
NIST Special Publication 800 
NIST SP 800-228 ipd

Guidelines for API Protection for 
Cloud-Native Systems 

Initial Public Draft 

Ramaswamy Chandramouli 
Zack Butcher 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-228.ipd

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-228.ipd


 
 

 

NIST Special Publication 800  
NIST SP 800-228 ipd 

 
Guidelines for API Protection for  

Cloud-Native Systems  
Initial Public Draft 

Ramaswamy Chandramouli 
Computer Security Division 

Information Technology Laboratory 
 

Zack Butcher 
Tetrate, Inc. 

 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-228.ipd 

March 2025 

 

U.S. Department of Commerce  
Howard Lutnick, Secretary 

National Institute of Standards and Technology  
Craig Burkhardt, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST Director  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

 

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are identified 
in this paper in order to specify the experimental procedure adequately. Such identification does not imply 
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or 
equipment identified are necessarily the best available for the purpose. 

There may be references in this publication to other publications currently under development by NIST in 
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 
methodologies, may be used by federal agencies even before the completion of such companion publications. 
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, 
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the 
development of these new publications by NIST. 

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
https://csrc.nist.gov/publications. 

Authority 
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal 
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is 
responsible for developing information security standards and guidelines, including minimum requirements for 
federal information systems, but such standards and guidelines shall not apply to national security systems 
without the express approval of appropriate federal officials exercising policy authority over such systems. This 
guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. 

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines 
be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the 
OMB, or any other federal official.  This publication may be used by nongovernmental organizations on a voluntary 
basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.  

NIST Technical Series Policies 
Copyright, Use, and Licensing Statements 
NIST Technical Series Publication Identifier Syntax 

Publication History 
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added to final publication.] 

How to Cite this NIST Technical Series Publication:  
Chandramouli R, Butcher Z (2025) Guidelines for API Protection for Cloud-Native Systems. (National Institute of 
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-228 ipd. 
https://doi.org/10.6028/NIST.SP.800-228.ipd  

Author ORCID iDs 
Ramaswamy Chandramouli: 0000-0002-7387-5858 

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications


NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

 

Public Comment Period 
March 25, 2025 – May 12, 2025 

Submit Comments  
sp800-228-comments@nist.gov 
 
National Institute of Standards and Technology 
Attn: Computer Security Division, Information Technology Laboratory 
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 

Additional Information 
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/228/ipd, including 
related content, potential updates, and document history.  

All comments are subject to release under the Freedom of Information Act (FOIA).

mailto:sp800-228-comments@nist.gov
https://csrc.nist.gov/pubs/sp/800/228/ipd


NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

i 
 

Abstract 1 

Modern enterprise IT systems rely on a family of application programming interfaces (APIs) for 2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 

13 

14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

integration to support organizational business processes. Hence, a secure deployment of APIs is 
critical for overall enterprise security. This, in turn, requires the identification of risk factors or 
vulnerabilities in various phases of the API life cycle and the development of controls or 
protection measures. This document addresses the following aspects of achieving that goal: (a) 
the identification and analysis of risk factors or vulnerabilities during various activities of API 
development and runtime, (b) recommended basic and advanced controls and protection 
measures during pre-runtime and runtime stages of APIs, and (c) an analysis of the advantages 
and disadvantages of various implementation options for those controls to enable security 
practitioners to adopt an incremental, risk-based approach to securing their APIs. 

Keywords 

API; API endpoint; API gateway; API key; API schema; web application firewall. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include 
the development of management, administrative, technical, and physical standards and 
guidelines for the cost-effective security and privacy of other than national security-related 
information in federal information systems. The Special Publication 800-series reports on ITL’s 
research, guidelines, and outreach efforts in information system security, and its collaborative 
activities with industry, government, and academic organizations.  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

ii 
 

Call for Patent Claims 25 

26 
27 
28 
29 
30 
31 
32 

33 
34 

35 
36 

37 
38 
39 

40 
41 

42 
43 

44 
45 
46 
47 
48 

49 
50 

51 

52 

This public review includes a call for information on essential patent claims (claims whose use 
would be required for compliance with the guidance or requirements in this Information 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 
directly stated in this ITL Publication or by reference to another publication. This call also 
includes disclosure, where known, of the existence of pending U.S. or foreign patent 
applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign 
patents. 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 
in written or electronic form, either: 

a) assurance in the form of a general disclaimer to the effect that such party does not hold 
and does not currently intend holding any essential patent claim(s); or 

b) assurance that a license to such essential patent claim(s) will be made available to 
applicants desiring to utilize the license for the purpose of complying with the guidance 
or requirements in this ITL draft publication either: 

i. under reasonable terms and conditions that are demonstrably free of any unfair 
discrimination; or 

ii. without compensation and under reasonable terms and conditions that are 
demonstrably free of any unfair discrimination. 

Such assurance shall indicate that the patent holder (or third party authorized to make 
assurances on its behalf) will include in any documents transferring ownership of patents 
subject to the assurance, provisions sufficient to ensure that the commitments in the assurance 
are binding on the transferee, and that the transferee will similarly include appropriate 
provisions in the event of future transfers with the goal of binding each successor-in-interest. 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 
regardless of whether such provisions are included in the relevant transfer documents. 

Such statements should be addressed to: sp800-228-comments@nist.gov 

  

mailto:sp800-228-comments@nist.gov


NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

iii 
 

Table of Contents 53 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

Executive Summary ............................................................................................................................1 
1. Introduction ...................................................................................................................................2 

2. API Risks — Vulnerabilities and Exploits ..........................................................................................8 

2.4.1. Unrestricted Compute Resource Consumption ......................................................................... 10 
2.4.2. Unrestricted Physical Resource Consumption ........................................................................... 10 

2.6.1. Input Validation .......................................................................................................................... 12 
2.6.2. Malicious Input Protection ......................................................................................................... 12 

2.7.1. Gateways Straddle Boundaries .................................................................................................. 13 
2.7.2. Requests With a Service Identity but No User Identity .............................................................. 13 
2.7.3. Requests With a User Identity But No Service Identity .............................................................. 14 
2.7.4. Requests With Both User and Service Identities ........................................................................ 15 
2.7.5. Reaching Out to Other Systems ................................................................................................. 16 
2.7.6. Mitigating the Confused Deputy ................................................................................................ 16 
2.7.7. Identity Canonicalization ............................................................................................................ 16 

3. Recommended Controls for APIs................................................................................................... 18 

3.1.1. Basic Pre-Runtime Protections ................................................................................................... 19 
3.1.2. Advanced Pre-Runtime Protections ........................................................................................... 20 

3.2.1. Basic Runtime Protections .......................................................................................................... 21 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

iv 
 

3.2.2. Advanced Runtime Protections .................................................................................................. 26 87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 

106 
107 

4. Implementation Patterns and Trade-Offs for API Protections ........................................................ 30 

4.4.1. Web Application Firewalls .......................................................................................................... 39 
4.4.2. Bot Detection.............................................................................................................................. 40 
4.4.3. Distributed Denial of Service (DDoS) Mitigation ........................................................................ 40 
4.4.4. API Endpoint Protection ............................................................................................................. 41 
4.4.5. Web Application and API Protection (WAAP) ............................................................................ 41 

5. Conclusions and Summary ............................................................................................................ 43 
References ....................................................................................................................................... 44 
Appendix A. API Classification Taxonomy ......................................................................................... 46 

Appendix B. DevSecOps Phase and Associated Class of API Controls .................................................. 48 

 
  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

v 
 

Acknowledgments 108 

109 
110 
111 
112 
113 
114 
115 
116 

The authors would like to thank Orion Letizi, technical writer at Tetrate for providing 
continuous, ongoing edits during the development of this document. We would also like to 
thank Erica Hughberg, an engineer at Tetrate and James Gough, a Distinguished Engineer at 
Morgan Stanley for their feedback on the initial outline for controls. Their extensive hands-on 
experience in running API security programs in large enterprises helped us to address the 
current API security issues and incorporate state of practice API security controls in our 
recommendations. Last but not the least, the authors would also like to express their thanks to 
Isabel Van Wyk of NIST for her detailed and extensive editorial review. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

1 
 

Executive Summary 117 

Application programming interfaces (APIs) provide the means to integrate and communicate 118 
119 
120 
121 
122 
123 
124 
125 

126 
127 
128 
129 

130 
131 

132 
133 

134 
135 

136 
137 
138 

with the modern enterprise IT application systems that support business processes. However, a 
lack of due diligence can introduce vulnerabilities and risk factors that exploit the connectivity 
and accessibility features of APIs. If these vulnerabilities are not identified, analyzed and 
addressed through control measures, attack vectors could threaten the security posture of the 
application systems spanned by these APIs. A systematic and effective means of identifying and 
addressing these vulnerabilities is only possible by treating the development and deployment of 
APIs as an iterative life cycle using paradigms like DevSecOps.  

This document provides guidance and recommendations on controls and protection measures 
for secure API deployments in the enterprise. In addition, an analysis of the advantages and 
disadvantages of various implementation options (called patterns) for those controls enable 
security practitioners to choose the most effective option for their IT ecosystem. 

Developing these controls and analyzing their implementation options should be guided by 
several overarching principles:  

The guidance for controls should cover all APIs, regardless of whether they are exposed to 
customers/partners or used internally within the enterprise. 

With the vanishing of perimeters in modern enterprise IT applications, all controls should 
incorporate the concept of zero trust. 

The controls should span the entire API life cycle and be classified into (a) pre-runtime 
protections and (b) runtime protections that are then subdivided into basic and advanced 
protections to enable incremental risk-based adoption. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

2 
 

1. Introduction  139 

140 
141 
142 
143 
144 
145 
146 

147 

148 
149 
150 
151 
152 
153 
154 
155 
156 

157 
158 
159 
160 
161 
162 
163 

164 

165 

Application programming interfaces (APIs) represent an abstraction of the underlying 
implementation of a digital enterprise. Given the spatial (e.g., on-premises, multiple clouds) 
and logical (e.g., microservices) nature of current enterprise applications, APIs are needed to 
integrate and establish communication pathways between internal and third-party services and 
applications. Informally, APIs are the lingua franca of modern IT systems: they describe what 
actions users are allowed to take. They are also used in every type of application, including 
server-based monolithic, microservices-based, browser-based client, and IoT. 

1.1. Building Blocks and Structures  

An Application Programming Interface (API) defines how any two pieces of software 
communicate – they are ubiquitous in software. An API is a collection of commands or 
endpoints that operate on data or objects via some protocol. Network-based APIs are APIs built 
to be consumed by remote applications over the network. Because they’re exposed and 
consumed over the network, they present a unique set of challenges. The growth of (micro-) 
service-oriented architectures, coupled with Software-as-a-Service (SaaS) becoming 
commonplace – which are nearly always delivered via APIs – has resulted in an explosion in 
network-based APIs across organizations. This document focuses on controls for network-based 
APIs. 

Before we can discuss API controls, we need a common understanding and language for the 
building blocks, and how they relate to each other. The taxonomy is: an API is composed of a 
set of API Endpoints; API Endpoints are implemented by Services; at runtime, Requests to a 
specific API Endpoint are served by Service Instances. An API Gateway hosts many APIs and is 
responsible for mapping each Request to its target API Endpoint, applying policy for that 
Endpoint (e.g. authentication and rate limiting), then routing that Request to a Service Instance 
which implements that API Endpoint. 

 

Fig. 1. API, API Endpoint, Service and Service Instance 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

3 
 

Traditionally, we think of network-based APIs as being customer-oriented, partner-oriented, or 16
16
16
16
17
17

17
17
17
17
17
17
17
17
18

6 
7 
8 
9 
0 
1 

2 
3 
4 
5 
6 
7 
8 
9 
0 

181 
182 

internal – often called “third-party”, “second-party”, and “first-party” APIs, respectively. 
Second- and third-party APIs are typically exposed to callers outside of the organization via an 
API gateway. First-party APIs can be exposed to callers inside of the organization on the same 
API gateway, but they are also often consumed directly by internal callers without traversing a 
dedicated API serving stack. 

An API is a set of API Endpoints, and a Service implements a set of API Endpoints – so every 
Service implements some API. We call these Service APIs. Most first-party API integrations 
happen via the Service API, i.e. they map to a single service. On the other hand, APIs hosted by 
the API gateway typically have Endpoints that map to many different Services. This is especially 
common for second- and third-party APIs. We call these Facade APIs, because they present a 
single facade to an outside caller over (potentially many) different Service APIs. Finally, it’s 
common that multiple Services are grouped together into an Application – typically along 
organizational lines (often an Application maps to a team). Schematic diagrams of a Service API, 
Façade API and an Application (Monolithic) API are given below: 

 
Fig. 2. (Top to Bottom) Service API, Façade API, Service and Application (Monolithic) 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

4 
 

 183 

184 
185 
186 
187 
188 
189 
190 

191 
192 
193 
194 
195 

196 

197 
198 
199 
200 
201 
202 
203 

204 
205 
206 

207 
208 

209 

210 
211 

212 
213 
214 

215 
216 

217 
218 
219 

Less formally: we can think of the APIs we expose outside the organization as a facade over a 
set of Services. Those Services implement internal APIs (Service APIs). Services in the 
organization communicate with each other via those internal APIs – sometimes directly, and 
sometimes via an API gateway. The API Gateway is responsible for some policies, like 
authentication and rate limiting, as well as being responsible for mapping the facade APIs for 
external clients to internal APIs. Then, to get a handle on things organizationally, we often 
group related Services into a bucket called an Application. 

While we tend to think of APIs in the context of exposing functionality to clients or partners, 
APIs don’t exist solely at the edge of our infrastructure. Any time systems communicate, there’s 
some API involved. Even if that API is something like CSV over FTP. The examples in SP focus 
primarily on “modern” APIs exposed via mechanisms like HTTP/REST, gRPC, or SOAP, but we 
believe the principals in this SP are universal and should be applied to all APIs. 

1.2. Zero Trust and APIs: The Vanishing Perimeter 

APIs are built out of services that communicate with each other via APIs, similar to how the 
internet is a “network of networks.” One of the most important implications of zero trust is that 
there is no meaningful distinction between an “internal” and “external” caller because the 
perimeter is the service instance itself. Rather, all callers are trusted if they are authorized to be 
trusted. This contrasts with traditional approaches to API security in which the only “APIs” are 
those exposed to “external” callers, and API-oriented controls are only enforced at the 
perimeter, typically via an API gateway. 

NIST Special Publication (SP) 800-207A [6] discusses zero trust at runtime and the principle of 
shrinking the perimeter to the service instance using the five runtime controls of identity-based 
segmentation: 

1. Encryption in transit — To ensure message authenticity and prevent eavesdropping, 
thus preserving confidentiality 

2. Authenticate the calling service — Verify the identity of the software sending requests 

3. Authorize the service — Using that authenticated identity, check that the action or 
communication being performed by the service is allowed 

4. Authenticate the end user — Verify the identity of the entity triggering the software to 
send the request, often a non-person entity (NPE) (e.g., service account, system 
account) 

5. Authorize the end user to resource access — Using the authenticated end-user identity, 
check that they are allowed to perform the requested action on the target resource 

Achieving a zero-trust runtime requires applying these five controls to all API communications. 
This guidance further describes additional controls that are necessary for safe and secure API 
operations beyond identity-based segmentation. These controls should be enforced on all APIs 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

5 
 

in a system, including those exposed to the outside world (i.e., public APIs) and those intended 220 
221 

222 

223 
224 

225 
226 

227 
228 

229 
230 
231 

232 
233 

234 

235 
236 

237 
238 

239 
240 

only for other applications in a given infrastructure (i.e., internal APIs). 

1.3. API Life Cycle 

Like all software, APIs grow and change over time as requirements drift and usage patterns 
change. They also go through a continuous, iterative life cycle, including: 

• Plan, Develop, Build, Test, Release — These “pre-runtime” life cycle phases lead to a 
service that can be deployed in production. 

• Deploy, Operate, Monitor, Feedback — These “runtime” life cycle phases involve 
running and operating a service in production. 

DoD Enterprise DevSecOps Fundamentals [1] provides a detailed description of each phase of 
the software development life cycle. Application of the DevSecOps paradigm in the context of 
cloud-native applications can be found in [4][5]. 

 
Fig. 3. DevSecOps life cycle phases 

1.4. Document Goals  

The goal of this document is to recommend guidance or controls for API protection. These 
controls are classified into two categories: 

1. Pre-runtime API protections — These controls need to be applied when designing and 
building APIs. 

2. Runtime API protections — These controls need to be applied to every API request that 
an infrastructure serves, not just at the perimeter. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

6 
 

Each of these two categories is further divided into two subcategories based on organizational 241 
242 
243 

244 
245 
246 
247 
248 
249 

250 

251 
252 
253 
254 

255 
256 
257 
258 
259 
260 
261 
262 
263 

264 

265 

266 
267 

268 
269 
270 

271 
272 
273 

274 

275 

maturity (i.e., basic and advanced), which enables enterprises to adopt them based on an 
incremental risk-based approach.  

A prerequisite for defining any API protection measure or policy irrespective of its category or 
sub-category is that the protections must be expressed in terms of nouns and verbs that pertain 
to API components, API endpoint components, API requests, and API responses that in turn 
contain references to resources/data and operations on those resources. These nouns and 
verbs form the fundamental surface that is exposed to the consumers of APIs and API 
endpoints.  

1.5. Relationship to Other NIST Documents  

Today, most enterprise software development and integration are based on APIs. Section 1.3 
articulated the close relationship between software and APIs, demonstrated that API 
development and deployment follow the same iterative life cycle as the software, and provided 
NIST guidance on DevSecOps.  

Another distinguishing feature of the controls recommended for protecting APIs is the capacity 
to provide assurance for conforming to the principles of zero trust. This is because there is no 
distinction between internal and external API requests/calls due to the absence of an 
identifiable network perimeter and the distributed nature of applications on-premises and 
multiple clouds. This security assurance can be achieved using authentication and authorization 
controls using identity-based segmentation [2]. Documents that provide recommendations on 
the configuration of authentication and authorization controls in the context of cloud-native 
applications (e.g., [2][3]) are also relevant in the context of configuring controls for API 
protection. 

1.6. Document Structure 

This document is organized as follows: 

• Section 2 looks at the risk factors and vulnerabilities associated with APIs and the attack 
vectors that could exploit those vulnerabilities. 

• Section 3 recommends controls to protect APIs and classifies them into basic and 
advanced categories that need to be applied prior to runtime or enforced during 
runtime. 

• Section 4 provides a detailed analysis of implementation options or patterns for the 
controls described in Sec. 3 and outlines the advantages and disadvantages of each 
pattern. 

• Section 5 provides the summary and conclusions. 

• Appendix A provides the classification taxonomy for APIs. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

7 
 

• Appendix B illustrates the API controls related to each DevSecOps phase 276 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

8 
 

2. API Risks — Vulnerabilities and Exploits 277

278

279

280

281

282

283

284

285

286
287
288
289

290
291
292
293
294

295
296
297

298
299
300
301

302

303
304
305
306
307
308
309

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 

 

 
 
 
 
 
 
 

This section considers some common risk factors associated with API deployments, including: 

• Lack of visibility of APIs in the enterprise inventory [7] 

• Missing, incorrect, or insufficient authorization [7] 

• Broken authentication [7] 

• Unrestricted resource consumption [7] 

• Leaking of sensitive information  

• Insufficient verification of input data 

2.1. Lack of Visibility of APIs in the Enterprise Inventory 

Most organizations have gaps in their API inventories, even if they otherwise have mature 
inventory management capabilities. Without an accurate API inventory, one cannot begin to 
protect the enterprise estate, and there may be incidents occurring at the API level that the 
security organization is entirely unaware of. Common reasons for lack of visibility are: 

• Organizational silos: APIs are built by many teams across the organization, deployed 
across cloud and on-premises environments, and inherited in mergers and acquisitions. 
This results in uneven attention to security concerns and difficulty establishing accurate, 
up-to-date inventories. This is worsened in organizations that achieve a high degree of 
developer agility: the faster development happens; the faster inventories grow stale. 

• Rogue or shadow APIs: APIs defined for internal use (e.g., debugging, testing, ad hoc 
solutions to business problems) may not be appropriately documented and often bypass 
standard security review practices. 

• Zombie or deprecated APIs: APIs may have been replaced or superseded by newer 
systems but have not yet been entirely removed (e.g., because all callers have not yet 
migrated to the alternative, there no longer exists a team responsible for the system). 
They risk falling behind the latest security policies and protections. 

2.2. Missing, Incorrect, or Insufficient Authorization 

Authorization is notoriously difficult to get right. It requires a high-reliability, low-latency 
system for making decisions about user access to resources at request time, and application 
developers must integrate their application with the same authorization system to keep it up to 
date on users, resources, and permissions as the system changes over time (e.g., users create 
and delete resources, assign new permissions). Even then, developers may enforce access 
decisions incorrectly in their application code. In the industry-recognized catalogue of API risks 
three of the top 10 (i.e., 1, 3, and 5) focus on authorization [7]. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

9 
 

In line with identity-based segmentation, every service for an API endpoint should perform two 310 
311 
312 
313 
314 
315 
316 

317 

318 
319 
320 
321 

322 
323 
324 

325 
326 
327 
328 

329 

330 
331 

332 

333 
334 

335 
336 

337 
338 
339 

340 
341 

342 
343 

344 
345 

levels of authorization: 1) service authorization and 2) end-user-to-resource authorization [6]. 
However, implementing both levels of authorization can still leave many APIs open to risk. 
Individual fields of a resource often need to be authorized independently of the resource itself. 
For example, if additional debug information is embedded in an “internal” field of the API 
object, that field should not be visible to “external” callers (i.e., callers not authorized to see 
privileged debug information). 

Authorization risks can be categorized in three ways: 

1. Missing authorization: There is no fine-grained, resource-level authorization present. 
For example, a legacy system may be operating under different access models (e.g., in a 
perimeter-based model, access is authorization), or there may be implementation bugs 
(i.e., an access check that should be enforced is not). 

2. Incorrect authorization: The application performs an end-user-to-resource authorization 
check but fails because it checks any or all of the following: the wrong end user identity, 
the wrong permission, or the wrong target resource. 

3. Insufficient authorization: The application performs a resource-level authorization that 
is successful, but the resource itself contains information that is “privileged” or not 
intended for the level of access implied by access to the resource itself. This is often the 
root cause for the risk of leaking sensitive information (see Sec. 2.5). 

2.3. Broken Authentication 

Authentication is a prerequisite for authorization, particularly two aspects: the authentication 
system itself is robust, and the application uses the authenticated identities correctly. 

Risks that an authentication system needs to mitigate include [8]:   

• Credential stuffing, where an attacker brute forces usernames and passwords without 
mitigation (e.g., rate limits and Captcha). 

• Brute force attacks on a single account without mitigations. This and the previous bullet 
are closely related to unrestricted resource consumption (see Sec. 2.4). 

• Insecure practices like weak passwords, passing sensitive data in public channels (e.g., 
the URL), missing password validation for changes to sensitive account data, and using 
weak keys or poor algorithms to encrypt user data in transit and at rest. 

• Bad or incorrect token validation, including not validating at all, ignoring expiry, and 
using insecure signing schemes or weak signing keys. 

With a robust and secure authentication system in place, the application must use those 
credentials correctly. Risks to mitigate include:  

• Missing authentication. Tokens can be present but simply not checked. This is often due 
to a bug or misconfiguration in the application. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

10 
 

• Weak or predictable tokens, default accounts, and default passwords (e.g., a hard-coded 346 
347 
348 

349 

350 
351 
352 
353 
354 

355 

356 
357 
358 
359 
360 

361 

362 
363 

364 
365 
366 

367 
368 
369 
370 

371 

372 
373 
374 
375 

376 
377 
378 
379 

bootstrap account with the same username and password on all devices, test accounts 
with predictable names and weak/guessable passwords). 

2.4. Unrestricted Resource Consumption 

Services consume resources to serve APIs, many of which can affect external systems or the 
real world when serving an API call. The effects are an intended part of the business flow, but 
automation creates avenues for abuse by malicious users. Therefore, usage must be restricted 
to protect against malicious attackers abusing the system with a denial-of-service attack (DoS) 
or for its impact on external systems. 

2.4.1. Unrestricted Compute Resource Consumption 

Broadly, the risks associated with unrestricted compute resource consumption (e.g., memory, 
CPU, storage) are best mitigated via a combination of rate limiting, timeouts, circuit breaking 
(i.e., limits on the number of concurrent outstanding requests), bot/abuse detection, and 
application changes (e.g., reject file uploads over 20MB in size, return at most 10 items in 
response to a list request). These risks manifest as:  

• DoS attacks via bandwidth saturation or resource starvation 

• Unreliable performance due to resource utilization for one user or service impacting 
others 

• Cost amplification, where an attacker can spend a small amount of resources (e.g., 
money, compute, bandwidth) to make requests that trigger a system to spend a much 
larger amount of resources servicing the request 

Even “internal” API consumption poses many of these risks. In most organizations, it is much 
easier for a developer to accidentally cause a DoS on an internal service than an external 
attacker causing such an attack maliciously. This is a potential security event that necessitates 
the need for a zero trust approach. 

2.4.2. Unrestricted Physical Resource Consumption 

The risks associated with the unrestricted consumption of physical resources are often ignored 
by software engineers, who tend to be better versed in the threat landscape of the virtual 
world. Critical business operations can be impacted when an attacker targets software systems 
that control physical processes (e.g., SCADA systems). 

APIs may also result in text messages being sent to users, charges to credit cards, or the 
consumption of expensive third-party resources. For example, a common challenge seen by 
organizations that adopt AI is the accidental over-use of expensive AI APIs, resulting in large 
unplanned expenses for the business.  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

11 
 

These risks are best mitigated by a combination of rate limiting, quotas, spending policy 380 
controls in third-party software, bot/abuse detection, and application or business flow changes. 381 

382 

383 
384 

385 
386 

387 
388 
389 

390 
391 

392 
393 
394 
395 
396 

397 

398 
399 
400 
401 

402 

403 
404 
405 
406 
407 
408 

409 
410 
411 
412 
413 

These risks manifest as:  

• Impacts on business operations (e.g., damage to equipment and personnel, the creation 
of fake orders that require human effort to sort and remove 

• Impacts on customer relationships (e.g., scalpers automatically buying inventory to re-
list at a higher price elsewhere)  

• Infrastructure co-opted for abuse or harassment (e.g., multi-factor authentication 
fatigue attacks, where an attacker triggers text spam to a user’s phone via an SMS 2-
factor authentication system [9])   

• Unplanned expenses (e.g., consuming far more of a third-party service than planned due 
to satisfying requests made by a malicious user) 

Mitigations for both compute and physical resource consumption are similar. For compute 
resources, how users interact with a system should be limited. For physical resources, how the 
user interacts with a system and how a system interacts with external systems should be 
limited and considered early in the design phase. Mitigating these risks can sometimes require 
business flow changes. 

2.5. Leaking Sensitive Information to Unauthorized Callers 

Unintentionally leaking business data via APIs is closely related to missing, incorrect, or 
insufficient authorization (see Sec. 2.2). While correct, robust authorization should mitigate this 
risk, sensitive data can still be leaked from APIs via side channels. The two most common side 
channels exploited by attackers are response codes and error information. 

Risks include:  

• Enumeration of the resources (e.g., users, objects) in a system. This can have secondary 
impacts on the business, like revealing the customer set, information about product 
inventory, or the identity of employees in an organization. A common method of 
enumeration is enabled by services responding with “Not Found” status codes instead 
of “Permission Denied,” allowing an attacker to distinguish between resources that exist 
(403) and those that do not (404).  

• Revealing information about the internal implementation of the infrastructure to 
attackers. While security through obscurity is no security at all, it is still prudent to make 
it as hard as possible for attackers to discover an infrastructure’s fine-grained specifics, 
which is often included in error messages (e.g.,  the exact versions of common software 
being run, internal names of systems for future pivot attacks). 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

12 
 

2.6. Insufficient Verification of Input Data 414 

415 
416 

417 

418 

419 

420 
421 
422 
423 

424 

425 

426 
427 

428 
429 

430 
431 

432 
433 

434 

435 
436 
437 
438 

439 

440 
441 

442 
443 
444 

445 
446 

Trusting unverified input is one of the largest classes of recurring security bugs in software. 
There are at least two levels of verification that APIs need to be concerned with:  

• Validating that the input is syntactically correct 

• Ensuring that valid input is not malicious 

2.6.1. Input Validation 

A service must validate that each request (i.e., input) matches the API’s definition, that all 
expected fields are present and of the correct type, and that no unexpected fields are present. 
For example, an API definition may say, “The ‘name’ field is required and must be a non-empty 
string less than 100 characters long,” which must be verified at runtime on every request. 

The lack of input validation results in a variety of risks, including:  

• Impacting the availability of APIs  

o The “Query of Death” [24] is a DoS attack via specially crafted requests that 
trigger pathological worst-case behavior in the server.  

o In the worst case, the server itself may crash due to bad input handling, which 
can be exploited by an attacker to cause DoS on systems.  

• Invalid or malicious data being stored in the system, which can cause latent issues (e.g., 
failure to restart during recovery, crashes when accessing invalid records)  

• Unanticipated error handling during request processing, which leaks internal 
information 

2.6.2. Malicious Input Protection 

While the input may satisfy “syntactic” validation, it also needs to be verified as non-malicious 
before it is used. Extending the “name” example above, a caller may send a request that 
contains a name field with a string less than 100 characters (i.e., valid), but that string may be a 
SQL injection attack. Common risks include:  

• Data leaks or corruption (e.g., a SQL injection attack) 

• Unanticipated or unrestricted resource utilization (e.g., an attacker automates account 
creation and uploads multi-gigabyte “profile pictures” to each account) 

• Exposing a surface that attackers can use to pivot within the infrastructure or leverage 
to mount further attacks on others (e.g., by allowing servers to be used for server-side 
request forgery [SSRF])  

• Cost amplification attacks, like the “billion laughs attack” (XML expansion) [10] or “zip 
bombs” (zip archive expansion) [11]  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

13 
 

2.7. Credential Canonicalization— Preparatory Step for Controls  447 

448 
449 
450 
451 
452 
453 
454 
455 
456 

457 

458 
459 
460 
461 

462 
463 
464 
465 
466 
467 

468 
469 
470 
471 
472 
473 
474 

475 

476 
477 
478 
479 

480 
481 
482 
483 
484 

A common problem at the API gateway is handling the many different credentials that clients 
use to call APIs: mobile apps use a certificate, clients use an API key and expect HTTPS, internal 
applications expect an mTLS connection with a SPIFFE identity, and others use HTTPS and a 
Kerberos ticket. All of them also need to convey the user’s credential (e.g., OAuth Bearer token, 
a custom JWT, some trusted internal header). The combination is immense and challenging for 
application developers to perform correctly. As a result, organizations may only perform 
authentication and authorization at the edge via the API gateway. A solution to this problem is 
to standardize the credentials that an application sees at the API gateway — that is, to 
canonicalize them.  

2.7.1. Gateways Straddle Boundaries  

A gateway is something in an infrastructure that straddles a boundary and is typically the only 
way for traffic to cross that boundary. As a result, the gateway is uniquely positioned to enforce 
policy. One of the most important policies that the API gateway enforces is authentication, 
ideally of both the user and the calling service.  

Identity-based segmentation states that every server should authenticate and authorize both 
the calling service and the end user of every request and that those policies should be enforced 
at every hop in the infrastructure [6]. However, changing legacy systems to support new 
identities is often not possible. The challenge lies in implementing identity-based segmentation 
and support for both service and user identities without impacting other parts of the 
infrastructure.  

 API gateways can be used to draw a boundary around the parts of an infrastructure that 
perform identity-based segmentation. Within that boundary, all applications expect a standard 
set of credentials (e.g., user identity via a JWT in a specific header and service identity via a 
SPIFFE X.509 certificate). Common policy, practices, and tooling can then be used to ensure that 
all applications perform authentication and authorization correctly. Legacy schemes may 
continue to be used outside of the boundary. To reach inside, traffic must traverse a gateway 
that can canonicalize the incoming request’s credentials into the expected form.  

2.7.2. Requests With a Service Identity but No User Identity  

Consider a batch job that runs nightly and touches data for many users. This is a risk because it 
requires special casing by the applications. For some service identities, end user authorization is 
not required, but for all others, it is required. Any special casing increases the opportunity for 
incorrect or insufficient authorization.  

The solution here is to adopt service accounts that present some system in a user identity 
domain. That service account can be for an internal system and, therefore, have permission to 
act on the data of many other users, or it can be for a user’s applications with correspondingly 
fewer permissions. The API gateway can mediate with the user authentication system to 
exchange the service’s runtime identity for a service account credential that represents the 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

14 
 

service in the user identity domain and attach that service account credential as the end user 485 
486 
487 

488 
489 
490 
491 
492 

493 
494 
495 
496 

497 

498 
499 
500 
501 
502 

503 
504 
505 
506 
507 
508 
509 
510 

credential to requests that it forwards into the part of the infrastructure that supports identity-
based segmentation.  

Applications that perform identity-based segmentation will need to configure policy for that 
service account user so that it can act on all of the data that the batch job previously used its 
service identity to access. At the same time, the application can remove any support for special 
data access without an end user credential. Finally, the existing infrastructure can be leveraged 
to audit and manage both user and service access to data.  

An implication of this is that all applications attempting to implement identity-based 
segmentation without a user identity should adopt service accounts by changing their 
application code. This will simplify future migration into the identity segmentation domain and 
make the system more secure overall.  

2.7.3. Requests With a User Identity But No Service Identity  

Consider a cloud-provider API gateway that receives user traffic, terminates TLS, performs end-
user authentication, and forwards requests to the infrastructure. The gateway enforces 
authentication, so some user credential is present. However, unless special care has been taken 
to communicate the service identity (e.g., via an API key or service account JWT), most notions 
of the calling workload will be lost at the external gateway provider.  

Depending on the specifics of the setup, the only option may be to configure service identity-
level policy via the external API gateway’s controls and then implement fine-grained service-to-
service policy for how requests can flow from that external gateway into the infrastructure. In 
other cases, the external gateway can be configured to pass some notion of the external 
workload (e.g., forwarding the client’s certificate as a header) and then use that to create some 
canonical workload credential for internal communication (e.g., forwarding the client’s 
certificate and creating a JWT that represents the external service identity from the certificate’s 
common name).  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

15 
 

 511 
512 

513 
514 
515 
516 
517 
518 
519 

520 
521 
522 
523 
524 
525 
526 
527 
528 

529 

530 
531 
532 
533 
534 
535 
536 

Fig. 4. Handling API Calls with User Identity & No Service Identity  

However, the gateway’s service identity is already in place between the gateway and the first 
service performing identity-based segmentation. For that first hop, three identities need to be 
handled on the request: the gateway’s service identity, the service identity of the external 
service, and the end user’s identity. As before, external service authorization can be performed 
via the gateway and simply drop the external service identity. Services should support 
validating both the end user and a workload identity via metadata from the request in addition 
to validating workload identity via the transport (e.g., mTLS certificates).  

For example, suppose that an organization A) uses a SPIFFE X.509 identity via mutual TLS for 
service identity as a service mesh does, B) uses a JWT bearer token for user identity, and C) 
chooses to represent external service identity as a JWT token attached to the request. The 
mesh can then enforce that the gateway forward traffic to the service via (A), authenticate the 
service JWT and authorize the external service (C), and authenticate the end user (B) before 
forwarding a request to the application. This would fully support authenticating and authorizing 
all of the communicating parties, and the service in question would not need to be aware of the 
external service identity or credential. They would simply need to manage a policy of “allowed 
external service callers” alongside their set of “allowed internal service callers.”  

2.7.4. Requests With Both User and Service Identities  

In the best case, the legacy systems in question are already doing nearly the right thing in that 
they have both an end user and a service identity attached to requests. However, since they are 
a legacy system, those credentials likely do not fully conform to the credentials expected by the 
parts of the system implementing identity-based segmentation. In that case, those other 
credentials will need to be translated into the canonical form expected by services performing 
identity-based segmentation in the infrastructure. Essentially, the user’s authenticated 
credential should be exchanged with an identity provider for the canonical form expected by 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

16 
 

the identity-based segmentation portion of the infrastructure (e.g., a JWT bearer token), and 537 
538 
539 

540 

541 
542 
543 
544 
545 
546 

547 
548 
549 
550 
551 
552 
553 
554 
555 

556 

557 
558 
559 
560 
561 

562 
563 
564 
565 
566 
567 
568 
569 

570 

571 
572 
573 

the external service’s identity should be represented to the internal system as a token so that 
the policy can be enforced on all three identities in the first hop.  

2.7.5. Reaching Out to Other Systems  

A similar problem presents itself in reverse when a service that performs identity-based 
segmentation needs to reach out to legacy systems that expect legacy credentials. One option 
is to integrate modern applications with legacy credential systems so that those applications 
can fetch the legacy credential they need, which can significantly delay the sunsetting of those 
legacy systems. A better option is to perform a credential exchange on traffic leaving the 
identity-based segmentation subset of the infrastructure.  

Rather than integrating the API gateway with a variety of identity providers to canonicalize 
inbound credentials, a gateway with a variety of identity providers to fetch outbound 
credentials can be integrated instead. For example, an external SaaS API may expect a cloud 
provider service account as credentials. An egress gateway can be deployed to authenticate 
and authorize credentials used inside of the organization (i.e., identity-based segmentation) 
and then exchange the internal identities for the external identities needed by the other 
system. In this way, services that perform modern identity-based segmentation can integrate 
with legacy systems with little impact and minimize any code dependencies on those legacy 
systems.  

2.7.6. Mitigating the Confused Deputy  

One of the biggest risks in any scheme that involves credential exchange is a confused deputy 
[26], where one caller can trick the “deputy” responsible for handling credentials into using 
credentials that belong to another caller on its behalf, most often to escalate privileges. Any 
system that brokers multiple credentials needs more and better authentication and 
authorization before allowing credentials to be accessed.  

An alternative approach is to break down the deputy into separate entities that hold only a 
single credential and map closely to a single application or service. This is the core idea behind 
the service mesh’s sidecar presenting a service identity on behalf of the application: because 
the sidecar is one-to-one with a service instance, a service’s identity cannot be confused for 
another at runtime. This same idea can be applied to API and egress gateways. Deploying them 
granularly — ideally per application — can minimize or eliminate any mixing of credentials, 
thereby mitigating any risk of a confused deputy. Section 4 discusses API gateway deployment 
patterns at length.  

2.7.7. Identity Canonicalization  

Canonicalizing credentials is really canonicalizing the identity domains for which one needs to 
write policy. Integrating identity providers to standardize credentials at the gateway inherently 
brings those identities into two identity domains: one for users and one for workloads. This 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

17 
 

allows for concise and consistent sets of policy that govern access to other services and user 574 
575 
576 

577 
578 

579 
580 

l581 
582 

i583 
584 
585 

 586 

access to data. Having both policies in place implements identity-based segmentation and 
dramatically improves security posture.  

 
Fig. 5. Identity Canonicalization for Handling API calls 

For most organizations, implementing credential canonicalization will require either adopting 
an identity provider wholesale and standardizing on that throughout (including working out 
egacy integration so that legacy credentials can be used to get credentials via the new 

provider) or performing identity exchanges, as described in this section. The API gateway is 
deally situated to enforce either choice. Performing identity exchanges also requires a mapping 

of identities across domains as well as a “token server,” which uses that mapping to mint 
credentials.  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

18 
 

3. Recommended Controls for APIs 587 

588 
“589 

590 
591 

I592 
593 
594 

595 
596 

597 
598 

599 
600 

601 
602 
603 

604 
605 
606 

l607 

608 
609 

610 
611 

612 

613 

614 

615 
616 

617 
618 

619 

620 

621 

APIs are the language of the systems we build. They define the “grammar” as well as the 
nouns” and “verbs” any user of your system works within. As attackers move up the stack, it’s 

more important than ever to elevate our security posture to think and manage policy in terms 
of those “nouns” and “verbs” our APIs expose.  

n their earliest form, controls for APIs focused primarily on encryption in transit while 
delegating most other concerns to the application. Over time, a variety of challenges have 
emerged that necessitate the evolution of controls, including: 

• The distributed nature of modern enterprise applications, which span multiple on-
premises and cloud environments and communicate over the network using APIs  

• The requirement to build robust systems that work around transient failures and handle 
large volumes of traffic 

• An increasingly complicated API surface driven by business needs to integrate more 
deeply with partners and expose richer functionality to users 

• Increasingly sophisticated attackers who have moved up the stack from low-level 
exploits and DoS attacks to application-level attacks that leverage the APIs that systems 
use to function 

Controls for APIs should cover all of the APIs in the organization, including those exposed to end 
users, those exposed to partners, and those that are only intended for “internal” consumption. 
This document’s controls are structured into two primary sections based on the iterative API 
ife cycle discussed in Sec. 1:   

1. Pre-runtime protections, which should be applied during design, development, and 
testing. These include:  

a. Creating a well-defined specification for the API’s contract using some interface 
definition language (IDL) (e.g., OpenAPI, gRPC, Thrift)  

b. Defining request and response schemas as part of that API specification 

c. Defining valid ranges of values for fields of each request and response 

d. Tagging the semantic type of each field of each request and response  

e. Creating and maintaining an inventory of these API specifications across the 
organization, including ownership information 

2. Runtime protections, which should be applied to each request and response to the API 
at runtime. These include: 

a. Encryption in transit  

b. End-user authentication and authorization  

c. Service-to-service authentication and authorization  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

19 
 

d. Request and response validation  622 

623 
624 

625 
626 

627 

628 
629 
630 
631 
632 
633 

634 
635 
636 
637 
638 
639 

640 
641 

642 

643 

644 

645 
646 
647 
648 

649 
650 

651 
652 
653 
654 

655 
656 
657 

e. Resource-consumption mitigations, including rate limiting, timeouts, and circuit 
breaking 

f. Telemetry (e.g., logging and monitoring) to assess enforcement and detect 
attacks  

Within each section, the controls are grouped into “basic” and “advanced” categories:  

• Basic protections should be pursued immediately with the goal of obtaining basic insight 
into the APIs that exist in an organization (Identify in NIST CSF [12]) and can be used to 
implement essential best practice controls (Protect). Generally, basic protections do not 
require deep introspection of the API’s request and response payloads but operate at 
the connection or request metadata level (i.e., on HTTP headers rather than the HTTP 
body).  

• Advanced protections perform deeper analysis on requests and responses. Many of 
these policies require payload inspection, which is CPU- and latency-intensive. The goal 
is to enhance basic Protection and begin to cover the Detect and Respond functions in 
NIST CSF [12]. Addressing these concurrently with basic controls is recommended, but 
the basic protections may provide the most benefit for resource-constrained 
organizations.  

All organizations should move immediately to act on basic controls, while advanced controls 
should be evaluated by the organization and applied to APIs based on risk profile. 

3.1. Pre-Runtime Protections 

All API controls must be well-defined and inventoried. 

3.1.1. Basic Pre-Runtime Protections 

REC-API-1: All APIs must have a specification in the form of a document that describes what 
endpoints the API exposes (“API spec” for short). To begin, the API spec can be a literal 
document, a set of internal wiki pages maintained by a team, or something similar. However, it 
should eventually migrate to a state-of-the-art IDL. 

REC-API-2: API specifications should use a well-defined IDL (e.g., OpenAPI for HTTP/REST, gRPC 
for protobuf, Thrift, SOAP for XML).  

• REC-API-2-1: API specs and implementations should conform to industry best practices 
(e.g., a Create-Read-Update-Delete [CRUD] API exposed as HTTP/REST should map the 
CRUD endpoints to the HTTP verbs POST, GET, PUT, and DELETE, respectively) for 
consistency [13]. 

REC-API-3: Request and response schema for each endpoint should be defined by the API 
specification, including validation guidelines for the values of each field of the request and 
response (e.g., “the name field is a string and must be shorter than 100 characters”). Additional 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

20 
 

information makes integration easier and less error-prone for clients and presents the 658 
659 
660 
661 

662 
663 

664 
665 

666 
667 

668 
669 
670 

671 

672 
673 
674 
675 

676 
677 
678 
679 

680 
681 
682 
683 
684 
685 
686 

687 
688 
689 
690 
691 

692 
693 
694 
695 

opportunity for automated enforcement, such as the maximum latency (e.g., “the server will 
drop requests that take longer than 5 seconds to process”) and rate limits (e.g., “by default, 5 
calls per minute are allowed”). 

REC-API-4: Organizational API inventory of all internal and external APIs should be maintained. 
This is in line with the Identify directive of the CSF [12]. That inventory should include: 

• Each API’s specification, though the inventory does not need to be the API 
documentation  

• Ownership information about the API to simplify the translation of runtime problems to 
organizational response  

• Runtime information to enable operations and security teams to understand the impact 
of each API (e.g., service instances, instance IP addresses, runtime service ID, traffic 
volume, rate of requests and errors, the status of policy enforcement) 

3.1.2. Advanced Pre-Runtime Protections 

REC-API-5: Request and response validation in the schema should be included in the API’s 
specification (e.g., a string field must be non-empty and shorter than 255 characters, or an 
integer value must be non-negative and less than 2 million). This simplifies documentation and 
enables runtime tooling to validate request and response schema and syntax.  

• Use primitive types in API schemas to reinforce this. For example, if a value is always 
semantically positive, model it in the schema as an unsigned integer rather than a 
regular integer (e.g., protobuf’s “uint” rather than “int”). Negative values are then 
disallowed by construction without any validation needed [14].  

• This principle extends to zero or default values as well. Users (malicious or not) will 
frequently omit fields that the application expects. One approach is to this is annotating 
fields as “required” or “optional” and rejecting requests with zero values for required 
fields. However, the application must handle missing optional fields. A second approach 
adopted by both Golang and protobuf/gRPC is to define “zero values” for each primitive 
type. The goal is that application code must either handle the zero value for each field 
or reject the request with a validation error. 

REC-API-6: Annotate each field as public or internal for each request and response or with the 
level of trust or permission required for access. These annotations simplify documentation and 
enable runtime tooling to remove trusted data for untrusted callers as a cross-cutting policy 
rather than something that must be built into the business logic of each service. An in-
application approach is much harder to implement correctly and to audit in practice. 

• REC-API-6.1: Annotate endpoints and fields with permissions required to enable the use 
of tooling to automate fine-grained per-field authorization checks. Those authorization 
checks could then be performed by the API serving infrastructure on behalf of the 
application or via a common library in the application with standard logging and metrics 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

21 
 

to facilitate easy audit and ensure continuous enforcement. Once the annotations are 696 
697 

698 
699 
700 
701 
702 

703 
704 
705 
706 
707 
708 
709 
710 

711 

712 
713 

714 

715 
716 
717 
718 
719 
720 

721 
722 
723 
724 
725 

726 
727 

728 
729 
730 
731 
732 

present, a variety of runtime implementations are possible. 

REC-API-7: Annotate each field with its semantic type to indicate fields that contain sensitive 
information, such as personally identifying information (PII), protected health information 
(PHI), or payment card information (PCI). This enables runtime systems to track data flow 
through the system, trigger alerting, and apply cross-cutting policy to ensure data does not leak 
across inappropriate boundaries. 

REC-API-8: Include runtime information in the API inventory with ownership (REC-API-4). This 
becomes substantially more valuable when annotated with runtime information (e.g., service 
instances and their IP addresses, runtime identities of the service instances, metrics or health 
information for the service, runtime metrics for traffic between services). This information can 
help security identify the blast radius of an event, operations to identify problems and root 
causes, and application teams to understand their application’s behavior. Correlating this 
information with the APIs being served makes it simple to link clients to servers as the problem 
is traced back to its root. 

3.2. Runtime Protections 

For runtime protections for APIs, apply zero trust principals as a baseline, and augment them 
with additional policy on requests and their payloads. 

3.2.1. Basic Runtime Protections 

REC-API-9: All runtime communication must be encrypted, even when the API is “public data” 
or otherwise unauthenticated. This is necessary to ensure that data has not been tampered 
with (integrity) and to prevent eavesdropping (confidentiality). Details on encryption in transit 
can be found in SP 800-53, control SC-8 [15] and SP 800-207A, control ID-SEG-REC-1 [6]. Details 
on cryptographic algorithms and key lengths can be found in SP 800-57 [16] and FIPS 140-3 
[17]. 

REC-API-10: Perform general request and response validation policies (e.g., WAF, bot detection, 
DoS mitigation) to mitigate malicious payloads and unrestricted resource consumption. These 
can and should be executed early in the API serving stack to protect other components (e.g., 
authentication system) from DoS. Since these protections are general and cross-cutting, there is 
little risk of unintentionally leaking sensitive information. 

REC-API-11: Authenticate the calling user and service, as described in SP 800-207A, controls ID-
SEG-REC2 and ID-SEG-REC4 [6]. 

There are (at minimum) two identities in every API communication: the software calling the API 
and the end user of that software. For example, it is common to use an API key to identify 
calling software and an OAuth Bearer token to identify the end user. This is true even if the 
end-user identity is an NPE (i.e., internal software calling other internal software should use 
something like a service account to identify the user making the requests). The service identity 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

22 
 

may contain information (e.g., the device being used to access the system) in addition to a 733 
734 

735 
736 
737 
738 

739 
740 
741 
742 

743 
744 
745 
746 

747 
748 
749 
750 
751 
752 
753 

754 
755 
756 
757 
758 

759 
760 
761 
762 

763 
764 
765 
766 
767 
768 
769 
770 

771 
772 

token from the software itself (e.g., an API key).  

• REC-API-11-1: Identities must be cryptographically verifiable and should not use weak 
signing algorithms (e.g., no JWTs with “alg: none,” weak algorithms, or short key-
lengths). SP 800-57 [16] discusses the strengths of cryptographic algorithms and the 
necessary key lengths for each.  

• REC-API-11-2: Authentication should use standard mechanisms whenever possible. For 
example, end user authentication should use a mechanism such as OpenID Connect 
(OIDC), OAuth2, or SAML. Services should use a mechanism like SPIFFE SVIDs, JSON Web 
Tokens (JWTs), API keys, or similar. 

• REC-API-11-3: Tokens must support expiry so that credentials are cycled regularly. 
Checking for expiry must be an inherent part of token validation. For example, when 
processing JWTs, the “exp” claim RFC 7519 [18] must be checked. Similarly, when 
processing an X.509 SVID, check the validity period’s “Not Before” and “Not After” [19].  

• REC-API-11-4: Return opaque tokens to untrusted systems. It is common for credential 
tokens to encode information about the internals of the system (e.g., minting a JWT to 
represent a user in the infrastructure that includes claims that represent the user’s 
capabilities in the system). This is a common scheme to simply and reliably enforce 
authorization per hop: validate the JWT, and check whether it contains the “claim” that 
represents the permission for an API endpoint. These claims encode all local operations 
that can be performed with data from the request and the local application.  

Returning a token with these details to an external user may risk leaking information 
about the internals of the system. This is where the following issues become critical to 
the safety of the API: how permissions are modeled, the set of internal 
permissions/claims that map to a given external API endpoint, and information about 
the path that the request traverses through the infrastructure. 

REC-API-12: Authorize the calling user and service for each identity on the request, including 
whether the calling software system is allowed to access the API endpoint and whether the end 
user is authorized to take the action on the resource represented by the endpoint. See SP 800-
207A [6], controls ID-SEG-REC2 and ID-SEG-REC4. 

Getting these authorization checks correct is one of the most common mistakes in API security 
[7]. REC-API-6 discusses annotating each request or endpoint with the permission required by 
the end user to call that endpoint on a resource. With annotations like those in place, runtime 
tooling can be implemented to ensure that those annotations are transformed into runtime 
permission checks against the authorization system. Combined with a robust DevOps process to 
ensure that annotations are present on APIs before they can be deployed, there can be a high 
degree of assurance that the correct authorization is being performed at the platform level. The 
idea of using the service mesh to achieve this is discussed in SP 800-204B [3]. 

REC-API-13: Validate each request and response per the API schema before it is processed by 
the business logic (e.g., ensure that the request has a “name” field that is a string and no other 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

23 
 

fields). This ensures that applications only receive well-formed input and minimizes a class of 773 
774 
775 
776 

777 
778 
779 
780 
781 
782 
783 
784 
785 
786 

787 
788 
789 
790 

791 
792 
793 
794 

795 
796 
797 
798 
799 
800 
801 

802 
803 
804 
805 

806 
807 
808 

809 
810 

errors and data leaks due to validation inline in the business logic. Additionally, validate that 
each response from the server conforms to the expected response schema to help prevent a 
variety of data leaks, abuses, or mistakes. 

REC-API-14: Authenticate, authorize, then validate in that order to minimize the risk of leaking 
data to attackers, since validation messages are at especially high risk of leaking information. 
For example, rejecting a request with a validation error for using a duplicate user-supplied 
name as another user may unintentionally leak information to callers regarding the existence of 
a resource. A likely mitigation may be an underlying per-user segregation of user-provided data, 
which often requires business logic changes in the application. Generic validations (REC-API-10) 
are exceptions to this because they are not business logic-aware and do not risk leaking 
information. They can be safely implemented by the platform ahead of authentication, which is 
often desirable to help protect the authentication and authorization systems from DoS and 
other attacks. 

REC-API-15: Enforce limits on API and resource usage. API gateway teams should provide 
reasonable defaults for the organization, and application teams should be able to enforce their 
own, more fine-grained limits in their application or leveraging the platform. Those limits 
should include: 

• REC-API-15-1: Rate limit all API access for all callers to ensure fair utilization across 
users, help with capacity planning, and mitigate the risk of unrestricted resource 
consumption. See REC-API-16 for recommendations on specific rate-limiting 
implementations.  

• REC-API-15-2: Apply timeouts to all requests, including the API gateway. This should be 
done at the TCP level, where connections are automatically timed out after a modest 
time (e.g., 5 minutes) rather than the kernel’s default of more than one hour per 
connection. Timeouts should also be configured at the application level. If a required 
operation should complete in five seconds as part of the API contract, set a 6-second 
timeout for it. This ensures that the resources in a service do not wait for a response 
that will never arrive.  

• REC-API-15-3: Apply bandwidth and payload limits to enforce maximum request and 
response sizes. The “correct” limit is highly contextual and based on the organization 
and application (e.g., a bank will have very different expectations than a video streaming 
company). This helps avoid a variety of risks related to malicious input and DoS. 

• REC-API-15-4: Validate and limit user-supplied query parameters (e.g., amount of 
processing done, size of their response based on user input), especially in the context of 
what the system can support and what is typical for users of the system. For example:  

o The number of elements returned per page of a paginated list API. If a typical 
user has 100 items, cap the maximum number of elements per page to 1000.  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

24 
 

o Time ranges in dynamic queries. If a system is intended for viewing recent 811 
812 
813 

814 
815 
816 
817 

818 
819 
820 
821 
822 
823 
824 
825 

826 
827 

828 
829 
830 
831 
832 
833 
834 

835 
836 
837 
838 
839 
840 
841 
842 
843 

844 
845 
846 
847 
848 

849 
850 

events, and the user can provide a time range, limit that range to the last 30 days 
rather than allowing the user to query “from 1972 onward.”  

o GraphQL and similar API facade systems that support query languages over many 
APIs should have limits on the queries that users can execute (i.e., approved or 
predefined queries only) and caps on the number of outbound calls allowed in 
the execution of a single query.  

REC-API-16: Rate limiting recommendations are one of the most effective tools to mitigate 
unrestricted resource consumption and can increase the challenge and discoverability of many 
attacks with a goal of leaking sensitive information via data exfiltration from API calls (e.g., 
scraping all chat logs from an organization with a script impersonating a chat client). Most 
organizations apply some type of rate limit to “external” traffic, but it is equally important to 
rate-limit internal callers. It is very easy to unintentionally cause a DoS on an internal system 
with poorly conceived code. It is equally critical to consider the limits placed on internal 
software that call out to external systems (see Sec. 2.6.2).  

The following recommendations on rate-limiting configuration address common pitfalls and 
misunderstandings:  

• REC-API-16-1: Rate limits are not quotas. A quota is a usage limit on an API over an 
extended duration (e.g., per month) that is associated with a user’s payment or billing 
structure. Many organizations have “API usage tiers” that map prices to higher per-
month limits. These quotas need to be strictly enforced and are typically used to 
generate billing reports that are sent to customers. In contrast, rate limits are intended 
to protect the system from overuse and help ensure fair usage across separate, 
concurrent callers. Rate limits do not need to be exact in the way that quotas must be.   

• REC-API-16-2: Rate limits for total load provide little benefit and should be dimensioned 
by user (e.g., 83 requests per 5 minutes per user) using the source IP address or end-
user credential as the key. Rate limits without a user dimension (e.g., service can receive 
1,000 requests per 5 minutes total) are not particularly effective and allow some users 
to impact others (e.g., DoS risk). This is true even when total limits are dimensioned by 
service instance (e.g., a single instance cannot receive more than 100 requests per 5 
minutes). Circuit breaking functions must be used to provide protective limits on 
concurrency for a service instance. More information on circuit breaking and other 
resiliency and load-shedding techniques can be found in 800-204A, Sec. 2.3 [2].  

• REC-API-16-3: Rate limits should be short in duration (e.g., per 60-seconds, per 5-
minutes).  A rate limit is defined as the number of calls allowed over a time period (e.g., 
24,000 requests per 24 hours; 1,000 requests per hour; 16.5 requests per minute). Most 
systems allow for the configuration of both the number of calls and the amount of time 
over which they are allowed.  

However, there are two problems with per 24-hour rate limits. First, they cause outages 
for callers that resolve themselves when the rate limit server resets for the next 24-hour 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

25 
 

period, even if the rate limit was originally set correctly based on the client’s expected 851 
852 
853 
854 
855 
856 
857 
858 

859 
860 
861 
862 
863 

864 
865 
866 
867 
868 
869 
870 
871 

872 
873 
874 
875 
876 

877 

878 
879 

880 

881 
882 
883 

884 

885 
886 
887 
888 

usage. A successful API ecosystem will see the increased usage of APIs over time, which 
results in the increased usage of their dependencies and those APIs. This is the typical 
organic growth of API usage. Adjusting rate limits before they caused outages is almost 
never a priority for application teams, so over time, clients may see the API begin to 
randomly fail with 400 errors. Second, per 24-hour rate limits can result in spiky traffic 
for the service, where a client consumes the entire 24-hour limit over a very short time 
and causes a heavy load on the services.  

Shorter time limits allow clients to experience a few intermittent failures every minute 
or five as their traffic grows organically rather than total failure with per 24-hours. 
Additionally, the system will experience smoother traffic overall because a single client 
must pace their consumption over a longer duration, resulting in less load from each 
client at any given time.  

REC-API-17: Fine-grained request and user blocking allows the API serving stack to block 
individual users via their end-user credential and/or network address. This is a key capability in 
enabling an effective response in the face of an ongoing incident (see the Respond function in 
the CSF [12]). The actual enforcement can be handled by separate components (e.g., network-
level blocking implemented by a firewall or the load balancer; credential-level blocking 
implemented by the API gateway, bot/abuse detection systems, or the authorization system). 
For relevant information on these techniques, refer to SP 800-53, AC-3 [15] and SP 800-204B, 
Sec. 4.6 [3]. 

REC-API-18: API access must be monitored to ensure that the API serving stack provides 
sufficient telemetry to assess the availability of APIs and to ensure that policies are being 
enforced. The traditional triad of logging, metrics, and distributed traces is recommended. All 
three should be tagged with information about the API being accessed in addition to the 
runtime service so that service calls can be traced back to APIs. 

For the API gateway itself, a range of signals should be produced to enable the identification of:  

• Basic communication information, like the information included in the Common Log 
Format [20] (e.g., who called, what method, from what origin)  

• Health (e.g., rate of requests, rate of errors, latency) per API and API Endpoint  

• Enforcement results per policy class (e.g., requests allowed or denied due to missing or 
incorrect authentication or authorization checks, requests blocked due to rate limiting) 
to assess the aggregate enforcement of each policy  

• The health of the services behind the API gateway  

General information on audit and logging requirements can be found in SP 800-53 [15], AU-2 
Event Logging, AU-3 Content of Audit Records, and AU-12 Audit Record Generation. 
Information on service mesh telemetry, which can be used for audit and logging, can be found 
in SP 800-204A [2], SM-DR21 through SM-DR24. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

26 
 

3.2.2. Advanced Runtime Protections 889 

890 
891 
892 
893 
894 
895 
896 
897 
898 
899 
900 

901 
902 
903 
904 
905 
906 
907 
908 
909 

910 
911 
912 
913 
914 
915 
916 
917 
918 
919 
920 
921 
922 
923 

924 
925 
926 

REC-API-18: Field-level validation using API schema annotations can be used to validate the 
values of requests and responses at runtime. This is beyond the basic syntactic validation of 
REC-API-13 (e.g., “there is a name field, and it is a string”) and more like semantic validation 
(e.g., “the name field must not be longer than 100 characters,” or “the amount field must be 
positive and less than 2 million”). This can be implemented by the API gateway as part of a 
cross-cutting policy. An API spec is required (REC-API-2) and should be in a central inventory 
(REC-API-4). The API gateway team can then enforce the validation of all requests traversing an 
API gateway. This reduces the risks of insufficient input verification and leaking sensitive 
information compared to ad hoc, error-prone implementations in each application or standard 
implementations embedded in the application itself via SDK, which tend to be difficult to 
update. A timely update is an imperative for infrastructure that enforces security policy. 

REC-API-19: Authorization and filtering using API schema annotations enforce access to 
resources and fields per caller. In this case, the API gateway itself is the policy enforcement 
point, and it defers to an authorization system to make decisions. The information from the API 
schema is enough to extract credentials from the request, identify the target endpoint and its 
associated tags/permissions, and use those to form a call to the authorization service (e.g., “is 
the request’s end user allowed to perform the endpoint’s permission on the object targeted by 
the request?”). The API gateway can then enforce the result of the call at runtime. There are at 
least three levels of assurance that can be achieved, and each build on the previous one to 
further mitigate risks at increased runtime or development-time cost:  

• REC-API-19.1: Resource-level authorization as a cross-cutting policy should be enforced 
on all requests using endpoint-level annotations that define the permissions required to 
call the endpoint (REC-API-6.1). This can be done at the platform level leveraging the API 
gateway. When combined with a decentralized gateway pattern (Sec. 4.3), this 
implements ID-SEG-REC-4 [6] at every hop.1

1 Other patterns have a wider perimeter and are susceptible to the API gateway being bypassed. Therefore, they do not satisfy ID-SEG-REC-4.  

 This also helps prevent  and potentially 
eliminate missing authorization (Sec. 2.2), depending on the organizational guardrails in 
place. For example, an organization can build an API inventory by mandating an API spec 
with endpoint-level permission annotations as part of each app’s “ticket to the 
platform” (i.e., the data that an app team needs to submit to run their application on 
the organization’s infrastructure and platform). Combined with standard patterns for 
authentication (REC-API-11), this can ensure that the correct authentication and some 
authorization are performed. However, additional organizational controls are required 
to ensure that the permissions are correct and sufficient in order to fully mitigate risks 
around authorization (see Sec. 2.2).  

Achieving correct and sufficient authorization at the resource level is likely all that most 
organizations need to achieve. It mitigates the predominant risks identified by the 
OWASP API Security Top 10 [7] with respect to authorization. Moving beyond this level 

 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

27 
 

of assurance into REC-API-19.2 and REC-API-19.3 shifts the focus to mitigating the risk of 927 
928 

929 
930 
931 
932 
933 
934 
935 
936 
937 
938 

939 
940 
941 
942 

943 
944 
945 
946 
947 
948 
949 
950 
951 
952 
953 
954 

955 
956 
957 

958 
959 
960 
961 
962 
963 

964 
965 

leaking sensitive information. 

• REC-API-19.2: Field-level visibility as a cross-cutting policy can leverage basic “Public” 
and “Private” annotations on each field. The authorization check effectively asks 
whether data should be visible to “external” callers.2

2 REC-API-19.1 i focuses on requests, while this control focuses on the data that an application returns to callers in responses. They are 
complementary controls.  

 These coarse-grained 
Public/Private annotations are particularly effective on common types shared across 
many APIs in the organization. For example, a standard error reporting pattern used by 
all APIs can leverage field-level annotations to differentiate “user” facing errors versus 
“developer” facing errors, mitigating the risk of leaking sensitive information via errors. 
The gRPC Status proto [21] is an example of a consistent error reporting pattern. In the 
gRPC case, field-level annotations would reside in the message used for the status’s 
“details.”  

• REC-API-19.3: Field-level authorization as a cross-cutting policy can be leveraged to 
perform fine-grained field-level authorization (REC-API-6.1). This extends the idea of 
REC-API-19.1 down to the level of each individual field of the response and allows for 
the filtering of API objects per-use to implement sophisticated access control schemes.  

While this kind of approach offers a very high level of data security, it causes a sharp 
increase in the number of policy checks that the authorization system must perform and 
requires active participation by application developers to keep permissions per field up 
to date as the application evolves. For example, a resource-level authorization check 
requires one authorization decision per request. A field-level authorization check 
requires one authorization decision for the request plus an additional decision for each 
field of the response. Even an object with a modest number of fields (e.g., 5) results in 
whole-number multiples more policy decisions made by the authorization system. For 
developers, the purpose and therefore permission of an endpoint rarely changes, but 
the fields of the request and response objects for that endpoint regularly evolve over 
time. This makes upkeep for permissions at the field level more expensive for 
application developers versus endpoint-level annotations (REC-API-19.1). 

As a result of the cost and load on the authorization system, this level of fine-grained 
checking is typically only used in the most high-risk situations and only by sophisticated 
organizations. 

SP 800-204B [3] discusses the advantages of using a decentralized API gateway architecture 
when implementing fine-grained authorization checks. When choosing to implement these 
authorization policy checks under the centralized and hybrid patterns, care must be taken to 
ensure that the gateways are not bypassed. For example, a service-level authorization policy 
could disallow any traffic except from the API gateway as a means of defeating an attempt to 
bypass gateway checks via pivoting inside the infrastructure. 

REC-API-20: Traffic monitoring and policy using semantic field labels can log and monitor the 
flow of sensitive data in a system. Further, the API Gateway can be used as a policy 

 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

28 
 

enforcement point to control the flow of that data, potentially blocking traffic flows that transit 966 
967 
968 
969 
970 
971 
972 
973 
974 
975 

976 
977 
978 
979 
980 
981 
982 

983 
984 
985 
986 
987 
988 

989 
990 
991 
992 
993 

994 
995 
996 
997 
998 
999 

1000 
1001 

1002 
1003 
1004 
1005 
1006 

significant amounts of data. Ultimately, with annotations and enforcement in place, the flow of 
sensitive data in the organization can be governed by mandatory access control (MAC) policies. 
A MAC policy is enforced by the authorization system, regardless of the user or resource in 
question. For example, while not explicitly stated as a hard rule in PCI DSS, a MAC policy 
followed in implementation of systems handling PCI data is that they should be isolated from 
systems that do not implement PCI DSS controls to maintain security and prevent potential 
breaches. Such a MAC policy can be enforced with a combination of understanding PCI-
compliant services in the infrastructure and data tags on the semantic types of data that flow 
through the system. 

REC-API-21: Non-signature payload scanning (for generative AI APIs) analyzes request and 
response data for sensitive information that may not be a literal attack signature. Tools typically 
analyze (e.g., via regression, AI, simple matching and word filtering) the responses returned by 
servers to score the risk that they contain sensitive information and take action to block that 
traffic. Increasingly, AI agents are being deployed to assess the risk of data generated by other 
agents. At a high level, this technique is like a web application firewall (WAF), but WAFs are 
fundamentally signature-based, while these analyses are fundamentally content-based. 

This is a general category of data egress analysis that is relevant across all APIs, but it has 
become increasingly important with the growth of generative AI. Generative agents are 
frequently trained on business-sensitive data or have insight into sensitive business operations 
and operational data, and they are increasingly exposed to the organization and externally as 
APIs. From the inception of generative AI agents, a variety of prompt injection attacks [22] have 
been created to exfiltrate data via these generative models. 

Tools for performing non-signature payload inspection should be used whenever an 
organization is handling data returned by their system, especially when that data is generated 
on demand (e.g., by AI agents). In most cases outside of dynamically generated output, 
implementing simple semantic and syntactic validations (REC-API-13, REC-API-18) will typically 
provide an organization with more risk mitigation for a lower runtime and operational cost.  

• REC-API-21.1: Semantic data discovery tools are typically very good for identifying the 
type of information flowing through a system (e.g., string, email address). Building the 
inventory of APIs and the developers adopting well-defined API schemas with 
meaningful annotations takes time. Runtime tools such as these are very helpful for 
initial discovery, ensuring that rollout is complete across all services, and ensuring that 
services stay in compliance after the policy is rolled out. When it is reasonable to 
leverage due to compute and latency constraints, an organization benefits from 
inspecting traffic for sensitive data flow, even beyond field-level annotations. 

REC-API-22: Fine-grained blocking for specific requests can prevent a DoS or service crash. 
These bad inputs can often trigger a cascading failure [23], but the queries may not be 
malicious in nature (e.g., users using the system in ways that it was not intended or designed 
for). In cybersecurity, this is sometimes called the “query of death” (QoD) [24]. These tools help 
mitigate the risks of unrestricted resource consumption and malicious input validation. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

29 
 

As a system grows in size and complexity, it is necessary to be able to pin-point block these 1007 
1008 
1009 
1010 
1011 
1012 

1013 
1014 
1015 

1016 

kinds of queries to keep the system stable and available. Depending on the complexity of the 
query and environment, it may be possible to leverage a WAF or non-signature payload 
scanning tools to block some types of QoDs. However, application code changes may be 
required — sometimes even rearchitecting the application itself — to mitigate the impact of 
these kinds of queries. 

The detailed controls in this section fit into broad classes, and their association with the 
DevSecOps phases is discussed in Appendix B. This emphasizes the observation that APIs should 
be treated as any other software and go through an iterative, continuous life cycle. 

 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

30 
 

4. Implementation Patterns and Trade-Offs for API Protections 1017 

1018 
1019 

1020 

1021 

1022 

1023 

1024 

1025 

1026 
1027 

1028 

1029 

1030 

1031 

1032 

1033 

1034 

1035 
1036 
1037 

1038 
1039 
1040 
1041 

Regardless of the mechanism or architecture of an API and its services, there is a core set of 
capabilities required to realize the controls outlined in this document:  

• Authentication and authorization 

• Request and response validation 

• Rate limiting 

• Circuit breaking 

• Error handling 

• Logging and Monitoring 

In addition to these core capabilities for security, APIs that serve infrastructure typically deal 
with other common concerns:  

• Service discovery 

• Routing 

• Protocol conversion 

• Caching 

Three components are needed to provide this functionality to serve an API:  

1. A gateway to implement the API-oriented policy  

2. The service itself to implement the API’s business logic 

3. A method to get traffic to gateway instances (e.g., DNS and a network load balancer) to 
facilitate service discovery, load balancing, and network reachability to horizontally 
scaled instances of the gateway itself 

For example, if the Gateway functionality is implemented via a Kubernetes ingress routing to a 
pod (i.e., the service instance), then callers outside of the network to reach the gateway will 
require the cloud provider or data center network team to provision a network load balancer in 
front to route network traffic to the Kubernetes load balancer service. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

31 
 

 1042
1043

1044

1045
1046

1047
1048
1049

1050
1051

1052
1053
1054
1055

1056
1057
1058
1059
1060

 
 

 

 
 

 
 
 

 
 

 
 
 
 

 
 
 
 
 

Fig. 6. API gateway patterns 

Three patterns have been developed by industry to implement these capabilities:  

1. Centralized gateway — Protections for all APIs in the enterprise are implemented by a 
single shared component: an API gateway. 

2. Hybrid deployment — Cross-cutting policies (e.g., authentication) are implemented in 
the centralized shared gateway, but application-specific policies (e.g., authorization) are 
implemented in the application itself or by components owned by the application team. 

3. Decentralized gateways — All policy checks are performed by gateways dedicated to 
each application, often deployed beside each service instance. 

All three patterns can achieve all of the controls outlined in this document and be used by 
organizations to operate their APIs safely and confidently. Further, many of these patterns may 
be in use within a single organization. This section explores the engineering design trade-offs 
that each pattern provides in terms of risks and operational overhead. 

Many API gateway products provide management capabilities, such as API key issuance, 
discovery documentation (i.e., API definition) hosting, documentation for client developers, and 
support for quotas and billing tiers. These are all valuable features in the enterprise setting, but 
all of them can be supported across any implementation pattern and are therefore not 
addressed in this section. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

32 
 

4.1. Centralized API Gateway 1061 

1062 
1063 
1064 
1065 
1066 
1067 
1068 

1069 

1070 

1071 
1072 
1073 

1074 

1075 
1076 

1077 
1078 
1079 

The centralized API gateway pattern implements protections for all APIs with a single 
component: an “API gateway” that is often deployed close to the perimeter of the system. 
External traffic enters through the gateway, typically via a load balancer. Internal traffic 
“hairpins” through the gateway as well, which facilitates service-to-service communication 
inside the infrastructure. That internal, service-to-service traffic may also have to traverse the 
load balancer for some service instances. Fig. 5 shows a common configuration for a centralized 
API gateway pattern. 

  

Fig. 7. Centralized API gateway pattern 

An API gateway is typically a software application that can be scaled horizontally (i.e., more 
instances can be deployed side by side). This is one of the reasons why an API gateway often 
sits behind a load balancer, even for internal service-to-service traffic use cases. 

Advantages of this pattern include:  

• A single policy enforcement point that is easy to monitor and audit, making it simple to 
verify that policy is enforced for all traffic that traverses the gateway. 

• Implementation matches the organizational structure. Typically, large organizations 
have a single API team that owns the centralized gateway component. That team is 
responsible for and able to execute on when an API is available, which API endpoints are 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

33 
 

failing, whether policies are being enforced, whether the configuration up to date, and 1080 
1081 

1082 
1083 

1084 

1085 
1086 
1087 

1088 
1089 
1090 
1091 

1092 
1093 
1094 

1095 
1096 
1097 
1098 
1099 

1100 
1101 
1102 
1103 
1104 
1105 
1106 
1107 
1108 
1109 

1110 
1111 
1112 
1113 

other issues. 

• Streamlined setup for application developers who need to “onboard” their API but do 
not need to deploy or maintain any additional runtime components.  

Disadvantages of this pattern include: 

• Shared fate outages. Because there is a single component, an outage of that component 
causes an outage for all APIs, which can be problematic for mission-critical APIs that 
need to operate continuously. 

• Noisy neighbors, where traffic consumes resources for some APIs and increases latency 
for all APIs. In the worst case, one application team may submit invalid configuration 
parameters for a service that may crash or cause DoS on the API gateway, triggering a 
shared fate outage for other APIs. 

• Long change lead times due to managing how the changes to an individual team’s API 
configuration impact the shared gateway. This is a frequent side-effect of controls 
added to mitigate shared fate outages and noisy neighbors. 

• Cost attribution. All requests are handled by the central gateways, and resources spent 
per request per API (e.g., on payload validation) are uneven. Therefore, it can be difficult 
to attribute API gateway runtime costs to internal application teams. This can be a 
problem for companies that implement an internal resource economy for planning by 
assigning cost centers for each application team. 

• Caching the results of policy decisions at runtime becomes critical when implementing 
the policies outlined in this SP due to the sheer number of policy checks required. 
Caching both increases client-perceived availability and reduces the load on key 
systems, like authentication and authorization. However, two layers of load balancing 
(i.e., network load balancer to API gateway and API gateway to service instance) tend to 
result in poor cache hit rates across policies enforced by the API gateway and for user 
data in the application layer itself. While some techniques can be used to mitigate this 
(e.g., distributed caches or streaming connections), they generally add additional 
development or operational overhead for the application team, API gateway team, or 
both. 

• Because a shared gateway is located at the perimeter, it can be bypassed (e.g., via an 
attacker pivoting inside the perimeter), which in turn bypasses the policy checks 
enforced by that gateway. This can be mitigated with techniques like service-to-service 
access policies that ensure that applications only receive traffic via the centralized 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

34 
 

gateway or by attaching proofs (i.e., credentials) to the request that allow an application 1114 
1115 

1116 

1117 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 
1126 

1127 

1128 
1129 

to authenticate that the request was handled by the gateway. 

4.2. Hybrid Deployments 

Hybrid gateway deployments split policy enforcement responsibilities between a centralized 
gateway and the applications themselves. Cross-cutting policies (e.g., authentication, service 
discovery, routing, rate limiting, caching) are handled by the centralized gateway. Application-
specific policies (e.g., authorization, request and response validation, protocol conversion, error 
handling, logging, monitoring) are handled by the application team. This can manifest in the 
application itself (e.g., gRPC) or as a separate deployment that handles traffic before the 
application (e.g., GraphQL or Spring Cloud Gateway). As with the centralized pattern, all 
internal and external traffic between applications must first go through the centralized gateway 
and, in some instances, through the load balancer. Fig. 6 shows the schematic diagram of a 
distributed gateway pattern. 

 

 
Fig. 8. Distributed gateway pattern (hybrid deployment) 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

35 
 

Overall, this pattern behaves similarly to the centralized API gateway pattern, except that some 1130 
1131 
1132 
1133 
1134 

1135 
1136 
1137 

1138 

1139 

1140 

1141 

1142 

1143 

1144 

1145 

1146 

1147 

1148 

1149 

1150 

1151 
1152 

1153 

1154 
1155 
1156 

1157 
1158 
1159 

1160 

1161 
1162 
1163 

of the most failure-prone parts of the centralized pattern are delegated to the application 
teams. This streamlines API gateway operations and enables app teams to move at their own 
pace. However, it also shifts the responsibility for some runtime operational and security 
concerns from the API gateway team to those application teams. 

The exact split of responsibilities between gateway and application (e.g., sidecar in a service 
mesh architecture) can vary greatly across different organizations based on their risk profiles 
and past experiences. Typically, the gateway takes responsibility for: 

• Authentication 

• Rate limiting 

• Circuit breaking 

• Service discovery 

• Routing 

• Caching 

• Network-level load balancing 

The application or dedicated gateway is responsible for:  

• Authorization 

• Request/response validation 

• Protocol conversion 

• Error handling 

• Application-instance load balancing 

Both are responsible for logging and monitoring to enable visibility into the state of the system 
and to ensure that policies are being enforced at runtime. 

There are similar advantages as the centralized gateway pattern that also include: 

• Mitigation of most shared-fate outages and noisy neighbors by moving the most error-
prone processing like request validation out of the shared gateway and delegating to 
the application or dedicated gateway. 

• Increased iteration speed due to the ability to update configurations with less process 
overhead and hence quickening the time involved. This is possible due to reduced risk of 
shared fate outage. 

Disadvantages include:  

• The enforcement of policies is split across the API gateway and many service instances, 
which makes it more challenging to ensure that the policy is being enforced consistently 
and correctly. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

36 
 

• There is increased operational burden on application teams compared to the centralized 1164 
1165 
1166 

1167 
1168 

1169 
1170 
1171 
1172 

1173 

1174 

1175 

1176 
1177 
1178 
1179 
1180 

1181 
1182 
1183 
1184 

1185 

1186 
1187 

1188 
1189 

1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 

1199 
1200 

API gateway pattern, as they are now responsible for ensuring that some policies are 
enforced in their application. 

• Not all classes of shared fate outages and noisy neighbors can be eliminated because 
the shared central gateway is doing at least some application layer processing. 

• Cost attribution is significantly improved compared to the centralized pattern because 
the most expensive runtime policies are implemented by the application teams. 
However, the centralized gateway can still be very expensive to operate at high scales 
and is as difficult to attribute costs as in the centralized pattern. 

• Caching hit rates also suffer similarly to the centralized pattern for the same reasons. 

• Bypassability/pivot 

4.3. Decentralized Gateways 

In a decentralized approach, the gateway is directly associated with the application, which is 
owned by a single team. This ensures that changes are isolated to services owned by that team 
and that the potential for shared fate outages does not arise. Changes to each gateway are 
“safe” from the organization’s perspective: a bad change will not cause additional problems for 
other teams, and the team that caused the outage to occur can fix the problem. 

External traffic must still enter through a load balancer, which does not enforce any policy and 
only performs routing. Internal traffic may use the same load balancer but may be routed 
directly peer-to-peer, removing the central gateway from internal traffic as desired, since 
enforcement of policy happens at the service instance. 

This leaves two key challenges that the implementation must address: 

1. Ensuring that the remaining shared configuration (i.e., the load balancer) is safe for each 
team’s changes 

2. Ensuring that both cross-cutting and application-specific policies are enforced 
consistently across the organization 

Keeping the load balancer’s configuration safe is a universal problem across all three 
implementations. However, it is most acute in the decentralized pattern because the load 
balancer must cope with configuration for many applications, while only the API gateway’s 
configuration needs to be present in the other patterns. Regardless of implementation pattern, 
this is most often handled at the business process level. Organizations decide on a fixed naming 
scheme that is enforced by and during by the CI/CD process or is otherwise hidden by the 
organization’s platform (e.g., subdomains-per-service, such as foo.api.example.com, 
bar.api.example.com; paths-per-service, such as api.example.com/v1/foo, 
api.example.com/v2/bar). 

The challenge of cross-cutting policy is unique to this pattern. In recent years, it has been solved 
robustly in open source via the service mesh, which can provide a single point for policy 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

37 
 

management and use its proxies to enforce those policies (i.e., API protections) at each service 
instance. The service’s properties 

1201 
1202 
1203 

1204 

1205 

1206 

1207 

1208 

[2] and use for security [3][6] have been covered in other 
NIST guidance documents. 

 

Fig. 9. Decentralized API gateway pattern 

 

Fig. 10. Service-to-service traffic flows in decentralized API gateway pattern 

The advantages of a decentralized gateway pattern include:  



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

38 
 

• All processing is done per application team (i.e., no noisy neighbors), and the risk of a 1209 
1210 
1211 

1212 
1213 

1214 
1215 
1216 
1217 

1218 
1219 

1220 
1221 
1222 
1223 
1224 
1225 

1226 

1227 
1228 
1229 
1230 
1231 
1232 

1233 
1234 
1235 
1236 
1237 

1238 
1239 
1240 
1241 
1242 
1243 

1244 

1245 
1246 

shared fate outage is only present on the load balancer, which is a risk shared across all 
implementation patterns. 

• It has the highest rate of change for app teams because they have no external 
dependencies and little chance of causing outages for other teams. 

• A cross-cutting policy can be managed by the central API gateway team via the 
gateway’s control plane (e.g., with the service mesh). This pattern can be adopted 
harmoniously in a mixed environment, where some APIs are implemented via any of the 
three patterns in a single organization. 

• Cost attribution is straightforward and no more or less challenging than attributing any 
compute resource spent by teams in the organization. 

• Cache locality is typically better than in the other patterns because there is only a single 
layer of load balancing, and the gateway is co-located with the application. This means 
that gateway policy checks for a given user are cached alongside the application 
instance caching business logic data for that user. However, if a user’s request is load-
balanced across multiple service instances, then “duplicate” policy checks have to be 
performed that would not be required in the other patterns. 

Disadvantages include: 

• Because the policy is checked and easily cached per application instance, there can be 
many more policy checks in the system overall. Any time a user’s request is load-
balanced to a new service instance, it is highly likely that a new policy check has to be 
performed. This is an inherent problem in any zero-trust system, which pushes 
enforcement to the application instance and likely necessitates the adoption of a 
distributed cache managed alongside or as part of the API-serving infrastructure. 

• The pattern puts the most burden on application teams. Those teams have to interact 
with the team managing the load balancer for each API they expose and need to 
operate at least some of the API-serving infrastructure (e.g., making sure that they have 
a gateway deployed and routing). Technology like a service mesh can help simplify this, 
but a burden remains. 

• Auditing and verifying policy enforcement can be challenging as enforcement is 
distributed across all application instances. A robust, distributed gateway 
implementation (e.g., a service mesh) can help mitigate this via centralized 
configuration control combined with distributed enforcement and consistent telemetry. 
If an organization can audit and verify a hybrid gateway pattern, a distributed gateway 
pattern can be supported with little additional effort. 

4.4. Related Technologies 

Other technologies fit in and overlap with simplified API gateway patterns and architectures. 
Notable companion technologies include: 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

39 
 

• Web application firewalls (WAFs) 1247 

1248 

1249 

1250 

1251 

1252 

1253 
1254 
1255 

1256 
1257 
1258 
1259 
1260 
1261 

1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 

1270 

1271 
1272 
1273 
1274 
1275 
1276 
1277 
1278 

1279 
1280 
1281 
1282 
1283 
1284 

• Bot detection 

• DoS/DDoS mitigation 

• API endpoint protection 

• Web application and API protection (WAAP) 

4.4.1. Web Application Firewalls 

Web application firewalls (WAFs) mitigate risks related to a request’s metadata and payload 
without needing the application to be involved. In other words, they can be treated as a cross-
cutting policy and managed by a central team. 

WAFs work at the application level and operate on parsed HTTP requests (i.e., they can 
implement policy per header and on request bodies). However, WAFs generally do not work at 
the API level. A WAF can scan a request for a payload that looks like a SQL injection attack, but 
it cannot assert, for example, that a request has a “name” field that is a string less than 100 
characters long. As such, a WAF is an excellent first step for organizations to implement the 
policies outlined in this document, but it is not a complete solution. 

The Open Worldwide Application Security Project (OWASP) publishes research on 
vulnerabilities based on data from its partners. The OWASP API Security Top 10 [7] was 
consulted extensively in the preparation of this document. OWASP also publishes a generic set 
of WAF rules — the Core Rule Set (CRS) [25] — that aim to mitigate many common attacks. The 
CRS should be treated as a starting point for any organization’s WAF policy. Deploying a WAF 
with at least the CRS enabled helps mitigate risks, including malicious input (see Sec. 2.6.2), 
unrestricted resource consumption (see Sec. 2.4), and leaking sensitive information (see Sec. 
2.5). 

There are two primary downsides with WAFs: 

1. WAFs are relatively expensive to run in terms of both latency and compute. They need 
to parse every request, perform a variety of scans to identify attack signatures (the 
number of scans depends on the policy configured), and either block or forward the 
request. While this overlaps heavily with the functionality of an API gateway, a WAF is 
typically deployed and operated by a separate team in isolation from the API gateway, 
often as part of the load balancer. This is convenient because the load balancer is the 
first place where requests are decrypted in the infrastructure. A secondary consequence 
is that WAF policies are typically only enforced at the perimeter. 

2. WAFs are fundamentally reactive. They operate based on matching requests to known 
attack signatures. As a result, they are largely ineffective at mitigating novel attacks, and 
attackers can leverage a variety of obfuscation techniques to hide known attacks behind 
novel signatures. Care must be taken to ensure that the WAF is running with the latest 
attack signature configurations, and custom rules must often be written for the 
organization. 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

40 
 

In line with a zero-trust posture, WAF policies should be enforced as close to the application as 1285 
1286 
1287 
1288 
1289 

1290 
1291 
1292 
1293 
1294 
1295 
1296 

1297 
1298 
1299 
1300 
1301 

1302 

1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 

1311 
1312 
1313 
1314 

1315 

1316 
1317 
1318 
1319 
1320 
1321 
1322 

possible. This helps mitigate a variety of mechanisms that attackers might use to pivot within or 
otherwise compromise an infrastructure. As a practical matter, it can be cost-prohibitive to run 
a full suite of WAF mitigations on every internal and external request. This cost can be 
mitigated in two ways, which can be combined:  

1. Incorporate the WAF as part of the overall API-serving infrastructure and deploy the 
WAF itself in a “hybrid” model (i.e., keep a centralized WAF at the load balancer with a 
full suite of policies to protect against untrusted traffic). Then enforce a minimum set of 
app-specific WAF policies near each of the applications (e.g., in the distributed 
gateway). This minimizes policies run on east-west (i.e., more trusted) traffic while still 
sanitizing less trusted external traffic and tends to result in a good compromise of risk 
versus cost. 

2. Deploy the WAF as part of the API gateway implementation itself, which can avoid 
parsing the request multiple times (i.e., reduce the latency and compute costs of WAF 
policies), regardless of the API-serving implementation pattern chosen. If the API 
gateway is hybrid or distributed, then this technique can also be incorporated for 
further performance improvement. 

4.4.2. Bot Detection 

Bot detection typically involves evaluating risk signals, including origin (e.g., source IP, user 
credentials) and API usage patterns, over time to determine whether a seemingly legitimate 
user is likely to be a bot (i.e., an automated script acting maliciously). In response to flagging a 
high-risk user, bot detection systems will either block traffic or serve some kind of bot-
defeating measure (e.g., CAPTCHA) before allowing the system to continue to be used. These 
tools primarily mitigate the risks of unrestricted resource access (see Sec. 2.4) (e.g., maliciously 
automating account creation in an email system) and leaking sensitive information (see Sec. 
2.5), especially data exfiltration by repeated calls. 

Bot detection is frequently deployed in user-facing applications. It can be more challenging with 
a purely machine-to-machine API because legitimate and malicious traffic patterns are even 
harder to differentiate. Many APIs are intended for use by scripts or non-user-facing 
applications, so human versus computer checks are irrelevant. 

4.4.3. Distributed Denial of Service (DDoS) Mitigation 

A distributed denial of service (DDoS) attack is a DoS that originates from many different 
locations or users. This makes it more challenging to mitigate than a traditional DoS attack, 
which can often be prevented by blocking a small set of users. While DoS attacks may be 
targeted and application-level, DDoS attacks are often network-oriented in nature and seek to 
saturate the server’s bandwidth or ability to establish new connections. When a determined 
attacker is able to build and execute an application-level DDoS attack, it is one of the most 
challenging attacks to mitigate. Because of the primarily network-oriented nature of DDoS 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

41 
 

attacks, most DDoS mitigation tools are deployed at the network edge as part of the load 
balancer or even before the load balancer as part of the CDN and DNS system (often called 
“Global Traffic Management”). Predictably, DDoS mitigation tools help mitigate unrestricted 
resource consumption (see Sec. 

1323 
1324 
1325 
1326 

1327 

1328 
1329 
1330 
1331 
1332 

1333 
1334 
1335 
1336 
1337 

1338 
1339 
1340 
1341 

1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 

1350 

1351 
1352 
1353 
1354 
1355 

1356 

1357 
1358 

2.4). 

4.4.4. API Endpoint Protection 

“API protection” or “API endpoint protection” are nebulous terms for describing a set of 
capabilities around API inventory, authentication, rate limiting, and data analysis. The exact set 
of capabilities tends to vary with the implementation. For example, sophisticated 
implementations can scan requests and responses to tag suspect data on the wire (e.g., to help 
tag sensitive data and pinpoint possible leaks or exfiltration). 

API protection products are typically packaged with the API gateway. API gateway vendors 
primarily deliver their products in the centralized API gateway pattern, so these controls are 
often only enforced at the perimeter. Like a WAF, the policies they enforce are typically cross-
cutting and do not require an in-depth understanding at the API payload level. As such, the two 
products are often marketed in a similar niche. 

The exact set of risks mitigated by these tools depends on the feature set, but they typically 
attempt to mitigate lack of API visibility (see Sec. 2.1), broken authentication (see Sec. 2.3), 
some aspects of unrestricted compute consumption (see Sec. 2.4), and leaking sensitive 
information (see Sec. 2.5). 

There is value in any tool that helps organizations inventory and manage their APIs and traffic. 
However, the enforcement of any policies should be as close to the individual service instance 
as possible in order to achieve robust API security assurance. In the use case of data 
classification, these tools can be especially useful for building an initial inventory. However, as 
API definitions are rolled out across the organization, data tagging should be implemented as 
part of the API schema, and the data flow policy should be enforced via explicit policy (e.g., with 
an authorization system). The runtime discovery of data flow is primarily important in 
protecting against exfiltration. 

4.4.5. Web Application and API Protection (WAAP) 

Gartner coined the term “web application and API protection” (WAAP) [27] to describe the 
trend of packaging the technologies listed here (i.e., WAF, bot detection, DDoS mitigation, and 
API protection) into a single product. Whether these capabilities are implemented with a single 
product or a range of technologies, the key is understanding what risk each capability is helping 
to mitigate and evaluating how it fits into the organization’s existing security posture. 

4.5. Summary of Implementation Patterns 

Combining the three patterns in API gateway architecture with the companion technologies 
discussed Sec. 4.4 provides a comprehensive set of enterprise security solutions for API 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

42 
 

protection. The key point in each pattern is identifying where to enforce each policy. These 1359 
1360 
1361 
1362 
1363 
1364 
1365 

1366 

decisions result in trade-offs in runtime, architecture, and operations for the application teams 
utilizing the API-serving infrastructure. Many organizations use a mix of all three patterns 
deployed in production precisely because of those trade-offs. All three patterns can be used to 
successfully implement all of the controls outlined in this document. That said, the distributed 
gateway pattern and its companion technologies best align with the principals of zero trust and 
are strongly recommended for organizations that want to adopt a security-forward approach. 

 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

43 
 

5. Conclusions and Summary 1367 

1368 
1369 
1370 
1371 
1372 
1373 
1374 

1375 
1376 
1377 
1378 
1379 
1380 
1381 
1382 

1383 
1384 
1385 
1386 
1387 
1388 

1389 
1390 
1391 
1392 
1393 

1394 

No business-critical enterprise application can be integrated into the digital infrastructure of an 
enterprise without the use of APIs. With the highly distributed nature of applications (both 
physically and logically), APIs must be operated under zero trust principles irrespective of 
whether they are exposed to the outside world or meant to be consumed by other applications 
within the enterprise infrastructure. Like all software, APIs go through an iterative life cycle 
whose phases (i.e., Develop, Build, Deploy, Operate) can be broadly classified into pre-runtime 
and runtime stages. 

The sheer proliferation of API deployments, the heterogeneous infrastructures under which 
they operate, and the access to valuable corporate data that they enable make them targets for 
exploitation. A detailed analysis of their vulnerabilities and the potential attack vectors that can 
exploit them is a prerequisite for identifying the appropriate set of protection measures or 
controls to ensure API security. This document analyzes a spectrum of risk factors that give rise 
to vulnerabilities, such as the lack of a formal schema, improper inventorying, the lack of robust 
authentication and authorization support, improper monitoring of resource consumption, and 
the least leakage of sensitive information.  

The recommended controls in this document are classified into pre-runtime and runtime 
protections. They are further subdivided into basic and advanced protections to enable 
enterprises to use a risk-based and incremental approach to securing their digital assets. Pre-
runtime protections focus on API specification parameters (i.e., syntactic and semantic aspects), 
while runtime API protections focus on protections during API request and response operations 
(e.g., encrypted communication channels, proper authentication and authorization).  

This document presents a landscape of real-world and state-of-practice implementation 
options to configure and enforce the recommended controls by describing the advantages and 
disadvantages of each type of protection deployment or pattern. This will enable practitioners 
to make an informed decision to realize a robust and cost-effective API security infrastructure 
for their enterprises. 

 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

44 
 

References 1395 

1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 
1428 
1429 
1430 
1431 
1432 
1433 
1434 
1435 
1436 
1437 

[1] U.S. Department of Defense Chief Information Officer (2024) DoD Enterprise DevSecOps 
Fundamentals. Version 2.5, October 2024. Available at 
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSe
cOps%20Fundamentals%20v2.5.pdf 

[2] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications 
Using Service-Mesh Architecture. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204A. 
https://doi.org/10.6028/NIST.SP.800-204A 

[3] Chandramouli R, Butcher Z, Aradhna C (2021) Attribute-based Access Control for 
Microservices-based Applications using a Service Mesh. (National Institute of Standards 
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204B. 
https://doi.org/10.6028/NIST.SP.800-204B 

[4] Chandramouli R (2022) Implementation of DevSecOps for a Microservices-based 
Application with Service Mesh. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204C. 
https://doi.org/10.6028/NIST.SP.800-204C 

[5] Chandramouli R, Kautz F, Torres-Arias S (2024) Strategies for the Integration of Software 
Supply Chain Security in DevSecOps CI/CD Pipelines. (National Institute of Standards and 
Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204D. 
https://doi.org/10.6028/NIST.SP.800-204D 

[6] Chandramouli R, Butcher Z (2023) A Zero Trust Architecture Model for Access Control in 
Cloud-Native Applications in Multi-Cloud Environments. (National Institute of Standards 
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-207A. 
https://doi.org/10.6028/NIST.SP.800-207A 

[7] OWASP (2023) OWASP Top 10 API Security Risks. Available at https://owasp.org/API-
Security/editions/2023/en/0x11-t10/   

[8] OWASP (2023) API2:2023 Broken Authentication. Available at https://owasp.org/API-
Security/editions/2023/en/0xa2-broken-authentication/ 

[9] Wikipedia (2025) Fatigue Attack. Available at https://en.wikipedia.org/wiki/Multi-
factor_authentication_fatigue_attack  

[10] Wikipedia (2024) Billion laughs attack. Available at 
https://en.wikipedia.org/wiki/Billion_laughs_attack 

[11] Wikipedia (2025) Zip bomb. Available at  https://en.wikipedia.org/wiki/Zip_bomb 
[12] National Institute of Standards and Technology (2024) The NIST Cybersecurity 

Framework (CSF) 2.0. (National Institute of Standards and Technology, Gaithersburg, 
MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 29. 
https://doi.org/10.6028/NIST.CSWP.29  

[13] Wikipedia (2025) Principle of least astonishment. Available at 
https://en.wikipedia.org/wiki/Principle_of_least_astonishment 

[14] F# for fun and profit (2013) Designing with types: Making illegal types unrepresentable. 
Available at https://fsharpforfunandprofit.com/posts/designing-with-types-making-
illegal-states-unrepresentable/ 

https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Fundamentals%20v2.5.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Fundamentals%20v2.5.pdf
https://doi.org/10.6028/NIST.SP.800-204A
https://doi.org/10.6028/NIST.SP.800-204B
https://doi.org/10.6028/NIST.SP.800-204C
https://doi.org/10.6028/NIST.SP.800-204D
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://doi.org/10.6028/NIST.SP.800-207A
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://en.wikipedia.org/wiki/Multi-factor_authentication_fatigue_attack
https://en.wikipedia.org/wiki/Multi-factor_authentication_fatigue_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/Zip_bomb
https://doi.org/10.6028/NIST.CSWP.29
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://fsharpforfunandprofit.com/posts/designing-with-types-making-illegal-states-unrepresentable/
https://fsharpforfunandprofit.com/posts/designing-with-types-making-illegal-states-unrepresentable/


NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

45 
 

[15] Joint Task Force (2020) Security and Privacy Controls for Information Systems and 1438 
1439 
1440 
1441 
1442 
1443 
1444 
1445 
1446 
1447 
1448 
1449 
1450 
1451 
1452 
1453 
1454 
1455 
1456 
1457 
1458 
1459 
1460 
1461 
1462 
1463 
1464 
1465 
1466 
1467 
1468 
1469 
1470 

1471 

Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 
Special Publication (SP) NIST SP 800-53r5. Includes updates as of December 10, 2020. 
https://doi.org/10.6028/NIST.SP.800-53r5 

[16] Barker E (2020) Recommendation for Key Management: Part 1 – General. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 
NIST SP 800-57pt1r5. https://doi.org/10.6028/NIST.SP.800-57pt1r5 

[17] National Institute of Standards and Technology (2019) Security Requirements for 
Cryptographic Modules. (Department of Commerce, Washington, D.C.), Federal 
Information Processing Standards Publications (FIPS) NIST FIPS 140-3. 
https://doi.org/10.6028/NIST.FIPS.140-3 

[18] rfc7519 (2015) JSON Web Token (JWT). Available at 
https://datatracker.ietf.org/doc/html/rfc7519 

[19] rfc5280 (2008) Internet X.509 Public Key Infrastructure Certificate and Certificate 
Revocation List (CRL) Profile. Available at https://datatracker.ietf.org/doc/html/rfc5280 

[20] Wikipedia (2023) Common Log Format. Available at 
https://en.wikipedia.org/wiki/Common_Log_Format 

[21] Github (2016) grpc. Available at 
https://github.com/grpc/grpc/blob/master/src/proto/grpc/status/status.proto 

[22] Wikipedia (2025) Prompt injection. Available at 
https://en.wikipedia.org/wiki/Prompt_injection 

[23] Wikipedia (2024) Cascading failure. Available at 
https://en.wikipedia.org/wiki/Cascading_failure 

[24] Infoq.com (2020) How to Avoid Cascading Failures in Distributed Systems. Available at 
https://www.infoq.com/articles/anatomy-cascading-failure/ 

[25] Coreruleset.org (2025) OWASP CRS PROJECT. Available at https://coreruleset.org 
[26] Wikipedia (2025) Confused deputy problem. Available at 

https://en.wikipedia.org/wiki/Confused_deputy_problem 
[27] Gartner.com (2025) Cloud Web Application and API Protection. Available at 

https://www.gartner.com/reviews/market/cloud-web-application-and-api-protection 
 

 
 

 

https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.FIPS.140-3
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc5280
https://en.wikipedia.org/wiki/Common_Log_Format
https://github.com/grpc/grpc/blob/master/src/proto/grpc/status/status.proto
https://en.wikipedia.org/wiki/Prompt_injection
https://en.wikipedia.org/wiki/Cascading_failure
https://www.infoq.com/articles/anatomy-cascading-failure/
https://coreruleset.org/
https://en.wikipedia.org/wiki/Confused_deputy_problem
https://www.gartner.com/reviews/market/cloud-web-application-and-api-protection


NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

46 
 

Appendix A. API Classification Taxonomy 1472 

1473 

1474 
1475 

1476 
1477 
1478 

1479 
1480 
1481 

1482 
1483 

1484 
1485 

1486 
1487 
1488 
1489 

1490 

1491 
1492 

1493 
1494 
1495 
1496 
1497 
1498 
1499 
1500 

1501 
1502 

A.1. API Classification Based on Degree of Exposure 

Since APIs are interfaces that are exposed to relevant stakeholders, they should be classified 
based on their degree of exposure. Three kinds of APIs are prevalent:  

1. Open/Public APIs are exposed to a broader and wider audience (i.e., customers) and 
used with external partnerships or services. These are also called “facade APIs,” as they 
may provide limited access to certain functionalities. 

2. Private APIs are used to link various systems within an enterprise and are closely 
guarded, such as a contract between microservices that are internal to an organization. 
Variations of private APIs are: 

a. Internal APIs (service APIs): Used by enterprises to streamline their internal 
workflows and create flexible systems that can adapt to changing business needs  

b. Composite APIs: Allow multiple data and service calls to be combined to realize 
efficiency in system design [10] 

3. Partner APIs are used in the context of collaborative ventures between enterprises, as 
both rely on shared services or data to deliver value to their end users. In terms of 
exposure, they represent a middle ground between public and private APIs since access 
is restricted based on collaborative agreements [10].  

A.2. API Classification Based on Communication Patterns 

There are two fundamental API communication patterns that govern how information flows 
between the components involved in system interactions:  

1. Request-response APIs: A communication pattern in which a client sends a request to a 
server and awaits a corresponding response. It operates synchronously with stateless, 
independent requests. This pattern is widely employed in diverse API architectures 
(such as RESTful APIs, GraphQL, and various web services [11]) and is appropriate for 
immediate data retrieval or any instant action (e.g., downloading a user’s profile in a 
social media app). For example, requests are made with verbs that are appropriate for 
the API architecture (e.g., HTTP method GET in RESTful architecture, a structured query 
specifying the exact data needed in response in GraphQL architecture).  

2. Event-driven APIs: A better choice for receiving real-time updates (e.g., user’s activities 
in the same app). 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

47 
 

A.3. API Classification Based on Architectural Style or Pattern (API Types) 1503 

1504 

1505 

Table 1. API classification based on Architectural Patterns 

API Name Network Protocol  Data Format 
REST HTTP/1.1 Text-based JSON 
gRPC HTTP/2 Binary — Protocol Buffers 

(Protobuf) 
GraphQL HTTP – POST only JSON 
WebSocket WebSocket JSON 

 



NIST SP 800-228 ipd (Initial Public Draft)  Guidelines for API Protection 
March 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

48 
 

Appendix B. DevSecOps Phase and Associated Class of API Controls 1506 

1507 
1508 

1509 

1510 

The detailed controls in Sec.3 fit into several broad classes, and Table 2 shows their associations 
with the DevSecOps phases (see Sec. 1).  

Table 2.  DevSecOps phase and associated class of API controls 

DevSecOps Phase Class of API Controls 

Coding Well-defined API schema definition that calls to 
routines for annotating schema definitions 

Build Generate routines that validate on-field values in the 
request and response payloads of API calls and 
responses, respectively 

Test Ensure that validation routines perform as intended in 
various runs of API requests and responses 

Deployment Ensure that the deployment package contains all of 
the runtime policy enforcement routines, API schema 
definitions, and APIs and is signed off by the right 
authorities 

Observe and Monitor Ensure that certain security incidents (e.g., data 
leakage) do not occur due to (a) inherent flaws in API 
design, (b) the lack of input data validation, or (c) 
engineered attacks realized through a sequence of 
requests that each pass all validation tests 

 


	Executive Summary
	1. Introduction
	1.1. Building Blocks and Structures
	1.2. Zero Trust and APIs: The Vanishing Perimeter
	1.3. API Life Cycle
	1.4. Document Goals
	1.5. Relationship to Other NIST Documents
	1.6. Document Structure

	2. API Risks — Vulnerabilities and Exploits
	2.1. Lack of Visibility of APIs in the Enterprise Inventory
	2.2. Missing, Incorrect, or Insufficient Authorization
	2.3. Broken Authentication
	2.4. Unrestricted Resource Consumption
	2.4.1. Unrestricted Compute Resource Consumption
	2.4.2. Unrestricted Physical Resource Consumption

	2.5. Leaking Sensitive Information to Unauthorized Callers
	2.6. Insufficient Verification of Input Data
	2.6.1. Input Validation
	2.6.2. Malicious Input Protection

	2.7. Credential Canonicalization— Preparatory Step for Controls
	2.7.1. Gateways Straddle Boundaries
	2.7.2. Requests With a Service Identity but No User Identity
	2.7.3. Requests With a User Identity But No Service Identity
	2.7.4. Requests With Both User and Service Identities
	2.7.5. Reaching Out to Other Systems
	2.7.6. Mitigating the Confused Deputy
	2.7.7. Identity Canonicalization


	3. Recommended Controls for APIs
	3.1. Pre-Runtime Protections
	3.1.1. Basic Pre-Runtime Protections
	3.1.2. Advanced Pre-Runtime Protections

	3.2. Runtime Protections
	3.2.1. Basic Runtime Protections
	3.2.2. Advanced Runtime Protections


	4. Implementation Patterns and Trade-Offs for API Protections
	4.1. Centralized API Gateway
	4.2. Hybrid Deployments
	4.3. Decentralized Gateways
	4.4. Related Technologies
	4.4.1. Web Application Firewalls
	4.4.2. Bot Detection
	4.4.3. Distributed Denial of Service (DDoS) Mitigation
	4.4.4. API Endpoint Protection
	4.4.5. Web Application and API Protection (WAAP)

	4.5. Summary of Implementation Patterns

	5. Conclusions and Summary
	References
	Appendix A. API Classification Taxonomy
	A.1. API Classification Based on Degree of Exposure
	A.2. API Classification Based on Communication Patterns
	A.3. API Classification Based on Architectural Style or Pattern (API Types)

	Appendix B. DevSecOps Phase and Associated Class of API Controls



