_input (security_strength, min_length,

max_length, prediction_resistance_request).

Comment: status indications other than SUCCESS
could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in which
case, the status is returned to the consuming
application to handle. The Get_entropy_input call
could return a status of ERROR_FLAG to indicate
that entropy is currently unavailable, and could
return CATASTROPHIC_ERROR_FLAG to
indicate that an entropy source failed.

5.	 If (status ≠ SUCCESS), return (status).

Comment: Get the new working_state using the
appropriate reseed algorithm in Section 10.

6.	 new_working_state = Reseed_algorithm (working_state, entropy_input,

additional_input).

7	 Replace the working_state in the internal state for the DRBG instantiation (e.g., as
indicated by state_handle) with the values of new_working_state obtained in step 6.

8.	 Return (SUCCESS).

9.3 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding. The generate
function:

1.	 Checks the validity of the input parameters.

2.	 Calls the reseed function to obtain sufficient entropy if the instantiation needs additional
entropy because the end of the seedlife has been reached or prediction resistance is

31

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

required; see Sections 9.3.2 and 9.3.3 for more information on reseeding at the end of the
seedlife and on handling prediction resistance requests.

3.	 Generates the requested pseudorandom bits using the generate algorithm.
4.	 Updates the working state.

5.	 Returns the requested pseudorandom bits to the consuming application.

9.3.1 The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10). Let
Generate_algorithm be a call to the appropriate generate algorithm for the DRBG mechanism
(see Section 10), and let Reseed_function be a call to the reseed function in Section 9.2.

The following or an equivalent process shall be used to generate pseudorandom bits.
Generate_function (state_handle, requested_number_of_bits, requested_security_strength,

prediction_resistance_request, additional_input):
1.	 state_handle: A pointer or index that indicates the internal state to be used. If a state

handle is not used by an implementation because the implementation does not support
multiple simultaneous instantiations, a state_handle is not provided as input. The
state_handle is then omitted from the input parameter list in process step 7.1, generate
process steps 1 and 7.3 are used to obtain the contents of the internal state, and process
step 10 replaces the working_state of this internal state.

2.	 requested_number_of_bits: The number of pseudorandom bits to be returned from the
generate function. The max_number_of_bits_per_request is implementation dependent,
but shall be less than or equal to the value provided in Section 10 for a specific DRBG
mechanism.

3.	 requested_security_strength: The security strength to be associated with the requested
pseudorandom bits. DRBG implementations that support only one security strength do
not require this parameter; however, any consuming application using that DRBG
implementation must be aware of the supported security strength.

4.	 prediction_resistance_request: Indicates whether or not prediction resistance is to be
provided during the request. DRBGs that are implemented to always provide prediction
resistance or that do not support prediction resistance do not require this parameter.
However, when prediction resistance is not supported, the user of a consuming
application must determine whether or not prediction resistance may be required by the
application before electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request input
parameter and steps 5 and 9.2 of the generate process are omitted, and generate process
steps 7 and 7.1 are modified to omit the check for the prediction_resistance_request
term.

If prediction resistance is always performed, then the prediction_resistance_request input
parameter and generate process steps 5 and 9.2 may be omitted, and generate process
steps 7 and 8 may be replaced by:

status = Reseed_function (state_handle, additional_input).

32

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Comment: status indications other than SUCCESS
could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in which
case, the status is returned to the consuming
application to handle. The Get_entropy_input call
could return a status of ERROR_FLAG to indicate
that entropy is currently unavailable, and could
return CATASTROPHIC_ERROR_FLAG to
indicate that an entropy source failed.

If (status ≠ SUCCESS), return (status, Null).

Using state_handle, obtain the new internal state.
(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of_bits).

Note that if the input of additional_input is not supported, then the additional_input
parameter in the Reseed_function call above may be omitted.

5.	 additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than or
equal to the specified maximum length for the selected DRBG mechanism (see Section
10). If the input of additional_input is not supported, then the input parameter, generate
process steps 4 and 7.4, and the additional_input input parameter in generate process
steps 7.1 and 8 are omitted.

Required information not provided by the consuming application during generation:
1.	 Internal state values required for the working_state and administrative information, as

appropriate.
Output to a consuming application after generation:

1.	 status: The status returned from the generate function. If any status other than SUCCESS
is returned, a Null string shall be returned as the pseudorandom bits.

2. pseudorandom_bits: The pseudorandom bits that were requested or a Null string.
Information retained within the DRBG mechanism boundary after generation:

Replaced internal state values (i.e., the new working_state).
Generate Process:

Comment: Get the internal state and check the input
parameters.

1.	 Using state_handle, obtain the current internal state for the instantiation. If state_handle
indicates an invalid or unused internal state, then return (ERROR_FLAG, Null).

2.	 If requested_number_of_bits > max_number_of_bits_per_request, then return

(ERROR_FLAG, Null).

3.	 If requested_security_strength > the security_strength indicated in the internal state, then
return (ERROR_FLAG, Null).

33

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

4.	 If the length of the additional_input > max_additional_input_length, then return

(ERROR_FLAG, Null).

5.	 If prediction_resistance_request is set, and prediction_resistance_flag is not set, then
return (ERROR_FLAG, Null).

6.	 Clear the reseed_required_flag. Comment: See Section 9.3.2 for a discussion.
Comment: Reseed if necessary (see Section 9.2).

7.	 If reseed_required_flag is set, or if prediction_resistance_request is set, then
7.1	 status = Reseed_function (state_handle, prediction_resistance_request,

additional_input).
Comment: status indications other than SUCCESS
could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in which
case, the status is returned to the consuming
application to handle. The Get_entropy_input call
could return a status of ERROR_FLAG to indicate
that entropy is currently unavailable, and could
return CATASTROPHIC_ERROR_FLAG to
indicate that an entropy source failed.

7.2	 If (status ≠ SUCCESS), then return (status, Null).
7.3	 Using state_handle, obtain the new internal state.

7.4	 additional_input = the Null string.
7.5	 Clear the reseed_required_flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate generate
algorithm in Section 10.

8.	 (status, pseudorandom_bits, new_working_state) = Generate_algorithm (working_state,
requested_number_of_bits, additional_input).

9.	 If status indicates that a reseed is required before the requested bits can be generated,
then
9.1	 Set the reseed_required_flag.

9.2	 If the prediction_resistance_flag is set, then set the prediction_resistance request
indication.

9.3	 Go to step 7.
10. Replace the old working_state in the internal state of the DRBG instantiation (e.g., as

indicated by state_handle) with the values of new_working_state.
11. Return (SUCCESS, pseudorandom_bits).

Implementation notes:

34

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

If a reseed capability is not supported, or a reseed is not desired, then generate process steps 6
and 7 are removed; generate process step 9 is replaced by:

9.	 If status indicates that a reseed is required before the requested bits can be generated,
then

9.1 status = Uninstantiate_function (state_handle).
9.2 Return an indication that the DRBG instantiation can no longer be used.

9.3.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function checks
whether or not a reseed is required by comparing the counter within the internal state (see
Section 8.3) against a predetermined reseed interval for the DRBG implementation. This is
specified in the generate process (see Section 9.3.1) as follows:

a.	 Step 6 clears the reseed_required_flag.
b.	 Step 7 checks the value of the reseed_required_flag. At this time, the

reseed_required_flag is clear, so step 7 is skipped unless prediction resistance was
requested by the consuming application. For the purposes of this explanation, assume that
prediction resistance was not requested.

c.	 Step 8 calls the Generate_algorithm, which checks whether a reseed is required. If it is
required, an appropriate status is returned.

d.	 Step 9 checks the status returned by the Generate_algorithm. If the status does not
indicate that a reseed is required, the generate process continues with step 10.

e.	 However, if the status indicates that a reseed is required (see step 9), then the
reseed_required_flag is set, the prediction_resistance_request indicator is set if the
instantiation is capable of performing prediction resistance, and processing continues by
going back to step 7. This is intended to obtain fresh entropy for reseeding at the end of
the reseed interval whenever access to fresh entropy is available (see the concept of Live
Entropy Sources in [SP 800-90C]).

f.	 The substeps in step 7 are executed. The reseed function is called; any additional_input
provided by the consuming application in the generate request is used during reseeding.
The new values of the internal state are acquired, any additional_input provided by the
consuming application in the generate request is replaced by a Null string, and the
reseed_required_flag is cleared.

g.	 The generate algorithm is called (again) in step 8, the check of the returned status is made
in step 9, and (presumably) step 10 is then executed.

9.3.3 Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction resistance,
the generate function specified in Section 9.3.1 checks that the instantiation allows prediction
resistance requests (see step 5 of the generate process); clears the reseed_required_flag (even
though the flag won’t be used in this case); executes the substeps of generate process step 7,
resulting in a reseed, a new internal state for the instantiation, and setting the additional input to a

35

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Null value; obtains pseudorandom bits (see generate process step 8); passes through generate
process step 9, since another reseed will not be required; and continues with generate process
step 10.

9.4 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing (i.e., zeroizing) the
contents of the internal state. The uninstantiate function:

1.	 Checks the input parameter for validity, and

2.	 Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a DRBG
instantiation:

Uninstantiate_function (state_handle):

1.	 state_handle: A pointer or index that indicates the internal state to be “released”. If a
state handle is not used by an implementation because the implementation does not
support multiple simultaneous instantiations, a state_handle is not provided as input. In
this case, uninstantiate process step 1 is omitted, and process step 2 erases the internal
state.

Output to a consuming application after uninstantiation:

1.	 status: The status returned from the function.

Information retained within the DRBG mechanism boundary after uninstantiation:

1.	 An empty internal state.

Uninstantiate Process:

1.	 If state_handle indicates an invalid state, then return (ERROR_FLAG).

2.	 Erase the contents of the internal state indicated by state_handle.

3.	 Return (SUCCESS).

36

NIST SP 800-90A Rev. 1 HASH_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

10 DRBG Algorithm Specifications

Several DRBG mechanisms are specified in this Recommendation. The selection of a DRBG
mechanism depends on several factors, including the security strength to be supported and what
cryptographic primitives are available. An analysis of the consuming application’s requirements
for random numbers should be conducted in order to select an appropriate DRBG mechanism.
Conversion specifications required for the DRBG mechanism implementations (e.g., between
integers and bitstrings) are provided in Appendix A. Pseudocode examples for each DRBG
mechanism are provided in Appendix B. A detailed discussion on DRBG mechanism selection is
provided in Appendix C.
Examples for determining correct implementation of each DRBG are available at
http://csrc.nist.gov/groups/ST/toolkit/examples.html.

10.1 DRBG Mechanisms Based on Hash Functions

A DRBG mechanism may be based on a hash function that is one-way. The hash-based DRBG
mechanisms specified in this Recommendation have been designed to use any approved hash
function and may be used by consuming applications requiring various security strengths,
providing that the appropriate hash function is used and sufficient entropy is obtained for the
seed.
The following are provided as DRBG mechanisms based on hash functions:

1. The Hash_DRBG specified in Section 10.1.1.
2. The HMAC_DRBG specified in Section 10.1.2.

The maximum security strength that can be supported by each DRBG based on a hash function is
the security strength of the hash function for pre-image resistance; these security strengths are
provided in [SP 800-107]. [SP 800-57] identifies hash functions that can be used to support a
required security strength.
This Recommendation supports only four security strengths: 112, 128, 192, and 256 bits. Table 2
specifies the values that shall be used for the function envelopes6 and DRBG algorithm for each
approved hash function.

6 Discussed in Section 9.

37

http://csrc.nist.gov/groups/ST/toolkit/examples.html

NIST SP 800-90A Rev. 1 HASH_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

Table 2: Definitions for Hash-Based DRBG Mechanisms

SHA-1 SHA-224
and SHA-
512/224

SHA-256
and

SHA-
512/256

SHA-384 SHA-512

Supported security strengths See [SP 800-57]
highest_supported_security_strength See [SP 800-57]
Output Block Length (outlen) 160 224 256 384 512
Required minimum entropy for
instantiate and reseed

security_strength

Minimum entropy input length
(min_length)

security_strength

Maximum entropy input length
(max_ length)

235 bits

Seed length (seedlen) for
Hash_DRBG

440 440 440 888 888

Maximum personalization string
length
(max_personalization_string_length)

235 bits

Maximum additional_input length
(max_additional_input_length)

235 bits

max_number_of_bits_per_request 219 bits
Maximum number of requests
between reseeds (reseed_interval)

248

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit when using SHA-
224, rather than SHA-256. Also note that since SHA-384, SHA-512/224 and SHA-512/256 are
based on SHA-512, there is no efficiency benefit for using these three SHA mechanisms, rather
than using SHA-512. However, efficiency is just one factor to consider when selecting the
appropriate hash function to use as part of a DRBG mechanism.

10.1.1 Hash_DRBG

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The
Hash_DRBG requires the use of a hash function during the instantiate, reseed and generate
functions; the same hash function shall be used throughout a Hash_DRBG instantiation.
Hash_DRBG uses the derivation function specified in Section 10.3.1 during instantiation and
reseeding. The security strength of the hash function to be used shall meet or exceed the desired
security strength required by the consuming application for DRBG output (see [SP 800-57]).

38

NIST SP 800-90A Rev. 1 HASH_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

10.1.1.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:
1. The working_state:

a.	 A value (V) of seedlen bits that is

updated during each call to the

DRBG.

b.	 A constant (C) of seedlen bits that

depends on the seed.

c.	 A counter (reseed_counter) that

indicates the number of requests for

pseudorandom bits since new

entropy_input was obtained during

instantiation or reseeding.

2. Administrative information:

a.	 The security_strength of the DRBG

instantiation.

b.	 A prediction_resistance_flag that

indicates whether or not a

prediction resistance capability is

available for the DRBG

instantiation.

The values of V and C are the critical values of
the internal state upon which the security of
this DRBG mechanism depends (i.e., V and C
are the “secret values” of the internal state).

10.1.1.2 Instantiation of Hash_DRBG Figure 8: Hash_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of Hash_DRBG requires a call to the Instantiate_function specified in
Section 9.1. Process step 9 of that function calls the instantiate algorithm in this section.

The values of highest_supported_security_strength and min_length are provided in Table 2
of Section 10.1. The contents of the internal state are provided in Section 10.1.1.1.

The instantiate algorithm:
Let Hash_df be the hash derivation function specified in Section 10.3.1 using the selected
hash function. The output block length (outlen), seed length (seedlen) and appropriate
security_strengths for the implemented hash function are provided in Table 2 of Section
10.1.

39

NIST SP 800-90A Rev. 1 HASH_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG mechanism (see step 9 of the instantiate process in Section 9.1).

Hash_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string,

security_strength):

1.	 entropy_input: The string of bits obtained from the randomness source.
2.	 nonce: A string of bits as specified in Section 8.6.7.

3.	 personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

4.	 security_strength: The security strength for the instantiation. This parameter is
optional for Hash_DRBG, since it is not used.

Output:
1.	 initial_working_state: The initial values for V, C, and reseed_counter (see Section

10.1.1.1).
Hash_DRBG Instantiate Process:

1.	 seed_material = entropy_input || nonce || personalization_string.
2.	 seed = Hash_df (seed_material, seedlen).

3.	 V = seed.
4.	 C = Hash_df ((0x00 || V), seedlen). Comment: Precede V with a byte of zeros.

5.	 reseed_counter = 1.
6.	 Return (V, C, reseed_counter).

10.1.1.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:
The reseeding of a Hash_DRBG instantiation requires a call to the Reseed_function
specified in Section 9.2. Process step 6 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:
Let Hash_df be the hash derivation function specified in Section 10.3.1 using the selected
hash function. The value for seedlen is provided in Table 2 of Section 10.1.
The following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see step 6 of the reseed process in Section 9.2):
Hash_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1.	 working_state: The current values for V, C, and reseed_counter (see Section
10.1.1.1).

2.	 entropy_input: The string of bits obtained from the randomness source.

40

NIST SP 800-90A Rev. 1 HASH_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

3.	 additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:
1.	 new_working_state: The new values for V, C, and reseed counter.

Hash_DRBG Reseed Process:

1.	 seed_material = 0x01 || V || entropy_input || additional_input.
2.	 seed = Hash_df (seed_material, seedlen).

3.	 V = seed.
4.	 C = Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all zeros.

5.	 reseed_counter = 1.
6.	 Return (V, C, and reseed_counter).

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function specified in Section 9.3:
The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call to the
generate function specified in Section 9.3. Process step 8 of that function calls the generate
algorithm specified in this section. The values for max_number_of_bits_per_request and
outlen are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum interval
between reseeding (reseed_interval) are provided in Table 2 of Section 10.1. Note that for
this DRBG mechanism, the reseed counter is used to update the value of V, as well as to
count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3):

Hash_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1.	 working_state: The current values for V, C, and reseed_counter (see Section
10.1.1.1).

2.	 requested_number_of_bits: The number of pseudorandom bits to be returned to the
generate function.

3.	 additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

41

€

NIST SP 800-90A Rev. 1 HASH_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

1.	 status: The status returned from the function. The status will indicate SUCCESS, or
indicate that a reseed is required before the requested pseudorandom bits can be
generated.

2.	 returned_bits: The pseudorandom bits to be returned to the generate function.

3.	 new_working_state: The new values for V, C, and reseed_counter.
Hash_DRBG_Generate Process:

1.	 If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2.	 If (additional_input ≠ Null), then do
2.1 w = Hash (0x02 || V || additional_input).

2.2 V = (V + w) mod 2seedlen .
3.	 (returned_bits) = Hashgen (requested_number_of_bits, V).

4.	 H = Hash (0x03 || V).
5.	 V = (V + H + C + reseed_counter) mod 2seedlen .

6.	 reseed_counter = reseed_counter + 1.
7. Return (SUCCESS, returned_bits, V, C, reseed_counter).

Hashgen (requested_number_of_bits, V):

Input:

1.	 requested_no_of_bits: The number of bits to be returned.
2.	 V: The current value of V.

Output:
1.	 returned_bits: The generated bits to be returned to the generate function.

Hashgen Process:
requested _ no _ of _ bits1. m =	 .	 outlen

2.	 data = V.

3.	 W = the Null string.
4.	 For i = 1 to m

4.1 w = Hash (data).
4.2 W = W || w.

4.3 data = (data + 1) mod 2seedlen .
5.	 returned_bits = leftmost (W, requested_no_of_bits).

6.	 Return (returned_bits).

42

NIST SP 800-90A Rev. 1 HMAC_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

10.1.2 HMAC_DRBG

HMAC_DRBG uses multiple occurrences of an approved keyed hash function, which is
based on an approved hash function. This DRBG mechanism uses the
HMAC_DRBG_Update function specified in Section 10.1.2.2 and the HMAC function
within the HMAC_DRBG_Update function as the derivation function during instantiation
and reseeding. The same hash function shall be used throughout an HMAC_DRBG
instantiation. The hash function used shall meet or exceed the security strength required by
the consuming application for DRBG
output (see [SP 800-57]).

Figure 9 depicts the HMAC_DRBG in
three stages. HMAC_DRBG is specified
using an internal function
(HMAC_DRBG_Update). This function
is called during the HMAC_DRBG
instantiate, generate and reseed algorithms
to adjust the internal state when new
entropy or additional input is provided, as
well as to update the internal state after
pseudorandom bits are generated. The
operations in the top portion of the figure
are only performed if the additional input
is not null. Figure 10 depicts the
HMAC_DRBG_Update function.

10.1.2.1	 HMAC_DRBG Internal
State

The internal state for HMAC_DRBG
consists of:

1. The working_state:
a.	 The value V of outlen bits,

which is updated each time

another outlen bits of output

are produced (where outlen is

specified in Table 2 of Section

10.1).

b.	 The outlen-bit Key, which is

updated at least once each time

that the DRBG mechanism

generates pseudorandom bits.

c.	 A counter (reseed_counter) that
indicates the number of requests for pseudorandom bits since instantiation or
reseeding.

Figure 9: HMAC_DRBG Generate Function

43

NIST SP 800-90A Rev. 1 HMAC_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

2. Administrative information:
a.	 The security_strength of the

DRBG instantiation.

b.	 A prediction_resistance_flag

that indicates whether or not a

prediction resistance capability

is required for the DRBG

instantiation.

The values of V and Key are the critical
values of the internal state upon which the
security of this DRBG mechanism
depends (i.e., V and Key are the “secret
values” of the internal state).

10.1.2.2	 The HMAC_DRBG
Update Function
(Update)

The HMAC_DRBG_Update function
updates the internal state of
HMAC_DRBG using the provided_data.
Note that for this DRBG mechanism, the

HMAC_DRBG_Update function also
serves as a derivation function for the
instantiate and reseed functions.
Let HMAC be the keyed hash function specified in [FIPS 198] using the hash function
selected for the DRBG mechanism from Table 2 in Section 10.1.

Figure 10: HMAC_DRBG_Update Function

The following or an equivalent process shall be used as the HMAC_DRBG_Update
function.

HMAC_DRBG_Update (provided_data, K, V):

1. provided_data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.

Output:
1. K: The new value for Key.

2. V: The new value for V.

HMAC_DRBG Update Process:
1. K = HMAC (K, V || 0x00 || provided_data).

2. V = HMAC (K, V).

44

NIST SP 800-90A Rev. 1 HMAC_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

3.	 If (provided_data = Null), then return K and V.
4.	 K = HMAC (K, V || 0x01 || provided_data).

5.	 V = HMAC (K, V).
6.	 Return (K, V).

10.1.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function specified in Section 9.1:
The instantiation of HMAC_DRBG requires a call to the Instantiate_function
specified in Section 9.1. Process step 9 of that function calls the instantiate algorithm
specified in this section. The values of highest_supported_security_strength and min
_length are provided in Table 2 of Section 10.1. The contents of the internal state are
provided in Section 10.1.2.1.

The instantiate algorithm:
Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The output
block length (outlen) is provided in Table 2 of Section 10.1.
The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1):
HMAC_DRBG_Instantiate_algorithm (entropy_input, nonce,

personalization_string, security_strength):

1.	 entropy_input: The string of bits obtained from the randomness source.

2.	 nonce: A string of bits as specified in Section 8.6.7.
3.	 personalization_string: The personalization string received from the consuming

application. Note that the length of the personalization_string may be zero.
4.	 security_strength: The security strength for the instantiation. This parameter is

optional for HMAC_DRBG, since it is not used.
Output:

1.	 initial_working_state: The initial values for V, Key and reseed_counter (see
Section 10.1.2.1).

HMAC_DRBG Instantiate Process:
1. 	 seed_material = entropy_input || nonce || personalization_string.

2.	 Key = 0x00 00...00. Comment: outlen bits.
3.	 V = 0x01 01...01. Comment: outlen bits.

Comment: Update Key and V.

4.	 (Key, V) = HMAC_DRBG_Update (seed_material, Key, V).

5.	 reseed_counter = 1.
6.	 Return (V, Key. reseed_counter).

45

NIST SP 800-90A Rev. 1 HMAC_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

10.1.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:
The reseeding of an HMAC_DRBG instantiation requires a call to the
Reseed_function specified in Section 9.2. Process step 6 of that function calls the
reseed algorithm specified in this section. The values for min_length are provided in
Table 2 of Section 10.1.

The reseed algorithm:

Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The
following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see step 6 of the reseed process in Section 9.2):
HMAC_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1.	 working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

2.	 entropy_input: The string of bits obtained from the randomness source.
3.	 additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.
Output:

1.	 new_working_state: The new values for V, Key and reseed_counter.
HMAC_DRBG Reseed Process:

1.	 seed_material = entropy_input || additional_input.
2.	 (Key, V) = HMAC_DRBG_Update (seed_material, Key, V).

3.	 reseed_counter = 1.
4.	 Return (V, Key, reseed_counter).

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.3:
The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the Generate_function specified in Section 9.3. Process step 8 of that function
calls the generate algorithm specified in this section. The values for
max_number_of_bits_per_request and outlen are provided in Table 2 of Section 10.1.

The generate algorithm:
Let HMAC be the keyed hash function specified in [FIPS 198] using the hash function
selected for the DRBG mechanism. The value for reseed_interval is defined in Table 2
of Section 10.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3):

46

NIST SP 800-90A Rev. 1 HMAC_DRBG Recommendation for Random Number
Generation Using Deterministic RBGs

HMAC_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1.	 working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

2.	 requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

3.	 additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:
1.	 status: The status returned from the function. The status will indicate

SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2.	 returned_bits: The pseudorandom bits to be returned to the generate function.
3.	 new_working_state: The new values for V, Key and reseed_counter.

HMAC_DRBG Generate Process:
1.	 If reseed_counter > reseed_interval, then return an indication that a reseed is

required.

2.	 If additional_input ≠ Null, then (Key, V) =

HMAC_DRBG_Update (additional_input, Key, V).

3.	 temp = Null.

4.	 While (len (temp) < requested_number_of_bits) do:
4.1 V = HMAC (Key, V).

4.2 temp = temp || V.
5.	 returned_bits = leftmost (temp, requested_number_of_bits).

6.	 (Key, V) = HMAC_DRBG_Update (additional_input, Key, V).
7.	 reseed_counter = reseed_counter + 1.

8.	 Return (SUCCESS, returned_bits, Key, V, reseed_counter).

47

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

10.2 DRBG Mechanism Based on Block Ciphers

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBG mechanism
specified in this Recommendation has been designed to use any approved block cipher
algorithm and may be used by consuming
applications requiring various security strengths,
providing that the appropriate block cipher
algorithm and key length are used, and sufficient
entropy is obtained for the seed.

The maximum security strength that can be
supported by the DRBG depends on the block
cipher and key size used; the security strengths that
can be supported by the block ciphers and key sizes
are provided in [SP 800-57].

10.2.1 CTR_DRBG

CTR_DRBG uses an approved block cipher
algorithm in the counter mode as specified in [SP
800-38A], but allows the counter field to be a
subset of the input block, as specified in [SP 800-
38D]. Note that for TDEA, the input and output
block lengths are 64 bits, and for AES, the lengths
are 128 bits.
The same block cipher algorithm and key length
shall be used for all block cipher operations of this
DRBG. The block cipher algorithm and key length
shall meet or exceed the security requirements of the consuming application.
CTR_DRBG is specified using an internal function (CTR_DRBG_Update). Figure 11 depicts
the CTR_DRBG_Update function. This function is called by the instantiate, generate and
reseed algorithms to adjust the internal state when new entropy or additional input is provided, as
well as to update the internal state after pseudorandom bits are generated. Figure 12 depicts the
CTR_DRBG in three stages. The operations in the top portion of the figure are only performed
if the additional input is not null.
Table 3 specifies the values that shall be used for the function envelopes and CTR_DRBG
mechanism.

Figure 11: CTR_DRBG Update Function

48

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Table 3: Definitions for the CTR_DRBG

3 Key TDEA AES-
128

AES-
192

AES-
256

Supported security strengths See [SP 800-57]
highest_supported_security_strength See [SP 800-57]
Input and output block length
(blocklen)

64 128 128 128

Counter field length (ctr_len) 4 ≤ ctr_len ≤ blocklen
Key length (keylen) 168 128 192 256
Required minimum entropy for
instantiate and reseed

security_strength

Seed length (seedlen = outlen + keylen) 232 256 320 384
If a derivation function is used:

Minimum entropy input length
(min _length)

security_strength

Maximum entropy input length
(max _length)

235 bits

Maximum personalization string
length
(max_personalization_string_length)

235 bits

Maximum additional_input length
(max_additional_input_length)

235 bits

If a derivation function is not used:
Minimum entropy input length
(min _length = blocklen + keylen)

seedlen

Maximum entropy input length
(max _length = blocklen + keylen)

seedlen

Maximum personalization string
length
(max_personalization_string_length)

seedlen

Maximum additional_input length
(max_additional_input_length)

seedlen

max_number_of_bits_per_request
(for B = (2ctr_len - 4) × blocklen)

min(B, 213) min(B, 219)

Maximum number of requests between
reseeds (reseed_interval)

232 248

Note that the claimed security strength for CTR_DRBG depends on limiting the total number of
generate requests and the bits provided per generate request according to the table above.

49

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Without these limits, it becomes
possible, in principle, for an attacker to
observe enough outputs from
CTR_DRBG to distinguish its outputs
from ideal random bits.
The CTR_ DRBG may be
implemented to use the block cipher
derivation function specified in Section
10.3.2 during instantiation and
reseeding. However, the DRBG
mechanism is specified to allow an
implementation tradeoff with respect to
the use of this derivation function. The
use of the derivation function is
optional if either an approved RBG or
an entropy source provides full entropy
output when entropy input is requested
by the DRBG mechanism. Otherwise,
the derivation function shall be used.
Table 3 provides the lengths required
for the entropy_input,
personalization_string and
additional_input for each case.
When using TDEA as the selected
block cipher algorithm, the keys shall
be handled as 64-bit blocks containing
56 bits of key and 8 bits of parity as
specified for the TDEA engine
specified in [SP 800-67].

10.2.1.1	 CTR_DRBG Internal
State

The internal state for the CTR_DRBG
consists of:

1. The working_state:

a.	 The value V of blocklen

bits, which is updated each

time another blocklen bits of output are produced.

Figure 12: CTR-DRBG

b.	 The keylen-bit Key, which is updated whenever a predetermined number of output
blocks are generated.

c.	 A counter (reseed_counter) that indicates the number of requests for pseudorandom
bits since instantiation or reseeding.

2. Administrative information:

50

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

a.	 The security_strength of the DRBG instantiation.
b.	 A prediction_resistance_flag that indicates whether or not a prediction resistance

capability is required for the DRBG instantiation.
The values of V and Key are the critical values of the internal state upon which the security of
this DRBG mechanism depends (i.e., V and Key are the “secret values” of the internal state).

10.2.1.2 The Update Function (CTR_DRBG_Update)

The CTR_DRBG_Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for blocklen, keylen and seedlen are provided in Table 3 of Section
10.2.1. The value of ctr_len is known by an implementation. The block cipher operation in step
2.2 of the CTR_DRBG_UPDATE process uses the selected block cipher algorithm. The
specification of Block_Encrypt is discussed in Section 10.3.3.

The following or an equivalent process shall be used as the CTR_DRBG_Update function.
CTR_DRBG_Update (provided_data, Key, V):

1.	 provided_data: The data to be used. This must be exactly seedlen bits in length; this
length is guaranteed by the construction of the provided_data in the instantiate,
reseed and generate functions.

2.	 Key: The current value of Key.

3.	 V: The current value of V.
Output:

1.	 K: The new value for Key.
2.	 V: The new value for V.

CTR_DRBG_Update Process:
1.	 temp = Null.

2.	 While (len (temp) < seedlen) do
2.1 If ctr_len < blocklen

2.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctr_len .
2.1.2 V = leftmost (V, blocklen-ctr_len) || inc.

Else V = (V+1) mod 2blocklen
.

2.2 output_block = Block_Encrypt (Key, V).

2.3 temp = temp || output_block.
3. temp = leftmost (temp, seedlen).

4 temp = temp ⊕ provided_data.

5.	 Key = leftmost (temp, keylen).

6.	 V = rightmost (temp, blocklen).

51

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

7.	 Return (Key, V).

10.2.1.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of CTR_DRBG requires a call to the Instantiate_function specified in
Section 9.1. Process step 9 of that function calls the instantiate algorithm specified in this
section. The values of highest_supported_security_strength and min_length are provided in
Table 3 of Section 10.2.1. The contents of the internal state are provided in Section 10.2.1.1.

The instantiate algorithm:
For this DRBG mechanism, there are two cases for processing. In each case, let
CTR_DRBG_Update be the function specified in Section 10.2.1.2. The output block length
(blocklen), key length (keylen), seed length (seedlen) and security_strengths for the block
cipher algorithms are provided in Table 3 of Section 10.2.1.

10.2.1.3.1 Instantiation When a Derivation Function is Not Used

When instantiation is performed using this method, full-entropy input is required, and a nonce is
not used. The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, personalization_string,

security_strength):

1.	 entropy_input: The string of bits obtained from the randomness source.
2.	 personalization_string: The personalization string received from the consuming

application. Note that the length of the personalization_string may be zero.
3.	 security_strength: The security strength for the instantiation. This parameter is

optional for CTR_DRBG.
Output:

1.	 initial_working_state: The initial values for V, Key, and reseed_counter (see Section
10.2.1.1).

CTR_DRBG Instantiate Process:
1.	 temp = len (personalization_string).

Comment: Ensure that the length of the
personalization_string is exactly seedlen bits. Note
that in Section 9.1, processing step 3 obtained an
entropy_input of seedlen bits using Table 3 to
define the minimum and maximum lengths, which
are both equal to seedlen bits.

2. If (temp < seedlen), then personalization_string = personalization_string || 0seedlen -

temp.

3.	 seed_material = entropy_input ⊕ personalization_string.

52

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Key = 0keylen4.	 . Comment: keylen bits of zeros.

V = 0blocklen
 5. .	 Comment: blocklen bits of zeros.

6.	 (Key, V) = CTR_DRBG_Update (seed_material, Key, V).
7.	 reseed_counter = 1.

8.	 Return (V, Key, reseed_counter).

10.2.1.3.2 Instantiation When a Derivation Function is Used

When instantiation is performed using this method, the entropy input may or may not have full
entropy; in either case, a nonce is required.
Let df be the derivation function specified in Section 10.3.2. When instantiation is performed
using this method, a nonce is required, whereas using the method in Section 10.2.1.3.1 does not
require a nonce, since full entropy is provided when using that method.

The following process or its equivalent shall be used as the instantiate algorithm for this DRBG
mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string,
security_strength):

1.	 entropy_input: The string of bits obtained from the randomness source.
2.	 nonce: A string of bits as specified in Section 8.6.7.

3.	 personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

4.	 security_strength: The security strength for the instantiation. This parameter is
optional for CTR_DRBG, since it is not used.

Output:
1.	 initial_working_state: The initial values for V, Key, and reseed_counter (see Section

10.2.1.1).
CTR_DRBG Instantiate Process:

1.	 seed_material = entropy_input || nonce || personalization_string.
Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2.	 seed_material = df (seed_material, seedlen).

Key = 0keylen
3.	 . Comment: keylen bits of zeros.

V = 0blocklen
 4. .	 Comment: blocklen bits of zeros.

5.	 (Key, V) = CTR_DRBG_Update (seed_material, Key, V).
6.	 reseed_counter = 1.

7.	 Return (V, Key, reseed_counter).

53

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

10.2.1.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:
The reseeding of a CTR_DRBG instantiation requires a call to the Reseed_function
specified in Section 9.2. Process step 6 of that function calls the reseed algorithm specified in
this section. The values for min _length are provided in Table 3 of Section 10.2.1.

The reseed algorithm:
For this DRBG mechanism, there are two cases for processing. In each case, let
CTR_DRBG_Update be the function specified in Section 10.2.1.2. The seed length
(seedlen) is provided in Table 3 of Section 10.2.1.

10.2.1.4.1 Reseeding When a Derivation Function is Not Used

When reseeding is performed using this method, full-entropy input is required.
The following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see step 6 of the reseed process in Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1.	 working_state: The current values for V, Key and reseed_counter (see Section
10.2.1.1).

2.	 entropy_input: The string of bits obtained from the randomness source.
3.	 additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.
Output:

1.	 new_working_state: The new values for V, Key, and reseed_counter.
CTR_DRBG Reseed Process:

1.	 temp = len (additional_input).
Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section 9.2,
processing step 2, using Table 3 to define the
maximum length.

2.	 If (temp < seedlen), then additional_input = additional_input || 0seedlen - temp.

3.	 seed_material = entropy_input ⊕ additional_input.
4.	 (Key, V) = CTR_DRBG_Update (seed_material, Key, V).
5.	 reseed_counter = 1.

6.	 Return (V, Key, reseed_counter).

10.2.1.4.2 Reseeding When a Derivation Function is Used

Let df be the derivation function specified in Section 10.3.2.

54

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

The following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see reseed process step 6 of Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input)
1.	 working_state: The current values for V, Key and reseed_counter (see Section

10.2.1.1).
2.	 entropy_input: The string of bits obtained from the randomness source.

3.	 additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:
1.	 new_working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Reseed Process:
1.	 seed_material = entropy_input || additional_input.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2.	 seed_material = df (seed_material, seedlen).
3.	 (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

4.	 reseed_counter = 1.
5.	 Return (V, Key, reseed_counter).

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.3:
The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call to the
Generate_function specified in Section 9.3. Process step 8 of that function calls the generate
algorithm specified in this section. The values for max_number_of_bits_per_request and
max_additional_input_length, and blocklen are provided in Table 3 of Section 10.2.1. If the
derivation function is not used, then the maximum allowed length of additional_input =
seedlen.
For this DRBG mechanism, there are two cases for the processing. For each case, let
CTR_DRBG_Update be the function specified in Section 10.2.1.2, and let Block_Encrypt
be the function specified in Section 10.3.3. The seed length (seedlen) and the value of
reseed_interval are provided in Table 3 of Section 10.2.1. The value of ctr_len is known by
an implementation.

10.2.1.5.1 Generating Pseudorandom Bits When a Derivation Function is Not Used

This method of generating bits is used when a derivation function is not used by an
implementation.

The following process or its equivalent shall be used as the generate algorithm for this DRBG
mechanism (see step 8 of the generate process in Section 9.3.3):

55

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1.	 working_state: The current values for V, Key, and reseed_counter (see Section
10.2.1.1).

2.	 requested_number_of_bits: The number of pseudorandom bits to be returned to the
generate function.

3.	 additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.

Output:
1.	 status: The status returned from the function. The status will indicate SUCCESS, or

indicate that a reseed is required before the requested pseudorandom bits can be
generated.

2.	 returned_bits: The pseudorandom bits returned to the generate function.
3.	 working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Generate Process:

1.	 If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2.	 If (additional_input ≠ Null), then
Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section 9.3.3,
processing step 4, using Table 3 to define the
maximum length. If the length of the additional
input is < seedlen, pad with zero bits.

2.1	 temp = len (additional_input).

2.2	 If (temp < seedlen), then

additional_input = additional_input || 0seedlen - temp.

2.3 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
Else additional_input = 0seedlen .

3.	 temp = Null.
4.	 While (len (temp) < requested_number_of_bits) do:

4.1	 If ctr_len < blocklen
4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctr_len .

4.1.2 V = leftmost (V, blocklen-ctr_len) || inc.

Else V = (V+1) mod 2blocklen

.

56

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

4.2 output_block = Block_Encrypt (Key, V).
4.3 temp = temp || output_block.

5.	 returned_bits = leftmost (temp, requested_number_of_bits).
Comment: Update for backtracking resistance.

6.	 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
7.	 reseed_counter = reseed_counter + 1.

8.	 Return (SUCCESS, returned_bits, Key, V, reseed_counter).

10.2.1.5.2 Generating Pseudorandom Bits When a Derivation Function is Used

This method of generating bits is used when a derivation function is used by an implementation.

Let df be the derivation function specified in Section 10.3.2.

The following process or its equivalent shall be used as the generate algorithm for this DRBG

mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

1.	 working_state: The current values for V, Key, and reseed_counter (see Section

10.2.1.1).
2.	 requested_number_of_bits: The number of pseudorandom bits to be returned to the

generate function.
3.	 additional_input: The additional input string received from the consuming

application. Note that the length of the additional_input string may be zero.
Output:

1.	 status: The status returned from the function. The status will indicate SUCCESS, or
indicate that a reseed is required before the requested pseudorandom bits can be
generated.

2.	 returned_bits: The pseudorandom bits returned to the generate function.

3.	 working_state: The new values for V, Key, and reseed_counter.
CTR_DRBG Generate Process:

1.	 If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2.	 If (additional_input ≠ Null), then
2.1 additional_input = Block_Cipher_df (additional_input, seedlen).

2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
Else additional_input = 0seedlen .

3.	 temp = Null.

57

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

4.	 While (len (temp) < requested_number_of_bits) do:
4.1 If ctr_len < blocklen

4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctr_len .
4.1.2 V = leftmost (V, blocklen-ctr_len) || inc.

Else
4.1.2 V = (V+1) mod 2blocklen

.

4.2 output_block = Block_Encrypt (Key, V).
4.3 temp = temp || output_block.

5.	 returned_bits = leftmost (temp, requested_number_of_bits).
Comment: Update for backtracking resistance.

6.	 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
7.	 reseed_counter = reseed_counter + 1.

8.	 Return (SUCCESS, returned_bits, Key, V, reseed_counter).

10.3 Auxiliary Functions

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a bitstring.
Two methods are provided. One method is based on the use of hash functions (see Section
10.3.1), and the other method is based on the use of block cipher algorithms (see Section
10.3.2). The block cipher derivation function specified in Section 10.3.2 uses a BCC function
and a Block_Encrypt call that are discussed in Section 10.3.3.
The presence of these derivation functions in this Recommendation does not implicitly approve
these functions for any other application.

10.3.1 Derivation Function Using a Hash Function (Hash_df)

This derivation function is used by the Hash_DRBG specified Section 10.1.1. The hash-based
derivation function hashes an input string and returns the requested number of bits. Let Hash be
the hash function used by the DRBG mechanism, and let outlen be its output length.

The following or an equivalent process shall be used to derive the requested number of bits:
Hash_df (input_string, no_of_bits_to_return):

1.	 input_string: The string to be hashed.
2.	 no_of_bits_to_return: The number of bits to be returned by Hash_df. The maximum

length (max_number_of_bits) is implementation dependent, but shall be less than or
equal to (255 × outlen). no_of_bits_to_return is represented as a 32-bit integer.

Output:

58

€

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

1.	 status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR_FLAG.

2. requested_bits: The result of performing the Hash_df.
Hash_df Process:

1.	 temp = the Null string.
no _ of _ bits_ to _ return2. len =	 .	 outlen

3.	 counter = 0x01. Comment: An 8-bit binary value representing the
integer "1".

4.	 For i = 1 to len do
Comment : In step 4.1, no_of_bits_to_return is used
as a 32-bit string.

4.1 temp = temp || Hash (counter || no_of_bits_to_return || input_string).

4.2 counter = counter + 1.
5.	 requested_bits = leftmost (temp, no_of_bits_to_return).

6.	 Return (SUCCESS, requested_bits).

10.3.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. BCC and
Block_Encrypt are discussed in Section 10.3.3. Let outlen be its output block length, which is a
multiple of eight bits for the approved block cipher algorithms, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of bits.
Block_Cipher_df (input_string, no_of_bits_to_return):

1.	 input_string: The string to be operated on. This string shall be a multiple of eight bits.
2.	 no_of_bits_to_return: The number of bits to be returned by Block_Cipher_df. The

maximum length (max_number_of_bits) is 512 bits for the currently approved block
cipher algorithms.

Output:
1.	 status: The status returned from Block_Cipher_df. The status will indicate SUCCESS or

ERROR_FLAG.
2. requested_bits: The result of performing the Block_Cipher_df.

Block_Cipher_df Process:
1.	 If (number_of_bits_to_return > max_number_of_bits), then return an ERROR_FLAG

and a Null string.

59

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

2.	 L = len (input_string)/8. Comment: L is the bitstring representation of the
integer resulting from len (input_string)/8. L shall
be represented as a 32-bit integer.

3.	 N = number_of_bits_to_return/8. Comment: N is the bitstring representation of the
integer resulting from number_of_bits_to_return/8.
N shall be represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the input_string.

4.	 S = L || N || input_string || 0x80.

Comment: Pad S with zeros, if necessary.

5. While (len (S) mod outlen) ≠ 0, do
S = S || 0x00.

Comment: Compute the starting value.
6. temp = the Null string.

7.	 i = 0. Comment: i shall be represented as a 32-bit integer,
i.e., len (i) = 32.

8. K = leftmost (0x00010203...1D1E1F, keylen).
9.	 While len (temp) < keylen + outlen, do

IV = i || 0outlen - len (i)
9.1	 . Comment: The 32-bit integer representation of i is
padded with zeros to outlen bits.

9.2 temp = temp || BCC (K, (IV || S)).
9.3	 i = i + 1.

Comment: Compute the requested number of bits.
10. K = leftmost (temp, keylen).

11. X = select (temp, keylen+1, keylen+outlen).
12. temp = the Null string.

13. While len (temp) < number_of_bits_to_return, do
13.1 X = Block_Encrypt (K, X).

13.2 temp = temp || X.
14. requested_bits = leftmost (temp, 	number_of_bits_to_return).

15. Return (SUCCESS, requested_bits).

10.3.3 BCC and Block_Encrypt

Block_Encrypt is used for convenience in the specification of the BCC function. This function
is not specifically defined in this Recommendation, but has the following meaning:

60

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Block_Encrypt: A basic encryption operation that uses the selected block cipher algorithm.
The function call is:

output_block = Block_Encrypt (Key, input_block)
For TDEA, the basic encryption operation is called the forward cipher operation (see [SP
800-67]); for AES, the basic encryption operation is called the cipher operation (see [FIPS
197]). The basic encryption operation is equivalent to an encryption operation on a single
block of data using the ECB mode.

For the BCC function, let outlen be the length of the output block of the block cipher algorithm
to be used.
The following or an equivalent process shall be used to derive the requested number of bits.

BCC (Key, data):
1.	 Key: The key to be used for the block cipher operation.

2.	 data: The data to be operated upon. Note that the length of data must be a multiple of
outlen. This is guaranteed by Block_Cipher_df process steps 4 and 8.1 in Section 10.3.2.

Output:
1. output_block: The result to be returned from the BCC operation.

BCC Process:
1.	 chaining_value = 0outlen . Comment: Set the first chaining value to outlen zeros.

2.	 n = len (data)/outlen.
3.	 Starting with the leftmost bits of data, split data into n blocks of outlen bits each, forming

block1 to blockn.
4.	 For i = 1 to n do

4.1 input_block = chaining_value ⊕ blocki.
4.2 chaining_value = Block_Encrypt (Key, input_block).

5.	 output_block = chaining_value.
6.	 Return (output_block).

61

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

11 Assurance

A user of a DRBG employed for cryptographic purposes requires assurance that the generator
actually produces (pseudo) random and unpredictable bits. The user needs assurance that the
design of the generator, its implementation and its use to support cryptographic services are
adequate to protect the user's information. In addition, the user requires assurance that the
generator continues to operate correctly.

The design of each DRBG mechanism in this Recommendation has received an evaluation of its
security properties prior to its selection for inclusion in this Recommendation.

An implementer selects a DRBG mechanism (e.g., HMAC_DRBG), an appropriate
cryptographic primitive (e.g., SHA-256 or SHA-512), the DRBG functions to be used (i.e.,
instantiate, generate and/or reseed), and will determine whether or not the DRBG will be
distributed (see Section 8.5). Each choice of components effectively defines a different DRBG
type. For example, an implementation of HMAC_DRBG using SHA-256 is considered to be a
different DRBG than HMAC_DRBG using SHA-512.

An implementation shall be validated for conformance to this Recommendation by a NVLAP-
accredited laboratory (see Section 11.2). Such validations provide a higher level of assurance
that the DRBG mechanism is correctly implemented.
Health tests on the DRBG mechanism shall be implemented within a DRBG mechanism
boundary or sub-boundary in order to determine that the process continues to operate as designed
and implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG mechanism shall be validated (see [FIPS 140]).
The consuming application or cryptographic service that uses a DRBG mechanism should also
be validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or health testing) may
be publicly known. Therefore, entropy input used for testing shall not be used for normal
operational use.

11.1 Minimal Documentation Requirements

A set of documentation shall be developed that will provide assurance to users and validators
that the DRBG mechanisms in this Recommendation have been implemented properly. Much of
this documentation could be placed in a user manual. This documentation shall consist of the
following as a minimum:

•	 Document the method for obtaining entropy input.

•	 Document how the implementation has been designed to permit implementation

validation and health testing.

•	 Document the type of DRBG mechanism (e.g., CTR_DRBG), and the cryptographic
primitives used (e.g., AES-128 or SHA-256).

•	 Document the security strengths supported by the implementation.

62

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

•	 Document features supported by the implementation (e.g., prediction resistance,

personalization string, additional input, etc.).

•	 If DRBG mechanism functions are distributed, specify the mechanisms that are used to
protect the confidentiality and integrity of the internal state or parts of the internal state
that are transferred between the distributed DRBG mechanism sub-boundaries (i.e.,
provide documentation about the secure channel).

•	 In the case of the CTR_DRBG, indicate whether a derivation function is provided. If a
derivation function is not used, document that the implementation can only be used when
full entropy input is available.

•	 Document any support functions other than health testing.

•	 If periodic testing is performed for the generate function, document the intervals and
provide a justification for the selected intervals (see Section 11.3.3).

•	 Document whether the DRBG functions can be tested on demand.

•	 Document how the integrity of the health tests will be determined subsequent to

implementation validation testing.

11.2 Implementation Validation Testing

A DRBG mechanism shall be tested for conformance to this Recommendation. A DRBG
mechanism shall be designed to be tested to ensure that the product is correctly implemented. A
testing interface shall be available for this purpose in order to allow the insertion of input and the
extraction of output for testing.

Implementations to be validated shall include the following:

•	 The documentation specified in Section 11.1.

•	 Any documentation or results required in derived test requirements.
All DRBG functions included in an implementation shall be tested, including the health test
functionality. The error handling of all implemented DRBG functions will be tested. See Section
11.4 for expected error handling behavior.

Note that when the uninstantiate function is tested, testing shall demonstrate that the internal
state has been zeroized.

11.3 Health Testing

A DRBG implementation shall perform self-tests to obtain assurance that the DRBG continues
to operate as designed and implemented (health testing). The testing function(s) within a DRBG
mechanism boundary (or sub-boundary) shall test each DRBG mechanism function within that
boundary (or sub-boundary), with the possible exception of the health test function itself. A
DRBG implementation may optionally perform other self-tests for DRBG functionality in
addition to the tests specified in this Recommendation.

63

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

The testing of the error handling capability is not required during the conduct of health tests.
However, errors encountered during health testing shall be handled as discussed in Section
11.4.2.
All data output from the DRBG mechanism boundary (or sub-boundary) shall be inhibited while
these tests are performed. The results from known-answer-tests (see Section 11.3.1) shall not be
output as random bits during normal operation.

11.3.1 Known Answer Testing

Known-answer testing shall be conducted as specified below. A known-answer test involves
operating the DRBG mechanism with data for which the correct output is already known, and
determining if the calculated output equals the expected output (the known answer). The test
fails if the calculated output does not equal the known answer. In this case, the DRBG
mechanism shall enter an error state and output an error indicator (see Section 11.4).
Generalized known-answer testing is specified in Sections 11.3.2 through 11.3.5. With the
possible exception of the health test function itself, testing shall be performed on all
implemented DRBG mechanism functions within a DRBG boundary (if all functions are in the
same device) or sub-boundary (if functions are distributed) (see Section 8.5). Documentation
shall be provided that addresses the continued integrity of the health tests (see Section 11.1).

Known-answer tests shall be conducted on each DRBG function within a boundary or sub-
boundary prior to the first use of that DRBG (e.g., during the power-on self-testing sequence).

11.3.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall use a security strength that will be available
during normal operations. If prediction resistance has been implemented, the
prediction_resistance_flag shall also be used. A representative fixed value and length of the
entropy_input, nonce and personalization_string (if supported) shall be used; the value of the
entropy_input used during testing shall not be intentionally reused during normal operations
(either by the instantiate or the reseed functions).

If the values used during the test produce the expected results, then the instantiate function may
be used during normal operation.

An implementation should provide a capability to test the instantiate function on demand.

11.3.3 Testing the Generate Function

During generate-function testing, a representative fixed value and length for the
requested_number_of_bits and additional_input (if supported) shall be used. If prediction
resistance is supported, then the use of the prediction_resistance_request parameter shall be
tested.
If the values used during the test produce the expected results, then the generate function may be
used during normal operation.
Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.

64

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

In addition to testing the generate function before first use (see Section 11.3.1), known-answer
tests should be performed at reasonable intervals, as defined by the implementer.

11.3.4 Testing the Reseed Function

Known-answer testing of the reseed function shall use the security_strength in the internal state
of the (testing) instantiation to be reseeded. A representative value of the entropy_input and
additional_input (if supported) shall be used (see Sections 8.3 and 10). If prediction resistance
for the reseed function is supported, then the use of the prediction_resistance_request parameter
shall be tested.
If the values used during the test produce the expected results, then the reseed function may be
used during normal operation.
An implementation should provide a capability to test the reseed function on demand.

11.3.5 Testing the Uninstantiate Function

Testing of the uninstantiate function is not required during health testing.

11.4 Error Handling

The expected errors are indicated for each DRBG mechanism function (see Sections 9.1 through
9.4) and for the derivation functions in Section 10.3. The error handling routines should indicate
the type of error.

11.4.1 Errors Encountered During Normal Operation

Many errors that occur during normal operation may be caused by a consuming application’s
improper DRBG request or possibly the current unavailability of entropy; these errors are
indicated by “ERROR_FLAG” in the pseudocode. In these cases, the consuming application user
is responsible for correcting the request within the limits of the user’s organizational security
policy. For example, if a failure indicating an invalid requested security strength is returned, a
security strength higher than the DRBG or the DRBG instantiation can support has been
requested. The user may reduce the requested security strength if the organization’s security
policy allows the information to be protected using a lower security strength, or the user shall
use an appropriately instantiated DRBG.
Catastrophic errors (i.e., errors indicated by the CATASTROPHIC_ERROR_FLAG in the
pseudocode) detected during normal operation shall be treated in the same manner as an error
detected during health testing (see Section 11.4.2).

11.4.2 Errors Encountered During Health Testing

Errors detected during health testing shall be perceived as catastrophic DRBG failures.
When a DRBG fails a health test or a catastrophic error is detected during normal operation, the
DRBG shall enter an error state and output an error indicator. The DRBG shall not perform any
instantiate, generate or reseed operations while in the error state, and pseudorandom bits shall
not be output when an error state exists. When in an error state, user intervention (e.g., power

65

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

cycling of the DRBG) shall be required to exit the error state, and the DRBG shall be re-
instantiated before the DRBG can be used to produce pseudorandom bits. Examples of such
errors include:

•	 A test deliberately inserts an error, and the error is not detected, or

•	 A result is returned from the instantiate, reseed or generate function that was not
expected.

66

€

€

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Appendix A: (Normative)

Conversion and Auxiliary Routines

A.1 Bitstring to an Integer

Bitstring_to_integer (b1, b2,…, bn):
Input:

1.	 b1, b2,…, bn The bitstring to be converted.
Output:

1.	 x The requested integer representation of the bitstring.
Process:

1.	 Let (b1, b2,…, bn) be the bits of a bitstring from leftmost to rightmost (i.e., most
significant to least significant).

n

(n− i)
2.	 x = 2 b .∑ i

i=1

3. Return (x).

In this Recommendation, the binary length of an integer x is defined as the smallest integer n
satisfying x < 2n .

A.2 Integer to a Bitstring

Integer_to_bitstring (x):

Input:
1.	 x The non-negative integer to be converted.

Output:
1.	 b1, b2, ..., bn The bitstring representation of the integer x.

Process:
1.	 Let (b1, b2, ..., bn) represent the bitstring, where b1 = 0 or 1, and b1 is the most

significant bit, while bn is the least significant bit.

2.	 For any integer n that satisfies x < 2n, the bits bi shall satisfy:
n

(n− i)

x = 2 b .∑ i

i=1

3.	 Return (b1, b2, ..., bn).

In this Recommendation, the binary length of the integer x is defined as the smallest integer n
that satisfies x < 2n .

67

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

A.3 Integer to a Byte String

Integer_to_byte_string (x):

Input:
1.	 A non-negative integer x, and the intended length n of the byte string satisfying

28n > x.
Output:

1.	 A byte string B of length n bytes.
Process:

1.	 Let B1, B2,…, Bn be the bytes of B from leftmost to rightmost.
2.	 The bytes of B shall satisfy:

n

𝑥 = 2s(n-i)𝐵i .
i=1

3.	 Return (B).

A.4 Byte String to an Integer

Byte_string_to_integer (B):
Input:

1.	 A byte string B of length n bytes.
Output:

1.	 A non-negative integer x.
Process:

1.	 Let B1, B2, …, Bn be the bytes of B from leftmost to rightmost.
2.	 x is defined as follows:

𝑥 = 2s(n-i)𝐵i .

3.	 Return (x).

A.5 Converting Random Bits into a Random Number

In some cryptographic applications, sequences of random numbers are required (a0, a1, a2,…),
where:

i)	 Each integer ai satisfies 0 ≤ ai ≤ r-1, for some positive integer r (the range of the random
numbers);

n

i=1

68

€

€

€

NIST SP 800-90A Rev. 1	 Recommendation for Random Number
Generation Using Deterministic RBGs

ii) The equation ai = s holds, with probability almost exactly 1/r, for any i ≥ 0 and for any s
(0 ≤ s ≤ r-1);

iii) Each value ai is statistically independent of any set of values aj (j ≠ i).
Four techniques are specified for generating sequences of random numbers from sequences of
random bits.

If the range of the number required is a ≤ ai ≤ b, rather than 0 ≤ ai ≤ r-1, then a random number
in the desired range can be obtained by computing ai + a, where ai is a random number in the
range 0 ≤ ai ≤ b-a (that is, when r = b-a+1).

A.5.1 The Simple Discard Method

Let m be the number of bits needed to represent the value (r–1). The following method may be
used to generate the random number a:

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …, bm-1).
m−1

2.	 Let c = ∑2ibi .
i= 0

3.	 If c < r then put a = c, else discard c and go to Step 1.
This method produces a random number a with no skew (no bias). A possible disadvantage of
this method, in general, is that the time needed to generate such a random a is not a fixed length
of time because of the conditional loop.

The ratio r/2m is a measure of the efficiency of the technique, and this ratio will always satisfy
0.5 < r/2m ≤ 1. If r/2m is close to 1, then the above method is simple and efficient. However, if
r/2m is close to 0.5, then the simple discard method is less efficient, and the more complex
method below is recommended.

A.5.2 The Complex Discard Method

Choose a small positive integer t (the number of same-size random number outputs desired), and
then let m be the number of bits in (rt –1). This method may be used to generate a sequence of t
random numbers (a0, a1, … , at-1):

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …, bm-1).
m−1

2.	 Let c = ∑2ibi .
i= 0

3.	 If c < rt , then

let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r -1 such that
t−1

c = ∑riai .
i= 0

else discard c and go to Step 1.

69

NIST SP 800-90A Rev. 1	 Recommendation for Random Number
Generation Using Deterministic RBGs

This method produces random numbers (a0, a1, … , at-1) with no skew. A possible disadvantage
of this method, in general, is that the time needed to generate these numbers is not a fixed length
of time because of the conditional loop. The complex discard method may have better overall
performance than the simple discard method if many random numbers are needed.

The ratio rt/2m is a measure of the efficiency of the technique, and this ratio will always satisfy
0.5 < rt/2m ≤ 1. Hence, given r, it is recommended to choose t so that t is the smallest value such
that rt/2m is close to 1. For example, if r = 3, then choosing t = 3 means that m = 5 (as rt is 27)
and rt/m = 27/32 ≈ 0.84, and choosing t = 5 means that m = 8 (as rt is 243) and rt/m = 243/256 ≈
0.95. The complex discard method coincides with the simple discard method when t = 1.

A.5.3 The Simple Modular Method

Let m be the number of bits needed to represent the value (r–1), and let s be a security parameter.
The following method may be used to generate one random number a:

1.	 Use the random bit generator to generate a sequence of m+s random bits, (b0, b1, …, bm+s-

1).
m+s−1

2.	 Let c = ∑2i bi .
i=0

3.	 Let a=c mod r.
The simple modular method can be coded to take constant time. This method produces a random
value with a negligible skew, that is, the probability that ai=w for any particular value of w (0 ≤
w ≤ r-1) is not exactly 1/r. However, for a large enough value of s, the difference between the
probability that ai=w for any particular value of w and 1/r is negligible. The value of s shall be
greater than or equal to 64.

70

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Appendix B: (Informative)

Example Pseudocode for Each DRBG Mechanism

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the value of
state_handle begins at 0 and ends at n-1, and n is the number of internal states provided by an
implementation. A particular element in the internal state is addressed by internal_state
(state_handle).element. In an empty internal state, all bitstrings are set to Null, and all integers
are set to 0.

For each example in this appendix, arbitrary values have been selected that are consistent with
the allowed values for each DRBG mechanism, as specified in the appropriate table in Section
10.
The pseudocode in this appendix does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they shall be accomplished as
specified in Appendix A.

The following routine is defined for these pseudocode examples:
Find_state_space (): A function that finds an unused internal state. The function returns a
status (either “Success” or a message indicating that an unused internal state is not available)
and, if status = “Success”, a state_handle that points to an available internal_state in the
array of internal states. If status ≠ “Success”, an invalid state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function specified
in Section 9.4 is called.

B.1 Hash_DRBG Example

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported. Both a personalization string and additional input are supported. A 32-bit
incrementing counter is used as the nonce for instantiation (instantiation_nonce); the nonce is
initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a fixed
value) and is incremented for each instantiation.
A total of ten internal states are provided (i.e., ten instantiations may be handled simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are not
called as separate routines from the function envelopes. Also, the Get_entropy_input function
uses only three input parameters, since the first two parameters (as specified in Section 9) have
the same value.

The internal state contains values for V, C, reseed_counter, security_strength and
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter, security_strength
and the prediction_resistance_flag are integers. A requested prediction resistance capability is
indicated when prediction_resistance_flag = 1.

In accordance with Table 2 in Section 10.1, the 112- and 128-bit security strengths may be
instantiated. Using SHA-1, the following definitions are applicable for the instantiate, generate
and reseed functions and algorithms:

71

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

1.	 highest_supported_security_strength = 128.
2.	 Output block length (outlen) = 160 bits.

3.	 Required minimum entropy for instantiation and reseed = security_strength.
4.	 Seed length (seedlen) = 440 bits.

5.	 Maximum number of bits per request (max_number_of_bits_per_request) = 5000 bits.
6.	 Reseed interval (reseed_interval) = 100 000 requests.

7.	 Maximum length of the personalization string (max_personalization_string_length) =
512 bits.

8.	 Maximum length of additional_input (max_additional_input_string_length) = 512 bits.
9.	 Maximum length of entropy input (max _length) = 1000 bits.

B.1.1 Instantiation of Hash_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error is
encountered. Note that the value of instantiation_nonce is an internal value that is always
available to the instantiate function.
Note that this implementation does not check the prediction_resistance_flag, since the
implementation has been designed to support prediction resistance. However, if a consuming
application actually wants prediction resistance, the implementation expects that
prediction_resistance_flag = 1 during instantiation; this will be used in the generate function in
Appendix B.1.3.

Hash_DRBG_Instantiate_function:
Input: integer (requested_instantiation_security_strength, prediction_resistance_flag),

bitstring personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the input parameters.

1.	 If (requested_instantiation_security_strength > 128), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2.	 If (len (personalization_string) > 512), then Return (“Personalization_string too
long”, -1).

Comment: Set the security_strength to one of the
valid security strengths.

3. If (requested_instantiation_security_strength ≤ 112), then security_strength = 112

Else security_strength = 128.
Comment: Get the entropy_input.

72

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

4.	 (status, entropy_input) = Get_entropy_input (security_strength, 1000,
prediction_resistance_request).

5.	 If (status ≠ “Success”), then Return (status, -1).
Comment: Increment the nonce; actual coding must
ensure that it wraps when the storage limit is
reached.

6.	 instantiation_nonce = instantiation_nonce + 1.
Comment: The instantiate algorithm is
provided in steps 7 to 11.

7.	 seed_material = entropy_input || instantiation_nonce || personalization_string.

8.	 seed = Hash_df (seed_material, 440). Comment: Hash_df is defined in Section
10.3.1.

9.	 V = seed.
10. C = Hash_df ((0x00 || V), 440).

11. reseed_counter = 1.
Comment: Find an unused internal state.

12. (status, state_handle) = Find_state_space ().

13. If (status ≠ “Success”), then Return (status, -1).
14. Save the internal state.

14.1	 internal_state (state_handle).V = V.
14.2	 internal_state (state_handle).C = C.

14.3	 internal_state (state_handle).reseed_counter = reseed_counter.
14.4	 internal_state (state_handle). security_strength = security_strength.

14.5	 internal_state (state_handle).prediction_resistance_flag =
prediction_resistance_flag.

15. Return (“Success”, state_handle).

B.1.2 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.
Hash_DRBG_Reseed_function:

Input: integer (state_handle, prediction_resistance_request), bitstring additional_input.
Output: string status.

Process:
Comment: Check the validity of the state_handle.

73

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

1.	 If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) = {Null,
Null, 0, 0, 0})), then Return (“State not available for the state_handle”).

Comment: Get the internal state values needed to
determine the new internal state.

2.	 Get the appropriate internal_state values.
V = internal_state (state_handle).V.

security_strength = internal_state(state_handle).security_strength.
Check the length of the additional_input.

3.	 If (len (additional_input) > 512), then Return (“additional_input too long”).
Comment: Get the entropy_input.

4.	 (status, entropy_input) = Get_entropy_input (security_strength, 1000,
prediction_resistance_request).

5.	 If (status ≠ “Success”), then Return (status).
Comment: The reseed algorithm is provided in steps
6 to 10.

6.	 seed_material = 0x01 || V || entropy_input || additional_input.

7.	 seed = Hash_df (seed_material, 440).
8.	 V = seed.

9.	 C = Hash_df ((0x00 || V), 440).
10. reseed_counter = 1.

Comment: Update the working_state portion of the
internal state.

11. Update the appropriate state values.
11.1 internal_state (state_handle).V = V.

11.2 internal_ state (state_handle).C = C.
11.3 internal_ state (state_handle).reseed_counter = reseed_counter.

12. Return (“Success”).

B.1.3 Generating Pseudorandom Bits Using Hash_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been detected.
Prediction resistance is requested when prediction_resistance_request = 1.
In this implementation, prediction resistance is requested by supplying
prediction_resistance_request = 1 when the Hash_DRBG function is invoked.
Hash_DRBG_Generate_function:

74

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Input: integer (state_handle, requested_no_of_bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the state_handle.
1.	 If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = {Null, Null, 0,

0, 0})), then Return (“State not available for the state_handle”, Null).
2.	 Get the internal state values.

2.1 V = internal_state (state_handle).V.
2.2 C = internal_state (state_handle).C.

2.3 reseed_counter = internal_state (state_handle).reseed_counter.
2.4 security_strength = internal_state (state_handle).security_strength.

2.5 prediction_resistance_flag = internal_state

(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other input
parameters.

3.	 If (requested_no_of_bits > 5000) then Return (“Too many bits requested”, Null).
4.	 If (requested_security_strength > security_strength), then Return (“Invalid

requested_security_strength”, Null).

5.	 If (len (additional_input) > 512), then Return (“additional_input too long”, Null).

6.	 If ((reseed_counter > 100 000) or (prediction_resistance_request = 1)), then
6.1	 status = Hash_DRBG_Reseed_ function (state_handle,

prediction_resistance_request, additional_input).

6.2	 If (status ≠ “Success”), then Return (status, Null).

6.3	 Get the new internal state values that have changed.
7.3.1 V = internal_state (state_handle).V.

7.3.2 C = internal_state (state_handle).C.
7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.

6.4	 additional_input = Null.
Comment: Steps 7 to 15 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine specified in
Section 10.1.1.4 is provided inline as steps 8 to 12.

7.	 If (additional_input ≠ Null), then do
7.1 w = Hash (0x02 || V || additional_input).

75

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

7.2 V = (V + w) mod 2440 .

!requested _ no _ of _ bits #8. m = " $. " outlen $

9. data = V.

10. W = the Null string.
11. For i = 1 to m

11.1 w = Hash (data).
11.2 W = W || w.

11.3 data = (data + 1) mod 2440.
12. pseudorandom_bits = leftmost (W, requested_no_of_bits).

13. H = Hash (0x03 || V).
14. V = (V + H + C + reseed_counter) mod 2440 .

15. reseed_counter = reseed_counter + 1.
Comments: Update the working_state.

16. Update the changed values in the state.
16.1 internal_state (state_handle).V = V.

16.2 internal_state (state_handle).reseed_counter = reseed_counter.
17. Return (“Success”, pseudorandom_bits).

B.2 HMAC_DRBG Example

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and prediction
resistance are not supported. The nonce for instantiation consists of a random value with
security_strength/2 bits of entropy; the nonce is obtained by increasing the call for entropy bits
via the Get_entropy_input call by security_strength/2 bits (i.e., by adding security_strength/2
bits to the security_strength value). The HMAC_DRBG_Update function is specified in Section
10.1.2.2.

A personalization string is supported, but additional input is not. A total of three internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines. Also, the Get_entropy_input function uses only two input parameters, since the first
two parameters (as specified in Section 9) have the same value, and prediction resistance is not
available.
The internal state contains the values for V, Key, reseed_counter, and security_strength, where V
and C are bitstrings, and reseed_counter and security_strength are integers.
In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256 bits may
be instantiated. Using SHA-256, the following definitions are applicable for the instantiate and
generate functions and algorithms:

76

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

1.	 highest_supported_security_strength = 256.
2.	 Output block (outlen) = 256 bits.

3.	 Required minimum entropy for the entropy input at instantiation = (3/2) security_strength
(this includes the entropy required for the nonce).

4.	 Seed length (seedlen) = 440 bits.
5.	 Maximum number of bits per request (max_number_of_bits_per_request) = 7500 bits.

6.	 Reseed_interval (reseed_ interval) = 10 000 requests.
7.	 Maximum length of the personalization string (max_personalization_string_length) =

160 bits.
8.	 Maximum length of the entropy input (max _length) = 1000 bits.

B.2.1 Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (−1) when an error is
encountered.

HMAC_DRBG_Instantiate_function:
Input: integer (requested_instantiation_security_strength), bitstring personalization_string.

Output: string status, integer state_handle.

Process:
Check the validity of the input parameters.

1. 	 If (requested_instantiation_security_strength > 256), then Return (“Invalid
requested_instantiation_security_strength”, −1).

2.	 If (len (personalization_string) > 160), then Return (“Personalization_string too
long”, −1)

Comment: Set the security_strength to one
of the valid security strengths.

3.	 If (requested_security_strength ≤ 112), then security_strength = 112

Else if (requested_ security_strength ≤ 128), then security_strength = 128

Else if (requested_ security_strength ≤ 192), then security_strength = 192
Else security_strength = 256.

Comment: Get the entropy_input and the
nonce.

4.	 min_entropy = 1.5 × security_strength.

5.	 (status, entropy_input) = Get_entropy_input (min_entropy, 1000).

6.	 If (status ≠ “Success”), then Return (status, −1).

77

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Comment: Invoke the instantiate algorithm. Note
that the entropy_input contains the nonce.

7.	 (V, Key, reseed_counter) = HMAC_DRBG_Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find an unused internal state.
8.	 (status, state_handle) = Find_state_space ().

9.	 If (status ≠ “Success”), then Return (status, −1).
10. Save the initial state.

10.1 internal_state (state_handle).V = V.
10.2 internal_state (state_handle). Key = Key.

10.3 internal_state (state_handle). reseed_counter = reseed_counter.
10.4 internal_state (state_handle).security_strength = security_strength.

11. Return (“Success” and state_handle).
HMAC_DRBG_Instantiate_algorithm:

Input: bitstring (entropy_input, personalization_string).
Output: bitstring (V, Key), integer reseed_counter.

Process:
1.	 seed_material = entropy_input || personalization_string.

2.	 Set Key to outlen bits of zeros.
3.	 Set V to outlen/8 bytes of 0x01.

4.	 (Key, V) = HMAC_DRBG_Update (seed_material, Key, V).
5.	 reseed_counter = 1.

6.	 Return (V, Key, reseed_counter).

B.2.2 Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been detected.

HMAC_DRBG_Generate_function:
Input: integer (state_handle, requested_no_of_bits, requested_security_strength).

Output: string (status), bitstring pseudorandom_bits.
Process:

Comment: Check for a valid state handle.
1.	 If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) = {Null,

Null, 0, 0}), then Return (“State not available for the indicated state_handle”, Null).
2.	 Get the internal state.

78

NIST SP 800-90A Rev. 1	 Recommendation for Random Number
Generation Using Deterministic RBGs

2.1 V = internal_state (state_handle).V.
2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.
2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of the input
parameters.

3.	 If (requested_no_of_bits > 7500), then Return (“Too many bits requested”, Null).
4.	 If (requested_security_strength > security_strength), then Return (“Invalid

requested_security_strength”, Null).
Comment: Invoke the generate algorithm.

5.	 (status, pseudorandom_bits, V, Key, reseed_counter) =

HMAC_DRBG_Generate_algorithm (V, Key, reseed_counter,

requested_number_of_bits).

6.	 If (status = “Reseed required”), then Return (“DRBG can no longer be used. A new
instantiation is required”, Null).

7.	 Update the changed state values.

7.1 internal_state (state_handle).V = V.
7.2 internal_state (state_handle).Key = Key.

7.3 internal_state (state_handle).reseed_counter = reseed_counter.
8.	 Return (“Success”, pseudorandom_bits).

HMAC_DRBG_Generate_algorithm:
Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits).

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.
Process:

1	 If (reseed_counter ≥ 10 000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

2. temp = Null.

3 While (len (temp) < requested_no_of_bits) do:

3.1 V = HMAC (Key, V).
3.2 temp = temp || V.

4.	 pseudorandom_bits = leftmost (temp, requested_no_of_bits).
5.	 (Key, V) = HMAC_DRBG_Update (Null, Key, V).

6.	 reseed_counter = reseed_counter + 1.
7.	 Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).

79

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

B.3 CTR_DRBG Example Using a Derivation Function

This example of CTR_DRBG uses AES-128 and uses the entire input block as the counter field.
The reseed and prediction resistance capabilities are supported, and prediction resistance is
obtained during every Get_entropy_input call and reseed request. Although the
prediction_resistance_request parameter in the Get_entropy_input and reseed request could be
omitted, in this case, they are shown in the pseudocode as a reminder that prediction_resistance
will be performed. A block cipher derivation function using AES-128 is used, and a
personalization string and additional input are supported. A total of five internal states are
available. For this implementation, the functions and algorithms are written as separate routines.
AES_ECB_Encrypt is the Block_Encrypt function (specified in Section 10.3.3) that uses AES-
128 in the ECB mode.
The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter. The
nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a
fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, reseed_counter, and security_strength, where V
and Key are bitstrings, and all other values are integers. Since prediction resistance is known to
be supported, there is no need for prediction_resistance_flag in the internal state.
In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be
supported. Using AES-128, the following definitions are applicable for the instantiate, reseed
and generate functions:

1.	 highest_supported_security_strength = 128.

2.	 Input/output block length (blocklen) = 128 bits.
3.	 Key length (keylen) = 128 bits.

4.	 Required minimum entropy for the entropy input during instantiation and reseeding =
security_strength.

5.	 Minimum entropy input length (min _length) = security_strength bits.
6.	 Maximum entropy input length (max _length) = 1000 bits.

7.	 Maximum personalization string input length (max_personalization_string_input_length)
= 800 bits.

8.	 Maximum additional input length (max_additional_input_length) = 800 bits.
9.	 Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of_bits_per_request) = 4000 bits.
11. Reseed interval (reseed_interval) = 100 000 requests.

B.3.1 The CTR_DRBG_Update Function

CTR_DRBG_Update:
Input: bitstring (provided_data, Key, V).

Output: bitstring (Key, V).

80

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Process:
1.	 temp = Null.

2.	 While (len (temp) < 256) do
2.1 V = (V + 1) mod 2128.

2.2 output_block = AES_ECB_Encrypt (Key, V).
2.3 temp = temp || output_block.

3. temp = leftmost (temp, 256).

4 temp = temp ⊕ provided_data.

5.	 Key = leftmost (temp, 128).
6.	 V = rightmost (temp, 128).

7.	 Return (Key, V).

B.3.2 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (−1) when an error is
encountered. Block_Cipher_df is the derivation function in Section 10.3.2, and uses AES-128 in
the ECB mode as the Block_Encrypt function.
Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is known to be supported.
CTR_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring personalization_string.
Output: string status, integer state_handle.

Process:
Comment: Check the validity of the input
parameters.

1. 	 If (requested_instantiation_security_strength > 128) then Return (“Invalid
requested_instantiation_security_strength”, −1).

2.	 If (len (personalization_string) > 800), then Return (“Personalization_string too
long”, −1).

3.	 If (requested_instantiation_security_strength ≤ 112), then security_strength = 112
Else security_strength = 128.

Comment: Get the entropy input.
4.	 (status, entropy_input) = Get_entropy_input (security_strength, security_strength,

1000, prediction_resistance_request).

5.	 If (status ≠ “Success”), then Return (status, −1).

81

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Comment: Increment the nonce; actual coding must
ensure that the nonce wraps when its storage limit is
reached, and that the counter pertains to all
instantiations, not just this one.

6.	 instantiation_nonce = instantiation_nonce + 1.
Comment: Invoke the instantiate algorithm.

7.	 (V, Key, reseed_counter) = CTR_DRBG_Instantiate_algorithm (entropy_input,
instantiation_nonce, personalization_string).

Comment: Find an available internal state and save
the initial values.

8.	 (status, state_handle) = Find_state_space ().

9.	 If (status ≠ “Success”), then Return (status, −1).

10. Save the internal state.
10.1 internal_state_ (state_handle).V = V.

10.2 internal_state_ (state_handle).Key = Key.
10.3 internal_state_ (state_handle).reseed_counter = reseed_counter.

10.4 internal_state_ (state_handle).security_strength = security_strength.
11. Return (“Success”, state_handle).

CTR_DRBG_Instantiate_algorithm:
Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (V, Key), integer (reseed_counter).
Process:

1.	 seed_material = entropy_input || nonce || personalization_string.
2.	 seed_material = Block_Cipher_df (seed_material, 256).

3.	 Key = 0128. Comment: 128 bits.
4.	 V = 0128. Comment: 128 bits.

5.	 (Key, V) = CTR_DRBG_Update (seed_material, Key, V).
6.	 reseed_counter = 1.

7.	 Return (V, Key, reseed_counter).

B.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.
CTR_DRBG_Reseed_function:

82

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Input: integer (state_handle), integer prediction_resistance_request, bitstring

additional_input.

Output: string status.

Process:

Comment: Check for the validity of state_handle.
1.	 If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) = {Null,

Null, 0, 0}), then Return (“State not available for the indicated state_handle”).
2.	 Get the internal state values.

2.1 V = internal_state (state_handle).V.
2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.
3.	 If (len (additional_input) > 800), then Return (“additional_input too long”).

4.	 (status, entropy_input) = Get_entropy_input (security_strength, security_strength,
1000, prediction_resistance_request).

6.	 If (status ≠ “Success”), then Return (status).

Comment: Invoke the reseed algorithm.
7.	 (V, Key, reseed_counter) = CTR_DRBG_Reseed_algorithm (V, Key,

reseed_counter, entropy_input, additional_input).

8.	 Save the internal state.

8.1 internal_state (state_handle). V = V.
8.2 internal_state (state_handle). Key = Key.
8.3 internal_state (state_handle). reseed_counter = reseed_counter.

8.4 internal_state (state_handle). security_strength = security_strength.
9. Return (“Success”).

CTR_DRBG_Reseed_algorithm:
Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,

additional_input).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

1.	 seed_material = entropy_input || additional_input.

2.	 seed_material = Block_Cipher_df (seed_material, 256).
3.	 (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

4.	 reseed_counter = 1.

5.	 Return (V, Key, reseed_counter).

83

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

B.3.4 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been detected.
CTR_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of_bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check the validity of state_handle.
1.	 If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) = {Null,

Null, 0, 0}), then Return (“State not available for the indicated state_handle”, Null).
2.	 Get the internal state.

2.1	 V = internal_state (state_handle).V.
2.2	 Key = internal_state (state_handle).Key.

2.3	 security_strength = internal_state (state_handle).security_strength.
2.4	 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input parameters.
3.	 If (requested_no_of_bits > 4000), then Return (“Too many bits requested”, Null).

4.	 If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

5.	 If (len (additional_input) > 800), then Return (“additional_input too long”, Null).
6.	 reseed_required_flag = 0.

7.	 If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then
7.1	 status = CTR_DRBG_Reseed_function (state_handle,

prediction_resistance_request, additional_input).

7.2	 If (status ≠ “Success”), then Return (status, Null).

7.3	 Get the new working state values; the administrative information was not
affected.

7.3.1 V = internal_state (state_handle).V.
7.3.2 Key = internal_state (state_handle).Key.

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.
7.4	 additional_input = Null.

7.5	 reseed_required_flag = 0.
Comment: Generate bits using the generate
algorithm.

84

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

8.	 (status, pseudorandom_bits, V, Key, reseed_counter) =

CTR_DRBG_Generate_algorithm (V, Key, reseed_counter,

requested_number_of_bits, additional_input).

9.	 If (status = “Reseed required”), then

9.1 reseed_required_flag = 1.
9.2 Go to step 7.

10. Update the internal state.
10.1 internal_state (state_handle).V = V.

10.2 internal_state (state_handle).Key = Key.
10.3 internal_state (state_handle).reseed_counter = reseed_counter.

10.4 internal_state (state_handle).security_strength = security_strength.
11. Return (“Success”, pseudorandom_bits).

CTR_DRBG_Generate_algorithm:
Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits) bitstring

additional_input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.

Process:

1.	 If (reseed_counter > 100 000), then Return (“Reseed required”, Null, V, Key,

reseed_counter).

2.	 If (additional_input ≠ Null), then

2.1 additional_input = Block_Cipher_df (additional_input, 256).

2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0256.
3.	 temp = Null.

4.	 While (len (temp) < requested_number_of_bits) do:
4.1 V = (V + 1) mod 2128.

4.2 output_block = AES_ECB_Encrypt (Key, V).
4.3 temp = temp || output_block.

5.	 returned_bits = leftmost (temp, requested_number_of_bits)
6.	 (Key, V) = CTR_DRBG_Update (additional_input, Key, V)

7.	 reseed_counter = reseed_counter + 1.
8.	 Return (“Success”, returned_bits, V, Key, reseed_counter).

85

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

B.4 CTR_DRBG Example Without a Derivation Function

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As in Appendix B.3, the CTR_DRBG
uses AES-128. The reseed and prediction resistance capabilities are available. Both a
personalization string and additional input are supported. A total of five internal states are
available. For this implementation, the functions and algorithms are written as separate routines.
AES_ECB_Encrypt is the Block_Encrypt function (specified in Section 10.3.3) that uses AES-
128 in the ECB mode.

The internal state contains the values for V, Key, reseed_counter, and security_strength, where V
and Key are strings, and all other values are integers. Since prediction resistance is known to be
supported, there is no need for prediction_resistance_flag in the internal state.
In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be
supported. The definitions are the same as those provided in Appendix B.3, except that to be
compliant with Table 3, the maximum size of the personalization_string is 256 bits. In addition,
the maximum size of any additional_input is 256 bits (i.e., len (additional_input ≤ seedlen)).

B.4.1 The CTR_DRBG_Update Function

The update function is the same as that provided in Appendix B.3.1.

B.4.2 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate function (CTR_DRBG_Instantiate_function) is the same as that provided in
Appendix B.3.2, except for the following:

• Step 2 is replaced by:
If (len (personalization_string) > 256), then Return (“Personalization_string too long”,
−1).

• Step 6 is replaced by :
instantiation_nonce = Null.

The instantiate algorithm (CTR_DRBG_Instantiate_algorithm) is the same as that provided in
Appendix B.3.2, except that steps 1 and 2 are replaced by:

temp = len (personalization_string).

If (temp < 256), then personalization_string = personalization_string || 0256-temp.

seed_material = entropy_input ⊕ personalization_string.

B.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

The reseed function (CTR_DRBG_Reseed_function) is the same as that provided in Appendix
B.3.3, except that step 3 is replaced by:

If (len (additional_input) > 256), then Return (“additional_input too long”).

86

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

The reseed algorithm (CTR_DRBG_Reseed_algorithm) is the same as that provided in
Appendix B.3.3, except that steps 1 and 2 are replaced by:

temp = len (additional_input).
If (temp < 256), then additional_input = additional_input || 0256-temp.

seed_material = entropy_input ⊕ additional_input.

B.4.4 Generating Pseudorandom Bits Using CTR_DRBG

The generate function (CTR_DRBG_Generate_function) is the same as that provided in
Appendix B.3.4, except that step 5 is replaced by:

If (len (additional_input) > 256), then Return (“additional_input too long”, Null).

The generate algorithm (CTR_DRBG_Generate_algorithm) is the same as that provided in
Appendix B.3.4, except that step 2.1 is replaced by:

temp = len (additional_input).
If (temp < 256), then additional_input = additional_input || 0256-temp.

87

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Appendix C: (Informative)

DRBG Mechanism Selection

Almost no application or system designer starts with the primary purpose of generating good
random bits. Instead, the designer typically starts with a goal that he wishes to accomplish, then
decides on cryptographic mechanisms, such as digital signatures or block ciphers that can help
him achieve that goal. Typically, as the requirements of those cryptographic mechanisms are
better understood, he learns that random bits will need to be generated, and that this must be
done with great care so that the cryptographic mechanisms will not be weakened. At this point,
there are three things that may guide the designer's choice of a DRBG mechanism:

a.	 He may already have decided to include a set of cryptographic primitives as part of his
implementation. By choosing a DRBG mechanism based on one of these primitives, he
can minimize the cost of adding that DRBG mechanism. In hardware, this translates to
lower gate count, less power consumption, and less hardware that must be protected
against probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has an available hash function, so a
hash-based DRBG mechanism (e.g., Hash_DRBG or HMAC_DRBG) is a natural
choice.

b.	 He may already have decided to trust a block cipher, hash function, or keyed hash
function to have certain properties. By choosing a DRBG mechanism based on similar
properties, he can minimize the number of algorithms he has to trust.
For example, an AES-based DRBG mechanism (i.e., CTR_DRBG using AES) might be
a good choice when a module also provides encryption with AES. Since the security of
the module is dependent on the strength of AES, the module's security is not made
dependent on any additional cryptographic primitives or assumptions.

c.	 Multiple cryptographic primitives may be available within the system or consuming
application, but there may be restrictions that need to be addressed (e.g., code size or
performance requirements).

For example, a module with support for both hash functions and block ciphers might use
the CTR_DRBG if the ability to parallelize the generation of random bits is needed.

The DRBG mechanisms specified in this Recommendation have different performance
characteristics, implementation issues, and security assumptions.

C.1 Hash_DRBG

Hash_DRBG is based on the use of an approved hash function in a counter mode similar to the
counter mode specified in [SP 800-38A]. For each generate request, the current value of V (a
secret value in the internal state) is used as the starting counter that is iteratively changed to
generate each successive outlen-bit block of requested output, where outlen is the number of bits
in the hash function output block. At the end of the generate request, and before the
pseudorandom output is returned to the consuming application, the secret value V is updated in
order to prevent backtracking.

88

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Performance. The Generate function is parallelizable, since it uses the counter mode. Within
a generate request, each outlen-bit block of output requires one hash function computation and
several addition operations; an additional hash function computation is required to provide the
backtracking resistance. Hash_DRBG produces pseudorandom output bits in about half the
time required by HMAC_DRBG.
Security. Hash_DRBG’s security depends on the underlying hash function’s behavior when
processing a series of sequential input blocks. If the hash function is replaced by a random
oracle, Hash_DRBG is secure. It is difficult to relate the properties of the hash function
required by Hash_DRBG with common properties, such as collision resistance, pre-image
resistance, or pseudorandomness. There are known problems with Hash_DRBG when the
DRBG is instantiated with insufficient entropy for the requested security strength, and then later
provided with enough entropy to attain the amount of entropy required for the security strength,
via the inclusion of additional input during a generate request. However, these problems do not
affect the DRBG’s security when Hash_DRBG is instantiated with the amount of entropy
specified in this Recommendation.
Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up to 248

generate requests may be made, each of up to 219 bits.
Resources. Hash_DRBG requires access to a hash function, and the ability to perform addition
with seedlen-bit integers. Hash_DRBG uses the hash-based derivation function Hash_df
(specified in Section 10.3.1) during instantiation and reseeding. Any implementation requires the
storage space required for the internal state (see Section 10.1.1.1).
Algorithm Choices. The choice of hash functions that may be used by Hash_DRBG is
discussed in Section 10.1.

C.2 HMAC_DRBG

HMAC_DRBG is built around the use of an approved hash function using the HMAC
construction. To generate pseudorandom bits from a secret key (Key) and a starting value V, the
HMAC_DRBG computes

V = HMAC (Key, V).
At the end of a generation request, the HMAC_DRBG generates a new Key and V, each
requiring one HMAC computation.
Performance. HMAC_DRBG produces pseudorandom outputs considerably more slowly than
the underlying hash function processes inputs; for SHA-256, a long generate request produces
output bits at about 1/4 of the rate that the hash function can process input bits. Each generate
request also involves additional overhead equivalent to processing 2048 extra bits with SHA-
256. Note, however, that hash functions are typically quite fast; few if any consuming
applications are expected to need output bits faster than HMAC_DRBG can provide them.
Security. The security of HMAC_DRBG is based on the assumption that an approved hash
function used in the HMAC construction is a pseudorandom function family. Informally, this
means that when an attacker does not know the key used, HMAC outputs look random, even
given knowledge and control over the inputs. In general, even relatively weak hash functions
seem to be quite strong when used in the HMAC construction. On the other hand, there is not a

89

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

reduction proof from the hash function’s collision resistance properties to the security of the
DRBG; the security of HMAC_DRBG ultimately relies on the pseudorandomness properties of
the underlying hash function. Note that the pseudorandomness of HMAC is a widely used
assumption in designs, and the HMAC_DRBG requires far less demanding properties of the
underlying hash function than Hash_DRBG.
Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up to 248

generate requests may be made, each of up to 219 bits.
Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for optimal
performance. However, a general-purpose hash function implementation can always be used to
implement HMAC. Any implementation requires the storage space required for the internal state
(see Section 10.1.2.1).
Algorithm Choices. The choice of hash functions that may be used by HMAC_DRBG is
discussed in Section 10.1.

C.3 CTR_DRBG

CTR_DRBG is based on using an approved block cipher algorithm in counter mode (see [SP
800-38A]). At the present time, only three-key TDEA and AES are approved for use by the
Federal government for use in this DRBG mechanism. Pseudorandom outputs are generated by
encrypting successive values of a counter; after a generate request, a new key and new starting
counter value are generated.
Performance. For large generate requests, CTR_DRBG produces outputs at the same speed as
the underlying block cipher algorithm encrypts data. Furthermore, CTR_DRBG is
parallelizable. At the end of each generate request, work equivalent to two, three or four
encryptions is performed, depending on the choice of underlying block cipher algorithm, to
generate new keys and counters for the next generate request.
Security. The security of CTR_DRBG is directly based on the security of the underlying block
cipher algorithm, in the sense that, as long as some limits on the total number of outputs are
observed, any attack on CTR_DRBG represents an attack on the underlying block cipher
algorithm.
Constraints on Outputs. As shown in Table 3 of Section 10.2.1, for each of the three AES key
sizes, up to 248 generate requests may be made, each of up to 219 bits, with a negligible chance of
any weakness that does not represent a weakness in AES. However, the smaller block size of
TDEA imposes more constraints: each generate request is limited to 213 bits, and at most, 232

such requests may be made.

The output constraints are necessary to avoid a distinguishing attack on the CTR_DRBG,
described in [Campagna], in which the fact that a single generate call can never produce a
duplicate block from the block cipher is used to build a distinguisher for the DRBG's
outputs. These output constraints apply to the use of CTR_DRBG for any single purpose,
regardless of how many times the DRBG is reseeded. However, the distinguishing attack is
theoretical − it poses no practical threat to any real-world application of the DRBG.

90

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

The distinguishing attack is conceptually quite simple. For concreteness, consider the case of
TDEA CTR_DRBG. The DRBG generates a maximum of 128 64-bit blocks per generate
request, thus providing 213 bits per request. An ideal random source would have a very small
probability (about 2-51) of producing a pair of identical 64-bit blocks within that generate request
output; each generate request from the CTR_DRBG is generated by running the block cipher in
counter mode, so there can never be a duplicate block produced within a generate request
output. (The block cipher is rekeyed between generate requests, so duplicate blocks can appear
in different generate request outputs.) TDEA CTR_DRBG permits the use of up to 232 generate
requests. An ideal random source, providing 232 sequences of 128 64-bit blocks, would have a
probability of about 2-19 of having a duplicate block in one of those sequences of 128 64-bit
blocks; the CTR_DRBG will never have such a duplicate block. This provides a distinguisher −
an attacker, given a sequence of 213 232 = 245 bits from an ideal random source, has about a 2-19

probability of seeing an event happen that could never happen from TDEA CTR_DRBG.

Consider some application in which a DRBG's outputs must not be distinguishable by an
attacker, and assume that an attacker who sees 264 bits of output from the TDEA CTR_DRBG
across at least one reseed, and wants to decide whether these bits came from the CTR_DRBG or
from an ideal random source. The best case for the attacker is that each generate request used
the maximum allowed value of 213 bits of output = 128 64-bit blocks of output. In this case, the
TDEA CTR_DRBG received 245 generate requests. An ideal random sequence has a probability
of about 2-6 of having a duplicate block in one of the generate outputs; the CTR_DRBG outputs
will never have one. An attacker looking at the sequence will not be able to determine that it
came from the CTR_DRBG, though he would have a pretty large advantage in a distinguishing
game.

The case for AES CTR_DRBG is similar: each generate request may produce no more than 219

bits, which means 212 128-bit blocks. In an ideal random sequence of 212 128-bit blocks, the
probability that any two blocks will be the same is approximately 2-105; AES CTR_DRBG will
never provide a generate output with duplicate blocks. AES CTR_DRBG permits up to 248

generate requests, so an attacker seeing the maximum length of output permitted (267 bits) from
either an AES CTR_DRBG instance or an ideal random sequence will have a 2-57 probability of
being able to distinguish the two.

Resources. CTR_DRBG may be implemented with or without a derivation function.
When a derivation function is used, CTR_DRBG can process the personalization string and any
additional input in the same way as any other DRBG mechanism, but at a cost in performance
because of the use of the derivation function (as opposed to not using the derivation function; see
below). Such an implementation may be seeded by any approved randomness source that may
or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the personalization
string and any additional input are provided, but is less flexible because the lengths of the
personalization string and additional input cannot exceed seedlen bits. Such implementations
must be seeded by a randomness source that provides full entropy (e.g., an approved entropy
source that has full entropy output or an approved NRBG).
CTR_DRBG requires access to a block cipher algorithm, including the ability to change keys,
and the storage space required for the internal state (see Section 10.2.1.1).

91

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be used by
CTR_DRBG is discussed in Section 10.2.1.

C.4 Summary for DRBG Selection

Table C-1 provides a summary of the costs and constraints of the DRBG mechanisms in this
Recommendation.

Table C-1: DRBG Mechanism Summary

Dominating
Cost/Block

Constraints
(max.)

Hash_DRBG 2 hash function calls 248 calls of 219 bits

HMAC_DRBG 4 hash function calls 248 calls of 219 bits

CTR_DRBG (TDEA) 1 TDEA encrypt 232 calls of 213 bits

CTR_DRBG (AES) 1 AES encrypt 248 calls of 219 bits

92

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Appendix D : (Informative) References

[FIPS 140]	 Federal Information Processing Standard (FIPS) 140-2, Security Requirements for
Cryptographic Modules, May 25, 2001 (including Change Notices as of
December 3, 2002).
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf [accessed 6/9/15].

[FIPS 180]	 Federal Information Processing Standard (FIPS) 180-4, Secure Hash Standard
(SHS), March 2012.
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf [accessed 6/9/15].

[FIPS 197]	 Federal Information Processing Standard (FIPS) 197, Advanced Encryption
Standard (AES), November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf [accessed 6/9/15].

[FIPS 198]	 Federal Information Processing Standard (FIPS) 198-1, The Keyed-Hash Message
Authentication Code (HMAC), July 2008.
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf [accessed
6/9/15].

[SP 800-38A] National Institute of Standards and Technology Special Publication (SP) 800-
38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, December 2001.
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf [accessed
6/9/15].

[SP 800-38D] National Institute of Standards and Technology Special Publication (SP) 800-
38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, November 2007.
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf [accessed
6/9/15].

[SP 800-57]	 NIST Special Publication (SP) 800-57 Part 1 Revision 3, Recommendation for
Key Management—Part 1: General, July 2012.
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57_part1_rev3_general.pdf [accessed 6/9/15].

[SP 800-67]	 NIST Special Publication (SP) 800-67 Revision 1, Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher, January 2012.
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf [accessed
6/9/15].

[SP 800-90B] NIST Special Publication (SP) 800-90B (Draft), Recommendation for the Entropy
Sources Used for Random Bit Generation, August 2012 [re-released September
2013].
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf [accessed
6/9/15].

[SP 800-90C] NIST Special Publication (SP) 800-90C (Draft), Recommendation for Random Bit
Generator (RBG) Constructions, August 2012 [re-released September 2013].

93

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90c.pdf [accessed
6/9/15].

[SP 800-107] NIST Special Publication (SP) 800-107 Revision 1, Recommendation for
Applications Using Approved Hash Algorithms, August 2012.
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
[accessed 6/9/15].

[Campagna]	 M. J. Campagna, Security Bounds for the NIST Codebook-based Deterministic
Random Bit Generator, Report 2006/379, Cryptology ePrint Archive, November
2006. http://eprint.iacr.org/2006/379 [accessed 6/9/15].

94

http://eprint.iacr.org/2006/379
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90c.pdf

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

Appendix E : (Informative) Revisions

The original version of this Recommendation was completed in June, 2006. In March 2007, the
following changes were made (note that the changes are indicated in italics):

1.	 Section 8.3, item 1.a originally stated the following:
“One or more values that are derived from the seed and become part of the internal
state; these values must usually remain secret”

The item now reads:

“One or more values that are derived from the seed and become part of the internal
state; these values should remain secret”.

2.	 In Section 8.4, the third sentence originally stated:
“Any security strength may be requested, but the DRBG will only be instantiated to
one of the four security strengths above, depending on the DRBG implementation.”

The sentence now reads:

“Any security strength may be requested (up to a maximum of 256 bits), but the
DRBG will only be instantiated to one of the four security strengths above, depending
on the DRBG implementation.”

3.	 In Section 8.7.1, the list of examples of information that could appear in a personalization
string included private keys, PINs and passwords. These items were removed from the
list, and seedfiles were added.

4.	 In Section 10.3.1.4, a step was inserted that will provide backtracking resistance (step 14
of the pseudocode). The same change was made to the example in Appendix B.5.3 (step
19.1). In addition, the two occurrences of block_counter (in input 1 and processing step
1) were corrected to be reseed_counter.

This Recommendation was developed in concert with American National Standard (ANS) X9.82, a
multi-part standard on random number generation. Many of the DRBGs in this Recommendation
and the requirements for using and validating them are also provided in ANS X9.82, Part 3. Other
parts of that Standard discuss entropy sources and RBG construction. During the development of
the latter two documents, the need for additional requirements and capabilities for DRBGs were
identified. As a result, the following changes were made to this Recommendation in August 2008:

1.	 Definitions have been added in Section 4 for the following: approved entropy source,
DRBG mechanism, fresh entropy, ideal random bitstring, ideal random sequence and
secure channel. The following definitions have been modified: backtracking resistance,
deterministic random bit generator (DRBG), entropy, entropy input, entropy source, full
entropy, min-entropy, prediction resistance, reseed, security strength, seed period and
source of entropy input.

2.	 In Section 6, a link was provided to examples for the DRBGs specified in this

Recommendation.

95

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

3.	 In Section 7.2, paragraph 3. 2nd sentence: The “should” has been changed to “shall”, so
that the sentence now reads:

The personalization string shall be unique for all instantiations of the same DRBG
mechanism type (e.g., HMAC_DRBG).

4.	 In Section 8.2, paragraph 2, additional text was added to the first sentence, which now
reads:

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed
shall be different than the seed used for instantiation.

5.	 In Section 8.5, Figure 4 has been updated, and the last paragraph has been revised to
discuss the use of a secure channel.

6.	 In Sections 8.6.5 and 8.6.9, statements were inserted that prohibit a DRBG instantiation
from reseeding itself.

7.	 References to “entropy input” have been removed from Section 8.6.9.
8.	 Section 8.8: An example was added to further clarify the meaning of prediction

resistance.

9.	 In Section 9, a prediction_resistance_request parameter has been added to the

Get_entropy_input call, along with a description of its purpose to the text underneath
the call.

10.	 In Section 9, a footnote was inserted to explain why a prediction_resistance_request
parameter may be useful in the Get_entropy_input call.

11.	 In Section 9.1, the following changes were made:

•	 The following sentence has been added to the description of the

prediction_resistance_flag:

In addition, step 6 can be modified to not perform a check for the
prediction_resistance_flag when the flag is not used in an implementation ; in this
case, the Get_entropy_input call need not include the
prediction_resistance_request parameter.

•	 The following requirement has been added to the Required information not
provided by the consuming application during instantiation:

This input shall not be provided by the consuming application as an input
parameter during the instantiate request.

•	 A prediction_resistance_request parameter has been added to the

Get_entropy_input call of step 6 of the Instantiate Process.

•	 Step 5 was originally intended for implementations of the Dual_EC_DRBG to
select an appropriate curve. This function is now performed by the
Dual_EC_DRBG’s Instantiate_algorithm. Changes were made to provide the
security strength to the Instantiate_algorithm. The Instantiate_algorithm for each
DRBG was changed to allow the input of the security strength.

12.	 In Section 9.2, the following changes have been made:

96

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

•	 A prediction_resistance_request parameter has been added to the Reseed_function
call.

•	 A description of the parameter has been added below the function call.

•	 A step was inserted that checked a request for prediction resistance (via the
prediction_resistance_request parameter) against the state of the
prediction_resistance_flag that may have been set during instantiation.

•	 A prediction_resistance_request parameter has been added to the
Get_entropy_input call of (newly numbered) step 4 of the Reseed Process.

•	 In the description of the entropy_input parameter, a restriction was added that the
entropy_input is not to be provided by the instantiation being reseeded.

•	 A footnote was inserted to explain why the prediction_resistance_request parameter
might be useful.

13.	 In Section 9.3.1, the following changes were made:

•	 Text has been added to item 4 to refer to the Reseed_function.

•	 A prediction_resistance_request parameter has been added to the

Get_entropy_input call of step 7.1 of the Generate Process.

•	 A substep was inserted in step 9 of the Generate Process to check the
prediction_resistance request against the state of the prediction_resistance_flag.

14.	 In Section 9.3.2, step e, a phrase addressing the presence of the

prediction_resistance_request indicator was inserted.

15.	 In Sections 10.1 and 10.3.1, the new hash functions approved in FIPS 180-4 have been
added.

16.	 In Sections 10.1.2 (HMAC_DRBG) and 10.2.1 (CTR_DRBG), the update functions
have been renamed to reflect the DRBG with which they are associated (i.e., renamed
to HMAC_DRBG_Update and CTR_DRBG_Update).

17.	 In Section 10.1.2.1, the last paragraph has been revised to indicate that only the Key is
considered to be a critical value.

18.	 In Sections 10.1.2.3, 10.2.1.3.1, 10.2.1.3.2 and 10.3.1.2, the description of the

personalization_string has been revised to indicate that the length the

personalization_string may be zero.

19.	 In Section 10.2.1.5, the following statement has been added to the first paragraph:

If the derivation function is not used, then the maximum allowed length of
additional_input = seedlen.

20.	 In Section 10.3.1.2, the specification was changed to select an elliptic curve and return
the parameters of that curve to the Instantiate_function that called the routine.

21.	 In the first paragraph of Appendix A.1, a statement has been added that if alternative
points are desired, they shall be generated as specified in Appendix A.2.

97

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

22.	 The original Appendices C and D on entropy sources and RBG constructions,
respectively, have been removed and the topics will be discussed in SP 800-90B and C

23.	 In Appendix C.2 (originally Appendix E.2), a paragraph has been inserted after the
table of E values that discusses the analysis associated with the table values.

24.	 The additional uses of the prediction_resistance_request parameter (as specified in
Section 9) have been added to the following appendices:

•	 D.1.1, step 4;

•	 D.1.2, Input and step 4;

•	 D.1.3, step 7.1;

•	 D.3.2, step 4;

•	 D.3.3, Input and step 4; and

•	 D.3.4, step 7.1.
25. The name of the update call has been changed in the following appendices:

•	 D.2.1, step 4;

•	 D.2.2, step 5;

•	 D.3.1, title; and

•	 D.4.1, title.
26.	 In Appendix D.3 (originally Appendix F.3), the first paragraph, which discusses the

example, has been modified to discuss the prediction_resistance_request parameter in
the Get_entropy_input call.

27. In Appendix D.5 (originally Appendix F.5), the description of the example in paragraph 2
has been changed so that the example does not include prediction resistance, and the
definition for the reseed_interval has been removed from the list. The
Dual_EC_Instantiate_function has been modified to reflect the changes made to the
Instantiate_function and Instantiate_algorithm (see the last bullet of modification 8
above). In addition, the pseudocode for the Reseed_function has been removed, and
steps in F.5.1 and F.5.2 that dealt with reseeding have been removed.

In June 2015, the following substantive changes were made in Revision 1 of [SP 800-90A]:

1.	 The following definitions were modified to be consistent with definitions in other parts of
this Recommendation: backtracking resistance, entropy source, non-deterministic random
bit generator, prediction resistance, and source of entropy input. The following
definitions have been removed: public key and public-key pair. A definition for
"randomness source" has been added, and the definition of "source of entropy input" has
been removed.

2.	 The term "source of entropy input" has been replaced by "randomness source" to avoid
confusion with the term "entropy source input," which is used in SP 800-90C to mean
input from an entropy source. A "randomness source" (formerly "source of entropy
input") could be an entropy source, an NRBG or a DRBG.

98

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

3.	 Section 5: The ECDLP abbreviation and the floor and gcd symbols were removed.
Definitions of the leftmost, rightmost, min and select functions have been added, and
have been used throughout the document.

4.	 Section 6: The reference to number-theoretic problems was removed, as well as the old
Appendix A that provided security considerations for DRBGs based on elliptic curves,
and the old Appendix F that listed shall statements.

5.	 Section 7: The first paragraph has been modified, and includes an additional shall
statement. In Section 7.1, the first two sentences have been modified for clarity. In
Section 7.2, the second paragraph and the first sentence of the third paragraph have been
modified for clarity; the personalization string is now recommended, rather than required,
to be unique. In Section 7.4, the second item has been modified for clarity, and the last
paragraph has been removed, since it was not needed here.

6.	 Section 8: In Section 8.1, the second sentence has been modified for clarity. In Section
8.2, additional text has been added to the last sentence for clarity. In Section 8.3, item 1b,
the reference to blocks was removed, since it pertained to the Dual_EC_DRBG. In
Section 8.4, the third sentence is a general statement that replaces the last two sentences
of that paragraph; the subject with more detail is now discussed below Table 1. In the
paragraph under Figure 4, text has been inserted in the second sentence for clarity. The
first sentence of the next paragraph has been modified for clarity, and an additional
paragraph has been added to the section to mention the relationship between a DRBG
sub-boundary and a cryptographic module boundary.

7.	 Section 8.5: A reference to the cryptographic boundary for FIPS 140 has been inserted in
bold to draw the reader’s attention to the fact that it is different than the DRBG’s
boundaries. In the paragraph under item 3, an example has been provided for clarity. In
the following two paragraphs, a reference to SP 800-90C has been inserted to direct the
reader to that document for further discussion on cryptographic module boundaries.

8.	 Section 8.6: In Section 8.6.2, a reference to fresh entropy has been inserted in the second
sentence. In Section 8.6.3, text has been inserted at the end of the second sentence for
clarity. In Section 8.6.4, a shall statement has been inserted at the end of the first
sentence. Sections 8.6.5 and 8.6.7 were revised to clarify the source of the entropy input
and nonce. In Section 8.6.6, text was inserted that states that entropy input is a critical
security parameter for cryptographic module validation. Section 8.6.7 was modified to
provide more information about suitable nonces and to state that the uniqueness of the
nonce is applicable to the cryptographic module in which it is used, and to indicate that
the nonce is a critical security parameter. In Section 8.6.8, text was added about enforcing
the seedlife. In Section 8.6.9, ‘DRBG’ was changed to ‘DRBG instantiation’ for clarity.

9.	 Section 8.7: Sections 8.7.1 and 8.7.2 have been modified to clarify that the optional
personalization string and additional input may be obtained from outside a cryptographic
module, that the personalization string is not a critical security parameter, and that the
additional input may be a critical security parameter if secret information is included.

10. Section 8.8: The last sentence of the second paragraph under the list has ‘direct or
indirect’ inserted for clarity. A paragraph has been added to the end of the section to
recommend reseeding whenever possible.

99

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

11. Section 9: A paragraph discussing the pseudocode used has been inserted at the
beginning of the section, and modifications to the third and fourth paragraphs have been
made for clarity; text has also been added to the next-to-last paragraph that discusses
error codes more thoroughly. The last sentence in the third paragraph has been modified
to only require that the entropy input and nonce be provided as discussed in Sections
8.6.5 and 8.6.7 and in SP 800-90C. A paragraph has been added to discuss checking the
status code. In Section 9.2, clarifying information has been inserted about the
prediction_resistance_request parameter. In Sections 9.1, 9.2 and 9.3, returns to the
consuming application have been modified for those cases where other than SUCCESS is
appropriate as a status to be returned from the function (e.g., parameter errors, entropy
unavailability or entropy source failure); this change was made to better accommodate
the various Get_entropy_input constructions specified in SP 800-90C. In Section 9.1
and 9.3.1, the item in the list referring to elliptic-curve parameters was removed, and the
discussion of the status output has been modified for clarity.

12. Section 10: Section 10 now includes a link to the DRBG test vectors on the NIST web
site.

Sections 10.1, 10.1.1 and 10.1.2 now include short discussions about selecting hash
functions to support the DRBG's intended security strength.

The Dual_EC_DRBG has been removed, and section numbers adjusted accordingly. In
Section 10.2.1, a paragraph under Table 3 has been added for explanatory purposes. In
Section 10.2.1.3.2, the first paragraph has been modified for clarity. Section 10.2 has
been modified to allow the counter field to be a subset of the input block and to allow
either derivation function specified in the document; this is indicated in step 2.1 of
Section 10.2.1.2 and step 4.1 of Sections 10.2.1.5.1 and 10.2.1.5.2 (note that this change
continues to allow the use of the entire input block as the counter field, as was specified
in the previous versions of this document); Table 3 has been modified to include
restrictions on the length of the counter field and to indicate the restrictions on the
number of bits that can be requested during a single request as a function of the counter-
field length and the previous restriction on the number of bits that could be requested.
The first paragraphs of Sections 10.3 and 10.3.2 have been modified slightly for clarity.

Step 11 in Section 10.3.2 has been respecified using the (new) select function.
13. Section 11: The third paragraph has been added for clarity, and the last sentence of the

next paragraph has been removed. In Section 11.1, the references to the
Dual_EC_DRBG have been removed from the third and fifth bullet, and the wording of
the next-to-last bullet has been modified to be conditional. In Section 11.2, additional text
has been inserted to address validation testing. In Section 11.3, the health testing
requirements have been modified.

14. The previous Appendix A was removed; this appendix contained application-specific
constants for the Dual_EC_DRBG.

15. Appendix A now contains the conversion routines. Appendix A.5.4 (the old Appendix
B.5.4), which contained the complex modular method for converting bits to numbers, has
been removed because of an error in the specification.

100

NIST SP 800-90A Rev. 1 Recommendation for Random Number
Generation Using Deterministic RBGs

16. Appendix B now contains the pseudocode examples previously provided in Appendix D,
less examples for the Dual_EC_DRBG. In Appendix B.4, the discussion of the example
has been changed slightly.

17. The previous Appendix C was removed; this appendix contained security considerations
relating to the Dual_EC_DRBG.

18. The new Appendix C is the same as the previous Appendix E, minus the
Dual_EC_DRBG discussion.
Additional text has been inserted into the discussion of the CTR_DRBG in Appendix
C.3 (the constraints subsection) that discusses the constraints provided in Table 3 of
Section 10.2.1.

19. The referenced documents now in Appendix D have been updated, and a reference to
[Campagna] has been added.

20. The previous Appendix F was removed; this appendix contained a list of shall statements
that could not be validated by NIST’s validation program.

101

