

Draft NIST Special Publication 800-38G 1

Revision 1 2

Recommendation for Block Cipher 3

Modes of Operation 4

Methods for Format-Preserving Encryption 5

 6
 7

Morris Dworkin 8
 9

 10
 11
 12
 13
 14
 15

This publication is available free of charge from: 16
https://doi.org/10.6028/NIST.SP.800-38Gr1-draft 17

 18
 19
 20

C O M P U T E R S E C U R I T Y 21
 22

23

Draft NIST Special Publication 800-38G 24

Revision 1 25

 26

Recommendation for Block Cipher 27

Modes of Operation 28

Methods for Format-Preserving Encryption 29
 30
 31

Morris Dworkin 32
Computer Security Division 33

Information Technology Laboratory 34
 35

 36
 37
 38
 39

This publication is available free of charge from: 40
https://doi.org/10.6028/NIST.SP.800-38Gr1-draft 41

 42
 43

February 2019 44
 45
 46

 47
 48
 49

 U.S. Department of Commerce 50
Wilbur L. Ross, Jr., Secretary 51

 52
National Institute of Standards and Technology 53

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 54

Authority 55

This publication has been developed by NIST in accordance with its statutory responsibilities under the 56
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 57
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 58
minimum requirements for federal information systems, but such standards and guidelines shall not apply 59
to national security systems without the express approval of appropriate federal officials exercising policy 60
authority over such systems. This guideline is consistent with the requirements of the Office of Management 61
and Budget (OMB) Circular A-130. 62

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 63
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 64
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 65
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 66
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 67
however, be appreciated by NIST. 68

69
70
71

72

National Institute of Standards and Technology Special Publication 800-38G Revision 1
Natl. Inst. Stand. Technol. Spec. Publ. 800-38G, 31 pages (February 2019)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-38Gr1-draft 73

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 74
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 75
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 76
available for the purpose. 77
There may be references in this publication to other publications currently under development by NIST in accordance 78
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 79
may be used by federal agencies even before the completion of such companion publications. Thus, until each 80
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 81
planning and transition purposes, federal agencies may wish to closely follow the development of these new 82
publications by NIST 83
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 84
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 85
https://csrc.nist.gov/publications.86

Public comment period: February 28, 2019 through April 15, 2019 87
National Institute of Standards and Technology 88

Attn: Computer Security Division, Information Technology Laboratory 89
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 90

Email: encryptionmodes@nist.gov 91
92

All comments are subject to release under the Freedom of Information Act (FOIA).93

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

i

Reports on Computer Systems Technology 94
 95

The Information Technology Laboratory (ITL) at the National Institute of Standards and 96
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 97
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 98
methods, reference data, proof of concept implementations, and technical analyses to advance the 99
development and productive use of information technology. ITL’s responsibilities include the 100
development of management, administrative, technical, and physical standards and guidelines for 101
the cost-effective security and privacy of other than national security-related information in federal 102
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 103
outreach efforts in information system security, and its collaborative activities with industry, 104
government, and academic organizations. 105

Abstract 106

This Recommendation specifies two methods, called FF1 and FF3-1, for format-preserving 107
encryption. Both of these methods are modes of operation for an underlying, approved symmetric-108
key block cipher algorithm. Compared to the original version of this publication, the tweak size 109
for FF3-1 is smaller than the tweak size for FF3; also, for both FF1 and FF3-1, larger domains are 110
required, rather than merely recommended. 111

 Keywords 112

Block cipher; confidentiality; encryption; FF1; FF3; FF3-1; format-preserving encryption; 113
information security; mode of operation. 114

 115

 116

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

ii

Acknowledgements 117

The author gratefully acknowledges the designers of the two algorithms that are specified in this 118
publication: 1) Mihir Bellare, Phil Rogaway, and Terence Spies; and 2) Eric Brier, Thomas Peyrin, 119
and Jacques Stern. 120

Serge Vaudenay and Betül Durak kindly gave NIST early notification of their analysis of the FF3 121
method in [7], which prompted the revision of the method in this version of the publication. 122
Similarly, Mihir Bellare, Viet Tung Hoang, Stefano Tessaro gave NIST early notification of their 123
analysis of the FPE modes in [1], which was subsequently improved by Hoang and Tessaro in their 124
paper with Ni Trieu [8]. These papers motivated the larger lower limit on the number of inputs 125
for both FF1 and FF3-1, which previously had been recommended but not required. 126

The author also wishes to thank his colleagues who reviewed drafts of this publication and 127
contributed to its development, especially Elaine Barker, Nicky Mouha, Lily Chen, John Kelsey, 128
Meltem Sonmez Turan, Kerry McKay, Allen Roginsky, Larry Bassham, Ray Perlner, Rene 129
Peralta, Jim Foti, Sara Kerman, Andy Regenscheid, Bill Burr, and Tim Polk. 130

The author also acknowledges the comments from the public and private sectors to improve the 131
quality of this publication. 132

Conformance Testing 133

Conformance testing for implementations of the functions that are specified in this publication will 134
be conducted within the framework of the Cryptographic Algorithm Validation Program (CAVP) 135
and the Cryptographic Module Validation Program (CMVP). The requirements on these 136
implementations are indicated by the word “shall.” Some of these requirements may be out-of-137
scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, 138
implementing, installing, or configuring applications that incorporate this Recommendation. 139
 140

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

iii

Call for Patent Claims 141
 142
This public review includes a call for information on essential patent claims (claims whose use 143
would be required for compliance with the guidance or requirements in this Information 144
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 145
directly stated in this ITL Publication or by reference to another publication. This call also includes 146
disclosure, where known, of the existence of pending U.S. or foreign patent applications relating 147
to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 148
 149
ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 150
written or electronic form, either: 151
 152
a) assurance in the form of a general disclaimer to the effect that such party does not hold and does 153
not currently intend holding any essential patent claim(s); or 154
 155
b) assurance that a license to such essential patent claim(s) will be made available to applicants 156
desiring to utilize the license for the purpose of complying with the guidance or requirements in 157
this ITL draft publication either: 158
 159
 i) under reasonable terms and conditions that are demonstrably free of any unfair 160
discrimination; or 161
 162
 ii) without compensation and under reasonable terms and conditions that are demonstrably 163
free of any unfair discrimination. 164
 165
Such assurance shall indicate that the patent holder (or third party authorized to make assurances 166
on its behalf) will include in any documents transferring ownership of patents subject to the 167
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 168
the transferee, and that the transferee will similarly include appropriate provisions in the event of 169
future transfers with the goal of binding each successor-in-interest. 170
 171
The assurance shall also indicate that it is intended to be binding on successors-in-interest 172
regardless of whether such provisions are included in the relevant transfer documents. 173
 174
Such statements should be addressed to: EncryptionModes@nist.gov. 175
 176

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

iv

Table of Contents 177
 178

1	 Purpose .. 1	179
2	 Introduction ... 1	180

3	 Definitions and Notation ... 2	181
3.1	 Definitions .. 2	182

3.2	 Acronyms ... 4	183
3.3	 Operations and Functions .. 5	184

4	 Preliminaries .. 6	185
4.1	 Representation of Character Strings .. 6	186

4.2	 Underlying Block Cipher and Key .. 7	187
4.3	 Encryption and Decryption Functions .. 8	188

4.4	 Feistel Structure ... 8	189
4.5	 Component Functions .. 10	190

5	 Mode Specifications .. 12	191
5.1	 FF1 ... 13	192

5.2	 FF3-1 ... 15	193
6	 Conformance ... 17	194

Appendix A: Parameter Choices and Security .. 18	195
Appendix B: Security Goal .. 19	196

Appendix C: Tweaks .. 20	197
Appendix D: Examples ... 21	198

Appendix E: References .. 22	199
Appendix F: Revision History ... 24	200

 201
List of Figures 202

 203
Figure 1: Feistel Structure .. 9	204

205

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

1

1 Purpose 206

This publication is a revision of the seventh part in a series of Recommendations regarding the 207
modes of operation of block cipher algorithms. The purpose of this part is to provide two approved 208
methods for format-preserving encryption (FPE). 209

Since the original publication of these FPE modes in March of 2016, researchers identified 210
vulnerabilities in [8], building on the work in [1], and in [7]. The present revision includes sets of 211
technical revisions to mitigate the vulnerabilities, as summarized in Appendix F. 212

2 Introduction 213

A block cipher mode of operation—or simply, mode—is an algorithm for the cryptographic 214
transformation of data that is based on a block cipher. The previously approved modes for 215
encryption are transformations on binary data, i.e., the inputs and outputs of the modes are bit 216
strings—sequences of ones and zeros. For sequences of non-binary symbols, however, there is no 217
natural and general way for the previously approved modes to produce encrypted data that has the 218
same format. For example, a Social Security Number (SSN) consists of nine decimal digits, so it 219
is an integer that is less than one billion. This integer can be converted to a bit string as input to a 220
previously approved mode, but when the output bit string is converted back to an integer, it may 221
be greater than one billion, which would be too long for an SSN. 222

FPE is designed for data that is not necessarily binary. In particular, given any finite set of symbols, 223
like the decimal numerals, a method for FPE transforms data that is formatted as a sequence of the 224
symbols in such a way that the encrypted form of the data has the same format, including the 225
length, as the original data. Thus, an FPE-encrypted SSN would be a sequence of nine decimal 226
digits. 227

FPE facilitates the targeting of encryption to sensitive information, as well as the retrofitting of 228
encryption technology to legacy applications, where a conventional encryption mode might not be 229
feasible. For example, database applications may not support changes to the length or format of 230
data fields. FPE has emerged as a useful cryptographic tool, whose applications include financial-231
information security, data sanitization, 1 and the transparent encryption of fields in legacy 232
databases. 233

The two FPE modes specified in this publication are called FF1 and FF3-1. FF3-1 is a revision of 234
the FF3 mode that was specified in the original version of this publication; the revision of FF3, as 235
well as a modified requirement for both FF1 and FF3-1, are described in Appendix F. The 236
acronyms for the modes indicate that they are format-preserving, Feistel-based encryption modes. 237
FF1 was submitted to NIST under the name FFX[Radix] in [3]. FF3 is a component of the FPE 238
method that was submitted to NIST under the name BPS in [4]. In particular, FF3 is essentially 239
equivalent to the BPS-BC component of BPS, instantiated with a 128-bit block cipher. The full 240
BPS mode—in particular, its chaining mechanism for longer input strings—is not approved in this 241
publication. 242

1 The sanitization of personally identifiable information in a database—whether by FPE or other methods—does not
necessarily provide strong assurance that individuals cannot be re-identified; for example, see [5].

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

2

Each of these FPE modes fits within a larger framework, called FFX, for constructing FPE 243
mechanisms; FFX was submitted to NIST in [2]. The “X” indicates the flexibility to instantiate the 244
framework with different parameter sets, as well as FFX’s evolution from its precursor, the Feistel 245
Finite Set Encryption Mode. 246

The FFX framework itself is not specified in this publication; in fact, FF1 and FF3-1 are not 247
presented explicitly as instantiations of FFX parameter sets, but rather as separate algorithms, in 248
order to simplify the individual specifications. 249

FF1 and FF3-1 each employ the Feistel structure—see Sec. 4.4—which also underlies the Triple 250
Data Encryption Algorithm (TDEA) [15]. At the core of FF1 and FF3-1 are somewhat different 251
Feistel round functions that are derived from an approved block cipher with 128-bit blocks, i.e., 252
the Advanced Encryption Standard (AES) algorithm [12]. 253

In addition to the formatted data for which the modes provide confidentiality, each mode also takes 254
an additional input called the “tweak,” which is not necessarily secret. The tweak can be regarded 255
as a changeable part of the key, because together they determine the encryption and decryption 256
functions. Tweaks that vary can be especially important for implementations of FPE modes, 257
because the number of possible values for the confidential data is often relatively small, as 258
discussed in Appendix A and Appendix C. 259

FF1 and FF3-1 offer somewhat different performance advantages. FF1 supports a greater range of 260
lengths for the protected, formatted data, as well as flexibility in the length of the tweak. FF3-1 261
achieves greater throughput, mainly because it has eight rounds, compared to ten for FF1. 262

3 Definitions and Notation 263

3.1 Definitions 264

alphabet A finite set of two or more symbols.

approved
FIPS-approved or NIST-recommended: an algorithm or technique that is either
1) specified in a FIPS or a NIST Recommendation, or 2) adopted in a Federal
Information Processing Standard (FIPS) or a NIST Recommendation.

base The number of characters in a given alphabet. The base is denoted by radix.

bit A binary digit: 0 or 1.

bit string A finite, ordered sequence of bits.

block For a given block cipher, a bit string whose length is the block size of the block
cipher.

block cipher A parameterized family of permutations on bit strings of a fixed length; the
parameter that determines the permutation is a bit string called the key.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

3

block cipher
mode of
operation

An algorithm for the cryptographic transformation of data that is based on a
block cipher.

block size For a given block cipher and key, the fixed length of the input (or output) bit
strings.

block string A bit string whose length is a multiple of a given block size, so that it can be
represented as the concatenation of a finite sequence of blocks.

byte A string of eight bits.

byte string A bit string whose length is a multiple of eight bits, so that it can be represented
as the concatenation of a finite sequence of bytes.

character A symbol in a given alphabet.

character string A finite, ordered sequence of characters from a given alphabet.

ciphertext In this publication, the numeral string that is the encrypted form of a plaintext
numeral string.

decryption
function

For a given block cipher and key, the function of an FPE mode that takes a
ciphertext numeral string and a tweak as input and returns the corresponding
plaintext numeral string as output.

designated
cipher function

For a given block cipher and key, the choice of either the forward
transformation or the inverse transformation.

encryption
function

For a given block cipher and key, the function of an FPE mode that takes a
plaintext numeral string and a tweak as input and returns a ciphertext numeral
string as output.

exclusive-OR
(XOR) The bitwise addition, modulo 2, of two bit strings of equal length.

Feistel structure

A framework for constructing an encryption mode. The framework consists of
several iterations, called rounds, in which a keyed function, called the round
function, is applied to one part of the data in order to modify the other part of
the data; the roles of the two parts are swapped for the next round.

forward
transformation

For a given block cipher, the permutation of blocks that is determined by the
choice of a key.

inverse
transformation For a given block cipher, the inverse of the forward transformation .

key For a given block cipher, the secret bit string that parameterizes the
permutation.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

4

3.2 Acronyms 265

AES Advanced Encryption Standard.

CAVP Cryptographic Algorithm Validation Program.

CCN credit card number.

CMVP Cryptographic Module Validation Program.

FIPS Federal Information Processing Standard.

FISMA Federal Information Security Management Act.

FPE format-preserving encryption.

IETF Internet Engineering Task Force.

ITL Information Technology Laboratory.

NIST National Institute of Standards and Technology.

PRF pseudorandom function.

PRP pseudorandom permutation.

RFC Request for Comment.

SSN Social Security number.
 266

mode See block cipher mode of operation.

numeral For a given base, a nonnegative integer less than the base.

numeral string For a given base, a finite, ordered sequence of numerals for the base.

plaintext In this publication, a numeral string whose confidentiality is protected by an
FPE mode.

prerequisite A required input to an algorithm that has been established prior to the
invocation of the algorithm.

shall Is required to. Requirements apply to conforming implementations.

should Is recommended to.

tweak The input parameter to the encryption and decryption functions whose
confidentiality is not necessarily protected by the mode.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

5

3.3 Operations and Functions 267

BYTELEN(X) The number of bytes in a byte string, X, which may be represented as a bit
string. For example, BYTELEN(1011100110101100) = 2.

CIPHK (X) The output of the designated cipher function of the block cipher under the
key K applied to the block X.

LEN(X) The number of numerals/bits in a numeral/bit string X. For example,
LEN(010) = 3.

LOG(x) The base 2 logarithm of the real number x > 0. For example, LOG(64) = 6
and LOG(10) ≈ 3.32.

NUM(X)
The integer that a bit string X represents when the bits are valued in
decreasing order of significance. For example, NUM(10000000) = 128. An
algorithm for computing NUM(X) is given in Sec. 4.5.

NUMradix (X)

The number that the numeral string X represents in base radix when the
numerals are valued in decreasing order of significance. For example,
NUM5 (00011010) = 755. An algorithm for computing NUM radix (X) is given
in Sec. 4.5.

PRF(X) The output of the function PRF applied to the block X; PRF is defined in terms
of a given designated cipher function.

REV(X) Given a numeral string, X, the numeral string that consists of the numerals
of X in reverse order. For example, in base ten, REV(13579) = 97531.

REVB(X) Given a byte string, X, the byte string that consists of the bytes of X in
reverse order. For example, REVB([1]1 || [2]1 || [3]1) = [3]1 || [2]1 || [1]1.

STRm
radix (x)

Given a nonnegative integer x less than radixm, the representation of x as a
string of m numerals in base radix, in decreasing order of significance. For
example, STR 4

12
 (559) is the string of four numerals in base 12 that represents

559, namely, 0 3 10 7. An algorithm for computing STR mradix (x) is given in
Sec. 4.5.

⌊x⌋ The floor function: given a real number x, the greatest integer that does not
exceed x. For example, ⌊2.1⌋ = 2, and ⌊4⌋ = 4.

éxù The ceiling function: given a real number x, the least integer that is not less
than x. For example, é2.1ù = 3, and é4ù = 4.

[x]s Given a nonnegative integer x less	than	256 s, the representation of x as a
string of s bytes. For example, [5]1 = 00000000 00000101.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

6

4 Preliminaries 268

4.1 Representation of Character Strings 269

The data inputs and outputs for FF1 and FF3-1 are sequences of numbers that can represent both 270
numeric and non-numeric data, as discussed below. 271

A finite set of two or more symbols is called an alphabet. The symbols in an alphabet are called 272
the characters of the alphabet. The number of characters in an alphabet is called the base, denoted 273
by radix; thus, radix ≥ 2. 274

A character string is a finite sequence of characters from an alphabet; individual characters may 275
repeat in the string. In this publication, character strings (and bit strings) are presented in the 276
Courier New font. 277

Thus, for the alphabet of lower-case English letters, 278

{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}, 279

hello and cannot are character strings, but Hello and can’t are not, because the symbols 280
“H” and “ ′ ” are not in the alphabet. 281

SSNs or Credit Card Numbers (CCNs) can be regarded as character strings in the alphabet of base 282
ten numerals, namely, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The notion of numerals is generalized to any 283
given base as follows: the set of base radix numerals is 284

{0, 1, …, radix-1}. 285

[i .. j] The set of integers between two integers i and j, including i and j. For
example, [2 .. 5] = {2, 3, 4, 5}.

x mod m The nonnegative remainder of the integer x modulo the positive integer m,
i.e., x – m⌊x/m⌋. For example, 13 mod 7 = 6, and -3 mod 7 = 4.

X [i] Given a numeral/bit string X and an index i such that 1 ≤ i ≤ LEN(X), the i th
numeral/bit of X. For example, in base ten, if X = 798137, then X [2] = 9.

X [i .. j] The substring of the string X from X [i] to X [j], including X [i] and X [j]. For
example, in base ten, if X = 798137, then X [3 .. 5] = 813.

X	⊕	Y
The bitwise exclusive-OR of bit strings X and Y whose bit lengths are equal.
For example, 10011 ⊕ 10101 = 00110.

X || Y The concatenation of numeral strings X and Y. For example,
 001 || 1011 = 0011011, and 3 1 || 31 8 10 = 3 1 31 8 10.

0s
The bit string that consists of s consecutive ‘0’ bits. For example,
08 = 00000000.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

7

The data inputs and outputs to the FF1 and FF3-1 encryption and decryption functions must be 286
finite sequences of numerals, i.e., numeral strings. If the data to be encrypted is formatted in an 287
alphabet that is not already the set of base radix numerals, then each character must be represented 288
by a distinct numeral in order to apply FF1 or FF3-1. 289

For example, the natural representation of lower-case English letters with base 26 numerals is 290

a→0, b→1, c→2, … x→23, y→24, z→25. 291

The character string hello would then be represented by the numeral string 7 4 11 11 14. Other 292
representations are possible. 293

The choice and implementation of a one-to-one correspondence between a given alphabet and the 294
set of base radix numerals that represents the alphabet is outside the scope of this publication. 295

In this publication, individual numerals are themselves represented in base ten. In order to display 296
numeral sequences unambiguously when the base is greater than ten, a delimiter between the 297
numerals is required, such as a space (as in the base 26 example above) or a comma. 298

FF1 and FF3-1 use different conventions for interpreting numeral strings as numbers. For FF1, 299
numbers are represented by strings of numerals with decreasing order of significance; for FF3-1, 300
numbers are represented by strings of numerals in the reverse order, i.e., with increasing order of 301
significance. For example, “0025” is a string of decimal digits that represents the number twenty-302
five for FF1 and the number five thousand two hundred for FF3-1. Algorithms for the functions 303
that convert numeral strings to numbers and vice versa are given in Sec. 4.5. 304

4.2 Underlying Block Cipher and Key 305

The encryption and decryption functions of FF1 and FF3-1 feature a block cipher as the main 306
component; thus, each of these FPE mechanisms is a mode of operation (mode, for short) of the 307
block cipher. 308

For any given key, K, the underlying block cipher of the mode is a permutation, i.e., an invertible 309
transformation on bit strings of a fixed length; the fixed-length bit strings are called blocks, and 310
the length of a block is called the block size. For an FPE mode, as part of the choice of the 311
underlying block cipher with the key, either the forward transformation or the inverse 312
transformation2 is specified as the designated cipher function, denoted by CIPHK. The inverse of 313
CIPHK is not needed for the modes that are specified in this publication. 314

For both modes, the underlying block cipher shall be approved, and the block size shall be 128 315
bits. Currently, the AES block cipher [12], with key lengths of 128, 192, or 256 bits, is the only 316
block cipher that fits this profile. 317

The choice of the key length affects the security of the FPE modes, e.g., against brute-force search, 318
and also affects the details of the implementation of the AES algorithm. Otherwise, the key length 319
does not affect the implementation of FF1 and FF3-1, and the choice of the key length is not 320

2 The forward transformation and the inverse transformations are sometimes referred to as the “encrypt” and “decrypt”
functions, respectively, of the block cipher; however, in this publication, “encrypt” and “decrypt” are reserved for
functions of the FPE modes.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

8

explicitly indicated in their specifications. Methods for generating cryptographic keys are 321
discussed in [16]; the goal is to select the keys uniformly at random, i.e., for each possible key to 322
occur with equal probability. 323

The key shall be kept secret, i.e., disclosed only to parties that are authorized to know the protected 324
information. Compliance with this requirement is the responsibility of the entities using, 325
implementing, installing, or configuring applications that incorporate the functions that are 326
specified in this publication. The management of cryptographic keys is outside the scope of this 327
publication. 328

4.3 Encryption and Decryption Functions 329

For a given key, denoted by K, for the designated block cipher, FF1 and FF3-1 each consist of two 330
related functions: encryption and decryption. The inputs to the encryption function are a numeral 331
string called the plaintext, denoted by X, and a byte string, called the tweak, denoted by T; the 332
function returns a numeral string called the ciphertext, denoted by Y, with the same length as X. 333
Similarly, the inputs to the decryption function are a numeral string X and a tweak T; the output is 334
a numeral string Y of the same length as X. 335

For FF1, the encryption function is denoted by FF1.Encrypt(K, T, X), and the decryption function 336
is denoted by FF1.Decrypt(K, T, X), with analogous notation for FF3-1. 337

For a given tweak, the decryption function is the inverse of the encryption function, so that 338

FF1.Decrypt(K, T, FF1.Encrypt(K, T, X)) = X, 339
FF3-1.Decrypt(K, T, FF3-1.Encrypt(K, T, X)) = X. 340

 341
The tweak does not need to be kept secret; often, it is some readily available data that is associated 342
with the plaintext. Although implementations may fix the value of the tweak, variable tweaks 343
should be used as a security enhancement; see Appendix C. In FF1 and FF3-1, tweaks are byte 344
strings. The specifications in Sec. 5 include the lengths that can be supported for the tweak, as well 345
as for the plaintext/ciphertext. 346

The key, K, is indicated in the above notation as an input for the encryption and decryption 347
functions; however, in the specifications in this publication, the key is listed as a prerequisite, i.e., 348
an input that is usually established prior to the invocation of the function. 3 Several other 349
prerequisites are omitted from the above notation, such as the underlying block cipher, the 350
designation of CIPHK, and the base for the numeral strings. 351

4.4 Feistel Structure 352

FFX schemes, including FF1 and FF3-1, are based on the Feistel structure. The Feistel structure 353
consists of several iterations, called rounds, of a reversible transformation. The transformation 354
consists of three steps: 1) the data is split into two parts; 2) a keyed function, called the round 355
function, is applied to one part of the data in order to modify the other part of the data; and 3) the 356
roles of the two parts are swapped for the next round. The structure is illustrated in Figure 1 below, 357

3 The distinction does not affect the execution of the function: all information is required, independent of when they
were established or provided to the implementation.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

9

for both encryption and decryption. Four rounds are shown in Figure 1, but ten rounds are actually 358
specified for FF1, and eight rounds for FF3-1. 359

 360
 361

Figure 1: Feistel Structure 362

For the encryption function example in Figure 1, the rounds are indexed from 0 to 3. The input 363
data (and output data) for each round are two strings of characters—which will be numerals for 364
FF1 and FF3-1. The lengths of the two strings are denoted by u and v, and the total number of 365
characters is denoted by n, so that u + v = n. During Round i, the round function, denoted by FK, is 366
applied to one of the input strings, denoted by Bi, with the length n, the tweak T, and the round 367
number i as additional inputs. (In Figure 1, this triple (n, T, i) of additional inputs is indicated 368
within the dotted rectangles, with the appropriate values for i). The result is used to modify the 369
other string, denoted by Ai, via modular addition4, indicated by +, on the numbers that the strings 370

4 For some applications of the Feistel structure—but not FF1 and FF3-1—the “+” operation may be a different
reversible operation on strings that preserves their length; for example, the FFX specification in [2] supports an option
for character-wise addition.

u!characters! v!characters!

B1!←!C0! A1!←!B0!

 FK! +! n,!T,!0!

A0! B0!

 FK! +!n,!T,!1!

A2!←!B1! B2!←!C1!

B3!←!C2! A3!←!B2!

 FK! +! n,!T,!2!

 FK! +!n,!T,!3!

A4!←!B3! B4!←!C3!

u!characters! v!characters!

B1!←!A2! A1!

A0! B0!←!A1!

A2!! B2!←!A3!

B3!←!A4! A3!!

A4!! B4!

 FK! _! n,!T,!2!

 FK! _! n,!T,!0!

 FK! _!n,!T,!3!

 FK! _!n,!T,!1!

Encryption! Decryption!

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

10

represent5. The string that represents the resulting number is named with a temporary variable, Ci. 371
The names of the two parts are swapped for the next round, so that the modified Ai, i.e., Ci, becomes 372
Bi+1, and Bi becomes Ai+1. 373

The rectangles containing the two parts of the data have different sizes in order to illustrate that u 374
cannot equal v if n is odd. In such cases, the round function is constructed so that the lengths of its 375
input and output strings depend on whether the round number index, i, is even or odd. 376

The Feistel structure for decryption is almost identical to the Feistel structure for encryption. There 377
are three differences: 1) the order of the round indices is reversed; 2) the roles of the two parts of 378
the data in the round function are swapped as follows: along with n, T, and i, the input to FK is Ai+1 379
(not Bi), and the output is combined with Bi+1 (not Ai) to produce Ai (not Bi+1); and 3) modular 380
addition (of the output of FK to Ai) is replaced by modular subtraction (of the output of FK from 381
Bi +1). 382

4.5 Component Functions 383

This section gives algorithms for the component functions that are called in the specifications of 384
FF1 and FF3-1. The conversion functions NUMradix(X), NUM(X), and STRm

radix(x) are defined in 385
Sec. 3.3, including examples, and they are specified in Algorithms 1-3 below. These functions 386
support the ordering convention for the numeral/bit strings in FF1, namely, that the first (i.e., left-387
most) numeral/bit of the string is the most-significant numeral/bit 388

In FF3-1, the numeral strings follow the opposite ordering convention, as do the byte strings for 389
the block cipher. In order to adapt NUMradix(X), STRm

radix (x), and CIPHK (X) for the FF3-1 390
specifications, the functions REV(X) and REVB(X) are defined in Sec. 3.3 and specified in 391
Algorithms 4 and 5. 392

The PRF(X) function, specified in Algorithm 6, essentially invokes the Cipher Block Chaining 393
encryption mode [14] on the input bit string and returns the final block of the ciphertext; this 394
function is the pseudorandom core of the Feistel round function for FF1.Encrypt and FF1.Decrypt. 395

In order to simplify the specifications of NUM(X), REVB(X), and PRF(X), the byte or block strings 396
in Algorithms 2, 5, and 6 are represented as bit strings. 397

Algorithm 1: NUMradix (X) 398
 399
Prerequisite: 400
Base, radix. 401
 402
Input: 403
Numeral string, X. 404
 405
Output: 406
Number, x. 407
 408
 409

5 The ordering convention for interpreting strings as numbers is different for FF3-1 than for FF1.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

11

Steps: 410
1. Let x = 0. 411
2. For i from 1 to LEN(X), let x = x × radix + X [i]. 412
3. Return x. 413
 414

Algorithm 2: NUM(X) 415
 416
Input: 417
Byte string, X, represented in bits. 418
 419
Output: 420
Integer, x. 421
 422
Steps: 423
1. Let x = 0. 424
2. For i from 1 to LEN(X), let x = 2 x + X [i]. 425
3. Return x. 426
 427

Algorithm 3: STRm
radix (x) 428

 429
Prerequisites: 430
Base, radix; 431
String length, m. 432
 433
Input: 434
Integer, x, such that 0 ≤ x < radixm. 435
 436
Output: 437
Numeral string, X. 438
 439
Steps: 440
1. For i from 1 to m: 441

i. X [m + 1– i] = x mod radix; 442
ii. x = ëx/radixû. 443

2. Return X. 444
Algorithm 4: REV(X) 445
 446
Input: 447
Numeral string, X. 448
 449
Output: 450
Numeral string, Y. 451
 452
Steps: 453
1. For i from 1 to LEN(X), let Y [i] = X [LEN(X) + 1 – i]. 454
2. Return Y [1 .. LEN(X)]. 455
 456

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

12

Algorithm 5: REVB(X) 457
 458
Input: 459
Byte string, X, represented in bits. 460
 461
Output: 462
Byte string, Y, represented in bits. 463
 464
Steps: 465
1. For i from 0 to BYTELEN(X) – 1 and j from 1 to 8, let Y [8i + j] = X [8 × (BYTELEN(X) – 1– i) + j]. 466
2. Return Y [1 .. 8 × BYTELEN(X)]. 467
 468

Algorithm 6: PRF(X) 469
 470
Prerequisites: 471
Designated cipher function, CIPH, of an approved 128-bit block cipher; 472
Key, K, for the block cipher. 473
 474
Input: 475
Block string, X. 476
 477
Output: 478
Block, Y. 479
 480
Steps: 481
1. Let m = LEN(X)/128. 482
2. Let X1, …, Xm be the blocks for which X = X1 || … || Xm. 483
3. Let Y0 = 0128, and for j from 1 to m let Yj = CIPHK (Yj–1 Å Xj). 484
4. Return Ym. 485

5 Mode Specifications 486

The specifications of the encryption and decryption algorithms for FF1 and FF3-1 are presented 487
in Sections 6.1 and 6.2, organized into prerequisites, inputs, outputs, steps, and descriptions of the 488
steps. In addition to the key and designated cipher function, the prerequisites for each mode are 489
the choices of 1) the base, radix, and 2) the range of lengths, [minlen .. maxlen], for the numeral 490
string inputs that the implementation supports. FF1 also has a prerequisite for the choice of the 491
maximum tweak length, maxTlen, that the implementation supports. For each mode, the 492
requirements on the values for the prerequisites are specified prior to the encryption and decryption 493
algorithms. 494

The parameter choices may affect interoperability. The behavior of an implementation when 495
presented with incorrect inputs is outside the scope of this Recommendation. 496

For each specification, the 128-bit input and output blocks of the designated block cipher, CIPHK, 497
are represented as strings of 16 bytes. 498

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

13

5.1 FF1 499

The specifications for the FF1.Encrypt and FF1.Decrypt functions are given in Algorithms 7 and 500
8 below. The tweak, T, is optional, in that it may be the empty string, with byte length t = 0. 501

The parameters radix, minlen, and maxlen in FF1.Encrypt and FF1.Decrypt shall meet the 502
following requirements: 503

• radix ∈ [2 .. 216], 504
• radix

minlen ≥ 1 000 000, and 505
• 2 ≤ minlen ≤ maxlen < 232. 506

 507

Algorithm 7: FF1.Encrypt(K, T, X) 508
 509
Prerequisites: 510
Designated cipher function, CIPH, of an approved 128-bit block cipher; 511
Key, K, for the block cipher; 512
Base, radix; 513
Range of supported message lengths, [minlen .. maxlen]; 514
Maximum byte length for tweaks, maxTlen. 515
 516
Inputs: 517
Numeral string, X, in base radix of length n, such that n ∈ [minlen .. maxlen]; 518
Tweak T, a byte string of byte length t, such that t ∈ [0 .. maxTlen]. 519
 520
Output: 521
Numeral string, Y, such that LEN(Y) = n. 522
 523
Steps: 524
1. Let u = ën/2û; v = n – u. 525
2. Let A = X [1 .. u]; B = X [u + 1 .. n]. 526
3. Let b = é év × LOG(radix)ù/8ù. 527
4. Let d = 4 éb/4ù + 4. 528
5. Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 || [u mod 256]1 || [n]4 || [t]4. 529
6. For i from 0 to 9: 530
 i. Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix(B)]b. 531
 ii. Let R = PRF(P || Q). 532
 iii. Let S be the first d bytes of the following string of éd/16ù blocks: 533
 R || CIPHK (R Å [1]16) || CIPHK (R Å [2]16) … CIPHK (R Å [éd/16ù – 1]16). 534
 iv. Let y = NUM(S). 535
 v. If i is even, let m = u; else, let m = v. 536
 vi. Let c = (NUMradix (A) + y) mod radix m. 537
 vii. Let C = STR

m
radix (c). 538

 viii. Let A = B. 539
 ix. Let B = C. 540
7. Return A || B. 541
 542

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

14

Description 543
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2. If 544
n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)–1. The byte lengths b and d, which are used 545
in Steps 6i and 6iii, respectively, are defined in Steps 3 and 4.6 A fixed block, P, used as the initial 546
block for the invocation of the function PRF in Step 6ii, is defined in Step 5. An iteration loop for 547
the ten Feistel rounds of FF1 is initiated in Step 6, executing nine substeps for each round, as 548
follows: 549

The tweak T, the substringB, and the round number i, are encoded as a binary string Q, in Step 6i. 550
The function PRF is applied to the concatenation of P and Q in Step 6ii, to produce a block, R, 551
which is either truncated or expanded to a byte string, S, with the appropriate number of bytes, d, 552
in Step 6iii. (In Figure 1, S corresponds to the output of FK.) In Steps 6iv to 6vii, S is combined 553
with the substring A to produce a numeral string C in the same base and with the same length. (In 554
Figure 1, the combining of S with A is indicated by the “+” operation.) In particular, in Step 6iv, S 555
is converted to a number, y. In Step 6v, the length, m, of A for this Feistel round is determined. In 556
Step 6vi, y is added to the number represented by the substring A, and the result is reduced modulo 557
the mth power of radix, yielding a number, c, which is converted to a numeral string in Step 6vii. 558
In Steps 6viii and 6ix, the roles of A and B are swapped for the next round: the substring B is 559
renamed as the substring A, and the modified A (i.e., C) is renamed as B. 560

This completes one round of the Feistel structure in FF1. After the tenth round, the concatenation 561
of A and B is returned as the output in Step 7. 562
 563
Algorithm 8: FF1.Decrypt(K, T, X) 564
 565
Prerequisites: 566
Designated cipher function, CIPH, of an approved 128-bit block cipher; 567
Key, K, for the block cipher; 568
Base, radix; 569
Range of supported message lengths, [minlen .. maxlen]; 570
Maximum byte length for tweaks, maxTlen. 571
 572
Inputs: 573
Numeral string, X, in base radix of length n, such that n ∈ [minlen .. maxlen]; 574
Tweak T, a byte string of byte length t, such that t ∈ [0 .. maxTlen]. 575
 576
Output: 577
Numeral string, Y, such that LEN(Y) = n. 578
Steps: 579
1. Let u = ën/2û; v = n – u. 580
2. Let A = X [1 .. u]; B = X [u + 1 .. n]. 581
3. Let b = é év × LOG(radix) ù/8ù. 582
4. Let d = 4 éb/4ù + 4 583
5. Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1

 || [u mod 256]1 || [n]4 || [t]4. 584

6 When B is encoded as a byte string in Step 6i, b is the number of bytes in the encoding. The definition of d ensures
that the output of the Feistel round function is at least four bytes longer than this encoding of B, which minimizes any
bias in the modular reduction in Step 6vi.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

15

6. For i from 9 to 0: 585
 i. Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix (A)]b. 586
 ii. Let R = PRF(P || Q). 587
 iii. Let S be the string of the first d bytes of the following string of éd/16ù blocks: 588
 R || CIPHK (R Å [1]16) || CIPHK (R Å [2]16) … CIPHK (R Å [éd/16ù – 1]16). 589
 iv. Let y = NUM(S). 590
 v. If i is even, let m = u; else, let m = v. 591
 vi. Let c = (NUMradix (B) – y) mod radix m. 592
 vii. Let C = STRm

radix (c). 593
 viii. Let B = A. 594
 ix. Let A = C. 595
7. Return A || B. 596
 597
Description: 598
The FF1.Decrypt algorithm is similar to the FF1.Encrypt algorithm; the differences are in Step 6, 599
where: 1) the order of the indices is reversed, 2) the roles of A and B are swapped, and 3) modular 600
addition is replaced by modular subtraction, in Step 6vi. 601

5.2 FF3-1 602

The specifications for the FF3-1.Encrypt and FF3-1.Decrypt functions are given in Algorithms 9 603
and 10 below. The parameters radix, minlen, and maxlen in FF3-1.Encrypt and FF3-1.Decrypt 604
shall meet the following requirements: 605
 606

• radix ∈ [2 .. 216], 607
• radix

minlen ≥ 1 000 000, and 608
• 2 ≤ minlen ≤ maxlen ≤ 2 ëlog radix (296)û. 609

 610

Algorithm 9: FF3-1.Encrypt(K, T, X) 611
 612
Prerequisites: 613
Designated cipher function, CIPH, of an approved 128-bit block cipher; 614
Key, K, for the block cipher; 615
Base, radix; 616
Range of supported message lengths, [minlen .. maxlen]. 617
 618
Inputs: 619
Numeral string, X, in base radix of length n, such that n ∈ [minlen .. maxlen]; 620
Tweak bit string, T, such that LEN(T) = 56. 621
 622
 623
Output: 624
Numeral string, Y, such that LEN(Y) = n. 625
 626
Steps: 627
1. Let u = ⌈ n/2⌉; v = n – u. 628
2. Let A = X [1 .. u]; B = X [u + 1 .. n]. 629

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

16

3. Let TL = T [0 .. 27] || 04 and TR = T [32 .. 55] || T [28 .. 31] || 04. 630
4. For i from 0 to 7: 631
 i. If i is even, let m = u and W = TR, else let m = v and W = TL. 632
 ii. Let P = W ⊕ [i]4 || [NUMradix (REV(B))]12. 633
 iii Let S = REVB(CIPHREVB(K) REVB(P)). 634
 iv. Let y = NUM(S). 635
 v. Let c = (NUMradix (REV(A)) + y) mod radix m. 636
 vi. Let C = REV(STRm

radix (c)). 637
 vii. Let A = B. 638
 viii. Let B = C. 639
5. Return A || B. 640
 641
Description: 642
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2. If 643
n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)+1.7 The tweak, T, is partitioned in Step 3 644
into a 32-bit left tweak, TL, and a 32-bit right tweak, TR. An iteration loop for the eight Feistel 645
rounds of FF3-1 is initiated in Step 4, executing eight substeps for each round, as follows: 646
 647
In Step 4i, the parity of the round number, i, determines the length, m, of the substring A, and 648
whether TL or TR will be used as W in Step 4ii, in which a 32-bit encoding of i, XORed with W, is 649
concatenated with a 96-bit encoding of B to produce a block, P. In Step 4iii, the block cipher under 650
the key, is applied to P using the byte-reversed ordering convention, to produce a block, S. (In 651
Figure 1, S corresponds to the output of FK.) In Steps 4iv to 4vi, S is combined with the substring 652
A to produce a numeral string C in the same base and with the same length. (In Figure 1, the 653
combining of S with A is indicated by the “+” operation, although this operation is different than 654
for FF1 in that FF3-1 uses the opposite ordering convention for the conversion of strings to 655
numbers and vice versa.) In particular, in Step 4iv, S is converted to a number, y. In Step 4v, the 656
number y is added to the number represented by the substring A, and the result is reduced modulo 657
the mth power of radix, yielding a number, c, which is converted to a numeral string in Step 4vi. 658
In Steps 4vii and 4viii, the roles of A and B are swapped for the next round: the substring B is 659
renamed as the substring A, and the modified A (i.e., C) is renamed as B. 660
 661
This completes one round of the Feistel structure in FF3-1. After the eighth round, the 662
concatenation of A and B is returned as the output in Step 5. 663
 664

Algorithm 10: FF3-1.Decrypt(K, T, X) 665
 666
Prerequisites: 667
Designated cipher function, CIPH, of an approved 128-bit block cipher; 668
Key, K, for the block cipher; 669
Base, radix; 670
Range of supported message lengths, [minlen .. maxlen]. 671
 672
Inputs: 673
Numeral string, X, in base radix of length n, such that n ∈ [minlen .. maxlen]; 674

7 If n is odd, A is one numeral longer than B, in contrast to FF1, where B is one numeral longer than A.

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

17

Tweak bit string, T, such that LEN(T) = 64. 675
 676
Output: 677
Numeral string, Y, such that LEN(Y) = n. 678
 679
Steps: 680
1. Let u = ⌈n /2⌉; v = n – u. 681
2. Let A = X [1 .. u]; B = X [u + 1 .. n]. 682
3. Let TL = T [0 .. 27] || 04 and TR = T [32 .. 55] || T [28 .. 31] || 04. 683
4. For i from 7 to 0: 684
 i. If i is even, let m = u and W = TR, else let m = v and W =TL. 685
 ii. P = W ⊕ [i]4 || [NUMradix (REV(A))]12. 686
 iii Let S = REVB(CIPHREVB(K) REVB(P)). 687
 iv. Let y = NUM(S). 688
 v. Let c = (NUMradix (REV(B)) – y) mod radix m. 689
 vi. Let C = REV(STRm

radix (c)). 690
 vii. Let B = A. 691
 viii. Let A = C. 692
5. Return A || B. 693
 694
Description: 695
The FF3-1.Decrypt algorithm is similar to the FF3-1.Encrypt algorithm; the differences are in Step 696
4, where: 1) the order of the indices is reversed, 2) the roles of A and B are swapped, and 697
3) modular addition is replaced by modular subtraction, in Step 4v. 698

6 Conformance 699

Implementations of FF1.Encrypt, FF1.Decrypt, FF3-1.Encrypt, or FF3-1.Decrypt may be tested 700
for conformance to this Recommendation under the auspices of NIST’s Cryptographic Algorithm 701
Validation Program [12]. 702

Component functions such as PRF are not approved for use independent of these four functions. 703

In order to claim conformance with this Recommendation, an implementation of FF1 or FF3-1 704
may support as few as one value for the base. 705

Two implementations can only interoperate when they support common values for the base. 706
Moreover, FF1 and FF3-1 have two parameters, minlen and maxlen, that determine the lengths for 707
the numeral strings that are supported by an implementation of the encryption or decryption 708
function for the mode. FF1 also has a parameter, maxTlen, that indicates the maximum supported 709
length of a tweak string. The selection of these parameters may also affect interoperability. 710

For every algorithm that is specified in this Recommendation, a conforming implementation may 711
replace the given set of steps with any mathematically equivalent set of steps. In other words, 712
different procedures that produce the correct output for any input are permitted. 713

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

18

Appendix A: Parameter Choices and Security 714

The values of the parameters, e.g., radix, minlen, and maxlen affect the security that FF1 and FF3-1 715
can offer, because, as for any FPE method, encrypted data may be vulnerable to guessing attacks 716
when the number of possible inputs is sufficiently small. 717

In particular, for a base radix numeral string S, there are radix LEN(S) possible values. For any 718
ciphertext C, the corresponding plaintext has the same length; therefore, an attacker can guess the 719
plaintext with probability 1/radix LEN(C) by selecting a numeral string of LEN(C) at random. 720
Repeated guesses increase the attacker’s probability of success proportionately: with g distinct 721
guesses, the probability is g/ radix LEN(C). 722

For example, SSNs are base 10 numeral strings of length 9, so there are one billion possibilities. 723
If an attacker could guess a thousand different values for an SSN, one of the guesses would be 724
correct with probability 1000/109, i.e., one in a million. 725

The original specifications of FF1and FF3 only imposed a modest absolute minimum of 100 on 726
the number of possible inputs in order to preclude a generic meet-in-the-middle attack on the 727
Feistel structure [17]. However, in order to mitigate guessing attacks and the analytic attacks 728
described in [1] and [8], the number of possible inputs, namely radix minlen, is required to be greater 729
than or equal to 1 000 000, for both FF1 and FF3-1. In order to further limit the effectiveness of 730
guessing attacks, implementations should also limit the number of guesses that an attacker can 731
mount, if possible. 732

In order to prevent attacks against one instance of encryption from applying to other instances, 733
implementations should enforce the use of different tweaks for different instances, as discussed in 734
Appendix C. Usually, tweaks are non-secret information that can be associated with instances of 735
encryption. For FF3-1, the tweak length is fixed, but for FF1 the maximum tweak length parameter, 736
maxTlen, should be chosen to accommodate the desired tweaks for the implementation. 737

Two other potential parameters of the Feistel structure are fixed for FF1 and FF3-1, namely, the 738
number of Feistel rounds and the imbalance, i.e., the values of the lengths u and v in Figure 1. Both 739
of these parameters were set with consideration to both performance and security requirements. 740
See Appendix H of [2] for a discussion. 741

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

19

Appendix B: Security Goal 742

The designers of FFX aimed to achieve strong-pseudorandom permutation (PRP) security for a 743
conventional block cipher [10]. In the FFX proposal to NIST [2], the designers of FFX cited the 744
history of cryptographic results concerning Feistel networks as underlying their selection of the 745
FFX mechanism. They asserted that, under the assumption that the underlying round function is 746
a good pseudorandom function (PRF), contemporary cryptographic results and experience 747
indicate that FFX achieved several cryptographic goals, including nonadaptive message-recovery 748
security, chosen-plaintext security, and even PRP-security against an adaptive chosen-ciphertext 749
attack. The quantitative security would depend on the number of rounds used, the imbalance, and 750
the adversary's access to plaintext-ciphertext pairs. See [2] for details. 751

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

20

Appendix C: Tweaks 752

Tweaks have been supported in stand-alone block ciphers, such as Schroeppel’s Hasty Pudding 753
[18], and the notion was later formalized and investigated by Liskov, Rivest, and Wagner [9]. 754
Tweaks are important for FPE modes, because FPE may be used in settings where the number of 755
possible character strings is relatively small. In such settings, the tweak should vary with each 756
instance of the encryption whenever possible. 757

For example, suppose that in an application for CCNs, the leading six digits and the trailing four 758
digits need to be available to the application, so that only the remaining six digits in the middle of 759
the CCNs are encrypted. There are a million different possibilities for these middle-six digits, so, 760
in a database of 100 million CCNs, about a hundred distinct CCNs would be expected to share 761
each possible value for these six digits. If the hundred CCNs that shared a given value for the 762
middle-six digits were encrypted with the same tweak, then their ciphertexts would be the same. 763
If, however, the other ten digits had been the tweak for the encryption of the middle-six digits, 764
then the hundred ciphertexts would almost certainly be different. 765

Similarly, in the encrypted database, about a hundred CCNs would be expected to share each 766
possible value for the ciphertext, i.e., the middle-six digits. If the hundred CCNs that produce a 767
given ciphertext had been encrypted with the same tweak, then the corresponding plaintexts would 768
also be the same. This outcome would be undesirable because the compromise of the 769
confidentiality of any of the hundred CCNs would reveal the others. 770

If, however, the leading six digits and the trailing four digits of the CCN had been used as the 771
tweak, then the corresponding plaintexts would almost certainly be different. Therefore, for 772
example, learning that the decryption of 111111-770611-1111 is 111111-123456-1111 would not 773
reveal any information about the decryption of 999999-770611-9999, because the tweak in that 774
case was different. 775

In general, if there is information that is available and statically associated with a plaintext, it is 776
recommended to use that information as a tweak for the plaintext. Ideally, the non-secret tweak 777
associated with a plaintext is associated only with that plaintext. 778

Extensive tweaking means that fewer plaintexts are encrypted under any given tweak. This 779
corresponds, in the security model that is described in [2], to fewer queries to the target instance 780
of the encryption. 781

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

21

Appendix D: Examples 782

Examples for FF1 and FF3-1 are available at the examples page on NIST’s Computer Security 783
Resource Center website: https://csrc.nist.gov/projects/cryptographic-standards-and-784
guidelines/example-values. 785

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
METHODS FOR FORMAT-PRESERVING ENCRYPTION

22

Appendix E: References 786

[1] M. Bellare, V. T. Hoang, and S. Tessaro, “Message-recovery attacks on Feistel-based787
Format Preserving Encryption,” in ACM CCS ’16, pages 444–455, ACM Press, 2016, 788
https://doi.org/10.1145/2976749.2978390. 789

[2] M. Bellare, P. Rogaway, and T. Spies, The FFX Mode of Operation for Format-790
Preserving Encryption, Draft 1.1, February 20, 2010, 791
https://csrc.nist.gov/csrc/media/projects/block-cipher-792
techniques/documents/bcm/proposed-modes/ffx/ffx-spec.pdf. 793

[3] M. Bellare, P. Rogaway, and T. Spies, Addendum to “The FFX Mode of Operation for794
Format-Preserving Encryption”: A parameter collection for enciphering strings of 795
arbitrary radix and length, Draft 1.0, September 3, 2010, 796
https://csrc.nist.gov/csrc/media/projects/block-cipher-797
techniques/documents/bcm/proposed-modes/ffx/ffx-spec2.pdf. 798

[4] E. Brier, T. Peyrin, and J. Stern, BPS: a Format-Preserving Encryption Proposal,799
 [April 2010], https://csrc.nist.gov/csrc/media/projects/block-cipher-800
techniques/documents/bcm/proposed-modes/bps/bps-spec.pdf. 801

[5] Y-A. de Montjoye, L. Radaelli, V. Kumar Singh, and A. Pentland, “Unique in the802
shopping mall: On the reidentifiability of credit card metadata,” Science, vol. 347 no. 803
6221 (January 30, 2016), pp. 536-539, https://doi.org/10.1126/science.1256297. 804

[6] M. Dworkin and R. Perlner, Analysis of VAES3 (FF2), Report no. 2015/306, IACR805
Cryptology ePrint Archive, April 2, 2015, https://eprint.iacr.org/2015/306 806

[7] F. B. Durak and S. Vaudenay, “Breaking the FF3 Format-Preserving Encryption Standard807
Over Small Domains” in Advances in Cryptology—CRYPTO 2017, Lecture Notes in 808
Computer Science vol. 10402, Springer, pp. 679–707, https://doi.org/10.1007/978-3-319-809
63715-0_23. 810

[8] V.T. Hoang, S. Tessaro, N. Trieu, “The Curse of Small Domains: New Attacks on811
812
813

Format-Preserving Encryption” in Advances in Cryptology—CRYPTO 2018, Lecture
Notes in Computer Science 10991, Springer, Cham., pp. 221–251,
https://doi.org/10.1007/978-3-319-96884-1_8. 814

[9] M. Liskov, R. Rivest, and D. Wagner, “Tweakable block ciphers,” in Advances in815
Cryptology—CRYPTO 2002, Lecture Notes in Computer Science 2442, Berlin: Springer, 816
pp. 31–46, September 13, 2002, https://doi.org/10.1007/3-540-45708-9_3. 817

[10] M. Luby and C. Rackoff, “How to construct pseudorandom permutations from818
pseudorandom functions,” SIAM Journal on Computing, vol. 17 no. 2 (1988), pp. 373–819
386, https://doi.org/10.1137/0217022. 820

[11] National Institute of Standards and Technology, Explanation of changes to Draft SP 800-821
38G, June 27, 2014, https://csrc.nist.gov/news/2014/explanation-of-changes-to-draft-sp-822
800-38G.823

[12] National Institute of Standards and Technology, Cryptographic Algorithm Validation824
Program (CAVP), https://csrc.nist.gov/projects/cryptographic-algorithm-validation-825
program. 826

https://doi.org/10.1007/978-3-319-96884-1_8

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

23

[13] National Institute of Standards and Technology, Federal Information Processing Standard 827
(FIPS) 197, The Advanced Encryption Standard (AES), November 2001, 828
https://doi.org/10.6028/NIST.FIPS.197. 829

[14] National Institute of Standards and Technology. NIST Special Publication (SP) 800-38A, 830
Recommendation for Block Cipher Modes of Operation—Methods and Techniques, 831
December 2001, https://doi.org/10.6028/NIST.SP.800-38A. 832

[15] National Institute of Standards and Technology. NIST Special Publication (SP) 800-67 833
Revision 2, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block 834
Cipher, January 2012, https://doi.org/10.6028/NIST.SP.800-67r2. 835

[16] National Institute of Standards and Technology. NIST Special Publication (SP) 800-133, 836
Recommendation for Cryptographic Key Generation, December 2012, 837
https://doi.org/10.6028/NIST.SP.800-133. 838

[17] J. Patarin, Generic attacks on Feistel schemes, Report no. 2008/036, IACR Cryptology 839
ePrint Archive, January 24, 2008, https://eprint.iacr.org/2008/036. 840

[18] R. Schroeppel, Hasty Pudding Cipher specification [Web page], June 1998 (revised May 841
1999), http://richard.schroeppel.name:8015/hpc/hpc-spec. 842

NIST SP 800-38G REV. 1 (DRAFT) BLOCK CIPHER MODES OF OPERATION:
 METHODS FOR FORMAT-PRESERVING ENCRYPTION

24

Appendix F: Revision History 843

A third mode, FF2—submitted to NIST under the name VAES3—was included in the initial draft 844
of this publication. As part of the public review of Draft NIST Special Publication (SP) 800-38G 845
and as part of its routine consultation with other agencies, NIST was advised by the National 846
Security Agency in general terms that the FF2 mode in the draft did not provide the expected 128 847
bits of security strength. NIST cryptographers confirmed this assessment via the security analysis 848
in [6] and announced the removal of FF2 in [11]. 849

For both FF1 and FF3-1, the domain size, i.e., the number of possible input strings, is the quantity 850
radix

minlen. In response to the analysis in [8], the lower bound that is required for the domain size 851
in the specifications of both FF1 in Sec. 5.1 and FF3-1 in Sec. 5.2 was raised from one hundred in 852
the original publication to one million in Rev. 1. 853
 854
The name “FF1” is unchanged from the original version of this publication, because the lower 855
bound on the domain size only affects which parameter combinations are approved, not the 856
specification of the encryption and decryption functions. FF3-1 has a different name than FF3 857
because, in addition to the new lower bound on the domain size, the encryption and decryption 858
functions of FF3 were revised. 859
 860
In particular, in response to the analysis in [7] on FF3, the size of the tweak specified in Sec. 5.2 861
was reduced from 64 bits for FF3 to 56 bits for FF3-1, which entailed the modification of the 862
definitions of the strings TL and TR in Step 3 of Algorithm 9 and Step 3 of Algorithm 10. The 863
modified definitions of these two strings can equivalently be implemented by taking a 64-bit 864
tweak, reordering some of its bits in a particular manner, and then forcing the bits in eight particular 865
bit positions to be zero. For tweaks with certain properties—for example, if non-zero bits only 866
occur in the leading 28 bit positions—the specification of FF3-1 is backwards compatible with the 867
original specification of FF3. 868

