
Date updated: August 18, 2020

Withdrawn NIST Technical Series Publication

Warning Notice

The attached publication has been withdrawn (archived), and is provided solely for historical purposes.
It may have been superseded by another publication (indicated below).

Withdrawn Publication

Series/Number NIST Special Publication 800-56C Rev. 1
Title Recommendation for Key-Derivation Methods in Key-Establishment Schemes
Publication Date(s) April 2018
Withdrawal Date August 18, 2020
Withdrawal Note SP 800-56C Rev. 1 is superseded in its entirety by the publication of SP 800-56C

Rev. 2.

Superseding Publication(s) (if applicable)

The attached publication has been superseded by the following publication(s):

Series/Number NIST Special Publication 800-56C Rev. 2
Title Recommendation for Key-Derivation Methods in Key-Establishment Schemes
Author(s) Elaine Barker; Lily Chen; Richard Davis
Publication Date(s) August 2020
URL/DOI https://doi.org/10.6028/NIST.SP.800-56Cr2

Additional Information (if applicable)

Contact Computer Security Division (Information Technology Laboratory)
Latest revision of the
attached publication

Related Information https://csrc.nist.gov/projects/key-management/key-establishment
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

Withdrawal
Announcement Link

https://doi.org/10.6028/NIST.SP.800-56Cr2
https://csrc.nist.gov/projects/key-management/key-establishment
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

NIST Special Publication 800-56C
Revision 1

Recommendation for Key-Derivation
Methods in Key-Establishment Schemes

Elaine Barker
Lily Chen

Rich Davis

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-56Cr1

C O M P U T E R S E C U R I T Y

NIST Special Publication 800-56C
Revision 1

Recommendation for Key-Derivation
Methods in Key-Establishment Schemes

Elaine Barker
Lily Chen

Computer Security Division
Information Technology Laboratory

Rich Davis

National Security Agency

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-56Cr1

April 2018

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by the National Institute of Standards and Technology (NIST)
in accordance with its statutory responsibilities under the Federal Information Security
Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST
is responsible for developing information security standards and guidelines, including minimum
requirements for federal information systems, but such standards and guidelines shall not apply to
national security systems without the express approval of appropriate federal officials exercising
policy authority over such systems. This guideline is consistent with the requirements of the Office
of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made
mandatory and binding on federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This
publication may be used by nongovernmental organizations on a voluntary basis and is not subject
to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-56C Revision 1
Natl. Inst. Stand. Technol. Spec. Publ. 800-56C Rev. 1, 37 pages (April 2018)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-56Cr1

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment
are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such companion
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures,
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to
closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: 800-56C_Comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses to
advance the development and productive use of information technology. ITL’s
responsibilities include the development of management, administrative, technical, and
physical standards and guidelines for the cost-effective security and privacy of other than
national security-related information in federal information systems. The Special
Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in
information system security, and its collaborative activities with industry, government, and
academic organizations.

Abstract

This Recommendation specifies techniques for the derivation of keying material from a
shared secret established during a key-establishment scheme defined in NIST Special
Publications 800-56A or 800-56B.

Keywords

Expansion, extraction, extraction-then-expansion, hash function, key derivation, key
establishment, message authentication code.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Acknowledgements

The authors gratefully acknowledge the contributions on this and previous versions of this
document by their NIST colleagues (Quynh Dang, Sharon Keller, John Kelsey, Allen
Roginsky, Meltem Sonmez Turan, Apostol Vassilev, and Tim Polk) and by Miles Smid,
formerly of Orion Security Solutions.

The authors also gratefully appreciate the thoughtful and instructive comments received
during the public comment periods, which helped to improve the quality of this publication.

Conformance Testing

Conformance testing for implementations of the functions that are specified in this
publication will be conducted within the framework of the Cryptographic Algorithm
Validation Program (CAVP) and the Cryptographic Module Validation Program (CMVP).
The requirements on these implementations are indicated by the word “shall.” Some of
these requirements may be out-of-scope for CAVP or CMVP validation testing, and thus
are the responsibility of entities using, implementing, installing, or configuring
applications that incorporate this Recommendation.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Table of Contents

1 Introduction .. 1

2 Scope and Purpose ... 2

3 Definitions, Symbols and Abbreviations ... 3

3.1 Definitions ... 3

3.2 Symbols and Abbreviations .. 7

4 One-Step Key Derivation ... 11

4.1 Specification of Key-Derivation Functions .. 11

4.2 The Auxiliary Function H(x) and Related Parameters 15

5 Two-Step Key Derivation... 18

5.1 Specification of Key-Derivation Procedure ... 18

5.2 The Auxiliary MAC Algorithm and Related Parameters 21

6 Application-Specific Key-Derivation Methods .. 24

7 Selecting Hash Functions and MAC Algorithms 25

8 Further Discussion .. 27

8.1 Using a Truncated Hash Function .. 27

8.2 The Choice of a Salt Value ... 27

8.3 MAC Algorithms used for Extraction and Expansion 27

8.4 Destruction of Sensitive Locally Stored Data 28

List of Figures

Figure 1: The Extraction-then-Expansion Key-Derivation Procedure 18

List of Tables

Table 1: H(x) = hash(x) (Option 1) ... 15

Table 2: H(x) = HMAC-hash(salt, x) (Option 2) .. 16

Table 3: H(x) = KMAC#(salt, x, H_outputBits, “KDF”) (Option 3) 16

Table 4: MAC(salt, Z, …) = HMAC-hash(salt, Z) (For Randomness Extraction) 22

Table 5: MAC(salt, Z, …) = AES-N-CMAC(salt, Z) (For Randomness Extraction) . 23

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

1 Introduction

During the execution of a public-key-based key-establishment scheme specified in either
of the National Institute of Standards and Technology (NIST) Special Publications [SP
800-56A]1 or [SP 800-56B]2, a key-derivation method may be required to obtain secret
cryptographic keying material. This Recommendation specifies the key-derivation
methods that can be used, as needed, in those key-establishment schemes. The keying
material derived using these methods shall be computed in its entirety before outputting
any portion of it, and shall only be used as secret keying material – such as a symmetric
key used for data encryption or message integrity, a secret initialization vector, or, perhaps,
a key-derivation key that will be used to generate additional keying material (possibly using
a different derivation process – see [SP 800-108]3). The derived keying material shall not
be used as a key stream for a stream cipher.

1 SP 800-56A, Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography.

2 SP 800-56B, Recommendation for Pair-Wise Key-Establishment Schemes Using Integer Factorization
Cryptography.

3 SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions (Revised).

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

2 Scope and Purpose

This Recommendation specifies two categories of key-derivation methods that can be
employed, as required, as part of a key-establishment scheme specified in [SP 800-56A] or
[SP 800-56B].

The first category consists of a family of one-step key-derivation functions, which derive
keying material of a desired length from a shared secret generated during the execution of
a key-establishment scheme (and possibly other information as well).

The second category consists of an extraction-then-expansion key-derivation procedure,
which involves two steps:

1) Randomness extraction, to obtain a single cryptographic key-derivation key from a
shared secret generated during the execution of a key-establishment scheme, and

2) Key expansion, to derive keying material of the desired length from that key-
derivation key and other information. Since NIST’s [SP 800-108] specifies several
families of key-derivation functions that are approved for deriving additional
keying material from a given cryptographic key-derivation key, those functions are
employed in the second (key-expansion) step of these two-step procedures.

In addition to the key-derivation methods whose specifications are provided in this
document, [SP 800-135]4 describes several variants (of both the one-step and two-step
methods) that are approved for specific applications.

4 SP 800-135 Rev. 1, Recommendation for Existing Application-Specific Key Derivation Functions.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

3 Definitions, Symbols and Abbreviations

3.1 Definitions

Algorithm A clearly specified mathematical process for computation; a set of
rules that, if followed, will give a prescribed result.

Approved An algorithm or technique that is either 1) specified in a Federal
Information Processing Standard (FIPS) or NIST
Recommendation, 2) adopted in a FIPS or NIST Recommendation
or 3) specified in a list of NIST-approved security functions.

Big-endian The property of a byte string having its bytes positioned in order of
decreasing significance. In particular, the leftmost (first) byte is the
most significant (containing the most significant eight bits of the
corresponding bit string) and the rightmost (last) byte is the least
significant (containing the least significant eight bits of the
corresponding bit string).
For the purposes of this Recommendation, it is assumed that the
bits within each byte of a big-endian byte string are also positioned
in order of decreasing significance (beginning with the most
significant bit in the leftmost position and ending with the least
significant bit in the rightmost position).

Bit length The number of bits in a bit string. E.g., the bit length of the string
0110010101000011 is sixteen bits. The bit length of the empty (i.e.,
null) string is zero.

Bit string An ordered sequence of bits (represented as 0’s and 1’s). Unless
otherwise stated in this document, bit strings are depicted as
beginning with their most significant bit (shown in the leftmost
position) and ending with their least significant bit (shown in the
rightmost position). E.g., the most significant (leftmost) bit of 0101
is 0, and its least significant (rightmost) bit is 1. If interpreted as the
4-bit binary representation of an unsigned integer, 0101
corresponds to five.

Byte A bit string consisting of eight bits.

Byte length The number of consecutive (non-overlapping) bytes in a byte string.
For example, 0110010101000011 = 01100101 || 01000011 is two
bytes long. The byte length of the empty string is zero.

Byte string An ordered sequence of bytes, beginning with the most significant
(leftmost) byte and ending with the least significant (rightmost)

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

byte. Any bit string whose bit length is a multiple of eight can be
viewed as the concatenation of an ordered sequence of bytes, i.e., a
byte string. E.g., the bit string 0110010101000011 can be viewed
as a byte string, since it is the concatenation of two bytes: 01100101
followed by 01000011.

Concatenation As used in this Recommendation, the concatenation, X || Y, of bit
string X followed by bit string Y is the ordered sequence of bits
formed by appending Y to X in such a way that the leftmost (i.e.,
initial) bit of Y follows the rightmost (i.e., final) bit of X.

Cryptographic
key (Key)

A parameter used with a cryptographic algorithm that determines
its operation.

Estimated
maximum
security strength

An estimate of the largest security strength that can be attained by
a cryptographic mechanism, given the explicit and implicit
assumptions that are made regarding its implementation and
supporting infrastructure (e.g., the algorithms employed, the
selection of associated primitives and/or auxiliary functions, the
choices for various parameters, the methods of generation and/or
protection for any required keys, etc.). The estimated maximum
security strengths of various approved cryptographic mechanisms
are provided in [SP 800-57].

Hash function A function that maps a bit string of arbitrary length to a fixed-length
bit string. Approved hash functions are designed to satisfy the
following properties:

1. (One-way) It is computationally infeasible to find any input
that maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Approved hash functions are specified in [FIPS 180]5 and
[FIPS 202]6.

Key-derivation
function

As used in this Recommendation, either a one-step key-derivation
method, or a key-derivation function based on a pseudorandom
function as specified in [SP 800-108].

5 FIPS 180, Secure Hash Standard (SHS).
6 FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Key-derivation
method

As used in this Recommendation, a process that derives secret
keying material from a shared secret. This Recommendation
specifies both one-step and two-step key-derivation methods.

Key-derivation
procedure

As used in this Recommendation, a two-step key-derivation method
consisting of randomness extraction followed by key expansion.

Key-derivation
key

As used in this Recommendation, a key that is used during the key-
expansion step of a key-derivation procedure to derive the secret
output keying material. This key-derivation key is obtained from a
shared secret during the randomness-extraction step.

Key establishment A procedure that results in secret keying material that is shared
among different parties.

Key expansion The second step in the key-derivation procedure specified in this
Recommendation, in which a key-derivation key is used to derive
secret keying material having the desired length.

Keying material Data that is represented as a binary string such that any non-
overlapping segments of the string with the required lengths can be
used as secret keys, secret initialization vectors and other secret
parameters.

Message
Authentication
Code (MAC)
algorithm

A family of cryptographic functions that is parameterized by a
symmetric key. Each of the functions can act on input data (called
a “message”) of variable length to produce an output value of a
specified length. The output value is called the MAC of the input
message. MAC(k, x, …) is used to denote the MAC of message x
computed using the key k (and any additional algorithm-specific
parameters). An approved MAC algorithm is expected to satisfy
the following property (for each supported security strength):

 Without knowledge of the key k, it must be computationally
infeasible to predict the (as-yet-unseen) value of MAC(k, x, …)
with a probability of success that is a significant improvement
over simply guessing either the MAC value or k, even if one has
already seen the results of using that same key to compute
MAC(k, xj, …) for (a bounded number of) other messages xj ≠ x.

A MAC algorithm can be employed to provide authentication of the
origin of data and/or to provide data-integrity protection. In this
Recommendation, approved MAC algorithms are used to
determine families of pseudorandom functions (indexed by the
choice of key) that may be employed during key derivation.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Nonce A varying value that has at most a negligible chance of repeating –
for example, a random value that is generated anew for each use, a
timestamp, a sequence number, or some combination of these.

Pseudorandom
function family
(PRF)

An indexed family of (efficiently computable) functions, each
defined for the same particular pair of input and output spaces. (For
the purposes of this Recommendation, one may assume that both
the index set and the output space are finite.) The indexed functions
are pseudorandom in the following sense:

If a function from the family is selected by choosing an index
value uniformly at random, and one’s knowledge of the
selected function is limited to the output values corresponding
to a feasible number of (adaptively) chosen input values, then
the selected function is computationally indistinguishable from
a function whose outputs were fixed uniformly at random.

Randomness
extraction

The first step in the two-step key-derivation procedure specified in
this Recommendation; during this step, a key-derivation key is
produced from a shared secret.

Salt As used in this Recommendation, a byte string (which may be
secret or non-secret) that is used as a MAC key by either 1) a MAC-
based auxiliary function H employed in one-step key derivation, or,
2) a MAC employed in the randomness-extraction step during two-
step key derivation.

Security strength A number characterizing the amount of work that is expected to
suffice to “defeat” an implemented cryptographic mechanism (e.g.,
by compromising its functionality and/or circumventing the
protection that its use was intended to facilitate). In this
Recommendation, security strength is measured in bits. If the
security strength of a particular implementation of a cryptographic
mechanism is s bits, it is expected that the equivalent of (roughly)
2s basic operations of some sort will be sufficient to defeat it in
some way.

Shared secret The secret byte string that is computed/generated during the
execution of an approved key-establishment scheme and used as
input to a key-derivation method as part of that transaction.

Shall A requirement that needs to be fulfilled to claim conformance to
this Recommendation. Note that shall may be coupled with not to
become shall not.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Support
(a security
strength)

A security strength of s bits is said to be supported by a particular
choice of algorithm, primitive, auxiliary function, parameters (etc.)
for use in the implementation of a cryptographic mechanism if that
choice will not prevent the resulting implementation from attaining
a security strength of at least s bits.
In this Recommendation, it is assumed that implementation choices
are intended to support a security strength of 112 bits or more (see
[SP 800-57]7 and [SP 800-131A]8).

Symmetric key A single cryptographic key that is used with a symmetric-key
algorithm. Also called a secret key. A symmetric-key algorithm is
a cryptographic algorithm that uses the same secret key for an
operation and its complement (e.g., encryption and decryption).

Targeted security
strength

The security strength that is intended to be supported by one or
more implementation-related choices (such as algorithms,
primitives, auxiliary functions, parameter sizes and/or actual
parameters) for the purpose of implementing a cryptographic
mechanism.

3.2 Symbols and Abbreviations

0x A marker used to indicate that the following symbols are to
be interpreted as a bit string written in hexadecimal
notation (using the symbols 0, 1, …, 9, and A, B, …, F to
denote 4-bit binary representations of the integers zero
through nine and ten through fifteen, respectively). A byte
can be represented by a hexadecimal string of length two;
the leftmost hexadecimal symbol corresponds to the most
significant four bits of the byte, and the rightmost
hexadecimal symbol corresponds to the least significant
four bits of the byte. For example, 0x9D represents the bit
string 10011101 (assuming that the bits are positioned in
order of decreasing significance).

AES Advanced Encryption Standard (the block cipher specified
in [FIPS 197]9).

AES-N The variant of the AES block cipher that requires an N-bit
encryption/decryption key; the three variants specified in

7 SP 800-57 Rev. 4, Recommendation for Key Management Part1: General.
8 SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and
Key Lengths.

9 FIPS 197, Advanced Encryption Standard.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

(N = 128, 192, or 256) [FIPS 197] are AES-128, AES-192, and AES-256.

AES-CMAC The Cipher-based Message Authentication Code (CMAC)
mode of operation for the AES block cipher, as specified
in [SP 800-38B]10.

AES-N-CMAC(k, x)
(N = 128, 192, or 256)

An implementation of AES-CMAC based on the AES-N
variant of the AES block cipher (for N = 128, 192, or 256);
its output is a 128-bit MAC computed over the “message”
x using the key k.

counter An unsigned integer, represented as a big-endian four-byte
string, that is employed by the one-step key-derivation
method specified in Section 4.1.

Context A bit string of context-specific data; a subcomponent of the
FixedInfo that is included as part of the input to the two-
step key-derivation method specified in Section 5.1.

default_salt A default value assigned to salt (if necessary) to implement
an auxiliary function H selected according to Option 2 or 3
in the one-step key-derivation method specified in Section
4.1.

DerivedKeyingMaterial Keying material that is derived from a shared secret Z (and
other data) through the use of a key-derivation method.

ECC Elliptic curve cryptography.

enc8(x) A one-byte encoding of an integer x, where 0 ≤ x ≤ 255,
with bit 0 being the low-order (least significant) bit and bit
7 being the high-order (most significant) bit.

FFC Finite field cryptography.

FixedInfo A bit string of context-specific data whose value does not
change during the execution of a key-derivation method
specified in this Recommendation.

H The auxiliary function used to produce blocks of keying
material during the execution of the one-step key-derivation
method specified in Section 4.1.

10 SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for
Authentication.

https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

hash A hash function. Approved choices for hash are specified
in [FIPS 180] and [FIPS 202].

HMAC Keyed-hash Message Authentication Code, as specified in
[FIPS 198]11.

HMAC-hash(k, x) An implementation of HMAC using the hash function,
hash; its output is a MAC computed over “message” x
using the key k.

H_outputBits A positive integer that indicates the length (in bits) of the
output of either 1) the auxiliary function H used in the one-
step key-derivation method specified in Section 4.1, or, 2)
an auxiliary HMAC algorithm used in the two-step key-
derivation method specified in Section 5.1.

IFC Integer factorization cryptography.

IV Initialization vector; as used in this Recommendation, it is
a bit string used as an initial value during the execution of
an approved PRF-based KDF operating in Feedback
Mode, as specified in [SP 800-108].

KDF Key-derivation function.

KDK The key-derivation key resulting from the randomness-
extraction step and then used in the key-expansion step
during the execution of the key-derivation procedure
specified in Section 5.1.

KDM Key-derivation method.

KMAC Keccak Message Authentication Code, as specified in
[SP 800-185]12.

KMAC#(k, x, l, S) A variant of KMAC (either KMAC128 or KMAC256, as
specified in [SP 800-185]); its output is an l-bit MAC
computed over the “message” x using the key k and
“customization string” S.

L A positive integer specifying the desired length (in bits) of

11 FIPS 198, The Keyed-Hash Message Authentication Code (HMAC).
12 SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

the derived keying material.

[L]2 An agreed-upon encoding of the integer L as a bit string.

MAC Message Authentication Code.

MAC(k, x, …) An instance of a MAC algorithm computed over the
“message” x using the key k (and any additional algorithm-
specific parameters).

max_H_inputBits The maximum length (in bits) for strings used as input to
the auxiliary function H employed by the one-step key-
derivation method specified in Section 4.1.

OtherInput A collective term for any and all additional data (other than
the shared secret itself) used as input to a key-derivation
method specified in this Recommendation.

PRF Pseudorandom function (family).

s Security strength (in bits).

SHA Secure Hash Algorithm, as specified in [FIPS 180] (i.e.,
SHA-1, SHA-224, SHA-512/224, SHA-256, SHA-
512/256, SHA-384, or SHA-512) or [FIPS 202] (i.e.,
SHA3-224, SHA3-256, SHA3-384, or SHA3-512).

Z Shared secret (determined according to the specifications
in either [SP 800-56A] or [SP 800-56B]).

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

4 One-Step Key Derivation

This section specifies a family of approved key-derivation functions (KDFs) that are
executed in a single step; a two-step procedure is specified in Section 5. The input to each
specified KDF includes the shared secret generated during the execution of a key-
establishment scheme specified in [SP 800-56A] or [SP 800-56B], an indication of the
desired bit length of the keying material to be output, and, perhaps, other information (as
determined by the particular implementation of the key-establishment scheme and/or key-
derivation function).

Implementations of these one-step KDFs depend upon the choice of an auxiliary function
H, which can be either 1) an approved hash function, denoted as hash, as defined in [FIPS
180] or [FIPS 202]; 2) HMAC with an approved hash function, hash, denoted as HMAC-
hash, and defined in [FIPS 198]; or 3) a KMAC variant, as defined in [SP 800-185]. Tables
1, 2, and 3 in Section 4.2 describe the possibilities for H, and also include any restrictions
on the associated implementation-dependent parameters. H shall be chosen in accordance
with the selection requirements specified in Section 7.

When an approved MAC algorithm (HMAC or KMAC) is used to define the auxiliary
function H, it is permitted to use a known salt value as the MAC key. In such cases, it is
assumed that the MAC algorithm will satisfy the following property (for each of its
supported security strengths):

 Given knowledge of the key k, and (perhaps) partial knowledge of a message x that
includes an unknown substring z, it must be computationally infeasible to predict the
(as-yet-unseen) value of MAC(k, x, …) with a probability of success that is a significant
improvement over simply guessing either the MAC value or the value of z, even if one
has already seen the values of MAC(kj, xj, …) for a feasible number of other (kj, xj) pairs,
where each key kj is known and each (partially known) message xj includes the same
unknown substring z, provided that none of the (kj, xj) pairs is identical to (k, x).

 This property is consistent with the use of the MAC algorithm as the specification of a
family of pseudorandom functions defined on the appropriate message space and indexed
by the choice of MAC key. Under Option 2 and Option 3 of the KDF specification below,
the auxiliary function H is a particular selection from such a family.

4.1 Specification of Key-Derivation Functions

A family of one-step key-derivation functions is specified as follows:

Function call: KDM(Z, OtherInput).

Options for the Auxiliary Function H:
Option 1: H(x) = hash(x), where hash is an approved hash function meeting the

selection requirements specified in Section 7, and the input, x, is a bit string.
Option 2: H(x) = HMAC-hash(salt, x), where HMAC-hash is an implementation of the

HMAC algorithm (as defined in [FIPS 198]) employing an approved hash

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

function, hash, that meets the selection requirements specified in Section 7.
An implementation-dependent byte string, salt, whose (non-null) value may
be optionally provided in OtherInput, serves as the HMAC key, and x (the
input to H) is a bit string that serves as the HMAC “message” – as specified
in [FIPS 198].

Option 3: H(x) = KMAC#(salt, x, H_outputBits, S), where KMAC# is a particular
implementation of either KMAC128 or KMAC256 (as defined in [SP 800-
185]) that meets the selection requirements specified in Section 7. An
implementation-dependent byte string, salt, whose (non-null) value may be
optionally provided in OtherInput, serves as the KMAC# key, and x (the input
to H) is a bit string that serves as the KMAC# “message” – as specified in [SP
800-185]. The parameter H_outputBits determines the bit length chosen for
the output of the KMAC variant employed. The “customization string” S shall
be the byte string 01001011 || 01000100 || 01000110, which represents the
sequence of characters “K”, “D”, and “F” in 8-bit ASCII. (This three-byte
string is denoted by “KDF” in this document.)

Implementation-Dependent Parameters:
1. H_outputBits – a positive integer that indicates the length (in bits) of the output of

the auxiliary function, H, that is used to derive blocks of secret keying material. If
Option 1 or Option 2 is chosen, then H_outputBits corresponds to the bit-length of
the output block of the particular hash function used in the implementation of H;
therefore, H_outputBits is in the set {160, 224, 256, 384, 512}, with the precise value
determined by the choice for the hash function, hash (see Section 4.2 for details). If
Option 3 is chosen, then H_outputBits shall either be set equal to the length (in bits)
of the secret keying material to be derived (see input L below) or selected from the
set {160, 224, 256, 384, 512}.

2. max_H_inputBits – a positive integer that indicates the maximum permitted length
(in bits) of the bit string, x, that is used as input to the auxiliary function, H. If Option
1 or Option 2 is chosen for the implementation of H, then an upper bound on
max_H_inputBits may be determined by the choice of the hash function, hash (see
Section 4.2 for details); max_H_inputBits values smaller than a specification-
imposed upper bound may be dictated by the particular use case. If the hash function,
hash, is specified in [FIPS 202], or if Option 3 is chosen for the implementation of
H, then there is no specification-imposed upper bound on max_H_inputBits; the value
assigned to max_H_inputBits may be determined by the needs of the relying
applications/parties.

3. default_salt – a non-null (secret or non-secret) byte string that is needed only if either
Option 2 (HMAC-hash) or Option 3 (KMAC#) is chosen for the implementation of
the auxiliary function H. This byte string is used as the value of salt if a (non-null)
value is not included in OtherInput (see below).
If H(x) = HMAC-hash(salt, x), then, in the absence of an agreed-upon alternative, the
default_salt shall be an all-zero byte string whose bit length equals that specified as
the bit length of an input block for the hash function, hash. (Input-block lengths for

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

the approved hash functions that can be employed to implement HMAC-hash are
listed in Table 1 of Section 4.2.)
If H(x) = KMAC128(salt, x, H_outputBits, “KDF”), then, in the absence of an agreed-
upon alternative, the default_salt shall be an all-zero string of 164 bytes (i.e., an all-
zero string of 1312 bits).
If H(x) = KMAC256(salt, x, H_outputBits, “KDF”), then, in the absence of an agreed-
upon alternative, the default_salt shall be an all-zero string of 132 bytes (i.e., an all-
zero string of 1056 bits).

Input:
1. Z – a byte string that represents the shared secret.

2. OtherInput, which includes:
a. {salt} – a non-null (secret or non-secret) byte string that can be (optionally)

provided if either Option 2 (HMAC-hash) or Option 3 (KMAC#) is chosen for
the implementation of the auxiliary function H, since those options require a salt
value that is used as a MAC key.
The salt included in OtherInput could be, for example, a value computed from
nonces exchanged as part of a key-establishment protocol that employs one or
more of the key-agreement schemes specified in [SP 800-56A] or [SP 800-56B],
a value already shared by the protocol participants, or a value that is pre-
determined by the protocol. The possibilities for the length of salt are determined
as follows:
(1) The HMAC-hash algorithm as defined in [FIPS 198] can accommodate MAC

keys of any bit length permitted for input to the hash function, hash.
Therefore, when Option 2 is chosen, the length of the byte string salt can be
as large as allowed for any string used as input to hash. However, if the bit
length of salt is greater than the bit length specified for a single input block
for the hash function, hash, then the value of salt is replaced by hash(salt) as
part of the HMAC computation. See Table 2 for details.

(2) The KMAC128 and KMAC256 algorithms specified in [SP 800-185] can
accommodate MAC keys of any length up to (22040 – 1) bits. Therefore, when
Option 3 is chosen, salt can be a byte string of any agreed-upon length that
does not exceed (22037 – 1 bytes) (i.e., 22040 – 8 bits). The input salt value will
be (re)formatted (using a byte-padding function) during the execution of the
KMAC algorithm to obtain a string whose length is a multiple of either 168
bytes (for KMAC128) or 136 bytes (for KMAC256). See Table 3 for details.

If a salt value required by H is omitted from OtherInput (or if a required salt value
included in OtherInput is the null string), then the value of default_salt shall be
used as the value of salt when H is executed.

b. L – a positive integer that indicates the length (in bits) of the secret keying
material to be derived; L shall not exceed H_outputBits × (232 –1).
(L = keydatalen in the notation of previous versions of [SP 800-56A], while L =

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

KBits in the notation of versions of [SP 800-56B] published prior to the release
of this version of SP 800-56C.)

c. FixedInfo – a bit string of context-specific data that is appropriate for the relying
key-establishment scheme. As its name suggests, the value of FixedInfo does not
change during the execution of the process described below.
FixedInfo may, for example, include appropriately formatted representations of
the values of salt and/or L. The inclusion of additional copies of the values of salt
and L in FixedInfo would ensure that each block of derived keying material is
affected by all of the information conveyed in OtherInput. See [SP 800-56A] and
[SP 800-56B] for more detailed recommendations concerning the format and
content of FixedInfo (also known as OtherInfo in earlier versions of those
documents).

Process:
1. If L > 0, then set reps = L / H_outputBits ; otherwise, output an error indicator

and exit this process without performing the remaining actions (i.e., omitting steps
2 through 8).

2. If reps > (232 −1), then output an error indicator and exit this process without
performing the remaining actions (i.e., omitting steps 3 through 8).

3. Initialize a big-endian 4-byte unsigned integer counter as 0x00000000,
corresponding to a 32-bit binary representation of the number zero.

4. If counter || Z || FixedInfo is more than max_H_inputBits bits long, then output an
error indicator and exit this process without performing any of the remaining
actions (i.e., omitting steps 5 through 8).

5. Initialize Result(0) as an empty bit string (i.e., the null string).

6. For i = 1 to reps, do the following:

6.1 Increment counter by 1.

6.2 Compute K(i) = H(counter || Z || FixedInfo).

6.3 Set Result(i) = Result(i – 1) || K(i).

7. Set DerivedKeyingMaterial equal to the leftmost L bits of Result(reps).

8. Output DerivedKeyingMaterial.

Output:
The bit string DerivedKeyingMaterial of length L bits (or an error indicator).

Notes:
In step 6.2 above, if H(x) = hash(x) or H(x) = HMAC-hash(salt, x), the entire output
block of the hash function, hash, shall be used when computing the output of H. Some

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

approved choices for hash (e.g., SHA-512/224, SHA-512/256, and SHA-384, as
specified in [FIPS 180]) include an internal truncation operation. In such a case, the
“entire output” of hash is the output block as defined in its specification. (For example,
in the case of hash = SHA-384, the entire output is defined to be a 384-bit block
resulting from the internal truncation of a certain 512-bit value).
If H(x) = KMAC#(salt, x, H_outputBits, S), then choosing H_outputBits = L will likely
be the most efficient way to produce the desired L bits of keying material.
The derived keying material DerivedKeyingMaterial shall be computed in its entirety
before outputting any portion of it.

4.2 The Auxiliary Function H(x) and Related Parameters

Tables 1, 2, and 3 enumerate the possibilities for the auxiliary function H and provide
additional information concerning the values of related parameters such as H_outputBits
and max_H_inputBits. The tables also indicate the range of security strengths that can be
supported by each choice for H (see Section 4.1) when used in a key derivation function
for a key-establishment scheme specified in SP 800-56A or SP 800-56B.

Table 1: H(x) = hash(x) (Option 1)

Hash
Function

(hash)

Byte / Bit
Length of

Input Blocks

H_outputBits
(in bits)

max_H_inputBits
(in bits)

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160
≤ 264 – 1

112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256
SHA-512/224 128 / 1024 224

≤ 2128 – 1

112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512
SHA3-224 144 / 1152 224

Arbitrarily long
inputs can be

accommodated.

112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Table 2: H(x) = HMAC-hash(salt, x) (Option 2)

Hash
Function

(hash)

Effective
Byte / Bit
Length*

of salt

H_outputBits
(in bits)

max_H_inputBits
(in bits)

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160
≤ 264 – 513

112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256
SHA-512/224 128 / 1024 224

≤ 2128 – 1025

112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512
SHA3-224 144 / 1152 224

Arbitrarily long
inputs can be

accommodated.

112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

* This Recommendation places no restriction on the length of a chosen salt other than the
requirement that its byte length be greater than zero, but no greater than the length of a
single input block to the hash function, hash, used to implement HMAC-hash. That
freedom of choice is somewhat illusory, however, since the HMAC algorithm will convert
an input salt value (as needed) into a string of the indicated hash-dependent length: A
shorter salt (used by H as an HMAC key) will be padded, by appending an all-zero bit
string, to obtain a string of the indicated length (the length of a single input block for the
hash function, hash); a longer salt will be hashed to produce a shorter string (of bit length
H_outputBits), which will then be padded (by appending an all-zero bit string) to obtain a
string of the indicated length (see [FIPS 198] for additional information).

Table 3: H(x) = KMAC#(salt, x, H_outputBits, “KDF”) (Option 3)

KMAC
Variant

Length
of a byte-
padded

salt value

Suggested
Maximum

Byte Length
of salt

H_outputBits
(in bits)

max_H_inputBits
(in bits)

Security
Strength s
supported

(in bits)

KMAC128 Multiple
of 168
bytes

168 – 4 =
164 ** Choice of 160,

224, 256, 384,
512, or L.

Arbitrarily long
inputs can be

accommodated.

112 ≤ s ≤ 128

KMAC256
Multiple
of 136
bytes

136 – 4 =
 132 *** 112 ≤ s ≤ 256

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

** KMAC# prepends a length encoding for the first input data field. For KMAC128, using
164 bytes (or less) of salt leaves room for 4 bytes of prepended length encoding and limits
the length of the encoded salt to no more than the length of a single block of input to
KMAC128.

*** KMAC# prepends a length encoding for the first input data field. For KMAC256, using
132 bytes (or less) of salt leaves room for 4 bytes of prepended length encoding and limits
the length of the encoded salt to no more than the length of a single block of input to
KMAC256.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

5 Two-Step Key Derivation

This section specifies an approved (two-step) extraction-then-expansion key-derivation
procedure. Like the one-step key-derivation functions described in Section 4, the input to
this two-step procedure includes Z, the shared secret generated during the execution of a
key-establishment scheme that is specified in either [SP 800-56A] or [SP 800-56B]); L, a
positive integer indicating the desired length (in bits) of the output keying material; and
other information (as determined by the particular implementation of the key-establishment
scheme and/or key-derivation method). In contrast to the one-step methods, a salt value is
required to be included as part of the input.

The extraction-then-expansion key-derivation procedure is pictured in Figure 1.

The first (randomness-extraction) step uses either HMAC, as defined in [FIPS 198], or
AES-CMAC, as defined in [SP 800-38B]. In either case, there are two inputs: salt, which
serves as a MAC key, and the shared secret, Z, which serves as the “message.” The resulting
MAC output is used as a key-derivation key, KDK. The use of this KDK is restricted to a
single execution of the key-expansion step of this procedure.

The second (key-expansion) step uses the key-derivation key, KDK, along with the integer
L and other appropriate data, as the input to a PRF-based key-derivation function specified
in [SP 800-108]. The output returned by that key-derivation function is either secret keying
material (in the form of DerivedKeyingMaterial, a bit string of length L) or an error
indicator.
5.1 Specification of Key-Derivation Procedure

The extraction-then-expansion key-derivation procedure is specified as follows:
Function call: KDM(Z, OtherInput).

Options for the Auxiliary MAC Algorithm:
The MAC algorithm employed for randomness extraction shall be either an
implementation of HMAC as defined in [FIPS 198], based on an approved hash
function, hash (i.e., HMAC-hash), or an implementation of AES-CMAC as defined in
[SP 800-38B] (i.e., AES-N-CMAC for N = 128, 192, or 256); in either case, the

Figure 1: The Extraction-then-Expansion Key-Derivation Procedure

salt
Randomness
Extraction

Key
Expansion

KDK

Z L, {IV,} FixedInfo

DerivedKeyingMaterial

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

(untruncated) output of the MAC algorithm is used as the key-derivation key for
subsequent key expansion. Tables 4 and 5 in Section 5.2 describe the possibilities for
the auxiliary MAC algorithm, which shall be chosen in accordance with the selection
requirements specified in Section 7.

Implementation-Dependent Auxiliary PRF-based KDF:
One of the general-purpose PRF-based key-derivation functions defined in [SP 800-
108] shall be used for key expansion. These key-derivation functions employ an
approved MAC algorithm as the PRF. In this Recommendation, the PRF used by the
KDF in key expansion is determined by the MAC algorithm that is used for randomness
extraction. Specifically:

a. If HMAC-hash is used in the randomness-extraction step, then the same HMAC-
hash (i.e., using the same hash function, hash) shall be used as the PRF in the key-
expansion step; and

b. If either AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is used in the
randomness-extraction step, then only AES-128-CMAC (i.e., the CMAC mode of
AES-128) shall be used as the PRF in the key-expansion step.

The rationale for these rules is discussed in Section 8.3.

Input:
1. Z – a byte string that represents the shared secret. It is used as the “message” during the

execution of the MAC algorithm employed in the randomness-extraction step.

2. OtherInput, which includes:

a. salt – a non-null (secret or non-secret) byte string used as the MAC key during the
execution of the randomness-extraction step (i.e., step 1 in the process shown
below). This salt could be, for example, a value computed from nonces exchanged
as part of a key-establishment protocol that employs one or more of the key-
agreement schemes specified in [SP 800-56A] or [SP 800-56B], a value already
shared by the protocol participants, or a value that is pre-determined by the
protocol. The possibilities for the length of salt are determined by the auxiliary
MAC algorithm that is used for randomness extraction:

(1) The HMAC-hash algorithm as defined in [FIPS 198] can accommodate keys of
any length up to the maximum bit length permitted for input to the hash
function, hash; therefore, the length of the byte string salt can be as large as
allowed for any string used as input to hash. However, if the bit length of salt
is greater than the bit length specified for a single input block for hash, then the
value of salt is replaced by hash(salt) as part of the HMAC computation. (Input-
block lengths for the approved hash functions that can be employed to
implement HMAC-hash are included in column 4 of Table 1 in Section 4.2;
also see Table 4 of Section 5.2.) In the absence of an agreed-upon alternative,

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

the input salt value shall be an all-zero byte string whose length is equal to that
of a single input block for the hash function, hash.

(2) AES-N-CMAC requires keys that are N bits long (for N = 128, 192, or 256),
depending upon the AES variant that is used in the implementation. The bit
length of salt shall be the bit length required of a key for that AES variant (128
bits for AES-128, 192 bits for AES-192, or 256 bits for AES-256). In the
absence of an agreed-upon alternative, the input salt value shall be an all-zero
string of the required bit length.

b. L – a positive integer that indicates the length (in bits) of the secret keying material
to be derived using the auxiliary PRF-based KDF during the execution of the key-
expansion step (i.e., step 2 in the process shown below). The maximum value
allowed for L is determined by the mode (i.e., Counter Mode, Feedback Mode, or
Double-Pipeline Iteration Mode) and implementation details of the chosen KDF, as
specified in [SP 800-108]. An error event will occur during the execution of the
KDF if L is too large.13
(Note that L = keydatalen in the notation of previous versions of [SP 800-56A],
while L = KBits in the notation of versions of [SP 800-56B] published prior to the
release of this version of SP 800-56C.)

c. {IV} – a bit string included (if required) for use as an initial value during execution
of the auxiliary PRF-based KDF; an IV shall be included in OtherInput if and only
if the chosen PRF-based KDF is operating in Feedback Mode. It can be either secret
or non-secret. It may be an empty string. If the PRF-based KDF is operating in
either Counter Mode or Double-Pipeline Iteration Mode, an IV shall not be
included in OtherInput. (See [SP 800-108] for details.)

d. FixedInfo, including:

(1) Label – a bit string that identifies the purpose for the derived keying material.
For example, it can be the ASCII encoding of a character string describing the
relying application(s) and/or the intended use(s) of the keying material. The
value and encoding method used for the Label are defined in a larger context,
for example, in the protocol that uses this key-derivation procedure. As an
alternative to including this string as a separate component of FixedInfo, Label
could be incorporated in Context (see below).

(2) Context – a bit string of context-specific data appropriate for the relying key-
establishment scheme/protocol and the chosen PRF-based KDF.
For recommendations concerning the format and context-specific content of

13 The restrictions on the size of L that are given in [SP 800-108] are stated in terms of n = L/h, where h denotes the bit
length of an output block of the PRF used to implement the auxiliary KDF. In the case of Counter Mode, the restriction
is n ≤ 2r – 1, where r ≤ 32 is the (implementation-dependent) bit length allocated for the KDF’s counter variable. For
the other KDF modes, the restriction is simply n ≤ 232 – 1.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Context, see the specifications of FixedInfo and/or OtherInfo in [SP 800-56A]
and/or [SP 800-56B], respectively.

(3) [L]2 – an agreed-upon encoding of L as a bit string that is appropriate for use by
the chosen PRF-based KDF (see [SP 800-108] for details). As an alternative to
including this string as a separate component of FixedInfo, [L]2 could be
incorporated in Context (see above).

Process:

[Randomness Extraction]
1. Call MAC(salt, Z, …) to obtain KDK or an error indicator; if an error occurs, output

an error indicator, and exit from this process without performing step 2.

[Key Expansion]
2. Call KDF(KDK, L, {IV,} FixedInfo) to obtain DerivedKeyingMaterial or an error

indicator (see [SP 800-108] for details). If an error occurs, output an error indicator;
otherwise output DerivedKeyingMaterial.

Output:
The bit string DerivedKeyingMaterial of length L bits (or an error indicator).

Notes:
When HMAC-hash is used as the auxiliary MAC algorithm, the length of KDK is the
length of an untruncated output block from the hash function, hash. When AES-CMAC
is used, then (regardless of the AES variant employed) KDK is a 128-bit binary string.
KDK is used (locally) as a key-derivation key by the auxiliary KDF during the key-
expansion step, and then shall be destroyed (along with all other sensitive locally stored
data) after its use. Its value shall not be an output of the key-derivation procedure.

[RFC 5869] specifies a version of the above extraction-then-expansion key-derivation
procedure using HMAC for both the extraction and expansion steps. For an extensive
discussion concerning the rationale for the extract-and-expand mechanisms specified in
this Recommendation, see [LNCS 6223].

5.2 The Auxiliary MAC Algorithm and Related Parameters

Tables 4 and 5 enumerate the possibilities for the auxiliary MAC algorithm used for
randomness extraction and provide additional information concerning the lengths of the
MAC key (i.e., the salt value) and the extracted key-derivation key (i.e., KDK). The tables
also indicate the range of security strengths that can be supported by each choice for MAC
(see Section 5.1) when used for two-step key derivation in a key-establishment scheme
specified in SP 800-56A and SP 800-56B.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Table 4: MAC(salt, Z, …) = HMAC-hash(salt, Z) (For Randomness Extraction)

Hash
Function

(hash)

Effective
Byte / Bit
Length*

of salt

Bit Length of
Extracted KDK

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160 112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256
SHA-512/224 128 / 1024 224 112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512
SHA3-224 144 / 1152 224 112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

* This Recommendation places no restriction on the length of a chosen salt other than the
requirement that its byte length be greater than zero, but no greater than the length of a
single input block to the hash function, hash, used to implement HMAC-hash. That
freedom of choice is somewhat illusory, however, since the HMAC algorithm will convert
an input salt value (as needed) into a string of the indicated hash-dependent length: A
shorter salt (which is used as an HMAC key) will be padded, by appending an all-zero bit
string, to obtain a string of the indicated length (the length of a single input block for the
hash function, hash); a longer salt will be hashed to produce a shorter string, which will
then be padded (by appending an all-zero bit string) to obtain a string of the indicated
length. (See [FIPS 198] for additional information.)

Note: The hash function, hash, used by the HMAC algorithm employed during randomness
extraction shall be used again in the subsequent key-expansion step to implement the
HMAC algorithm that is employed as a PRF by the auxiliary PRF-based KDF.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Table 5: MAC(salt, Z, …) = AES-N-CMAC(salt, Z) (For Randomness Extraction)

AES Variant
used by

AES-CMAC

Bit Length
of salt for

AES-CMAC

Bit Length of
Extracted KDK

Security
Strength s
supported

(in bits)

AES-128 128
128

112 ≤ s ≤ 128

AES-192 192
AES-256 256

Note: Regardless of which AES variant is used by the AES-CMAC algorithm during
randomness-extraction, the 128-bit AES block size determines the bit length of the
resulting KDK. To accommodate the use of this 128-bit KDK as a key-derivation key, the
CMAC mode of AES-128 shall be the PRF employed by the auxiliary PRF-based KDF in
the subsequent key-expansion step.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

6 Application-Specific Key-Derivation Methods

Additional approved application-specific key-derivation methods are enumerated in
[SP 800-135]. Unless an explicit exception is made in [SP 800-135], any hash function or
MAC algorithm employed by the key-derivation methods enumerated in [SP 800-135]
shall be approved and shall also meet the selection requirements specified in this
Recommendation (i.e., SP 800-56C).

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

7 Selecting Hash Functions and MAC Algorithms

The key-derivation methods specified in this Recommendation, as well as those
enumerated in [SP 800-135], use hash functions and/or message authentication code
(MAC) algorithms as auxiliary functions. In particular:

• The one-step key-derivation functions that are specified in Section 4.1 of this
Recommendation employ an appropriate choice of hash function (hash), an HMAC
algorithm based on an appropriate choice of hash function (HMAC-hash), or one
of two KMAC variants (KMAC128 or KMAC256) to implement the auxiliary
function H.

• The extraction-then-expansion key-derivation procedure specified in Section 5.1
employs either an HMAC algorithm based on an appropriate choice of hash
function (HMAC-hash) for both randomness extraction and key expansion, or an
appropriate variant of the AES-CMAC algorithm (i.e., AES-N-CMAC for N = 128,
192, or 256) for randomness extraction together with AES-128-CMAC for key
expansion.

Unless explicitly stated to the contrary, (e.g., in [SP 800-135]), the following requirements
apply to the hash functions and MAC algorithms employed for key derivation:

• Whenever a hash function is employed (including as the primitive used by HMAC),
an approved hash function shall be used. [FIPS 180] and [FIPS 202] specify
approved hash functions.

• Whenever an HMAC algorithm is employed, the HMAC implementation shall
conform to the specifications found in [FIPS 198].

• Whenever a KMAC variant (KMAC128 or KMAC256) is employed, the KMAC
implementation shall conform to the specifications found in [SP 800-185].

• Whenever an AES-CMAC algorithm is employed, the implementation of AES shall
conform to [FIPS 197] and the AES-CMAC implementation shall conform to [SP
800-38B].

As specified in [SP 800-56A] and [SP 800-56B], an approved key-establishment scheme
can be implemented with parameters of various types and sizes that will impact the
estimated maximum security strength that can be supported by the resulting scheme. When
a key-establishment scheme employs a choice of parameters that are associated with a
targeted security strength of s bits, the selection of a hash function, HMAC, KMAC, or
AES-CMAC employed during the implementation of its key-derivation method shall
conform to the following restrictions:

• An approved hash function shall be employed (whether alone or as the primitive
used by HMAC) in the implementation of a one-step or two-step key-derivation
method only if its output block length (in bits) is greater than or equal to s.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

• For the purposes of implementing one-step key derivation only: KMAC128 shall be
employed only in instances where s is 128 bits or less; KMAC256 shall be employed
only in instances where s is 256 bits or less. (See, however, the note below.)

• For the purposes of implementing two-step key derivation only: AES-CMAC shall
be employed only in instances where s is 128 bits or less. (See the note following
Table 5.)

Tables 1 through 5 (in Sections 4.1 and 5.1) can be consulted to determine which hash
functions and/or MAC algorithms are approved for use when a key-derivation method
specified in this Recommendation is used by an approved key-establishment scheme to
support a targeted security strength of s bits.

Note: At the time of publication of this Recommendation, a key-establishment scheme
implemented in accordance with either [SP 800-56A] or [SP 800-56B] can have a targeted
security strength of at most 256 bits.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

8 Further Discussion

In this section, the following issues are discussed:

8.1 Using a Truncated Hash Function

SHA-224, SHA-512/224, SHA-512/256 and SHA-384 are among the approved hash
functions specified in [FIPS 180]. SHA-224 is a truncated version of SHA-256, while
SHA-512/224, SHA-512/256, and SHA-384 are truncated versions of SHA-512. (Each of
these truncated versions uses a specific initial chaining value, which is different from the
initial chaining value used by the untruncated version.) In applications that require a
relatively long bit string of derived keying material, implementing the key-derivation
methods specified in this Recommendation with a truncated version of a hash function may
be less efficient than using the corresponding untruncated version (i.e., SHA-256 or SHA-
512).

8.2 The Choice of a Salt Value

In this Recommendation, the MAC algorithms employed either in a one-step key-
derivation method or in the randomness-extraction step of a two-step key derivation
method use a salt value as a MAC key (see Sections 4 and 5). This Recommendation does
not require the use of a randomly selected salt value. In particular, if there is no means to
select a salt value and share it with all of the participants during a key-establishment
transaction, then this Recommendation specifies that a predetermined default (e.g., all-
zero) byte string be used as the salt value. The benefits of using “random” salt values, when
possible, are discussed (briefly) in Section 3.1 (“To salt or not to salt.”) of [RFC 5869],
and in greater detail in [LNCS 6223].

8.3 MAC Algorithms used for Extraction and Expansion

Provided that the targeted security strength can be supported (see Tables 4 and 5 in Section
5.2), this Recommendation permits either HMAC-hash (i.e., HMAC implemented with an
appropriately chosen approved hash function, hash) or AES-CMAC (i.e., the CMAC
mode of AES-128, AES-192, or AES-256) to be selected as the MAC algorithm used in
the randomness-extraction step of the key-derivation procedure specified in Section 5.1.

The PRF-based KDF used in the key-expansion step of the procedure also requires an
appropriate MAC (to serve as the PRF). While it may be technically feasible (in some
cases) to employ completely different MAC algorithms in the two steps of the specified
key-derivation procedure, this Recommendation does not permit such flexibility. Instead,
the following restrictions have been placed on MAC selection (see Sections 5 and 7):

• When HMAC-hash is chosen for use in the randomness-extraction step, the same
MAC algorithm (i.e., HMAC-hash with the same approved hash function, hash)
shall be employed to implement the PRF-based KDF used in the key-expansion
step.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

• When AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is chosen for use
in the randomness-extraction step, the MAC algorithm employed by the PRF-based
KDF used in the key-expansion step shall be AES-128-CMAC, the CMAC mode
of AES-128. (AES-128 is the only AES variant that can employ the 128-bit KDK
produced by AES-N-CMAC during the randomness-extraction step.)

• The MAC algorithm selected for the implementation of a two-step key-derivation
method shall be capable of supporting the targeted security strength, as determined
by consulting Tables 4 and 5 in Section 5.2. (This limits the use of AES-CMAC to
cases where the targeted security strength is no more than 128 bits.)

The imposed restrictions are intended to reduce the overall complexity of the resulting
implementations, promote interoperability, and simplify the negotiation of the parameters
and auxiliary functions affecting the security strength supported by the key-derivation
procedure.

Note: At this time, KMAC has not been specified for use in the implementation of a two-
step key derivation procedure. This restriction may be reconsidered once a KMAC-based
KDF has been approved for use as a PRF-based KDF in a revision of [SP 800-108].

8.4 Destruction of Sensitive Locally Stored Data

Good security practice dictates that implementations of key-derivation methods include
steps that destroy potentially sensitive locally stored data that is created (and/or copied for
use) during the execution of a particular process; there is no need to retain such data after
the process has been completed. Examples of potentially sensitive locally stored data
include local copies of shared secrets that are employed during the execution of a particular
process, intermediate results produced during computations, and locally stored duplicates
of values that are ultimately output by the process. The destruction of such locally stored
data ideally occurs prior to or during any exit from the process. This is intended to limit
opportunities for unauthorized access to sensitive information that might compromise a
key-establishment transaction.

It is not possible to anticipate the form of all possible implementations of the key-derivation
methods specified in this Recommendation, making it impossible to enumerate all
potentially sensitive data that might be locally stored by a process employed in a particular
implementation. Nevertheless, the destruction of any potentially sensitive locally stored
data is an obligation of all implementations.

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Appendix A—References

[SP 800-38B] NIST Special Publication (SP) 800-38B, Recommendation for Block
Cipher Modes of Operation – The CMAC Mode for Authentication, May
2005.
https://doi.org/10.6028/NIST.SP.800-38B

[SP 800-56A] NIST Special Publication (SP) 800-56A Revision 3, Recommendation
for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography, April 2018.
https://doi.org/10.6028/NIST.SP.800-56Ar3

[SP 800-56B] NIST Special Publication (SP) 800-56B Revision 1, Recommendation
for Pair-Wise Key-Establishment Schemes Using Integer Factorization
Cryptography, September 2014.
https://doi.org/10.6028/NIST.SP.800-56Br1

[SP 800-57] NIST Special Publication (SP) 800-57 Part 1 Revision 4,
Recommendation for Key Management Part 1: General, January 2016.
https://doi.org/10.6028/NIST.SP.800-57pt1r4

[SP 800-108] NIST Special Publication (SP) 800-108, Recommendation for Key
Derivation Using Pseudorandom Functions, October 2009.
https://doi.org/10.6028/NIST.SP.800-108

[SP 800-131A] NIST Special Publication (SP) 800-131A Revision 1, Transitions:
Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths, November 2015.
https://doi.org/10.6028/NIST.SP.800-131Ar1

[SP 800-135] NIST Special Publication (SP) 800-135 Revision 1, Recommendation
for Existing Application-Specific Key Derivation Functions, December
2011.
https://doi.org/10.6028/NIST.SP.800-135r1

[SP 800-185] NIST Special Publication (SP) 800-185, SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash, December 2016.
https://doi.org/10.6028/NIST.SP.800-185

[FIPS 180] Federal Information Processing Standard (FIPS) 180-4, Secure Hash
Standard, August 2015.
https://doi.org/10.6028/NIST.FIPS.180-4

[FIPS 197] Federal Information Processing Standard (FIPS) 197, Advanced
Encryption Standard, November 2001.
https://doi.org/10.6028/NIST.FIPS.197

https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br1
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-108
https://doi.org/10.6028/NIST.SP.800-131Ar1
https://doi.org/10.6028/NIST.SP.800-135r1
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.197

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

[FIPS 198] Federal Information Processing Standard (FIPS) 198-1, The Keyed-
Hash Message Authentication Code (HMAC), July 2008.
https://doi.org/10.6028/NIST.FIPS.198-1

[FIPS 202] Federal Information Processing Standard (FIPS) 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, August
2015.
https://doi.org/10.6028/NIST.FIPS.202

[RFC 5869] IETF Request for Comments (RFC) 5869, HMAC-based Extract-and-
Expand Key Derivation Function (HKDF), May 2010.
https://doi.org/10.17487/RFC5869

[LNCS 6223] H. Krawczyk. “Cryptographic Extraction and Key Derivation: The
HKDF Scheme,” in Advances in Cryptology - Crypto’2010, Lecture
Notes in Computer Science Vol. 6223, pp. 631-648. Springer. 2010.
https://doi.org/10.1007/978-3-642-14623-7_34

https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.17487/RFC5869
https://doi.org/10.1007/978-3-642-14623-7_34

NIST SP 800-56C REV. 1 RECOMMENDATION FOR KEY DERIVATION METHODS
IN KEY ESTABLISHMENT SCHEMES

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-56C
r1

Appendix B—Revisions (Informative)

The original SP 800-56C (published in November 2011) focused entirely on the
specification of a two-step extraction-then-expansion key-derivation procedure to be used
in conjunction with a key-establishment scheme from either [SP 800-56A] or [SP 800-
56B]; it provided an alternative to the one-step key-derivation functions that were already
included in those companion publications.

The 2018 revision of SP 800-56C reorganizes the original content (it still includes the
specification of an extraction-then-expansion key-derivation procedure) to also include the
specification of a family of one-step key-derivation functions, expanding on material that
was previously found only in SP 800-56A and SP 800-56B. This change was made in
support of the removal of detailed descriptions of key-derivation methods from SP 800-
56A and a future revision of SP 800-56B. The consolidation of specifications in SP 800-
56C revision 1 will promote consistency between the key-derivation options available for
use with an approved key-establishment scheme chosen from either of those companion
NIST publications. (There will, however, continue to be a number of application-specific
key-derivation methods specified in [SP 800-135].)

Specifically named key-establishment “parameter sets” (FA – FC for finite-field
cryptography (FFC); EA – EE for elliptic-curve cryptography (ECC); and IA – IB for
integer-factorization cryptography (IFC)) are no longer used as guides for choosing the
auxiliary functions employed by a key-derivation method. Instead, SP 800-56C revision 1
indicates the security strengths that can be supported by the various possibilities for the
auxiliary functions. Implementers are expected to let the targeted security strength of the
key-establishment scheme guide their choices. Of course, each of the named parameter sets
was associated with a targeted security strength, so this is more a change of perspective
than of substance. The change is, however, consistent with the revision of [SP 800-56A],
which de-emphasizes (in the FFC case) or eliminates (in the ECC case) the use of named
parameter (size) sets.

There is one substantial change to the specification of key-derivation methods that is worth
noting: a KMAC-based option for implementing the auxiliary function H has been added
to the specification of one-step key-derivation functions (see Section 4.1). At this time,
however, KMAC has not been specified for use as an auxiliary MAC algorithm in the two-
step extraction-then-expansion key-derivation procedure (see Section 8.3).

Given the extent to which SP 800-56C has been revised, it is impractical to list all of the
changes that have been made to the original text. It is recommended that SP 800-56C
revision 1 be read in its entirety in order to gain familiarity with the details of the current
specifications for both one-step and two-step key-derivation methods used in approved
key-establishment schemes.

	NIST SP 800-56C Rev. 1, Recommendation for Key-Derivation Methods in Key-Establishment Schemes
	1 Introduction
	2 Scope and Purpose
	3 Definitions, Symbols and Abbreviations
	3.1 Definitions
	3.2 Symbols and Abbreviations

	4 One-Step Key Derivation
	4.1 Specification of Key-Derivation Functions
	4.2 The Auxiliary Function H(x) and Related Parameters

	5 Two-Step Key Derivation
	5.1 Specification of Key-Derivation Procedure
	5.2 The Auxiliary MAC Algorithm and Related Parameters

	6 Application-Specific Key-Derivation Methods
	7 Selecting Hash Functions and MAC Algorithms
	8 Further Discussion
	8.1 Using a Truncated Hash Function
	8.2 The Choice of a Salt Value
	8.3 MAC Algorithms used for Extraction and Expansion
	8.4 Destruction of Sensitive Locally Stored Data

	Appendix A— References
	Appendix B— Revisions (Informative)

