
1

2

3

4

5

6

7

8

9

10

11

12

13

14

NIST Special Publication 800
NIST SP 800-232 ipd

Ascon-Based Lightweight Cryptography
Standards for Constrained Devices

Authenticated Encryption, Hash, and Extendable Output
Functions

Initial Public Draft

Meltem Sönmez Turan
Kerry A. McKay

Donghoon Chang
Jinkeon Kang
John Kelsey

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-232.ipd

15

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-232.ipd
https://doi.org/10.6028/NIST.SP.800-232.ipd

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

NIST Special Publication 800
NIST SP 800-232 ipd

Ascon-Based Lightweight Cryptography
Standards for Constrained Devices

Authenticated Encryption, Hash, and Extendable Output
Functions

Initial Public Draft

Meltem Sönmez Turan
Kerry A. McKay
Jinkeon Kang
John Kelsey

Computer Security Division
Information Technology Laboratory

Donghoon Chang

Strativia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-232.ipd

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

November 2024

https://doi.org/10.6028/NIST.SP.800-232.ipd

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines, and
procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may
wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide
feedback to NIS NIST. Many T cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.)
113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply to
national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the ORCID, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added in the final publication.]

How to cite this NIST Technical Series Publication: Meltem Sönmez Turan, Kerry A. McKay, Donghoon Chang,
Jinkeon Kang, John Kelsey (2024) Ascon-Based Lightweight Cryptography Standards for Constrained
Devices. (National Institute of Standards and Technology, Gaithersburg, MD),NIST Special Publication (SP)
NIST SP 800-232 ipd. https://doi.org/10.6028/NIST.SP.800-232.ipd

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Author ORCID iDs
Meltem Sönmez Turan: 0000-0002-1950-7130
Kerry A. McKay: 0000-0002-5956-587X
Donghoon Chang: 0000-0003-1249-2869
Jinkeon Kang: 0000-0003-2142-8236
John Kelsey: 0000-0002-3427-1744

Public Comment Period
November 8, 2024 -– February 7, 2025

Submit Comments
SP800-232-comments@list.nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/232/ipd,
including related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https:/orcid.org/0000-0002-1950-7130
https:/orcid.org/0000-0002-5956-587X
https:/orcid.org/0000-0003-1249-2869
https:/orcid.org/0000-0003-2142-8236
https:/orcid.org/0000-0002-3427-1744
mailto:SP800-232-comments@list.nist.gov?subject=Comments on NIST SP 800-232 ipd
https://csrc.nist.gov/pubs/sp/800/232/ipd

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Abstract

In 2023, the National Institute of Standards and Technology (NIST) announced the selection
of the Ascon family of algorithms designed by Dobraunig, Eichlseder, Mendel, and Schläffer
to provide efficient cryptography solutions for resource-constrained devices. This decision
emerged from a rigorous, multi-round lightweight cryptography standardization process.
This standard introduces a new Ascon-based family of symmetric-key cryptographic primi-

tives designed to deliver Authenticated Encryption with Associated Data (AEAD), hash, and
Extendable Output Function (XOF) capabilities, namely Ascon-AEAD128, Ascon-Hash256,
Ascon-XOF128, and Ascon-CXOF128. The Ascon family is characterized by lightweight
permutation-based primitives and provides robust security, efficiency, and flexibility, mak-

ing it ideal for resource-constrained environments, such as Internet of Things (IoT) devices,
embedded systems, and low-power sensors. The family is developed to offer a viable
alternative when the Advanced Encryption Standard (AES) may not perform optimally. This
draft standard outlines the technical specifications of Ascon-AEAD128, Ascon-Hash256,
Ascon-XOF128, and Ascon-CXOF128, and provides their security properties.

Keywords

Ascon; authenticated encryption; constrained devices; eXtendable Output Function (XOF);
hash function; lightweight cryptography; permutation-based cryptography; standardization.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical lead-
ership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to ad-
vance the development and productive use of information technology. ITL’s responsibilities
include the development of management, administrative, technical, and physical standards
and guidelines for the cost-effective security and privacy of other than national security-
related information in federal information systems. The Special Publication 800-series
reports on ITL’s research, guidelines, and outreach efforts in information system security,
and its collaborative activities with industry, government, and academic organizations.

i

115

120

125

130

135

140

114

116

117

118

119

121

122

123

124

126

127

128

129

131

132

133

134

136

137

138

139

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose
use would be required for compliance with the guidance or requirements in this Information
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may
be directly stated in this ITL Publication or by reference to another publication. This call
also includes disclosure, where known, of the existence of pending U.S. or foreign patent
applications relating to this ITL draft publication and of any relevant unexpired U.S. or
foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its
behalf, in written or electronic form, either:

1. assurance in the form of a general disclaimer to the effect that such party does not
hold and does not currently intend holding any essential patent claim(s); or

2. assurance that a license to such essential patent claim(s) will be made available
to applicants desiring to utilize the license for the purpose of complying with the
guidance or requirements in this ITL draft publication either:

(a) under reasonable terms and conditions that are demonstrably free of any unfair
discrimination; or

(b) without compensation and under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make
assurances on its behalf) will include in any documents transferring ownership of patents
subject to the assurance, provisions sufficient to ensure that the commitments in the assur-
ance are binding on the transferee, and that the transferee will similarly include appropriate
provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest
regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: SP800-232-comments@list.nist.gov

ii

mailto:SP800-232-comments@list.nist.gov

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Table of Contents

1. Introduction . 1

2. Preliminaries. 4

2.1. Auxiliary Functions . 8

3. Ascon Permutations . 9

3.1. Internal State . 9

3.2. Constant-Addition Layer 𝑝𝐶 . 9

3.3. Substitution Layer 𝑝𝑆 . 10

3.4. Linear Diffusion Layer 𝑝𝐿 . 11

4. Authenticated Encryption Scheme: Ascon-AEAD128 . 12

4.1. Specification of Ascon-AEAD128 . 12

4.1.1. Encryption . 12

4.1.2. Decryption . 15

4.2. Implementation Options . 19

4.2.1. Truncation . 19

4.2.2. Nonce Masking . 19

4.3. AEAD Requirements . 19

4.4. Security Properties . 20

4.4.1. Single-Key Setting . 20

4.4.2. Multi-Key Setting . 20

4.4.3. Nonce-Misuse Setting . 21

162

163

164

165

166

167

168

5. Hash and Extendable Output Functions . 22

5.1. Specification of Ascon-Hash256 . 22

5.2. Specification of Ascon-XOF128 . 25

5.3. Specification of Ascon-CXOF128 . 27

5.4. Security Strengths . 27

Appendix A. Implementation Notes . 31

A.1. Conversion Functions . 31

iii

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

169

170

A.2. Implementing with Integers . 32

Appendix B. Determination of the Initial Values . 36

iv

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

List of Tables

Table 1. Acronyms . 4

Table 2. Terms and definitions. 4

Table 3. Notations . 6

Table 4. Basic operations and functions . 7

Table 5. The constants const𝑖 to derive round constants of the Ascon permutations . 10

Table 6. Lookup table representation of SBOX . 11

Table 7. Security strength of Ascon-AEAD128 with 𝜆-bit tag in the 𝑢-key setting,
where (𝑁, 𝐴) pair is unique for encryption. 21

Table 8. Integrity security strength of Ascon-AEAD128 with 𝑢 keys in the nonce-
misuse setting . 22

Table 9. Security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128
algorithms . 29

Table 10. Address for each byte of Ascon state word 𝑆𝑖 in memory on little-endian
and big-endian machines, where the word 𝑆𝑖 begins at memory address 𝑎. 32

Table 11. Examples of padding an unsigned integer 𝑥 to a 64-bit block 34

Table 12. Parameters for initial value construction . 36

Table 13. Initial values as hexadecimal integers . 36

List of Figures

Figure 1. Constant-Addition Layer 𝑝𝐶 . 10

Figure 2. Substitution layer 𝑝𝑆 . 10

192

193

194

195

196

197

198

Figure 3. 5-bit S-box SBOX . 11

Figure 4. Linear diffusion layer 𝑝𝐿 . 11

Figure 5. Ascon-AEAD128 encryption . 12

Figure 6. Ascon-AEAD128 decryption . 17

Figure 7. Structure of Ascon-Hash256 and Ascon-XOF128 . 22

Figure 8. Structure of Ascon-CXOF128 . 27

Figure 9. Mapping between state words, bytes, and bits . 31

v

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

199

200

Figure 10. Representation of the Ascon state as 64-bit unsigned integers, byte se-
quences, and bitstrings . 33

vi

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

201

202

203

204

205

206

207

208

 The authors of the standard express their gratitude to the Ascon designers — Christoph
Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer — for their valuable
comments and suggestions during the drafting process.

The authors also acknowledge and appreciate contributions from their colleagues at NIST
during the selection process, including Lawrence Bassham, Çağdaş Çalık, Deukjo Hong, and
Noah Waller. The authors also thank Elaine Barker, Lily Chen, Andrew Regenscheid, Noah
Ross and Sara Kerman, who provided technical and administrative support.

Acknowledgments

vii

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

1. Introduction

This draft standard specifies the Ascon family of algorithms to provide Authenticated Encryp-
tion with Associated Data (AEAD), a hash function, and two eXtendable Output Functions
(XOFs). The Ascon family is designed to be efficient in constrained environments. The
algorithms specified in this standard are as follows:

1. Ascon-AEAD128 is a nonce-based authenticated encryption with associated data
that provides 128-bit security strength in the single-key setting.

2. Ascon-Hash256 is a cryptographic hash function that produces a 256-bit hash of the
input messages, offering a security strength of 128 bits.

3. Ascon-XOF128 is an XOF, where the output size of the hash of the message can be
selected by the user, and the supported security strength is up to 128 bits.

4. Ascon-CXOF128 is a customized XOF that allows users to specify a customization
string and choose the output size of the message hash. It supports a security strength
of up to 128 bits.

Development of the Ascon family. Ascon (version v1) [1] was first submitted to the CAESAR
(Competition for Authenticated Encryption: Security, Applicability, and Robustness) 1

1CAESAR is a competition organized by a group of international cryptologic researchers to identify a portfolio
of authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread
adoption. The final portfolio of the competition was announced in February 2019. For more information,
see https://competitions.cr.yp.to/caesar.html.

in
2014. The submission included two AEAD algorithms: a primary recommendation, Ascon-
128, with a 128-bit key and the secondary recommendation, Ascon-96, with a 96-bit key.
Updated versions v1.1 [2] for Round 2 and v1.2 [3] for Round 3 included minor tweaks,
such as reordering the round constants, and the secondary recommendation was updated
to Ascon-128a. In 2019, Ascon-128 and Ascon-128a were selected as the first choice for
the lightweight authenticated encryption use case in the final portfolio of the CAESAR
competition.

NIST Lightweight Cryptography Standardization Process. In 2015, the National Institute of
Standards and Technology (NIST) initiated the lightweight cryptography standardization
process to develop cryptographic standards suitable for constrained environments in which
conventional cryptographic standards (e.g., AES-GCM [4, 5] and the SHA-2 [6] and the SHA-3
[7] hash function families) may be resource-intensive. In February 2023, NIST announced
the decision to standardize the Ascon family [8] for lightweight cryptography applications.
(For more information, refer to NIST Internal Report (IR) 8268 [9], NIST IR 8369 [10], and
NIST IR 8454 [11]).

Differences from the Ascon submission v1.2. The technical differences between this draft
standard and the Ascon submission [8] are provided below:

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

1

https://competitions.cr.yp.to/caesar.html

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

1. Permutations. The Ascon submission defined three Ascon permutations having 6,
8, and 12 rounds. This standard specifies additional Ascon permutations by provid-
ing round constants for up to 16 rounds to accommodate potential functionality
extensions in the future.

2. AEAD variants. The Ascon submission package defined AEAD variants ASCON-128,
ASCON-128a, and ASCON-80pq. This standard specifies the Ascon-AEAD128 algorithm,
which is based on ASCON-128a.

3. Hash function variants. The Ascon submission defined ASCON-HASH and ASCON-HASHA.
This standard specifies Ascon-Hash256, which is based on ASCON-HASH.

4. XOF variants. The Ascon submission defined two extendable output functions, ASCON-
XOF and ASCON-XOFA. This standard specifies Ascon-XOF128, which is based on
ASCON-XOF, and a new customized XOF, Ascon-CXOF128.

5. Initial values. The initial values of the algorithms are updated to support a new
format that accommodates potential functionality extensions.

6. Endianness. The endianness has been switched from big endian to little endian to
improve performance on little-endian microcontrollers.

7. Truncation and nonce-masking. The implementation options of Ascon-AEAD128
with truncation and nonce-masking have been added.

Main Features of Ascon. The main features of the Ascon family are:

• Multiple functionalities. The same permutations are used to construct multiple func-
tionalities, which allows an implementation of AEAD, hash, and XOF functionalities
to share logic and, therefore, have a more compact implementation than functions
that were developed independently.

• Online and single pass. Ascon-AEAD128 is online, meaning that the 𝑖-th ciphertext
block is determined by the key, nonce, associated data, and the first 𝑖 plaintext blocks.
Ascon family members require only a single pass over the data.

• Inverse-free. Since all of the Ascon family members only use the underlying permuta-

tions in the forward direction, implementing the inverse permutations is not needed.
This approach significantly reduces implementation costs compared to designs that
require inverse operations for decryption.

Organization. Section 2 provides preliminaries, including the notation, basic operations, and
auxiliary functions. Section 3 specifies the Ascon permutations for up to 16 rounds. Section
4 specifies the authenticated encryption scheme Ascon-AEAD128, provides some imple-

mentation options for truncation and nonce masking, lists the requirements for validation,
and provides security properties. Section 5 specifies the hash function Ascon-Hash256 ,
the XOF function Ascon-XOF128, and the customized Ascon-CXOF128 and describes their
security properties. Appendix A provides additional notes and conversion functions for

2

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

279

280

implementations. Appendix B provides additional information regarding the construction
of initial values.

3

NIST SP 800-232 ipd (Initial Public Draft)

November 2024

281

282

2. Preliminaries

Table 1 lists the acronyms used in this standard.

Table 1. Acronyms

Acronym Definition

AD Associated Data

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

CAESAR Competition for Authenticated Encryption: Security, Applicability, and
Robustness

GCM Galois/Counter Mode

NIST National Institute of Standards and Technology

PRF Pseudo-Random Function

SHA Secure Hash Algorithm

SPN Substitution–Permutation Network

SP Special Publication

XOF eXtendable-Output Function

XOR eXclusive OR

283 Table 2 defines the terms used in this standard.

Table 2. Terms and definitions

Term Definition

approved An algorithm or technique that is either specified or adopted in a
FIPS publication or NIST Special Publication in the Computer Se-
curity SP 800 series (i.e., FIPS-approved or NIST-recommended).

associated data Input data that is authenticated, but not encrypted.

bit A binary digit, 0 or 1. In this standard bits are indicated in the
Courier New font.

bit string A finite, ordered sequence of bits.

4

NIST SP 800-232 ipd (Initial Public Draft)

November 2024

Table 2. Terms and definitions

Term Definition

capacity The width of the underlying permutation minus the rate.

digest Hash value.

eXtendable- A function on bit strings in which the output can be extended
Output Function to any desired length.
(XOF)

forgery A (ciphertext, tag) pair produced by an adversary who is not
knowledgeable of the secret key and yet is accepted as valid by
the verified decryption procedure.

hash function A mathematical function that maps a string of arbitrary length
to a fixed-length string.

message Input to the hash function.

nonce An input value to the authenticated encryption algorithm that
is used only once for encryption performed under a given key.

nonce-misuse A setting in which the nonce-uniqueness requirement is unin-
tentionally or accidentally violated.

nonce-respecting A setting that satisfies the nonce-uniqueness requirement.

rate The number of input bits processed or output bits generated
per invocation of the underlying permutation.

secret key A cryptographic key used by a secret-key (i.e., symmetric) cryp-
tographic algorithm and that is not made public.

shall Term used to express a requirement that needs to be fulfilled to
claim conformance to this standard.

tag A cryptographic checksum on data that is designed to reveal
both accidental errors and the intentional modification of the
data whose computation and verification require knowledge of
a secret key.

truncation A process that shortens an input bitstring, preserving only a
sub-string of a specified length.

width The state size of the underlying permutation.

5

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

284 Table 3 lists the notations used in this standard.

Table 3. Notations

Notation Definition

𝐾 128-bit secret key

𝑁 128-bit nonce

𝐴 Associated data

𝐴𝑖 𝑖th block of associated data 𝐴

𝑃 Plaintext

𝑃𝑖 𝑖th block of plaintext 𝑃

𝐶 Ciphertext

𝐶𝑖 𝑖th block of ciphertext 𝐶

𝑍 Customization string

𝑍𝑖 𝑖th block of customization string 𝑍

𝑇 128-bit authentication tag

𝐼𝑉 64-bit constant initial value

fail Error message to indicate that the verification of authenticated cipher-
text failed

𝑀 Message

𝑀𝑖 𝑖th block of message 𝑀

𝐻 Hash value 𝐻

𝐻𝑖 𝑖th block of hash value 𝐻

S 320-bit internal state of the underlying permutation

𝑆0,…,𝑆4 The five 64-bit words of the internal state S, where S =
𝑆0 ‖ 𝑆1 ‖ … ‖ 𝑆4

𝑠(𝑖,𝑗) 𝑗th bit of 𝑆𝑖, 0 ≤ 𝑖 ≤ 4,0 ≤ 𝑗 ≤ 63

𝑆𝑖[𝑗] 𝑗𝑡ℎ byte of state word 𝑆𝑖 for 0 ≤ 𝑖 ≤ 4, 0 ≤ 𝑗 ≤ 7

𝜆 Length of the truncated tag in bits

𝑟 The rate of an algorithm

𝑐𝑖 The constant value for round 𝑖 of Ascon permutation

𝑝𝐶,𝑝𝑆,𝑝𝐿 Constant-addition, substitution and linear layers of the round function 𝑝

6

NIST SP 800-232 ipd (Initial Public Draft)

November 2024

285 Table 4 lists the basic operations and functions used in this standard.

Table 4. Basic operations and functions

Functions Definition

{0,1}∗ The set of all finite bit strings, including the empty string

{0,1}𝑠 The set of all bit strings of length 𝑠

0𝑠 When 𝑠 ≥ 0, 0𝑠 is the bit string that consists of 𝑠 consecutive 0s.
When 𝑠 = 0, then 0𝑠 is the empty string.

|𝑋| Length of the bitstring 𝑋 in bits

𝑋 ‖𝑌 Concatenation of bitstrings 𝑋 and 𝑌

𝑥 × 𝑦 Multiplication of integers 𝑥 and 𝑦

𝑥 + 𝑦 Addition of integers 𝑥 and 𝑦

𝑥 − 𝑦 Subtraction of integers 𝑥 and 𝑦

𝑥/𝑦 Division of integer 𝑥 and non-zero integer 𝑦

𝑥 mod 𝑦 Remainder in integer division of 𝑥 by 𝑦

⌈𝑥⌉ For a real number 𝑥, the smallest integer greater than or equal
to 𝑥

⌊𝑥⌋ For a real number 𝑥, the largest integer less than or equal to 𝑥

𝑓 ∘ 𝑔 Composition of functions 𝑓 and 𝑔. E.g., for functions 𝑓(𝑥) and
𝑔(𝑥), 𝑓 ∘ 𝑔 is evaluate as 𝑓(𝑔(𝑥)).

⊙ Bitwise AND operation

⊕ Bitwise XOR operation

𝑋 ⋙ 𝑖 Right rotation (circular shift) by 𝑖 bits of 64-bit word 𝑋, where
the least significant bit is the rightmost bit

𝑋 ≪ 𝑖 Left shift by 𝑖 bits

𝑋[𝑖∶𝑗] The subset of bitstring 𝑋 beginning at index 𝑖 and ending at
index 𝑗, inclusive. When 𝑖 > 𝑗, 𝑋[𝑖∶𝑗] is the empty string. When
𝑖 = 𝑗, 𝑋[𝑖∶𝑗] is a single bit.

𝑥 == 𝑦 Boolean operator to perform equality comparison, i.e., true, if
𝑥 is equal to 𝑦, false otherwise.

7

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

0x Hexadecimal notation

int64(𝑥) 64-bit representation of integer 𝑥.

286

287

288

289

290

291

292

293

2.1. Auxiliary Functions

Parse function. The parse(𝑋,𝑟) function parses the input bitstring 𝑋 into a sequence
of blocks 𝑋0,𝑋1,…,𝑋 ,ℓ where ℓ ← ⌊|𝑋|/𝑟⌋ (i.e., 𝑋 ← 𝑋0 ‖𝑋1 ‖…‖ 𝑋).ℓ The 𝑋 blocks𝑖
for 0 ≤ 𝑖 ≤ ℓ − 1 each have a bit length 𝑟, whereas the bit length of the final block 𝑋 isℓ
between 0 and 𝑟 − 1 (see Algorithm 1).

Algorithm 1 parse(𝑋,𝑟)

Input: bitstring 𝑋, rate 𝑟
Output: bitstrings 𝑋 ̃

0,…,𝑋ℓ−1,𝑋ℓ

ℓ ← ⌊|𝑋|/𝑟⌋
for 𝑖 = 0 to ℓ −1 do

𝑋𝑖 ← 𝑋[𝑖×𝑟∶(𝑖+1)×𝑟−1]
end for

𝑋ℓ ← 𝑋[ℓ×𝑟∶|𝑋|−1]

return 𝑋0,…,𝑋ℓ−1,𝑋ℓ

Padding rule. The function pad(𝑋,𝑟) appends the bit 1 to the bitstring 𝑋, followed by the
bitstring 0𝑗 , where 𝑗 is equal to (−|𝑋| − 1) mod 𝑟. The length of the output bitstring is a
multiple of 𝑟 (see Algorithm 2).

Algorithm 2 pad(𝑋,𝑟)

Input: bitstring 𝑋, rate 𝑟
Output: padded bitstring 𝑋′

𝑗 ← (−|𝑋| − 1) mod 𝑟
𝑋′ ← 𝑋 ∥ 1 ∥ 0𝑗

return 𝑋′

8

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

3. Ascon Permutations

This section specifies the 𝑟𝑛𝑑-round 𝐴𝑠𝑐𝑜𝑛-𝑝[𝑟𝑛𝑑] permutations, where 1 ≤ 𝑟𝑛𝑑 ≤ 16.
The permutations follow the Substitution-Permutation-Network (SPN) structure and consist
of iterations of the round function 𝑝 that is defined as the composition of three steps

𝑝 = 𝑝𝐿 ∘ 𝑝𝑆 ∘ 𝑝𝐶, (1)

where 𝑝 is𝐶 the constant-addition layer (see Sec. 3.2), 𝑝 is the substitution𝑆 layer (see Sec.
3.3), and 𝑝 is the𝐿 linear diffusion layer (see Sec. 3.4).

Note that 𝐴𝑠𝑐𝑜𝑛-𝑝[8] and 𝐴𝑠𝑐𝑜𝑛-𝑝[12] are the main building blocks of the Ascon family,
and the permutation instantiated with other numbers of rounds may later be used to
standardize other functionalities.

3.1. Internal State

The permutations operate on the 320-bit state S , which is represented as five 64-bit words
denoted as 𝑆 for𝑖 0 ≤ 𝑖 ≤ 4:

S = 𝑆0 ∥ 𝑆1 ∥ 𝑆2 ∥ 𝑆3 ∥ 𝑆4. (2)

Let 𝑠 represents(𝑖,𝑗) the 𝑗th bit of 𝑆 ,𝑖 0 ≤ 𝑗 < 64. In this specification of the Ascon permuta-

tion, each state word represents a 64-bit unsigned integer, where the least significant bit is
the rightmost bit. Details on other representations of the state can be found in Appendix A.

3.2. Constant-Addition Layer 𝑝𝐶

The constant 𝑐 of𝑖 round 𝑖 of the Ascon permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[𝑟𝑛𝑑] (instantiated with 𝑟𝑛𝑑
rounds), for 𝑟𝑛𝑑 ≤ 16 and 0 ≤ 𝑖 ≤ 𝑟𝑛𝑑 −1, is defined as

𝑐𝑖 = const16−𝑟𝑛𝑑+𝑖, (3)

where const ,…,const are defined in Table 5. The c0 15 onstant-addition layer 𝑝 adds𝐶 a
64-bit round constant 𝑐 to𝑖 𝑆 in2 round 𝑖, for 𝑖 ≥ 0,

𝑆2 = 𝑆2 ⊕ 𝑐𝑖. (4)

9

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

318

319

320

321

322

323

324

325

326

327

Table 5. The constants const𝑖 to derive round constants of the Ascon permutations

𝑖 const𝑖 𝑖 const𝑖

0
1
2
3
4
5
6
7

0x000000000000003c
0x000000000000002d
0x000000000000001e
0x000000000000000f
0x00000000000000f0
0x00000000000000e1
0x00000000000000d2
0x00000000000000c3

8
9
10
11
12
13
14
15

0x00000000000000b4
0x00000000000000a5
0x0000000000000096
0x0000000000000087
0x0000000000000078
0x0000000000000069
0x000000000000005a
0x000000000000004b

Since the first 56 bits of the constants are zero, in practice, this is equivalent to applying
the constant to only the least significant eight bits of 𝑆 ,2 as shown in Fig. 1.

Figure 1. Constant-Addition Layer 𝑝

𝑆
𝑆
𝑆
𝑆
𝑆

0
1
2
3
4

𝐶

3.3. Substitution Layer 𝑝𝑆

The substitution layer 𝑝 updates𝑆 the state S with 64 parallel applications of the 5-bit
substitution box SBOX, as

(𝑠(0,𝑗),𝑠(1,𝑗),…,𝑠(4,𝑗)) = SBOX(𝑠(0,𝑗),𝑠(1,𝑗),…,𝑠(4,𝑗)) (5)

for 0 ≤ 𝑗 < 64, as shown in Fig. 2.

Figure 2. Substitution layer 𝑝𝑆

𝑆0𝑆1𝑆2𝑆3𝑆 4

The 5-bit SBOX has a 5-bit input 𝑥 = (𝑥0,𝑥1,…,𝑥4) and computes the 5-bit output using
the circuit provided in Figure 3. SBOX may also be implemented as a lookup table, as shown
in Table 6.

10

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

328

329

330

Figure 3. 5-bit S-box SBOX

x0
x1
x2
x3
x4

1

1

1

1

1

1

y0
y1
y2
y3
y4

3.4. Linear Diffusion Layer 𝑝𝐿

The linear diffusion layer 𝑝 provides diffusion within each 64-bit𝐿 word 𝑆 ,𝑖 as shown in Fig.
4.

Figure 4. Linear diffusion layer 𝑝𝐿

𝑆0
𝑆1
𝑆2
𝑆3
𝑆4

This layer applies the linear functions Σ to their corresponding state words as 𝑆 ← Σ (𝑆),𝑖 𝑖 𝑖 𝑖
for 0 ≤ 𝑖 ≤ 4, where each Σ is𝑖 defined as:

Σ0(𝑆0) = 𝑆0 ⊕ (𝑆0 ⋙ 19) ⊕ (𝑆0 ⋙ 28) (6)

Σ1(𝑆1) = 𝑆1 ⊕ (𝑆1 ⋙ 61) ⊕ (𝑆1 ⋙ 39) (7)

Σ2(𝑆2) = 𝑆2 ⊕ (𝑆2 ⋙ 1) ⊕ (𝑆2 ⋙ 6) (8)

Σ3(𝑆3) = 𝑆3 ⊕ (𝑆3 ⋙ 10) ⊕ (𝑆3 ⋙ 17) (9)

Σ4(𝑆4) = 𝑆4 ⊕ (𝑆4 ⋙ 7) ⊕ (𝑆4 ⋙ 41) (10)

Table 6. Lookup table representation of SBOX

𝑥 0 1 2 3 4 5 6 7 8 9 a b c d e f
SBOX(𝑥) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c

𝑥 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
SBOX(𝑥) 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17
Note that 5-bit inputs are represented in hexadecimal, (e.g., 𝑥 =1 corresponds to (0,0,0,0,1)).

11

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

4. Authenticated Encryption Scheme: Ascon-AEAD128

This section specifies the AEAD scheme Ascon-AEAD128, details implementation options
(e.g., truncation and nonce masking), lists AEAD requirements, and provides security prop-
erties.

4.1. Specification of Ascon-AEAD128

Ascon-AEAD128 consists of the encryption algorithm Ascon-AEAD128.enc (specified in
Sec. 4.1.1) and the decryption algorithm Ascon-AEAD128.dec (specified in Sec. 4.1.2).

Ascon-AEAD128.enc takes a 128-bit secret key 𝐾, a 128-bit nonce 𝑁, variable-length
associated data 𝐴, and variable-length plaintext 𝑃 as inputs and outputs ciphertext 𝐶
(where |𝐶| = |𝑃 |) and 128-authentication tag 𝑇 (see Section 4.2.1 for the truncation option):

Ascon-AEAD128.enc(𝐾,𝑁,𝐴,𝑃) = (𝐶,𝑇), (11)

Ascon-AEAD128.dec takes key 𝐾, nonce 𝑁, associated data 𝐴, ciphertext 𝐶, and authen-
tication tag 𝑇 as inputs and outputs 𝑃 if the tag is valid:

𝑃 if the tag 𝑇 is valid
Ascon-AEAD128.dec(𝐾,𝑁,𝐴,𝐶,𝑇) = { (12)

fail otherwise

4.1.1. Encryption

This section outlines the encryption algorithm of Ascon-AEAD128, which comprises four
phases: initialization, associated data processing, plaintext processing, and finalization (see
Fig. 5).

Figure 5. Ascon-AEAD128 encryption

IV∥K∥N

As
co
n-
p[
12
]

Initialization

064∥K

⧸128

A0

As
co
n-
p[
8]

⧸
192

Am

As
co
n-
p[
8]

⧸
192

Associated Data

0191∥1

⧸128

P0 C0

⧸192 As
co
n-
p[
8]

Pn−1 Cn−1

⧸192 As
co
n-
p [
8]

Plaintext

⧸
128

P̃n C̃n

⧸
ℓ = |P̃n|

⧸
128-ℓ

1 ∥ 0127−ℓ

⧸192

K∥064

⧸128

As
co
n-
p[
12
]

Finalization

K

T

⧸128

⧸128

The pseudocode of Ascon-AEAD128.enc is provided in Algorithm 3.

1. Initialization of the state. Given 128-bit 𝐾 and 128-bit 𝑁, the 320-bit internal state
S is initialized as

S ← 𝐼𝑉 ∥𝐾 ∥𝑁 (13)

12

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Algorithm 3 Ascon-AEAD128.enc(𝐾,𝑁,𝐴,𝑃)

Input: 128-bit key 𝐾; 128-bit nonce 𝑁; Associated data 𝐴; Plaintext 𝑃
Output: Ciphertext 𝐶; 128-bit tag 𝑇

𝐼𝑉 ← 0x00001000808c0001 ▷ Initialization
S ← 𝐼𝑉 ‖𝐾 ‖𝑁
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)
S ← S ⊕(0192 ‖𝐾)

if |𝐴| > 0 then ▷ Processing Associated Data
𝐴0,…,𝐴𝑚−1,𝐴𝑚 ← parse(𝐴,128)
𝐴𝑚 ←pad(𝐴𝑚,128)
for 𝑖 = 0 to 𝑚 do

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8]((S[0∶127] ⊕𝐴𝑖)‖S[128∶319])
end for

end if
S ← S ⊕(0319 ‖1)

𝑃0,…,𝑃𝑛−1,𝑃𝑛 ← parse(𝑃 ,128) ▷ Processing Plaintext
ℓ ← |𝑃𝑛|
for 𝑖 = 0 to 𝑛 − 1 do

S[0∶127] ← S[0∶127] ⊕ 𝑃𝑖
𝐶𝑖 ← S[0∶127]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S)

end for
S[0∶127] ← S[0∶127]⊕pad(𝑃𝑛,128)

𝐶𝑛 ← S[0,ℓ−1]

𝐶 ← 𝐶 ‖…‖𝐶 ‖𝐶0 𝑛−1 𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S ⊕(0128 ‖𝐾 ‖064)) ▷ Finalization
𝑇 ← S[192∶319] ⊕ 𝐾

return 𝐶,𝑇

13

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

where the initialization value 𝐼𝑉 is assigned to 0x00001000808c0001 (see Ap-
pendix B for the details of determining the IV). Next, S is updated using the permuta-

tion 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (14)

and followed by XORing the secret key 𝐾 into the last 128 bits of internal state:

S ← S ⊕(0192 ∥𝐾). (15)

2. Processing associated data. This step has two parts, including absorbing the asso-
ciated data (when it is non-empty) and applying the domain separation bit to the
state.

When associated data 𝐴 is non-empty (i.e., |𝐴| > 0), it is parsed into blocks, as

𝐴 , 𝐴 , …, 𝐴 , 𝐴 par0 1 𝑚−1 𝑚 ← se(𝐴,128), (16)

where 𝑚 = ⌊|𝐴|/128⌋ and |𝐴𝑖| = 128 bits for 0 ≤ 𝑖 ≤ 𝑚 − 1, and 0 ≤ |𝐴𝑚| < 128,
as explained in Algorithm 1. The last block 𝐴 can𝑚 be empty. Next, 𝐴 is𝑚 padded as

𝐴 ← (𝐴 ,128) 0127−|𝐴 = 𝐴 ||1 ∥ 𝑚| pad (17)𝑚 𝑚 𝑚

so that |𝐴 | = 128, as explained in Alg𝑚 orithm 2.

Each associated data block 𝐴 (𝑖 0 ≤ 𝑖 ≤ 𝑚), is absorbed into the first 128 bits of state
as

S (18)[0∶127] ← S[0∶127] ⊕ 𝐴𝑖,

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to the state as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (19)

The final step of processing associated data is to update the state with a constant

S ← S ⊕(0319 ∥1) (20)

that provides domain separation. For empty associated data, only the final step
described in (20) is applied.

3. Processing plaintext. Plaintext 𝑃 (including empty plaintext) is parsed into blocks as

𝑃0, 𝑃 , …, 𝑃 (21)1 ,𝑃 parse𝑛−1 𝑛 ← (𝑃 ,128),

where 𝑛 = ⌊|𝑃 |/128⌋ and |𝑃𝑖| = 128 for 0 ≤ 𝑖 ≤ 𝑛 − 1, and |𝑃𝑛| = ℓ, 0 ≤ ℓ < 128
using Algorithm 1. When |𝑃 | mod 128 = 0, the last block 𝑃 is𝑛 empty.

14

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

For each 𝑃 , 0 ≤ 𝑖 ≤ 𝑛−1, the state S is upda𝑖 ted as follows:

S (22)[0∶127] ← S[0∶127] ⊕ 𝑃𝑖,

followed by generating the corresponding ciphertext block 𝐶 as𝑖

𝐶𝑖 ← S (23)[0∶127],

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to update the state as:

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (24)

For the last block 𝑃 , the state is updated𝑛 as

S (25)[0∶127] ← S pad ̃
 [0∶127] ⊕ (𝑃𝑛,128),

and the last ciphertext block 𝐶 is obtained as𝑛

𝐶 (26)𝑛 ← S[0∶ℓ−1].

The ciphertext 𝐶 is constructed by concatenating the ciphertext blocks as

𝐶 ← 𝐶0 ∥…∥𝐶𝑛−1 ∥𝐶𝑛. (27)

4. Finalization and tag generation. During finalization, the key is first loaded to the
state S , as

S ← S ⊕(0128 ∥𝐾 ∥064), (28)

and the state S is then updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12], as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (29)

Finally, the tag 𝑇 is generated by XORing the key with the last 128 bits of the state:

𝑇 ← 𝑆 (30)[192∶319] ⊕𝐾.

he encryption algorithm returns the ciphertext 𝐶 and the tag 𝑇. T

4.1.2. Decryption

This section describes each of the phases for decryption with Ascon-AEAD128.dec. Decryp-
tion in Ascon-AEAD128 consists of four phases: initialization, associated data processing,
ciphertext processing, and finalization. Decryption in Ascon-AEAD128 is similar to encryp-
tion; only the last two phases differ from the encryption mode.

The pseudocode of Ascon-AEAD128.dec is provided in Algorithm 4.

15

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Algorithm 4 Ascon-AEAD128.dec(𝐾,𝑁,𝐴,𝐶,𝑇)

Input: 128-bit key 𝐾; 128-bit nonce 𝑁; Associated data 𝐴; Ciphertext 𝐶; 128-bit tag 𝑇
Output: Plaintext 𝑃 or fail

𝐼𝑉 ← 0x00001000808c0001 ▷ Initialization
S ← 𝐼𝑉 ‖𝐾 ‖𝑁
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)
S ← S ⊕(0192 ‖𝐾)

if |𝐴| > 0 then ▷ Processing Associated Data
𝐴0,…,𝐴𝑚−1,𝐴𝑚 ← parse(𝐴,128)
𝐴𝑚 ←pad(𝐴𝑚,128)
for 𝑖 = 0 to 𝑚 do

S[0∶127] ← S[0∶127] ⊕ 𝐴𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S)

end for
end if
S ← 319 S ⊕(0 ‖1)

𝐶0,…,𝐶𝑛−1,𝐶𝑛 ← parse(𝐶,128) ▷ Processing Ciphertext
for 𝑖 = 0 to 𝑛 − 1 do

𝑃𝑖 ← S[0∶127] ⊕ 𝐶𝑖
S[0∶127] ← 𝐶𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S)

end for
ℓ = |𝐶𝑛|
𝑃𝑛 ← S[0∶ℓ−1] ⊕ 𝐶𝑛

S[ℓ,127] ← S[ℓ,127] ⊕ (1||0127−ℓ)

S[0,ℓ−1] ← 𝐶𝑛

128S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S ⊕(0 ‖𝐾 ‖064)) ▷ Finalization
𝑇 ′ ← S[192∶319] ⊕ 𝐾

if 𝑇 ′ == 𝑇 then
𝑃 ← 𝑃 ̃

0 ‖…‖𝑃𝑛−1 ‖𝑃𝑛
return 𝑃

else
return fail

end if

16

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Figure 6. Ascon-AEAD128 decryption

IV∥K∥N

As
co
n-
p[
12
]

Initialization

064∥K

⧸128

A0

As
co
n-
p[
8]

⧸
192

Am

As
co
n-
p[
8]

⧸
192

Associated Data

0191∥1

⧸128

P0 C0

⧸192 As
co
n-
p[
8]

Pn−1 Cn−1

⧸192 As
co
n-
p[
8]

Ciphertext

⧸
128

P̃n C̃n

⧸
ℓ = |C̃n|

⧸
128-ℓ

1 ∥ 0127−ℓ

⧸192

K∥064

⧸128

As
co
n-
p[
12
]

Finalization

K

T′

⧸128

⧸128

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

1. Initialization of the state. Given 128-bit 𝐾 and 128-bit 𝑁, the 320-bit internal state
S is initialized as

S ← 𝐼𝑉 ∥𝐾 ∥𝑁, (31)

where the initial value 𝐼𝑉 is assigned to 0x00001000808c0001. Next, S is updated
using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (32)

and followed by XORing the secret key into the last 128 bits of the state as

S ← S ⊕(0192 ∥𝐾). (33)

This step is exactly the same as Step 1 of the encryption function in Sec. 4.1.1.

2. Processing associated data. This step has two parts, including absorbing the asso-
ciated data (when it is non-empty) and applying the domain separation bit to the
state.

When the associated data 𝐴 is non-empty (i.e., |𝐴| > 0), it is parsed into blocks, as

𝐴0, 𝐴1, …, 𝐴𝑚−1, 𝐴 (34) ← parse𝑚 (𝐴,128),

where 𝑚 = ⌊|𝐴|/128⌋ and |𝐴 | = 128 bits f𝑖 or 0 ≤ 𝑖 ≤ 𝑚 − 1, and 0 ≤ |𝐴𝑚| < 128,
as explained in Algorithm 1. The last block 𝐴 can . be empty𝑚

𝐴 is𝑚 further processed by padding to a full 𝑟 = 128-bit block using Algorithm 2 as

𝐴𝑚 ← pad(𝐴 ̃ 127−|𝐴𝑚| (35)𝑚,128) = 𝐴𝑚||1 ∥ 0 .

The associated data blocks 𝐴 ’s𝑖 (0 ≤ 𝑖 ≤ 𝑚), are absorbed to the state S as follows:

S (36)[0∶127] ← (S[0∶127] ⊕ 𝐴𝑖),

17

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to the state as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (37)

The final step of processing associated data is to update the state to:

S ← S ⊕(0319 ∥1) (38)

for domain separation. For empty associated data, only the final step described in
(38) is applied.

This step is exactly the same as Step 2 of the encryption function in Sec. 4.1.1.

3. Processing the ciphertext. Ciphertext 𝐶 is parsed into blocks as

𝐶0, 𝐶1, …,𝐶𝑛−1, 𝐶𝑛 ← parse(𝐶,128), (39)

where 𝑛 = ⌊|𝐶|/128⌋, |𝐶 | = 128 for 0 ≤ 𝑖 ≤ 𝑛 − 1, ̃
𝑖 |𝐶𝑛| = ℓ, 0 ≤ ℓ < 128 using

Algorithm 1. Ciphertext 𝐶 or the last block of ciphertext 𝐶 can𝑛 be empty.

For each 𝐶 ,𝑖 0 ≤ 𝑖 ≤ 𝑛−1, the following steps are applied:

𝑃𝑖 ← S ⊕ (40)[0∶127] 𝐶𝑖

S (41)[0∶127] ← 𝐶𝑖

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S) (42)

For the last block of the ciphertext 𝐶 (with length ℓ), the following steps e ar𝑛 applied:

𝑃𝑛 ← S[0,ℓ−1] ⊕ 𝐶 (43)𝑛

S (44)[0,ℓ−1] ← 𝐶𝑛

S[ℓ,127] ← S[ℓ,127] ⊕ (1||0127−ℓ) (45)

The plaintext 𝑃 is constructed by concatenating the plaintext blocks as

𝑃 ← 𝑃 ∥…∥𝑃 ̃ (46)0 𝑛−1 ∥𝑃𝑛.

4. Finalization. During finalization, the key is loaded to the state S as

S ← S ⊕(0128 ∥𝐾 ∥064), (47)

and the state S is then updated using the permutation Ascon-p[12], as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (48)

Finally, the tag is generated by XORing the key with the last 128 bits of the state:

𝑇 ′ ← (𝑆 (49)[192∶319])⊕𝐾.

As the ′ last step, the computed 𝑇 is compared with the input 𝑇. If the two match,
the plaintext 𝑃 is returned. Otherwise, an error message fail is returned.

18

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

4.2. Implementation Options

4.2.1. Truncation

Some applications may truncate the tag 𝑇 to a specific length 𝜆 (≤ |𝑇 |). The truncation
function outputs the leftmost 𝜆 bits 𝑇 of[0∶𝜆−1] the tag.

The requirements on the tag lengths are provided in Sec. 4.3.

4.2.2. Nonce Masking

This section provides an option to implement Ascon-AEAD128 using a 256-bit key, mainly
to maintain the 128-bit security strength of Ascon-AEAD128 in a multi-key setting [12]. In
this option, an additional 128-bit key is used to mask the input nonce.

Let 𝐾 be the 128-bit key of Ascon-AEAD128 ′ and 𝐾 be an independently generated addi-
tional 128-bit key. Ascon-AEAD128 with nonce masking is processed as follows:

E(𝐾 ∥𝐾′,𝑁,𝐴,𝑃) = Ascon-AEAD128.enc(𝐾,𝑁 ⊕𝐾′,𝐴,𝑃), (50)

D(𝐾 ∥𝐾′,𝑁,𝐴,𝐶,𝑇) = Ascon-AEAD128.dec(𝐾,𝑁 ⊕𝐾′,𝐴,𝐶,𝑇) (51)

Ascon-AEAD128 with nonce masking should only be used when context-commitment
security [13] and related-key security are not concerns because the encryption of Ascon-
AEAD128 with nonce masking always outputs the same (𝐶, 𝑇) pair for two different input
tuples (𝐾 ‖𝐾′,𝑁,𝐴,𝑃) and (𝐾 ‖𝐾″,𝑁 ′,𝐴,𝑃), where 𝑁 ⊕𝐾′ = 𝑁 ′ ⊕𝐾″ .

4.3. AEAD Requirements

This section specifies requirements for Ascon-AEAD128.

R1. Key generation. The secret key 𝐾 and the nonce-masking key 𝐾′ (if available)
shall be generated following the recommendations for cryptographic key generation
specified in SP 800-133 [14] and using an approved random bit generator that supports
at least a 128-bit security strength. The keys shall not be used for other purposes.

R2. Use of unique nonce. Nonce shall be distinct for each encryption operation for a
given key to ensure that identical plaintexts encrypted multiple times produce different
ciphertext.

R3. Minimum length of truncated tag. When an application uses truncated tags, the
bit length of the truncated tags shall be at least 64 bits, and the tag length shall be
the same across the life-span of the key.

19

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

R4. Limit on the maximum number of decryption failures. When the tag bit length
is 𝜆, 64 ≤ 𝜆 ≤ 128, the maximum number of decryption failures for a fixed key shall
be at most 2𝜆−64.

R5. Data limit. The total amount of data processed during encryption and decryption,
including the nonce, 54shall not exceed 2 bytes for a given key.

R6. Key update. The key shall be updated to a new one when the total number of input
data blocks or the number of decryption failures reach their respective limits or if the
nonce uniqueness requirement is violated.

4.4. Security Properties

This section provides the security properties of Ascon-AEAD128 in various scenarios, in-
cluding single-key and multi-key settings, nonce-respecting and nonce-misuse settings, and
with or without the truncation option.

In the single-key setting, the attacker focuses on a specific key that is shared by one or more
users. In contrast, in the multi-key setting with 𝑢 keys, the attacker aims to compromise
any of the 𝑢 keys used by the users.

The security of the Ascon-AEAD128 mode, in both single-key and multi-key settings, was
evaluated in [12, 15–17].

4.4.1. Single-Key Setting

Ascon-AEAD128 (with no tag truncation) provides a 128-bit security strength in the single-
key and nonce-respecting setting, for the confidentiality of the plaintext (except for its
length) and the integrity of the tuple (nonce, associated data, ciphertext, tag), where the
total number of input bytes 54is limited to 2 (i.e., 250 blocks).

Impact of truncation. When the tag is 𝜆 bits, 64 ≤ 𝜆 ≤ 128, the maximum number of
decryption failures for a ed 𝜆−64fix key is limited to 2 . Therefore, the probability that there
is a valid −64 forgery is at most 2 . Once a forgery attempt is successful, the confidentiality of
the plaintext can be immediately compromised, as the decryption function may reveal some
information about the plaintext. Therefore, in the single-key setting, Ascon-AEAD128 with
tag length 𝜆 provides (min{128,𝜆})-bit security strengths for confidentiality and integrity
in the nonce-respecting setting.

4.4.2. Multi-Key Setting

When 𝑢 keys are independently selected for an application, Ascon-AEAD128 (with no tag-
truncation) provides a (128 − log 𝑢)-bit security strength in the nonce-respecting setting, 2
for the confidentiality of the plaintext and the integrity of the tuple of (nonce, associated

20

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

54data, ciphertext, tag), where the total number of input bytes for all 𝑢 keys is limited to 2
 250 (i.e., blocks).

When the same nonce is used with 𝑢 keys, an attacker may be able to discover one of the 𝑢
128− 𝑢 keys with a time complexity of 2 log2 , thereby compromising both confidentiality and

integrity.

To improve security in a multi-key setting, the nonce masking implementation option (see
Sec. 4.2.2) can be used. This option provides 128-bit security (rather than 128 − log2(𝑢))
for confidentiality and integrity.

Impact of truncation. When the tag is truncated to 𝜆 bits, 64 ≤ 𝜆 ≤ 128, the maximum
number of decryption failures for 𝜆−64 all 𝑢 keys is limited to 2 . Therefore, the probabil-
ity of obtaining a valid forgery is expected −64 to be at most 2 . In the multi-key setting,
Ascon-AEAD128 with tag-length 𝜆 provides (min{128 − log 𝑢,𝜆})-bit security strengths 2
of confidentiality and integrity in the nonce-respecting setting.

4.4.3. Nonce-Misuse Setting

The plaintext confidentiality of Ascon-AEAD128 is lost when a nonce is repeated with the
same secret key. However, Ascon-AEAD128 is designed to provide some level of security in
case of certain implementation errors that violate the nonce-respecting requirement.

• In the 𝑢-key setting, Ascon-AEAD128 with a 𝜆-bit tag provides (min{128− log2(𝑢),𝜆})-
bit security strengths of confidentiality and integrity when a (nonce, associated data)
pair is never repeated for two encryptions with each of 𝑢 keys and the number of
nonce 8 repetitions per key for encryption is limited to 2 . In this scenario, the security
strengths of Ascon-AEAD128 are summarized in Table 7.

• Ascon-AEAD128 with 𝜆-bit tag also provides a (min{128 − log (𝑢),𝜆})-bit integrity 2
security strength of the tuple (nonce, associated data, ciphertext, tag) if the number
of repetitions of any (nonce, associated data) pair per each of 𝑢 keys for encryption
is limit 8ed to 2 . In this scenario, the integrity security strength of Ascon-AEAD128
with 𝜆-bit tag is summarized in Table 8.

Table 7. Security strength of Ascon-AEAD128 with 𝜆-bit tag in the 𝑢-key setting, where (𝑁,
𝐴) pair is unique for encryption.

Security
strengths
in bits

Total number
of repetitions of

a nonce
Security

Confidentiality of plaintext min{128 − log2(𝑢),𝜆} ≤ 28

Integrity of (𝑁,𝐴,𝐶,𝑇) min{128 − log2(𝑢),𝜆} ≤ 28

21

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

5. Hash and Extendable Output Functions

Hash and extendable output functions are built on the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation in a
sponge-based mode. This section specifies three functions:

• The hash function Ascon-Hash256, which produces a 256-bit digest,

• The Ascon-XOF128 function that produces arbitrary length outputs, and

• The customized XOF Ascon-CXOF128.

5.1. Specification of Ascon-Hash256

The mode of operation used by Ascon-Hash256 and Ascon-XOF128 is shown in Fig. 7. This
mode comprises three main steps: initialization, absorbing the message, and squeezing the
output. Note that 𝐿, the length of the output, and is 256 for Ascon-Hash256 and 𝐿 > 0
for Ascon-XOF128.

Figure 7. Structure of Ascon-Hash256 and Ascon-XOF128

IV∥0256

As
co
n-
p[
12
]

Initialization

⧸64

M0

As
co
n-
p [
12
]

⧸
256

Mn−1

As
co
n-
p [
12
]

⧸
256

Absorb Message

Mn

256
⧸ As

co
n-
p[
12
]

⧸

H0

As
co
n-
p[
12
]

256
⧸
256

H⌈L/64⌉−1

⧸64

Squeeze Output

Ascon-Hash256 takes a variable length message 𝑀 as input and produces a 256-bit digest.
The full specification of Ascon-Hash256 can be found in Algorithm 5 and operates as
follows:

1. Initialization. The 320-bit internal state of Ascon-Hash256 is initialized with the
concatenation of the 64-bit 𝐼𝑉 = 0x0000080100cc0002 and 256 zeroes, followed
by the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation. That is the initialization step is

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256). (52)

Table 8. Integrity security strength of Ascon-AEAD128 with 𝑢 keys in the nonce-misuse
setting

Security
Security strength

in bits
Total number of repetitions

of any (𝑁, 𝐴) pair
Integrity of (𝑁,𝐴,𝐶,𝑇) min{128 − log2(𝑢),𝜆} ≤ 28

22

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

2. Absorbing the message. The absorbing phase behaves similarly to the associated
data processing of Ascon-AEAD128. The message is partitioned into 64-bit blocks as

𝑀0,…,𝑀 ̃ parse (53)𝑛−1,𝑀𝑛 ← (𝑀,64).

Partial block 𝑀 is𝑛 then padded to a full block 𝑀 :𝑛

𝑀𝑛 ← pad(𝑀𝑛,64). (54)

Each message block 𝑀 is𝑖 XORed with the state as

S ← (55)[0∶63] S[0∶63] ⊕ 𝑀𝑖.

For all message blocks except the final block 𝑀 ,the𝑛 XOR operation is immediately
followed by applying 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state.

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (56)

3. Squeezing the hash. The squeezing phase begins after 𝑀 is absorbed𝑛 with an
application of 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state.

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (57)

The value of S is then taken as hash block[0∶63] 𝐻 , and the state is again updated by𝑖
𝐴𝑠𝑐𝑜𝑛-𝑝[12].

𝐻 (58)𝑖 ← S[0∶63]

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (59)

Steps (58) and (59) are repeated alternately until hash blocks 𝐻0,𝐻1, and 𝐻 have2
been extracted. The final hash block is then extracted but is not followed by the
permutation.

𝐻3 ← S (60)[0∶63]

The resulting 256-bit digest is the concatenation of hash blocks as

𝐻 ← 𝐻0 ∥𝐻1 ∥𝐻2 ∥𝐻3. (61)

23

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Algorithm 5 Ascon-Hash256(𝑀)

Input: Bitstring 𝑀 ∈ {0,1}∗

Output: Digest 𝐻 ∈ {0,1}256

𝐼𝑉 ←0x0000080100cc0002 ▷ Initialization
 ← 𝐴𝑠𝑐𝑜𝑛 𝑝[12](𝐼𝑉 ‖0256S -)

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing
𝑀𝑛 ← pad(𝑀𝑛,64)
for 𝑖 = 0 to 𝑛 − 1 do

S[0∶63] ← S[0∶63] ⊕ 𝑀𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
S[0∶63] ← S[0∶63] ⊕ 𝑀𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing
for 𝑖 = 0 to 2 do

𝐻𝑖 ← S[0∶63]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
𝐻3 ← S[0∶63]

𝐻 ← 𝐻0 ‖𝐻1 ‖𝐻2 ‖𝐻3
return 𝐻

24

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

5.2. Specification of Ascon-XOF128

Ascon-XOF128 is similar to Ascon-Hash256 but has three main differences:

1. Ascon-XOF128 accepts an additional input, 𝐿 > 0, that specifies the desired output
length in bits.

2. The number of blocks that are squeezed is equal to ⌈𝐿/64⌉.

3. The initial value differs in one bit.

The 128 in the name Ascon-XOF128 refers to the target security strength, not the output
size.

Ascon-XOF128 is specified by Algorithm 6 and is described as follows:

1. Initialization. The 320-bit internal state of Ascon-XOF128 is initialized with the
concatenation of the 64-bit 𝐼𝑉 = 0x0000080000cc0003 and 256 zeroes, followed
by the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation:

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256). (62)

2. Absorbing the message. The absorbing phase behaves similar to the associated data
processing of AEAD. The message is partitioned into 64-bit blocks as:

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64). (63)

Partial block 𝑀 is𝑛 then padded to a full block 𝑀 as𝑛

𝑀𝑛 ← pad(𝑀𝑛,64). (64)

Each message block 𝑀 is absorbed by XORing the block𝑖 into the state as

S (65)[0∶63] ← S[0∶63] ⊕ 𝑀𝑖.

For all message blocks except the final block, the XOR operation is immediately
followed by an application of 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state.

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (66)

3. Squeezing the outputs. To obtain the requested 𝐿 output bits, ℎ = ⌈𝐿/64⌉ blocks
must be extracted from the state. The squeezing phase begins with an application of
𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state.

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (67)

25

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

616

617

618

619

620

621

622

623

624

625

626

627

628

The value of S is[0∶63] then taken as output block 𝐻 ,𝑖 and the state is again updated
by 𝐴𝑠𝑐𝑜𝑛-𝑝[12].

𝐻𝑖 ← S (68)[0∶63]

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (69)

Steps (68) and (69) are repeated alternately until output blocks 𝐻0,…,𝐻 haveℎ−1
been squeezed. The final block is then squeezed without an additional permutation.

𝐻ℎ ← S (70)[0∶63]

Finally, the output blocks are concatenated, and the first 𝐿 bits are returned as output
𝐻.

𝐻′ ← 𝐻0 ∥…∥𝐻 (71)ℎ

𝐻 ← 𝐻′ (72)[0∶𝐿−1]

lgorithm 6 Ascon-XOF128(𝑀, 𝐿)
 𝑀 ∈ {0,1}∗ nput: Bitstring ; Output length 𝐿 > 0

utput: 𝐿 Digest 𝐻 ∈ {0,1}

𝐼𝑉 ← 0x0000080000cc0003 ▷ Initialization
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256)

𝑀 ,…,𝑀 ,𝑀 ← parse(𝑀,64) ▷ Absorbing0 𝑛−1 𝑛
𝑀𝑛 ← pad(𝑀𝑛,64)
for 𝑖 = 0 to 𝑛 − 1 do

S[0∶63] ← S[0∶63] ⊕ 𝑀𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
S[0∶63] ← S[0∶63] ⊕ 𝑀𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing
ℎ ← ⌈𝐿/64⌉ − 1
for 𝑖 = 0 to ℎ−1 do

𝐻𝑖 ← S[0∶63]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
𝐻ℎ ← S[0∶63]

𝐻′ ← 𝐻0 ‖…‖𝐻ℎ
𝐻 ← 𝐻′

[0∶𝐿−1]
return 𝐻

A

I

O

26

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Figure 8. Structure of Ascon-CXOF128

IV∥0256

As
co
n-
p[
12
]

Initialization

⧸64

Z0

As
co
n-
p[
12
]

⧸
256

Zm−1

As
co
n-
p[
12
]

⧸
256

Customization

Zm

256
⧸ As

co
n-
p[
12
]

M0

As
co
n-
p[
12
]

⧸
256

Mn−1

As
co
n-
p [
12
]

⧸
256

Absorb Message

Mn

256
⧸ As

co
n-
p[
12
]

⧸

H0

As
co
n-
p[
12
]

256
⧸
256

H⌈L/64⌉−1

⧸64

Squeeze Output

5.3. Specification of Ascon-CXOF128

This section specifies the customized version of Ascon-XOF128 called Ascon-CXOF128.
Customization extends the functionality of Ascon-XOF128 by allowing users to incorporate
a customization string into the computation. For the same input message, two instances
of a customized XOF using different customization strings will produce distinct outputs.
Ascon-CXOF128 is a customized XOF that differs from Ascon-XOF128 in the following ways:

• For domain separation, Ascon-CXOF128 uses a different IV than Ascon-XOF128. The
IV for Ascon-CXOF128 is 0x0000080000cc0004.

• In addition to the message, Ascon-CXOF128 takes the customization string 𝑍 as input.
The length of the customization string shall be at most 2048 bits (i.e., 256 bytes).

• The customization string 𝑍 is prepended to the message blocks as

𝑍0 ∥𝑍 (73)1 ∥…∥𝑍𝑚 ∥𝑀0 ∥…∥𝑀𝑛−1 ∥𝑀𝑛,

where 𝑍 is a 64-bit integer that represents the bit-length of the customization0 string,
and 𝑍 ,…,𝑍 are 64-bit blocks generated by parsing and padding .1 𝑚 𝑍

The general structure for Ascon-CXOF128 is shown in Fig. 8 and the full specification is
given by Algorithm 7.

5.4. Security Strengths

The security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128 are sum-

marized in Table 9.

27

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Algorithm 7 Ascon-CXOF128(𝑀, 𝐿, 𝑍)
Input: Bitstring 𝑀 ∈ {0,1}∗ ; ∗Output length 𝐿 > 0; customization string 𝑍 ∈ {0,1} , where

|𝑍| ≤ 2048
Output: Digest 𝐻 ∈ {0,1}𝐿

𝐼𝑉 ← 0x0000080000cc0004 ▷ Initialization
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256)

𝑍0 ← int64(|𝑍|) ▷ Customization
𝑍 …,𝑍 se𝑚−1,𝑍 par1 𝑚 ← (𝑍,64)
𝑍 pad ̃

𝑚 ← (𝑍𝑚,64)
for 𝑖 = 0 to 𝑚 do

S[0∶63] ← S[0∶63] ⊕ 𝑍𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for

𝑀 𝑛−1, ̃
0,…,𝑀 𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing message

𝑀𝑛 ← pad(𝑀𝑛,64)
for 𝑖 = 0 to 𝑛 − 1 do

S[0∶63] ← S[0∶63] ⊕ 𝑀𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
S[0∶63] ← S[0∶63] ⊕ 𝑀𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing
ℎ ← ⌈𝐿/64⌉ − 1
for 𝑖 = 0 to ℎ−1 do

𝐻𝑖 ← S[0∶63]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
𝐻ℎ ← S[0∶63]

𝐻′ ← 𝐻0 ‖…‖𝐻ℎ
𝐻 ← 𝐻′

[0∶𝐿−1]
return 𝐻

28

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Table 9. Security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128
algorithms

Function
Output size

in bits
Security strengths in bits

Collision Preimage 2nd Preimage
Ascon-Hash256 256 128 128 128
Ascon-XOF128 𝐿 min(𝐿/2,128) min(𝐿,128) min(𝐿,128)
Ascon-CXOF128 𝐿 min(𝐿/2,128) min(𝐿,128) min(𝐿,128)

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

References

[1] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2014) Ascon v1, Submission to
Round 1 of the CAESAR competition. Available at https://competitions.cr.yp.to/roun
d1/asconv1.pdf.

[2] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2015) Ascon v1.1, Submission to
Round 2 of the CAESAR competition. Available at https://competitions.cr.yp.to/roun
d2/asconv11.pdf.

[3] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2016) Ascon v1.2, Submission to
Round 3 of the CAESAR competition. Available at https://competitions.cr.yp.to/roun
d3/asconv12.pdf.

[4] National Institute of Standards and Technology (2001) Advanced Encryption Standard
(AES) (U.S. Department of Commerce), Report. DOI:10.6028/NIST.FIPS.197-upd1

[5] Dworkin MJ (2007) Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC (National Institute of Standards and Technology),
Report. DOI:10.6028/NIST.SP.800-38D

[6] National Institute of Standards and Technology (2015) Secure Hash Standard (SHS)
(U.S. Department of Commerce), Report. DOI:10.6028/NIST.FIPS.180-4

[7] National Institute of Standards and Technology (2015) SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions (U.S. Department of Commerce), Report.
DOI:10.6028/NIST.FIPS.202

[8] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2021) Ascon v1.2, Submission
to Final Round of the NIST Lightweight Cryptography project. Available at https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-r
ound/updated-spec-doc/ascon-spec-final.pdf.

[9] Sönmez Turan M, McKay KA, Çalık Ç, Chang D, Bassham I Lawrence E (2019) Status Re-
port on the First Round of the NIST Lightweight Cryptography Standardization Process
(National Institute of Standards and Technology), Report. DOI:10.6028/NIST.IR.8268

[10] Sönmez Turan M, McKay KA, Chang D, Çalık Ç, Bassham I Lawrence E, Kang J, Kelsey
J (2021) Status Report on the Second Round of the NIST Lightweight Cryptography
Standardization Process (National Institute of Standards and Technology), Report.
DOI:10.6028/NIST.IR.8369

29

https://competitions.cr.yp.to/round1/asconv1.pdf
https://competitions.cr.yp.to/round1/asconv1.pdf
https://competitions.cr.yp.to/round1/asconv1.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://doi.org/10.6028/NIST.IR.8268
https://doi.org/10.6028/NIST.IR.8369

680

685

690

695

700

705

679

681

682

683

684

686

687

688

689

691

692

693

694

696

697

698

699

701

702

703

704

706

707

708

709

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

[11] Sönmez Turan M, McKay KA, Chang D, Bassham L, Kang J, Waller N, Kelsey J, Hong
D (2023) Status Report on the Final Round of the NIST Lightweight Cryptography
Standardization Process (National Institute of Standards and Technology), Report.
DOI:10.6028/NIST.IR.8454

[12] Dobraunig C, Mennink B (2024) Generalized initialization of the duplex construction.
Applied Cryptography and Network Security - 22nd International Conference, ACNS
2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part II, eds
Pöpper C, Batina L (Springer), Lecture Notes in Computer Science, Vol. 14584, pp
460–484. DOI:10.1007/978-3-031-54773-7_18

[13] Bellare M, Hoang VT (2022) Efficient schemes for committing authenticated encryption.
Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 - June 3, 2022, Proceedings, Part II, eds Dunkelman O, Dziembowski S (Springer),
Lecture Notes in Computer Science, Vol. 13276, pp 845–875. DOI:10.1007/978-3-031-
07085-3_29

[14] Barker E, Roginsky A, Davis R (2020) Recommendation for cryptographic key generation,
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-133 Rev. 2. DOI:10.6028/NIST.SP.800-133r2.

[15] Chakraborty B, Dhar C, Nandi M (2023) Exact security analysis of ASCON. Advances
in Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and
Application of Cryptology and Information Security, Guangzhou, China, December 4-8,
2023, Proceedings, Part III, eds Guo J, Steinfeld R (Springer), Lecture Notes in Computer
Science, Vol. 14440, pp 346–369. DOI:10.1007/978-981-99-8727-6_12

[16] Lefevre C, Mennink B (2023) Generic Security of the Ascon Mode: On the Power of
Key Blinding, Cryptology ePrint Archive, Paper 2023/796. Available at https://ia.cr/20
23/796.

[17] Chakraborty B, Dhar C, Nandi M (2024) Tight multi-user security of ascon and its large
key extension. Information Security and Privacy - 29th Australasian Conference, ACISP
2024, Sydney, NSW, Australia, July 15-17, 2024, Proceedings, Part I, eds Zhu T, Li Y
(Springer), Lecture Notes in Computer Science, Vol. 14895, pp 57–76. DOI:10.1007/978-
981-97-5025-2_4

30

https://doi.org/10.6028/NIST.IR.8454
https://doi.org/10.1007/978-3-031-54773-7_18
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.1007/978-981-99-8727-6_12
https://ia.cr/2023/796
https://ia.cr/2023/796
https://ia.cr/2023/796
https://doi.org/10.1007/978-981-97-5025-2_4
https://doi.org/10.1007/978-981-97-5025-2_4
https://doi.org/10.1007/978-981-97-5025-2_4

1] 9]]

[2
56

∶2
63

]
 [2

88
∶2

95
]

 [2
96

∶3
03

]
 [3

04
∶3

11
]

 [3
12

∶3
19

]

[1
6∶

23
]

 [2
4∶

31
]

 [3
2∶

39
]

]

[4
8∶

55
]

 [5
6∶

63
]

[2
80

∶2
87

[8
∶1

5]
 [4
0∶

47]

[2
64

∶2
7

2∶
27[0
∶7

S S [2
7S S S S S S S S S S S S S S

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Appendix A. Implementation Notes

This specification follows the little-endian ordering convention. That is, on little-endian
machines, byte strings or words of any size can be loaded from memory directly into the
Ascon state without the need to perform any conversion. Neither bytes nor bits need to be
reversed. The hexadecimal forms of the padding for Ascon functions are described in Sec.
A.2.

However, the convention for printing the Ascon state using 64-bit integer words in hex-
adecimal notation (most significant byte and bit first) is different from printing the Ascon
state using byte sequences or bitstrings (least significant byte and bit first). The conversion
functions between printing byte sequences and printing integers are specified in Sec. A.1.

The least significant bit of 𝑆 is 𝑠 (or S) and the most significant0 (0,0) [0∶0] bit of 𝑆 is4 𝑠(4,63)
(or S). Similarly, the least significant byte of 𝑆 is the first byte of[319∶319] 0 state (S)[0∶7] and
the most significant byte of 𝑆 is the las4 t byte of the state (S).[312∶319] This relationship
between state words, bytes, and state bits is shown in Fig. 9, where 𝑆𝑖[𝑗] denotes the 𝑗𝑡ℎ

byte of state word 𝑆 for𝑖 0 ≤ 𝑖 ≤ 4 and 0 ≤ 𝑗 ≤ 7.

Figure 9. Mapping between state words, bytes, and bits

𝑆0
… 𝑆4

𝑆 0 [0] 𝑆 0 [1] 𝑆 0 [2] 𝑆 0 [3] 𝑆 0 [4] 𝑆 0 [5] 𝑆 0 [6] 𝑆 0 [7] 𝑆 4 [0] 𝑆 4 [1] 𝑆 4 [2] 𝑆 4 [3] 𝑆 4 [4] 𝑆 4 [5] 𝑆 4 [6] 𝑆 4 [7]

A.1. Conversion Functions

When printing values as integers using hexadecimal notation, the most significant byte and
most significant bit are shown first.

Integers and byte sequences. Printing the integer representation of a byte sequence
requires the byte order to be reversed. That is, the first element in the sequence of bytes is
the least significant byte of the integer, while the last element in the sequence of bytes is
the most significant byte of the integer.

Integers and bitstrings. Printing a bitstring as an integer requires the byte order to be
reversed, and additionally, bits within a byte to be reversed. That is, the first element of a
bitstring is the least significant bit of the integer (or byte), while the last element of the
bitstring is the least significant bit of the integer (or byte).

31

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Table 10. Address for each byte of Ascon state word 𝑆𝑖 in memory on little-endian and
big-endian machines, where the word 𝑆𝑖 begins at memory address 𝑎.

Word Little-endian Big-endian
byte
𝑆𝑖[0]
𝑆𝑖[1]
𝑆𝑖[2]
𝑆𝑖[3]
𝑆𝑖[4]
𝑆𝑖[5]
𝑆𝑖[6]
𝑆𝑖[7]

address
𝑎 + 0
𝑎 + 1
𝑎 + 2
𝑎 + 3
𝑎 + 4
𝑎 + 5
𝑎 + 6
𝑎 + 7

address
𝑎 + 7
𝑎 + 6
𝑎 + 5
𝑎 + 4
𝑎 + 3
𝑎 + 2
𝑎 + 1
𝑎 + 0

Loading 64-bit integer words from a byte sequence. When loading the state from a
sequence of bytes stored in memory, the first eight bytes are mapped to the first 64-bit
unsigned integer word 𝑆 in little-endian notation (i.e., without byte0 reversal on little-endian
machines). The next eight bytes are loaded to 𝑆 . Bytes continue t1 o be loaded in the same
way until the final eight bytes of the stored state are loaded into 𝑆 .4

An example of the mapping between memory addresses to state word bytes is presented in
Table 10 for both little-endian and big-endian machines. An example of mappings between
64-bit unsigned integers, byte sequences, and bitstrings is shown in Fig. 10. Note that
64-bit integers and bitstrings only appear to be reversed in the visual representation.

Writing 64-bit integer words to a byte sequence. The process for writing the 64-bit unsigned
integer Ascon state words to a byte sequence in memory is simply the reverse of loading
a state word from a byte sequence. The byte order does not need to be reversed on
little-endian machines.

A.2. Implementing with Integers

This section provides additional information for software implementations that employ
64-bit unsigned integers.

Padding. The padding rule described in Algorithm 2 appends a one followed by one or
more zeroes to data. For an integer 𝑥 that can be represented with 𝑛 < 8 bytes, an integer
𝑦 representing a padded version of 𝑥 is computed as:

𝑦 ← 𝑥⊕(0x0000000000000001 ≪ 8𝑛)

Domain Separation Bit. The hexadecimal integer form of the domain separation bit is
0x8000000000000000. Therefore, the addition of this bit into the state may be imple-

32

State
bits

State
word

Word value (64-bit unsigned integers)

S[0∶63] 𝑆0 0x0706050403020100
S[64∶127] 𝑆1 0x0F0E0D0C0B0A0908
S[128∶191] 𝑆2 0x1716151413121110
S[192∶255] 𝑆3 0x1F1E1D1C1B1A1918
S[256∶319] 𝑆4 0x2726252423222120

↕

↕

State
bits

State
word

Word value (byte sequence)

S[0∶63] 𝑆0 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
S[64∶127] 𝑆1 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
S[128∶191] 𝑆2 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
S[192∶255] 𝑆3 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
S[256∶319] 𝑆4 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

State
bits

State
word

Word value (bitstring)

S[0∶63] 𝑆0 0000 0000 1000 0000 0100 0000 1100 0000
0010 0000 1010 0000 0110 0000 1110 0000

S[64∶127] 𝑆1 0001 0000 1001 0000 0101 0000 1101 0000
0011 0000 1011 0000 0111 0000 1111 0000

S[128∶191] 𝑆2 0000 1000 1000 1000 0100 1000 1100 1000
0010 1000 1010 1000 0110 1000 1110 1000

S[192∶255] 𝑆3 0001 1000 1001 1000 0101 1000 1101 1000
0011 10001011 1000 0111 1000 1111 1000

S[256∶319] 𝑆4 0000 0100 1000 0100 0100 0100 1100 0100
0010 0100 1010 0100 0110 0100 1110 0100

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

33

Figure 10. Representation of the Ascon state as 64-bit unsigned integers, byte sequences,
and bitstrings, where 64-bit unsigned integers are used to define the permutation, data
stored in memory is represented as byte sequences, and bitstrings are used to specify the
modes of operation. Note that 64-bit integers and bitstrings only appear to be reversed in
the visual representation.

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

Table 11. Examples of padding an unsigned integer 𝑥 to a 64-bit block, where 𝑥 encodes a
sequence of bytes each having value 0xFF in little-endian byte order.

Length of 𝑥
(in bytes)

Padding
Bytes

Unsigned integer 𝑥 Padded 64-bit block

0 8 0x0000000000000000 0x0000000000000001
1 7 0x00000000000000FF 0x00000000000001FF
2 6 0x000000000000FFFF 0x000000000001FFFF
3 5 0x0000000000FFFFFF 0x0000000001FFFFFF
4 4 0x00000000FFFFFFFF 0x00000001FFFFFFFF
5 3 0x000000FFFFFFFFFF 0x000001FFFFFFFFFF
6 2 0x0000FFFFFFFFFFFF 0x0001FFFFFFFFFFFF
7 1 0x00FFFFFFFFFFFFFF 0x01FFFFFFFFFFFFFF

mented as:

𝑆4 ← 𝑆4 ⊕ 0x8000000000000000.

64-bit Block Absorption. In Ascon-Hash256, Ascon-XOF128, or Ascon-CXOF128, the
absorption of a 64-bit message block expressed as the byte sequence 0x00, 0x01, 0x02,
0x03, 0x04, 0x05, 0x06, 0x07 can be implemented as:

𝑆0 ← 𝑆0 ⊕ 0x0706050403020100,

128-bit Block Absorption. Absorbing a 128-bit associated data or plaintext block repre-
sented by byte sequence 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F can similarly be implemented as:

𝑆0 ← 𝑆0 ⊕ 0x0706050403020100

𝑆1 ← 𝑆1 ⊕ 0x0F0E0D0C0B0A0908

Key Addition. Ascon-AEAD128 has keyed initialization and finalization, where the key is
added to the state in various locations. For a key represented as a sequence of bytes
having value 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, the key addition at the beginning of the initialization phase may
be written as:

𝑆1 ← 𝑆1 ⊕ 0x0706050403020100

𝑆2 ← 𝑆2 ⊕ 0x0F0E0D0C0B0A0908,

the key addition at the end of the initialization phase may be written as:

𝑆3 ← 𝑆3 ⊕ 0x0706050403020100

𝑆4 ← 𝑆4 ⊕ 0x0F0E0D0C0B0A0908,

34

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

the key addition at the beginning of the finalization phase can be expressed as:

𝑆2 ← 𝑆2 ⊕ 0x0706050403020100

𝑆3 ← 𝑆3 ⊕ 0x0F0E0D0C0B0A0908,

and the key addition at the end of finalization can be implemented as:

𝑆3 ← 𝑆3 ⊕ 0x0706050403020100

𝑆4 ← 𝑆4 ⊕ 0x0F0E0D0C0B0A0908.

35

NIST SP 800-232 ipd (Initial Public Draft)
November 2024

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Appendix B. Determination of the Initial Values

Each variant of the Ascon family has a 64-bit initial value constructed as

𝐼𝑉 = 𝑣∥08 ∥𝑎∥𝑏 ∥ 𝑡 ∥𝑟/8∥016 , (74)

where

• 𝑣 is a unique identifier for the algorithm (represented in 8 bits).

• 𝑎 is the number of rounds during initialization and finalization (represented in 4 bits).

• 𝑏 is the number of rounds during the processing of AD, plaintext and ciphertext for
AEAD, and the number of rounds during processing the message for hash, XOF and
CXOF (represented in 4 bits).

• 𝑡 is 128 for Ascon-AEAD128, 256 for Ascon-Hash256 and is 0 for Ascon-XOF128
and Ascon-CXOF128 (represented in 16 bits).

• 𝑟/8 is the number of input bytes processed per invocation of the underlying permu-

tation (represented in 8 bits).

The values of these parameters for each variant are given in Table 12, and initial values for
each Ascon variant are specified in Table 13.

Table 12. Parameters for initial value construction

Ascon variants
𝑣 𝑎 𝑏 𝑡 𝑟/8

(8 bits) (4 bits) (4 bits) (16 bits) (8 bits)

Ascon-AEAD128 1 12 8 128 16
Ascon-Hash256 2 12 12 256 8
Ascon-XOF128 3 12 12 0 8
Ascon-CXOF128 4 12 12 0 8

Table 13. Initial values as hexadecimal integers

Ascon variants Initial value

Ascon-AEAD128
Ascon-Hash256
Ascon-XOF128
Ascon-CXOF128

0x00001000808c0001
0x0000080100cc0002
0x0000080000cc0003
0x0000080000cc0004

36

	Frontmatter
	NIST SP 800-232 ipd (Cover)
	NIST SP 800-232 ipd (Title Page)
	Publication context
	Disclaimer
	Authority
	NIST Technical Series Policies
	Publication History
	How to cite

	Contacts page
	Author ORCID iDs
	Public Comment Period
	Submit Comments

	Abstract page
	Abstract
	Keywords
	Reports on Computer Systems Technology

	Call for Patent Claims
	Contents
	Table of Contents
	List of Tables
	List of Figures

	Acknowledgments

	1. Introduction
	2. Preliminaries
	2.1. Auxiliary Functions

	3. Ascon Permutations
	3.1. Internal State
	3.2. Constant-Addition Layer pC
	3.3. Substitution Layer pS
	3.4. Linear Diffusion Layer pL

	4. Authenticated Encryption Scheme: Ascon-AEAD128
	4.1. Specification of Ascon-AEAD128
	4.1.1. Encryption
	4.1.2. Decryption

	4.2. Implementation Options
	4.2.1. Truncation
	4.2.2. Nonce Masking

	4.3. AEAD Requirements
	4.4. Security Properties
	4.4.1. Single-Key Setting
	4.4.2. Multi-Key Setting
	4.4.3. Nonce-Misuse Setting

	5. Hash and Extendable Output Functions
	5.1. Specification of Ascon-Hash256
	5.2. Specification of Ascon-XOF128
	5.3. Specification of Ascon-CXOF128
	5.4. Security Strengths

	Appendix A. Implementation Notes
	A.1. Conversion Functions
	A.2. Implementing with Integers

	Appendix B. Determination of the Initial Values

