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Abstract 

In 2023, the National Institute of Standards and Technology (NIST) announced the selection 
of the Ascon family of algorithms designed by Dobraunig, Eichlseder, Mendel, and Schläffer 
to provide efficient cryptography solutions for resource-constrained devices. This decision 
emerged from a rigorous, multi-round lightweight cryptography standardization process. 
This standard introduces a new Ascon-based family of symmetric-key cryptographic primi-

tives designed to deliver Authenticated Encryption with Associated Data (AEAD), hash, and 
Extendable Output Function (XOF) capabilities, namely Ascon-AEAD128, Ascon-Hash256, 
Ascon-XOF128, and Ascon-CXOF128. The Ascon family is characterized by lightweight 
permutation-based primitives and provides robust security, efficiency, and flexibility, mak-

ing it ideal for resource-constrained environments, such as Internet of Things (IoT) devices, 
embedded systems, and low-power sensors. The family is developed to offer a viable 
alternative when the Advanced Encryption Standard (AES) may not perform optimally. This 
draft standard outlines the technical specifications of Ascon-AEAD128, Ascon-Hash256, 
Ascon-XOF128, and Ascon-CXOF128, and provides their security properties. 

Keywords 

Ascon; authenticated encryption; constrained devices; eXtendable Output Function (XOF); 
hash function; lightweight cryptography; permutation-based cryptography; standardization. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical lead-
ership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to ad-
vance the development and productive use of information technology. ITL’s responsibilities 
include the development of management, administrative, technical, and physical standards 
and guidelines for the cost-effective security and privacy of other than national security-
related information in federal information systems. The Special Publication 800-series 
reports on ITL’s research, guidelines, and outreach efforts in information system security, 
and its collaborative activities with industry, government, and academic organizations. 
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Call for Patent Claims 

This public review includes a call for information on essential patent claims (claims whose 
use would be required for compliance with the guidance or requirements in this Information 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may 
be directly stated in this ITL Publication or by reference to another publication. This call 
also includes disclosure, where known, of the existence of pending U.S. or foreign patent 
applications relating to this ITL draft publication and of any relevant unexpired U.S. or 
foreign patents. 

ITL may require from the patent holder, or a party authorized to make assurances on its 
behalf, in written or electronic form, either: 

1. assurance in the form of a general disclaimer to the effect that such party does not 
hold and does not currently intend holding any essential patent claim(s); or 

2. assurance that a license to such essential patent claim(s) will be made available 
to applicants desiring to utilize the license for the purpose of complying with the 
guidance or requirements in this ITL draft publication either: 

(a) under reasonable terms and conditions that are demonstrably free of any unfair 
discrimination; or 

(b) without compensation and under reasonable terms and conditions that are 
demonstrably free of any unfair discrimination. 

Such assurance shall indicate that the patent holder (or third party authorized to make 
assurances on its behalf) will include in any documents transferring ownership of patents 
subject to the assurance, provisions sufficient to ensure that the commitments in the assur-
ance are binding on the transferee, and that the transferee will similarly include appropriate 
provisions in the event of future transfers with the goal of binding each successor-in-interest. 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 
regardless of whether such provisions are included in the relevant transfer documents. 

Such statements should be addressed to: SP800-232-comments@list.nist.gov 
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1. Introduction 

This draft standard specifies the Ascon family of algorithms to provide Authenticated Encryp-
tion with Associated Data (AEAD), a hash function, and two eXtendable Output Functions 
(XOFs). The Ascon family is designed to be efficient in constrained environments. The 
algorithms specified in this standard are as follows: 

1. Ascon-AEAD128 is a nonce-based authenticated encryption with associated data 
that provides 128-bit security strength in the single-key setting. 

2. Ascon-Hash256 is a cryptographic hash function that produces a 256-bit hash of the 
input messages, offering a security strength of 128 bits. 

3. Ascon-XOF128 is an XOF, where the output size of the hash of the message can be 
selected by the user, and the supported security strength is up to 128 bits. 

4. Ascon-CXOF128 is a customized XOF that allows users to specify a customization 
string and choose the output size of the message hash. It supports a security strength 
of up to 128 bits. 

Development of the Ascon family. Ascon (version v1) [1] was first submitted to the CAESAR 
(Competition for Authenticated Encryption: Security, Applicability, and Robustness) 1

1CAESAR is a competition organized by a group of international cryptologic researchers to identify a portfolio 
of authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread 
adoption. The final portfolio of the competition was announced in February 2019. For more information, 
see https://competitions.cr.yp.to/caesar.html. 

in 
2014. The submission included two AEAD algorithms: a primary recommendation, Ascon-
128, with a 128-bit key and the secondary recommendation, Ascon-96, with a 96-bit key. 
Updated versions v1.1 [2] for Round 2 and v1.2 [3] for Round 3 included minor tweaks, 
such as reordering the round constants, and the secondary recommendation was updated 
to Ascon-128a. In 2019, Ascon-128 and Ascon-128a were selected as the first choice for 
the lightweight authenticated encryption use case in the final portfolio of the CAESAR 
competition. 

NIST Lightweight Cryptography Standardization Process. In 2015, the National Institute of 
Standards and Technology (NIST) initiated the lightweight cryptography standardization 
process to develop cryptographic standards suitable for constrained environments in which 
conventional cryptographic standards (e.g., AES-GCM [4, 5] and the SHA-2 [6] and the SHA-3 
[7] hash function families) may be resource-intensive. In February 2023, NIST announced 
the decision to standardize the Ascon family [8] for lightweight cryptography applications. 
(For more information, refer to NIST Internal Report (IR) 8268 [9], NIST IR 8369 [10], and 
NIST IR 8454 [11]). 

Differences from the Ascon submission v1.2. The technical differences between this draft 
standard and the Ascon submission [8] are provided below: 
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1. Permutations. The Ascon submission defined three Ascon permutations having 6, 
8, and 12 rounds. This standard specifies additional Ascon permutations by provid-
ing round constants for up to 16 rounds to accommodate potential functionality 
extensions in the future. 

2. AEAD variants. The Ascon submission package defined AEAD variants ASCON-128, 
ASCON-128a, and ASCON-80pq. This standard specifies the Ascon-AEAD128 algorithm, 
which is based on ASCON-128a. 

3. Hash function variants. The Ascon submission defined ASCON-HASH and ASCON-HASHA. 
This standard specifies Ascon-Hash256, which is based on ASCON-HASH. 

4. XOF variants. The Ascon submission defined two extendable output functions, ASCON-
XOF and ASCON-XOFA. This standard specifies Ascon-XOF128, which is based on 
ASCON-XOF, and a new customized XOF, Ascon-CXOF128. 

5. Initial values. The initial values of the algorithms are updated to support a new 
format that accommodates potential functionality extensions. 

6. Endianness. The endianness has been switched from big endian to little endian to 
improve performance on little-endian microcontrollers. 

7. Truncation and nonce-masking. The implementation options of Ascon-AEAD128 
with truncation and nonce-masking have been added. 

Main Features of Ascon. The main features of the Ascon family are: 

• Multiple functionalities. The same permutations are used to construct multiple func-
tionalities, which allows an implementation of AEAD, hash, and XOF functionalities 
to share logic and, therefore, have a more compact implementation than functions 
that were developed independently. 

• Online and single pass. Ascon-AEAD128 is online, meaning that the 𝑖-th ciphertext 
block is determined by the key, nonce, associated data, and the first 𝑖 plaintext blocks. 
Ascon family members require only a single pass over the data. 

• Inverse-free. Since all of the Ascon family members only use the underlying permuta-

tions in the forward direction, implementing the inverse permutations is not needed. 
This approach significantly reduces implementation costs compared to designs that 
require inverse operations for decryption. 

Organization. Section 2 provides preliminaries, including the notation, basic operations, and 
auxiliary functions. Section 3 specifies the Ascon permutations for up to 16 rounds. Section 
4 specifies the authenticated encryption scheme Ascon-AEAD128, provides some imple-

mentation options for truncation and nonce masking, lists the requirements for validation, 
and provides security properties. Section 5 specifies the hash function Ascon-Hash256 , 
the XOF function Ascon-XOF128, and the customized Ascon-CXOF128 and describes their 
security properties. Appendix A provides additional notes and conversion functions for 
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implementations. Appendix B provides additional information regarding the construction 
of initial values. 
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2. Preliminaries 

Table 1 lists the acronyms used in this standard. 

Table 1. Acronyms 

Acronym Definition 

AD Associated Data 

AE Authenticated Encryption 

AEAD Authenticated Encryption with Associated Data 

AES Advanced Encryption Standard 

CAESAR Competition for Authenticated Encryption: Security, Applicability, and 
Robustness 

GCM Galois/Counter Mode 

NIST National Institute of Standards and Technology 

PRF Pseudo-Random Function 

SHA Secure Hash Algorithm 

SPN Substitution–Permutation Network 

SP Special Publication 

XOF eXtendable-Output Function 

XOR eXclusive OR 

283 Table 2 defines the terms used in this standard. 

Table 2. Terms and definitions 

Term Definition 

approved An algorithm or technique that is either specified or adopted in a 
FIPS publication or NIST Special Publication in the Computer Se-
curity SP 800 series (i.e., FIPS-approved or NIST-recommended). 

associated data Input data that is authenticated, but not encrypted. 

bit A binary digit, 0 or 1. In this standard bits are indicated in the 
Courier New font. 

bit string A finite, ordered sequence of bits. 
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Table 2. Terms and definitions 

Term Definition 

capacity The width of the underlying permutation minus the rate. 

digest Hash value. 

eXtendable- A function on bit strings in which the output can be extended 
Output Function to any desired length. 
(XOF) 

forgery A (ciphertext, tag) pair produced by an adversary who is not 
knowledgeable of the secret key and yet is accepted as valid by 
the verified decryption procedure. 

hash function A mathematical function that maps a string of arbitrary length 
to a fixed-length string. 

message Input to the hash function. 

nonce An input value to the authenticated encryption algorithm that 
is used only once for encryption performed under a given key. 

nonce-misuse A setting in which the nonce-uniqueness requirement is unin-
tentionally or accidentally violated. 

nonce-respecting A setting that satisfies the nonce-uniqueness requirement. 

rate The number of input bits processed or output bits generated 
per invocation of the underlying permutation. 

secret key A cryptographic key used by a secret-key (i.e., symmetric) cryp-
tographic algorithm and that is not made public. 

shall Term used to express a requirement that needs to be fulfilled to 
claim conformance to this standard. 

tag A cryptographic checksum on data that is designed to reveal 
both accidental errors and the intentional modification of the 
data whose computation and verification require knowledge of 
a secret key. 

truncation A process that shortens an input bitstring, preserving only a 
sub-string of a specified length. 

width The state size of the underlying permutation. 
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284 Table 3 lists the notations used in this standard. 

Table 3. Notations 

Notation Definition 

𝐾 128-bit secret key 

𝑁 128-bit nonce 

𝐴 Associated data 

𝐴𝑖 𝑖th block of associated data 𝐴 

𝑃 Plaintext 

𝑃𝑖 𝑖th block of plaintext 𝑃 

𝐶 Ciphertext 

𝐶𝑖 𝑖th block of ciphertext 𝐶 

𝑍 Customization string 

𝑍𝑖 𝑖th block of customization string 𝑍 

𝑇 128-bit authentication tag 

𝐼𝑉 64-bit constant initial value 

fail Error message to indicate that the verification of authenticated cipher-
text failed 

𝑀 Message 

𝑀𝑖 𝑖th block of message 𝑀 

𝐻 Hash value 𝐻 

𝐻𝑖 𝑖th block of hash value 𝐻 

S 320-bit internal state of the underlying permutation 

𝑆0,…,𝑆4 The five 64-bit words of the internal state S, where S = 
𝑆0 ‖ 𝑆1 ‖ … ‖ 𝑆4 

𝑠(𝑖,𝑗) 𝑗th bit of 𝑆𝑖, 0 ≤ 𝑖 ≤ 4,0 ≤ 𝑗 ≤ 63 

𝑆𝑖[𝑗] 𝑗𝑡ℎ byte of state word 𝑆𝑖 for 0 ≤ 𝑖 ≤ 4, 0 ≤ 𝑗 ≤ 7 

𝜆 Length of the truncated tag in bits 

𝑟 The rate of an algorithm 

𝑐𝑖 The constant value for round 𝑖 of Ascon permutation 

𝑝𝐶,𝑝𝑆,𝑝𝐿 Constant-addition, substitution and linear layers of the round function 𝑝 
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285 Table 4 lists the basic operations and functions used in this standard. 

Table 4. Basic operations and functions 

Functions Definition 

{0,1}∗ The set of all finite bit strings, including the empty string 

{0,1}𝑠 The set of all bit strings of length 𝑠 

0𝑠 When 𝑠 ≥ 0, 0𝑠 is the bit string that consists of 𝑠 consecutive 0s. 
When 𝑠 = 0, then 0𝑠 is the empty string. 

|𝑋| Length of the bitstring 𝑋 in bits 

𝑋 ‖𝑌 Concatenation of bitstrings 𝑋 and 𝑌 

𝑥 × 𝑦 Multiplication of integers 𝑥 and 𝑦 

𝑥 + 𝑦 Addition of integers 𝑥 and 𝑦 

𝑥 − 𝑦 Subtraction of integers 𝑥 and 𝑦 

𝑥/𝑦 Division of integer 𝑥 and non-zero integer 𝑦 

𝑥 mod 𝑦 Remainder in integer division of 𝑥 by 𝑦 

⌈𝑥⌉ For a real number 𝑥, the smallest integer greater than or equal 
to 𝑥 

⌊𝑥⌋ For a real number 𝑥, the largest integer less than or equal to 𝑥 

𝑓 ∘ 𝑔 Composition of functions 𝑓 and 𝑔. E.g., for functions 𝑓(𝑥) and 
𝑔(𝑥), 𝑓 ∘ 𝑔 is evaluate as 𝑓(𝑔(𝑥)). 

⊙ Bitwise AND operation 

⊕ Bitwise XOR operation 

𝑋 ⋙ 𝑖 Right rotation (circular shift) by 𝑖 bits of 64-bit word 𝑋, where 
the least significant bit is the rightmost bit 

𝑋 ≪ 𝑖 Left shift by 𝑖 bits 

𝑋[𝑖∶𝑗] The subset of bitstring 𝑋 beginning at index 𝑖 and ending at 
index 𝑗, inclusive. When 𝑖 > 𝑗, 𝑋[𝑖∶𝑗] is the empty string. When 
𝑖 = 𝑗, 𝑋[𝑖∶𝑗] is a single bit. 

𝑥 == 𝑦 Boolean operator to perform equality comparison, i.e., true, if 
𝑥 is equal to 𝑦, false otherwise. 
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0x Hexadecimal notation 

int64(𝑥) 64-bit representation of integer 𝑥. 
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2.1. Auxiliary Functions 

Parse function. The parse(𝑋,𝑟) function parses the input bitstring 𝑋 into a sequence 
of blocks 𝑋0,𝑋1,…,𝑋 ,ℓ  where ℓ ← ⌊|𝑋|/𝑟⌋ (i.e., 𝑋 ← 𝑋0 ‖𝑋1 ‖…‖ 𝑋 ).ℓ  The 𝑋 blocks𝑖  
for 0 ≤ 𝑖 ≤ ℓ − 1 each have a bit length 𝑟, whereas the bit length of the final block 𝑋 isℓ  
between 0 and 𝑟 − 1 (see Algorithm 1). 

Algorithm 1 parse(𝑋,𝑟) 

Input: bitstring 𝑋, rate 𝑟 
Output: bitstrings 𝑋 ̃

0,…,𝑋ℓ−1,𝑋ℓ 

ℓ ← ⌊|𝑋|/𝑟⌋ 
for 𝑖 = 0 to ℓ −1 do 

𝑋𝑖 ← 𝑋[𝑖×𝑟∶(𝑖+1)×𝑟−1] 
end for 

𝑋ℓ ← 𝑋[ℓ×𝑟∶|𝑋|−1] 

return 𝑋0,…,𝑋ℓ−1,𝑋ℓ 

Padding rule. The function pad(𝑋,𝑟) appends the bit 1 to the bitstring 𝑋, followed by the 
bitstring 0𝑗 , where 𝑗 is equal to (−|𝑋| − 1) mod 𝑟. The length of the output bitstring is a 
multiple of 𝑟 (see Algorithm 2). 

Algorithm 2 pad(𝑋,𝑟) 

Input: bitstring 𝑋, rate 𝑟 
Output: padded bitstring 𝑋′ 

𝑗 ← (−|𝑋| − 1) mod 𝑟 
𝑋′ ← 𝑋 ∥ 1 ∥ 0𝑗 

return 𝑋′ 
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3. Ascon Permutations 

This section specifies the 𝑟𝑛𝑑-round 𝐴𝑠𝑐𝑜𝑛-𝑝[𝑟𝑛𝑑] permutations, where 1 ≤ 𝑟𝑛𝑑 ≤ 16. 
The permutations follow the Substitution-Permutation-Network (SPN) structure and consist 
of iterations of the round function 𝑝 that is defined as the composition of three steps 

𝑝 = 𝑝𝐿 ∘ 𝑝𝑆 ∘ 𝑝𝐶, (1) 

where 𝑝 is𝐶  the constant-addition layer (see Sec. 3.2), 𝑝 is the substitution𝑆  layer (see Sec. 
3.3), and 𝑝 is the𝐿   linear diffusion layer (see Sec. 3.4). 

Note that 𝐴𝑠𝑐𝑜𝑛-𝑝[8] and 𝐴𝑠𝑐𝑜𝑛-𝑝[12] are the main building blocks of the Ascon family, 
and the permutation instantiated with other numbers of rounds may later be used to 
standardize other functionalities. 

3.1. Internal State 

The permutations operate on the 320-bit state S , which is represented as five 64-bit words 
denoted as 𝑆 for𝑖  0 ≤ 𝑖 ≤ 4: 

S = 𝑆0 ∥ 𝑆1 ∥ 𝑆2 ∥ 𝑆3 ∥ 𝑆4. (2) 

Let 𝑠 represents(𝑖,𝑗)  the 𝑗th bit of 𝑆 ,𝑖  0 ≤ 𝑗 < 64. In this specification of the Ascon permuta-

tion, each state word represents a 64-bit unsigned integer, where the least significant bit is 
the rightmost bit. Details on other representations of the state can be found in Appendix A. 

3.2. Constant-Addition Layer 𝑝𝐶 

The constant 𝑐 of𝑖  round 𝑖 of the Ascon permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[𝑟𝑛𝑑] (instantiated with 𝑟𝑛𝑑 
rounds), for 𝑟𝑛𝑑 ≤ 16 and 0 ≤ 𝑖 ≤ 𝑟𝑛𝑑 −1, is defined as 

𝑐𝑖 = const16−𝑟𝑛𝑑+𝑖, (3) 

where const ,…,const are defined in Table 5. The c0 15  onstant-addition layer 𝑝 adds𝐶  a 
64-bit round constant 𝑐 to𝑖  𝑆 in2  round 𝑖, for 𝑖 ≥ 0, 

𝑆2 = 𝑆2 ⊕ 𝑐𝑖. (4) 
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Table 5. The constants const𝑖 to derive round constants of the Ascon permutations 

𝑖 const𝑖 𝑖 const𝑖 

0 
1 
2 
3 
4 
5 
6 
7 

0x000000000000003c 
0x000000000000002d 
0x000000000000001e 
0x000000000000000f 
0x00000000000000f0 
0x00000000000000e1 
0x00000000000000d2 
0x00000000000000c3 

8 
9 
10 
11 
12 
13 
14 
15 

0x00000000000000b4 
0x00000000000000a5 
0x0000000000000096 
0x0000000000000087 
0x0000000000000078 
0x0000000000000069 
0x000000000000005a 
0x000000000000004b 

Since the first 56 bits of the constants are zero, in practice, this is equivalent to applying 
the constant to only the least significant eight bits of 𝑆 ,2  as shown in Fig. 1. 

Figure 1. Constant-Addition Layer 𝑝

𝑆
𝑆
𝑆
𝑆
𝑆

0
1
2
3
4 

𝐶 

3.3. Substitution Layer 𝑝𝑆 

The substitution layer 𝑝 updates𝑆  the state S with 64 parallel applications of the 5-bit 
substitution box SBOX, as 

(𝑠(0,𝑗),𝑠(1,𝑗),…,𝑠(4,𝑗)) = SBOX(𝑠(0,𝑗),𝑠(1,𝑗),…,𝑠(4,𝑗)) (5)

for 0 ≤ 𝑗 < 64, as shown in Fig. 2. 

Figure 2. Substitution layer 𝑝𝑆 

𝑆0𝑆1𝑆2𝑆3𝑆 4 

The 5-bit SBOX has a 5-bit input 𝑥 = (𝑥0,𝑥1,…,𝑥4) and computes the 5-bit output using 
the circuit provided in Figure 3. SBOX may also be implemented as a lookup table, as shown 
in Table 6. 
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Figure 3. 5-bit S-box SBOX 
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3.4. Linear Diffusion Layer 𝑝𝐿 

The linear diffusion layer 𝑝 provides diffusion within each 64-bit𝐿   word 𝑆 ,𝑖  as shown in Fig. 
4. 

Figure 4. Linear diffusion layer 𝑝𝐿 

𝑆0
𝑆1
𝑆2
𝑆3
𝑆4 

This layer applies the linear functions Σ to their corresponding state words as 𝑆 ← Σ (𝑆 ),𝑖 𝑖 𝑖 𝑖  
for 0 ≤ 𝑖 ≤ 4, where each Σ is𝑖  defined as: 

Σ0(𝑆0) = 𝑆0 ⊕ (𝑆0 ⋙ 19) ⊕ (𝑆0 ⋙ 28) (6) 

Σ1(𝑆1) = 𝑆1 ⊕ (𝑆1 ⋙ 61) ⊕ (𝑆1 ⋙ 39) (7) 

Σ2(𝑆2) = 𝑆2 ⊕ (𝑆2 ⋙ 1) ⊕ (𝑆2 ⋙ 6) (8) 

Σ3(𝑆3) = 𝑆3 ⊕ (𝑆3 ⋙ 10) ⊕ (𝑆3 ⋙ 17) (9) 

Σ4(𝑆4) = 𝑆4 ⊕ (𝑆4 ⋙ 7) ⊕ (𝑆4 ⋙ 41) (10) 

Table 6. Lookup table representation of SBOX 

𝑥 0 1 2 3 4 5 6 7 8 9 a b c d e f 
SBOX(𝑥) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 

𝑥 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 
SBOX(𝑥) 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17 
Note that 5-bit inputs are represented in hexadecimal, (e.g., 𝑥 =1 corresponds to (0,0,0,0,1)). 
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4. Authenticated Encryption Scheme: Ascon-AEAD128 

This section specifies the AEAD scheme Ascon-AEAD128, details implementation options 
(e.g., truncation and nonce masking), lists AEAD requirements, and provides security prop-
erties. 

4.1. Specification of Ascon-AEAD128 

Ascon-AEAD128 consists of the encryption algorithm Ascon-AEAD128.enc (specified in 
Sec. 4.1.1) and the decryption algorithm Ascon-AEAD128.dec (specified in Sec. 4.1.2). 

Ascon-AEAD128.enc takes a 128-bit secret key 𝐾, a 128-bit nonce 𝑁, variable-length 
associated data 𝐴, and variable-length plaintext 𝑃 as inputs and outputs ciphertext 𝐶 
(where |𝐶| = |𝑃 |) and 128-authentication tag 𝑇 (see Section 4.2.1 for the truncation option): 

Ascon-AEAD128.enc(𝐾,𝑁,𝐴,𝑃 ) = (𝐶,𝑇 ), (11) 

Ascon-AEAD128.dec takes key 𝐾, nonce 𝑁, associated data 𝐴, ciphertext 𝐶, and authen-
tication tag 𝑇 as inputs and outputs 𝑃 if the tag is valid: 

𝑃 if the tag 𝑇 is valid 
Ascon-AEAD128.dec(𝐾,𝑁,𝐴,𝐶,𝑇 ) = { (12)

fail otherwise 

4.1.1. Encryption 

This section outlines the encryption algorithm of Ascon-AEAD128, which comprises four 
phases: initialization, associated data processing, plaintext processing, and finalization (see 
Fig. 5). 

Figure 5. Ascon-AEAD128 encryption 
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The pseudocode of Ascon-AEAD128.enc is provided in Algorithm 3. 

1. Initialization of the state. Given 128-bit 𝐾 and 128-bit 𝑁, the 320-bit internal state 
S is initialized as 

S ← 𝐼𝑉 ∥𝐾 ∥𝑁 (13) 
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Algorithm 3 Ascon-AEAD128.enc(𝐾,𝑁,𝐴,𝑃 ) 

Input: 128-bit key 𝐾; 128-bit nonce 𝑁; Associated data 𝐴; Plaintext 𝑃 
Output: Ciphertext 𝐶; 128-bit tag 𝑇 

𝐼𝑉 ← 0x00001000808c0001 ▷ Initialization 
S ← 𝐼𝑉 ‖𝐾 ‖𝑁 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 
S ← S ⊕(0192 ‖𝐾) 

if |𝐴| > 0 then ▷ Processing Associated Data 
𝐴0,…,𝐴𝑚−1,𝐴𝑚 ← parse(𝐴,128) 
𝐴𝑚 ←pad(𝐴𝑚,128) 
for 𝑖 = 0 to 𝑚 do 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8]((S[0∶127] ⊕𝐴𝑖)‖S[128∶319]) 
end for 

end if 
S ← S ⊕(0319 ‖1) 

𝑃0,…,𝑃𝑛−1,𝑃𝑛 ← parse(𝑃 ,128) ▷ Processing Plaintext 
ℓ ← |𝑃𝑛| 
for 𝑖 = 0 to 𝑛 − 1 do 

S[0∶127] ← S[0∶127] ⊕ 𝑃𝑖 
𝐶𝑖 ← S[0∶127] 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S) 

end for 
S[0∶127] ← S[0∶127]⊕pad(𝑃𝑛,128) 

𝐶𝑛 ← S[0,ℓ−1]

𝐶 ← 𝐶 ‖…‖𝐶 ‖𝐶0 𝑛−1 𝑛 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S ⊕(0128 ‖𝐾 ‖064)) ▷ Finalization 
𝑇 ← S[192∶319] ⊕ 𝐾 

return 𝐶,𝑇 
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where the initialization value 𝐼𝑉 is assigned to 0x00001000808c0001 (see Ap-
pendix B for the details of determining the IV). Next, S is updated using the permuta-

tion 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (14) 

and followed by XORing the secret key 𝐾 into the last 128 bits of internal state: 

S ← S ⊕(0192 ∥𝐾). (15) 

2. Processing associated data. This step has two parts, including absorbing the asso-
ciated data (when it is non-empty) and applying the domain separation bit to the 
state. 

When associated data 𝐴 is non-empty (i.e., |𝐴| > 0), it is parsed into blocks, as 

𝐴 , 𝐴 , …, 𝐴 , 𝐴 par0 1 𝑚−1 𝑚 ← se(𝐴,128), (16) 

where 𝑚 = ⌊|𝐴|/128⌋ and |𝐴𝑖| = 128 bits for 0 ≤ 𝑖 ≤ 𝑚 − 1, and 0 ≤ |𝐴𝑚| < 128, 
as explained in Algorithm 1. The last block 𝐴 can𝑚  be empty. Next, 𝐴 is𝑚  padded as 

𝐴 ← (𝐴 ,128) 0127−|𝐴 = 𝐴 ||1 ∥ 𝑚| pad (17)𝑚 𝑚 𝑚  

so that |𝐴 | = 128, as explained in Alg𝑚  orithm 2. 

Each associated data block 𝐴 (𝑖 0 ≤ 𝑖 ≤ 𝑚), is absorbed into the first 128 bits of state 
as 

S (18)[0∶127] ← S[0∶127] ⊕ 𝐴𝑖, 

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to the state as 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (19) 

The final step of processing associated data is to update the state with a constant 

S ← S ⊕(0319 ∥1) (20) 

that provides domain separation. For empty associated data, only the final step 
described in (20) is applied. 

3. Processing plaintext. Plaintext 𝑃 (including empty plaintext) is parsed into blocks as 

𝑃0, 𝑃 , …, 𝑃 (21)1 ,𝑃 parse𝑛−1 𝑛 ← (𝑃 ,128),  

where 𝑛 = ⌊|𝑃 |/128⌋ and |𝑃𝑖| = 128 for 0 ≤ 𝑖 ≤ 𝑛 − 1, and |𝑃𝑛| = ℓ, 0 ≤ ℓ < 128 
using Algorithm 1. When |𝑃 | mod 128 = 0, the last block 𝑃 is𝑛  empty. 
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For each 𝑃 , 0 ≤ 𝑖 ≤ 𝑛−1, the state S is upda𝑖  ted as follows: 

S (22)[0∶127] ← S[0∶127] ⊕ 𝑃𝑖, 

followed by generating the corresponding ciphertext block 𝐶 as𝑖  

𝐶𝑖 ← S (23)[0∶127], 

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to update the state as: 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (24) 

For the last block 𝑃 , the state is updated𝑛  as 

S (25)[0∶127] ← S pad ̃
 [0∶127] ⊕ (𝑃𝑛,128),  

and the last ciphertext block 𝐶 is obtained as𝑛   

𝐶  (26)𝑛 ← S[0∶ℓ−1]. 

The ciphertext 𝐶 is constructed by concatenating the ciphertext blocks as 

𝐶 ← 𝐶0 ∥…∥𝐶𝑛−1 ∥𝐶𝑛. (27) 

4. Finalization and tag generation. During finalization, the key is first loaded to the 
state S , as 

S ← S ⊕(0128 ∥𝐾 ∥064), (28) 

and the state S is then updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12], as 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (29) 

Finally, the tag 𝑇 is generated by XORing the key with the last 128 bits of the state: 

𝑇 ← 𝑆 (30)[192∶319] ⊕𝐾. 

he encryption algorithm returns the ciphertext 𝐶 and the tag 𝑇. T

4.1.2. Decryption 

This section describes each of the phases for decryption with Ascon-AEAD128.dec. Decryp-
tion in Ascon-AEAD128 consists of four phases: initialization, associated data processing, 
ciphertext processing, and finalization. Decryption in Ascon-AEAD128 is similar to encryp-
tion; only the last two phases differ from the encryption mode. 

The pseudocode of Ascon-AEAD128.dec is provided in Algorithm 4. 
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Algorithm 4 Ascon-AEAD128.dec(𝐾,𝑁,𝐴,𝐶,𝑇 ) 

Input: 128-bit key 𝐾; 128-bit nonce 𝑁; Associated data 𝐴; Ciphertext 𝐶; 128-bit tag 𝑇 
Output: Plaintext 𝑃 or fail 

𝐼𝑉 ← 0x00001000808c0001 ▷ Initialization 
S ← 𝐼𝑉 ‖𝐾 ‖𝑁 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 
S ← S ⊕(0192 ‖𝐾) 

if |𝐴| > 0 then ▷ Processing Associated Data 
𝐴0,…,𝐴𝑚−1,𝐴𝑚 ← parse(𝐴,128) 
𝐴𝑚 ←pad(𝐴𝑚,128) 
for 𝑖 = 0 to 𝑚 do 

S[0∶127] ← S[0∶127] ⊕ 𝐴𝑖 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S) 

end for 
end if 
S ← 319 S ⊕(0 ‖1) 

𝐶0,…,𝐶𝑛−1,𝐶𝑛 ← parse(𝐶,128) ▷ Processing Ciphertext 
for 𝑖 = 0 to 𝑛 − 1 do 

𝑃𝑖 ← S[0∶127] ⊕ 𝐶𝑖 
S[0∶127] ← 𝐶𝑖 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S) 

end for 
ℓ = |𝐶𝑛|
𝑃𝑛 ← S[0∶ℓ−1] ⊕ 𝐶𝑛 

S[ℓ,127] ← S[ℓ,127] ⊕ (1||0127−ℓ) 

S[0,ℓ−1] ← 𝐶𝑛 

128S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S ⊕(0  ‖𝐾 ‖064)) ▷ Finalization 
𝑇 ′ ← S[192∶319] ⊕ 𝐾 

if 𝑇 ′ == 𝑇 then 
𝑃 ← 𝑃 ̃

0 ‖…‖𝑃𝑛−1 ‖𝑃𝑛 
return 𝑃 

else 
return fail 

end if 
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Figure 6. Ascon-AEAD128 decryption 
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1. Initialization of the state. Given 128-bit 𝐾 and 128-bit 𝑁, the 320-bit internal state 
S is initialized as 

S ← 𝐼𝑉 ∥𝐾 ∥𝑁, (31) 

where the initial value 𝐼𝑉 is assigned to 0x00001000808c0001. Next, S is updated 
using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (32) 

and followed by XORing the secret key into the last 128 bits of the state as 

S ← S ⊕(0192 ∥𝐾). (33) 

This step is exactly the same as Step 1 of the encryption function in Sec. 4.1.1. 

2. Processing associated data. This step has two parts, including absorbing the asso-
ciated data (when it is non-empty) and applying the domain separation bit to the 
state. 

When the associated data 𝐴 is non-empty (i.e., |𝐴| > 0), it is parsed into blocks, as 

𝐴0, 𝐴1, …, 𝐴𝑚−1, 𝐴 (34) ← parse𝑚 (𝐴,128),  

where 𝑚 = ⌊|𝐴|/128⌋ and |𝐴 | = 128 bits f𝑖  or 0 ≤ 𝑖 ≤ 𝑚 − 1, and 0 ≤ |𝐴𝑚| < 128, 
as explained in Algorithm 1. The last block 𝐴 can .  be empty𝑚  

𝐴 is𝑚  further processed by padding to a full 𝑟 = 128-bit block using Algorithm 2 as 

𝐴𝑚 ← pad(𝐴 ̃ 127−|𝐴𝑚| (35)𝑚,128) = 𝐴𝑚||1 ∥ 0 . 

The associated data blocks 𝐴 ’s𝑖  (0 ≤ 𝑖 ≤ 𝑚), are absorbed to the state S as follows: 

S (36)[0∶127] ← (S[0∶127] ⊕ 𝐴𝑖), 
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and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to the state as 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (37) 

The final step of processing associated data is to update the state to: 

S ← S ⊕(0319 ∥1) (38) 

for domain separation. For empty associated data, only the final step described in 
(38) is applied. 

This step is exactly the same as Step 2 of the encryption function in Sec. 4.1.1. 

3. Processing the ciphertext. Ciphertext 𝐶 is parsed into blocks as 

𝐶0, 𝐶1, …,𝐶𝑛−1, 𝐶𝑛 ← parse(𝐶,128), (39) 

where 𝑛 = ⌊|𝐶|/128⌋, |𝐶 | = 128 for 0 ≤ 𝑖 ≤ 𝑛 − 1, ̃
𝑖  |𝐶𝑛| = ℓ, 0 ≤ ℓ < 128 using 

Algorithm 1. Ciphertext 𝐶 or the last block of ciphertext 𝐶 can𝑛  be empty. 

For each 𝐶 ,𝑖  0 ≤ 𝑖 ≤ 𝑛−1, the following steps are applied: 

𝑃𝑖 ← S ⊕ (40)[0∶127]  𝐶𝑖 

S (41)[0∶127] ← 𝐶𝑖 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S) (42) 

For the last block of the ciphertext 𝐶 (with length ℓ), the following steps e  ar𝑛  applied: 

𝑃𝑛 ← S[0,ℓ−1] ⊕ 𝐶 (43)𝑛  

S (44)[0,ℓ−1] ← 𝐶𝑛 

S[ℓ,127] ← S[ℓ,127] ⊕ (1||0127−ℓ) (45) 

The plaintext 𝑃 is constructed by concatenating the plaintext blocks as 

𝑃 ← 𝑃 ∥…∥𝑃 ̃ (46)0 𝑛−1 ∥𝑃𝑛.  

4. Finalization. During finalization, the key is loaded to the state S as 

S ← S ⊕(0128 ∥𝐾 ∥064), (47) 

and the state S is then updated using the permutation Ascon-p[12], as 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (48) 

Finally, the tag is generated by XORing the key with the last 128 bits of the state: 

𝑇 ′ ← (𝑆 (49)[192∶319])⊕𝐾. 

As the ′ last step, the computed 𝑇 is compared with the input 𝑇. If the two match, 
the plaintext 𝑃 is returned. Otherwise, an error message fail is returned. 
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4.2. Implementation Options 

4.2.1. Truncation 

Some applications may truncate the tag 𝑇 to a specific length 𝜆 (≤ |𝑇 |). The truncation 
function outputs the leftmost 𝜆 bits 𝑇 of[0∶𝜆−1]  the tag. 

The requirements on the tag lengths are provided in Sec. 4.3. 

4.2.2. Nonce Masking 

This section provides an option to implement Ascon-AEAD128 using a 256-bit key, mainly 
to maintain the 128-bit security strength of Ascon-AEAD128 in a multi-key setting [12]. In 
this option, an additional 128-bit key is used to mask the input nonce. 

Let 𝐾 be the 128-bit key of Ascon-AEAD128 ′ and 𝐾 be an independently generated addi-
tional 128-bit key. Ascon-AEAD128 with nonce masking is processed as follows: 

E(𝐾 ∥𝐾′,𝑁,𝐴,𝑃 ) = Ascon-AEAD128.enc(𝐾,𝑁 ⊕𝐾′,𝐴,𝑃 ), (50) 

D(𝐾 ∥𝐾′,𝑁,𝐴,𝐶,𝑇 ) = Ascon-AEAD128.dec(𝐾,𝑁 ⊕𝐾′,𝐴,𝐶,𝑇 ) (51)

Ascon-AEAD128 with nonce masking should only be used when context-commitment 
security [13] and related-key security are not concerns because the encryption of Ascon-
AEAD128 with nonce masking always outputs the same (𝐶, 𝑇) pair for two different input 
tuples (𝐾 ‖𝐾′,𝑁,𝐴,𝑃 ) and (𝐾 ‖𝐾″,𝑁 ′,𝐴,𝑃 ), where 𝑁 ⊕𝐾′ = 𝑁 ′ ⊕𝐾″ . 

4.3. AEAD Requirements 

This section specifies requirements for Ascon-AEAD128. 

R1. Key generation. The secret key 𝐾 and the nonce-masking key 𝐾′ (if available) 
shall be generated following the recommendations for cryptographic key generation 
specified in SP 800-133 [14] and using an approved random bit generator that supports 
at least a 128-bit security strength. The keys shall not be used for other purposes. 

R2. Use of unique nonce. Nonce shall be distinct for each encryption operation for a 
given key to ensure that identical plaintexts encrypted multiple times produce different 
ciphertext. 

R3. Minimum length of truncated tag. When an application uses truncated tags, the 
bit length of the truncated tags shall be at least 64 bits, and the tag length shall be 
the same across the life-span of the key. 
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R4. Limit on the maximum number of decryption failures. When the tag bit length 
is 𝜆, 64 ≤ 𝜆 ≤ 128, the maximum number of decryption failures for a fixed key shall 
be at most 2𝜆−64. 

R5. Data limit. The total amount of data processed during encryption and decryption, 
including the nonce, 54shall not exceed 2  bytes for a given key. 

R6. Key update. The key shall be updated to a new one when the total number of input 
data blocks or the number of decryption failures reach their respective limits or if the 
nonce uniqueness requirement is violated. 

4.4. Security Properties 

This section provides the security properties of Ascon-AEAD128 in various scenarios, in-
cluding single-key and multi-key settings, nonce-respecting and nonce-misuse settings, and 
with or without the truncation option. 

In the single-key setting, the attacker focuses on a specific key that is shared by one or more 
users. In contrast, in the multi-key setting with 𝑢 keys, the attacker aims to compromise 
any of the 𝑢 keys used by the users. 

The security of the Ascon-AEAD128 mode, in both single-key and multi-key settings, was 
evaluated in [12, 15–17]. 

4.4.1. Single-Key Setting 

Ascon-AEAD128 (with no tag truncation) provides a 128-bit security strength in the single-
key and nonce-respecting setting, for the confidentiality of the plaintext (except for its 
length) and the integrity of the tuple (nonce, associated data, ciphertext, tag), where the 
total number of input bytes 54is limited to 2  (i.e., 250 blocks). 

Impact of truncation. When the tag is 𝜆 bits, 64 ≤ 𝜆 ≤ 128, the maximum number of 
decryption  failures for a ed 𝜆−64fix key is limited to 2 . Therefore, the probability that there 
is a valid −64 forgery is at most 2 . Once a forgery attempt is successful, the confidentiality of 
the plaintext can be immediately compromised, as the decryption function may reveal some 
information about the plaintext. Therefore, in the single-key setting, Ascon-AEAD128 with 
tag length 𝜆 provides (min{128,𝜆})-bit security strengths for confidentiality and integrity 
in the nonce-respecting setting. 

4.4.2. Multi-Key Setting 

When 𝑢 keys are independently selected for an application, Ascon-AEAD128 (with no tag-
truncation) provides a (128 − log 𝑢)-bit security strength in the nonce-respecting setting, 2 
for the confidentiality of the plaintext and the integrity of the tuple of (nonce, associated 

20 



NIST SP 800-232 ipd (Initial Public Draft) 
November 2024 

520 

521 

522 

523 

524 

525 

526 

527 

528 

529 

530 

531 

532 

533 

534 

535 

536 

537 

538 

539 

540 

541 

542 

543 

544 

545 

546 

54data, ciphertext, tag), where the total number of input  bytes for all 𝑢 keys is limited to 2
 250 (i.e., blocks). 

When the same nonce is used with 𝑢 keys, an attacker may be able to discover one of the 𝑢 
128− 𝑢 keys with a time complexity of 2 log2 , thereby compromising both confidentiality and 

integrity. 

To improve security in a multi-key setting, the nonce masking implementation option (see 
Sec. 4.2.2) can be used. This option provides 128-bit security (rather than 128 − log2(𝑢)) 
for confidentiality and integrity. 

Impact of truncation. When the tag is truncated to 𝜆 bits, 64 ≤ 𝜆 ≤ 128, the maximum 
number of decryption failures for 𝜆−64 all 𝑢 keys is limited to 2 . Therefore, the probabil-
ity of obtaining a valid forgery is expected −64 to be at most 2 . In the multi-key setting, 
Ascon-AEAD128 with tag-length 𝜆 provides (min{128 − log 𝑢,𝜆})-bit security strengths 2 
of confidentiality and integrity in the nonce-respecting setting. 

4.4.3. Nonce-Misuse Setting 

The plaintext confidentiality of Ascon-AEAD128 is lost when a nonce is repeated with the 
same secret key. However, Ascon-AEAD128 is designed to provide some level of security in 
case of certain implementation errors that violate the nonce-respecting requirement. 

• In the 𝑢-key setting, Ascon-AEAD128 with a 𝜆-bit tag provides (min{128− log2(𝑢),𝜆})-
bit security strengths of confidentiality and integrity when a (nonce, associated data) 
pair is never repeated for two encryptions with each of 𝑢 keys and the number of 
nonce 8 repetitions per key for encryption is limited to 2 . In this scenario, the security 
strengths of Ascon-AEAD128 are summarized in Table 7. 

• Ascon-AEAD128 with 𝜆-bit tag also provides a (min{128 − log (𝑢),𝜆})-bit integrity 2
security strength of the tuple (nonce, associated data, ciphertext, tag) if the number 
of repetitions of any (nonce, associated data) pair per each of 𝑢 keys for encryption 
is  limit  8ed to 2 . In this scenario, the integrity security strength of Ascon-AEAD128 
with 𝜆-bit tag is summarized in Table 8. 

Table 7. Security strength of Ascon-AEAD128 with 𝜆-bit tag in the 𝑢-key setting, where (𝑁, 
𝐴) pair is unique for encryption. 

Security 
strengths 
in bits 

Total number 
of repetitions of 

a nonce 
Security 

Confidentiality of plaintext min{128 − log2(𝑢),𝜆} ≤ 28 

Integrity of (𝑁,𝐴,𝐶,𝑇) min{128 − log2(𝑢),𝜆} ≤ 28 
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5. Hash and Extendable Output Functions 

Hash and extendable output functions are built on the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation in a 
sponge-based mode. This section specifies three functions: 

• The hash function Ascon-Hash256, which produces a 256-bit digest, 

• The Ascon-XOF128 function that produces arbitrary length outputs, and 

• The customized XOF Ascon-CXOF128. 

5.1. Specification of Ascon-Hash256 

The mode of operation used by Ascon-Hash256 and Ascon-XOF128 is shown in Fig. 7. This 
mode comprises three main steps: initialization, absorbing the message, and squeezing the 
output. Note that 𝐿, the length of the output, and is 256 for Ascon-Hash256 and 𝐿 > 0 
for Ascon-XOF128. 

Figure 7. Structure of Ascon-Hash256 and Ascon-XOF128 
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Ascon-Hash256 takes a variable length message 𝑀 as input and produces a 256-bit digest. 
The full specification of Ascon-Hash256 can be found in Algorithm 5 and operates as 
follows: 

1. Initialization. The 320-bit internal state of Ascon-Hash256 is initialized with the 
concatenation of the 64-bit 𝐼𝑉 = 0x0000080100cc0002 and 256 zeroes, followed 
by the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation. That is the initialization step is 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256). (52) 

Table 8. Integrity security strength of Ascon-AEAD128 with 𝑢 keys in the nonce-misuse 
setting 

Security 
Security strength 

in bits 
Total number of repetitions 

of any (𝑁, 𝐴) pair 
Integrity of (𝑁,𝐴,𝐶,𝑇) min{128 − log2(𝑢),𝜆} ≤ 28 
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2. Absorbing the message. The absorbing phase behaves similarly to the associated 
data processing of Ascon-AEAD128. The message is partitioned into 64-bit blocks as 

𝑀0,…,𝑀 ̃ parse (53)𝑛−1,𝑀𝑛 ← (𝑀,64).  

Partial block 𝑀 is𝑛  then padded to a full block 𝑀 :𝑛  

𝑀𝑛 ← pad(𝑀𝑛,64). (54) 

Each message block 𝑀 is𝑖  XORed with the state as 

S ← (55)[0∶63]  S[0∶63] ⊕ 𝑀𝑖. 

For all message blocks except the final block 𝑀 ,the𝑛  XOR operation is immediately 
followed by applying 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state. 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (56) 

3. Squeezing the hash. The squeezing phase begins after 𝑀 is absorbed𝑛  with an   
application of 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state. 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (57) 

The value of S is then taken as hash block[0∶63]   𝐻 , and the state is again updated by𝑖         
𝐴𝑠𝑐𝑜𝑛-𝑝[12]. 

𝐻 (58)𝑖 ← S[0∶63] 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (59)

Steps (58) and (59) are repeated alternately until hash blocks 𝐻0,𝐻1, and 𝐻 have2  
been extracted. The final hash block is then extracted but is not followed by the 
permutation. 

𝐻3 ← S (60)[0∶63] 

The resulting 256-bit digest is the concatenation of hash blocks as 

𝐻 ← 𝐻0 ∥𝐻1 ∥𝐻2 ∥𝐻3. (61) 
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Algorithm 5 Ascon-Hash256(𝑀) 

Input: Bitstring 𝑀 ∈ {0,1}∗ 

Output: Digest 𝐻 ∈ {0,1}256 

𝐼𝑉 ←0x0000080100cc0002 ▷ Initialization 
 ← 𝐴𝑠𝑐𝑜𝑛 𝑝[12](𝐼𝑉 ‖0256S - ) 

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing 
𝑀𝑛 ← pad(𝑀𝑛,64) 
for 𝑖 = 0 to 𝑛 − 1 do 

S[0∶63] ← S[0∶63] ⊕ 𝑀𝑖 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 
S[0∶63] ← S[0∶63] ⊕ 𝑀𝑛 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing 
for 𝑖 = 0 to 2 do 

𝐻𝑖 ← S[0∶63] 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 
𝐻3 ← S[0∶63] 

𝐻 ← 𝐻0 ‖𝐻1 ‖𝐻2 ‖𝐻3 
return 𝐻 
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5.2. Specification of Ascon-XOF128 

Ascon-XOF128 is similar to Ascon-Hash256 but has three main differences: 

1. Ascon-XOF128 accepts an additional input, 𝐿 > 0, that specifies the desired output 
length in bits. 

2. The number of blocks that are squeezed is equal to ⌈𝐿/64⌉. 

3. The initial value differs in one bit. 

The 128 in the name Ascon-XOF128 refers to the target security strength, not the output 
size. 

Ascon-XOF128 is specified by Algorithm 6 and is described as follows: 

1. Initialization. The 320-bit internal state of Ascon-XOF128 is initialized with the 
concatenation of the 64-bit 𝐼𝑉 = 0x0000080000cc0003 and 256 zeroes, followed 
by the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation: 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256). (62) 

2. Absorbing the message. The absorbing phase behaves similar to the associated data 
processing of AEAD. The message is partitioned into 64-bit blocks as: 

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64). (63) 

Partial block 𝑀 is𝑛  then padded to a full block 𝑀 as𝑛  

𝑀𝑛 ← pad(𝑀𝑛,64). (64) 

Each message block 𝑀 is absorbed by XORing the block𝑖   into the state as 

S (65)[0∶63] ← S[0∶63] ⊕ 𝑀𝑖. 

For all message blocks except the final block, the XOR operation is immediately 
followed by an application of 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state. 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (66) 

3. Squeezing the outputs. To obtain the requested 𝐿 output bits, ℎ = ⌈𝐿/64⌉ blocks 
must be extracted from the state. The squeezing phase begins with an application of 
𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state. 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (67) 
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The value of S is[0∶63]  then taken as output block 𝐻 ,𝑖  and the state is again updated 
by 𝐴𝑠𝑐𝑜𝑛-𝑝[12]. 

𝐻𝑖 ← S (68)[0∶63] 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (69)

Steps (68) and (69) are repeated alternately until output blocks 𝐻0,…,𝐻 haveℎ−1  
been squeezed. The final block is then squeezed without an additional permutation. 

𝐻ℎ ← S (70)[0∶63] 

Finally, the output blocks are concatenated, and the first 𝐿 bits are returned as output 
𝐻. 

𝐻′ ← 𝐻0 ∥…∥𝐻 (71)ℎ  

𝐻 ← 𝐻′ (72)[0∶𝐿−1] 

lgorithm 6 Ascon-XOF128(𝑀, 𝐿) 
  𝑀 ∈ {0,1}∗ nput: Bitstring ; Output length 𝐿 > 0 

utput: 𝐿 Digest 𝐻 ∈ {0,1}

𝐼𝑉 ← 0x0000080000cc0003 ▷ Initialization 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256) 

𝑀 ,…,𝑀 ,𝑀 ← parse(𝑀,64) ▷ Absorbing0 𝑛−1 𝑛  
𝑀𝑛 ← pad(𝑀𝑛,64) 
for 𝑖 = 0 to 𝑛 − 1 do 

S[0∶63] ← S[0∶63] ⊕ 𝑀𝑖 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 
S[0∶63] ← S[0∶63] ⊕ 𝑀𝑛 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing 
ℎ ← ⌈𝐿/64⌉ − 1 
for 𝑖 = 0 to ℎ−1 do 

𝐻𝑖 ← S[0∶63] 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 
𝐻ℎ ← S[0∶63] 

𝐻′ ← 𝐻0 ‖…‖𝐻ℎ
𝐻 ← 𝐻′ 

[0∶𝐿−1] 
return 𝐻 
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Figure 8. Structure of Ascon-CXOF128 
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5.3. Specification of Ascon-CXOF128 

This section specifies the customized version of Ascon-XOF128 called Ascon-CXOF128. 
Customization extends the functionality of Ascon-XOF128 by allowing users to incorporate 
a customization string into the computation. For the same input message, two instances 
of a customized XOF using different customization strings will produce distinct outputs. 
Ascon-CXOF128 is a customized XOF that differs from Ascon-XOF128 in the following ways: 

• For domain separation, Ascon-CXOF128 uses a different IV than Ascon-XOF128. The 
IV for Ascon-CXOF128 is 0x0000080000cc0004. 

• In addition to the message, Ascon-CXOF128 takes the customization string 𝑍 as input. 
The length of the customization string shall be at most 2048 bits (i.e., 256 bytes). 

• The customization string 𝑍 is prepended to the message blocks as 

𝑍0 ∥𝑍 (73)1 ∥…∥𝑍𝑚 ∥𝑀0 ∥…∥𝑀𝑛−1 ∥𝑀𝑛,  

where 𝑍 is a 64-bit integer that represents the bit-length of the customization0  string, 
and 𝑍 ,…,𝑍 are 64-bit blocks generated by parsing and padding .1 𝑚         𝑍  

The general structure for Ascon-CXOF128 is shown in Fig. 8 and the full specification is 
given by Algorithm 7. 

5.4. Security Strengths 

The security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128 are sum-

marized in Table 9. 
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Algorithm 7 Ascon-CXOF128(𝑀, 𝐿, 𝑍) 
Input: Bitstring 𝑀 ∈ {0,1}∗ ; ∗Output length 𝐿 > 0; customization string 𝑍 ∈ {0,1} , where 

|𝑍| ≤ 2048 
Output: Digest 𝐻 ∈ {0,1}𝐿 

𝐼𝑉 ← 0x0000080000cc0004 ▷ Initialization 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256) 

𝑍0 ← int64(|𝑍|) ▷ Customization 
𝑍 …,𝑍 se𝑚−1,𝑍 par1 𝑚 ← (𝑍,64) 
𝑍 pad ̃

𝑚 ← (𝑍𝑚,64) 
for 𝑖 = 0 to 𝑚 do 

S[0∶63] ← S[0∶63] ⊕ 𝑍𝑖 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 

𝑀 𝑛−1, ̃
0,…,𝑀 𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing message 

𝑀𝑛 ← pad(𝑀𝑛,64) 
for 𝑖 = 0 to 𝑛 − 1 do 

S[0∶63] ← S[0∶63] ⊕ 𝑀𝑖 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 
S[0∶63] ← S[0∶63] ⊕ 𝑀𝑛 

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing 
ℎ ← ⌈𝐿/64⌉ − 1 
for 𝑖 = 0 to ℎ−1 do 

𝐻𝑖 ← S[0∶63] 
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) 

end for 
𝐻ℎ ← S[0∶63] 

𝐻′ ← 𝐻0 ‖…‖𝐻ℎ
𝐻 ← 𝐻′ 

[0∶𝐿−1] 
return 𝐻 
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Table 9. Security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128 
algorithms 

Function 
Output size 

in bits 
Security strengths in bits 

Collision Preimage 2nd Preimage 
Ascon-Hash256 256 128 128 128 
Ascon-XOF128 𝐿 min(𝐿/2,128) min(𝐿,128) min(𝐿,128) 
Ascon-CXOF128 𝐿 min(𝐿/2,128) min(𝐿,128) min(𝐿,128) 
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Appendix A. Implementation Notes 

This specification follows the little-endian ordering convention. That is, on little-endian 
machines, byte strings or words of any size can be loaded from memory directly into the 
Ascon state without the need to perform any conversion. Neither bytes nor bits need to be 
reversed. The hexadecimal forms of the padding for Ascon functions are described in Sec. 
A.2. 

However, the convention for printing the Ascon state using 64-bit integer words in hex-
adecimal notation (most significant byte and bit first) is different from printing the Ascon 
state using byte sequences or bitstrings (least significant byte and bit first). The conversion 
functions between printing byte sequences and printing integers are specified in Sec. A.1. 

The least significant bit of 𝑆 is 𝑠 (or S ) and the most significant0 (0,0) [0∶0]  bit of 𝑆 is4  𝑠(4,63) 
(or S ). Similarly, the least significant byte of 𝑆 is the first byte of[319∶319] 0   state (S )[0∶7]  and 
the most significant byte of 𝑆 is the las4  t byte of the state (S ).[312∶319]  This relationship 
between state words, bytes, and state bits is shown in Fig. 9, where 𝑆𝑖[𝑗] denotes the 𝑗𝑡ℎ 

byte of state word 𝑆 for𝑖  0 ≤ 𝑖 ≤ 4 and 0 ≤ 𝑗 ≤ 7. 

Figure 9. Mapping between state words, bytes, and bits 

𝑆0 
… 𝑆4 

𝑆 0 [0] 𝑆 0 [1] 𝑆 0 [2] 𝑆 0 [3] 𝑆 0 [4] 𝑆 0 [5] 𝑆 0 [6] 𝑆 0 [7] 𝑆 4 [0] 𝑆 4 [1] 𝑆 4 [2] 𝑆 4 [3] 𝑆 4 [4] 𝑆 4 [5] 𝑆 4 [6] 𝑆 4 [7] 

A.1. Conversion Functions 

When printing values as integers using hexadecimal notation, the most significant byte and 
most significant bit are shown first. 

Integers and byte sequences. Printing the integer representation of a byte sequence 
requires the byte order to be reversed. That is, the first element in the sequence of bytes is 
the least significant byte of the integer, while the last element in the sequence of bytes is 
the most significant byte of the integer. 

Integers and bitstrings. Printing a bitstring as an integer requires the byte order to be 
reversed, and additionally, bits within a byte to be reversed. That is, the first element of a 
bitstring is the least significant bit of the integer (or byte), while the last element of the 
bitstring is the least significant bit of the integer (or byte). 
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Table 10. Address for each byte of Ascon state word 𝑆𝑖 in memory on little-endian and 
big-endian machines, where the word 𝑆𝑖 begins at memory address 𝑎. 

Word Little-endian Big-endian 
byte 
𝑆𝑖[0]
𝑆𝑖[1]
𝑆𝑖[2]
𝑆𝑖[3]
𝑆𝑖[4]
𝑆𝑖[5]
𝑆𝑖[6]
𝑆𝑖[7] 

address 
𝑎 + 0 
𝑎 + 1 
𝑎 + 2 
𝑎 + 3 
𝑎 + 4 
𝑎 + 5 
𝑎 + 6 
𝑎 + 7 

address 
𝑎 + 7 
𝑎 + 6 
𝑎 + 5 
𝑎 + 4 
𝑎 + 3 
𝑎 + 2 
𝑎 + 1 
𝑎 + 0 

Loading 64-bit integer words from a byte sequence. When loading the state from a 
sequence of bytes stored in memory, the first eight bytes are mapped to the first 64-bit 
unsigned integer word 𝑆 in little-endian notation (i.e., without byte0  reversal on little-endian 
machines). The next eight bytes are loaded to 𝑆 . Bytes continue t1  o be loaded in the same 
way until the final eight bytes of the stored state are loaded into 𝑆 .4  

An example of the mapping between memory addresses to state word bytes is presented in 
Table 10 for both little-endian and big-endian machines. An example of mappings between 
64-bit unsigned integers, byte sequences, and bitstrings is shown in Fig. 10. Note that 
64-bit integers and bitstrings only appear to be reversed in the visual representation. 

Writing 64-bit integer words to a byte sequence. The process for writing the 64-bit unsigned 
integer Ascon state words to a byte sequence in memory is simply the reverse of loading 
a state word from a byte sequence. The byte order does not need to be reversed on 
little-endian machines. 

A.2. Implementing with Integers 

This section provides additional information for software implementations that employ 
64-bit unsigned integers. 

Padding. The padding rule described in Algorithm 2 appends a one followed by one or 
more zeroes to data. For an integer 𝑥 that can be represented with 𝑛 < 8 bytes, an integer 
𝑦 representing a padded version of 𝑥 is computed as: 

𝑦 ← 𝑥⊕(0x0000000000000001 ≪ 8𝑛) 

Domain Separation Bit. The hexadecimal integer form of the domain separation bit is 
0x8000000000000000. Therefore, the addition of this bit into the state may be imple-
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State 
bits 

State 
word 

Word value (64-bit unsigned integers) 

S[0∶63] 𝑆0 0x0706050403020100 
S[64∶127] 𝑆1 0x0F0E0D0C0B0A0908 
S[128∶191] 𝑆2 0x1716151413121110 
S[192∶255] 𝑆3 0x1F1E1D1C1B1A1918 
S[256∶319] 𝑆4 0x2726252423222120 

↕ 

↕ 

State 
bits 

State 
word 

Word value (byte sequence) 

S[0∶63] 𝑆0 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 
S[64∶127] 𝑆1 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 
S[128∶191] 𝑆2 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 
S[192∶255] 𝑆3 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 
S[256∶319] 𝑆4 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 

State 
bits 

State 
word 

Word value (bitstring) 

S[0∶63] 𝑆0 0000 0000 1000 0000 0100 0000 1100 0000 
0010 0000 1010 0000 0110 0000 1110 0000 

S[64∶127] 𝑆1 0001 0000 1001 0000 0101 0000 1101 0000 
0011 0000 1011 0000 0111 0000 1111 0000 

S[128∶191] 𝑆2 0000 1000 1000 1000 0100 1000 1100 1000 
0010 1000 1010 1000 0110 1000 1110 1000 

S[192∶255] 𝑆3 0001 1000 1001 1000 0101 1000 1101 1000 
0011 10001011 1000 0111 1000 1111 1000 

S[256∶319] 𝑆4 0000 0100 1000 0100 0100 0100 1100 0100 
0010 0100 1010 0100 0110 0100 1110 0100 
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Figure 10. Representation of the Ascon state as 64-bit unsigned integers, byte sequences, 
and bitstrings, where 64-bit unsigned integers are used to define the permutation, data 
stored in memory is represented as byte sequences, and bitstrings are used to specify the 
modes of operation. Note that 64-bit integers and bitstrings only appear to be reversed in 
the visual representation. 
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Table 11. Examples of padding an unsigned integer 𝑥 to a 64-bit block, where 𝑥 encodes a 
sequence of bytes each having value 0xFF in little-endian byte order. 

Length of 𝑥 
(in bytes) 

# Padding 
Bytes 

Unsigned integer 𝑥 Padded 64-bit block 

0 8 0x0000000000000000 0x0000000000000001 
1 7 0x00000000000000FF 0x00000000000001FF 
2 6 0x000000000000FFFF 0x000000000001FFFF 
3 5 0x0000000000FFFFFF 0x0000000001FFFFFF 
4 4 0x00000000FFFFFFFF 0x00000001FFFFFFFF 
5 3 0x000000FFFFFFFFFF 0x000001FFFFFFFFFF 
6 2 0x0000FFFFFFFFFFFF 0x0001FFFFFFFFFFFF 
7 1 0x00FFFFFFFFFFFFFF 0x01FFFFFFFFFFFFFF 

mented as: 

𝑆4 ← 𝑆4 ⊕ 0x8000000000000000. 

64-bit Block Absorption. In Ascon-Hash256, Ascon-XOF128, or Ascon-CXOF128, the 
absorption of a 64-bit message block expressed as the byte sequence 0x00, 0x01, 0x02, 
0x03, 0x04, 0x05, 0x06, 0x07 can be implemented as: 

𝑆0 ← 𝑆0 ⊕ 0x0706050403020100, 

128-bit Block Absorption. Absorbing a 128-bit associated data or plaintext block repre-
sented by byte sequence 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F can similarly be implemented as: 

𝑆0 ← 𝑆0 ⊕ 0x0706050403020100 

𝑆1 ← 𝑆1 ⊕ 0x0F0E0D0C0B0A0908 

Key Addition. Ascon-AEAD128 has keyed initialization and finalization, where the key is 
added to the state in various locations. For a key represented as a sequence of bytes 
having value 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 
0x0C, 0x0D, 0x0E, 0x0F, the key addition at the beginning of the initialization phase may 
be written as: 

𝑆1 ← 𝑆1 ⊕ 0x0706050403020100 

𝑆2 ← 𝑆2 ⊕ 0x0F0E0D0C0B0A0908, 

the key addition at the end of the initialization phase may be written as: 

𝑆3 ← 𝑆3 ⊕ 0x0706050403020100 

𝑆4 ← 𝑆4 ⊕ 0x0F0E0D0C0B0A0908, 
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the key addition at the beginning of the finalization phase can be expressed as: 

𝑆2 ← 𝑆2 ⊕ 0x0706050403020100 

𝑆3 ← 𝑆3 ⊕ 0x0F0E0D0C0B0A0908, 

and the key addition at the end of finalization can be implemented as: 

𝑆3 ← 𝑆3 ⊕ 0x0706050403020100 

𝑆4 ← 𝑆4 ⊕ 0x0F0E0D0C0B0A0908. 
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Appendix B. Determination of the Initial Values 

Each variant of the Ascon family has a 64-bit initial value constructed as 

𝐼𝑉 = 𝑣∥08 ∥𝑎∥𝑏 ∥ 𝑡 ∥𝑟/8∥016 , (74)

where 

• 𝑣 is a unique identifier for the algorithm (represented in 8 bits). 

• 𝑎 is the number of rounds during initialization and finalization (represented in 4 bits). 

• 𝑏 is the number of rounds during the processing of AD, plaintext and ciphertext for 
AEAD, and the number of rounds during processing the message for hash, XOF and 
CXOF (represented in 4 bits). 

• 𝑡 is 128 for Ascon-AEAD128, 256 for Ascon-Hash256 and is 0 for Ascon-XOF128 
and Ascon-CXOF128 (represented in 16 bits). 

• 𝑟/8 is the number of input bytes processed per invocation of the underlying permu-

tation (represented in 8 bits). 

The values of these parameters for each variant are given in Table 12, and initial values for 
each Ascon variant are specified in Table 13. 

Table 12. Parameters for initial value construction 

Ascon variants 
𝑣 𝑎 𝑏 𝑡 𝑟/8 

(8 bits) (4 bits) (4 bits) (16 bits) (8 bits) 

Ascon-AEAD128 1 12 8 128 16 
Ascon-Hash256 2 12 12 256 8 
Ascon-XOF128 3 12 12 0 8 
Ascon-CXOF128 4 12 12 0 8 

Table 13. Initial values as hexadecimal integers 

Ascon variants Initial value 

Ascon-AEAD128 
Ascon-Hash256 
Ascon-XOF128 
Ascon-CXOF128 

0x00001000808c0001 
0x0000080100cc0002 
0x0000080000cc0003 
0x0000080000cc0004 
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