
Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes.
It has been superseded by the document identified below.

Withdrawal Date August 18, 2020

Original Release Date March 24, 2020

Superseding Document

Status Final

Series/Number NIST Special Publication (SP) 800-56C Revision 2

Title Recommendation for Key-Derivation Methods in Key-
Establishment Schemes

Publication Date August 2020

DOI https://doi.org/10.6028/NIST.SP.800-56Cr2

CSRC URL https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

Additional Information

https://doi.org/10.6028/NIST.SP.800-56Cr2
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

Draft NIST Special Publication 800-56C 1

Revision 2 2

Recommendation for Key-Derivation 3

Methods in Key-Establishment Schemes4

5

6
Elaine Barker 7

Lily Chen 8
Richard Davis 9

10
11
12
13
14
15

This publication is available free of charge from: 16
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft 17

18
19
20

21
22

C O M P U T E R S E C U R I T Y

Draft NIST Special Publication 800-56C 23

Revision 2 24

Recommendation for Key-Derivation 25

Methods in Key-Establishment Schemes 26

27
28

Elaine Barker 29
Lily Chen 30

Computer Security Division 31
Information Technology Laboratory 32

33
Richard Davis 34

National Security Agency 35
36
37
38
39

This publication is available free of charge from: 40
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft 41

42
43
44

March 2020 45
46
47

48
49
50

U.S. Department of Commerce 51
Wilbur L. Ross, Jr., Secretary 52

53
National Institute of Standards and Technology 54

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 55

Authority 56

This publication has been developed by NIST in accordance with its statutory responsibilities under the 57
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 58
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 59
minimum requirements for federal information systems, but such standards and guidelines shall not apply 60
to national security systems without the express approval of appropriate federal officials exercising policy 61
authority over such systems. This guideline is consistent with the requirements of the Office of Management 62
and Budget (OMB) Circular A-130. 63

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 64
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 65
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 66
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 67
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 68
however, be appreciated by NIST. 69

National Institute of Standards and Technology Special Publication 800-56C Revision 2 70
Natl. Inst. Stand. Technol. Spec. Publ. 800-56C Rev. 2, 41 pages (March 2020) 71

CODEN: NSPUE2 72

This publication is available free of charge from: 73
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft 74

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 75
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 76
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 77
available for the purpose. 78

There may be references in this publication to other publications currently under development by NIST in accordance 79
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 80
may be used by federal agencies even before the completion of such companion publications. Thus, until each 81
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 82
planning and transition purposes, federal agencies may wish to closely follow the development of these new 83
publications by NIST. 84

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 85
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 86
https://csrc.nist.gov/publications. 87

Public comment period: March 24, 2020 through May 15, 2020 88
 89

National Institute of Standards and Technology 90
Attn: Computer Security Division, Information Technology Laboratory 91

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 92
Email: 800-56C_Comments@nist.gov 93

 94
All comments are subject to release under the Freedom of Information Act (FOIA). 95

 96

https://csrc.nist.gov/publications

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

ii

Reports on Computer Systems Technology 97

The Information Technology Laboratory (ITL) at the National Institute of Standards and 98
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 99
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 100
methods, reference data, proof of concept implementations, and technical analyses to advance the 101
development and productive use of information technology. ITL’s responsibilities include the 102
development of management, administrative, technical, and physical standards and guidelines for 103
the cost-effective security and privacy of other than national security-related information in federal 104
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 105
outreach efforts in information system security, and its collaborative activities with industry, 106
government, and academic organizations. 107
 108

Abstract 109

This Recommendation specifies techniques for the derivation of keying material from a shared 110
secret established during a key-establishment scheme defined in NIST Special Publications 800-111
56A or 800-56B. 112
 113

Keywords 114

Expansion; extraction; extraction-then-expansion; hash function; key derivation; key 115
establishment; message authentication code. 116

 117

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

iii

Acknowledgements 118

The authors gratefully acknowledge the contributions on this and previous versions of this 119
document by their NIST colleagues (Quynh Dang, Sharon Keller, John Kelsey, Allen Roginsky, 120
Meltem Sonmez Turan, Apostol Vassilev, and Tim Polk) and by Miles Smid, formerly of Orion 121
Security Solutions. 122

The authors also gratefully appreciate the thoughtful and instructive comments received during the 123
public comment periods, which helped to improve the quality of this publication. 124

 125

Conformance Testing 126

Conformance testing for implementations of the functions that are specified in this publication will 127
be conducted within the framework of the Cryptographic Algorithm Validation Program (CAVP) 128
and the Cryptographic Module Validation Program (CMVP). The requirements on these 129
implementations are indicated by the word “shall.” Some of these requirements may be out of 130
scope for CAVP or CMVP validation testing and are therefore the responsibility of entities using, 131
implementing, installing, or configuring applications that incorporate this Recommendation. 132
 133

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

iv

Call for Patent Claims 134

This public review includes a call for information on essential patent claims (claims whose use 135
would be required for compliance with the guidance or requirements in this Information 136
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 137
directly stated in this ITL Publication or by reference to another publication. This call also includes 138
disclosure, where known, of the existence of pending U.S. or foreign patent applications relating 139
to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 140

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 141
written or electronic form, either: 142

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 143
does not currently intend holding any essential patent claim(s); or 144

b) assurance that a license to such essential patent claim(s) will be made available to 145
applicants desiring to utilize the license for the purpose of complying with the guidance or 146
requirements in this ITL draft publication either: 147

i. under reasonable terms and conditions that are demonstrably free of any unfair 148
discrimination; or 149

ii. without compensation and under reasonable terms and conditions that are 150
demonstrably free of any unfair discrimination. 151

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 152
on its behalf) will include in any documents transferring ownership of patents subject to the 153
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 154
the transferee, and that the transferee will similarly include appropriate provisions in the event of 155
future transfers with the goal of binding each successor-in-interest. 156

The assurance shall also indicate that it is intended to be binding on successors-in-interest 157
regardless of whether such provisions are included in the relevant transfer documents. 158

Such statements should be addressed to: keymanagement@nist.gov. 159

160

mailto:keymanagement@nist.gov

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

v

Table of Contents 161

1 Introduction ... 1 162
2 Scope and Purpose .. 2 163
3 Definitions, Symbols and Abbreviations ... 3 164

3.1 Definitions ... 3 165
3.2 Symbols and Abbreviations .. 7 166

4 One-Step Key Derivation ... 11 167
4.1 Specification of Key-Derivation Functions ... 11 168
4.2 The Auxiliary Function H(x) and Related Parameters 15 169

5 Two-Step Key Derivation ... 17 170
5.1 Specification of Key-Derivation Procedure .. 17 171
5.2 The Auxiliary MAC Algorithm and Related Parameters 20 172
5.3 Randomness Extraction followed by Multiple Key Expansions 21 173

6 Application-Specific Key-Derivation Methods ... 25 174
7 Selecting Hash Functions and MAC Algorithms ... 26 175
8 Further Discussion .. 28 176

8.1 Using a Truncated Hash Function... 28 177
8.2 The Choice of a Salt Value ... 28 178
8.3 MAC Algorithms used for Extraction and Expansion 28 179
8.4 Destruction of Sensitive Locally Stored Data .. 29 180

References ... 30 181
Appendix A: Revisions (Informative) ... 32 182

A.1 The Original Version of SP 800-56C ... 32 183
A.2 Revision 1 ... 32 184
A.3 Revision 2 ... 32 185

 186

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

vi

List of Figures 187

Figure 1: The Extraction-then-Expansion Key-Derivation Procedure 17 188
Figure 2: Randomness Extraction followed by Multiple Key Expansions 22 189

 190
List of Tables 191

Table 1: H(x) = hash(x) (Option 1) .. 15 192
Table 2: H(x) = HMAC-hash(salt, x) (Option 2) .. 15 193
Table 3: H(x) = KMAC#(salt, x, H_outputBits, “KDF”) (Option 3) 16 194
Table 4: MAC(salt, Z, …) = HMAC-hash(salt, Z) (For Randomness Extraction) ... 20 195
Table 5: MAC(salt, Z, …) = AES-N-CMAC(salt, Z) (For Randomness Extraction) . 21196

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

1

1 Introduction 197

During the execution of a public key-based key-establishment scheme specified in either of the 198
National Institute of Standards and Technology (NIST) Special Publications [SP 800-56A]1 or [SP 199
800-56B],2 a key-derivation method may be required to obtain secret cryptographic keying 200
material. This Recommendation specifies the key-derivation methods that can be used, as needed, 201
in those key-establishment schemes. The keying material derived using these methods shall be 202
computed in its entirety before outputting any portion of it and shall only be used as secret keying 203
material, such as a symmetric key used for data encryption or message integrity, a secret 204
initialization vector, or, perhaps, a key-derivation key that will be used to generate additional 205
keying material (possibly using a different derivation process; see [SP 800-108]3). The derived 206
keying material shall not be used as a key stream for a stream cipher. 207

1 SP 800-56A, Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography
2 SP 800-56B, Recommendation for Pair-Wise Key-Establishment Schemes Using Integer Factorization Cryptography
3 SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions (Revised)

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

2

2 Scope and Purpose 208

This Recommendation specifies two categories of key-derivation methods that can be employed, 209
as required, to derive keying material from a shared secret Z generated during the execution of a 210
key-establishment scheme specified in [SP 800-56A] or [SP 800-56B]. 211

In addition to the currently approved techniques for the generation of the shared secret Z as 212
specified in SP 800-56A and SP 800-56B, this Recommendation permits the use of a “hybrid” 213
shared secret of the form Z′ = Z || T, a concatenation consisting of a “standard” shared secret Z that 214
was generated during the execution of a key-establishment scheme (as currently specified in [SP 215
800-56A] or [SP 800-56B]) followed by an auxiliary shared secret T that has been generated using 216
some other method. The content, format, length, and method used to generate T must be known 217
and agreed upon by all parties that will rely upon the derived keying material, as well as by any 218
agents trusted to act on their behalf. The key-derivation methods specified in this Recommendation 219
will process a hybrid Z′ in the same way they process a standard Z. Therefore, for simplicity of 220
notation and exposition, any shared secret denoted by the symbol Z in the remainder of this 221
Recommendation can be of either the “standard” or “hybrid” variety. 222

The first category of specified key-derivation methods consists of a family of one-step key-223
derivation functions that derive keying material of a desired length from a shared secret that was 224
generated during the execution of a key-establishment scheme (and possibly other information as 225
well). 226

The second category consists of an extraction-then-expansion key-derivation procedure that 227
involves two steps: 228

1) Randomness extraction, to obtain a single cryptographic key-derivation key from a shared 229
secret generated during the execution of a key-establishment scheme. 230

2) Key expansion, to derive keying material of the desired length from that key-derivation 231
key and other information. Since NIST’s [SP 800-108] specifies several families of key-232
derivation functions that are approved for deriving additional keying material from a given 233
cryptographic key-derivation key, those functions are employed in the second (key-234
expansion) step of these two-step procedures. 235

In addition to the key-derivation methods whose specifications are provided in this document, [SP 236
800-135]4 describes several variants (of both the one-step and two-step methods) that are 237
approved for specific applications. 238

4 SP 800-135 Rev. 1, Recommendation for Existing Application-Specific Key Derivation Functions

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

3

3 Definitions, Symbols, and Abbreviations 239

3.1 Definitions 240

Algorithm A clearly specified mathematical process for computation; a set of
rules that, if followed, will give a prescribed result.

Approved An algorithm or technique that is either 1) specified in a Federal
Information Processing Standard (FIPS) or NIST
Recommendation, 2) adopted in a FIPS or NIST Recommendation,
or 3) specified in a list of NIST-approved security functions.

Big-endian The property of a byte string having its bytes positioned in order of
decreasing significance. In particular, the leftmost (first) byte is the
most significant (containing the most significant eight bits of the
corresponding bit string), and the rightmost (last) byte is the least
significant (containing the least significant eight bits of the
corresponding bit string).
For the purposes of this Recommendation, it is assumed that the
bits within each byte of a big-endian byte string are also positioned
in order of decreasing significance (beginning with the most
significant bit in the leftmost position and ending with the least
significant bit in the rightmost position).

Bit length The number of bits in a bit string (e.g., the bit length of the string
0110010101000011 is sixteen bits). The bit length of the empty
(i.e., null) string is zero.

Bit string An ordered sequence of bits (represented as 0s and 1s). Unless
otherwise stated in this document, bit strings are depicted as
beginning with their most significant bit (shown in the leftmost
position) and ending with their least significant bit (shown in the
rightmost position). For example, the most significant (leftmost) bit
of 0101 is 0, and its least significant (rightmost) bit is 1. If
interpreted as the 4-bit binary representation of an unsigned integer,
0101 corresponds to the number five.

Byte A bit string consisting of eight bits.

Byte length The number of consecutive (non-overlapping) bytes in a byte
string. For example, 0110010101000011 = 01100101 || 01000011
is two bytes long. The byte length of the empty string is zero.

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

4

Byte string An ordered sequence of bytes, beginning with the most significant
(leftmost) byte and ending with the least significant (rightmost)
byte. Any bit string whose bit length is a multiple of eight can be
viewed as the concatenation of an ordered sequence of bytes (i.e., a
byte string). For example, the bit string 0110010101000011 can be
viewed as a byte string since it is the concatenation of two bytes:
01100101 followed by 01000011.

Concatenation As used in this Recommendation, the concatenation X || Y of bit
string X followed by bit string Y is the ordered sequence of bits
formed by appending Y to X in such a way that the leftmost (i.e.,
initial) bit of Y follows the rightmost (i.e., final) bit of X.

Cryptographic key (Key) A parameter used with a cryptographic algorithm that determines
its operation.

Estimated maximum
security strength

An estimate of the largest security strength that can be attained by
a cryptographic mechanism given the explicit and implicit
assumptions that are made regarding its implementation and
supporting infrastructure (e.g., the algorithms employed, the
selection of associated primitives and/or auxiliary functions, the
choices for various parameters, the methods of generation and/or
protection for any required keys, etc.). The estimated maximum
security strengths of various approved cryptographic mechanisms
are provided in [SP 800-57].

Hash function A function that maps a bit string of arbitrary length to a fixed-length
bit string. Approved hash functions are designed to satisfy the
following properties:

1. (One-way) It is computationally infeasible to find any input
that maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Approved hash functions are specified in [FIPS 180]5 and
[FIPS 202].6

5 FIPS 180, Secure Hash Standard (SHS)
6 FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

5

Key-derivation function As used in this Recommendation, either a one-step key-derivation
method or a key-derivation function based on a pseudorandom
function as specified in [SP 800-108].

Key-derivation method As used in this Recommendation, a process that derives secret
keying material from a shared secret. This Recommendation
specifies both one-step and two-step key-derivation methods.

Key-derivation procedure As used in this Recommendation, a two-step key-derivation method
consisting of randomness extraction followed by key expansion.

Key-derivation key As used in this Recommendation, a key that is used during the key-
expansion step of a key-derivation procedure to derive the secret
output keying material. This key-derivation key is obtained from a
shared secret during the randomness-extraction step.

Key establishment A procedure that results in secret keying material that is shared
among different parties.

Key expansion The second step in the key-derivation procedure specified in this
Recommendation in which a key-derivation key is used to derive
secret keying material having the desired length.

Keying material Data that is represented as a binary string such that any non-
overlapping segments of the string with the required lengths can be
used as secret keys, secret initialization vectors, and other secret
parameters.

Message Authentication
Code (MAC) algorithm

A family of cryptographic functions that is parameterized by a
symmetric key. Each of the functions can act on input data (called
a “message”) of variable length to produce an output value of a
specified length. The output value is called the MAC of the input
message. MAC(k, x, …) is used to denote the MAC of message x
computed using the key k (and any additional algorithm-specific
parameters). An approved MAC algorithm is expected to satisfy
the following property (for each supported security strength):

 Without knowledge of the key k, it must be computationally
infeasible to predict the (as-yet-unseen) value of MAC(k, x, …)
with a probability of success that is a significant improvement
over simply guessing either the MAC value or k, even if one has
already seen the results of using that same key to compute
MAC(k, xj, …) for (a bounded number of) other messages xj ≠ x.

A MAC algorithm can be employed to provide authentication of the
origin of data and/or to provide data-integrity protection. In this
Recommendation, approved MAC algorithms are used to

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

6

determine families of pseudorandom functions (indexed by the
choice of key) that may be employed during key derivation.

Nonce A varying value that has, at most, a negligible chance of
repeating; for example, a random value that is generated anew for
each use, a timestamp, a sequence number, or some combination
of these.

Pseudorandom function
family (PRF)

An indexed family of (efficiently computable) functions, each
defined for the same particular pair of input and output spaces. (For
the purposes of this Recommendation, one may assume that both
the index set and the output space are finite.) The indexed functions
are pseudorandom in the following sense:

If a function from the family is selected by choosing an index
value uniformly at random, and one’s knowledge of the
selected function is limited to the output values corresponding
to a feasible number of (adaptively) chosen input values, then
the selected function is computationally indistinguishable from
a function whose outputs were fixed uniformly at random.

Randomness extraction The first step in the two-step key-derivation procedure specified in
this Recommendation; during this step, a key-derivation key is
produced from a shared secret.

Salt As used in this Recommendation, a byte string (which may be
secret or non-secret) that is used as a MAC key by either: 1) a
MAC-based auxiliary function H employed in one-step key
derivation or 2) a MAC employed in the randomness-extraction
step during two-step key derivation.

Security strength A number characterizing the amount of work that is expected to
suffice to “defeat” an implemented cryptographic mechanism (e.g.,
by compromising its functionality and/or circumventing the
protection that its use was intended to facilitate). In this
Recommendation, security strength is measured in bits. If the
security strength of a particular implementation of a cryptographic
mechanism is s bits, it is expected that the equivalent of (roughly)
2s basic operations of some sort will be sufficient to defeat it in
some way.

Shared secret The secret byte string that is computed/generated during the
execution of an approved key-establishment scheme and used as
input to a key-derivation method as part of that transaction.

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

7

Shall A requirement that needs to be fulfilled to claim conformance to
this Recommendation. Note that shall may be coupled with not to
become shall not.

Support
(a security strength)

A security strength of s bits is said to be supported by a particular
choice of algorithm, primitive, auxiliary function, or parameters for
use in the implementation of a cryptographic mechanism if that
choice will not prevent the resulting implementation from attaining
a security strength of at least s bits.
In this Recommendation, it is assumed that implementation choices
are intended to support a security strength of 112 bits or more (see
[SP 800-57]7 and [SP 800-131A]8).

Symmetric key A single cryptographic key that is used with a symmetric-key
algorithm; also called a secret key. A symmetric-key algorithm is a
cryptographic algorithm that uses the same secret key for an
operation and its complement (e.g., encryption and decryption).

Targeted security strength The security strength that is intended to be supported by one or
more implementation-related choices (such as algorithms,
primitives, auxiliary functions, parameter sizes, and/or actual
parameters) for the purpose of implementing a cryptographic
mechanism.

3.2 Symbols and Abbreviations 241

0x A marker used to indicate that the following symbols are to be
interpreted as a bit string written in hexadecimal notation (using
the symbols 0, 1, …, 9 and A, B, …, F to denote 4-bit binary
representations of the integers zero through nine and 10 through
15, respectively). A byte can be represented by a hexadecimal
string of length two; the leftmost hexadecimal symbol corresponds
to the most significant four bits of the byte, and the rightmost
hexadecimal symbol corresponds to the least significant four bits
of the byte. For example, 0x9D represents the bit string 10011101
(assuming that the bits are positioned in order of decreasing
significance).

AES Advanced Encryption Standard (the block cipher specified in
[FIPS 197]9).

7 SP 800-57 Rev. 4, Recommendation for Key Management Part 1: General
8 SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths
9 FIPS 197, Advanced Encryption Standard

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

8

AES-N
(N = 128, 192, or 256)

The variant of the AES block cipher that requires an N-bit
encryption/decryption key; the three variants specified in [FIPS
197] are AES-128, AES-192, and AES-256.

AES-CMAC The Cipher-based Message Authentication Code (CMAC) mode
of operation for the AES block cipher, as specified in [SP 800-
38B]10.

AES-N-CMAC(k, x)
(N = 128, 192, or 256)

An implementation of AES-CMAC based on the AES-N variant of
the AES block cipher (for N = 128, 192, or 256); its output is a
128-bit MAC computed over the “message” x using the key k.

counter An unsigned integer, represented as a big-endian four-byte string,
that is employed by the one-step key-derivation method specified
in Section 4.1.

Context A bit string of context-specific data; a subcomponent of the
FixedInfo that is included as part of the input to the two-step key-
derivation method specified in Section 5.1.

default_salt A default value assigned to salt (if necessary) to implement an
auxiliary function H selected according to Option 2 or 3 in the one-
step key-derivation method specified in Section 4.1.

DerivedKeyingMaterial Keying material that is derived from a shared secret Z (and other
data) through the use of a key-derivation method.

ECC Elliptic curve cryptography.

FFC Finite field cryptography.

FixedInfo A bit string of context-specific data whose value does not change
during the execution of a key-derivation method specified in this
Recommendation.

H The auxiliary function used to produce blocks of keying material
during the execution of the one-step key-derivation method specified
in Section 4.1.

hash A hash function. Approved choices for hash are specified in [FIPS
180] and [FIPS 202].

10 SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for Authentication

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

9

HMAC Keyed-hash Message Authentication Code, as specified in [FIPS
198].11

HMAC-hash(k, x) An implementation of HMAC using the hash function, hash; its
output is a MAC computed over “message” x using the key k.

H_outputBits A positive integer that indicates the length (in bits) of the output of
either: 1) the auxiliary function H used in the one-step key-
derivation method specified in Section 4.1 or 2) an auxiliary
HMAC algorithm used in the two-step key-derivation method
specified in Section 5.1.

IFC Integer factorization cryptography.

IV Initialization vector; as used in this Recommendation, it is a bit
string used as an initial value during the execution of an approved
PRF-based KDF operating in Feedback Mode, as specified in [SP
800-108].

KDF Key-derivation function.

KDK The key-derivation key resulting from the randomness-extraction
step, which is then used in the key-expansion step during the
execution of the key-derivation procedure specified in Section 5.1.

KDM Key-derivation method.

KMAC Keccak Message Authentication Code, as specified in
[SP 800-185].12

KMAC#(k, x, l, S) A variant of KMAC (either KMAC128 or KMAC256, as specified
in [SP 800-185]); its output is an l-bit MAC computed over the
“message” x using the key k and “customization string” S.

L A positive integer specifying the desired length (in bits) of the
derived keying material.

[L]2 An agreed-upon encoding of the integer L as a bit string.

MAC Message Authentication Code.

11 FIPS 198, The Keyed-Hash Message Authentication Code (HMAC)
12 SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

10

MAC(k, x, …) An instance of a MAC algorithm computed over the “message” x
using the key k (and any additional algorithm-specific parameters).

max_H_inputBits The maximum length (in bits) for strings used as input to the
auxiliary function H employed by the one-step key-derivation
method specified in Section 4.1.

OtherInput A collective term for any and all additional data (other than the
shared secret itself) that is used as input to a key-derivation method
specified in this Recommendation.

PRF Pseudorandom function (family).

s Security strength (in bits).

SHA Secure Hash Algorithm, as specified in [FIPS 180] (i.e., SHA-1,
SHA-224, SHA-512/224, SHA-256, SHA-512/256, SHA-384, or
SHA-512) or [FIPS 202] (i.e., SHA3-224, SHA3-256, SHA3-384,
or SHA3-512).

Z The shared secret (determined as described in Section 2 of this
Recommendation).

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

11

4 One-Step Key Derivation 242

This section specifies a family of approved key-derivation functions (KDFs) that are executed in 243
a single step; a two-step procedure is specified in Section 5. The input to each specified KDF 244
includes the shared secret Z, an indication of the desired bit length of the keying material to be 245
output, and, perhaps, other information (as determined by the particular implementation of the key-246
establishment scheme and/or key-derivation function). 247

Implementations of these one-step KDFs depend upon the choice of an auxiliary function H, which 248
can be either: 1) an approved hash function, denoted as hash, as defined in [FIPS 180] or [FIPS 249
202]; 2) HMAC with an approved hash function, hash, denoted as HMAC-hash and defined in 250
[FIPS 198]; or 3) a KMAC variant, as defined in [SP 800-185]. Tables 1, 2, and 3 in Section 4.2 251
describe the possibilities for H and also include any restrictions on the associated implementation-252
dependent parameters. H shall be chosen in accordance with the selection requirements specified 253
in Section 7. 254

When an approved MAC algorithm (HMAC or KMAC) is used to define the auxiliary function 255
H, it is permitted to use a known salt value as the MAC key. In such cases, it is assumed that the 256
MAC algorithm will satisfy the following property (for each of its supported security strengths): 257

 Given knowledge of the key k, and (perhaps) partial knowledge of a message x that includes an 258
unknown substring y, it must be computationally infeasible to predict the (as-yet-unseen) value 259
of MAC(k, x, …) with a probability of success that is a significant improvement over simply 260
guessing either the MAC value or the value of y, even if one has already seen the values of 261
MAC(kj, xj, …) for a feasible number of other (kj, xj) pairs where each key kj is known and 262
each (partially known) message xj includes the same unknown substring y, provided that none 263
of the (kj, xj) pairs is identical to (k, x). 264

 This property is consistent with the use of the MAC algorithm as the specification of a family of 265
pseudorandom functions defined on the appropriate message space and indexed by the choice of 266
MAC key. Under Option 2 and Option 3 of the KDF specification below, the auxiliary function H 267
is a particular selection from such a family. The (partially known) messages will have the form 268
counter || Z || FixedInfo, containing the shared secret Z as an unknown substring. 269

4.1 Specification of Key-Derivation Functions 270

A family of one-step key-derivation functions is specified as follows: 271

Function call: KDM(Z, OtherInput). 272

Options for the Auxiliary Function H: 273
Option 1: H(x) = hash(x), where hash is an approved hash function meeting the selection 274

requirements specified in Section 7, and the input, x, is a bit string. 275
Option 2: H(x) = HMAC-hash(salt, x), where HMAC-hash is an implementation of the HMAC 276

algorithm (as defined in [FIPS 198]) employing an approved hash function, hash, 277
that meets the selection requirements specified in Section 7. An implementation-278
dependent byte string, salt, whose (non-null) value may be optionally provided in 279

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

12

OtherInput, serves as the HMAC key, and x (the input to H) is a bit string that serves 280
as the HMAC “message” as specified in [FIPS 198]. 281

Option 3: H(x) = KMAC#(salt, x, H_outputBits, S), where KMAC# is a particular 282
implementation of either KMAC128 or KMAC256 (as defined in [SP 800-185]) that 283
meets the selection requirements specified in Section 7. An implementation-284
dependent byte string, salt, whose (non-null) value may be optionally provided in 285
OtherInput, serves as the KMAC# key, and x (the input to H) is a bit string that serves 286
as the KMAC# “message” as specified in [SP 800-185]. The parameter H_outputBits 287
determines the bit length chosen for the output of the KMAC variant employed. The 288
“customization string” S shall be the byte string 01001011 || 01000100 || 01000110, 289
which represents the sequence of characters “K”, “D,” and “F” in 8-bit ASCII. (This 290
three-byte string is denoted by “KDF” in this document.) 291

Implementation-Dependent Parameters: 292
1. H_outputBits – A positive integer that indicates the length (in bits) of the output of the 293

auxiliary function H that is used to derive blocks of secret keying material. If Option 1 or 294
Option 2 is chosen, then H_outputBits corresponds to the bit-length of the output block of 295
the particular hash function used in the implementation of H; therefore, H_outputBits is in 296
the set {160, 224, 256, 384, 512} with the precise value determined by the choice for the 297
hash function, hash (see Section 4.2 for details). If Option 3 is chosen, then H_outputBits 298
shall either be set equal to the length (in bits) of the secret keying material to be derived (see 299
input L below) or selected from the set {160, 224, 256, 384, 512}. 300

2. max_H_inputBits – A positive integer that indicates the maximum permitted length (in bits) 301
of the bit string x that is used as input to the auxiliary function H. If Option 1 or Option 2 is 302
chosen for the implementation of H, then an upper bound on max_H_inputBits may be 303
determined by the choice of the hash function, hash (see Section 4.2 for details); 304
max_H_inputBits values smaller than a specification-imposed upper bound may be dictated 305
by the particular use case. If the hash function, hash, is specified in [FIPS 202], or if Option 306
3 is chosen for the implementation of H, then there is no specification-imposed upper bound 307
on max_H_inputBits; the value assigned to max_H_inputBits may be determined by the 308
needs of the relying applications/parties. 309

3. default_salt – A non-null (secret or non-secret) byte string that is needed only if either Option 310
2 (HMAC-hash) or Option 3 (KMAC#) is chosen for the implementation of the auxiliary 311
function H. This byte string is used as the value of salt if a (non-null) value is not included 312
in OtherInput (see below). 313
If H(x) = HMAC-hash(salt, x), then – in the absence of an agreed-upon alternative – the 314
default_salt shall be an all-zero byte string whose bit length equals that specified as the bit 315
length of an input block for the hash function, hash. (Input-block lengths for the approved 316
hash functions that can be employed to implement HMAC-hash are listed in Table 1 of 317
Section 4.2.) 318
If H(x) = KMAC128(salt, x, H_outputBits, “KDF”), then – in the absence of an agreed-upon 319
alternative – the default_salt shall be an all-zero string of 164 bytes (i.e., an all-zero string 320
of 1312 bits). 321

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

13

If H(x) = KMAC256(salt, x, H_outputBits, “KDF”), then – in the absence of an agreed-upon 322
alternative – the default_salt shall be an all-zero string of 132 bytes (i.e., an all-zero string 323
of 1056 bits). 324

Input: 325
1. Z – a byte string that represents the shared secret. 326

2. OtherInput, which includes: 327
a. {salt} – A non-null (secret or non-secret) byte string that can be (optionally) provided if 328

either Option 2 (HMAC-hash) or Option 3 (KMAC#) is chosen for the implementation 329
of the auxiliary function H since those options require a salt value that is used as a MAC 330
key. 331
The salt included in OtherInput could be, for example, a value computed from nonces 332
exchanged as part of a key-establishment protocol that employs one or more of the key-333
agreement schemes specified in [SP 800-56A] or [SP 800-56B], a value already shared 334
by the protocol participants, or a value that is pre-determined by the protocol. The 335
possibilities for the length of salt are determined as follows: 336
(1) The HMAC-hash algorithm, as defined in [FIPS 198], can accommodate MAC keys 337

of any bit length permitted for input to the hash function, hash. Therefore, when 338
Option 2 is chosen, the length of the byte string salt can be as large as allowed for 339
any string used as input to hash. However, if the bit length of salt is greater than the 340
bit length specified for a single input block for the hash function, hash, then the value 341
of salt is replaced by hash(salt) as part of the HMAC computation. See Table 2 for 342
details. 343

(2) The KMAC128 and KMAC256 algorithms specified in [SP 800-185] can 344
accommodate MAC keys of any length up to (22040 – 1) bits. Therefore, when Option 345
3 is chosen, salt can be a byte string of any agreed-upon length that does not exceed 346
(22037 – 1 bytes) (i.e., 22040 – 8 bits). The input salt value will be (re)formatted (using 347
a byte-padding function) during the execution of the KMAC algorithm to obtain a 348
string whose length is a multiple of either 168 bytes (for KMAC128) or 136 bytes 349
(for KMAC256). See Table 3 for details. 350

If a salt value required by H is omitted from OtherInput (or if a required salt value 351
included in OtherInput is the null string), then the value of default_salt shall be used as 352
the value of salt when H is executed. 353

b. L – A positive integer that indicates the length (in bits) of the secret keying material to 354
be derived; L shall not exceed H_outputBits × (232 –1). 355
(L = keydatalen in the notation of previous versions of [SP 800-56A], while L = KBits in 356
the notation of previous versions of [SP 800-56B]; current versions of those documents 357
have been updated to be consistent with SP 800-56C.) 358

c. FixedInfo – A bit string of context-specific data that is appropriate for the relying key-359
establishment scheme. As its name suggests, the value of FixedInfo does not change 360
during the execution of the process described below. 361
FixedInfo may, for example, include appropriately formatted representations of the 362

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

14

values of salt and/or L. The inclusion of additional copies of the values of salt and L in 363
FixedInfo would ensure that each block of derived keying material is affected by all of 364
the information conveyed in OtherInput. See [SP 800-56A] and [SP 800-56B] for more 365
detailed recommendations concerning the format and content of FixedInfo (also known 366
as OtherInfo in earlier versions of those documents). 367

Process: 368
1. If L > 0, then set reps = L / H_outputBits; otherwise, output an error indicator and exit 369

this process without performing the remaining actions (i.e., omit steps 2 through 8). 370

2. If reps > (232 −1), then output an error indicator and exit this process without performing 371
the remaining actions (i.e., omit steps 3 through 8). 372

3. Initialize a big-endian 4-byte unsigned integer counter as 0x00000000, corresponding to 373
a 32-bit binary representation of the number zero. 374

4. If counter || Z || FixedInfo is more than max_H_inputBits bits long, then output an error 375
indicator and exit this process without performing any of the remaining actions (i.e., omit 376
steps 5 through 8). 377

5. Initialize Result(0) as an empty bit string (i.e., the null string). 378

6. For i = 1 to reps, do the following: 379

6.1 Increment counter by 1. 380

6.2 Compute K(i) = H(counter || Z || FixedInfo). 381

6.3 Set Result(i) = Result(i – 1) || K(i). 382

7. Set DerivedKeyingMaterial equal to the leftmost L bits of Result(reps). 383

8. Output DerivedKeyingMaterial. 384

Output: 385
The bit string DerivedKeyingMaterial of length L bits (or an error indicator). 386

Notes: 387
In step 6.2 above, if H(x) = hash(x) or H(x) = HMAC-hash(salt, x), the entire output block of 388
the hash function, hash, shall be used when computing the output of H. Some approved 389
choices for hash (e.g., SHA-512/224, SHA-512/256, and SHA-384, as specified in [FIPS 180]) 390
include an internal truncation operation. In such a case, the “entire output” of hash is the output 391
block as defined in its specification. (For example, in the case of hash = SHA-384, the entire 392
output is defined as a 384-bit block resulting from the internal truncation of a certain 512-bit 393
value). 394
If H(x) = KMAC#(salt, x, H_outputBits, S), then choosing H_outputBits = L will likely be the 395
most efficient way to produce the desired L bits of keying material. 396
The derived keying material DerivedKeyingMaterial shall be computed in its entirety before 397
outputting any portion of it. 398

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

15

4.2 The Auxiliary Function H(x) and Related Parameters 399

Tables 1, 2, and 3 enumerate the possibilities for the auxiliary function H and provide additional 400
information concerning the values of related parameters, such as H_outputBits and 401
max_H_inputBits. The tables also indicate the range of security strengths that can be supported by 402
each choice for H (see Section 4.1) when used in a key derivation function for a key-establishment 403
scheme specified in SP 800-56A or SP 800-56B. 404

Table 1: H(x) = hash(x) (Option 1) 405

Hash
Function

(hash)

Byte / Bit
Length of

Input Blocks

H_outputBits
(in bits)

max_H_inputBits
(in bits)

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160
≤ 264 – 1

112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256
SHA-512/224 128 / 1024 224

≤ 2128 – 1

112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512
SHA3-224 144 / 1152 224

Arbitrarily long
inputs can be

accommodated.

112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

Table 2: H(x) = HMAC-hash(salt, x) (Option 2) 406

Hash
Function

(hash)

Effective
Byte / Bit
Length*

of salt

H_outputBits
(in bits)

max_H_inputBits
(in bits)

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160
≤ 264 – 513

112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256
SHA-512/224 128 / 1024 224

≤ 2128 – 1025

112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512
SHA3-224 144 / 1152 224 Arbitrarily long 112 ≤ s ≤ 224

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

16

SHA3-256 136 / 1088 256 inputs can be
accommodated.

112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

* This Recommendation places no restriction on the length of a chosen salt other than the 407
requirement that its byte length be greater than zero but no greater than the length of a single input 408
block to the hash function, hash, used to implement HMAC-hash. That freedom of choice is 409
somewhat illusory, however, since the HMAC algorithm will convert an input salt value (as 410
needed) into a string of the indicated hash-dependent length. A shorter salt (used by H as an 411
HMAC key) will be padded by appending an all-zero bit string to obtain a string of the indicated 412
length (the length of a single input block for the hash function, hash); a longer salt will be hashed 413
to produce a shorter string (of bit length H_outputBits), which will then be padded (by appending 414
an all-zero bit string) to obtain a string of the indicated length (see [FIPS 198] for additional 415
information). 416

Table 3: H(x) = KMAC#(salt, x, H_outputBits, “KDF”) (Option 3) 417

KMAC
Variant

Length
of a byte-
padded

salt value

Suggested
Maximum

Byte Length
of salt

H_outputBits
(in bits)

max_H_inputBits
(in bits)

Security
Strength s
supported

(in bits)

KMAC128 Multiple
of 168
bytes

168 – 4 =
164 ** Choice of 160,

224, 256, 384,
512, or L.

Arbitrarily long
inputs can be

accommodated.

112 ≤ s ≤ 128

KMAC256
Multiple
of 136
bytes

136 – 4 =
 132 *** 112 ≤ s ≤ 256

 418
** KMAC# prepends a length encoding for the first input data field. For KMAC128, using 164 419
bytes (or less) of salt leaves room for 4 bytes of prepended length encoding and limits the length 420
of the encoded salt to no more than the length of a single block of input to KMAC128. 421

*** KMAC# prepends a length encoding for the first input data field. For KMAC256, using 132 422
bytes (or less) of salt leaves room for 4 bytes of prepended length encoding and limits the length 423
of the encoded salt to no more than the length of a single block of input to KMAC256. 424

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

17

5 Two-Step Key Derivation 425

This section specifies an approved (two-step) extraction-then-expansion key-derivation 426
procedure. Like the one-step key-derivation functions described in Section 4, the input to this two-427
step procedure includes the shared secret Z; L, a positive integer indicating the desired length (in 428
bits) of the output keying material; and other information (as determined by the particular 429
implementation of the key-establishment scheme and/or key-derivation method). In contrast to the 430
one-step methods, a salt value is required to be included as part of the input. 431

The extraction-then-expansion key-derivation procedure is pictured in Figure 1. 432

 433
 434

 435

 436

 437

 438
The first (randomness-extraction) step uses either HMAC (as defined in [FIPS 198]) or AES-439
CMAC (as defined in [SP 800-38B]). In either case, there are two inputs: salt, which serves as a 440
MAC key and the shared secret, Z, which serves as the “message.” The resulting MAC output is 441
used as a key-derivation key, KDK. The use of this KDK is restricted to a single execution of the 442
key-expansion step of this procedure. 443

The second (key-expansion) step uses the key-derivation key, KDK, along with the integer L and 444
other appropriate data as the input to a PRF-based key-derivation function specified in [SP 800-445
108]. The output returned by that key-derivation function is either secret keying material (in the 446
form of DerivedKeyingMaterial, a bit string of length L) or an error indicator. 447

5.1 Specification of Key-Derivation Procedure 448

The extraction-then-expansion key-derivation procedure is specified as follows: 449
Function call: KDM(Z, OtherInput). 450

Options for the Auxiliary MAC Algorithm: 451
The MAC algorithm employed for randomness extraction shall be either an implementation of 452
HMAC as defined in [FIPS 198], based on an approved hash function, hash (i.e., HMAC-453
hash), or an implementation of AES-CMAC as defined in [SP 800-38B] (i.e., AES-N-CMAC 454
for N = 128, 192, or 256). In either case, the (untruncated) output of the MAC algorithm is 455
used as the key-derivation key for subsequent key expansion. Tables 4 and 5 in Section 5.2 456
describe the possibilities for the auxiliary MAC algorithm, which shall be chosen in 457
accordance with the selection requirements specified in Section 7. 458

Figure 1: The Extraction-then-Expansion Key-Derivation Procedure

salt
Randomness
Extraction

Key
Expansion

KDK

Z L, {IV,} FixedInfo

DerivedKeyingMaterial

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

18

Implementation-Dependent Auxiliary PRF-based KDF: 459
One of the general-purpose, PRF-based key-derivation functions defined in [SP 800-108] shall 460
be used for key expansion. These key-derivation functions employ an approved MAC 461
algorithm as the PRF. In this Recommendation, the PRF used by the KDF in key expansion is 462
determined by the MAC algorithm that is used for randomness extraction. Specifically: 463

a. If HMAC-hash is used in the randomness-extraction step, then the same HMAC-hash (i.e., 464
using the same hash function, hash) shall be used as the PRF in the key-expansion step; 465
and 466

b. If AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is used in the randomness-467
extraction step, then only AES-128-CMAC (i.e., the CMAC mode of AES-128) shall be 468
used as the PRF in the key-expansion step. 469

The rationale for these rules is discussed in Section 8.3. 470

Input: 471
1. Z – A byte string that represents the shared secret. It is used as the “message” during the 472

execution of the MAC algorithm employed in the randomness-extraction step. 473

2. OtherInput, which includes: 474

a. salt – A non-null (secret or non-secret) byte string used as the MAC key during the 475
execution of the randomness-extraction step (i.e., step 1 in the process shown below). This 476
salt could be, for example, a value computed from nonces exchanged as part of a key-477
establishment protocol that employs one or more of the key-agreement schemes specified 478
in [SP 800-56A] or [SP 800-56B], a value already shared by the protocol participants, or a 479
value that is pre-determined by the protocol. The possibilities for the length of salt are 480
determined by the auxiliary MAC algorithm that is used for randomness extraction: 481

(1) The HMAC-hash algorithm as defined in [FIPS 198] can accommodate keys of any 482
length up to the maximum bit length permitted for input to the hash function, hash. 483
Therefore, the length of the byte string salt can be as large as allowed for any string 484
used as input to hash. However, if the bit length of salt is greater than the bit length 485
specified for a single input block for hash, then the value of salt is replaced by 486
hash(salt) as part of the HMAC computation. (Input-block lengths for the approved 487
hash functions that can be employed to implement HMAC-hash are included in column 488
4 of Table 1 in Section 4.2; also see Table 4 of Section 5.2.) In the absence of an agreed-489
upon alternative, the input salt value shall be an all-zero byte string whose length is 490
equal to that of a single input block for the hash function, hash. 491

(2) AES-N-CMAC requires keys that are N bits long (for N = 128, 192, or 256), depending 492
upon the AES variant that is used in the implementation. The bit length of salt shall be 493
the bit length required of a key for that AES variant (128 bits for AES-128, 192 bits for 494
AES-192, or 256 bits for AES-256). In the absence of an agreed-upon alternative, the 495
input salt value shall be an all-zero string of the required bit length. 496

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

19

b. L – A positive integer that indicates the length (in bits) of the secret keying material to be 497
derived using the auxiliary PRF-based KDF during the execution of the key-expansion step 498
(i.e., step 2 in the process shown below). The maximum value allowed for L is determined 499
by the mode (i.e., Counter Mode, Feedback Mode, or Double-Pipeline Iteration Mode) and 500
implementation details of the chosen KDF (as specified in [SP 800-108]). An error event 501
will occur during the execution of the KDF if L is too large.13 502
(Note that L = keydatalen in the notation of previous versions of [SP 800-56A], while L = 503
KBits in the notation of previous versions of [SP 800-56B]; current versions of those 504
documents have been updated to be consistent with SP 800-56C.) 505

c. {IV} – A bit string included (if required) for use as an initial value during an execution of 506
the auxiliary PRF-based KDF; an IV shall be included in OtherInput if and only if the 507
chosen PRF-based KDF is operating in Feedback Mode. It can either be secret or non-508
secret. It may be an empty string. If the PRF-based KDF is operating in either Counter 509
Mode or Double-Pipeline Iteration Mode, an IV shall not be included in OtherInput. (See 510
[SP 800-108] for details.) 511

d. FixedInfo, including: 512

(1) Label – A bit string that identifies the purpose for the derived keying material. For 513
example, it can be the ASCII encoding of a character string describing the relying 514
application(s) and/or the intended use(s) of the keying material. The value and encoding 515
method used for the Label are defined in a larger context, for example, in the protocol 516
that uses this key-derivation procedure. As an alternative to including this string as a 517
separate component of FixedInfo, Label could be incorporated in Context (see below). 518

(2) Context – A bit string of context-specific data appropriate for the relying key-519
establishment scheme/protocol and the chosen PRF-based KDF. 520
For recommendations concerning the format and context-specific content of Context, 521
see the specifications of FixedInfo and/or OtherInfo in [SP 800-56A] and/or [SP 800-522
56B], respectively. 523

(3) [L]2 – An agreed-upon encoding of L as a bit string that is appropriate for use by the chosen 524
PRF-based KDF (see [SP 800-108] for details). As an alternative to including this string 525
as a separate component of FixedInfo, [L]2 could be incorporated in Context (see 526
above). 527

13 The restrictions on the size of L that are given in [SP 800-108] are stated in terms of n = L/h, where h denotes the bit length of
an output block of the PRF used to implement the auxiliary KDF. In the case of Counter Mode, the restriction is n ≤ 2r – 1, where
r ≤ 32 is the (implementation-dependent) bit length allocated for the KDF’s counter variable. For the other KDF modes, the
restriction is simply n ≤ 232 – 1.

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

20

Process: 528

[Randomness Extraction] 529
1. Call MAC(salt, Z, …) to obtain KDK or an error indicator. If an error occurs, output an 530

error indicator, and exit from this process without performing step 2. 531

[Key Expansion] 532
2. Call KDF(KDK, L, {IV,} FixedInfo) to obtain DerivedKeyingMaterial or an error indicator 533

(see [SP 800-108] for details). If an error occurs, output an error indicator; otherwise output 534
DerivedKeyingMaterial. 535

Output: 536
The bit string DerivedKeyingMaterial of length L bits (or an error indicator). 537

Notes: 538
When HMAC-hash is used as the auxiliary MAC algorithm, the length of KDK is the length of 539
an untruncated output block from the hash function, hash. When AES-CMAC is used, then 540
(regardless of the AES variant employed) KDK is a 128-bit binary string. KDK is used (locally) 541
as a key-derivation key by the auxiliary KDF during the key-expansion step and shall be 542
destroyed (along with all other sensitive, locally stored data) after its use. Its value shall not 543
be an output of the key-derivation procedure. 544

[RFC 5869] specifies a version of the above extraction-then-expansion key-derivation procedure 545
using HMAC for both the extraction and expansion steps. For an extensive discussion concerning 546
the rationale for the extract-and-expand mechanisms specified in this Recommendation, see 547
[LNCS 6223]. 548

5.2 The Auxiliary MAC Algorithm and Related Parameters 549

Tables 4 and 5 enumerate the possibilities for the auxiliary MAC algorithm used for randomness 550
extraction and provide additional information concerning the lengths of the MAC key (i.e., the salt 551
value) and the extracted key-derivation key (i.e., KDK). The tables also indicate the range of 552
security strengths that can be supported by each choice for MAC (see Section 5.1) when used for 553
two-step key derivation in a key-establishment scheme specified in SP 800-56A and SP 800-56B. 554

Table 4: MAC(salt, Z, …) = HMAC-hash(salt, Z) (For Randomness Extraction) 555

Hash
Function

(hash)

Effective
Byte / Bit
Length*

of salt

Bit Length of
Extracted KDK

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160 112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

21

SHA-512/224 128 / 1024 224 112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512
SHA3-224 144 / 1152 224 112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

 556
* This Recommendation places no restriction on the length of a chosen salt other than the 557
requirement that its byte length be greater than zero but no greater than the length of a single input 558
block to the hash function, hash, used to implement HMAC-hash. That freedom of choice is 559
somewhat illusory, however, since the HMAC algorithm will convert an input salt value (as 560
needed) into a string of the indicated hash-dependent length. A shorter salt (which is used as an 561
HMAC key) will be padded (by appending an all-zero bit string) to obtain a string of the indicated 562
length (the length of a single input block for the hash function, hash); a longer salt will be hashed 563
to produce a shorter string, which will then be padded (by appending an all-zero bit string) to 564
obtain a string of the indicated length. (See [FIPS 198] for additional information.) 565

Note: The hash function, hash, used by the HMAC algorithm employed during randomness 566
extraction shall be used again in the subsequent key-expansion step to implement the HMAC 567
algorithm that is employed as a PRF by the auxiliary PRF-based KDF. 568

Table 5: MAC(salt, Z, …) = AES-N-CMAC(salt, Z) (For Randomness Extraction) 569

AES Variant
used by

AES-CMAC

Bit Length
of salt for

AES-CMAC

Bit Length of
Extracted KDK

Security
Strength s
supported

(in bits)

AES-128 128
128

112 ≤ s ≤ 128

AES-192 192
AES-256 256

 570
Note: Regardless of which AES variant is used by the AES-CMAC algorithm during randomness-571
extraction, the 128-bit AES block size determines the bit length of the resulting KDK. To 572
accommodate the use of this 128-bit KDK as a key-derivation key, the CMAC mode of AES-128 573
shall be the PRF employed by the auxiliary PRF-based KDF in the subsequent key-expansion step. 574

5.3 Randomness Extraction followed by Multiple Key Expansions 575

The two-step key-derivation procedure specified in Section 5.1 can be generalized to incorporate 576
a single instance of randomness extraction followed by m instances of key expansion for some 577
(implementation-dependent) integer m ≥ 2. 578

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

22

 579

 580

 581

 582

 583

 584

 585

 586

 587

 588

 589

 590

 591

For conformance with this Recommendation, the following restrictions apply: 592

• The auxiliary MAC algorithm employed for randomness extraction shall be either an 593
implementation of HMAC as defined in [FIPS 198], based on an approved hash function, hash 594
(i.e., HMAC-hash), or an implementation of AES-CMAC as defined in [SP 800-38B] (i.e., 595
AES-N-CMAC for N = 128, 192, or 256). In either case, the (untruncated) output of the MAC 596
algorithm shall be used as the key-derivation key for subsequent key expansion. Tables 4 and 597
5 in Section 5.2 describe the possibilities for the auxiliary MAC algorithm, which shall be 598
chosen in accordance with the selection requirements specified in Section 7. 599

• One of the general-purpose, PRF-based key-derivation functions defined in [SP 800-108] shall be 600
used for key expansion. The same KDF shall be used to implement all m expansion operations. 601
In particular, the same key-derivation mode (counter mode, feedback mode, or double-pipeline 602
iteration mode) and the same PRF shall be employed by the KDF in each of the m key-603
expansion operations. 604

• The PRF used by the KDF in key expansion is determined by the MAC algorithm that is used 605
for randomness extraction. Specifically: 606

a. If HMAC-hash is used for randomness extraction, then the same HMAC-hash (i.e., using 607
the same hash function, hash) shall be the PRF used by the KDF in key expansion. 608

and 609

Randomness
Extraction

Z

salt

Key
Expansion

L1, {IV1,} FixedInfo1

DerivedKeyingMaterial1

Key
Expansion

L2, {IV2,} FixedInfo2

DerivedKeyingMaterial2

Key
Expansion

Lm, {IVm,} FixedInfom

DerivedKeyingMaterialm

•
•
•

KDK

KDK

KDK

Figure 2: Randomness Extraction followed by Multiple Key Expansions

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

23

b. If either AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is used for randomness 610
extraction, then the PRF used by the KDF in key-expansion shall be AES-128-CMAC 611
(i.e., the CMAC mode of AES-128). 612

• The OtherInput provided during the key-derivation request shall provide the salt for the 613
randomness-extraction step (see Section 5.1 for additional details), and the requisite inputs 614
(other than the key-derivation key) for m calls to the PRF-based KDF used for key expansion. 615
In particular, for i = 1, .., m, OtherInput shall include (subject to the stated conditions): 616
a. Li – A positive integer that indicates the length (in bits) of the secret keying material to be 617

derived during the i-th call to the PRF-based KDF. (See the description of L in Section 618
5.1 for additional details.) 619

b. {IVi} – A bit string included (if required) for use as an initial value for the i-th call to the 620
PRF-based KDF; the IVi values shall be included in OtherInput if and only if the chosen 621
PRF-based KDF is operating in Feedback Mode. (See the description of IV in Section 5.1 622
for additional details.) 623

c. FixedInfoi – The FixedInfo data to be employed during the i-th call to the PRF-based KDF. 624
(See the description of FixedInfo in Section 5.1 for details.) 625

• The values of FixedInfo1 , FixedInfo2 , … , and FixedInfom shall be (pairwise) distinct. (See 626
Section 7.5, item 2 in [SP 800-108].) 627

• The derived keying material, DerivedKeyingMaterial1, DerivedKeyingMaterial2, … , and 628
DerivedKeyingMaterialm shall not be output until all m of the bit strings have been 629
successfully computed. If an error occurs during randomness extraction or key expansion, then 630
this key-derivation method shall not output any derived keying material. 631

To incorporate m key-expansion operations into an extract-then-expand key-derivation procedure, 632
the process and output specified in Section 5.1 are modified as follows: 633

Process: 634
[Randomness Extraction] 635

1. Call MAC(salt, Z, …) to obtain KDK or an error indicator; if an error occurs, output an 636
error indicator and exit from this process without performing steps 2 and 3. 637

[Key Expansion] 638
2. For i = 1 to m, do the following: 639

2.1 Call KDF(KDK, Li, {IVi,} FixedInfoi) to obtain DerivedKeyingMateriali or an 640
error indicator (see [SP 800-108] for details). If an error occurs, output an error 641
indicator and exit this process without performing any of the remaining actions (in 642
particular, omit step 3). 643

3. For i = 1 to m, do the following: 644

3.1 Output DerivedKeyingMateriali . 645

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

24

Output: 646
The bit strings DerivedKeyingMaterial1, DerivedKeyingMaterial2, … , and 647
DerivedKeyingMaterialm of lengths L1 bits, L2 bits, … , and Lm bits, respectively 648
(or an error indicator). 649

Notes: 650
As specified in Section 5.1: When HMAC-hash is used as the auxiliary MAC algorithm, the 651
length of KDK is the length of an untruncated output block from the hash function, hash. When 652
AES-CMAC is used, then (regardless of the AES variant employed) KDK is a 128-bit binary 653
string. The extracted KDK is used (locally) as a key-derivation key by the auxiliary KDF during 654
key expansion (step 2 above) and shall be destroyed (along with all other sensitive locally 655
stored data) after its use. Its value shall not be an output of the key-derivation procedure. 656

 657

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

25

6 Application-Specific Key-Derivation Methods 658

Additional approved, application-specific key-derivation methods are enumerated in 659
[SP 800-135]. Unless an explicit exception is made in [SP 800-135], any hash function or MAC 660
algorithm employed by the key-derivation methods enumerated in [SP 800-135] shall be 661
approved and shall also meet the selection requirements specified in this Recommendation (i.e., 662
SP 800-56C). 663

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

26

7 Selecting Hash Functions and MAC Algorithms 664

The key-derivation methods specified in this Recommendation, as well as those enumerated in [SP 665
800-135], use hash functions and/or message authentication code (MAC) algorithms as auxiliary 666
functions. In particular: 667

• The one-step key-derivation functions that are specified in Section 4.1 of this 668
Recommendation employ an appropriate choice of hash function (hash), an HMAC 669
algorithm based on an appropriate choice of hash function (HMAC-hash), or one of two 670
KMAC variants (KMAC128 or KMAC256) to implement the auxiliary function H. 671

• The extraction-then-expansion key-derivation procedure specified in Section 5.1 employs 672
either an HMAC algorithm based on an appropriate choice of hash function (HMAC-hash) 673
for both randomness extraction and key expansion or an appropriate variant of the AES-674
CMAC algorithm (i.e., AES-N-CMAC for N = 128, 192, or 256) for randomness extraction 675
together with AES-128-CMAC for key expansion. 676

Unless explicitly stated to the contrary (e.g., in [SP 800-135]), the following requirements apply to 677
the hash functions and MAC algorithms employed for key derivation: 678

• Whenever a hash function is employed (including as the primitive used by HMAC), an 679
approved hash function shall be used. [FIPS 180] and [FIPS 202] specify approved hash 680
functions. 681

• Whenever an HMAC algorithm is employed, the HMAC implementation shall conform to 682
the specifications found in [FIPS 198]. 683

• Whenever a KMAC variant (KMAC128 or KMAC256) is employed, the KMAC 684
implementation shall conform to the specifications found in [SP 800-185]. 685

• Whenever an AES-CMAC algorithm is employed, the implementation of AES shall 686
conform to [FIPS 197], and the AES-CMAC implementation shall conform to [SP 800-687
38B]. 688

As specified in [SP 800-56A] and [SP 800-56B], an approved key-establishment scheme can be 689
implemented with parameters of various types and sizes that will impact the estimated maximum 690
security strength that can be supported by the resulting scheme. When a key-establishment scheme 691
employs a choice of parameters that are associated with a targeted security strength of s bits, the 692
selection of a hash function, HMAC, KMAC, or AES-CMAC employed during the implementation 693
of its key-derivation method shall conform to the following restrictions: 694

• An approved hash function shall be employed (whether alone or as the primitive used by 695
HMAC) in the implementation of a one-step or two-step key-derivation method only if its 696
output block length (in bits) is greater than or equal to s. 697

• For the purposes of implementing one-step key derivation only: KMAC128 shall be 698
employed only in instances where s is 128 bits or less. KMAC256 shall be employed only 699
in instances where s is 256 bits or less. (However, see the note below.) 700

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

27

• For the purposes of implementing two-step key derivation only: AES-CMAC shall be 701
employed only in instances where s is 128 bits or less. (See the note following Table 5.) 702

Tables 1 through 5 (in Sections 4.1 and 5.1) can be consulted to determine which hash functions 703
and/or MAC algorithms are approved for use when a key-derivation method specified in this 704
Recommendation is used by an approved key-establishment scheme to support a targeted security 705
strength of s bits. 706

Note: At the time of publication of this Recommendation, a key-establishment scheme 707
implemented in accordance with either [SP 800-56A] or [SP 800-56B] can have a targeted security 708
strength of 256 bits at most. 709

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

28

8 Further Discussion 710

In this section, the following issues are discussed: 711

8.1 Using a Truncated Hash Function 712

SHA-224, SHA-512/224, SHA-512/256, and SHA-384 are among the approved hash functions 713
specified in [FIPS 180]. SHA-224 is a truncated version of SHA-256, while SHA-512/224, SHA-714
512/256, and SHA-384 are truncated versions of SHA-512. (Each of these truncated versions uses 715
a specific initial chaining value, which is different from the initial chaining value used by the 716
untruncated version.) In applications that require a relatively long bit string of derived keying 717
material, implementing the key-derivation methods specified in this Recommendation with a 718
truncated version of a hash function may be less efficient than using the corresponding untruncated 719
version (i.e., SHA-256 or SHA-512). 720

8.2 The Choice of a Salt Value 721

In this Recommendation, the MAC algorithms employed either in a one-step key-derivation 722
method or in the randomness-extraction step of a two-step key-derivation method use a salt value 723
as a MAC key (see Sections 4 and 5). This Recommendation does not require the use of a randomly 724
selected salt value. In particular, if there are no means to select a salt value and share it with all of 725
the participants during a key-establishment transaction, then this Recommendation specifies that 726
a predetermined default (e.g., all-zero) byte string be used as the salt value. The benefits of using 727
“random” salt values when possible are discussed (briefly) in Section 3.1 (“To salt or not to salt”) 728
of [RFC 5869] and in greater detail in [LNCS 6223]. 729

8.3 MAC Algorithms used for Extraction and Expansion 730

Provided that the targeted security strength can be supported (see Tables 4 and 5 in Section 5.2), 731
this Recommendation permits either HMAC-hash (i.e., HMAC implemented with an appropriately 732
chosen approved hash function, hash) or AES-CMAC (i.e., the CMAC mode of AES-128, AES-733
192, or AES-256) to be selected as the MAC algorithm used in the randomness-extraction step of 734
the key-derivation procedure specified in Section 5.1. 735

The PRF-based KDF used in the key-expansion step of the procedure also requires an appropriate 736
MAC (to serve as the PRF). While it may be technically feasible (in some cases) to employ 737
completely different MAC algorithms in the two steps of the specified key-derivation procedure, 738
this Recommendation does not permit such flexibility. Instead, the following restrictions have been 739
placed on MAC selection (see Sections 5 and 7): 740

• When HMAC-hash is chosen for use in the randomness-extraction step, the same MAC 741
algorithm (i.e., HMAC-hash with the same approved hash function, hash) shall be 742
employed to implement the PRF-based KDF used in the key-expansion step. 743

• When AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is chosen for use in the 744
randomness-extraction step, the MAC algorithm employed by the PRF-based KDF used in 745
the key-expansion step shall be AES-128-CMAC, the CMAC mode of AES-128. (AES-746

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

29

128 is the only AES variant that can employ the 128-bit KDK produced by AES-N-CMAC 747
during the randomness-extraction step.) 748

• The MAC algorithm selected for the implementation of a two-step key-derivation method 749
shall be capable of supporting the targeted security strength as determined by consulting 750
Tables 4 and 5 in Section 5.2. (This limits the use of AES-CMAC to cases where the 751
targeted security strength is no more than 128 bits.) 752

The imposed restrictions are intended to reduce the overall complexity of the resulting 753
implementations, promote interoperability, and simplify the negotiation of the parameters and 754
auxiliary functions affecting the security strength supported by the key-derivation procedure. 755

Note: At this time, KMAC has not been specified for use in the implementation of a two-step key-756
derivation procedure. This restriction may be reconsidered once a KMAC-based KDF has been 757
approved for use as a PRF-based KDF in a revision of [SP 800-108]. 758

8.4 Destruction of Sensitive Locally Stored Data 759

Good security practice dictates that implementations of key-derivation methods include steps that 760
destroy potentially sensitive locally stored data that is created (and/or copied for use) during the 761
execution of a particular process; there is no need to retain such data after the process has been 762
completed. Examples of potentially sensitive locally stored data include local copies of shared 763
secrets that are employed during the execution of a particular process, intermediate results 764
produced during computations, and locally stored duplicates of values that are ultimately output 765
by the process. The destruction of such locally stored data ideally occurs prior to or during any 766
exit from the process. This is intended to limit opportunities for unauthorized access to sensitive 767
information that might compromise a key-establishment transaction. 768

It is not possible to anticipate the forms of all possible implementations of the key-derivation 769
methods specified in this Recommendation, making it equally impossible to enumerate all 770
potentially sensitive data that might be locally stored by a process employed in a particular 771
implementation. Nevertheless, the destruction of any potentially sensitive locally stored data is an 772
obligation of all implementations. 773

 774

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

30

References 775

[FIPS 180] National Institute of Standards and Technology (2015) Secure Hash Standard 776
(SHS). (U.S. Department of Commerce, Washington, DC), Federal Information 777
Processing Standards Publication (FIPS) 180-4. 778
https://doi.org/10.6028/NIST.FIPS.180-4 779

[FIPS 197] National Institute of Standards and Technology (2001) Advanced Encryption 780
Standard (AES). (U.S. Department of Commerce, Washington, DC), Federal 781
Information Processing Standards Publication (FIPS) 197. 782
https://doi.org/10.6028/NIST.FIPS.197 783

[FIPS 198] National Institute of Standards and Technology (2008) The Keyed-Hash 784
Message Authentication Code (HMAC). (U.S. Department of Commerce, 785
Washington, DC), Federal Information Processing Standards Publication 786
(FIPS) 198-1. 787
https://doi.org/10.6028/NIST.FIPS.198-1 788

[FIPS 202] National Institute of Standards and Technology (2015) SHA-3 Standard: 789
Permutation-Based Hash and Extendable-Output Functions. (U.S. Department 790
of Commerce, Washington, DC), Federal Information Processing Standards 791
Publication (FIPS) 202. 792
https://doi.org/10.6028/NIST.FIPS.202 793

[LNCS 6223] Krawczyk H (2010) Cryptographic Extraction and Key Derivation: The HKDF 794
Scheme. Advances in Cryptology – Crypto’2010, ed. Rabin T (Springer, Berlin, 795
Germany), Lecture Notes in Computer Science vol. 6223, pp 631-648. 796
https://doi.org/10.1007/978-3-642-14623-7_34 797

[RFC 5869] Krawczyk H, Eronen P (2010) HMAC-based Extract-and-Expand Key Derivation 798
Function (HKDF). (Internet Engineering Task Force (IETF)), IETF Request for 799
Comments (RFC) 5869. 800
https://doi.org/10.17487/RFC5869 801

[SP 800-38B] Dworkin MJ (2005) Recommendation for Block Cipher Modes of Operation: 802
the CMAC Mode for Authentication. (National Institute of Standards and 803
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38B, 804
Includes updates as of October 6, 2016. 805
https://doi.org/10.6028/NIST.SP.800-38B 806

[SP 800-56A] Barker EB, Chen L, Roginsky A, Davis R (2018) Recommendation for Pair-807
Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography. 808
((National Institute of Standards and Technology, Gaithersburg, MD), NIST 809
Special Publication (SP) 800-56A, Rev. 3. 810
https://doi.org/10.6028/NIST.SP.800-56Ar3 811

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.17487/RFC5869
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-56Ar3

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

31

[SP 800-56B] Barker EB, Chen L, Roginsky A, Vassilev A, Davis R, Simon S (2019) 812
Recommendation for Pair-Wise Key-Establishment Using Integer 813
Factorization Cryptography. (National Institute of Standards and Technology, 814
Gaithersburg, MD), NIST Special Publication (SP) 800-56B, Rev. 2. 815
https://doi.org/10.6028/NIST.SP.800-56Br2 816

[SP 800-57] Barker EB (2019) Recommendation for Key Management, Part 1: General. 817
(National Institute of Standards and Technology, Gaithersburg, MD), Draft 818
NIST Special Publication (SP) 800-57 Part 1, Rev. 5. 819
https://doi.org/10.6028/NIST.SP.800-57pt1r5-draft 820

[SP 800-108] Chen L (2009) Recommendation for Key Derivation Using Pseudorandom 821
Functions (Revised). (National Institute of Standards and Technology, 822
Gaithersburg, MD), NIST Special Publication (SP) 800-108, Revised. 823
https://doi.org/10.6028/NIST.SP.800-108 824

[SP 800-131A] Barker EB, Roginsky A (2019) Transitioning the Use of Cryptographic 825
Algorithms and Key Lengths. (National Institute of Standards and Technology, 826
Gaithersburg, MD), NIST Special Publication (SP) 800-131A, Rev. 2. 827
https://doi.org/10.6028/NIST.SP.800-131Ar2 828

[SP 800-135] Dang QH (2011) Recommendation for Existing Application-Specific Key 829
Derivation Functions. (National Institute of Standards and Technology, 830
Gaithersburg, MD), NIST Special Publication (SP) 800-135, Rev. 1. 831
https://doi.org/10.6028/NIST.SP.800-135r1 832

[SP 800-185] Kelsey JM, Chang S-jH, Perlner RA (2016) SHA-3 Derived Functions: cSHAKE, 833
KMAC, TupleHash, and ParallelHash. (National Institute of Standards and 834
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-185. 835
https://doi.org/10.6028/NIST.SP.800-185 836

 837

https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-57pt1r5-draft
https://doi.org/10.6028/NIST.SP.800-108
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-135r1
https://doi.org/10.6028/NIST.SP.800-185

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

32

Appendix A: Revisions (Informative) 838

A.1 The Original Version of SP 800-56C 839

The original SP 800-56C (published in November 2011) focused entirely on the specification of a 840
two-step extraction-then-expansion key-derivation procedure to be used in conjunction with a key-841
establishment scheme from either [SP 800-56A] or [SP 800-56B]. It provided an alternative to the 842
one-step key-derivation functions that were already included in those companion publications. 843

A.2 Revision 1 844

The 2018 revision of SP 800-56C reorganized the original content (it still included the 845
specification of an extraction-then-expansion key-derivation procedure) to also include the 846
specification of a family of one-step key-derivation functions, expanding on material that was 847
previously found only in SP 800-56A and SP 800-56B. This change was made in support of the 848
removal of detailed descriptions of key-derivation methods from SP 800-56A and a future revision 849
of SP 800-56B. The consolidation of specifications in SP 800-56C, Revision 1 promoted 850
consistency between the key-derivation options available for use with an approved key-851
establishment scheme chosen from either of those companion NIST publications. (A number of 852
application-specific key-derivation methods specified in [SP 800-135] continued to be supported.) 853

Specifically named key-establishment “parameter sets” (FA – FC for finite-field cryptography 854
(FFC); EA – EE for elliptic-curve cryptography (ECC); and IA – IB for integer-factorization 855
cryptography (IFC)) were no longer used as guides for choosing the auxiliary functions employed 856
by a key-derivation method. Instead, SP 800-56C, Revision 1 indicated the security strengths that 857
could be supported by the various possibilities for the auxiliary functions. Implementers were 858
expected to let the targeted security strength of the key-establishment scheme guide their choices. 859
Of course, each of the named parameter sets was associated with a targeted security strength, so 860
this was more a change of perspective rather than of substance. The change was, however, 861
consistent with the revision of [SP 800-56A], which de-emphasized (in the FFC case) or eliminated 862
(in the ECC case) the use of named parameter (size) sets. 863

There was one substantial change to the specification of key-derivation methods that is worth 864
noting: a KMAC-based option for implementing the auxiliary function H was added to the 865
specification of one-step key-derivation functions (see Section 4.1). At that time, however, KMAC 866
had not been specified for use as an auxiliary MAC algorithm in the two-step extraction-then-867
expansion key-derivation procedure (see Section 8.3). 868

Given the extent to which SP 800-56C had been revised, it is impractical to list all of the changes 869
that were made to the original text. It is recommended that SP 800-56C, Revision 1 be read in its 870
entirety in order to gain familiarity with the details of the current specifications for both the one-871
step and two-step key-derivation methods used in approved key-establishment schemes. 872

A.3 Revision 2 873

The 2020 revision of SP 800-56C involves just a few changes to the 2018 version of the document. 874

NIST SP 800-56C REV. 2 (DRAFT) RECOMMENDATION FOR KEY DERIVATION METHODS
 IN KEY ESTABLISHMENT SCHEMES

33

In Section 2, the applicability of the various key-derivation methods specified in this 875
Recommendation is expanded to permit the use of “hybrid” shared secrets of the form Z′ = Z || T, 876
which is a concatenation consisting of a “standard” shared secret Z that was generated during the 877
execution of a key-establishment scheme as currently specified in [SP 800-56A] or [SP 800-56B], 878
followed by an auxiliary shared secret T that has been generated using some other method. 879

This is not a substantive change in the case of one-step key-derivation methods, which derive 880
blocks of keying material from input of the form counter || Z || FixedInfo. Implementations of 881
approved key-establishment schemes have considerable latitude concerning the content and 882
format of the context-specific data included in FixedInfo. Replacing Z with Z′ = Z || T is equivalent 883
to replacing FixedInfo with FixedInfo′ = T || FixedInfo, which was already permitted. As in 884
previous versions of this document, T could instead be used as a salt value by the auxiliary function 885
H (see Option 2 and Option 3) and/or included in some (other) subfield of FixedInfo. (See Section 886
4.1 and Section 4.2 for details.) 887

In the case of the two-step key-derivation methods, the extraction of a key-derivation key from a 888
shared secret of the form Z || T is a bona fide extension of the previously specified technique but 889
is still consistent with the principles of randomness extraction and key expansion as presented in 890
[LNCS 6223]. Prior to this revision, T could only have been included either as a salt value (in an 891
HMAC-based extraction step) or as part of the FixedInfo used in the key-expansion step. (See 892
Section 5.1 and Section 5.2 for details.) 893

The other change made in the 2020 revision affects the key-expansion step of the approved two-894
step key-derivation methods. The newly added Section 5.3 specifies the conditions under which 895
multiple instances of key expansion can be performed using a single key-derivation key obtained 896
via randomness extraction. 897

	1 Introduction
	2 Scope and Purpose
	3 Definitions, Symbols, and Abbreviations
	3.1 Definitions
	3.2 Symbols and Abbreviations

	4 One-Step Key Derivation
	4.1 Specification of Key-Derivation Functions
	Options for the Auxiliary Function H:
	Option 1: H(x) = hash(x), where hash is an approved hash function meeting the selection requirements specified in 42TSection 742T, and the input, x, is a bit string.
	Option 2: H(x) = HMAC-hash(salt, x), where HMAC-hash is an implementation of the HMAC algorithm (as defined in 42T[FIPS 198]42T) employing an approved hash function, hash, that meets the selection requirements specified in 42TSection 742T. An implemen...
	Option 3: H(x) = KMAC#(salt, x, H_outputBits, S), where KMAC# is a particular implementation of either KMAC128 or KMAC256 (as defined in 42T[SP 800-185]42T) that meets the selection requirements specified in 42TSection 742T. An implementation-dependen...
	1. H_outputBits – A positive integer that indicates the length (in bits) of the output of the auxiliary function H that is used to derive blocks of secret keying material. If Option 1 or Option 2 is chosen, then H_outputBits corresponds to the bit-len...
	2. max_H_inputBits – A positive integer that indicates the maximum permitted length (in bits) of the bit string x that is used as input to the auxiliary function H. If Option 1 or Option 2 is chosen for the implementation of H, then an upper bound on ...
	3. default_salt – A non-null (secret or non-secret) byte string that is needed only if either Option 2 (HMAC-hash) or Option 3 (KMAC#) is chosen for the implementation of the auxiliary function H. This byte string is used as the value of salt if a (no...
	If H(x) = HMAC-hash(salt, x), then – in the absence of an agreed-upon alternative – the default_salt shall be an all-zero byte string whose bit length equals that specified as the bit length of an input block for the hash function, hash. (Input-block ...
	If H(x) = KMAC128(salt, x, H_outputBits, “KDF”), then – in the absence of an agreed-upon alternative – the default_salt shall be an all-zero string of 164 bytes (i.e., an all-zero string of 1312 bits).
	If H(x) = KMAC256(salt, x, H_outputBits, “KDF”), then – in the absence of an agreed-upon alternative – the default_salt shall be an all-zero string of 132 bytes (i.e., an all-zero string of 1056 bits).
	Input:

	4.2 The Auxiliary Function H(x) and Related Parameters

	5 Two-Step Key Derivation
	5.1 Specification of Key-Derivation Procedure
	5.2 The Auxiliary MAC Algorithm and Related Parameters
	5.3 Randomness Extraction followed by Multiple Key Expansions

	6 Application-Specific Key-Derivation Methods
	7 Selecting Hash Functions and MAC Algorithms
	8 Further Discussion
	8.1 Using a Truncated Hash Function
	8.2 The Choice of a Salt Value
	8.3 MAC Algorithms used for Extraction and Expansion
	8.4 Destruction of Sensitive Locally Stored Data

	References
	Appendix A: Revisions (Informative)
	A.1 The Original Version of SP 800-56C
	A.2 Revision 1
	A.3 Revision 2

