
NIST Special Publicaton 800
NIST SP 800-231

Bugs Framework (BF)
Formalizing Cybersecurity Weaknesses and Vulnerabilites

Irena Bojanova

This publicaton is available free of charge from:htps://doi.org/10.6028/NIST.SP.800-231

https://doi.org/10.6028/NIST.SP.800-231
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-231

NIST Special Publicaton 800
NIST SP 800-231

Bugs Framework (BF)
Formalizing Cybersecurity Weaknesses and Vulnerabilites

Irena Bojanova
Sofware and Systems Division

Informaton Technology Laboratory

This publicaton is available free of charge from:htps://doi.org/10.6028/NIST.SP.800-231

July 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

Natonal Insttute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.SP.800-231

Certain equipment, instruments, sofware, or materials, commercial or non-commercial, are identfied in this paper in order to specify the experimental procedure adequately. Such identficaton does not implyrecommendaton or endorsement of any product or service by NIST, nor does it imply that the materials orequipment identfied are necessarily the best available for the purpose.
There may be references in this publicaton to other publicatons currently under development by NIST in accordance with its assigned statutory responsibilites. The informaton in this publicaton, including concepts and methodologies, may be used by federal agencies even before the completon of suchcompanion publicatons. Thus, untl each publicaton is completed, current requirements, guidelines, andprocedures, where they exist, remain operatve. For planning and transiton purposes, federal agencies may wish to closely follow the development of these new publicatons by NIST.
Organizatons are encouraged to review all draf publicatons during public comment periods and providefeedback to NIST. Many NIST cybersecurity publicatons, other than the ones noted above, are available athtps://csrc.nist.gov/publicatons.
AuthorityThis publicaton has been developed by NIST in accordance with its statutory responsibilites under theFederal Informaton Security Modernizaton Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing informaton security standards and guidelines, including minimum requirements for federal informaton systems, but such standards and guidelines shall not applyto natonal security systems without the express approval of appropriate federal officials exercising policyauthority over such systems. This guideline is consistent with the requirements of the Office ofManagement and Budget (OMB) Circular A-130.
Nothing in this publicaton should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existng authorites of the Secretary of Commerce,Director of the OMB, or any other federal official. This publicaton may be used by nongovernmentalorganizatons on a voluntary basis and is not subject to copyright in the United States. Atributon would, however, be appreciated by NIST.
NIST Technical Series PoliciesCopyright, Use, and Licensing StatementsNIST Technical Series Publicaton Identfier Syntax
Publicaton HistoryApproved by the NIST Editorial Review Board on 2024-05-16

How to cite this NIST Technical Series Publicaton:Bojanova I (2024) Bugs Framework (BF): Formalizing Cybersecurity Weaknesses and Vulnerabilites.(Natonal Insttute of Standards and Technology, Gaithersburg, MD), NIST Special Publicaton (SP), NIST SP800-231. htps://doi.org/10.6028/NIST.SP.800-231
NIST Author ORCID iD0000-0002-3198-7026

Contact Informatonbf@nist.gov

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:bf@nist.gov
https://doi.org/10.6028/NIST.SP.800-231

NIST SP 800-231July 2024

Abstract

The Bugs Framework (BF) is a classificaton of security bugs and related faults that fea-tures a formal language for the unambiguous specificaton of sofware and hardware se-curity weaknesses and vulnerabilites. BF bugs models, multdimensional weakness andfailure taxonomies, and vulnerability models define the lexis, syntax, and semantcs of theBF formal language and form the basis for the definiton of secure coding principles. The BF formalism supports a deeper understanding of vulnerabilites as chains of weaknesses that adhere to strict causaton, propagaton, and compositon rules. It enables the gen-eraton of comprehensively labeled weakness and vulnerability datasets and multdimen-sional vulnerability classificatons. It also enables the development of new algorithms forcode analysis and the use of AI models and formal methods to identfy bugs and detect,analyze, prioritze, and resolve or mitgate vulnerabilites.
Keywords

bug classificaton; bug identficaton; sofware/hardware weakness taxonomy; vulnerabil-ity detecton; safe coding; formal language; specificaton generaton; weakness dataset; vulnerability dataset; vulnerability classificaton; sofware bug; firmware bug; hardware defect; hardware logic bug; bug triaging; sofware error; sofware fault; sofware weak-ness; hardware weakness; sofware vulnerability; hardware vulnerability; exploit; securityfailure; secure coding; vulnerability resoluton; vulnerability mitgaton; labeled dataset; generaton tool; graph generaton; AI models; formal methods; CVE; CWE; NVD; KEV.
Reports on Computer Systems Technology

The Informaton Technology Laboratory (ITL) at the Natonal Insttute of Standards andTechnology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Naton’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementatons, and technical analyses to advance the development and productve use of informaton technology. ITL’s respon-sibilites include the development of management, administratve, technical, and physical standards and guidelines for the cost-effectve security and privacy of other than natonal security-related informaton in federal informaton systems. The Special Publicaton 800-series reports on ITL’s research, guidelines, and outreach efforts in informaton system se-curity, and its collaboratve actvites with industry, government, and academic organiza-tons.
Audience

The intended audience includes security researchers, sofware and hardware developers, informaton technology (IT) managers, and IT executves.
i

NIST SP 800-231July 2024

Table of Contents
1. Introducton . 1
2. Current State of the Art . 3

3. Bugs Framework Formalism . 5

3.1. BF Operaton . 7

3.2. BF Bug, Fault, and Weakness . 8

3.3. BF Vulnerability . 10

3.4. BF Bug Identficaton . 13

4. BF Security Concepts . 14

5. BF Bugs Models . 16

5.1. BF Input/Output Check (INP) Bugs Model 16

5.2. BF Memory (MEM) Bugs Model . 17

5.3. BF Data Type (DAT) Bugs Model . 18

6. BF Taxonomy . 20

6.1. BF Weakness Classes . 20

6.2. BF Failure Class . 26

6.3. BF Methodology . 26

7. BF Vulnerability Models . 29

7.1. BF Vulnerability State Model . 29

7.2. BF Vulnerability Specificaton Model . 35

8. BF Formal Language . 39

8.1. BF Lexis . 40

8.2. BF Syntax . 42

8.3. BF Semantcs . 44

9. BF Secure Coding Principles . 47

9.1. Input/Output Check Safety . 47

9.2. Memory Safety . 48

9.3. Data Type Safety . 50

10. BF Tools . 52

10.1. BFCWE Tool . 52

10.2. BFCVE Tool . 53

ii

10.3. BF GUI Tool . 55

11. BF Datasets and Systems . 59

11.1. BFCWE Dataset . 59

11.2. BFCVE Dataset . 60

11.3. BF Vulnerability Classificatons . 63

11.4. BF Systems . 65

12. Conclusion . 66

References . 67

List of Figures
Fig. 1. 9BF operaton . 7Fig. 2. BF security weakness Fig. 3. BF weakness states . 10Fig. 4. BF security vulnerability . 11Fig. 5. BF BadAlloc patern . 12Fig. 6. BF backward bug identficaton . 13Fig. 7. BF security concepts . 15Fig. 8. BF Input/Output Check (INP) Bugs Model 16Fig. 9. BF Memory (MEM) Bugs Model . 17Fig. 10. BF Data Type (DAT) Bugs Model . 19Fig. 11. BF Data Validaton (DVL) class . 21Fig. 12. BF Memory Use (MUS) class . 22Fig. 13. BF Type Conversion (TCV) class . 23Fig. 14. BF taxonomy in XML . 25Fig. 15. BF class methodology . 27 Fig. 16. BF Vulnerability State model . 30 Fig. 17. BF states of Heartbleed . 31Fig. 18. C code of heartbeat() and naive memcpy() 33Fig. 19. Heartbleed fix in Heartbeat . 34 Fig. 20. BF Vulnerability Specificaton Model . 36Fig. 21. BF specificaton of Heartbleed . 37 Fig. 22. BF secure coding principles methodology . 51Fig. 23. BF specificatons of CWE-125 . 53Fig. 24. Generated BF weakness chains for Heartbleed 55 Fig. 25. BF GUI tool . 56 Fig. 26. BF Heartbleed in XML . 58Fig. 27. CWEs by BF class types . 59 Fig. 28. CVEs by BF class types . 61Fig. 29. NVD-GitHub-BF query for MEM CVEs . 62 Fig. 30. BF Vulnerability Classificaton Model . 64

iii

NIST SP 800-231July 2024

1. Introducton

The Bugs Framework (BF) [1] is a classificaton of security bugs and related faults with mul-tdimensional weakness and failure taxonomies that features a formal language for theunambiguous specificaton of security weaknesses and vulnerabilites. The goal of BF is tohelp beter understand and detect sofware, firmware, or hardware security weaknesses and vulnerabilites, as well as to resolve or mitgate them. Both cybersecurity experts andautomated systems need precise descriptons of the publicly disclosed vulnerabilites andthe weakness types related to them. Automated analysis via formal methods requires for-mal definitons of the weakness and vulnerability concepts. The automated analysis viaartficial intelligence (AI) models requires comprehensively labeled weakness and vulner-ability datasets.
The BF organizes bugs by the operatons of orthogonal sofware, firmware, or hardware
executon phases; faults by their input operands; and errors by their output results. Anerror either propagates to a fault or is final and enables a security failure. Bugs and faultsare causes of security weaknesses, and errors and final errors are their consequences. A
bug is a code or specificaton defect. A fault is a name, data, type, address, or size error.
A BF weakness class is a taxonomic category of a weakness type that relates to a distnct executon phase defined by a set of operatons and their input operands and output results. It defines finite sets of ⟨cause, operaton⟩→consequence causal relatons, operaton and operand atributes, and code sites. Causes are bugs or faults, and consequences are errors or final errors.
A weakness is an instance of a BF class with one cause, one operaton, and one conse-quence that is expressed as a ⟨bug, operaton⟩→error, ⟨fault, operaton⟩→error, ⟨bug,
operaton⟩→final error, or ⟨fault, operaton⟩→final error triple and specific operaton and operand atributes and sites.
A vulnerability is a chain of weaknesses linked by causality via a consequence↷cause prop-agaton that eventually enables a security failure. It starts with a bug or hardware-induced fault, propagates through errors that become faults, and ends with a final error that intro-duces an exploit vector toward a failure. The first weakness relates to the root cause of the vulnerability, and the last relates to its sink.
BF bugs models, weakness and failure taxonomies, and vulnerability models define the BF formal language lexis, syntax, and causal semantcs. The BF bugs models define the sets of operatons for related executon phases and the proper flow between these oper-atons. The BF weakness taxonomies comprise structured, orthogonal, multdimensional, and context-free BF weakness classes. The BF failure taxonomy comprises correspond-ing BF failure classes. The BF vulnerability models define state and specificaton views of avulnerability, possibly converged and chained with other vulnerabilites. The BF formal lan-guage is generated by the BF lef-to-right lefmost derivaton one-symbol lookahead (LL(1)) atribute context-free grammar (ACFG) based on the BF taxonomies and models.

1

NIST SP 800-231July 2024

Analogous to the periodic table, the BF weakness taxonomies allow for the identificationor prediction of as yet unencountered security weakness types, which would allow for theprediction of new kinds of vulnerabilities.
The BF taxonomies and models also form the basis for defining secure coding principles,such as input/output check safety (e.g., injection safety), memory safety (e.g., buffer over-flow safety or use-after-free safety), and data type safety (e.g., floating point safety orsubtype confusion safety). While the BF formal language is descriptive of weaknesses andvulnerabilities, the BF secure coding principles are prescriptive against them — they pre-vent bugs and faults that compromise code safety.
The BF formalism supports a deeper understanding of vulnerabilities as chains of weak-nesses that adhere to strict causation, propagation, and composition rules and allows forbackward bug identification from a failure. It enables a new range of research and de-velopment efforts for the creation of comprehensively labeled weakness and vulnerabilitydatasets and the generation of formal vulnerability specifications and multidimensionalvulnerability classifications.
The BF also supports the development of new static or dynamic analysis and simulation oremulation algorithms [2], as well as AI models and capabilities to identify bugs and detectvulnerabilities. Given the formal specification of code and the BF definitions of weaknessand vulnerability, formal methods could also be applied to detect vulnerabilities. The nextsteps would be to prioritize and resolve or mitigate each of these vulnerabilities (i.e., fixthe bug or a fault) to secure critical infrastructure and supply chains.
The datasets of weakness and vulnerability BF specifications formally augment the Com-mon Weakness Enumeration (CWE) [3], the Common Vulnerabilities and Exposures (CVE)[4], and the National Vulnerability Database (NVD) [5]. However, the BF has the expressivepower to clearly describe any other security weaknesses and vulnerabilities.
This NIST Special Publication (SP) provides a detailed overview of the Bugs Framework (BF)systematic approach and methodologies for classifying bugs and faults by orthogonal exe-cution phases, formally specifying weaknesses and vulnerabilities, defining secure codingprinciples, generating comprehensively labeled weakness and vulnerability datasets andvulnerability classifications, and developing BF-based algorithms and systems.
Further details will be available in the following forthcoming NIST SPs:

• SP 800-231A, Bugs Framework: Security Concepts• SP 800-231B, Bugs Framework: Bugs Models• SPs 800-231Cx, Bugs Framework: yyy Taxonomy, where yyy is a BF class type• SP 800-231D, Bugs Framework: Vulnerability Models• SP 800-231E, Bugs Framework: Formal Language• SP 800-231F, Bugs Framework: Secure Coding Principles• SP 800-231G, Bugs Framework: Tools and APIs• SP 800-231H, Bugs Framework: Datasets and Classifications• SP 800-231I, Bugs Framework: Systems

2

NIST SP 800-231July 2024

2. Current State of the Art

The current state of the art in describing security weaknesses and vulnerabilites are the CWE [3] and CVE [4]. The current state of the art in labeling security weaknesses and vulnerabilites is the NVD [5], which assigns to a CVE the CWE weakness type that most closely matches the vulnerability. The Known Exploited Vulnerabilites (KEV) catalog [6] is also closely related to the CVE.
The CWE and CVE are widely used. The CWE is a community-developed list of sofware and hardware weakness types. It was developed to address “the issue of categorizing sof-ware weaknesses” and establish “acceptable definitons and descriptons of these common weaknesses” and recently added ”support for hardware weaknesses” [7]. Each CWE entry is assigned a CWE-x ID (identfier), where x is one to four digits. It provides a weakness-type descripton, an extended descripton, modes of introducton, possible mitgatons, detecton methods, and demonstratve examples.
The CVE is a catalog of publicly disclosed security vulnerabilites. It was initated to address the problem of having “no common naming conventon and no common enumeraton of the vulnerabilites in disparate databases” [8, 9]. Each CVE entry is assigned a CVE-yyyy-
x ID, where yyyy is the year of disclosure and x is a unique sequental number. Each CVE entry provides a vulnerability descripton, references to reports, and possibly links to proof of concept and code.
The CWE and CVE adopted a one-dimensional list (i.e., enumeraton) approach to orga-nizing the entries by unique IDs with natural language descriptons. The CWE added tree-based pillar, class, base, variant, and compound abstractons. Both repositories are regu-larly refined, and new weakness types, vulnerabilites, and related content are added [7].
The NVD maps CVE entries to CWE entries and assigns Common Vulnerability Scoring Sys-tem (CVSS) [10, 11] severity scores. The KEV catalog organizes publicly exploited CVEs pri-oritzed for remediaton, although they are not necessarily the most severe.
However, the CWE hierarchical structure implies that the weakness types are interdepen-dent and may be too broad, not orthogonal, and ambiguous. Many of the CWE and CVE descriptons are not sufficient, accurate, or precise enough [12–15]; have unclear causal-ity [16–18]; and include programming language and domain-specific notons. The CWE has gaps and overlaps in coverage [16–18], and while some gaps are being identfied, new overlaps may be created [19]. Many CVEs do not describe the entre chain of weaknesses underlying the vulnerability. Some list the final error at the sink as the root cause instead of the bug or hardware-induced fault that starts the chain. Focusing on the final error helps identfy mitgaton techniques, but the actual root cause must be known and fixed to resolve the vulnerability. In the case of CVEs that overlap by root cause [20], fixing that one root cause would resolve all of them. These CWE and CVE challenges propagate to the NVD and KEV and may lead to imprecise or wrong CWE-to-CVE assignments by NVD.

3

NIST SP 800-231July 2024

Additonally, the CWE and CVE do not exhibit strict methodologies for tracking the weak-nesses underlying a vulnerability, systematc comprehensive vulnerability labeling, or back-ward root cause identficaton from a security failure. There are no tools to aid the creaton and visualizaton of weakness and vulnerability descriptons (see Table 1).
Table 1. CWE, CVE, and NVD challenges

Repository Imprecise Unclear Gaps Overlaps Wrong CWE No No Descripton Challenges Descriptons Causality Assignments Tracking Tools CWE ✓ ✓ ✓ ✓ ✓ ✓CVE ✓ ✓ ✓ ✓ ✓NVD ✓ ✓ ✓ ✓ ✓ ✓

The imprecise descriptons and lack of explainability make CWEs and CVEs difficult to use in modern cybersecurity research [21]. For example, the descripton of CWE-502 mixes the notons of validaton (syntax check) and verificaton (semantcs check), for which BF defines two distnct weakness classes [16]. The descriptons of some CWEs reveal possible causingweaknesses and even chains of weaknesses, which could be helpful but may also implythat these are the only possible causing weaknesses. They also introduce terms that are unrelated to the main weakness and may mislead experts and automated analysis aboutthe single weakness that the CWE is meant to describe. Augmentng the CWE and CVE nat-ural language descriptons with unambiguous formal specificatons that adhere to within and between weaknesses causaton rules will make them more suitable for algorithms and as comprehensively labeled datasets for training AI models [22].
Unclear causality in CVEs leads to incorrect CWE assignments. For example, in the caseof CVE-2018-5907, the lack of input validaton leads to integer overflow and then buffer overflow [16]. However, the NVD labels it with CWE-190: Integer Overflow or Wraparound, even though the root cause is CWE-20: Improper Input Validaton. The entre chain is CWE-20→CWE-190→CWE-119, and the last one is “Improper Restricton of Operatons within the Bounds of a Memory Buffer.” CVE-2014-0160 Heartbleed [23] lists the final error atthe sink — buffer over-read — as the root cause, while it is missing input verificaton thatleads to pointer repositon over the upper bound and then to buffer over-read. For lack of a beter match, NVD assigns the broader CWE-125, which covers both under-lower-bound and over-upper-bound reads from a buffer.
CVEs that have the same root cause are also difficult to identfy. For example, the CVE-2016-7523 and CVE-2016-7524, CVE-2016-7518 and CVE-2017-6500, and CVE-2019-13295 and CVE-2019-13297 couples each have the same bug with the last couple patched in two versions of the product via two different commits [20]. As the chains are incomplete formany CVEs, there is no way to go backward from the failure to reveal the root cause.
The BF addresses the challenges with the CWE and CVE descriptons via its orthogonal,multdimensional, and context-free classificaton structure. The BF weakness and vulner-ability specificatons provide formal augmentaton to the CWE, CVE, and NVD entries.

4

https://cwe.mitre.org/data/definitions/502.html
https://nvd.nist.gov/vuln/detail/CVE-2018-5907
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/119.html
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://cwe.mitre.org/data/definitions/125.html
https://nvd.nist.gov/vuln/detail/CVE-2016-7523
https://nvd.nist.gov/vuln/detail/CVE-2016-7523
https://nvd.nist.gov/vuln/detail/CVE-2016-7524
https://nvd.nist.gov/vuln/detail/CVE-2016-7518
https://nvd.nist.gov/vuln/detail/CVE-2017-6500
https://nvd.nist.gov/vuln/detail/CVE-2019-13295
https://nvd.nist.gov/vuln/detail/CVE-2019-13297

NIST SP 800-231July 2024

3. Bugs Framework Formalism

The BF is a structured multdimensional classificaton of security bugs and related faults as causes for the operatons of distnct executon phases over their operands to result inerrors and final errors as consequences. Its approach is different from the exhaustve ID-based list approach exhibited by enumeratons. The BF weakness classes are organized byorthogonal sets of operatons, so a BF class is identfiable by any of its operatons. Theyallow for the expression of a weakness as a ⟨cause, operaton⟩→consequence triple withoperaton and operand atributes and a vulnerability as a chain of underlying weaknesses.
A BF weakness class is a taxonomic representaton of a weakness type defined by finite setsof operatons, causes, consequences, atributes, and sites. It is associated with the opera-tons of a distnct phase of sofware, firmware, or hardware executon, where weaknessesof this type could happen, as well as their input operands and output results.
A BF operaton is the minimal input-process-output code that can produce or propagateimproper data. A cause is a bug in the operaton or a fault of an input operand. A con-
sequence is an erroneous output result from the operaton over the operands. The error propagates to a fault or is a final error that enables a failure. Consequently, a BF operatonis the minimal input-process-output code that can produce an error from a bug or fault,where the error propagates to another fault or is final (i.e., it is a final error).
The atributes describe the operatons and operands with details on what, how, and whereit went wrong. They help understand the severity of the bug or fault causing the weakness. For example, pointer overbounds faults on the stack are more severe than those on the heap because buffer overflows on the stack, although easier to exploit, are more severe than those on the heap. The sites point to syntactc places in code that should be checked for bugs or faults that cause such weaknesses.
The BF specificaton of a weakness is based on one taxonomic BF class; it is an instance of that BF class with one cause, one operaton, one consequence, and their atributes. The
operaton binds the causaton within a weakness as a ⟨cause, operaton⟩→consequence relaton. For example, the deallocaton via a dangling pointer leading to a final error
known as double free is a weakness that is expressed formally via BF as ⟨Dangling Pointer,
Deallocate⟩→ Double Deallocate. The BF specificaton of a vulnerability is a chain of such instances and their consequence↷cause between weakness propagatons.
The BF is a formal system that comprises:

• Strict definitons of bug, fault, error, final error, weakness, vulnerability, exploit vec-tor, and failure in the context of cybersecurity to elucidate causaton and propagaton rules
• Bugs models that define distnct executon phases with orthogonal sets of operatonsin which specific bugs and faults could occur and the proper flow of operatons

5

NIST SP 800-231July 2024

• Structured, multdimensional, orthogonal, and context-free weakness taxonomies as weakness class types and a failure taxonomy as a failure class type

• A vulnerability state model as a chain of improper-state (operaton, operand1, . . . ,
operandn) tuples with a bug in the operaton or a fault of an operand that enables a failure

• A vulnerability specificaton model as a chain of ⟨cause, operaton⟩→consequence instances of BF weakness classes that ends with an instance of a BF failure class
• A formal language for the unambiguous causal specificaton of security weaknesses and vulnerabilites
• Secure coding principles, such as input/output check safety, memory safety, and data type safety

• Tools that facilitate the generaton of CWE2BF and CVE2BF mappings and formalweakness and vulnerability specificatons and their graphical representatons
• Comprehensively labeled weakness and vulnerability datasets

• Multdimensional vulnerability classificatons by common propertes and similarites based on the BF taxonomies and secure coding principles
The BF taxonomies are structured, orthogonal, multdimensional, and context-free. Struc-
tured means that a weakness is expressed as a ⟨cause, operaton⟩→consequence triplewith a precise causal relaton. The transiton from a weakness is expressed as an error↷fault or final error↷exploit vector propagaton. These ensure clear causality within a weakness, between weaknesses, and for an exploit toward a failure.
Orthogonal means that the intersecton of the sets of operatons of any two BF classes is the empty set. It ensures that the BF weakness types do not overlap in coverage.
Multdimensional means that weaknesses are organized not only by their operatons butalso by their causes, consequences, and operaton and operand atributes. It ensures theBF’s expressive power.
Context-free means an operaton cannot have different meanings depending on the lan-guage or domain. It ensures that the BF is applicable for code in any programming language and for any platorm or applicaton technology.
The BF formal language (see Sec. 8) is generated by the BF LL(1) ACFG, whose lexis, syntax, and semantcs reflect the BF weakness taxonomies and bugs and vulnerability models thatutlize the strict BF concept definitons for security bug, final error, weakness, vulnerability, exploit vector, and failure as well as fault and error. The LL1 CFG is pivotal, as it ensures precise, unambiguous specificatons.
The BF bugs models and weakness taxonomies are developed iteratvely according to the BF methodology (see Sec. 6.3) and alongside the BF, BFCWE, and BFCVE tools (see Sec. 10).

6

NIST SP 800-231July 2024

The BF formalism guarantees precise descriptons with clear causality of weaknesses (in-cluding CWE) and vulnerabilites (including CVE) and complete, orthogonal, and context-free weakness-type coverage. It forms the basis for the formal definiton of secure coding principles, such as memory safety. It also enables the creaton of comprehensively labeled weakness and vulnerability datasets, vulnerability classificatons, and BF-based systems forbug identficaton and vulnerability detecton, analysis, and resoluton or mitgaton.
3.1. BF Operaton

A BF operaton is the minimal input-process-output code that can produce or propagateimproper data (see Fig. 1). An input operand or output result data is of a specific data type. A data type defines a set or range of data values and the operatons allowed on them. Itcan be primitve (e.g., char, int, double, string, boolean) or structured (e.g.,
array, record, class). A data value is stored in a finite region of memory called an object. The boundaries of that memory define the size of the object. The address ofthe memory must be held by at least one pointer or determined as an offset on the stack.Otherwise, the object would be unreachable. Code (i.e., functons) and data type metadata are also stored in memory and can be referred to by pointers. A functon is an organized,reusable block of code that takes inputs and returns outputs of specific data types.

Fig. 1. BF operaton

BF Input Operands—Opera�on—Improper Output Model

Process
BF Opera�on

Output
Improper Name, Data,

Type, Address, Size

Input
BF Operands

BF, I. Bojanova

Memory

objects, func�ons, type metadataFault

Consequently, the possible enttes stored in memory are objects, functons, and types.The possible BF input operands and output results are: name, data (i.e., the data value),
type (i.e., the data type), address, and size. A BF operaton then is the minimal input-process-output code that can produce or propagate improper name, data, type, address,or size (see the purple terms in Fig. 1).
BF operatons could be as simple as dereferencing or repositoning a pointer or as com-plex as encrypton or authentcaton involving sophistcated algorithms. Other examplesinclude data verificaton, type coercion, and reading or deallocatng an object. Examplesof improper output results and input operands are wrong value and wrap-around as data,insufficient size and cast pointer as type, dangling pointer and over-bounds pointer as ad-
dress, and wrong resolved object and wrong generic functon bound as name.

7

NIST SP 800-231July 2024

The output result of a BF operaton is always erroneous; for that, either the operaton oran input operand is improper. An operaton is improper if it has a bug, and an operand isimproper if it is ill-formed (i.e., it is at fault). The erroneous output propagates to becomethe improper input of another BF operaton or eventually is final. Consequently, a BF oper-
aton is the minimal input-process-output code that — because of a bug or fault — results in an error that propagates to another fault or is final (i.e., it is a final error). The fault is of a name, data, type, address, or size (see Fig. 1).
3.2. BF Bug, Fault, and Weakness

The BF bugs and faults landscape covers the operatons in sofware, firmware, and hard-ware executon phases at appropriate levels of abstracton. The sofware operatons relate to code in applicatons, libraries, utlites, programming languages, services, and OSs. The
firmware operatons relate to code in device drivers, basic input/output systems (BIOS),bootloaders, and microcontrollers, as well as to microcode in central processing units (CPU) and other hardware components that require low-level control and flexibility. The hard-
ware operatons relate to electronic circuit logic, which adheres to the same input-process-output model as sofware and firmware operatons.
A BF security bug is a defect in the code or specificaton (i.e., metadata or algorithm) ofsofware, firmware, or hardware circuit logic. A bug could be introduced in an operaton(i.e., the improper operaton) by a programmer, be the result of a design flaw, or be inducedby a hardware defect. Hardware defects can result from overheatng, radiaton effects,electromagnetc interference (EMI), electrical noise, voltage variatons, electromagnetcfields, photon injecton, wear and tear, or other physical factors.
Examples of code bugs include missing code (i.e., part of an operaton or an entre op-eraton is missing) or erroneous code (e.g., use of a wrong operator in an operaton). A memory bit flip due to a hardware defect can corrupt a low-level instructon. Examples ofspecificaton bugs include the use of an under-restrictve safelist for input validaton or a wrong algorithm for encrypton.
A bug could also resurface from design flaws, such as an unaccounted-for system config-uraton or environment. For example, while an operaton may run perfectly in a 64-bitoperatng system (OS) environment, it may exhibit a security bug on a 32-bit platorm. Thedeclaraton of an int instead of uint object would lead to a wraparound from a 32-bitcalculaton that would eventually propagate to a buffer overflow.
A BF fault1 is a name, data, type, address, or size error (i.e., an improper operand). Namerelates to a resolved or bound object, functon, or data type. Data, type, address, and size relate to an object. A fault of an operand (i.e., the improper operand) could result from

1The IEEE defines fault as “an incorrect step, process, or data definiton in a computer program” [24]. The BF differentates bug, fault, and error as a code or specificaton defect of a BF operaton, data-related error of an operand, and the result of an operaton with a bug or faulty operand, respectvely (also see Sec. 4).
8

NIST SP 800-231July 2024

a bug or another fault or be induced by a hardware defect. Only in the case of low-level storage (e.g., cache and CPU registers) is there no type fault.
Adding to the examples of improper input operands in Sec. 3.1, other faults include invalid data, wild pointer, wrong type, or missing overridden functon. A wrong value could resultfrom a missing validaton or an erroneous calculaton bug, but also from bit flips or signaldisrupton due to overheatng or other physical factors.
The BF models a security weakness as an improper executon state and its transiton to another weakness or a failure (see Fig. 2). An improper state is defined as an (operaton,
operand1, . . . , operandn) tuple with at least one improper element (depicted in Fig. 2in purple). A transiton is defined by the erroneous output from the operaton over itsinput operands. An improper operaton or operand is the cause of a security weakness.The erroneous result from the operaton over the operands is the consequence of thatweakness and becomes a cause of another weakness or enables a failure. An operaton is improper if it has a bug. An operand is improper if it is ill-formed (i.e., it is at fault).

Fig. 2. BF security weakness

Results in Error1 –
Improper Operand2j

Failure

BF, I. Bojanova

Improper Staten

(opera�onn, …
operandnr , ...)

Improper State1

(opera�on1,
operand11 , ...
operand1i , ...)

Improper State2

(opera�on2, …,
operand2j , ...)

Intermediate StateIni�al State FailureFinal State

…

BF Security Weakness

Results in
Final Error

Improper State – an (opera�on, operand1, …, operandn) tuple with at least one improper element

↷ Transi�on – Erroneous resultfrom the opera�on over the operands

The inital state (depicted in Fig. 2 in blue) is caused by a bug that, if fixed, will resolve the weakness. An intermediate state (in light purple) is caused by a fault. The final state (in dark purple) results in an undefined or exploitable system behavior (i.e., a final error). For example, in Fig. 2, the improper operaton1 from Improper State1 results in improper
operand2i that causes Improper State2. The last operatonn results in a Final Error thatenables a Failure.
The possible improper states depending on the cause and consequence of a security weak-ness are presented in Fig. 3. An improper state is caused by a security bug (i.e., the oper-aton is improper) or a fault (i.e., an input operand is improper). The consequence of animproper state is an error that propagates to another fault or is a security final error.

9

NIST SP 800-231July 2024

Fig. 3. BF weakness states

Improper State2

(opera�on2, …,
operandnr , ...)

Consequence

Error Error

Consequence

Final Error

Consequence

Final Error

Consequence

BF, I. Bojanova

Improper State1

(opera�on1,
operand11 , ...
operand1i , ...)

Intermediate (or HW Defect–Induced) Fault StateIni�al Bug State

BF Weakness States

Bug

Cause

Improper State2

(opera�on2, …,
operand2j , ...)

Fault

Improper State1

(opera�on1,
operand11 , ...
operand1i , ...)

Bug

Cause

Cause

Improper State2

(opera�on2, …,
operandnr , ...)

Fault

Cause

Final State

A BF security weakness is a ⟨cause, operaton⟩→consequence relaton triple, which is for-mally a ⟨bug, operaton⟩→error, ⟨fault, operaton⟩→error, ⟨bug, operaton⟩→final error,or ⟨fault, operaton⟩→final error causal triple of a bug or fault weakness type. A bug in-forms that the operaton is improper, while a fault informs about an improper operand.
Examples of weaknesses include ⟨Missing Code, Sanitze⟩→SQL Injecton, ⟨Wrong Size,
Repositon⟩→Overbound Pointer, and ⟨Dangling Pointer, Read⟩→Use Afer Deallocate. In the C programming language, the last final error is known as use afer free.
3.3. BF Vulnerability

The BF models a security vulnerability as a chain of improper states that propagate as the
error (i.e., the erroneous output) from one state becomes the fault (i.e., the improper input) for the next state untl a final error that can be exploited toward a security failure is reached (see Fig. 4). That is, a vulnerability is a causal chain of weaknesses. The inital state (depicted in blue) is caused by a sofware or firmware bug (i.e., an operaton defect)(see the blue solid arrow), which if fixed will resolve the vulnerability. A vulnerability chainmay also start from a hardware defect-induced bug or fault (see the green dashed arrows), which if fixed will resolve that vulnerability.
A propagaton state (depicted in light purple) is caused by a fault (i.e., an operand er-ror). The final state (shown in dark purple) results in a final error (i.e., an undefined or exploitable system behavior) and can lead to a failure (i.e., a violaton of a system security requirement). It usually directly relates to a CWE, but there are also CWEs that correspond to inital or propagaton weakness states. An error is the result of an improper state opera-ton over its operands. It becomes an improper operand — a fault — for the next improper

10

NIST SP 800-231July 2024

state. A final error is the result of the operaton from the final improper state. It introduces an exploit vector — that is, the pathway for exploitaton — toward a security failure.

Final Error→
Exploit Vector

Failure

Failure – result of the exploit of the vector supplied by the Final ErrorPropaga�on State – caused by a Fault

Ini�al State – caused by a Bug

Improper State1

(opera�on1,
operand11 , ...
operand1i , ...)

Improper State2

(opera�on2, ...
operand2j , ...)

Improper Staten

(opera�onn, …
operandnp , ...)

BF Security Vulnerability

BF, I. Bojanova

Error2→ Fault of
Operand3k

Error1→ Fault of
Operand2j

Errornp-1→ Fault of
Operandnp

SW/FM Bug in
Opera�on1

Final State – introduces an Exploit Vector

Improper State – an ⟨opera�on, operand1, …, operandn⟩ tuple with at least one improper element

(exploit, vector)

…

or
HW Defect-
induced Bug

or
HW Defect-

induced Fault

SW – So�ware, FM – Firmware, HW– Hardware ↷ Chaining

Fig. 4. BF security vulnerability

For example, in Fig. 4, operaton1 from Improper State1 is improper due to a bug and re-sults in Error1 that propagates to the improper operand2 j, which leads to Improper State2.The last operatonn with improper operandnp results in a Final Error that propagates to an
Exploit Vector to enable a Failure.
As errors propagate to faults, the examples of faults also apply to errors. However, an error may be on a higher level of abstracton than a specific fault. For example, an inconsistentvalue error may propagate to the more specific wrong argument data fault (e.g., see the discussion about Fig. 5) or wrong size fault (e.g., see the discussion about Fig. 17).
Examples of final errors include integer overflow, query injecton, buffer overflow, and sidecommunicaton channels. Legitmate and side channels may also be direct exploit vectorswithout prior causaton. Examples of failures include informaton exposure (IEX) (i.e., con-fidentality loss), data tampering (TPR) (i.e., integrity loss), denial of service (DOS) (i.e.,availability loss), and arbitrary code executon (ACE) (i.e., everything could be lost).
The inital bug state is of an improper operaton over proper operands. It is the state with a defect in the operaton. The bug must be fixed to resolve the vulnerability. A fault state is of a proper operaton over an improper operand. It is a state with a defect in an operand that — if fixed — would only mitgate a vulnerability. If the inital state is caused by a hardware defect-induced fault, its fix will resolve the vulnerability.
Vulnerabilites may also converge at their final states and chain via faults resultng from exploits. The converged final states enable a security failure, which would not have been

11

NIST SP 800-231July 2024

harmful if only one were present. The chained faults-only vulnerabilites propagate toward a final security failure.
A partcular BF security vulnerability chain may correspond to more than one CVE. Forexample, BadAlloc is a vulnerability patern that covers more than 25 similar CVEs [25] re-lated to memory allocators, such as malloc() and calloc(). They were found in widely used real-tme operatng systems (RTOS), standard C libraries, IoT device SDKs, and otherself-memory management applicatons going as far back as the early ‘90s [26].
The BF causal chain of the BadAlloc vulnerability patern comprises five BF weaknesses[1]: DVR↷TCM↷MMN↷MAD↷MUS (see Fig. 5). The first weakness is at the input dataverificaton phase of sofware executon. The memory allocaton implementaton has noproper size verificaton toward the maximum allowed value accountng for how the re-quested memory size is calculated — that is, a BF Data Verificaton (DVR) weakness [1].This input becomes a wrong argument for a calculaton that produces a value greater than the maximum integer allowed for the partcular operatng environment (e.g., 232 − 1 for a 32-bit OS) and wraps around the result (i.e., integer overflow error) — that is, a BF Type Computaton (TCM) weakness [1].

Fig. 5. BF BadAlloc patern

DVR
(Verify, Data)

TCM
(Calculate, Name,

Data)

MMN
(Allocate, Data,
Address, Size)

BF BadAlloc Pa�ern

Inconsistent Value→
Wrong Argument

DoS

BF, I. Bojanova

MAD
(Reposi�on, Data,

Type, Address, Size)

MUS
(Write, Data, Type,

Address, Size)

Missing/Erroneous
Code Bug

Wrap Around→
Wrong Size

Buffer Overflow
Final Error

Failure – result of the exploit of the vector supplied by the Final ErrorPropaga�on State – caused by a Fault

Ini�al State – caused by a Bug Final State – introduces an Exploit Vector

Improper States – an ⟨opera�on, operand1, …, operandn⟩ tuples with at least one improper element:

ACE
/

RCE

DVR – Data Verifica�on, TCM– Type Computa�on, MMN– Memory Management, MAD – Memory Addressing, MUS – Memory Use

DoS – Denial of Service, ACE– Arbitrary Code Execu�on, RCE– Remote Code Execu�on

Insufficient Size Overbound Pointer

↷ Chaining

Consequently, a much smaller wrong size is used at allocaton resultng in a memory buffer with an insufficient size — that is, a BF Memory Management (MMN) weakness [1]. This al-lows a pointer to be repositoned outside the buffer boundary — a BF Memory Addressing (MAD) weakness [1]— and data to be writen there — a BF Memory Use (MUS) weakness [1]. The buffer overflow final error can then be exploited toward a DOS or ACE (specifically,remote code executon [RCE] on a targeted device) failure.
CVE-2021-21834 is one partcular vulnerability that strictly follows the BadAlloc patern (see its BF CVE-2021-21834 specificaton at [1]).

12

https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcm
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcm
https://usnistgov.github.io/BF/info/bf-classes/_mem/mal
https://usnistgov.github.io/BF/info/bf-classes/_mem/mad
https://usnistgov.github.io/BF/info/bf-classes/_mem/mad
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus
https://nvd.nist.gov/vuln/detail/CVE-2021-21834
https://usnistgov.github.io/BF/info/bf-cve/cve-2021-21834

NIST SP 800-231July 2024

3.4. BF Bug Identficaton

If there is a cybersecurity failure, there should be a way to identfy the root cause (i.e., thesecurity bug) and the chain of triggered improper executon states that enables the failure.
Theoretcally, addressing the problem of identfying a security bug would be first to gen-erate the graph of all possible vulnerability chains of weaknesses. Then, search the graphvia brute force recursive backtracking with specific constraints to find the set of possible valid paths. Finally, select the only proper path via code analysis.
However, the BF formalism ensures predictve recursive-descent parsing that does not re-quire backtracking, as the BF formal language is generated by an LL(1) CFG. Knowing the failure and the possible transitons at executon that adhere to the BF causaton within a weakness as a ⟨cause, operaton⟩→consequence relaton and between weaknesses via a
consequence↷cause propagaton (see Sec. 7.2), the bug can be identfied going backward
↶ from the final weakness untl an operaton is improper (see Fig. 6). Fixing the bug within that operaton would resolve the vulnerability.

Fig. 6. BF backward bug identficaton

BF Backward Bug Iden�fica�on

Failure – caused by exploita�on of the Final ErrorPropaga�on State – caused by a Fault

Ini�al State – caused by a Bug Final State – results in an Exploitable Error

Improper State – an ⟨opera�on, operand1, …, operandn⟩ tuple with at least one improper element

Failure

Improper State1

(opera�on1,
operand11 , ...
operand1i , ...)

Improper State2

(opera�on2, ...
operand2j , ...)

Improper Staten

(opera�onn, …
operandnp , ...)

(exploit, vector)

… Final ErrorImproper
Operand3k

Improper
Operand2j

Improper
Operandnp

Bug

Backward from the Failure to
Improper Operandnp

Backward to
Improper Operand2j

Backward to
Improper Opera�on1

Backward to
Improper Operandnp-1

Iden�fy
the Bug

BF, I. Bojanova

↷ Chaining

↶ Backwards to previous State

Using the BF formal language syntax and semantcs that are based on the BF taxonomies,models, and causaton and propagaton rules, (see Sec. 5, 6, 7, and 8) a state tree can be directly generated backward startng from a failure and a final error or weakness. The statetree is an undirected graph with exactly one simple path between any pair of nodes. Thefailure is the root of the tree, and each path is a reverted possible vulnerability specificatonchain of weaknesses from the final error through faults to a bug. A weakness is specified as a ⟨bug/fault, operaton⟩→error/final error causal triple.
This methodology allows for the generaton of a reasonable number of possible BF speci-ficaton chains of weaknesses for a partcular CVE. The only proper path can then be iden-tfied as the rest get eliminated via code analysis.

13

NIST SP 800-231July 2024

4. BF Security Concepts

A BF security bug or weakness type relates to a distnct sofware, firmware (including microcode), or hardware circuit logic executon phase defined by a set of BF opera-tons and their input operands and output results.
A BF operaton is the minimal input-process-output code that can produce or prop-agate an improper name, data, type, address, or size.

The BF defines the concepts of bug, fault, error, final error, weakness, vulnerability, ex-ploit vector, and failure in the context of cybersecurity to provide the level of detail andgranularity needed to understand the causaton within a weakness and the causaton andpropagaton between weaknesses and between vulnerabilites.
• A security bug is a code or specificaton defect (i.e., an operaton defect) in sofware, firmware, or hardware circuit logic — that is, proper operands over an improperoperaton. The specificaton includes the operaton metadata and algorithm.
A bug could be introduced by a programmer, be the result of a design flaw, or inducedby a hardware defect (e.g., due to overheatng). A bug could also resurface from a design flaw (e.g., an unaccounted-for system configuraton or environment).

• A fault is a name, data, type, address, or size error (i.e., an operand error) — that is,an improper operand over a proper operaton.
A fault could result from a bug or another fault or be induced by a hardware defect.In the case of low-level storage (e.g., cache and CPU registers), there is no type fault.

• An error is the result of an operaton with a bug or faulty operand that propagates to a fault of an operand of another operaton.
• A security final error is an undefined or exploitable system behavior. A final error results from an operaton with a bug or faulty operand.
• A security weakness is a ⟨bug, operaton⟩→error, ⟨fault, operaton⟩→error, ⟨bug,
operaton⟩→final error, or ⟨fault, operaton⟩→final error causal triple.

• A security vulnerability is a causal chain of weaknesses that starts with a bug or hard-ware defect-induced fault, propagates through errors that become faults, and ends with a final error that introduces an exploit vector.
The first weakness concerns the root cause of the vulnerability, and the last weak-ness concerns its sink.

• A security exploit vector is the pathway for the exploitaton of a vulnerability.
• A security failure is a violaton of a system security requirement caused by the ex-ploitaton of a security vulnerability.

14

NIST SP 800-231July 2024

The BF security concept definitons are contextually visualized in Fig. 7. Following the blue solid inital arrow, a security vulnerability may start with a sofware or firmware security
bug (i.e., a code or specificaton defect within an operaton). Following the green dashedarrow, a vulnerability chain may also start from a hardware defect-induced fault.
Fixing the bug or hardware defect-induced fault will resolve the vulnerability, as well asany other vulnerability with the same root cause. Fixing a propagated fault, including the cause of the final error at the sink, will only mitgate the vulnerability. Occasionally, several vulnerabilites must converge at their final errors for an exploit to be harmful. Fixing the bug or startng fault of at least one of the chains would avoid the failure. An exploit of a vulnerability may result in a fault startng a new faults-only vulnerability. Fixing the bug or startng fault of the first vulnerability will resolve the entre chain of vulnerabilites.
For more details, refer to the forthcoming SP 800-231A, Bugs Framework: Security Con-
cepts.

Fig. 7. BF security concepts

BF Security Concepts Model

Security Vulnerability

Bug Type Error Type1

Security Bug
Opera�on1,

Operand11 , ... Operand1i , ...
Error1

Fault Type1

Weakness Type 2

Security Weakness 2

Error Type2

Fault1
Opera�on2,

Operand21 , …, Operand2j , ...
Error2

Fault TypeN-1

Weakness Type N

Security WeaknessN

Final Error Type

FaultN-1
Opera�onN,

OperandN1 , …, OperandNP , ...
Security Final Error

Bug Opera�on

Fault / Error Final Error Failure

…

Weakness Type 1

Security Weakness 1

Failure Type1 Failure TypeF

Improper Opera�on

Improper Operand

Improper Operand

…

Security
FailureF

Security
Failure1

BF, I. Bojanova

15

NIST SP 800-231July 2024

5. BF Bugs Models

The BF security bugs and related faults landscape covers the operatons (i.e., the BF op-eratons) in sofware, firmware, and hardware executon phases at appropriate levels of abstracton. A BF operaton is the minimal input-process-output code that — because of a bug or fault — results in an error that propagates to another fault or is final (see Sec. 3.1).
The BF bugs models define related executon phases with orthogonal sets of operatonsin which partcular types of bugs or faults could occur. They also define the proper flowof operatons within and between the phases, which helps identfy causaton betweenweaknesses, as well as missing operatons (i.e., missing code bugs) backward from a failure.
Some executon phases may only be on an applicaton level (e.g., input/output check),while others may cover deeper levels of abstracton (e.g., the programming language typesystem, the OS file system, or the CPU). In any case, if there is a security failure, there must have been an operaton with a security bug or a hardware defect-induced fault that propagated through faults of other operatons untl a security final error that introduces an exploit vector is reached.
5.1. BF Input/Output Check (INP) Bugs Model

The BF Input/Output Check (INP) Bugs Model shows that input/output data check bugs could be introduced at the data validaton (DVL) or data verificaton (DVR) executon phase (see Fig. 8). The phases determine the BF INP classes: Data Validaton (DVL) and DataVerificaton (DVR) [1, 16].

Fig. 8. BF Input/Output Check (INP) Bugs Model

DVL

Validate

Sani�ze

DVR

Verify

Correct

Unchecked
Data

Checked
Data

Data
Life�me

BF Input/Output Check (_INP) Bugs Model

BF, I. Bojanova

Each input/output check-related bug or fault involves a Validate, Sanitze, Verify, or Correctoperaton. According to the flow of operatons, input/output data must be validated and sanitzed and/or verified and corrected.
16

https://usnistgov.github.io/BF/info/bf-classes/_inp/model/
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvl
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr

NIST SP 800-231July 2024

5.2. BF Memory (MEM) Bugs Model

The BF Memory (MEM) Bugs Model shows that memory-related bugs could be introduced at any phase in the life cycle of an object: memory addressing (MAD), memory allocaton (MAL), memory use (MUS), or memory deallocaton (MDL) (see Fig. 9). The phases de-termine the BF MEM classes: Memory Addressing (MAD), Memory Management (MMN) that combines the MAL and MDL phases, and Memory Use (MUS) [1, 17].

Fig. 9. BF Memory (MEM) Bugs Model

MUS (object)

MAD (pointer/owner)

MAL (object)

MDL (object)

Read

Other Object
/ NULL

All O
w

ners

Object
Life�me

Object
Space

Extend

assign & posi�on

Ini�alize

first write

Reassign

Reduce

Reallocate-Extend

++, --, etc.

Reposi�on

last write

Clear
Write

Ini�alize

Upper
Bound

Lower
Bound

Create
Object Object In Use

Destroy
Object

Reallocate-Reduce

Object
Size

Memory Bugs Model

A
ll O

w
ners

Al
l O

w
ne

rs

BF, I. Bojanova

once

Allocate

once

Deallocate

a�er object is ini�alized

Dereference

Each memory-related bug or fault involves an Initalize Pointer, Dereference, Repositon,
Reassign, Allocate, Extend, Reallocate–Extend, Initalize Object, Read, Write, Clear, Reduce,
Reallocate–Reduce, or Deallocate operaton.

17

https://usnistgov.github.io/BF/info/bf-classes/_mem/model/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mad
https://usnistgov.github.io/BF/info/bf-classes/_mem/mmn
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus

NIST SP 800-231July 2024

The main memory-related operatons flow is presented in Fig. 9 via blue and black solid arrows. The green dashed arrows show the flow for allocaton at a specific address. Thered dot-dashed arrows show the extra flow in case of reallocaton. Following the bluearrows, the first operaton is MAL Allocate an object. Following the green arrows, the firstoperaton is MAD Initalize Pointer. The next operaton following the blue arrows must be MAD Initalize Pointer for the allocated object to the address returned by the Allocate operaton. In contrast, the next operaton following the green arrows must be MAL Allocate an object at the address that the pointer holds.
Afer an object is allocated and its pointer initalized, MUS Initalize Object (i.e., the firstwrite) must follow. Then, it may be accessed via MAD Dereference and used via MUS Read or Write at any point before it is cleared and deallocated.
The boundaries and size of an object set at allocaton can be changed via MAL Extend,MAL Reallocate-Extend, MDL Reduce, or MDL Reallocate-Reduce. Operatons that involve reallocaton must be followed by MAD Repositon for all of the pointers that own the object. MDL Deallocate an object must be preceded by MUS Clear (i.e., the last write) and followed by MAD Reassign for all of its pointers to either NULL or another object.
5.3. BF Data Type (DAT) Bugs Model

BF Data Type (DAT) Bugs Model shows that data type bugs could be introduced at the
declaraton (DCL), name resoluton (NRS), data type conversion (TCV), or data type-related
computaton (TCM) executon phase (see Fig. 10). The phases determine the BF DAT classes: Declaraton (DCL), Name Resoluton (NRS), Type Conversion (TCV), or Type Com-putaton (TCM) [1, 18]. Each data type-related bug or fault involves a Declare, Define, Refer,
Call, Cast, Coerce, Calculate, or Evaluate operaton.
According to the data type-related operatons flow shown in Fig. 10, the first operatons over an entty (i.e., object, functon, data type, or namespace) are DCL Declare and DCL
Define. Then, it can be referred to in code by its name via NRS Refer. Names that are referred to in remote scopes get resolved via namespaces. Resolved data types get boundto objects, functons, or generic data types according to their declaratons (see the purpledot-dashed arrow flow). Resolved functons get bound to implementatons and may be called via NRS Call.
A resolved and bound object may be explicitly converted to another data type via TCV
Cast and used to call a member functon via NRS Call or as an argument or return of a computaton functon. A passed-in argument is expected to be of the declared parameterdata type, and the passed-out result is expected to be of the return data type. Otherwise, TCV Cast is expected before or at the end of the call (see the blue large-dashed arrow flow), or the value will get implicitly converted via TCV Coerce to the parameter or return datatype, respectvely (see the green dashed arrow flow).

18

https://usnistgov.github.io/BF/info/bf-classes/_dat/model/
https://usnistgov.github.io/BF/info/bf-classes/_dat/dcl
https://usnistgov.github.io/BF/info/bf-classes/_dat/nrs
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcv
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcv
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcv

NIST SP 800-231July 2024

Fig. 10. BF Data Type (DAT) Bugs Model

DCL (en�ty)

Declare

Define

NRS

Refer

Call

TCV (object)

Cast

Coerce

TCM (object)

Calculate

Evaluate

Object

func�on

Argument / Return / (.) Object

Subtype Object

Argument

Type System
Timeline

Argum
ent / Return / (.) Object

Type/ Namespace

BF Data Type (_DAT) Bugs Model

BF, I. Bojanova

Space
Interpreta�on

Object
Layout

Elements
Size

(en�ty name)

The green arrow flow is only about passed-in or passed-out objects that are coerced. It starts from NRS Call and never from DCL Declare.
A comprehensive BF bugs model would combine and connect all BF bugs models via theproper flow between their operatons. For example, DAT DCL Declare and INP DVR Verify may be followed by MEM MAD Repositon, DAT TCM Calculate, or DAT TCV Coerse. DAT TCV Coerse may be followed by MEM MMN Allocate, MEM MAD Repositon, DAT TCM
Calculate, or MEM MMN Deallocate. DAT TCM Calculate may be followed by MEM MMN
Reallocate-Reduce.
For more bugs models and details, refer to the forthcoming SP 800-231B, Bugs Framework:
Bugs Models.

19

NIST SP 800-231July 2024

6. BF Taxonomy

The BF taxonomy comprises weakness and failure categories. The BF Weakness category comprises BF weakness class types, such as:
• BF Input/Output Check(INP) class type — Weaknesses that lead to input/output data check-related errors or introduce injecton exploit vectors
• BF Memory (MEM) class type — Weaknesses that lead to memory-related errors or introduce memory corrupton/disclosure exploit vectors
• BF Data Type (DAT) class type — Weaknesses that lead to data type-related errors or introduce type compute exploit vectors

The BF Failure category comprises the BF failure class type:
• BF Failure (FLR) class type — Failures that lead to the loss of a security property due to the exploit of a vulnerability

6.1. BF Weakness Classes

The BF weakness taxonomy structure is based on orthogonal by operatons phases of sof-ware, firmware, and hardware executon. A BF weakness class defines sets of possible bugsand faults as causes for the operatons of a specific phase over their operands to result inerrors and final errors as consequences.
As an error propagates to a fault (see Sec. 4), the set of errors is the same as the set of faults across classes. However, a specific propagaton may be via values on different levels of abstracton (see Sec. 3.2). Similarly, the set of final errors across classes is the same as the set of exploit vectors toward failures. A BF weakness class also defines operaton andoperand atributes and code sites.
A BF weakness class type encompasses strictly defined weakness classes of closely relatedexecuton phases. For example, the BF INP class type comprises the Data Validaton (DVL)and Data Verificaton (DVR) classes. The BF MEM class type comprises the Memory Ad-dressing (MAD), Memory Management (MMN), and Memory Use (MUS) classes [17]. The BF DAT class type comprises the Declaraton (DCL), Name Resoluton (NRS), Type Conver-sion (TCV), and Type Computaton (TCM) classes [18]. For all current BF class types, referto the BF Taxonomy at at [1].
The definiton of the BF Data Validaton (DVL) class (see Fig. 11) is “Data is validated (i.e., syntax check) or sanitzed (i.e., escape, filter, or repair) improperly.” It organizes security bugs by the Validate and Sanitze operatons and faults by their Data operand as causes [16]. Possible causes are the Missing Code bug and Corrupted Policy Data fault. Possible consequences are the Invalid Data error and Query Injecton and Command Injecton finalinjecton errors, which relate to input/output check safety (see 9.1).

20

https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_dat/
https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvl
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mad
https://usnistgov.github.io/BF/info/bf-classes/_mem/mmn
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus
https://usnistgov.github.io/BF/info/bf-classes/_dat/
https://usnistgov.github.io/BF/info/bf-classes/_dat/dcl
https://usnistgov.github.io/BF/info/bf-classes/_dat/nrs
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcv
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcm
https://usnistgov.github.io/BF/info/bf-classes/
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvl

NIST SP 800-231July 2024

Fig. 11. BF Data Validaton (DVL) class

Bugs Framework (BF)

Input/Output Check (_INP) Class Type
Data Valida�on (DVL) Class

Causes

Code Bug
Missing Code

Erroneous Code

Specifica�on Bug
Under-Restric�ve Policy

Over-Restric�ve Policy

Data Fault
Corrupted Data
Tampered Data

Corrupted Policy Data
Tampered Policy Data

Consequences

Data Error
Invalid Data

Injec�on Final Error
Query Injec�on

Command Injec�on
Source Code Injec�on

Parameter Injec�on
File Injec�on

Opera�ons

Validate
Sani�ze

Operands

Data

BF, I. Bojanova

A�ributes

Mechanism
Safelist
Denylist
Format
Length

Source Code
Codebase
Third-Party
Standard Library
Compiler/Interpreter

Execu�on Space
Local
Admin
Bare-Metal

Data State
Entered
Stored
In Use
Transferred

Bug Fault/Error Final Error Opera�on/Operand

The definiton of the BF Memory Use (MUS) class (see Fig. 12) is “An object is inital-ized, read, writen, or cleared improperly.” It organizes security bugs by the Initalize Ob-
ject, Read, Write, and Clear operatons and faults by their Data, Type, Address, and Size operands as causes [17]. Possible causes are the Wrong Size and Cast Pointer faults. Pos-sible consequences are the Uninitalized Object error and Buffer Overflow and Use Afer
Deallocate (e.g., use afer free or use afer return) memory corrupton or disclosure finalerrors, which relate to memory safety (see 9.2).
The definiton of the BF Type Conversion (TCV) class (see Fig. 13) is “Data is converted or coerced into other types improperly.” It organizes security bugs by the Cast and Coerce operatons and faults by their Name, Data, and Type operands as causes [18]. Possible causes are the Over Range and Wrong Type faults. Possible consequences are the Rounded
Value and Downcast Pointer errors, which relate to data type safety (see 9.3).
The BF strictly defines the type taxons (e.g., see the terms in black in Figs. 11, 12, and 13) forcauses as bugs or faults, for consequences as errors or final errors, and for operaton and operand atributes. For example, the Specificaton Bug, Data Fault, Injecton and Memory
Corrupton/Disclosure Final Errors (see Figs. 11 and 12) taxon types are defined in Table 2.
The BF also strictly defines the value taxons (e.g., see the terms in purple in Figs. 11, 12,and 13) for class, operatons, causes (as bugs or faults), consequences (as errors or final er-rors), and operaton and operand atributes. For example, the Under-Restrictve Policy bug,

21

https://usnistgov.github.io/BF/info/bf-classes/_mem/mus
https://usnistgov.github.io/BF/info/bf-classes/_dat/tcv

NIST SP 800-231July 2024

Fig. 12. BF Memory Use (MUS) class

Bugs Framework (BF)

Memory Corrup�on/Disclosure (_MEM) Class Type
Memory Use (MUS) Class

Causes

Code Bug
Missing Code

Erroneous Code

Data Fault
NULL Pointer

Forbidden Address
Wrong Size

Type Fault
Cast Pointer

Address Fault
Wild Pointer

Dangling Pointer
Untrusted Pointer

Overbound Pointer
Underbound Pointer

Wrong Posi�on Pointer

Size Fault
Insufficient Size

Consequences

Data Error
Unini�alized Object

Memory Corrup�on/Disclosure Final Error
Not Cleared Object
Object Corrup�on

Type Confusion
Use A�er Deallocate

Buffer Overflow
Buffer Underflow
Buffer Over-Read

Buffer Under-Read

Opera�ons

Ini�alize Object
Read
Write
Clear

Operands

Data
Type

Address
Size

BF, I. Bojanova

A�ributes

Mechanism
Direct
Sequen�al

Source Code
Codebase
Third-Party
Standard Library
Compiler/Interpreter

Execu�on Space
Userland
Kernel
Bare-Metal

Address Kind
Huge
Moderate
Li�le

Address State
Stack
Heap
/other/

Size Kind
Actual
Used

Bug Fault/Error Final Error Opera�on/Operand

Wrong Size fault, Sanitze and Write operatons, and Query Injecton and Buffer Overflow final errors (see Figs. 11 and 12) taxon values are defined in Table 3.
The operaton atribute types are defined in Table 4. Their values per BF class may be dif-ferent for the same operaton atribute type (e.g., the Mechanism for MUS Write is Direct or Sequental, while for TCV Coerce, it is Pass in or Pass out). The possible operand at-tribute types are defined in Table 5. Their values per BF class may be different for the same operand atribute type.
Each BF class taxonomy defines a matrix of semantc rules for causaton within a weak-ness, as some combinatons of its cause, operaton, and consequence value taxons may not be meaningful. They are expressed as ⟨bug, operaton⟩→error, ⟨fault, operaton⟩→error,
⟨bug, operaton⟩→final error, and ⟨fault, operaton⟩→final error triples. For example,
⟨Wrong Size, Write⟩→Buffer Overflow is a valid triple, while ⟨Wrong Size, Write⟩→Buffer
Over-Read is not, as the operaton is Write but the final error is about reading.

22

NIST SP 800-231July 2024

Fig. 13. BF Type Conversion (TCV) class

Bugs Framework (BF)

Data Type (_DAT) Class Type
Type Conversion (TCV) Class

Causes

Code Bug
Missing Code
Wrong Code

Name Fault
Wrong Object Resolved

Missing Overloaded Func�on

Data Fault
Under Range

Over Range
Flipped Sign

Type Fault
Wrong Type

Wrong Object Type Resolved
Mismatched Argument

Consequences

Data Error
Wrong Value
Flipped Sign

Truncated Value
Distorted Value
Rounded Value

Type Error
Cast Pointer

Downcast Pointer
Wrong Type

Type Conversion Final Error
Subtype Confusion

Opera�ons

Cast
Coerce

Operands

Name
Data
Type

BF, I. Bojanova

A�ributes

Mechanism
Pass In
Pass Out

Source Code
Codebase
Third-Party
Standard Library
Compiler/Interpreter

Execu�on Space
Local
Admin
Bare-Metal

Name State
Resolved
Bound

Data Kind
Numeric
Text
Pointer
Boolean

Type Kind
Primi�ve
Structure

Bug Fault/Error Final Error Opera�on/Operand

Each BF class taxonomy also defines a matrix of semantc rules for propagaton between weaknesses, as error to fault match is always by type but may be on different levels of abstracton by value (for details, see the forthcoming SPs 800-231Cx and [1]).
Formally, the specificaton of a security weakness is an instance of a BF weakness classwith one cause, one operaton, one consequence, and operaton and operand atributevalues from the sets with value taxons of that class. The operaton binds the causaton within a weakness as a ⟨cause, operaton⟩→consequence relaton that must adhere to the within-weakness causaton semantc rules for that class.
For example, the two most severe weaknesses — missing validaton of input data leads to a
SQL query injecton and writng data via a pointer beyond the upper bound of an array leads
to a buffer overflow [27] — are specified with BF as follows: ⟨Missing Code, Validate⟩→
Query Injecton and ⟨Overbound Pointer, Write⟩→Buffer Overflow.
The BF class taxonomies with built-in taxon definitons are available in machine-readable formats (e.g., see the BF in XML format in Fig. 14 and query it via the BF API at [1]).
The type and value taxon definitons are visualized in the graphical representaton of the BF class taxonomies (e.g., see the BF MUS class at [1]) and BFCVE specificatons (e.g., the BF CVE-2014-0160 specificaton at [1]), and as tooltps of the BF tool (see Sec. 10.3).

23

https://usnistgov.github.io/BF/info/apis/bf-api/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/

NIST SP 800-231July 2024

Table 2. Type taxon definiton examples
Name Specificaton Bug

Data Fault Injecton

Memory Corrupton/ Disclosure

Definiton A defect in the metadata or algorithm of an operaton (i.e., proper operandsover an improper operaton). It is the root cause of a security vulnerability. The data of an object has harmed semantcs or an inconsistent or wrong value. An exploitable or undefined system behavior caused by validaton or sanitzaton bugs.An exploitable or undefined system behavior caused by memory addressing, allocaton, use, or deallocaton bugs.

Table 3. Value taxon definiton examples
Name Definiton Under-Restrictve

Wrong Size

Sanitze

Write Query Injecton

Buffer Overflow

Policy Accepts bad data. For example, permissive safe list or regular expression, or incomplete deny list. The value used as size or length (i.e., the number of elements) does notmatch the object’s memory size or length. Modify data (e.g., neutralize/escape, filter/remove, repair/add symbols)to make it valid (well-formed).Change the data value of an object in memory to another meaningful value. Maliciously inserted conditon parts (e.g., or 1 == 1) or entre commands (e.g., drop table) into an input used to construct a query (e.g., SQLor NoSQL Injecton, XPath Injecton, XQuery Injecton, or LDAP Injecton). Write data above the upper bound of an object (i.e., buffer overwrite).

Table 4. Operaton atribute types
Name Definiton Mechanism Source Code Executon Space

Shows how the operaton with a bug or faulty operand is performed. Shows where the code of the operaton with a bug or faulty operand Shows where the operaton with a bug or faulty operand is executed the privilege level at which it runs.
resides. and

Table 5. Operand atribute types
Name Definiton Name Kind Name State Data Kind Data State Type Kind Address Kind Address State Size Kind

Shows Shows Shows Shows Shows Shows Shows Shows

what the entty with this name is. what the stage of the entty name is. what the type or category of data is. where the data comes from. what the data type compositon is. how much memory is accessed (i.e., the span) outside of a bound of an object. where the address is (i.e., its locaton) in the memory layout. what is used as the size or length (i.e., the number of elements) of an object.

24

NIST SP 800-231July 2024

Fig. 14. BF taxonomy in XML

25

NIST SP 800-231July 2024

6.2. BF Failure Class

A BF failure class defines sets of possible exploit vectors used for the exploits of a specificvulnerability to result in the loss of security propertes. The exploit vectors propagate fromthe final errors of BF weakness classes.
The BF Failure (FLR) class type encompasses strictly defined failure classes, such as:

• Informaton Exposure (IEX) — Inadvertent disclosure of informaton that leads to confidentality loss.
• Arbitrary Code Executon (ACE) — Executon of unauthorized commands or code ex-ecuton that could lead to everything being lost.
Remote code executon (RCE) is a sub-case of ACE on a target system or device from a remote locaton, typically over a network.

• Denial of Service (DOS) — Disrupton of access to or use of informaton or informa-ton systems that leads to availability loss.
• Data Tampering (TPR) — Unauthorized modificaton or destructon of informaton that leads to integrity loss.

An IEX, ACE, or TPR failure may result in a fault that starts a new chained vulnerability.
6.3. BF Methodology

The methodology for developing BF bugs models and weakness classes involves the fol-lowing 12 steps (also see Fig. 15):
1. Phases: Analyse common weakness types (including CWEs) and publicly disclosedvulnerabilites (including CVEs) and identfy related sofware, firmware, or hardwareexecuton phases in which specific types of bugs could be introduced and faults prop-agated. Each executon phase would be the basis for defining a new BF weakness

class. The BF classes of related executon phases would define a new BF class type.
For example, the MAD and MUS classes (see Fig. 12) correspond to the related mem-ory addressing and memory use executon phases. They are also of the BF MEMclass type [1, 17].

2. Operatons and Operands: Identfy the operatons and their input operands for each executon phase so that all BF classes remain orthogonal by operaton. They woulddefine the possible values of operatons for the ⟨cause, operaton⟩→consequence weakness triples for each of the new BF classes.
For example, the DVL class has two operatons (see Fig. 11), MUS has four operatons (see Fig. 12), TCV has two operatons (see Fig. 13), and their sets of operatons do not overlap.

26

https://usnistgov.github.io/BF/info/bf-classes/_mem/

NIST SP 800-231July 2024

Fig. 15. BF class methodology

BF Weakness Class Methodology

BF, I. Bojanova

1. Related phases for specific
types of bugs/faults

2. Opera�ons for each
phase and their operands

3. BF Bugs Model –
opera�ons flow

12. Seman�c Graphs

4. Bug Causes –
improper opera�ons

5. Fault Causes –
improper operands

6. Consequences that are
Errors – become fault causes

for other weaknesses

7. Consequences that
are Final Errors

9. Opera�on A�ributes

10. Operand A�ributes

11. Seman�c Matrices

8. Sites in code

3. Bugs Model: Define the BF bugs model reflectng the identfied phases, operatons,and the proper flow between the operatons. It would be the basis for the definiton of a semantc graph of meaningful operaton flow.
For example, the BF Memory Bugs Model covers the MAD, MAL, MUS, and MDLphases and the flow between their operatons (see Fig. 9).

4. Bug Causes: Identfy the possible code and specificaton defects for the operatons of each phase. They would define the bug values of the ⟨bug, operaton⟩→error or
⟨bug, operaton⟩→final error weakness triples (see Fig. 3) for each of the new BF classes.
For example, the DVL class has two values for each of the Code Bug and Code Speci-
ficaton bug types — Missing Code and Erroneous Code, and Under-Restrictve Policy and Over-Restrictve Policy, respectvely (see Fig. 11).

5. Fault Causes: Identfy which of the Name, Data, Type, Address, and Size input operands apply to the operatons of each phase. They would define the possible fault and er-
ror types. Identfy the possible operand errors, which would define the fault values of the ⟨fault, operaton⟩→error or ⟨fault, operaton⟩→final error weakness triples (see Fig. 3) for each of the new BF classes.
For example, the MUS class has Data Fault, Type Fault, Address Fault, Size Fault, and
Data Error types — the first four as causes, the last one as a consequence. It also has 11 fault values (see Fig. 12).

27

https://usnistgov.github.io/BF/info/bf-classes/_mem/model/

NIST SP 800-231July 2024

6. Error Consequences: Identfy the possible output result errors from the operatonsthat propagate as faults of other weaknesses (i.e., improper input operands for other operatons). These would define the error values of the weakness triples (see Fig. 3).
For example, there is one error value for DVL — Invalid Data (see Fig. 11), one forMUS — Uninialized Object (See Fig. 12), and eight for TCV — five of Data Error andthree of Type Error type (see Fig. 13).

7. Final Error Consequences: Identfy the possible output result errors from the oper-atons that do not propagate to faults of other weaknesses and instead propagateto exploit vectors toward failures. They would define the final error values of the weakness triples (see Fig. 3).
For example, MUS has one final error type — Memory Corrupton/Disclosure — witheight final error values (see Fig. 12).

8. Sites: Identfy syntactc places in code where such bugs or faults can occur. This stepis mainly applicable to low-level bugs and faults.
9. Operaton Atributes: Identfy specific descriptve values for the Executon Space,

Mechanism, and Source Code operaton atribute types for each of the new BF classes.
For example, DVL has the Safelist, Denylist, Format, and Length values for the Mech-anism atribute type (see Fig. 11), while TCV has Pass In and Pass Out (see Fig. 13).

10. Operand Atributes: Identfy specific descriptve values for the relevant Name, Data,
Type, Address, and Size atribute types for each of the new BF classes.
For example, the TCV class has the Resolved and Bound values for the Name State operand atribute type; Numeric, Text, Pointer, and Boolean values for Data Kind;and Primitve and Structure values for Type Kind (see Fig. 13).

11. Semantc Matrices: Identfy the meaningful ⟨cause, operaton⟩→consequence causal relatons for each of the new BF classes, and same-type different-value consequence↷
cause propagatons for classes of different BF class types.

12. Semantc Graph: Define the graph of meaningful operaton flow based on the BFBugs Model.
Finally, create the BF weakness class taxonomies in machine-readable formats, generate graphical representatons to enhance understanding, regenerate the BF LL(1) CFG to in-clude the new taxonomies, and update the BFDB database (see Sec. 10).
The methodology for developing BF failure classes is analogous but also simpler, as finalerrors of BF weakness classes directly match to exploit vectors of BF Failure classes, andthe exploit, at least for now, is on an abstract level.
For more BF classes and details, refer to the forthcoming SPs 800-231Cx, Bugs Framework:
yyy Taxonomy, where yyy is a BF class type.

28

NIST SP 800-231July 2024

7. BF Vulnerability Models

The BF vulnerability models define state and specificaton views of a security vulnerabil-ity as a chain of weaknesses linked by causality that may converge and chain with other vulnerabilites to enable harmful failures. The state view represents the weaknesses as improper-state (operaton, operand1, . . . , operandn) tuples and their causal transitons.The specificaton view reflects the BF taxonomic representaton of a weakness as a ⟨cause,
operaton⟩→consequence relaton and consequence↷cause between weaknesses propa-gaton.
7.1. BF Vulnerability State Model

The BF Vulnerability State Model defines a vulnerability as deterministc state automata of improper states and their transitons (see Fig. 16). A transiton is to another weakness or to a failure. An improper state is an (operaton, operand1, . . . , operandn) tuple with at leastone improper element (depicted in purple). A BF operaton is the minimal input-process-output code that — because of a bug or fault — results in an error that propagates to another fault or is final (see Sec. 3.1). A transiton is defined by the erroneous result fromthe operaton over the input operands (i.e., the output of the improper state).
The inital state corresponds to a weakness caused by a bug in the operaton or a hardware defect-induced fault of an operand. It results in an error or — if it is the only state — is a final error (i.e., an undefined or exploitable system behavior). A propagaton state corresponds to a weakness that is caused by a fault of an operand and results in an error. The final state corresponds to a weakness caused by a fault of an operand or — if it is the only state — by a bug in the operaton. It results in a final error that introduces an exploit vector that enables a failure. The inital state relates to the root cause of the vulnerability, and the final state relates to its sink. For simplicity, Fig. 16 does not detail vulnerability chains that start with a hardware defect-induced bug or fault, as Fig. 4 does.
Fixing the bug or a hardware defect-induced fault will resolve the vulnerability, while fixing a non-hardware-defect-induced fault will only mitgate it. Fixing a bug may relate to fixinga design flaw, such as an unaccounted-for system configuraton or environment. For a one-chain improper states example, recall the BadAlloc patern in Fig. 5.
Vulnerabilites compositon is via convergence at their final errors or failure-to-fault-based chaining. In some cases, for an exploit at the sink to be harmful, several vulnerabilites must converge (depicted with ⊕ in Fig. 16) at their final errors. Fixing the root cause (i.e., the bug) of at least one of the chains would avoid the failure. An exploit of a vulnerability may also result in a failure that creates a fault that starts a new vulnerability of only fault-type weaknesses. There must be an exploit for the failure to occur and a fault that results from it to start the new chain (see the gaps between the arrows and failures in Fig. 16 thatindicate that there is no direct weakness-to-weakness transiton there). Fixing the rootcause (i.e., the bug) of the first vulnerability will resolve the entre chain of vulnerabilites.

29

NIST SP 800-231July 2024

Fi
g.

 16
. BF

 Vul
ner

abil
ity S

tate
 mo

del

30

B
u

g B
in

O
p

er
a�

o
n

B
1

In
i�

al
 S

ta
te

A
1

(o
p

er
a�

o
n

A
1,

o
p

er
an

d
A

1
1
,.

..
o

p
er

an
d

A
1

i,
 ..

.)

Pr
o

p
ag

a�
o

n
 S

ta
te

2

(o
p

er
a�

o
n

A
2,

 …
,

o
p

er
an

d
A

2
j,

 ..
.)

Fi
n

al
St

at
e A

n

(o
p

er
a�

o
n

A
n,

 …
,

o
p

er
an

d
A

n
p

, .
..

)
Fa

ilu
re

1

B
F

Se
cu

ri
ty

 V
u

ln
er

ab
ili

ty
 S

ta
te

 M
o

d
el

Fi
n

al
St

at
e B

m

(o
p

er
a�

o
n

B
m

, …
,

o
p

er
an

d
B

m
q

, .
..

)

In
i�

al
 S

ta
te

B
1

(o
p

er
a�

o
n

B
1,

o
p

er
an

d
B

1
1
, .

..
o

p
er

an
d

B
1

i,
 ..

.)

Fi
n

al
Er

ro
r B

Er
ro

r A
n
→

Fa
u

lt
O

p
er

an
d

A
n

p

Er
ro

r A
1→

Fa
u

lt
 O

p
er

an
d

2
j

Fi
n

al
Er

ro
r A

Fa
ilu

re
N

B
F,

 I.
 B

o
ja

n
o

va

Pr
o

p
ag

a�
o

n
St

at
e N

1

(o
p

er
a�

o
n

N
1,

o
p

er
an

d
N

1
i,

 ..
.)

Fi
n

al
St

at
e N

l

(o
p

er
a�

o
n

N
l,

…
o

p
er

an
d

N
lr

, .
..

)

Fi
n

al
Er

ro
r N

k
B

u
g A

in
O

p
er

a�
o

n
A

1

Er
ro

r A
2
→

Fa
u

lt
 O

p
er

an
d

A
3

j

…

Er
ro

r N
1→

Fa
u

lt
 O

p
er

an
d

N
2

j

Er
ro

r N
l→

Fa
u

lt
O

p
er

an
d

N
lr

Er
ro

r B
m
→

Fa
u

lt
O

p
er

an
d

B
m

q

Er
ro

r B
1
→

Fa
u

lt
 O

p
er

an
d

B
2

k

Fa
u

lt
 O

p
er

an
d

N
1

…
…

Pr
o

p
ag

a�
o

n
St

at
e

–
a

w
ea

kn
es

sc
au

se
d

 b
y

a
Fa

u
lt

 o
f

an
 O

p
er

an
d

, r
es

u
l�

n
g

in
 a

n
 E

rr
o

r

In
i�

al
 S

ta
te

–
a

w
ea

kn
es

sc
au

se
d

 b
y

a
B

u
g

in
 t

h
e

O
p

er
a�

o
n

, r
es

u
l�

n
g

in
 a

n
 E

rr
o

r

Fa
ilu

re
–

a
vi

o
la
�

o
n

 o
f

a
se

cu
ri

ty
 r

eq
u

ir
em

en
t

ca
u

se
d

 b
y

an
 e

xp
lo

it
; m

ay
 r

es
u

lt
 in

 a
 F

au
lt

 s
ta

r�
n

g
a

n
ew

 f
au

lt
s-o
n

ly
 v

u
ln

er
ab

ili
ty

Fi
n

al
St

at
e

–
a

w
ea

kn
es

sc
au

se
d

 b
y

a
Fa

u
lt

 in
 a

n
 O

p
er

an
d

, r
es

u
l�

n
gi

n
 a

 F
in

al
 E

rr
o

r

Im
p

ro
p

er
 S

ta
te

–
A

n
o
p
e
r
a
t
i
o
n
,

o
p
e
r
a
n
d

1
,

…
,

o
p
e
r
a
n
d
n
)

tu
p

le
 w

it
h

at
 le

as
t

o
n

e
im

p
ro

p
er

 e
le

m
en

t
(d

ep
ic

te
d

 in
 p

u
rp

le
)

↷
C

h
ai

n
in

g
w

ea
kn

es
se

s
u

n
d

er
ly

in
g

a
vu

ln
er

ab
ili

ty

⊕
C

o
n

ve
rg

in
g

vu
ln

er
ab

ili
�

es

…

…

(e
xp

lo
it
1,

ve
ct

o
r 1

)
(e

xp
lo

it
N
,v

ec
to

r N
)

NIST SP 800-231July 2024

For example, in Fig. 16, Chain A starts from the Inital StateA1, where operatonA1 has a sofware, firmware, or hardware defect-induced bug. The ErrorA1 result propagates to a fault of operandA2 j, which leads to the Propagaton StateA2. The last operatonAn in this chain with faulty operandAnp results in the Final ErrorA. Chain B analogously propagates through improper states, and its Final ErrorB converges with Final ErrorA toward Failure1and possibly more failures. Once the exploit vector introduced by the final errors is used to exploit the vulnerability, Failure1 possibly creates a faulty operandAN1 that starts a new vulnerability chain, and so on untl the final security FailureN is reached.
Heartbleed, CVE-2014-0160 — as a real-world example — was a severe vulnerability in the OpenSSL cryptographic library [23]. A server (or client) with a vulnerable heartbeat exten-sion would bleed data via a small heartbeat message with a large requested length (i.e.,larger than the actual array size). Each exploit could reveal up to 64KB of raw memory of highly sensitve informaton (e.g., private keys and login credentals) via buffer over-reads. However, NVD labels it with CWE-125: Out-of-bounds Read, which covers both under-lower-bound and over-upper-bound reads from a buffer. In additon, it reflects only the weakness with the final error at the sink, not the weakness with the bug as the root cause.
The BF state view of Heartbleed is presented in Fig. 17 as two converging vulnerability chains of underlying weaknesses. The BF taxonomy helps identfy and comprehensivelylabel three weaknesses in the main chain and one more in the secondary chain.

Fig. 17. BF states of Heartbleed

31

BF, I. Bojanova

DVR
(Verify: Missing Code,

Data)

MAD
(Reposi�on,

Data: Wrong Size,
Type, Address, Size)

MUS
(Read, Data, Type,

Address: Over
Bound Pointer,

Size)

IEX

BF CVE-2014-0160 – Heartbleed

MUS
(Clear: Missing Code,

Data, Type,
Address, Size)

Not Cleared
Object

Inconsistent Value→ Wrong Size
Data Error/Fault

Buffer Over-Read
Final Error

Missing Code
Bug

Over Bound Pointer
Address Error/Fault

Improper State – An operation, operand 1, …, operandn) tuple with at least one improper element (depicted in purple)

↷ Chaining weaknesses underlying a vulnerability

Intermediate StateIni�al State FailureFinal State

⊕ Converging vulnerabili�es

https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://cwe.mitre.org/data/definitions/125.html

NIST SP 800-231July 2024

The bug was both in the ssl\d1 both.c and ssl\t1 lib.c files of the OpenSSL imple-mentaton of the TLS protocol [28]. Analysis of the C code before the fix (see Fig. 18 for
d1 both.c) shows that the very first improper BF state is in the data verificaton phase,where the semantcs of the input should be checked and corrected. The pointer p (see line
1450 in Fig. 18) is to a record of type SSL3 RECORD (see the top of Fig. 18) whose second field holds the length. The payload variable is declared as an unsigned int (see line
1452) and can be a huge number. It is assigned the value of the length field of p via the
n2s macro (see line 1457). That is input data that supplies the length of an array (i.e., a buffer), but it is not checked before use toward the actual array size (i.e., the number of elements in the record data). Its value is not verified. This BF bug state is the first of a chainof improper states that would lead to buffer over-read. It is an instance of the BF Data Ver-ificaton (DVR) class [1] as the (Verify: Missing Code, Data) tuple with an improper Verify operaton element (see the first state in Fig. 17) — the entre data verificaton operaton is absent — that results in an Inconsistent Value error.
Then, memcpy() reads payload number of bytes from the object pointed by pl andcopies them to the object pointed by bp (see line 1480 in Fig. 18). Following the naive C implementaton of memcpy() at the botom in Fig. 18, bp and pl are passed by ref-erence via the dst and src arguments, and the huge payload length is passed via the nargument. First, one byte is read from pl and copied to bp. Untl the huge payload length is reached, both pointers move one byte up, and the newly pointed by pl byte is read and copied. However, while bp is allocated large enough at up to 1+2+65535+16 bytes (see lines 1474 and 1475 in Fig. 18), pl points to an array with a reasonable size (see line
1458). As the content of this array is read and copied to bp, so too is a huge amount of data from over its upper bound.
The analysis reveals two fault states: when pl is repositoned over the array upper bound and when data values are read from there. The former is an instance of the BF Memory Addressing (MAD) class [1] as the (Repositon, Data: Wrong Size, Type, Address, Size) tuplewith an improper Data operand element (see the second state in Fig. 17) that results in an Overbound Pointer error. There is no bug in the Repositon operaton itself, but a value that is inconsistent with the size of the pl object is used to control the iteraton. The later is an instance of the BF Memory Use (MUS) class [1] as the (Read, Data, Type, Address:
Overbound Pointer, Size) tuple with an improper Address operand element (see the third state in Fig. 17) that results in a Buffer Over-Read final error. Again, there is no bug in the
Read operaton itself, but because pl points overbound, it is possible to read data thatshould not be read (i.e., buffer over-read).
The three-state BF chain so far (see the upper row in Fig. 17) shows that data can be read from over the bound of the array pointed by pl. However, it does not show why an exploit would reach sensitve informaton, such as private keys or login credentals. The vulnera-bility triggered by the missing size verificaton bug is only a part (although the main one)of the puzzle.

32

https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr/
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mad/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mad/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/

NIST SP 800-231July 2024

Fig. 18. C code of heartbeat() and naive memcpy()

typedef struct ssl3_record_st
{
int type; /* type of record */
unsigned int length; /* How many bytes available */
unsigned int off; /* read/write offset into 'buf' */
unsigned char *data; /* pointer to the record data */
unsigned char *input; /* where the decode bytes are */
unsigned char *comp; /* only used with decompression - malloc()ed */
unsigned long epoch; /* epoch number, needed by DTLS1 */
unsigned char seq_num[8]; /* sequence number, needed by DTLS1 */

} SSL3_RECORD;

1448 dtls1_process_heartbeat(SSL *s)
1449 {
1450 unsigned char *p = &s->s3->rrec.data[0], *pl;
1451 unsigned short hbtype;
1452 unsigned int payload;
1453 unsigned int padding = 16; /* Use minimum padding */
1454
1455 /* Read type and payload length first */
1456 hbtype = *p++;
1457 n2s(p, payload);
1458 pl = p;
...
1465 if (hbtype == TLS1_HB_REQUEST)
1466 {
1467 unsigned char *buffer, *bp;
...
1470 /* Allocate memory for the response, size is 1 byte
1471 * message type, plus 2 bytes payload, plus
1472 * payload, plus padding
1473 */
1474 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
1475 bp = buffer;
1476
1477 /* Enter response type, length and copypayload */
1478 *bp++ = TLS1_HB_RESPONSE;
1479 s2n(payload, bp);
1480 memcpy(bp, pl, payload);

/* Naive implementation of memcpy()
void *memcpy (void *dst, const void *src, size_t n)
{

size_t i;
for (i=0; i<n; i++)

*(char *) dst++ = *(char *) src++;
return dst;

} plbp

payload

There must have been another coding error due to which an unused object with sensitvedata was lef in memory unaware of the risks. The bug state of this parallel vulnerability is again an instance of the BF MUS class but as the (Clear: Missing Code, Data, Type, Address)tuple with an improper Clear operaton (see the second chain in Fig. 17) that results in a Not
Cleared Object final error. Converging the final errors from both chains (i.e., buffer over-read and not cleared object), the vulnerable sofware can now reach and expose sensitveinformaton.

33

https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/

NIST SP 800-231July 2024

The bug and fault state automata of Heartbleed (see Fig. 17) expresses it as two convergingvulnerability chains of underlying weaknesses. Missing input data verificaton leads to the use of inconsistent size for a buffer and allows for a pointer repositon over its bound, which — converging with missing clear — allows for remote reads and the exposure of sensitve informaton. Multple exploits of Heartbleed, each exposing up to 64KB of memory, can accumulate huge amounts of data, such as “secret keys used for certficates, user names and passwords, instant messages, emails, and business-critcal documents and communi-caton” [29].
The fix of the bug in the main Heartbleed chain was to add input data semantcs checks and silently ignore the heartbeat message if the requested length was larger than the actual array size (see Fig. 19) [30]. Lines 1468 and 1469 discard heartbeats with zero length. Lines1472 and 1473 ensure that the actual length of the record data is sufficiently large.

Fig. 19. Heartbleed fix in Heartbeat
For more details on the BF Vulnerability State Model, refer to the forthcoming SP 800-231D,
Bugs Framework: Vulnerability Models.

34

NIST SP 800-231July 2024

7.2. BF Vulnerability Specificaton Model

The BF Vulnerability Specificaton Model defines a vulnerability specificaton as a chain of ⟨cause, operaton⟩→consequence relatons (i.e., weakness triples) with operaton and operand atributes and consequence↷cause between weaknesses propagaton (see Fig. 20). The model reflects the BF taxonomy structure (see Sec. 6) and the BF Vulnerability State Model (see Sec. 7.1). For simplicity, Fig. 20 does not visualize vulnerability conver-gence and chaining as Fig. 16 does. However, see Fig. 21 for a demonstratve example of vulnerability convergence.
The BF allows for the expression of a weakness as a ⟨cause, operaton⟩→consequencecausal triple with operaton and operand atributes. A cause is a bug in an operaton ora fault of an operand, and a consequence is the erroneous result from the operaton. Bugsare code or specificaton defects, and faults are input operand defects. The output errors from operatons propagate to faults or are final errors that introduce exploit vectors toward failures. A fault is of a name, data, type, address, or size. (see Sec. 3 and 4).
Causaton within a weakness is by meaningful ⟨cause, operaton⟩→consequence relatons. That is, the sets of valid relatons defined for each BF taxonomy (see Sec. 6) restrict it. The bug or faulty input operand of an operaton results in an error or a final error as a valid ⟨bug, operaton⟩→error, ⟨fault, operaton⟩→error, ⟨bug, operaton⟩→final error,or ⟨fault, operaton⟩→final error weakness triple. For example, ⟨Under-Restrictve Policy,
Validate⟩→Source Code Injecton and ⟨Mismatched Argument, Coerce⟩→Truncated Value are meaningful weakness triples, but ⟨Underbound Pointer, Write⟩→Buffer Overflow is not, as the pointer is below the lower bound while the Write is over the upper bound.
Causaton between weaknesses is by error type to fault type match, and error value↷fault
value match or — for weaknesses of different BF class types — a meaningful values prop-agaton (see Sec. 6). It is also guided by the valid flow of operatons defined by theBF Bugs Models. If the causaton between weaknesses does not follow the proper op-eraton flow, an operaton must be missing, which indicates an Missing Code bug. For example, ⟨Wrong Type, Coerce⟩→Flipped Sign ↷⟨Wrong Argument, Evaluate⟩→Under
Range is a valid weakness causaton because the triples specify valid within-weakness re-latons, the Evaluate operaton may follow the Coerce operaton (see Fig. 10), and Flipped
Sign↷Wrong Argument is a valid data error-to-fault by value propagaton.
The ⟨Erroneous Code, Verify⟩→Inconsistent Value↷⟨Wrong Size, Repositon⟩→Overbound
Pointer↷⟨Overbound Pointer, Write⟩→Buffer Overflow are valid weakness causatons, as the data and address by type, Inconsistent Value↷Wrong Size by value, and Overbound
Pointer exact value propagaton are all valid. For a similar one-chain example, recall theBadAlloc patern from Sec. 3.3, Fig. 5 and see the BF CVE-2021-21834 specificaton at [1]).For a convergence involving example, see the BF specificaton of Heartbleed below.

35

https://usnistgov.github.io/BF/info/bf-cve/cve-2021-21834

NIST SP 800-231July 2024

Causaton between vulnerabilites is by exploit result type↷fault type propagaton (i.e., the fault starts a new faults-only vulnerability). For example, exposed private keys may become the fault that starts a new vulnerability.

Fig. 20. BF Vulnerability Specificaton Model
36

BF Security Vulnerability Specifica�on Model

Bug Type Error Type1

Opera�on1

Operand11 , ... Operand1i , ...
Error1

Fault Type1

Weakness Type 2

Weakness2

Error Type2

Fault1
Opera�on2

Operand21 , …, Operand2j , ...
Error2

Operand21 Kind
Value21s

Operand21 State
Value21k

…
Mechanism
Value2m

Source Code
Value2c

Execu�on Space
Value2e

Fault TypeN-1

Weakness TypeN

WeaknessN

Final Error Type

FaultN-1
Opera�onN

OperandN1 , …, OperandNP , ...
Final Error

Bug Opera�on Fault / Error Final Error Failure

Operand25 Kind
Value25s

Operand25 State
Value25k

Operand11 Kind
Value11s

Operand11 State
Value11k

…
Mechanism
Value1m

Source Code
Value1c

Execu�on Space
Value1e

Operand15 Kind
Value15s

Operand15 State
Value15k

OperandN1 Kind
ValueN1s

OperandN1 State
ValueN1k

…

Mechanism
ValueNm

Source Code
ValueNc

Execu�on Space
ValueNe

OperandN5 Kind
ValueN5s

OperandN5 State
ValueN5k

…

…

Bug Type – Code or Specifica�on

Fault/Error Type – Data, Name, Type, Address, or Size

→ Causa�on within weaknesses– by valid (<cause, operation> → consequence) rela�ons

↷ Causa�on between weaknesses– guided by flow of opera�ons

Propaga�on between weaknesses – by same error type to fault type and by valid by name transi�on

BF, I. Bojanova

Weakness Type 1

Weakness1

Failure Type1

Failure1

Failure TypeF

FailureF

Buggy Opera�on

Opera�on with Faulty Operand

Opera�on with Faulty Operand

(Bug, Opera�on1, Error1) ← lookup_rela�on()

(Opera�on1, Opera�on2)← lookup_flow()

Fault1.Type ← Error1.Type

(Fault1, Error1) ← lookup_propaga�on()

(Fault1, Opera�on2, Error2) ← lookup_rela�on()

(Opera�on2, Opera�on3)← lookup_flow()

Fault2.Type ← Error2.Type

(Fault2, Error2) ← lookup_propaga�on()

(Faultn-1, Opera�onn, Final Error)← lookup_rela�on()

(Final Error, Exploit1)← lookup_flow()
…

(Final Error, ExploitF)← lookup_flow()

ExploitF

VectorF

Exploit1

Vector1

Bug

NIST SP 800-231July 2024

For example, the BF specificaton view of Heartbleed, CVE-2014-0160, is presented in Fig. 21. It expands the Heartbleed improper states view (see Fig. 17) via the BF taxonomic representaton of a weakness as a ⟨cause, operaton⟩→consequence triple with atributes and its consequence↷cause propagaton.

Fig. 21. BF specificaton of Heartbleed

BF Specifica�on of CVE -2014-0160 – Heartbleed
in OpenSSL v1.0.1 before v1.0.1g

_INP Weakness

Data Verifica�on
(DVR)

Code Defect Bug Opera�on Data Error

Missing Code
in 'dtls1_process_heartbeat(SSL *s)

Verify
length

Inconsistent Value
'payload'

Data State
Transferred
via network

Mechanism
Range
1 + 2 + 16 <= s ->s3->rrec.length
1 + 2 + payload + 16 <= s->s3->rrec.length

Source Code
Third-Party
ssl /d1_both.c: 1462
ssl /t1_lib.c: 2591

Execu�on Space
Local

_MEM Weakness

Memory Addressing
(MAD)

Data Fault Opera�on Address Error

Wrong Size
in 'memcpy(bp, pl, payload)'

Reposi�on
pointer

Over Bound Pointer
'pl'

Address State
Heap

Size Kind
Used
for s→s3→rrec.data[0]

Mechanism
Sequen�al

Source Code
Third-Party
ssl /d1_both.c:1487
ssl /t1_lib.c:2620

Execu�on Space
Userland

_MEM Weakness
Memory Use
(MUS)

Address Fault Opera�on

Over Bound Pointer
in 'memcpy(bp, pl, payload)'

Read
object

Buffer Over-Read
'pl'

Address State
Heap

Size Kind
Used

Mechanism
Sequen�al

Source Code
Third-Party
ssl /d1_both.c:1487
ssl /t1_lib.c:2620

Execu�on Space
Userland

Failure

Missing Code Not Cleared Object

Address State
Heap

Mechanism
Sequen�al

Source Code
Codebase

Clear
object

Execu�on Space
Userland

_MEM Weakness

Memory Use
(MUS)

Code Defect Bug Opera�on
Memory Corrup�on/Disclosure
Final Error

Bug Opera�on Fault / Error Final Error Failure

BF Tool, I. Bojanova

Memory Corrup�on/Disclosure
Final Error

Address Kind
Huge
up to 64kb per exploit

IEX

Address Kind
Huge
up to 64kb per exploit

Size Kind
Actual

Using the BF taxonomies of the involved weakness types, the ⟨Missing Code, Verify⟩→
Inconsistent Value weakness (see the first triple in the first chain in Fig. 21) is an instanceof the BF DVR class. The missing input data verificaton (i.e., semantcs check) security bug leads to a Data Error — a data value that is inconsistent with the size of the array.

37

https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://usnistgov.github.io/BF/info/bf-classes/_inp/dvr/

NIST SP 800-231July 2024

The operaton and operand atributes provide details on what, how, and where it wentwrong. The Mechanism, Source Code, and Executon Space atributes are about the Ver-
ify operaton. Mechanism shows that the missing verificaton should have been checked against range (i.e., the actual length). Source Code shows that the bug is in third-party sof-ware — the d1 both.c and t1 lib.c files. Executon Space shows that the code with thebug is running in an environment with local user (i.e., limited) permissions. The Data State atribute is about the Data operand and shows that the data was transferred.
Next, the ⟨Wrong Size, Repositon⟩→Overbound Pointer weakness (see the second triple in the first chain in Fig. 21) is an instance of the BF MAD class. The wrong size Data Fault at repositoning leads to a pointer pointng overbound (i.e., an address error). The Mech-
anism atribute for this weakness shows that the repositoning is sequental and iterates over the buffer elements. The Executon Space is userland — an environment with priv-ilege levels but in unprivileged mode. The Address State atribute shows that the buffer is dynamically allocated in the heap. The Size Kind atribute shows that the iteraton overthe elements of the buffer is limited by a used value (supplied with the request); it is notlimited by the actual size of the array.
Last in this chain, the ⟨Overbound Pointer, Read⟩→Buffer Over-Read weakness (see the third triple in the first chain in Fig. 21) is an instance of the BF MUS class. The overbound pointer Address Fault results in a buffer over-read Memory Disclosure Final Error. The
Address Kind atribute shows that the accessed out-of-bounds memory is huge — up to 64KB of memory per request.
The converging vulnerability (see the second chain in Fig. 21) chain comprises another BFMUS instance — a ⟨Missing Code, Clear⟩→Not Cleared Object weakness. The missing clear(change to a non-meaningful value, such as via zeroizaton) bug leads to an object with not cleared data — a memory disclosure final error. The atributes are the same as for the BF MUS weakness in the main vulnerability (see Chain 1 in Fig. 21). However, this is a differentvulnerability, and the source code is in different sofware.
Combined, the memory disclosure final errors Buffer Over-Read and Not Cleared Object cause an informaton exposure (IEX) security failure. Either the missing Verify bug or the missing Clear bug has to be fixed to avoid this security failure.
The corresponding BF specificaton of Heartbleed — CVE-2014-0160.bfcve — in XML for-mat is shown in Fig. 26. For more details, see BF CVE-2014-0160 Heartbleed at [1].
For more details on the BF Vulnerability Specificaton Model, refer to the forthcoming SP 800-231D, Bugs Framework: Vulnerability Models.

38

https://usnistgov.github.io/BF/info/bf-classes/_mem/mad/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/
https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/

NIST SP 800-231July 2024

8. BF Formal Language

The BF formal language is generated by the BF lef-to-right lefmost derivaton one-symbol lookahead (LL(1)) atribute context-free grammar (ACFG) derived from the BF CFG. Since itis based on an LL(1) grammar, the BF formal language is guaranteed to be unambiguous, and the BF weakness and vulnerability specificatons are guaranteed to be clear and pre-cise.2 The BF lexis, syntax, and semantcs are based on the BF structured causal taxonomies (e.g., Fig. 12), bugs models (e.g., Fig. 9), and vulnerability models (e.g., Fig. 16 and 20). Lexis refers to the vocabulary (i.e., words and symbols) used by a specificaton language. Syntax is about validatng the grammatcal structure (i.e., the form) of a specificaton. Semantcs is about verifying the logical structure (i.e., the meaning) of a specificaton.
The BF CFG is a powerful tool for specifying and analyzing security weaknesses and vulner-abilites. It is defined in Listng 1 as a four-tuple

G = (V,Σ,R,S), (1)
where:

• Σ defines the BF lexis (i.e., the alphabet of the CFG) as a finite set of tokens (termi-nals) comprised by the sets of BF taxons and BF symbols � 	
Σ = α | α ∈ ΣTaxon ∪ ΣSymbol

• V and R define the BF syntax (i.e., the types of phrases and the rules of the CFG) as
◦ A finite set of variables (nonterminals) � 	

V = S,V1, . . . ,Vn

and

◦ A finite set of syntactc rules (productons) in the form � � � R = A 7−→ ω | A
∗∈ V ∧ ω ∈ V ∪ Σ
	
,

where: � �
V

∗ ∪ Σ is a string of tokens and/or variables, and

A 7−→ ω means that any variable A occurrence may be replaced by ω .
• S ∈ V is the predefined start variable from which all BF specificatons derive.

2Clear means easy to understand, straightorward, and unambiguous with no room for confusion or misin-terpretaton. Precise means exact, accurate, and specific, which also implies unambiguous.
39

NIST SP 800-231July 2024

A BF specificaton starts from S and ends with the empty string. The derivaton is via a se-quence of steps in which nonterminals are replaced by the right-hand side of a producton. The producton rules are applied to a variable regardless of its context.
The BF formal language is generated by the BF LL(1) ACFG G = (V,Σ,R,S) (see Listng 8)that augments the syntax of the BF CFG with semantc rules (see Listng 7). It is defined in Listng 2 as the set L(G) of all strings of tokens ω derivable from the start variable S.

∗ L(G) = {ω ∈ Σ∗ : S=⇒ω}, (2)
where:

• Σ∗ is the set of all possible strings that can be generated from Σ tokens
• S is the start variable

• α
∗

=⇒ β means string α derives string β .
Strings involving nonterminals are not part of the language (i.e., ω must be in Σ∗ — the setof strings made from terminals).
8.1. BF Lexis

The BF formal language lexis refers to the vocabulary of the BF formal language: the set of tokens Σ. Listng 3 defines it as the set of BF taxons (see Sec. 6) and the set of symbols forconverging and chaining vulnerabilites (see Fig. 16):
� 	

Σ = ΣTaxon,ΣSymbol (3)
�

ΣTaxon = Operation, BugType, Bug, FaultType, Fault, ErrorType, Error, 	
FinalErrorType, FinalError,OperationAttribute, OperandAttribute, . . .

�
ΣSymbol = CausationSymbol,ChainingSymbol,ConvergingSymbol, 	

SemicolonSymbol,CommaSymbol,Le f tAngleSymbol,RightAngleSymbol

The BF CFG lexis defines the BF taxons (e.g., for BF operatons, bugs, faults, final errors, operaton atributes, operand atributes, and failures). It also defines the set of BF symbols for specifying causaton within a weakness (→), chaining weaknesses or vulnerabilites (↷), and converging vulnerabilites (⊕). The taxons are in quotes (e.g., ‘Missing Code’ or
‘Query Injecton’) and considered literal words.
The BF classes are of a ‘Weakness’ or ‘Failure’ category. Listng 4 provides an excerpt ofthe BF lexis expressed via the Extended Backus–Naur Form (EBNF) [31] using the following meta-notatons:

40

NIST SP 800-231July 2024

Symbol Meaning
= defining
| definiton separator
; terminator

Category = ′Weakness′ | ′Failure′ ; (4)
ClassType = ′ INP′ | ′ MEM ′ A | ′ D T ′ | . . .

Class = ′DV L′ | ′DV R′ | ′MAD′ | ′MMN′ | ′MUS′ | ′DCL′ | ′NRS′ | ′TCV ′ | ′TCM′ | . . . ;

Operation = ′Validate′ | ′Sanitize′ | ′Veri f y′ | ′Correct ′ | ′Initialize Pointer′ | ′Dere f erence′

| ′Reposition′ | ′Reassign′ | ′Allocate′ | ′Extend′ | ′Reallocate − Extend′

| ′ Reallocate − Reduce′ | ′ Reduce′ ′ Deallocate′ ′ Initialize Ob ject ′ ′ Read ′ | | |
′W rite′ ′C lear ′ ′ Declare′ ′ De f ine′ ′ C | | | | | Re f er ′ | ′ all ′ | ′Cast ′ | ′Coerce ′

 | ′Calculate′ | ′Evaluate′ . . . ;

BugType = ′C ode Bug ′ | ′ Speci f ication Bug ′ ;

Bug = ′Missing Code′ | ′Erroneous Code′ | ′Mismatched Operation′ | . . .
| ′Under − Restrictive Policy′ | ′Over − Restrictive Policy′

| ′ Missing Modi f ier ′ | ′W rong Modi f ier ′

| ′ AnonymousScope′ | ′W rongScope′

| ′ Missing Quali f ier ′ | ′W rong Quali f ier ′ | . . . ;

FaultType ′ = Name Fault ′ | ′Data Fault ′ | ′ Type Fault ′ | ′ Address Fault ′ ;

Fault = ′Missing Overridden Function′ | ′Missing Overloaded Function′

′W | rong Ob ject Resolved ′ | ′W rong Function Resolved ′ | . . . ;
| ′C orrupted Data ′ | ′Tampered Data ′ | ′Corrupted Policy Data ′

′ Tampered Policy Data ′ ′ | | Invalid Data ′ | ′NULL Pointer ′

| ′Hardcoded Address′ | ′Single Owned Address′ | ′Wrong Index′ | ′Wrong Size′

| ′Flipped Sign′ | ′Wrong Argument ′ | ′Re f erence vs. Dere f erence′ | . . .
′C W | ast Pointer ′ | ′ rong Type ′ | ′W rong Index Type ′ | ′ Insu f f icient Size ′

| ′ Downcast Pointer ′ | ′W rong Argument Type ′ | ′W rong Ob ject Type Resolved ′ | . . .
W | ′ ild Pointer ′ | ′ Dangling Pointer ′ | ′U ntrusted Pointer ′

| ′Overbound Pointer′ | ′Underbound Pointer′ | ′Wrong Position Pointer′ | . . .

41

NIST SP 800-231July 2024

ErrorType = ′ Name Error ′ | ′ Data Error ′ | ′ Type Error ′ | ′ Address Error ′ ;

FinalErrorType = ′ In jection FinalError ′ | ′ Memory Corruption/Disclosure FinalError ′ |
′Entity Access FinalError′

FinalError ′ Query In jection ′ ′C ommand In jection ′ ′ = | | Source Code In jection ′ | . . . ;
| ′ NULL Pointer Dere f erence ′ | ′U ntrusted Pointer Dere f erence ′

| ′U ninitialized Pointer Dere f erence ′ ′ | Memory Leak ′ | ′Memory Over f low ′

| ′Double Deallocate′ | ′Ob ject Corruption′ | ′Not Cleared Ob ject ′

| ′Type Con f usion′ | ′Use A f ter Deallocate′ | ′Bu f f er Over f low′

| ′ Bu f f er Under f low ′ | ′ Bu f f er Over − Read ′ | ′ Bu f f er Under − Read ′

| ′ Subtype Con f usion ′ | ′U nde f ined ′ | . . . ;
. . .

CausationSymbol = ′ →′ ; SemicolonSymbol = ′ :′ ; Le f tAngleSymbol = ′⟨′ ;
ChainingSymbol = ′ ↷ ′ ; CommaSymbol ′ ′ = , ; RightAngleSymbol ′⟩′ =

ConvergingSymbol = ′⊕′ ; ;

8.2. BF Syntax

The BF formal language syntax is about validatng the grammatcal structure of a BF spec-ificaton. It adheres to the BF producton rules (i.e., nonterminals) for constructng (pro-ducing) valid specificatons of the language that correspond to the BF Vulnerability Specifi-caton Model structure and flow (see Fig. 20), including the converging and chaining rules (see Fig. 16) defined by the BF Vulnerability State Model.
The BF CFG syntax defines a vulnerability that possibly converges with other vulnerabilites, leading to one or more failures. The CFG producton rules are expressed via the EBNF using the following meta-notatons:
Symbol(s) Meaning

= defining
| definiton separator
[] opton — zero or one occurrences
{ } repetton — zero or more occurrences
() grouping
; terminator

(5)

42

NIST SP 800-231July 2024

S ner = Vul ability, ′↷ ′ , Failure;

Vulnerability = WeaknessChain, {′⊕′, WeaknessChain};
WeaknessChain = Weakness, {′ ↷′ , Weakness};

Weakness ′⟨′= , Cause, ′ ′, , Operation, ′ ′⟩ , ′ →′, Consequence;

Cause = Bug

| Fault;

Consequence = Error

| FinalError;

Error = Fault;

A vulnerability is defined as a chain of weaknesses, possibly converged and chained withother vulnerabilites. A weakness is defined as a ⟨cause, operaton⟩→ consequence triple.A cause is defined as a bug or a fault. A consequence is defined as an error or a final error (see Listng 5). However, according to the BF Vulnerability Specificaton Model (see Fig. 20), only the cause of the first weakness can be a bug, and only the last consequence can be a final error.
The last producton in Listng 5 expresses that the same set of taxons corresponds to Fault and Error, although they are different non-terminals — the former is a cause of a weakness, the later is a consequence of a weakness. An Error ↷ Fault propagaton may be on a different level of abstracton (e.g., Inconsistent Value ↷ Wrong Size).
A vulnerability with a single weakness is the only case in which a weakness is defined withboth a bug cause and a final error consequence. A propagaton weakness is caused by afault and results in an error. Listng 6 reflects these rules in the productons of Listng 5 andeliminates the Cause and Consequence variables.

(6)
S = Vulnerability ′ , ↷ ′ , Failure;

Vulnerability = WeaknessChain, {′⊕′, WeaknessChain};
WeaknessChain = SingleWeakness

↷′ | FirstWeakness, {′ , Weakness}, ′ ↷′, LastWeakness;

SingleWeakness ′⟨′ = , (Bug ′,′ | Fault), , Operation, ′⟩′, ′ →′ , FinalError;

FirstWeakness ′ ′ Bug Fault ′ ′ Operation ′ ′ ′ ′ = ⟨ , |), , , , ⟩ , → , Error;

Weakness ′⟨′ = , Fault ′ ′ ′ ′ , , , Operation, ⟩ , ′ →′ , Error;

LastWeakness ′⟨′ Fault, ′ ′ = , , , Operation ′⟩′ ′ , , →′, FinalError;

To ensure that the BF specificatons are unambiguous, the next step is to demonstrate the successful derivaton of a BF LL(1)3

3The most restrictve LL(1) is chosen for the simplicity and efficiency of parser implementatons.
formal grammar from the BF CFG. A CFG is an LL(1)

43

NIST SP 800-231July 2024

grammar if and only if only one token (terminal) or variable (nonterminal) is needed to make a parsing decision [32]. LL(1) grammars are not ambiguous and not lef-recursive.
The BF LL(1) formal CFG is derived from the BF EBNF productons on Listng 6 via lef fac-torizaton and lef recursion eliminaton. It is suitable for recursive descent parsing, as the start of each producton opton is unique. The rule to choose on each step is uniquely determined by the current variable and the next taxon (if there is one).
Listng 7 defines the BF LL(1) CFG producton rules for constructng valid, unambiguous BF specificatons. Compared to Listng 6, it also details the bug, fault, error, and final error type non-terminals.

(7)
S = Vulnerability, Converge Failure;

Vulnerability ′ ′ = ′⟨′ , Bug Fault, , , Operation, ′⟩′ , ′ →′ ,

OperAttrs Error FError;

Bug Fault ′ = BugType, : ′ , Bug

| T Fault;

OperAttrs Error FError = OperationAttribute, OperAttrs Error FError

| ErrorType, ′ : ′ ′ , Error, ↷′ ,
′⟨′ , T Fault, ′,′ , OprndAttrs Operation

| FinalErrorType ′ , : ′ , FinalError;

OprndAttrs Operation = OperandAttribute, OprndAttrs Operation

| Operation ′⟩′ , , ′ →′ , OperAttrs Error FError;

Converge Failure ′ ′ = ⊕ , Vulnerability, Converge Failure

 ′ | → , Failure;

T Fault = FaultType, ′ : ′ , Fault;

The BF specificatons are derived from the start symbol S by step-by-step producton appli-caton, substtutng for the lefmost terminal one at a tme untl the string is fully expanded (i.e., consists of only terminals).
8.3. BF Semantcs

The BF formal language semantcs is about verifying the logical structure of a BF specifi-caton. It is defined by extending the BF LL(1) CFG to a BF LL(1) ACFG with statc semantc rules that adhere to the BF Vulnerability Models causaton and propagaton rules (see Fig. 16 and 20). The statc semantc rules are expressed via a set of grammar atributes (i.e., propertes to which values can be assigned), a set of semantc functons for computng the atribute values, and a possibly empty set of predicate functons for each producton rule (e.g., Donald Knuth’s atribute grammars [33]).
44

NIST SP 800-231July 2024

Listng 8 presents the BF LL(1) ACFG syntax and semantc rules. If a nonterminal appears in more than one rule, it gets subscripted. The semantc rules prevent invalid within weak-nesses relatons and error↷fault by value between weaknesses propagaton and check forvalid flow by operaton.
The BF LL(1) ACFG adds the Type synthesized atribute for the nonterminals Fault and Er-
ror to store the operand types (i.e., Name, Data, Type, Address, or Size) and FinalError to store the final error types (e.g., Injecton, Memory Corrupton/Disclosure, Access, and Type
Compute). The predicates express propagaton by error type and fault type.

(8)
Syntax Rules:

S = Vulnerability, Converge Failure;

Vulnerability ′⟨′ = , Bug Fault, ′ ′ ′ ′ , , Operation ⟩ ′ →′
1, , ,

OperAttrs Error FError;

Bug Fault = BugType, ′ : ′ , Bug

pe | FaultTy , ′ : ′, Fault;

OperAttrs Error FError = OperationAttribute, OperAttrs Error FError
′ | ErrorType, : ′, Error ′ , ↷′ ,

′⟨′ ′ , FaultType, : ′, Fault , ′ ′ 1 , , OprndAttrs Operation

| FinalErrorType ′ , : ′ , FinalError;

OprndAttrs Operation = OperandAttribute, OprndAttrs Operation

| Operation ′
k,
′⟩′ , →′ , OperAttrs Error FError;

Converge Failure = ′⊕′, Vulnerability, Converge Failure

| Failure;

T Fault ′ = FaultType, : ′ , Fault;

Semantc Rules: � �
Bug, Operation1, Error ← lookup relation() � �

Bug, Operation1, FinalError ← lookup relation() � �
Fault1, Operationk, Error , k > 1 ← lookup relation() � �

Fault1, Operationk, FinalError , k > 1 ← lookup relation()

(Operation1, . . . , Operationk), k > 1 ← lookup f low()

Fault1 ← i f (Fault1.ClassType == Error.ClassType) then Error

else (Fault1, Error) ← lookup propagation()

Predicates:
Fault1.Type == Error.Type

ExploitVector.Type == FinalError.Type

45

NIST SP 800-231July 2024

For example, listng 9 expresses the formal BF specificaton of CVE-2014-0160 Heartbleed.
(9)

BF INP DV R

⟨Code Bug : Missing Code, Veri f y⟩ → Data Error : Inconsistent Value

Mechanism : Range, Source Code : T hird − Party, Execution Space : Local

Data State : Trans f erred

↷

BF MEM MAD

⟨Data Fault : Wrong Size, Reposition⟩ → Address Error : Over Bound Pointer

Mechanism : Sequential, Source Code : T hird − Party, Execution Space : Userland

Address State : Heap, Size Kind : Used

↷

BF MEM MUS

⟨Address Fault : Over Bound Pointer, Read⟩ → Memory Corruption/Disclosure

Final Error : Bu f f er Over − Read

Mechanism : Sequential, Source Code : T hird − Party, Execution Space : Userland

Size Kind : Used, Address Kind : Huge, Address State : Heap

⊕

BF MEM MUS

⟨Code Bug : Missing Code, Clear⟩ → Memory Corruption/Disclosure

Final Error : Not Cleared Ob ject

Mechanism : Sequential, Source Code : T hird − Party, Execution Space : Userland

Address Kind : Huge, Address State : Heap, Size Kind : Actual

↷

IEX

For the fully expressed BF lexis, syntax, and semantcs in EBNF, refer to the forthcoming SP 800-231E, Bugs Framework: Formal Language.

46

https://nvd.nist.gov/vuln/detail/CVE-2014-0160

NIST SP 800-231July 2024

9. BF Secure Coding Principles

The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT) Cod-ing Standards (e.g., [34] and [35]) and the Open Worldwide Application Security Project(OWASP) Secure Coding Practices [36] set the current state of the art in secure coding.They provide rules and practices that are grouped by topic and described in natural lan-guage. The CERT rules are also programming language-specific, though they do provideuseful non-compliant code examples and compliant solutions.
In contrast, the BF bugs models, weakness and failure taxonomies, and vulnerability mod-els (see Sec. 5, 6, and 7) form the basis for the formal definition of secure coding prin-ciples by software, firmware, or hardware execution phases, that are also programminglanguage-independent. For example, the BF Input/Output Check Bugs Model (see Fig. 8)and classes (see BF INP at [1]) address input/output check safety (e.g., no SQL injectionsor use of wrong input values). The BF Memory Bugs Model (see Fig. 9) and classes (see BFMEM at [1]) address memory safety (e.g., no use after frees or buffer overflows). The BFData Type BugsModel (see Fig. 10) and classes (see BF DAT at [1]) address data type safety(e.g., no integer overflows or subtype confusions). The BF Vulnerability Models rules (seeSec. 7), which are reflected in the BF semantics, help identify the dependencies betweendifferent kinds of code safety.
The BF bugs models define the sets of operations where code safety could break. Theyalso define the proper operation flow within and between execution phases that — if notfollowed—could also break code safety. The x-axis of amodel reflects temporal safety. They-axis of a model may reflect spatial safety. The BF weakness taxonomies are organized bythe bugsmodels phases and definewhy (i.e., bugs and faults), where (i.e., operations), andhow (i.e., errors and final errors) the code safety could break. The BF vulnerability modelsdefine the causation, propagation, and convergence rules, which in addition to the properoperation flow, define how breaking one kind of code safety may lead to breaking another.
9.1. Input/Output Check Safety

Input/output check safety ensures the use of proper input/output data in code. That is,data is properly validated and sanitized and/or verified and corrected. It is addressed bythe BF Input/Output Check Bugs Model (see Fig. 8) operation flow and the BF DVL andDVR classes (see BF INP at [1]) that define why, where, and how input/output check safetycould break. It relates to the BF data operations Validate, Sanitize, Verify, and Correct.Input/output data must be validated (syntax check) and then sanitized (escaped, filtered,or repaired) and/or verified (semantics check) and then corrected (assigned a new valueor removed), if needed.
Avoiding the meaningful ⟨bug/fault, operation⟩ couples of the BF INP classes would guar-antee input/output check safety. That is, avoiding the BF DVL bugs (i.e., missing or erro-neous validation, or under-restrictive or over-restrictive validation policy) and faults (i.e.,

47

https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_dat/
https://usnistgov.github.io/BF/info/bf-classes/_inp/

NIST SP 800-231July 2024

corrupted or tampered data or validaton policy) guarantees safety from errors, such as
Invalid Data and final errors, such as Query Injecton (e.g., SQL injecton) and Source Code
Injecton (e.g., Cross Site Scriptng (XSS)). Injectons enable the following security failures:IEX, TPR, ACE, and its sub-case RCE. Avoiding the BF DVR bugs (i.e., missing or erroneousverificaton or under-restrictve or over-restrictve verificaton) and faults (i.e., invalid data) guarantees safety from errors, such as Wrong Value, Inconsistent Value, and Wrong Type.
9.2. Memory Safety

Memory safety ensures the proper access and use of memory in code. That is, pointers to objects are properly initalized, dereferenced, repositoned, or reassigned, and objects are properly allocated, initalized, read, writen, resized, cleared, or deallocated. It is ad-dressed by the BF Memory Bugs Model (see Fig. 9) operaton flow and the BF MAD, MMN, and MUS classes (see BF MEM at [1]) that define why, where, and how memory safety could break.
Memory safety has both temporal and spatal aspects that depend on pointer safety. Tem-
poral memory safety ensures that an object memory is only accessed or used during itslife cycle and only via its proper pointers (owners). Access is via BF MAD Dereference ofa pointer to the object; use is via BF MUS Read or Write of object data. The first opera-ton over an allocated object must be BF MUS Initalize Object, and the last one before it is deallocated must be BF MUS Clear (see Fig. 9).
Examples of temporal memory safety are uninitalized object, use afer deallocate (i.e.,use afer free or use afer return in C), and double deallocate (i.e., double free in C) safety. The first prevents the use of non-meaningful data values, the second prevents the use ofdata values via dangling pointers, and the third prevents the deallocaton of deallocatedobjects via dangling pointers. The following BF weakness specificatons detail what bugs or faults could break these three kinds of temporal memory safety: ⟨Missing Code/Erroneous
Code, Initalize Object⟩→Uninitalized Object, ⟨Dangling Pointer, Read⟩→Use Afer Deal-
locate, and ⟨Dangling Pointer, Deallocate⟩→Double Deallocate. A dangling pointer holds the address of its successfully deallocated object (i.e., a pointer to a freed heap object or address of a stack object returned by a functon) and is the consequence of a ⟨Missing
Code, Reassign⟩→Dangling Pointer (see the discussion on pointer safety below) afer a
Deallocate operaton.
Spatal memory safety ensures access or use within the bounds of an allocated object andonly via its pointers (owners). In additon to the MAD Dereference and MUS Read and Write operatons, it also relates to the MAD and MDL operatons along the y-axis of the MEMBugs Model (see Fig. 9) that affect the object boundaries: Allocate, Extend, Reallocate-
Extend, Reduce, and Reallocate-Reduce. The size of the object is always strictly defined, and the pointer must not exceed its boundaries.

48

https://usnistgov.github.io/BF/info/bf-classes/_mem/

NIST SP 800-231July 2024

Examples of spatal memory safety are buffer overflow and underflow safety, and buffer over-read and under-read safety. The following BF weakness specificatons detail whatbugs or faults could break these two kinds of spatal memory safety: ⟨Overbound Pointer,
Write⟩→Buffer Overflow and ⟨Underbound Pointer, Read⟩→Buffer Under-Read. For con-sideraton, there are also the fault weaknesses that may cause them, such as ⟨Wrong Size,
Allocate/Reduce⟩→ Insufficient Size, ⟨Wrong Size, Repositon⟩→Underbound Pointer, and
⟨Insufficient Size, Repositon⟩→Overbound Pointer, which in turn are caused by the decla-raton of verificaton bug weaknesses. Buffer overflows and underflows enable TPR, DOS,and ACE failures. Buffer over-reads and under-reads enable IEX failures.
Allocaton in excess or failure to deallocate unused objects (see the MMN Memory Over-
flow and Memory Leak final errors, correspondingly) could exhaust memory. The formerimpacts spatal memory safety. The later directly impacts temporal safety and indirectly impacts spatal memory safety. Both enable DOS failures.
Pointer Safety ensures that an object is only accessed via its proper pointers (owners). It relates to the MAD, MAL, and MDL operatons (see Fig. 9) that assign or reassign the object pointer (owner): Initalize Pointer, Allocate, and Reassign. Use of Wild Pointer, Untrusted
Pointer, Cast Pointer, or Forbidden Address (including Null Pointer) would break pointer safety and lead to final errors such as Object Corrupton, Memory Leak, Type Confusion,and NULL Pointer Dereference, respectvely. Subsequently, bugs and faults covered by any non- MEM classes, whose operatons produce such pointers, should also be avoided.
According to the proper memory-related operaton flow (see Fig. 9), a pointer may be ini-talized before or afer the allocaton of its object. However, it must be initalized beforeit is used to address its object, repositoned afer the reallocaton of its object, and reas-signed afer the deallocaton of its object. These correspond to the MAD Wild Pointer and
Dangling Pointer errors. If an object is reallocated because of being extended or reduced, all of its owners must be repositoned.
An object must not be read before it is initalized (i.e., the first write) and must be cleared (i.e., the last write) before it is deallocated. An unneeded object must be cleared and deallocated, and all of its pointers (owners) must be reassigned. It should not be possible toaccess and use its data afer it is deallocated. These correspond to the BF MUS Uninitalized
Object error and Not Cleared Object, Memory Leak, and Use Afer Deallocate (i.e., use afer free or use afer return) final errors. Memory leaks enable IEX and DOS failures. The use of deallocated objects enables IEX, TPR, DOS, and ACE failures.
Temporal memory safety may depend on input data safety. For example, verificaton of an input size toward the actual size of a buffer before Read or Write will eliminate relatedbuffer overflows. Spatal memory safety may depend on data type safety. For example, avoiding Cast-related data errors that may lead to the use of an incorrect element size and
Repositon overbound or underbound will eliminate related buffer overflows.

49

NIST SP 800-231July 2024

Avoiding the meaningful ⟨bug/fault, operaton⟩ couples of the BF MEM classes would guarantee temporal and spatal memory safety, as well as general pointer safety. Avoiding erroneous pointer arithmetcs will also eliminate related buffer overflows. For example, proper type declaraton would avoid type coercion at argument passing to functons thatcalculate the size of a buffer and result in flipped signs and wrap-around (e.g., integer overflows), rounded (i.e., breaking floatng point safety), or truncated values.
9.3. Data Type Safety

Data type safety ensures the proper use of enttes (e.g., objects, functons, and data types)in code. That is, objects, functons, and data types are properly declared, defined, and referenced; objects are properly typecast or coerced; and functons are correctly called to perform error-free type-related computatons. It is addressed by the BF Data Type Bugs Model (see Fig. 10) operaton flow and the BF DCL, NRS, TCM, and TCV classes (see BF DAT at [1]) that define why, where, and how data type safety could break.
Data type safety has both temporal and spatal aspects. Temporal data type safety ensures the use of data values that are compatble and data types that are non-confused with the declared data type of an object. Enttes must not only be declared but also defined andtheir names properly resolved and bound. Compute and evaluate functons must also be defined with the appropriate argument data types. Temporal data type safety is mostlycovered by the type system of the programming language. However, DCL bugs that cause errors (e.g., Missing Overloaded Functon) or propagate to faults (e.g., Wrong Argument
Type) could stll break data type safety.
Spatal data type safety ensures proper object type conversions and use of its layout. Itis addressed by the operatons that affect the interpretaton of the object layout or the elements’ size along the y-axis of the DAT Bugs Model (see Fig. 10): TCV Cast and Coerse.
Examples of spatal data type safety are cast pointer safety, coerced object safety, and subtype safety. The first prevents a pointer and its object from having incompatble datatypes. A declared overloaded functon must have implementatons for all of the needed argument types. Otherwise, Coerce will be forced on the argument values. The last exam-ple prevents a pointer and its object from having confused data types. A cast pointer can cause different element size interpretatons and overall object size that may lead to buffer overflows. A wrong argument type coercion can result in truncated or rounded data val-ues. Downcastng a pointer to a sibling class can cause Subtype Confusion and enable an ACE or RCE (of functons of the sibling class) failure.
Data type safety may depend on input data safety. For example, verificaton of the target data type toward the object (source) data type before the Cast of an object pointer will eliminate related Cast Pointer errors and Type Confusion final errors.
Avoiding the meaningful ⟨bug/fault, operaton⟩ couples of the BF DAT classes would guar-antee temporal and spatal data type safety.

50

https://usnistgov.github.io/BF/info/bf-classes/_dat/

NIST SP 800-231July 2024

The methodology for the definiton of secure coding principles by sofware, firmware, orhardware executon phases involves the following seven steps (also see Fig. 22):
1. BF Bugs Model: Identfy the BF Bugs Model that corresponds to the executon phases for which secure coding principles are to be defined.
2. Temporal and Spatal Operatons: Determine the operatons along the x-axis of the Bugs Model that relate to the temporal safety for the BF class type. If a y-axis exists, determine which operatons relate to its spatal safety for the BF class type.
3. Operatons Flow Rules: Formally describe the proper operatons flow according tothe semantc graphs of the BF Bugs Model.
4. BF Class Type: Identfy the BF Class Type that corresponds to the BF Bugs Model and the semantc matrices for each of its BF classes.
5. Spatal Safety Rules: Formally describe what (i.e., bugs or faults) how (i.e., errors and final errors) could break the code safety via spatal operatons according to thewithin weakness causaton semantc rules of the BF classes.
6. Temporal Safety Rules: Formally describe what (i.e., bugs or faults) and how (i.e., errors and final errors) could break the code safety via temporal operatons according to the within weakness causaton semantc rules of the BF classes.
7. Dependency Rules: Identfy code safety dependencies according to the BF between weaknesses causaton and propagaton semantc rules.

BF Secure Coding Principles Methodology

BF, I. Bojanova

1. BF Bugs Model 4. BF Class Type

2. Temporal Safety Opera�ons

Spa�al Safety Opera�ons

BF Class

7. Dependency Rules6. Temporal Safety Rules

5. Spa�al Safety Rules

3. BF Seman�c Graph

Opera�ons Flow Rules

Seman�c Matrix

Fig. 22. BF secure coding principles methodology

While the BF formal language is descriptve, the secure coding principles are prescriptve against bugs and faults per operaton that break specific kinds of code safety.
For more secure coding principles and details, refer to the forthcoming SP 800-231F, Bugs
Framework: Secure Coding Principles.

51

NIST SP 800-231July 2024

10. BF Tools

The BF features generaton tools that reflect the BF taxonomy, models, and formal lan-guage syntax and semantcs. The BFCWE tool and the BFCVE tool facilitate the generaton of formal weakness and vulnerability specificatons. The BF tool guides the creaton of com-plete BF vulnerability specificatons. The related BF APIs at [1] provide BF data retrieval and specific tool functonalites.
The BFDB database hosts the BF data. The BF taxonomy structure and semantcs rules areorganized via a relatonal database with graph features and via XML and JSON data inter-change formats (query them via the BF API at [1]). The BFDB contains the types, names, and definitons of the BF taxons, their relatonships within the taxonomy, and the BF weaknessand vulnerability semantc relaton and propagaton matrices and operaton flow graphs.The BF mashup database organizes additonal data for querying BF toward the CWE, CVE, NVD, GitHub [37], KEV [6], and Exploit Predicton Scoring System (EPSS) [38].
10.1. BFCWE Tool

The BFCWE tool facilitates the creaton of CWE-to-BF (CWE2BF) mappings by weakness op-eraton, error, final error, and possibly entre ⟨cause, operaton⟩→consequence) weakness triples [39]. It also generates BFCWE formal specificatons as entries of the BFCWE security weakness types dataset and graphical representatons of the CWE2BF mappings and the BFCWE specificatons to enhance understanding (e.g., see [16–18, 22]).
Metculous analysis of the natural language descriptons of CWEs, relevant code exam-ples, and descriptons of related CVEs is conducted to create CWE2BF mappings by weak-ness operaton, error, and final error and then by detailed ⟨bug, operaton⟩→error, ⟨fault,
operaton⟩→error, ⟨bug, operaton⟩→final error, and ⟨fault, operaton⟩→final error weak-ness triples [40].
The BFCWE tool is utlized to generate the graphical representatons of the CWE2BF map-pings for enhanced understanding as directed graphs with parent-child CWE relatonships. Examples include INP CWE2BF [16], MEM CWE2BF [17], and DAT CWE2BF [18].
Since a specific CWE should be about a single weakness, any parts of its descripton thatreveal possible causing weaknesses are not considered for the BFCWE specificaton. How-ever, they are considered for the partal BFCVE specificatons (see Sec. 11.3 and BFCVE Partal). All identfied weakness triples are checked against the BF matrix of valid ⟨cause,
operaton⟩→consequence within weakness relatons, which defines part of the BF formallanguage semantcs. The same methodology helps reveal overlaps among the CWEs, asmany of them have the same BF specificaton — that is, the same BF weakness triple.
The BFCWE tool is utlized to generate the formal BF specificaton of each weakness asan entry of the BFCWE security weakness dataset and its graphical representaton. How-ever, there could be a set of corresponding BF specificatons for some CWEs. For exam-

52

https://usnistgov.github.io/BF/info/apis
https://usnistgov.github.io/BF/info/apis/bf-api/
https://usnistgov.github.io/BF/info/bf-classes/_inp/cwe2bf/
https://usnistgov.github.io/BF/info/bf-classes/_mem/cwe2bf/
https://usnistgov.github.io/BF/info/bf-classes/_dat/cwe2bf/
https://usnistgov.github.io/BF/info/apis/bfcvepartial-api
https://usnistgov.github.io/BF/info/apis/bfcvepartial-api

NIST SP 800-231July 2024

ple, the natural language descriptons, demonstratve examples, and potental mitgatonsfor CWE-125 reveal the ⟨Overbound Pointer, Read⟩→Buffer Over-Read and ⟨Underbound
Pointer, Read⟩→Buffer Over-Read possible weakness triples. Subsequently, these are the possible BF specificatons for the main weakness of a CVE mapped to CWE-125. Figure 23shows their generated graphical representaton.

Address Fault Opera�on
Memory Corrup�on/Disclosure
Final Error

Over Bounds Pointer
Read

(Improper Operand: Address)
Buffer Over-Read

Address Fault Opera�on
Memory Corrup�on/Disclosure
Final Error

Under Bounds Pointer
Read

(Improper Operand: Address)
Buffer Under-Read

BF Specifica�ons of CWE -125

_MEM Weakness
Memory Use
(MUS)

_MEM Weakness
Memory Use
(MUS)

Defini�onClass Type

Weaknesses that lead to memory related errors or introduce memory corrup�on/disclosure exploit vectors.Memory Corrup�on/Disclosure (_MEM)

Defini�onClass

An object is ini�alized, read, wri�en, or cleared improperly.Memory Use (MUS)

Defini�onOpera�on

Retrieve the data value of an object from memory.Read

Defini�onCause

The object address in use is wrong.Address Fault

Holds an address that is above the upper boundary of its object.Overbound Pointer

Holds an address that is below the lower boundary of its object.Underbound Pointer

Defini�onConsequence

An exploitable or undefined system behavior caused by memory addressing, alloca�on, use, or dealloca�on bugs.Memory Corrup�on/Disclosure Final Error

Read data above the upper bound of an object.Buffer Over-Read

Read data below the lower bound of an object.Buffer Under-Read

BF, I. Bojanova

Fig. 23. BF specificatons of CWE-125

The BFCWE tool is also useful for the generaton and analysis of CWE directed graphs byother criteria. For example, see the directed graphs of hardware CWEs and their analysisin NIST IR 8517 [41].
For more details, refer to the forthcoming SP 800-231G, Bugs Framework: Tools and APIs.
10.2. BFCVE Tool

The BFCVETool facilitates the creaton of CVE-to-BF (CVE2BF) mappings by final error and possibly entre ⟨bug/fault, operaton⟩→final error weakness triple. It also generates possi-ble chains of weaknesses for a vulnerability (e.g., a CVE) by an identfied failure, final error, or entre final weakness; generates possible BFCVE formal specificatons and their graphi-cal representatons; and identfies CWEs for NVD assignment [42]. Code analysis and the BF graphical user interface (GUI) functonality can be used to identfy and complete the unique unambiguous BF vulnerability specificaton.
53

https://cwe.mitre.org/data/definitions/125.html

NIST SP 800-231July 2024

The BF relatonal database, the NVD Representatonal State Transfer Applicaton Program-ming Interface (REST API), and the GitHub REST API are utlized to extract CVEs with as-signed CWEs for which Code with Fix is available. For example, as of June 20, 2024, there are 5 162 CVEs that map to BF INP [1, 16] weakness triples by CWE, 4 484 CVEs that mapto BF MEM [1, 17], and 629 CVEs that map to BF DAT [1, 18] for which GitHub diffs areavailable via the NVD. Other repositories may also provide fix commits and even the codeof vulnerable functons (e.g., DiverseVul [43]).
Informaton on the failure and the final weakness is gained from CVE reports, CVE descrip-tons, and CWE2BF weakness triple mappings if a CWE is assigned by the NVD. The BFCVEtool utlizes the BFDB relatonal database and the NVD REST API to extract the CWE2BF triples for that CVE. It then generates CVE2BF mappings by possible final error or finalweakness and failure. For a specific CVE, the BFCVE tool applies the BF causaton andpropagaton rules (i.e., the BF formal language syntax and semantcs) to go backward from the failure through the final weakness to generate all possible BF chains of weaknesses forthat specific CVE independently of whether the CVE Code with Fix is available.
Going backward from the failure, the BFCVE tool builds a connected acyclic undirected graph (i.e., a tree whose root is the failure) of all possible weakness chains with type-based backward fault type↶error type match and fault value↶error value propagaton or — forweaknesses of the same BF class type — direct match. The chains undergo scrutny to ensure further alignment with the BF formal language semantcs, the causaton matrices of meaningful ⟨cause, operaton⟩→consequence within weakness relatons, the graphs of meaningful (operaton1, . . . , operatonn) bug or fault state paths, and the matrices of mean-ingful consequence↷cause between weaknesses propagatons. The identfied failure andfinal weakness triple dramatcally reduce the number of generated possible paths in theacyclic graph. This is also a good startng point for specifying vulnerabilites that are not recorded in the CVE.
The CVE Code with Fix can then be examined by security researchers or utlizing AI andcompared with the generated chains of weakness triples to pinpoint the unique unam-biguous BF vulnerability specificaton. For that, the BF tool functonality and automatedcode analysis — including via large language models (LLMs) — can be used.
For example, the main vulnerability for CVE-2014-0160 Heartbleed (see Sec. 7.1) is mapped to CWE-125 in the NVD, and the CWE2BF mappings for CWE-125 restrict the final weakness optons for Heartbleed to ⟨Overbound Pointer, Read⟩→Buffer Over-Read and ⟨Underbound
Pointer, Read⟩→Buffer Under-Read (see Sec. 10.1). However, the CVE-2014-0160 descrip-ton reveals the word over, which indicates that CWE-125 is too abstract for it and elimi-nates the second final weakness opton. In additon, as Heartbleed leads to informaton exposure, the last part of the BF weaknesses chain is ⟨Overbound Pointer, Read⟩→Buffer
Over-Read↷IEX. The Read operaton uniquely identfies the weakness as an instance of the BF MUS class, as BF classes do not overlap by operaton.

54

https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_dat/
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://cwe.mitre.org/data/definitions/125.html

NIST SP 800-231July 2024

Going backward from Overbound Pointer via the BF causaton and propagaton rules, the BFCVE tool generates a tree of suggested weakness chains for Heartbleed (see Fig. 24). The failure is the root, the final weakness is the first node, and a bug weakness is the last nodeof each path. The only optons for the weakness causing the final weakness are ⟨Wrong In-
dex, Repositon⟩→Overbound Pointer and ⟨Wrong Size, Repositon⟩→Overbound Pointer.Both have the same optons for causing chains, only two of which do not start with abug, though the preceding weakness optons start with a bug. Exhaustng these few op-tons via deep code analysis or the use of LLMs would confirm that the unique unam-biguous chain for Heartbleed is ⟨Missing Code, Verify⟩→Inconsistent Value↷⟨Wrong Size,
Repositon⟩→Overbound Pointer↷⟨Overbound Pointer, Read⟩→Buffer Over-Read↷IEX.

Fig. 24. Generated BF weakness chains for Heartbleed

The BFCVE tool generates graphical representatons of the BFCVE formal specificatons to enhance understanding (see Fig. 21). Related BF tools functonality is the generaton of the webpages for the BF class taxonomies (e.g., BF MUS) and the BFCVE specificatons (e.g., BF CVE-2014-0160) of the BF website [1].
For more details, refer to the forthcoming SP 800-231G, Bugs Framework: Tools and APIs.
10.3. BF GUI Tool

The BF tool is a GUI applicaton that works with both the BF relatonal database and the BF in XML or JSON format; the later is useful when the database is unavailable [44]. It allows users to create a new BF CVE specificaton, save it as a machine-readable .bfcve file, and open and browse previously created .bfcve specificatons [22].
The BF tool (see Fig. 25) guides the specificaton of a security vulnerability as a chain ofunderlying weaknesses. A security bug causes the first weakness, which leads to an error.This error becomes the cause (i.e., the fault) of the next weakness and propagates through subsequent weaknesses untl a final error is reached, enabling a security failure. The causa-ton within a weakness is by a meaningful ⟨cause, operaton⟩→consequence relaton. The causaton between weaknesses is by error type to fault type match and operaton flow or
error↷fault by value propagaton.

55

https://usnistgov.github.io/BF/info/bf-classes/_mem/mus/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/

NIST SP 800-231July 2024

Fig. 25. BF GUI tool

56

NIST SP 800-231July 2024

If a CVE is being specified, the user can select CVE Year and CVE ID in the CVE DetailsGroupBox to display its description, vendor, and product from the CVE repository and itsCVSS [10, 11] severity score from the NVD. To create a BFCVE specification of that CVE, theuser is guided to define an initial weakness, possible propagation weaknesses, and a finalweakness leading to a failure. If a vulnerability has only one underlying weakness, it wouldbe both the initial and final weakness.
To start defining aweakness, the user has to select a BFweakness class from theBF ClassTreeView in the Weakness GroupBox container, where the classes are grouped by BF classtypes as parent nodes. The selection of a class populates the five TreeView controls in the
Weakness GroupBox container: Bug/Fault, Operand, Error/Final Error, Opera-
tion Attributes, and Operand Attributes. To specify the weakness, the user hasto select child nodes from the five TreeView controls and enter comments in the text boxesbeneath them.
The BF tool can enforce that the initial weakness starts with a bug and the rest of theweaknesses start with a fault. However, this is not necessary for partial specifications or ifa vulnerability starts with a hardware defect-induced fault. The Bug/Fault label changesto Bug when the initial weakness is viewed and to Fault when the propagation or finalweakness is viewed. In the case of a bug, the child nodes are only allowed under the
Code and Specification nodes. In the case of a fault, the child nodes are only allowedunder the Data, Type, and Address nodes. Tooltips with term definitions are displayedover all TreeView nodes. The BF tool also enforces that the weakness with the final errorconsequence is the final weakness leading to a failure.
Once a weakness is specified, the user can proceed via the >> button and create the nextweakness of the vulnerability chain. Weakness chaining is restricted by the error-to-faultby typematch rule, which— to a large extent—also restricts tomeaningful operation flow,as the BF classes are developed to adhere to the BF bugs models that are specific to theirBF class types. The Generate BF Description button displays a draft BF descriptionbased on the selected values from the five TreeView controls and Comment text boxes.
Figure 26 presents the BF specification of the main vulnerability chain of Heartbleed inXML format generated by the BF tool. In addition to the XML attributes that relate to theBF Taxonomy, the CVE-2014-0160.bfcve also contains generated natural language de-scriptions, programming language, links to reports, code with bugs, code with fixes, com-mit IDs, authors, and code locations (i.e., lines) per weakness. For more details, see BFCVE-2014-0160 at [1].
The BF tool demonstrates how the BF taxonomy and causation and propagation rules tietogether into the strict BF formal language. It uses the BFCVE tool functionality to generategraphical representations of the BF formal specifications to enhance understanding. Forexample, refer to the BF CVE-2014-0160 and related BF taxons definitions at [1].
For more details, refer to the forthcoming SP 800-231G, Bugs Framework: Tools and APIs.

57

https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/

NIST SP 800-231July 2024

Fig. 26. BF Heartbleed in XML
58

NIST SP 800-231July 2024

11. BF Datasets and Systems

The BF formalism enables systematc comprehensive labeling of common weakness types(including CWEs) and publicly disclosed vulnerabilites (including CVEs). The BF tools and APIs enable the generaton of weakness and vulnerability specificatons.
As of June 20, 2024, 31 % of the CWEs and 64 % of the CVEs labeled by the NVD with CWEsmap to BF INP, MEM, and DAT classes. These provide a solid base for the creaton ofcomprehensively labeled BFCWE weakness and BFCVE vulnerability datasets.
The BF and the contnuous development of BFCWE and BFCVE datasets would allow formultdimensional representatons of vulnerabilites in contrast to the one-dimensional rep-resentaton provided by the CVE enumeraton [8].
11.1. BFCWE Dataset

There are 938 CWEs [3] as of June 20, 2024. Of those, 157 map to the BF INP [1, 16]class type; 60 map to BF MEM [1, 17]; and 72 map to BF DAT [1, 18]. These 289 unique CWEs form 31 % (see Fig. 27) of the CWE repository and provide the basis for the sys-tematc creaton of a comprehensively labeled BFCWE weakness dataset. Most of themrepresent the most dangerous weakness types by BF final error: Injecton and Memory
Corrupton/Disclosure [45].

Fig. 27. CWEs by BF class types

157 (17%)

60 (6%)

72 (8%)

649 (69%)

CWEs by BF Class Type

BF _INP BF _MEM BF _DAT Others

The NVD uses the 130 “most commonly seen weaknesses” from CWE View-1003 [46] tolabel CVEs but may also list other CWEs assigned by third-party contributors. The BFCWEdataset may cover sofware, firmware, or hardware weakness types that are not listed in the CWE.

59

https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_dat/

NIST SP 800-231July 2024

The methodology for the creaton of a BFCWE dataset that utlizes the BF formal language involves the following four steps:
1. CWEs: Identfy CWEs and other weakness types that correspond to a specific sof-ware, firmware, or hardware executon phase.
2. CWE2BF Mappings: Create CWE2BF mappings by BF operaton, error, final error, and detailed ⟨bug/fault, operaton⟩→error/final error weakness triples [16–18, 22].
3. BF Specificatons: Generate BFCWE formal specificatons as entries of the BFCWE security weakness types dataset.
4. Graphical Representatons: Generate BFCWE graphical representatons to enhanceunderstanding of the CWE2BF mappings by operaton, error, final error, and com-plete weakness triples with parent-child CWE relatons.

As the BFCWE specificatons are essentally partal BFCVE specificatons, the matrix anddataset are also contnuously enriched by newly developed BF specificatons of CVEs andother reported security vulnerabilites. All developed BFCWE specificatons are added tothe comprehensively labeled BFCWE dataset (query it via the BFCWE API at [1]).
The BFCWE dataset augments the NVD (see [47]) and the CWE via formal BF specificatons of common weaknesses as BF weakness triples and severity-related atributes. However, the BF has the expressive power to clearly describe any security weakness, not only the types listed in the CWE.
11.2. BFCVE Dataset

There are over 180 472 CVEs labeled with CWEs by the NVD [5] as of June 20, 2024. Of those, 68 513 map to the BF INP [1, 16] class type by final error, 46 231 map to MEM[1, 17], and 3 631 map to DAT [1, 18] (see Fig. 28). These 118 375 unique CVEs represent64 % of the CVEs labeled with CWEs and provide the basis for the systematc creaton ofa comprehensively labeled BFCVE vulnerability dataset. Most of them relate to the mostdangerous weakness types by BF final error: Injecton and Memory Corrupton/Disclosure [45].
The methodology for the creaton of a BFCVE dataset that utlizes the BF formal language involves the following nine steps:

1. CVEs with Code: Query the NVD and other vulnerability repositories for CVEs and other vulnerabilites with available GitHub commits — that is, CVEs for which Code
with Fix is available.

2. Failure Mapping: Analyze each CVE to determine the reported failures, and map them to BF Failure classes.

60

https://usnistgov.github.io/BF/info/apis/bfcwe-api/
https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_dat/

NIST SP 800-231July 2024

Fig. 28. CVEs by BF class types

68513 (36%)

46231 (24%)
3631 (2%)

73517 (38%)

CVEs by BF Final Error

BF _INP BF_MEM BF _DAT Other

3. Final Error Mapping: Analyze each CVE to determine the reported sink — in some cases, it is also the root cause or wrongly reported as such — and map it to a BF Final
Error consequence.

4. CVE2BF Mappings: Utlize steps from the methodology for the creaton of BFCWE, and create CVE2BF mappings by final weakness and failure for CVEs with assigned CWEs for which Code with Fix is available.
5. Backward State Tree: Generate possible backward chains of weaknesses for a vul-nerability by its identfied failure and some or all of the elements of the final ⟨fault,

operaton⟩→final error weakness or — in the case of a one-weakness vulnerability — ⟨bug, operaton⟩→final error weakness (see Sec. 3.4).
6. Bug or Fault Locaton: Identfy where in the code (i.e., file and lines) the resolvedbug or a mitgated fault happened. Comparison of available Code with Bug and Code

with Fix commits would help identfy these locatons. Improper operaton flow byBF bugs models would reveal missing operatons (i.e., Missing Code bugs).
7. BF Specificatons: Conduct deep code analysis — including via LLMs — to filter the generated chains, and use the BF formal language to complete the unambiguous BF vulnerability specificatons.
8. Graphical Representatons: Generate BFCVE graphical representatons to enhance understanding of the BF vulnerability specificatons as entries for the BFCVE security vulnerability dataset.
9. CWE Assignments: Identfy, refine, and recommend CWEs for NVD assignment. Al-though this step may seem illogical since a BF specificaton already provides com-prehensive informaton, it may be useful when comparing CWE-based testng toolreports or if a more appropriate CWE is identfied.

61

NIST SP 800-231July 2024

A key part of the BFCVE dataset generaton is the use of preliminary sets of partal BF specificatons of CVEs for which Code with Fix is available. These CVE sets are generatedby querying the NVD and specific GitHub repositories toward the BFDB. For example, Fig.29 shows a SQL query for vulnerabilites related to the BF MEM class type [1, 17] towarda repository with fix commits that are extracted via the GitHub REST API. The query alsoidentfies the possible BF chains of weaknesses for each vulnerability. Security experts and LLMs can then conduct deep code analysis to create the complete BF vulnerability specificatons.

Fig. 29. NVD-GitHub-BF query for MEM CVEs
A similar NVD-GitHub-BF query is used to generate the BFCVE Partal dataset of CVEs forwhich GitHub Code with Fix is available. As of June 20, 2024, there are 5 162 BF INP CVEswith GitHub commits in NVD, 4 484 MEM CVEs, and 629 DAT CVEs.
This methodology would also guide the creaton of BF specificatons of vulnerabilites forwhich code is not available, and insights from existng BF specificatons would contributeto their analyses. Going backward from a final weakness would reveal optons for previousweaknesses untl a weakness with a bug as a cause is reached. For example, going back-ward from ⟨Wrong Size, Repositon⟩→Overbound Pointer reveals that the previous causing weakness is a BF Data Validaton (DVL) inital weakness among ⟨Missing Code / Erroneous
Code / Under-Restrictve Policy / Over-Restrictve Policy, Verify / Correct⟩→Wrong Value /
Inconsistent Value.
Developed BFCVE specificatons are added to the comprehensively labeled BFCVE dataset(query it via the BFCVE API at [1]). The BF semantc matrices, graphs, and datasets are also

62

https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/apis/bfcvepartial-api
https://usnistgov.github.io/BF/info/bf-classes/_inp/
https://usnistgov.github.io/BF/info/bf-classes/_mem/
https://usnistgov.github.io/BF/info/bf-classes/_dat/
https://usnistgov.github.io/BF/info/apis/bfcve-api/

NIST SP 800-231July 2024

continuously enriched by the newly developed formal BF specifications of CVEs and otherreported security vulnerabilities.
The BFCVE dataset augments the NVD (see [47]) and CVE via formal BF specifications ofthe publicly disclosed vulnerabilities as chains of weaknesses. However, the BF has the ex-pressive power to clearly describe any security weakness and vulnerability, not only thoselisted in the CWE and CVE. It has its own databases with causal weakness taxonomies andformal vulnerability specifications composed of underlying weaknesses specifications.
For more details, refer to the forthcoming SP 800-231H, Bugs Framework: Datasets and
Classifications.
11.3. BF Vulnerability Classifications

The BF Vulnerability Classification Model (see Fig. 30) defines how the BF taxonomy andtools are utilized to generate BFCWE and BFCVE datasets (see Sec. 11) and query them andpossibly other vulnerability-related repositories to create the BFVul dataset of diversemul-tidimensional vulnerability classifications based on common properties and similarities.
The methodology for the creation of BF-based vulnerability classifications involves the fol-lowing steps:

1. BFCWE Dataset: Create a comprehensively labeled weakness dataset.
2. BFCVE Dataset: Create a comprehensively labeled vulnerability dataset.
3. Severity: Query the CVE for CVSS scores, or use other automated approaches todetermine the vulnerability severity score.
4. Platform: Query the CVE for associated CPEs.
5. Exploitation: Query the NVD and EPSS for the probability of a CVE being exploited inthe next 30 days.
6. Priority: Query the NVD and KEV or use other automated approaches to determineprioritization for remediation.
7. Vulnerability Classifications: Generate multidimensional vulnerability classificationsbased on common properties and similarities.

Security vulnerabilities could be classifiedby common root causes (i.e., software or firmwarebugs or hardware defect-induced bugs or faults), such as declaring a variable of a wrongdata type. They could also be classified by any other BF taxons, such as propagating faults,common final errors, operation and operand attributes, identical BF specifications (i.e.,chains of weaknesses), and even the number of underlying weaknesses.
The BF operation and operand attributes provide insight into the severity of the weak-nesses and how they relate to commonly used scores, such as CVSS [11] and EPSS [38].

63

NIST SP 800-231July 2024

Fig. 30. BF Vulnerability Classificaton Model
BF Vulnerability

Classifica�on

CVEs w/ CWEs

Other Vulnerability
Repositories

Commit URLs

Code with Fix
BFCWE

CWE2BF

BFCVEpre

Basic CS & Security
Research

BFCVE

BFCWE
Tool

BFCVE
Tool

BF
Tool

BF
Taxonomy

Code Analysis
Security Experts, LLMs

BF Vulnerability Classifica�on Model

BF, I. Bojanova

Code with Diffs

CWE
Assignments

Descrip�on

Severity Score

Exploit
Probability

Exploited
Vulnerabili�es

Descrip�ons
Examples

Their analysis would allow for deeper research on the most significant [45] and most ex-ploited [48] weaknesses and vulnerabilites. Intriguing classificatons by BF classes and CPE [49] data may reveal systematc input/output check safety, memory safety, data type safety, and other secure coding problems by partcular vendors and products.
These multdimensional BF vulnerability classificatons (query some of them via the BFVul API at [1]) would contribute to a deeper analysis and refined understanding of security

64

https://usnistgov.github.io/BF/info/apis/bfvul-api/
https://usnistgov.github.io/BF/info/apis/bfvul-api/

NIST SP 800-231July 2024

weaknesses, vulnerabilities, exploits, and failures. They would enable more focused cy-bersecurity research and the highly informed development of effective countermeasuresagainst potential security threats and specific exploits.
For more details, refer to the forthcoming SP 800-231H, Bugs Framework: Datasets and
Classifications.
11.4. BF Systems

The BF supports the development of diverse systems related to bug identification and triag-ing, vulnerability detection, analysis, prioritization, reporting, and resolution ormitigation.The methodology for the development of a BF-based system involves the following steps:
1. Bug Identification: Utilize steps from themethodology for the creation of BFCVE andBFVul datasets, and identify and label the root cause of the vulnerability.
2. Vulnerability Detection: Utilize steps from themethodology for the creationof BFCVEand BFVul datasets, and identify and label theweaknesses underlying the vulnerabil-ity. This may include automated analysis via static and dynamic code analysis tools,and simulation or emulation algorithms that reflect the BF methodologies. Giventhe formal specification of code and the BF definitions of weakness, vulnerability,and failure, formal methods may also be applied to detect vulnerabilities.
3. Report Generation: Utilize steps from themethodology for the creationof BFCVE andBFVul datasets, and generate a BF formal specification, natural language description,and machine-readable and graphical representations of the vulnerability.

An LLM may also be prompted to generate the report for that CVE given a CVE de-scription, examples, reports, other references, the code with bug, the code with fix,BF security concept definitions, machine-readable representations of BF taxonomies(including definitions for the taxons and taxon types), and exemplary BF specifica-tions (i.e., entries from the BFCVE dataset).
4. Severity and Prioritization: Determine the vulnerability severity score, and assesswhether it needs to be resolved or mitigated urgently. This would be based on theBF-labeledweaknesses and operation and operand attributes perweakness andmayinclude analysis of data from services and repositories, such as the EPSS [38], CVSS[11], and KEV [6].
5. Resolution: Determine how the vulnerability should be resolved based on fixing theidentified and BF-labeled bug of the vulnerability chain or more than one bug in thecases of converging vulnerabilities.
6. Mitigations: Determine thepossibleways tomitigate the detected vulnerability basedon fixing one of the BF-labeled faults through the vulnerability chain.

For more details, refer to the forthcoming SP 800-231I, Bugs Framework: Systems.
65

NIST SP 800-231July 2024

12. Conclusion

This Special Publicaton presents an overview of the Bugs Framework (BF) [1] systematc approach and methodologies for the classificaton of bugs and faults per orthogonal by operaton executon phases, formal specificaton of weaknesses and vulnerabilites, defi-niton of secure coding principles, generaton of comprehensively labeled weakness andvulnerability datasets and vulnerability classificatons, and development of BF-based algo-rithms and systems.
The BF weakness and failure taxonomies and bugs and vulnerability models form the basis for the BF ACFG that generates the BF formal language. The BF also helps formally de-fine secure coding principles, such as input/output check safety, memory safety, and data type safety. The BF formal language is descriptve in that it is used to formally specify en-countered or predicted weaknesses and vulnerabilites. The BF secure coding principlesare prescriptve in that they prevent the bugs and faults per operaton that break specific related kinds of code safety.
The BF formalism supports a deeper understanding of vulnerabilites as chains of weak-nesses and allows for backward bug identficaton from a failure. It enables the develop-ment of new statc and dynamic analysis, simulaton, and emulaton algorithms (e.g., see [2]). AI or formal methods-enabled capabilites could be used to identfy bugs and detect,analyze, prioritze, and resolve or mitgate vulnerabilites (i.e., fix the bug or a fault of each vulnerability, respectvely) to secure critcal infrastructure and supply chains.
The weakness and vulnerability BF specificaton datasets augment the CWE, CVE, and NVD. However, the BF has the expressive power to clearly describe any other security weak-nesses and vulnerabilites. It also allows for the predicton and identficaton of as yet un-encountered security weakness types, which allows for the predicton and detecton of new kinds of vulnerabilites.
The BF aims to become the new standard for the specificaton and labeling of securityweaknesses and vulnerabilites. It enables the clear and precise expression of securitybugs, weaknesses, vulnerabilites, and failures. Government insttutons could improve thedescriptons in public vulnerability repositories and create advanced policies and guide-lines for sofware, firmware, and hardware testng. Security companies could improve their testng tools and bug and vulnerability reports. Academics could teach beter aboutsecurity bugs, weaknesses, and vulnerabilites and conduct deeper security vulnerabilityand failure research. All of these would lead to unambiguous communicaton about cy-bersecurity, the increased precision of code review tools, and a decrease in security bugs, weaknesses, and vulnerabilites.

66

NIST SP 800-231July 2024

References

[1] Irena Bojanova (2014-2024) NIST Bugs Framework (BF) Website. Available at https://usnistgov.github.io/BF.[2] Kedrian James, K Valakuzhy, K Snow, F Monrose (June 2024) CrashTalk: AutomatedGeneraton of Precise, Human Readable, Descriptons of Sofware Security Bugs. CO-
DASPY ’24: Proceedings of the Fourteenth ACM Conference on Data and Applicaton
Security and Privacy, pp 337 – 347. htps://doi.org/10.1145/3626232.3653256[3] MITRE (2006-2024) Common Weakness Enumeraton (CWE). Available at https://cw e.mitre.org.[4] MITRE (1999-2024) Common Vulnerabilites and Exposures (CVE). Available at https://cve.mitre.org.[5] NIST (1999-2024) Natonal Vulnerability Database (NVD). Available at https://nvd.nist.gov.[6] CISA (2021-2024) Known Exploited Vulnerabilites Catalog (KEV). Available at https://www.cisa.gov/known-exploited-vulnerabilites-catalog.[7] MITRE CWE History. Available at https://cwe.mitre.org/about/history.html.[8] David E Mann, S M Christey (Jan. 8, 1999) Towards a Common Enumeraton of Vulner-abilites. Available at https://www.cve.org/Resources/General/Towards-a-Commo n-Enumeraton-of-Vulnerabilites.pdf.[9] MITRE CVE History. Available at https://www.cve.org/About/History.[10] Peter Mell, K Kent, S Romanosky (2006) Common vulnerability scoring system. Avail-able at https://tsapps.nist.gov/publication/get pdf.cfm?pub id=50899.[11] FIRST (2015-2024) Common vulnerability scoring system special interest group. Avail-able at https://www.first.org/cvss.[12] Irena Bojanova (Dec. 9, 2014) Formalizing Sofware Bugs. NIST, ITL, SSD. Available athttps://www.nist.gov/publicatons/formalizing-software-bugs.[13] Irena Bojanova (Apr. 8, 2015) Towards a ’Periodic Table’ of Bugs. NIST, ITL, SSD. Avail-able at https://www.nist.gov/publicatons/towards-periodic-table-bugs.[14] Yan Wu, I Bojanova, Y Yesha (2015) They Know Your Weaknesses - Do You?: Reintro-ducing Common Weakness Enumeraton. CrossTalk (The Journal of Defense Sofware
Engineering), pp 44–50. Available at https://web.archive.org/web/20180425211828 id /http://static1.1.sqspcdn.com/static/f/702523/26523304/1441780301827/20150 9-Wu.pdf?token=WJEmDLgmpr3rIZHriubA20L%2F1%2F4%3D.[15] Irena Bojanova, P E Black, Y Yesha, Y Wu (October 2016) The NIST Bugs Framework(BF): A Structured Approach to Express Bugs. 2016 IEEE Internatonal Conference on
Sofware Quality, Reliability and Security (QRS), pp 175–182. htps://doi.org/10.1109/
QRS.2016.29[16] Irena Bojanova, C E Galhardo (October 2021) Input/Output Check Bugs Taxonomy: In-jecton Errors in Spotlight. 2021 IEEE Internatonal Symposium on Sofware Reliability
Engineering Workshops (ISSREW), pp 111–120. htps://doi.org/10.1109/ISSREW5361
1.2021.00052

67

https://usnistgov.github.io/BF
https://usnistgov.github.io/BF
https://doi.org/10.1145/3626232.3653256
https://cwe.mitre.org
https://cwe.mitre.org
https://cve.mitre.org
https://cve.mitre.org
https://nvd.nist.gov
https://nvd.nist.gov
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://cwe.mitre.org/about/history.html
https://www.cve.org/Resources/General/Towards-a-Common-Enumeration-of-Vulnerabilities.pdf
https://www.cve.org/Resources/General/Towards-a-Common-Enumeration-of-Vulnerabilities.pdf
https://www.cve.org/About/History
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50899
https://www.first.org/cvss
https://www.nist.gov/publications/formalizing-software-bugs
https://www.nist.gov/publications/towards-periodic-table-bugs
https://web.archive.org/web/20180425211828id_/http://static1.1.sqspcdn.com/static/f/702523/26523304/1441780301827/201509-Wu.pdf?token=WJEmDLgmpr3rIZHriubA20L%2F1%2F4%3D
https://web.archive.org/web/20180425211828id_/http://static1.1.sqspcdn.com/static/f/702523/26523304/1441780301827/201509-Wu.pdf?token=WJEmDLgmpr3rIZHriubA20L%2F1%2F4%3D
https://web.archive.org/web/20180425211828id_/http://static1.1.sqspcdn.com/static/f/702523/26523304/1441780301827/201509-Wu.pdf?token=WJEmDLgmpr3rIZHriubA20L%2F1%2F4%3D
https://doi.org/10.1109/QRS.2016.29
https://doi.org/10.1109/QRS.2016.29
https://doi.org/10.1109/ISSREW53611.2021.00052
https://doi.org/10.1109/ISSREW53611.2021.00052

NIST SP 800-231July 2024

[17] Irena Bojanova, C E Galhardo (July 2021) Classifying Memory Bugs Using Bugs Frame-work Approach. 2021 IEEE 45th Annual Computers, Sofware, and Applicatons Con-
ference (COMPSAC), pp 1157–1164. htps://doi.org/10.1109/COMPSAC51774.2021.
00159[18] Irena Bojanova, C E Galhardo, S Moshtari (October 2022) Data Type Bugs Taxon-omy: Integer Overflow, Juggling, and Pointer Arithmetcs in Spotlight. 2022 IEEE
29th Annual Sofware Technology Conference (STC)), pp 192–205. htps://doi.org/
10.1109/STC55697.2022.00035[19] Constable S (Febryary 29, 2024) Chips & Salsa: Industry Collaboraton for new Hard-ware CWEs. Available at https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Chips-Salsa-Industry-Collaboraton-for-new-Hardware-CWEs/post/1575521.[20] Kedrian James, Y Du, S Das, F Monrose (December 2022) Separatng the Wheat fromthe Chaff: Using Indexing and Sub-Sequence Mining Techniques to Identfy RelatedCrashes During Bug Triage. 2022 IEEE 22nd Internatonal Conference on Sofware
Quality, Reliability and Security (QRS), pp 31–42. htps://doi.org/10.1109/QRS575
17.2022.00014[21] Drew Malzahn, Z Birnbaum, C Wright-Hamor (2020) Automated Vulnerability Testngvia Executable Atack Graphs. 2020 Internatonal Conference on Cyber Security and
Protecton of Digital Services (Cyber Security) (IEEE), p 1–10. htps://doi.org/10.1109/
CyberSecurity49315.2020.9138852[22] Irena Bojanova (Jan.-Feb. 2024) Comprehensively Labeled Weakness and Vulnerabil-ity Datasets via Unambiguous Formal NIST Bugs Framework (BF) Specificatons. IEEE
IT Professional, Vol. 26, 1, pp 60–68. htps://doi.org/10.1109/MITP.2024.3358970[23] Wikipedia (2023) Heartbleed. Available at https://en.wikipedia.org/wiki/Heartbleed.[24] IEEE Computer Society (September, 1990) IEEE Standard 610.12-1990, Glossary of Sof-ware Engineering Terminology. Available at https://ieeexplore.ieee.org/stamp/stam p.jsp?arnumber=159342.[25] CISA (2022) ICS Advisory (ICSA-21-119-04). Available at https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04.[26] Omri Ben-Bassat TA (2021) ERROR: BadAlloc! - Broken Memory Allocators Led to Millions of Vulnerable IoT and Embedded Devices. Blackhat USA 2021 Available athttps://www.youtube.com/watch?v=lSvygMc8uc0.[27] Assane Gueye, C E Galhardo, I Bojanova (Jul.-Aug. 2023) Critcal Sofware Security Weaknesses. IEEE IT Professional, Vol. 25, 4, pp 11–16. htps://doi.org/10.1109/MITP
.2023.3297387[28] OpenSSL (2005) Openssl/ssl/d1 both.c. Available at https://git.openssl.org/?p=ope nssl.git;a=blob;f=ssl/d1 both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1.[29] Sean Cassidy (April, 2014) Diagnosis of the OpenSSL Heartbleed Bug. Available at https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html.

68

https://doi.org/10.1109/COMPSAC51774.2021.00159
https://doi.org/10.1109/COMPSAC51774.2021.00159
https://doi.org/10.1109/STC55697.2022.00035
https://doi.org/10.1109/STC55697.2022.00035
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Chips-Salsa-Industry-Collaboration-for-new-Hardware-CWEs/post/1575521
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Chips-Salsa-Industry-Collaboration-for-new-Hardware-CWEs/post/1575521
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Chips-Salsa-Industry-Collaboration-for-new-Hardware-CWEs/post/1575521
https://doi.org/10.1109/QRS57517.2022.00014
https://doi.org/10.1109/QRS57517.2022.00014
https://doi.org/10.1109/CyberSecurity49315.2020.9138852
https://doi.org/10.1109/CyberSecurity49315.2020.9138852
https://doi.org/10.1109/MITP.2024.3358970
https://en.wikipedia.org/wiki/Heartbleed
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=159342
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=159342
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.youtube.com/watch?v=lSvygMc8uc0
https://doi.org/10.1109/MITP.2023.3297387
https://doi.org/10.1109/MITP.2023.3297387
https://git.openssl.org/?p=openssl.git;a=blob;f=ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1
https://git.openssl.org/?p=openssl.git;a=blob;f=ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1
https://git.openssl.org/?p=openssl.git;a=blob;f=ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1
https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html
https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html

NIST SP 800-231July 2024

[30] OpenSSL (2014) openssl/openssl, openssl 1 0 1-stable. Available at https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3.[31] ISO/IEC 14977 (1996) Internatonal Standard: Informaton technology — Syntactcmetalanguage — Extended BNF. Available at https://www.iso.org/standard/26153.html.[32] Alfred Aho, M Lam, R Sethi, J Ullman (2006) Compilers: Principles, Techniques, and
Tools (Addison-Wesley).[33] Donald Knuth (1968) Semantcs of context-free languages. Math. Systems Theory 2, p127–145. htps://doi.org/10.1007/BF01692511[34] Sofware Engineering Insttute (2016) SEI CERT C Coding Standard: Rules for Develop-ing Safe, Reliable, and Secure Systems. Available at https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf.[35] Sofware Engineering Insttute (2016) SEI CERT C++ Coding Standard: Rules for Devel-oping Safe, Reliable, and Secure Systems. Available at https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf.[36] Open Web Applicaton Security Project (2010) OWASP Secure Coding Practces-QuickReference Guide. Available at https://owasp.org/www-project-secure-coding-practices-quick-reference-guide.[37] GitHub (2008) GitHub. Available at https://github.com.[38] FIRST (2021-2024) Exploit Predicton Scoring System (EPSS). Available at https://www.first.org/epss.[39] Irena Bojanova (2020-2024) NIST Bugs Framework (BF), BFCWE Tool. Available at https://usnistgov.github.io/BF/info/tools/bfcwe-tool.[40] Irena Bojanova, J J Guerrerio (Sept.-Oct. 2023) Labeling Sofware Security Vulnerabil-ites. IEEE IT Professional, Vol. 25, 5, pp 64–70. htps://doi.org/10.1109/MITP.2023.
3314368[41] Peter Mell, Irena Bojanova (2024) NIST IR 8517, Hardware Security Failure Scenarios:Potental Weaknesses in Hardware Design. Available at https://doi.org/10.6028/NIST.IR.8517.[42] Irena Bojanova (2020-2024) NIST Bugs Framework (BF), BFCVE Tool. Available at https://usnistgov.github.io/BF/info/tools/bfcve-tool.[43] Chen Y, at all (2023) DiverseVul: A New Vulnerable Source Code Dataset for DeepLearning Based Vulnerability Detecton. Available at https://github.com/wagner-group/diversevul.[44] Irena Bojanova (2020-2024) NIST Bugs Framework (BF), BF Tool. Available at https://usnistgov.github.io/BF/info/tools/bf-tool.[45] Carlos EC Galhardo, P Mell, I Bojanova, A Gueye (December 2020) Measurements ofthe Most Significant Sofware Security Weaknesses. 2020 Annual Computer Security
Applicatons Conference (ACSAC), p 154–164. htps://doi.org/10.1145/3427228.3427
257[46] MITRE (2023) Weaknesses for Simplified Mapping of Published Vulnerabilites. Avail-able at https://cwe.mitre.org/data/definitions/1003.html.

69

https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
https://www.iso.org/standard/26153.html
https://www.iso.org/standard/26153.html
https://doi.org/10.1007/BF01692511
https://resources.sei.cmu.edu/forms/secure-coding-form.cfm
https://resources.sei.cmu.edu/forms/secure-coding-form.cfm
https://insights.sei.cmu.edu/library/sei-cert-c-coding-standard-rules-for-developing-safe-reliable-and-secure-systems-2016-edition-2/
https://insights.sei.cmu.edu/library/sei-cert-c-coding-standard-rules-for-developing-safe-reliable-and-secure-systems-2016-edition-2/
https://insights.sei.cmu.edu/library/sei-cert-c-coding-standard-rules-for-developing-safe-reliable-and-secure-systems-2016-edition-2/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://github.com
https://www.first.org/epss
https://www.first.org/epss
https://usnistgov.github.io/BF/info/tools/bfcwe-tool
https://usnistgov.github.io/BF/info/tools/bfcwe-tool
https://doi.org/10.1109/MITP.2023.3314368
https://doi.org/10.1109/MITP.2023.3314368
https://doi.org/10.6028/NIST.IR.8517
https://doi.org/10.6028/NIST.IR.8517
https://usnistgov.github.io/BF/info/tools/bfcve-tool
https://usnistgov.github.io/BF/info/tools/bfcve-tool
https://github.com/wagner-group/diversevul
https://github.com/wagner-group/diversevul
https://usnistgov.github.io/BF/info/tools/bf-tool
https://usnistgov.github.io/BF/info/tools/bf-tool
https://doi.org/10.1145/3427228.3427257
https://doi.org/10.1145/3427228.3427257
https://cwe.mitre.org/data/definitions/1003.html
https://doi.org/10.1145/3427228.3427
https://github.com/wagner-gro
https://doi.org/10.6028/NI
https://w.first.org/epss
https://ww
https://owasp.org/www-project-secure-coding-pract

NIST SP 800-231July 2024

[46] MITRE (2023) Weaknesses for Simplified Mapping of Published Vulnerabilites. Avail-able at https://cwe.mitre.org/data/definitions/1003.html.[47] Kevin Poireault (Mar. 28, 2024) NIST Unveils New Consortum to Operate NatonalVulnerability Database. Available at https://www.infosecurity-magazine.com/news/nist-unveils-new-nvd-consortium/#: ∼:text=NVD’s%20One%2Dto%2DFive%20Year,years%2C%20especially%20around%20software%20identfication.[48] Peter Mell, I Bojanova, Carlos EC Galhardo (May-Jun. 2024) Measuring the Ex-ploitaton of Weaknesses in the Wild. IEEE IT Professional, Vol. 26, 2, pp 14–21.htps://doi.org/10.1109/MITP.2024.3399485[49] NIST Common Platorm Enumeraton (CPE). Available at https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe.

70

https://cwe.mitre.org/data/definitions/1003.html
https://www.infosecurity-magazine.com/news/nist-unveils-new-nvd-consortium/#:~:text=NVD's%20One%2Dto%2DFive%20Year,years%2C%20especially%20around%20software%20identification.
https://www.infosecurity-magazine.com/news/nist-unveils-new-nvd-consortium/#:~:text=NVD's%20One%2Dto%2DFive%20Year,years%2C%20especially%20around%20software%20identification.
https://www.infosecurity-magazine.com/news/nist-unveils-new-nvd-consortium/#:~:text=NVD's%20One%2Dto%2DFive%20Year,years%2C%20especially%20around%20software%20identification.
https://doi.org/10.1109/MITP.2024.3399485
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe

	Introduction
	Current State of the Art
	Bugs Framework Formalism
	BF Operation
	BF Bug, Fault, and Weakness
	BF Vulnerability
	BF Bug Identification

	BF Security Concepts
	BF Bugs Models
	BF Input/Output Check (_INP) Bugs Model
	BF Memory (_MEM) Bugs Model
	BF Data Type (_DAT) Bugs Model

	BF Taxonomy
	BF Weakness Classes
	BF Failure Class
	BF Methodology

	BF Vulnerability Models
	BF Vulnerability State Model
	BF Vulnerability Specification Model

	BF Formal Language
	BF Lexis
	BF Syntax
	BF Semantics

	BF Secure Coding Principles
	Input/Output Check Safety
	Memory Safety
	Data Type Safety

	BF Tools
	BFCWE Tool
	BFCVE Tool
	BF GUI Tool

	BF Datasets and Systems
	BFCWE Dataset
	BFCVE Dataset
	BF Vulnerability Classifications
	BF Systems

	Conclusion
	References

