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Abstract

A key-encapsulation mechanism (KEM) is a set of algorithms that can be used by two par-
ties under certain conditions to securely establish a shared secret key over a public channel.
A shared secret key that is established using a KEM can then be used with symmetric-key

cryptographic algorithms to perform essential tasks in secure communications, such as
encryption and authentication. This document describes the basic definitions, properties,
and applications of KEMs. It also provides recommendations for implementing and using
KEMs in a secure manner.
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Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses
to advance the development and productive use of information technology. ITL’s respon-
sibilities include the development of management, administrative, technical, and physical
standards and guidelines for the cost-effective security and privacy of other than national
security-related information in federal information systems. The Special Publication 800-
series reports on ITL’s research, guidelines, and outreach efforts in information system se-
curity, and its collaborative activities with industry, government, and academic organiza-
tions.
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1. Introduction

1.1. Background

A key-establishment scheme is a set of algorithms that can be used to securely establish
a shared secret key between two or more parties. Such a shared secret key can then be
used to perform tasks that are suitable for symmetric-key cryptography, such as efficient

confidential communication.

Many widely deployed key-establishment schemes — including those specified in NIST Spe-
cial Publication (SP) 800-56A [1] and SP 800-56B [2] — are vulnerable to cryptographic at-
tacks that make use of a large-scale, cryptanalytically relevant quantum computer. In 2016,
NIST initiated a process to select and standardize a set of post-quantum key-establishment

schemes (i.e., key-establishment schemes that would not be vulnerable to attacks even
by cryptanalytically-relevant quantum computers). In response, NIST received feedback
from the cryptographic community that the post-quantum key-establishment schemes

best suited for standardization and widespread deployment are key-encapsulation mecha-

nisms (KEMs). The first KEM standard that resulted from this NIST Post-Quantum Cryptog-
raphy (PQC) standardization process was ML-KEM, which is specified in Federal Information

Processing Standards (FIPS) publication 203 [3].

At the time of the standardization of ML-KEM, NIST had not provided extensive guidelines
on the basic definitions, properties, and applications of KEMs. This recommendation is
meant to provide these guidelines, supplement the current and future standardization of
KEMs, and provide recommendations for implementing and using KEMs in a secure man-

ner.

1.2. Scope and Purpose

This recommendation provides guidelines on the basic definitions, properties, and appli-
cations of KEMs; supplements the current and future standardization of KEMs; and makes

some requirements and recommendations for implementing and using KEMs in FIPS 140-
validated cryptographic modules. This recommendation also provides guidelines for ven-
dors who wish to securely combine keying material produced via approved post-quantum
methods with keying material produced via other (potentially quantum-vulnerable) meth-

ods.

This recommendation does not discuss how or when to migrate from quantum-vulnerable

key-establishment procedures to post-quantum KEMs (see [4]), nor does it provide a spec-
ification for any particular KEM. Such specifications will be provided in a FIPS or an SP, such
as the specification of ML-KEM in FIPS 203 [3].

This recommendation includes explanatory and educational material to aid in the general
understanding of KEMs. While SPs typically only include material that pertains to what is

1
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approved, this SP describes KEMs both generally and with respect to what is approved.
Specific requirements will be clearly noted with “shall” and “must” statements.

1.3. Requirements

Conforming implementations of approved KEMs are required to satisfy all of the require-
ments below. Requirements that are testable by a Cryptographic Module Validation Pro-
gram (CMVP) validation lab are enumerated with the prefix “RS,” and requirements that
are not testable by a validation lab are enumerated with the prefix “RM.” Each require-
ment is directly quoted from the corresponding referenced section. Requirements RS6,
RS7, RS8, RS10, and RS11 pertain to key confirmation (Sec. 4.4), which is recommended

but not required.

The following requirements are testable by a CMVP validation lab (i.e., shall statements):

RS1 (Section 3.1) KEM implementations shall comply with a specific NIST FIPS or SP that
specifies the algorithms of the relevant KEM. For example, a conforming implemen-

tation of ML-KEM shall comply with FIPS 203 [3]. 1

1The CMVP will perform random input-output tests in an attempt to ascertain whether this requirement is
satisfied. Ensuring full functional equivalence to the specification via testing is not possible (see the “must”

requirement RM1).

RS2 (Section 3.1) KEM implementations shall follow the guidelines given in FIPS 140-3 [5]
and associated implementation guidance.

RS3 (Section 3.1) KEM implementations shall use approved components with security
strengths that meet or exceed the required strength for each KEM parameter set.

RS4 (Section 3.1) Random bits shall be generated using approved techniques, as de-
scribed in the latest revisions of SP 800-90A, SP 800-90B, and SP 800-90C [6–8].

RS5 (Section 3.2) Except for random seeds and data that can be easily computed from
public information, all intermediate values used in any given KEM algorithm (i.e.,
KeyGen, Encaps, and Decaps) shall be destroyed before the algorithm terminates.

RS6 (Section 4.2) If an application uses an ephemeral key pair, the key pair shall be used
for only one execution of key-establishment via a KEM and shall be destroyed as
soon as possible after its use.

RS7 (Section 4.4.1) When a nonce is used by the decapsulator during key confirmation

(as specified herein), a nonce with a bit length that is (at least) equal to the targeted
security strength of the KEM key-establishment process shall be used (see Appendix
C.2).

RS8 (Section 4.4.1) For key confirmation, the MAC algorithm and key-confirmation key
used shall have security strengths that are equal to or greater than the desired se-
curity strength of the application.

2
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RS9 (Section 4.4.2) The key-confirmation key shall only be used for key confirmation and 
destroyed after use.

RS10 (Appendix C.1) When key confirmation requires the use of a MAC algorithm, it shall
be an approved MAC algorithm (e.g., HMAC, AES-CMAC, KMAC). In addition, AES-
GMAC (specified in [9]) is an approved MAC algorithm and may be used.

RS11 (Appendix C.1) When a MAC tag is used for key confirmation, an entity shall compute 
the MAC tag on received or derived data using a MAC algorithm with a MacKey that 
is determined from a shared secret key.

The following requirements are not testable by a CMVP validation lab (i.e., must state-
ments):

RM1 (Section 3.1). Implementations must correctly implement the mathematical func-
tionality of the target KEM. 2

2The CMVP will perform random input-output tests in an attempt to ascertain whether this requirement is 
satisfied. Ensuring full functional equivalence to the specification is not possible.

RM2 (Section 4.2) In applications of KEMs, a parameter set with an application-appropriate 
security strength must be selected (see [10, Section 2.2]).

RM3 (Section 4.2) If an encapsulating party obtains the static encapsulation key of another 
party, it must have assurance of the other party’s ownership of the key before or 
during the execution of key-establishment.

RM4 (Section 4.2) The devices used to execute KEM algorithms and store any sensitive 
data (e.g., decapsulation keys) must be appropriately secured.

RM5 (Section 4.2) The key-establishment process that takes place over the channel used 
by Alice and Bob must satisfy an application-appropriate notion of integrity.

3
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2. Overview of Key-Encapsulation Mechanisms

This section provides a high-level overview of KEMs, which are collections of mathemat-

ical functions (some of which include random inputs) and data that specify parameters. 
Section 3 describes how to implement a KEM as a collection of computer programs, and 
Sec. 4 describes how to deploy KEMs in applications.

2.1. Overview and Motivation

Modern symmetric-key cryptography provides a wide range of useful functionalities, in-
cluding secure and highly efficient computation and communication. Before symmetric-

key cryptography can be used, the participating parties need to establish a shared secret 
(i.e., symmetric) key. One approach to establishing such a key is over a public communi-

cation channel. Any algorithmic method that establishes a shared secret key over a public 
channel is called a key-establishment scheme. A general key-establishment scheme can 
require multiple rounds of communication and involve any number of parties.

A KEM is a specific type of key-establishment scheme. Typical key establishment via a KEM 
involves two parties (here referred to as Alice and Bob) and consists of the following three 
stages (see Fig. 1):

1. (Key generation) Alice generates a (private) decapsulation key and a (public) encap-
sulation key.

2. (Encapsulation) Bob uses Alice’s encapsulation key to generate a shared secret key 
and an associated ciphertext. The ciphertext is sent to Alice.

3. (Decapsulation) Alice uses the ciphertext and her decapsulation key to compute an-
other copy of the shared secret key.

Security of KEMs. When a KEM is used as in Fig. 1, the result should be a shared secret 
key that is random, unknown to adversaries, and identical for Alice and Bob with high 
probability. Ensuring that security holds in practice is a complex task that relies on three 
conditions:

1. Theoretical security: Selecting a KEM that is well-defined, correct, and satisfies an 
application-appropriate mathematical notion of security (see Sec. 2.2 and 2.3)

2. Implementation security: Implementing the selected KEM in a real-world algorithm 
(e.g., a collection of routines) in a secure manner (see Sec. 3)

3. Deployment security: Deploying the implemented KEM in a manner that is secure 
for the relevant application and using the shared secret key in a secure manner (see 
Sec. 4.2)

Each of these three conditions is essential for security. For example, a KEM that is theo-
retically secure (i.e., satisfies condition 1) but is implemented without side-channel coun-

4
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Fig. 1. Outline of key establishment using a KEM

decapsulation key

ciphertext

shared secret key
(Alice’s copy)

shared secret key
(Bob’s copy)

encapsulation key

Key Generation

Decapsulation Encapsulation

Alice Bob

        

termeasures (i.e., does not satisfy condition 2) or is deployed on a device with physical 
vulnerabilities (i.e., does not satisfy condition 3) is likely to be insecure in practice.

History and development. KEMs were first introduced by Cramer and Shoup [11, 12] as a 
building block for constructing highly efficient public-key encryption (PKE) schemes. Their 
approach combines a KEM with a data encryption mechanism (DEM), which is simply a 
symmetric-key encryption scheme. The KEM is used to generate a shared secret key, while 
the DEM is used to encrypt an arbitrarily long stream of messages under that key. This is 
commonly referred to as the KEM/DEM paradigm (see the HPKE example in Sec. 5.2.1). 
This approach to constructing highly efficient public-key encryption has been the subject 
of several standards  [1, 2, 11, 13–16]. Most recently, KEMs have attracted significant at-
tention due to most of the post-quantum key-establishment candidates in the NIST PQC 
standardization process being KEMs. This ongoing process has produced one KEM stan-
dard so far — ML-KEM in FIPS 203 [3] — with more KEM standards likely to follow.

2.2. Basic Definitions and Examples

This section establishes the basic definitions and properties of KEMs. Note that probabilis-
tic algorithms require randomness, while deterministic algorithms do not.

Definition 1. A KEM denoted by Π consists of the following four components:

1. Π.ParamSets (parameters): A collection of parameter sets

5
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2. Π.KeyGen (key-generation algorithm): An efficient probabilistic algorithm that ac-
cepts a parameter set p ∈Π.ParamSets as input and produces an encapsulation key 
ek and a decapsulation key dk as output

3. Π.Encaps (encapsulation algorithm): An efficient probabilistic algorithm that ac-
cepts a parameter set p ∈ Π.ParamSets and an encapsulation key ek as input and 
produces a shared secret key K and a ciphertext c as output

4. Π.Decaps (decapsulation algorithm): An efficient deterministic algorithm that ac-
cepts a parameter set p ∈ Π.ParamSets, a decapsulation key dk, and a ciphertext c
as input and produces a shared secret key K′ as output

As this section views KEMs purely as mathematical objects, the labels p, ek, dk, c, K, and 
K′ in Definition 1 are viewed as abstract variables that represent, for example, numbers 
or bit strings. In implementations, these variables will be represented with concrete data 
types (see Sec. 3).

In general, Definition 1 only requires some very basic properties from the four components 
that make up a KEM (see Example 1 below). In order to be useful and secure, a KEM should 
fulfill a number of additional properties. The first such property is correctness of the KEM 
algorithm. Correctness ensures that, in an ideal setting, the process in Fig. 1 almost always 
produces the same shared secret key value for both parties.

Definition 2. The key-encapsulation correctness experiment for a KEM Π and parameter 
set p ∈Π.ParamSets consists of the following three steps:

1. (ek,dk)←Π.KeyGen(p) (perform key generation) (1)

2. (K,c)← .Encaps(p,ek) (perform encapsulation) (2)Π

3. K′←Π.Decaps(p,dk,c) (perform decapsulation) (3)

The KEM Π is correct if, for all p ∈ Π.ParamSets, the correctness experiment for p results 
in K = K′ with all but negligible probability.

Recall that Π.KeyGen and Π.Encaps are probabilistic algorithms. When they are invoked as 
above (i.e., Π.KeyGen with only a parameter set as input, and Π.Encaps with only a param-

eter set and encapsulation key as input), it is implied that their randomness is generated 
internally and uniformly at random. If one wishes to explicitly refer to the randomness 
used by these algorithms, then the following expressions can be used:

Key generation (using randomness r): (ek,dk)←Π.KeyGen(p;r) (4)

Encapsulation (using randomness s): (K,c)←Π.Encaps(p,ek;s) (5)

These expressions can, for example, refer to the process of re-expanding a key pair (ek,dk)
by running KeyGen using a stored seed r.

The following two simple but instructive examples show abstract KEMs that satisfy Defini-
tion 1 and Definition 2.

6
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Example 1: Simple but insecure. As the following example shows, a correct and efficient 
KEM can still be completely insecure. Define a KEM DONOTUSE as follows:

• DONOTUSE.ParamSets: Contains a single, empty parameter set

• DONOTUSE.KeyGen: On randomness r, outputs dk := r and ek := r

• DONOTUSE.Encaps: On input ek and randomness s, outputs K := s and c := s

• DONOTUSE.Decaps: On input dk and c, outputs K′ := c

While DONOTUSE is obviously a correct KEM since K′ always equals K, it is also completely 
insecure since the shared secret key K is transmitted in plaintext. This shows that a KEM 
needs to satisfy additional properties in order to be secure (see Sec. 2.3).

Example 2: Key transport using PKE. The following is a simple construction of a KEM from 
any PKE scheme. A PKE scheme consists of a collection PKE.ParamSets of parameter sets 
and three algorithms: key generation PKE.KeyGen (that accepts a parameter set), encryp-
tion PKE.Encrypt (that accepts a parameter set, an encryption key, and a plaintext), and 
decryption PKE.Decrypt (that accepts a parameter set, a decryption key, and a ciphertext). 
One can construct a KEM KEMFROMPKE from the PKE scheme as follows:

• KEMFROMPKE.ParamSets= PKE.ParamSets

• KEMFROMPKE.KeyGen= PKE.KeyGen

• KEMFROMPKE.Encaps: On input p, ek and randomness s, output key K := s and 
ciphertext c← PKE.Encrypt(p,ek,s).

• KEMFROMPKE.Decaps: On input p, dk, and c, output key K′ := PKE.Decrypt(p,dk,c).

The efficiency, correctness, and security properties of KEMFROMPKE depend on the respec-
tive properties of PKE.

KEM examples. Section 5.1 briefly discusses three additional examples of KEMs:

1. ECDH-KEM is a quantum-insecure KEM based on ECDH key exchange (see Sec. 5.1.1).

2. RSASVE-KEM is a quantum-insecure example of RSA key transport (see Sec. 5.1.2).

3. ML-KEM is a lattice-based, NIST-approved post-quantum KEM (see Sec. 5.1.3).

ECDH-KEM and RSASVE-KEM are based on NIST-standardized key-establishment schemes 
that can easily be viewed as KEMs. ML-KEM is the first key-establishment scheme to be 
standardized by NIST directly as a KEM.

A remark on key transport and key agreement. There are various ways to categorize two-
party key-establishment schemes. One particular categorization distinguishes between key 
agreement and key transport. In key agreement (e.g., a Diffie-Hellman key exchange), both 
parties contribute information that influences the final shared secret key so that neither 
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party can predetermine it. In key transport (e.g., RSA-OAEP [2]), one party selects the key 
and then transmits it (in some form) to the other party.

Depending on the internal structure of the encapsulation function, a KEM could be viewed 
as either a key-agreement scheme or a key-transport scheme. For example, the shared 
secret key in ML-KEM [3] is a function of both the randomness provided by Bob and the 
(randomly generated) encapsulation key of Alice. Therefore, ML-KEM could be viewed as a 
key-agreement scheme. However, as the example KEMFROMPKE shows, the encapsulation 
operation in a KEM might simply consist of Bob generating the shared secret key and then 
encrypting it, which is key transport.

An application can achieve a particular type of key establishment (i.e., key agreement 
or key transport) using any KEM by taking appropriate additional steps using standard 
symmetric-key cryptography techniques. That is, given a KEM Π, Alice and Bob can achieve 
key agreement by both executing Π.KeyGen, sending the encapsulation keys to each other, 
and completing the steps of key establishment using a KEM. This will result in two sepa-
rate shared secret keys that can be combined using an appropriate key-derivation method. 
Conversely, Π can be used to achieve key transport by following the steps in Fig. 7 and re-
placing m with the shared secret key produced by Π.

2.3. Theoretical Security of KEMs

This section discusses the theoretical security of KEMs. Section 3 discusses KEM imple-

mentation security, and Sec. 4.2 discusses the secure deployment of KEMs.

Semantic security. Informally speaking, a secure key-establishment procedure produces a 
shared secret key K that is uniformly random and unknown to adversaries. This property 
should hold despite the fact that adversaries can freely observe the messages transmitted 
by Alice and Bob. In the case of KEMs, the encapsulation key ek and ciphertext c should 
reveal no information about the resulting shared secret key K or the decapsulation key dk. 
Moreover, even adversaries who somehow learn some partial information (e.g., if the first 
half of K is accidentally leaked) should not be able to combine that information with ek and 
c to learn more (e.g., the last bit of K). This informal notion of security can be rigorously 
formalized, and the resulting definition is called semantic security [17].

Passive adversaries and IND-CPA. The formal way to define semantic security for KEMs 
involves an imaginary “ciphertext indistinguishability” experiment (see Fig. 2). In this ex-
periment, an adversary is given an encapsulation key ek, a ciphertext c, and either the true 
shared secret key underlying c or a freshly generated random string. The adversary’s goal 
is to distinguish between these scenarios, and they are free to use ek to generate their 
own encapsulations to help them in this task. This experiment is called “indistinguishable 
under chosen-plaintext attack” (IND-CPA) [17].
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Fig. 2. The IND-CPA security experiment for a KEM Π

Challenger: Adversary:

(ek,dk)←Π.KeyGen(p)

(K0,c)←Π.Encaps(p,ek)

K1←{0,1}|K0|

b←{0,1}
ek, c, Kb−−−−−−−−−→

b′←−−−−−−−−−
output WIN iff b = b′.

Definition 3 (IND-CPA, informal). A KEM Π has indistinguishable ciphertexts (or is IND-CPA) 
if, for every computationally bounded adversary A, the difference between the probability 
that A wins the experiment IND-CPA[Π] and 1/2 is negligible.

In the IND-CPA experiment, the adversary is free to study the encapsulation key ek and 
the ciphertext c in order to identify whether Kb is the true key. However, the adversary is 
not capable of actively interfering with the challenger’s use of the decapsulation key. As a 
result, IND-CPA only captures security against passive adversaries (i.e., eavesdroppers).

Fig. 3. The IND-CCA security experiment for a KEM Π

Challenger: Adversary:

(ek,dk)←Π.KeyGen(p)

(K0,c)←Π.Encaps(p,ek)

K1←{0,1}|K0|

b←{0,1}
ek, c, Kb−−−−−−−−−→

� Π.Decaps(dk,?)

b′←−−−−−−−−−
output WIN iff b = b′.

Active adversaries and IND-CCA. Real-world experience indicates that adversaries can 
sometimes actively interfere with key-establishment processes and use this ability to un-
cover the shared secret key. For example, an active adversary may be able to convince an 
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honest user to decapsulate some ciphertexts of the adversary’s choosing. In such a sce-
nario, it is natural to ask whether other ciphertexts are still protected. In this setting, IND-
CPA security is insufficient. Instead, one must consider security against so-called chosen-
ciphertext attacks (CCA)3

3IND-CCA as used here is typically referred to as IND-CCA2 in cryptographic literature.

 [17].

The IND-CCA[Π] experiment for a KEM Π is described in Fig. 3. It is similar to the IND-CPA 
experiment, except that the adversary is now also granted “black-box oracle access” to the 
decapsulation function c 7→ Π.Decaps(p,dk,c). This means that the adversary is allowed 
to submit ciphertexts c∗ that they generate and get the response K∗←Π.Decaps(p,dk,c∗). 
The only restriction is that they cannot submit the actual ciphertext c produced by the chal-
lenger since that would make the game trivial to win for any KEM.

Definition 4 (IND-CCA, informal). A KEM Π is IND-CCA if, for every computationally bounded 
adversary A, the difference between the probability that A wins the experiment IND-CCA[Π]
and 1/2 is negligible.

ML-KEM, the first post-quantum KEM standardized by NIST, is believed to satisfy IND-CCA 
security [3].
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3. Requirements for Secure KEM Implementations

As discussed in Sec. 2.1, a KEM (as a mathematical object) should satisfy both correctness 
(Definition 2) and an appropriate notion of security (Definition 3 or Definition 4). In order 
for such a KEM to be used in real-world applications, it needs to be implemented in actual 
code as part of a cryptographic module. The quality of the resulting implementation has a 
dramatic impact on usability and security in real-world applications.

The following subsections detail requirements for cryptographic modules that implement

approved KEMs. However, adherence to these requirements does not guarantee that a 
given implementation will be secure. For a discussion of requirements for applications 
that make use of a KEM cryptographic module, see Sec. 4.2.

3.1. Compliance With NIST Standards and Validation

Conforming implementations of approved KEMs are required to comply with the require-
ments outlined in this section as well as all other applicable NIST standards. In addition, 
such implementations are required to use only approved cryptographic elements and pass 
FIPS-140 validation.

Implementing according to NIST standards. Implementations shall comply with a specific 
NIST FIPS or SP that specifies the algorithms of the relevant KEM. For example, a conform-

ing implementation of ML-KEM shall comply with FIPS 203 [3]. Each FIPS or SP that speci-
fies a KEM will have special requirements for the particular scheme in question, including 
specifications for all algorithms and parameter sets of the relevant KEM. In particular, con-
crete data types will be specified for the parameter sets, keys, ciphertexts, and shared 
secret keys (Definition 1) of the relevant KEM. Assurance of parameter validity is obtained 
by checking the lists of approved parameters in the appropriate publication.

The requirements in any FIPS or SP that standardizes a particular KEM are in addition to 
the general requirements described in this section. Any implementations shall follow the 
guidelines given in FIPS 140-3 [5] and associated implementation guidance.

Approved cryptographic elements. KEMs commonly make use of other cryptographic el-
ements, such as RBGs and hash functions (see Appendix D). Typically, the security of a 
system consisting of multiple cryptographic elements is at best as secure as the weakest 
element. When not already specified by the KEM parameter set, KEM implementations

shall use approved cryptographic elements with security strengths that meet or exeed the 
required strength for each KEM parameter set. The security strength of the selected pa-
rameter set should be at least the desired security strength of the application. In addition, 
random bits shall be generated using approved techniques, as described in the latest re-
visions of SP 800-90A, SP 800-90B, and SP 800-90C [6–8]. For using randomness in key 
generation, see SP 800-133 [18].
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Testing and validation. Mistakes in implementations can easily lead to security vulner-
abilities or a loss of usability. Therefore, it is crucial that implementations are validated
for conformance to NIST cryptographic standards and FIPS 140 by the Cryptographic Al-
gorithm Validation Program (CAVP) and CMVP. Validation testing checks whether a given
implementation correctly computes the desired output for only a small number of (often
randomly sampled) inputs. This means that validation testing does not guarantee correct
functioning on all inputs, which is often impossible to ensure. Nonetheless, implementa-

tions must correctly implement the mathematical functionality of the target KEM. As vali-
dation only tests input-output behavior, implementations need not follow the exact step-
by-step algorithmic specifications in the NIST standard that specifies the relevant KEM. Any
implementation that produces the correct output for every input will pass validation.

Requiring equivalence only at the level of input-output functionality (e.g., rather than in
terms of step-by-step behavior) is desirable, as different implementations can then be op-
timized for different goals. For example, some implementations will focus on maximizing

efficiency, while other implementations will employ numerous side-channel and leakage
protection techniques.

3.2. Managing Cryptographic Data

KEM implementations need to manage all cryptographic data appropriately, including data
used during the execution of KEM algorithms (i.e., intermediate values) and data at rest
(e.g., decapsulation key). As a cryptographic module has no control over data that exists
outside of the module (e.g., while in transit from one module to another), such data is
not discussed here. However, a cryptographic module can exert control over what data it
outputs to the outside world (e.g., by ensuring correct implementations of all functions). It
can also exert control over what data it accepts from the outside world (e.g., by performing

appropriate input-checking and importing).

In general, cryptographic data needs to be destroyed as soon as it is no longer needed.
Some examples include destroying intermediate computation values at the end of an algo-
rithm, destroying the randomness generated by RBGs after encapsulation, and destroying
keys after all relevant communication sessions are completed.

Input checking. The correct and secure operation of cryptographic operations depends
crucially on the validity of the provided inputs. Even relatively benign faults, such as ac-
cepting an input that is too long or too short, can have serious security consequences.
KEM implementations need to perform input checking in an appropriate manner for all
KEM algorithms (i.e., KeyGen, Encaps, and Decaps). The exact form of the required input 
checking is described in the FIPS or SP that specifies the relevant KEM.

Sometimes, an input will not need to be checked. Instead, the implementer can acquire
assurance that the input was validly generated or has already been checked, as in the fol-
lowing cases:
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1. If the cryptographic module generated an input internally using an algorithm that 
ensures validity and stored that input in a manner that prevents modification, then 
the module is not required to check that input. For example, if the module gener-
ated a decapsulation key dk via KeyGen and then stored dk in a manner that prevents 
modification, then the module can later invoke Decaps directly on dk without per-
forming any input checking.

2. If the cryptographic module checks an input once and stores that input in a man-

ner that prevents modification, then the module is not required to check that input 
again. For example, if the module performed input-checking on a given encapsula-
tion key ek and stored it in a manner that prevents modification, then the module 
may invoke Encaps directly on ek (even repeatedly) without performing any further 
input checking.

3. If the cryptographic module imports the relevant input from a trusted third party 
(TTP), and the TTP can provide assurance that the input does not need input-checking, 
and the module stores that input in a manner that prevents modification, then the 
module is not required to check the input.

Intermediate values. All intermediate values used in any given KEM algorithm (i.e., KeyGen, 
Encaps, Decaps) shall be destroyed before the algorithm terminates. However, there are 
two exceptions to this rule:

1. A random seed used for key generation may be stored as private data for the purpose 
of recomputing the same key pair at a later time.

2. Data that can be easily computed from public information (e.g., from the encapsu-
lation key) may be stored as public data to improve efficiency.

When values are stored under either of these exceptions, the storage needs to be per-
formed according to the rules for data at rest.

The outputs of a KEM algorithm are not considered to be intermediate values and will thus 
not be immediately destroyed in typical situations. The format in which outputs and inputs 
are stored depends on the implementation (see the discussion of data formats below.)

Data at rest. A cryptographic module that implements a KEM needs to maintain certain 
data at rest. This can include both private data (e.g., seeds, decapsulation keys) and public 
data (e.g., encapsulation keys). In general, private data needs to be stored within the cryp-
tographic module in a manner that is secure against both leakage and unauthorized mod-

ification. Private data needs to be destroyed as soon as it is no longer needed. The import 
and export of private data (e.g., seeds, decapsulation keys, shared secret keys) needs to 
be performed in a secure manner. In general, public data stored within the cryptographic 
module needs to be stored in a manner that is secure against unauthorized modification 
[5, 19].
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Data formats, import, and export. FIPS validation tests input and output the behavior of 
relevant KEM algorithms using a specific data format. Typically, this format is byte arrays 
that contain the inputs and outputs described in the FIPS or SP that specifies the relevant 
KEM. This format is required for testing but is not a requirement for internal storage, data 
import, or data export. A given cryptographic module may choose to store, import, or 
export data (whether sensitive or not) using other formats. The desired format can vary 
significantly depending on the application. For example, some applications might call for 
storing keys using only a short seed, while other applications might call for storing keys in 
an expanded format that allows for faster computations. In any case, the storage, import, 
and export of sensitive data needs to be performed securely, regardless of the chosen data 
format.

3.3. Additional Requirements

The following are additional requirements for cryptographic modules that implement ap-
proved KEMs.

Failures and aborts. Any of the KEM algorithms (i.e., KeyGen, Encaps, Decaps) and their 
cryptographic elements (e.g., DRBGs, hash functions) can potentially fail or abort. This 
could be a result of normal KEM operations (e.g., decapsulating a ciphertext that was cor-
rupted by the environment during transmission), a hardware or software failure (e.g., a 
failed DRBG execution due to a memory fault), or an adversarial attack. Implementers 
need to take precautions to ensure that the cryptographic module handles failures and 
aborts appropriately. In particular, leaking information about failures and aborts outside 
of the perimeter of the cryptographic module should be avoided.

Side-channel protection. Cryptographic modules for KEMs should be designed with ap-
propriate countermeasures against side-channel attacks. This includes protecting against 
timing attacks with constant-time implementations and protecting memory from leakage. 
Universal guidelines are unlikely to be helpful as exposure to side-channel attacks varies 
significantly with the desired application, and countermeasures are often costly.
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4. Using KEMs Securely in Applications

This section describes how to deploy a KEM in real-world applications in a manner that is 
useful and secure, assuming that the KEM under discussion satisfies an appropriate notion 
of theoretical security (see Sec. 2.3) and has been securely implemented in a cryptographic 
module (see Sec. 3).

4.1. How to Establish a Key With a KEM

This section describes how a KEM can be used to establish a shared secret key between 
two parties. The description will go into greater detail than the brief outline in Sec. 2.1. 
However, since KEMs are highly flexible and can be used in a wide range of applications 
and contexts, no single description can account for all variations. Section 5 provides more 
detailed examples of special cases of key establishment using a KEM.

For simplicity of exposition, the two parties in the key establishment process will be re-
ferred to as Alice and Bob. It is assumed that Alice and Bob are communicating over a 
single bidirectional channel and will only use that channel to transmit data to each other.

The key-establishment process using a KEM Π proceeds as follows:

1. Preparation. Before key establishment can begin, a parameter set p∈Π.ParamSets
needs to be selected. Depending on the application, p may be selected by Alice, by 
Bob, or through an interactive negotiation between Alice and Bob. The choice of the 
KEM Π itself could also be made at this stage.

2. Key generation. Alice begins by running the key-generation algorithm in her crypto-
graphic module:

(ekA,dkA)←Π.KeyGen(p) . (6)

During the execution of KeyGen, Alice’s module internally generates private random-

ness using an appropriate RBG. Alice then transmits ekA to Bob and keeps dkA pri-
vate.

3. Encapsulation. Bob receives ekA from Alice and uses it to execute the encapsulation 
algorithm in his cryptographic module:

(KB,cB)←Π.Encaps(p,ekA) . (7)

During the execution of Encaps, Bob’s module internally generates private random-

ness using an appropriate RBG. Bob then transmits cB to Alice and keeps KB private.

4. Decapsulation. Alice receives cB from Bob and runs the decapsulation algorithm in 
her module using her decapsulation key and Bob’s ciphertext:

KA←Π.Decaps(dkA,cB) . (8)

Alice keeps KA private.
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5. Using the shared secret key. If the appropriate conditions are satisfied (see Sec. 4.2), 
then KA will equal KB and can be used by Alice and Bob for any symmetric-key cryp-
tographic protocol. A typical choice is to use KA =KB as the key for an authenticated 
encryption scheme (e.g., AES-GCM [9]), thereby establishing a communication chan-
nel between Alice and Bob that satisfies both confidentiality and integrity.

Figure 4 depicts the high-level stages of this process. Note that some desirable security 
properties might not be achieved by a protocol of this form and may require additional 
steps and ingredients.

Fig. 4. Simple key establishment using a KEM

Alice: Bob:

1.
Π, p←−−−−−−−→

2. (ekA,dkA)←Π.KeyGen(p)
ekA−−−−−−−−−→

3. (KB,cB)←Π.Encaps(ekA)
cB←−−−−−−−−

4. KA←Π.Decaps(dkA,cB)

5. output: KA output: KB

       

Additional considerations. Steps 1-5 in the key-establishment process might need to be 
modified, depending on the security and functionality needs of the application. Some 
common modifications are as follows.

Static versus ephemeral key pairs. Consider an application in which Alice independently 
decides on a parameter set, performs key generation, and publishes the resulting encap-
sulation key ekA. Alice might then accept many connections from multiple parties over 
a long period of time, each initiated via ekA. Each such connection would follow stages 
3-5 described above. While the other party in each connection would always encapsulate 
with ekA, each ciphertext is generated with new randomness and only applicable to the 
connection between Alice and that party. In this scenario, Alice’s encapsulation key is said 
to be static.

In other applications, Alice might want to use a particular key pair to establish only a single 
connection (e.g., as part of a protocol that ensures forward secrecy). In that case, she will 
perform key generation, send her encapsulation key ekA to Bob, and discard ekA once the 
connection with Bob is established. In this scenario, Alice’s encapsulation key is said to be 
ephemeral.
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Authentication. In most applications, some form of authentication and cryptographic in-
tegrity checking is required (e.g., to prevent “machine-in-the-middle” attacks). Assuring 
this is highly application-dependent and typically requires additional cryptographic ele-
ments, such as digital signatures and certificates. Section 5.2.4 and Sec. 5.2.3 provide some 
illustrative examples.

Using the shared secret key. In some applications, Alice and Bob will use KA and KB directly 
as symmetric keys as soon as the decapsulation and encapsulation stages are successfully 
completed, respectively. If KA 6= KB, a failure in the desired symmetric-key functionality 
will likely follow. For other applications, Alice and Bob might need to first post-process KA
and KB appropriately and then use the results of that post-processing step — if successful 
— as their symmetric keys. This post-processing might include key derivation steps that 
securely produce multiple symmetric keys from the initial shared secret key (see Sec. 4.3). 
It might also include key confirmation steps to confirm that KA = KB and reject them oth-
erwise (see Sec. 4.4). In some cases, key confirmation might also involve performing ad-
ditional computations during the encapsulation and decapsulation stages to reduce the 
number of communication rounds.

4.2. Conditions for Using KEMs Securely

This section discusses general requirements for securely using approved KEMs in applica-
tions. As discussed in point 1 below, the first step involves selecting an approved KEM that 
has been implemented in a validated cryptographic module (see Section 3). Deploying 
such a cryptographic module in applications entails a number of additional requirements 
that are outlined below. Adherence to these requirements does not guarantee that the 
relevant KEM application will be secure. The overall requirements fall into four general 
categories: KEM algorithm security, device security, channel security, and key usage secu-
rity.

1. KEM algorithm security: The selected KEM Π is approved, appropriate for the ap-
plication, and implemented and deployed in a secure manner.

Being an approved KEM, Π will satisfy correctness (Definition 2) and either IND-CPA 
or IND-CCA security (see Section 2.3). Whenever possible, IND-CCA-secure KEMs

should be used. For some specific applications (e.g., ephemeral key establishment), 
IND-CPA security might be sufficient.

Cryptographic module implementation. The implementations of Π used by Alice 
and Bob need to satisfy the requirements in Sec. 3. Whether a given implemen-

tation is sufficiently secure is an application-dependent question. For example, an 
implementation might be secure enough for use on a web server in a physically se-
cure location but have insufficient side-channel protections for use on an embedded 
device.
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Parameter set selection. A parameter set of Π with application-appropriate security 
strength must be selected.

KEM key-pair usage. If an application uses an ephemeral key pair, the key pair shall
be used for only one execution of key-establishment via a KEM and shall be de-
stroyed as soon as possible after its use.

If an encapsulating party obtains the static encapsulation key of another party, it
must have assurance of the other party’s ownership of the key before or during the 
execution of key-establishment. This assurance can be obtained from a trusted party 
(e.g., a certificate authority) or a combination of proof of possession (see Sec. 4.5) 
and verification of real-world identity.

2. Device security: The devices used to execute KEM algorithms and store any sensitive 
data (e.g., decapsulation keys) must be appropriately secured.

Physical protection. Devices need to be appropriately protected against attacks (see 
[19, Section 5]). This includes protection against leakage, physical intrusion, remote 
access, and corruption.

Secure storage. Devices need to provide appropriate secure storage for sensitive 
data (e.g., KEM keys, seeds, shared secret keys, any derived keys) and destroy that 
data when required by the cryptographic module (see Sec. 3.2). For further guide-
lines on key storage considerations, see SP 800-57pt1 [19] and SP 800-152 [10, Sec-
tion 2.2].

3. Channel security: The key-establishment process that takes place over the channel 
used by Alice and Bob must satisfy an application-appropriate notion of integrity.

Preestablished versus simultaneous. Ensuring the integrity of the key-establishment 
process could be achieved by first ensuring the integrity of the channel and then 
performing key establishment. More commonly, integrity is assured simultaneously 
with key establishment by augmenting the key-establishment process with addi-
tional steps and checks (see, e.g., Section 5.2.3).

Unilateral versus bilateral authentication. For some applications, only one of the 
parties is assured of the other’s identity and the integrity of their messages. This is 
commonly called a unilaterally authenticated key exchange (see Sec. 5.2.3). In other 
applications, both Alice and Bob require assurances of the other party’s identity and 
the integrity of their messages. This is commonly called a bilaterally authenticated 
key exchange.

Secure authentication algorithms. For all applications, the cryptographic algorithms 
(e.g., digital signature algorithms) and other elements (e.g., certificates) required to 
establish channel integrity need to be selected and deployed securely.
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4. Shared-secret-key usage security: The shared secret key produced by the KEM is 
used appropriately and securely.

Shared-secret-key processing and management. Key-derivation and key-confirmation 
steps are performed appropriately, as required by the application (see Sec. 4.3 and 
4.4). Each shared secret key and any derived keys are destroyed as soon as they are 
no longer needed (see Sec. 4.2).

Secure symmetric-key algorithms. The KEM shared secret key and any derived keys
should only be used with appropriately secure symmetric-key cryptographic algo-
rithms. In particular, the security of the symmetric-key algorithms used is appropri-
ate for the security provided by the KEM so that the combined algorithm (consisting 
of key establishment followed by symmetric cryptography operations) fulfills the de-
sired security properties.

4.3. Post Processing of the Shared Secret Key

Certain key-establishment schemes (e.g., Diffie-Hellman key exchange) can be viewed as 
first generating a shared secret and then performing a key-derivation step that transforms 
the shared secret into one or more shared secret keys. In contrast, KEMs by definition 
output a key K that is ready to use.

Key derivation may be required for applications in which the amount of keying material 
needed does not match the output size of the KEM algorithm (i.e., the length of shared 
secret key K).

As specified in SP 800-108 [20], key derivation consists of applying a key-derivation method

(KDM) to a key-derivation key. A KDM is an algorithm for transforming a given key-derivation 
key (possibly with some other data) into keying material (e.g., a list of keys).

If additional keying material is needed, a KDM can be used to expand K. If keys with lengths 
less than K are needed, a KDM may be used, or the shared secret key K can be used directly 
as keying material by:

• Truncating K or

• Parsing K into non-overlapping segments to derive shorter keys.

The derived shorter key is considered a shared secret key if K was a shared secret key. The 
security strength of any derived shorter key is the minimum of the security strength of K, 
the length of the derived key, and the strength of any KDM used.

When key derivation for a KEM Π is needed, the shared secret key output by Π (i.e., as 
an output of Π.Encaps or Π.Decaps) may be used as a key-derivation key supplied to an
approved key-derivation method specified in SP 800-108 [20], SP 800-56C [21], or SP 800-
133 [18]. If a KDM from SP 800-56C is used, the shared secret key of the KEM is used as 
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an input to the KDM in place of the shared secret. A key derivation step is included in the 
example protocol in Sec. 5.2.3.

4.4. Key Confirmation

Key confirmation (KC) refers to the actions taken to provide assurance to one party (i.e., the 
key-confirmation recipient) that another party (i.e., the key-confirmation provider) pos-
sesses matching keying material. In the case of KEMs, this confirmation is done for keying 
material that was produced by encapsulation and/or decapsulation.

Key confirmation should be used during KEM usage, as it may enhance the security prop-
erties of the overall key-establishment process. Confirming successful establishment of 
the shared secret key can also address potential errors in transmission or decapsulation. 
Key confirmation can also act as a proof of possession (see Sec. 4.5). While this section 
includes a description of an explicit process, key confirmation can be accomplished in a va-
riety of other ways. For example, successful use of the shared secret key for authenticated 
encryption can act as key confirmation.

Key confirmation is typically achieved by exchanging a value that can only be calculated 
correctly with very high probability if the key establishment was successful. Some com-

mon protocols perform key confirmation in a manner that is integrated into the steps of 
the protocol. For example, bilateral key confirmation is provided during a TLS handshake 
protocol by the generation and verification of a message authentication code (MAC) over 
all previous messages in the handshake using a symmetric MAC key that was established 
during the handshake.

In some circumstances, it may be appropriate to perform key confirmation by including 
dedicated key-confirmation steps in a key-establishment scheme. An acceptable method 
for providing key confirmation during a key-establishment scheme involves the KC provider 
calculating a MAC tag on MAC_Data and sending the MAC tag to the KC recipient for confir-
mation of the provider’s correct calculation of the shared secret key. Unilateral key confir-
mation is provided when only one of the parties serves as the key-confirmation provider. If 
mutual key confirmation is desired (i.e., bilateral key confirmation), then the parties swap 
roles for the second KC process, and the new provider (i.e., the previous recipient) sends 
a MAC value on a different data string (i.e., different MAC_Data) to the new recipient (i.e., 
the previous provider).

This recommendation makes no statement as to the adequacy of other methods.

Key-confirmation key. The key-confirmation steps specified in this recommendation can 
be incorporated into any scheme using a KEM to establish a shared secret key. To perform 
key confirmation, a dedicated KC key will be determined from the shared secret key pro-
duced by the KEM. The KC provider will use the KC key with an approved MAC algorithm to 
create a MAC tag on certain data and provide the tag to the KC recipient. The KC recipient 
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will then obtain the KC key from their copy of the shared secret key produced by the KEM 
and use it to verify the MAC tag.

4.4.1. Creating the MAC Data

During key confirmation, the KC provider creates a message with a MAC tag that is com-

puted on MAC_Data that contains context-specific information. The MAC_Data is for-
matted as follows:

MAC_Data = KC_Step_Label‖ IDP ‖ IDR ‖EphP ‖EphR ‖ExtraP ‖ExtraR

• KC_Step_Label is a six-byte character string that indicates that the MAC_Data is 
used for key confirmation, whether the MAC_Data is used for the first or second 
key-confirmation message, and the party serving as the KC provider, either the en-
capsulator (E) or decapsulator (D). The four valid options are ”KC_1_E”, ”KC_2_E”, 
”KC_1_D”, or ”KC_2_D”. As an example, ”KC_1_D” indicates that the decapsu-
lator (D) is the KC provider and sends the first KC message. ”KC_2_E” could then 
be used by the encapsulator (E) to provide bilateral key confirmation.

• IDP and IDR are the identifiers used to label the KC provider and recipient, respec-
tively.

• EphP and EphR are ephemeral data provided by the KC provider and recipient, re-
spectively. The encapsulator’s ephemeral data is the ciphertext. The decapsulator’s 
ephemeral data is the encapsulation key ek if ek is ephemeral. Otherwise, the de-
capsulator’s ephemeral data shall be a nonce with a bit length that is at least equal to 
the targeted security strength of the KEM key-establishment process (see Appendix 
C.2).

When a nonce is used during key confirmation, it needs to be provided to the en-
capsulator to construct MAC_Data for MAC tag generation or verification.

• ExtraP and ExtraR are optional additional data provided by the KC provider and re-
cipient, respectively. This could include additional identifiers, values computed dur-
ing the key-establishment process but not transmitted, or any other information that 
the party wants to include. This information can be known ahead of time by both 
parties or transmitted during key confirmation.

The MAC algorithm and KC_Key used shall have security strengths equal to or greater 
than the desired security strength of the application. See Appendix C.1 for permitted MAC 
algorithms and further details.

4.4.2. Obtaining the Key-Confirmation Key

In order to create and validate the MAC tag for the created MAC_Data, the parties cre-
ate a dedicated key-confirmation key (KC_Key). This can be either a portion of the KEM 
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shared secret key or part of the keying material derived from the KEM shared secret key 
when using a derivation function (see Sec. 4.3). The KC_Key shall only be used for key 
confirmation and destroyed after use. See Appendix C.1 for KC_Key lengths.

When a derivation function is used. After computing the shared secret value 
and applying the key-derivation method to obtain the derived keying material 
Derived_Keying_Material, the key-confirmation provider uses agreed-upon bit lengths to 
parse Derived_Keying_Material into two parts — the key-confirmation key (KC_Key) and 
the keys to subsequently protect data (Data_Key):

Derived_Keying_Material = KC_Key‖Data_Key.

When a derivation function is NOT used. The key-confirmation provider parses the output 
of the encapsulation process (i.e., KEM_shared_secret_key) into KC_Key and Data_Key:

KEM_shared_secret_key = KC_Key‖Data_Key.

4.4.3. Key-Confirmation Example

The key-confirmation process can be achieved in multiple ways. The following example 
showcases unilateral key confirmation from the encapsulator to the decapsulator, which 
can be used for a client (e.g., Alice) requesting confirmation of successful key establishment 
from a server (e.g., Bob). Figure 5 shows this process. Some desirable security properties 
might not be achieved by a protocol of this form and may require additional steps and 
ingredients.

1. Alice (i.e., decapsulating party) generates a set of ephemeral keys (ek,dk) for KEM 
Π under the agreed parameter set p. Alice then sends ek, Alice’s identifying string 
(IDA), and any extra data ExtraA to include in the key confirmation to Bob (i.e., en-
capsulating party).

2. Bob performs encapsulation with the received ek to generate ciphertext c and ini-
tial key KB0. Bob then derives two keys from KB0: a key-confirmation key KBkc to 
perform key confirmation and additional keying material KB1.

3. Bob constructs MAC_Data using the following in order:

• The constant string ”KC_1_E,” which indicates that Bob (i.e., the encapsulator) 
is providing key confirmation and that this is the first KC message

• IDB, which is Bob’s identifier string

• IDA, which is Alice’s identifier string

• Ciphertext c, which serves as Bob’s (i.e., the KC provider’s) ephemeral value for 
the key-confirmation process
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Fig. 5. Key-confirmation example with an ephemeral key pair

Alice (Decapsulator, Client): Bob (Encapsulator, Server):

1. (ek,dk)←Π.KeyGen(p)
ek, IDA,ExtraA−−−−−−−−−→

2. (c,KB0)←Π.Encaps(p,ek)

KBkc||KB1← KDF(KB0)

3. Construct MAC_Data
t← MAC(KBkc, MAC_Data)

c, t, IDB,ExtraB←−−−−−−−−−
4. KA0←Π.Decaps(p,dk,c)

KAkc||KA1← KDF(KA0)

5. Construct MAC_Data
if MAC.Ver(KAkc,MAC_Data, t)
rejects, abort.

6. result: KA1 (KAkc destroyed ) result: KB1 (KBkc destroyed )

        

• Encapsulation key ek, which is Alice’s (i.e., the KC recipient’s) ephemeral value 
for the key-confirmation process

• ExtraB, which refers to any extra data that Bob (i.e., the KC provider) would like 
to include

• ExtraA, which refers to the extra data provided by Alice (i.e., the KC recipient)

Bob calculates the tag t using KBkc on MAC_Data and sends the following to Alice: 
1) ciphertext c, 2) the generated tag t, 3) and any extra data ExtraB that Bob included 
in the MAC_Data.

4. Alice performs decapsulation on the received ciphertext c using the previously gen-
erated decapsulation key dk to calculate initial key KA0. Alice then derives two keys 
from KA0 similarly to Bob (in step 2): key-confirmation key KAkc and additional keying 
material KA1.

5. Alice constructs MAC_Data as Bob did in step 3 and verifies the received t for the 
MAC_Data using key KAkc. Alice aborts if the tag is rejected or continues if it is 
verified.

6. Alice now has additional assurance that KA1 matches KB1. Alice and Bob destroy the 
key-confirmation keys KAkc and KBkc and can proceed to use KA1 and KB1 as planned.
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This example only provides unilateral key confirmation. If Bob also wanted assurance, an-
other round of key confirmation can be performed by swapping roles. During this addi-
tional round, Alice generates new MAC_Data using KC_2_D as the label and indicating 
herself as the KC provider (see Sec. 4.4.1), generates a tag on new MAC_Data, and sends 
the new tag to Bob for verification.

4.5. Proof of Possession for KEM Keys

A key-pair owner may need to provide proof-of-possession (PoP), which is the assurance 
that they possess the private decapsulation key corresponding to the public encapsulation 
key. In practice, PoP for RSA encryption key pairs (i.e., encryption key, decryption key) 
has historically been provided by reusing the same keys as a digital signature key pair (i.e., 
verification key, signing key). A key-pair owner can provide assurance that they possess the 
secret decryption key by signing a message using the private signing/decryption key. The 
party seeking assurance can verify the signature using the public verification/encryption 
key. Unfortunately, this shortcut does not necessarily apply to all KEMs, so it is important 
to consider alternative approaches to providing PoP for KEMs.

Consider the case in which Bob has obtained another party’s static public encapsulation 
key and is communicating with a party purporting to be the key-pair owner corresponding 
to that encapsulation key. Bob may seek PoP from the other party before any further 
engagement. One method to obtain PoP is for Bob to participate in a KEM protocol that 
includes key confirmation (see Sec. 4.4) and in which assurance of the identity of the other 
party is provided. This method can be used for both static and ephemeral key pairs.

However, for static key pairs, PoP can also be provided in a certificate by a certificate au-
thority (CA). Consider the case in which Alice is the owner of a static KEM key pair and 
would like to acquire a certificate establishing her ownership. A certificate authority (CA) 
would require PoP from Alice prior to issuing and publishing a certificate. Bob could then 
acquire the certificate from either Alice or the CA and would have assurance that Alice pos-
sesses the private key. Methods for performing PoP by a CA for KEMs are being developed.

For illustrative purposes, this section also describes a method proposed in [22] that can 
be used by a CA to obtain PoP for a private decapsulation key for which a certificate is 
requested for the corresponding public encapsulation key. In practice, a certificate not 
only links the identity of the key-pair owner to the static public key, but it also proves 
that a key-pair owner possesses the static private key that corresponds to a static public 
key. For the sake of simplicity, assume that Alice’s identifying information IDAlice has been 
submitted to and verified by the CA prior to the protocol run described below.

Suppose that Alice has generated a static KEM key pair (ek,dk) and wants to obtain a 
certificate for ek. Let Π, p be the KEM and parameter set associated with (ek,dk). Let 
Sym = (Sym.KeyGen,Sym.Enc,Sym.Dec) denote a symmetric encryption scheme with 
corresponding key generation, encryption, and decryption algorithms, respectively. Let 
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H denote a cryptographic hash function. Let Cert.Gen denote the process used by the CA 
to generate a certificate.

Fig. 6. KEM PoP between a key-pair owner and CA

Alice (key pair owner) Bob (CA)

1. static: (ek,dk)
IDAlice

ek, IDAlice−−−−−−−−−−−→
2. (c,K)←Π.Encaps(p,ek)

cert[ek, p, Alice]← Cert.Gen(ek, IDAlice)

HB← H(cert[ek, p, Alice])
ccert← Sym.EncK(cert[ek, p, Alice])

c,ccert←−−−−−−−−−−−
3. KA←Π.Decaps(p,dk,c)

cert′[ek, p, Alice]← Sym.DecKA
(ccert)

HA← H(cert′[ek, p, Alice])
HA−−−−−−−−−−−→

if HA 6= HB, abort.

4. publish: cert[ek, p, Alice]

         

0. Prior to the protocol initiation, Alice has submitted her identifying information

IDAlice to the CA, and the CA has verified her identity. Throughout the protocol ex-
ecution, messages coming from Alice are assumed to be authenticated so that no
one can impersonate Alice within the protocol.

1. Alice sends ek, IDAlice to the CA to initiate the protocol.

2. The CA runs Π.Encaps(ek, p) to produce (K,c). The CA generates the certificate
cert[ek, p,Alice] and links Alice’s identity to her encapsulation key ek. The CA com-

putes HB, which is the hash of the certificate. The CA then computes ccert =
Sym.EncK(cert[ek, p,Alice]) by encrypting the certificate with the key produced by
KEM Π. Finally, the CA sends the two ciphertexts c and ccert to Alice.

3. Alice runs Π.Decaps(p,dk,c) to recover K and decrypts the certificate by comput-

ing Sym.DecK(ccert) to obtain the plaintext certificate. Alice hashes the plaintext
certificate and sends the resulting hash value HA to the CA.

4. The CA verifies the received hash value HA against HB, which is the hash of the plain-
text certificate cert[ek, p,Alice] generated in step 2. If the two hash values are equal,

25



NIST SP 800-227
September 2025 Recommendations for KEMs

the CA sends an acknowledgment to Alice that the certification process was success-
ful, and cert[ek, p,Alice] is published for use.

Once the CA publishes cert[ek, p,Alice], relying parties using that certificate have assurance 
that the owner of that certificate (Alice, with identity ”Alice”) possessed the private decap-
sulation key corresponding to ek when the certificate was generated and published. If Alice 
manages to recover the certificate in step 3, this indirectly proves that she possesses the 
corresponding decapsulation key dk. However, the CA would not receive PoP from Alice 
unless step 4 is completed. This solution requires that the CA has the capabilities to run 
Π.Encaps(), which may not be true in practice.

4.6. Multi-Algorithm KEMs and PQ/T Hybrids

Combining multiple key-establishment schemes into a single key-establishment scheme 
can be advantageous for some applications (e.g., during the migration to post-quantum 
cryptography). The discussions of such schemes in this document will adhere to the ter-
minology established in [23].

A multi-algorithm key-establishment scheme combines shared secret values that are gen-
erated using two or more key-establishment schemes. The underlying schemes are called 
the components of the overall scheme. In general, the multi-algorithm scheme does not 
need to have the same interface as its components. In this document, for example, multi-

algorithm schemes will always be KEMs, while their components need not be.

A well-designed multi-algorithm scheme will be secure if at least one of the component 
schemes is secure. This may provide some protection against vulnerabilities that are dis-
covered in one of the component schemes after deployment. For example, the migra-

tion to post-quantum key-establishment techniques might initially include multi-algorithm 
solutions that combine one new post-quantum algorithm with one tried-and-tested but 
quantum-vulnerable (or traditional) algorithm. This is sometimes referred to as hybrid 
post-quantum/traditional (PQ/T) key establishment. For example, X-Wing KEM is a 
hybrid PQ/T KEM built from two components: ML-KEM (a lattice-based post-quantum 
KEM) and X25519 (a traditional Diffie-Hellman-style key exchange) [24].

This section outlines approved approaches for multi-algorithm key establishment, which 
have two stages:

1. Establish shared secrets. All component key-establishment schemes are run (typi-
cally in parallel), resulting in Alice and Bob sharing a collection of shared secrets —
one for each component scheme.

2. Combine shared secrets. Alice and Bob individually use a key combiner to combine

their individual shared secrets into a single shared secret each. Approved key com-

biners are described in Sec. 4.6.2.
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For simplicity, the exposition below focuses on a particular case: constructing a single KEM 
from two component KEMs. Since both the components and the multi-algorithm scheme 
in this case are of the same type (i.e., KEMs), the result is called a composite KEM. Most key-
establishment schemes of interest can easily be expressed as KEMs (see, e.g., ECDH-KEM 
in Sec. 5.1.1 and RSA-KEM in Sec. 5.1.2). Moreover, the hybrid PQ/T application typically 
calls for two component schemes: one post-quantum scheme, and one traditional scheme. 
The two-algorithm composite KEM described below is easily adapted to other cases, such 
as combining more than two schemes or combining KEMs with non-KEMs.

4.6.1. Constructing a Composite KEM

Given two KEMs Π1 and Π2, one can construct a composite KEM C[Π1,Π2] via the following 
sequence of steps:

1. Choose parameter sets. Choose a collection C[Π1,Π2].ParamSets of parameter 
sets. Each parameter set will be a pair p = (p1, p2), where p1 ∈Π1.ParamSets and 
p2 ∈Π2.ParamSets.

2. Select a key combiner. Choose a key combiner algorithm KeyCombine. The inputs 
to KeyCombine include a pair of shared secret keys (one from Π1 and one from Π2), 
a pair of ciphertexts, a pair of encapsulation keys, and a parameter set. The output 
is a single shared secret key. Section 4.6.2 discusses NIST-approved key combiners.

3. Construct a composite key-generation algorithm. When a parameter set p =
(p1, p2) is input, the algorithm C[Π1,Π2].KeyGen will perform:

1. (ek1,dk1)←Π1.KeyGen(p1).

2. (ek2,dk2)←Π2.KeyGen(p2).

3. Output composite encapsulation key ek1‖ek2.

4. Output composite decapsulation key dk1‖dk2.

4. Construct a composite encapsulation algorithm. When a parameter set p =
(p1, p2) and encapsulation key ek1‖ek2 are input, the algorithm C[Π1,Π2].Encaps
will perform:

1. (K1,c1)←Π1.Encaps(p1,ek1).

2. (K2,c2)←Π2.Encaps(p2,ek2).

3. Output combined shared secret key

K← KeyCombine(K1,K2,c1,c2,ek1,ek2, p) . (9)

4. Output composite ciphertext c := c1‖c2.
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5. Construct a composite decapsulation algorithm. When a parameter set p =
(p1, p2), decapsulation key dk1‖dk2, and ciphertext c1‖c2 are input, the algorithm 
C[Π1,Π2].Decaps will perform:

1. K′1←Π1.Decaps(p1,dk1,c1).

2. K′2←Π2.Decaps(p2,dk2,c2).

3. Output combined shared secret key

K′← KeyCombine(K′1,K
′
2,c1,c2,ek1,ek2, p) . (10)

Since the inputs to KeyCombine include the composite encapsulation key, the decapsulat-
ing party must retain a copy of that key or maintain the ability to recreate it after perform-

ing key generation.

General multi-algorithm schemes. The above construction can be extended in the obvi-
ous way to composite constructions that use more than two component KEMs. Extend-
ing to the case of a completely general multi-algorithm key-establishment scheme can be 
more complex, as the components in such a scheme can vary widely. For example, such 
schemes could potentially include pre-shared keys or shared secrets established via quan-
tum key distribution. Still, most multi-algorithm schemes will likely include a step in which 
a series of shared secrets are combined via a key combiner algorithm of a form similar to 
KeyCombine above. In those cases, an approved key combiner discussed in Sec. 4.6.2 shall
be used.

4.6.2. Approved Key Combiners

This section describes approved methods for combining shared secrets as part of a multi-

algorithm key-establishment scheme. Choosing such a method amounts to selecting a key 
combiner KeyCombine. At a minimum, KeyCombine accepts two shared secrets as input, 
where one or both may be shared secret keys. Optionally, KeyCombine can also accept 
additional information, such as ciphertexts, encapsulation keys, parameter sets, or other 
context-dependent data (e.g., the composite KEM in Sec. 4.6.1). As output, KeyCombine
produces a single shared secret key.

This section describes how cryptographic methods standardized in other NIST publications 
can be used as key combiners under an appropriate interpretation. There are two cate-
gories of such key combiners:

1. Key combiners from key-derivation methods approved in SP 800-56C [21]

2. Key combiners from key-combination methods approved in SP 800-133 [18]

Concatenation of inputs. The following descriptions involve invocations of functions 
(e.g., hash functions H : {0,1}∗ → {0,1}n) on multiple comma-separated inputs (e.g., 
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z := H(x,y)). This should be distinguished from invoking the same function on a single 
input that is formed by simply concatenating those inputs (e.g., w := H(x‖y)). For exam-

ple, if the lengths of the two inputs can vary, concatenation can have unintended conse-
quences (e.g., x‖y = x′‖y′ even though (x,y) 6= (x′,y′)). However, an appropriate encoding 
of a pair (x,y) as a single bitstring can specify the lengths of x and y such that invoking H
on (x,y) is distinct from invoking H on (x′,y′).

The interpretation of invoking a function on comma-separated inputs generally depends 
on the application and encoding and might also involve specifying the lengths of each in-
dividual input. In some scenarios, simple concatenation can also be appropriate. In any 
case, it is important to choose and fix this interpretation in a manner that is appropriate 
for the given application.

Key derivation in SP 800-56C. SP 800-56C [21] specifies a collection of approved methods 
for performing key derivation. In SP 800-56C, a key derivation method (KDM) is applied to 
a shared secret Z generated as specified in SP 800-56A [1] or SP 800-56B [2] along with 
some additional input and results in keying material K:

K← KDM(Z,OtherInput) . (11)

The key-derivation method KDM can take one of two forms:

1. One-step key derivation. In this case, K is computed by applying a key-derivation 
function KDF to the two inputs Z and OtherInput.

K← KDF( , ) . (12)Z OtherInput

2. Two-step key derivation. In this case, two functions are required: Extract (which is 
a randomness extractor) and Expand. The process begins with applying Extract to 
Z using a salt provided in OtherInput as the seed. Expand is then applied to the 
result along with FixedInfo, which is also provided in OtherInput.

K← ( ( ,Z), ) . (13)Expand Extract salt FixedInfo

In this method, it is required that extraction is applied to the shared secret Z.

SP 800-56C describes the specific approved choices of KDF, Extract, and Expand as well 
as the format and content of OtherInput. These details will not be discussed in this doc-
ument.

As discussed in Sec. 4.3, this publication approves the application of SP 800-56C KDMs 
to the shared secret keys of approved KEMs. In particular, this means that the quantity 
Z in Equation (11) (and hence, also in (12) and (13)) can be the shared secret key of an
approved KEM.

Key combiners derived from SP 800-56C. In both one-step and two-step key derivation, 
SP 800-56C allows the shared secret Z to have the form Z = (S1,S2), where S1 is a shared 
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secret generated as specified in SP 800-56A [1] or SP 800-56B [2], while S2 is a shared secret 
generated in some other (not necessarily approved) manner. This yields a key combiner 
K←KDM((S1,S2),OtherInput) for a two-algorithm key-establishment scheme. One can 
also combine many shared secrets:

K← KDM((S1,S2, · · · ,St),OtherInput) . (14)

This publication approves the use of the key combiner (14) for any t > 1 if at least one 
shared secret (i.e., S j for some j) is generated from the key-establishment methods in SP 
800-56A [1] or SP 800-56B [2] or an approved KEM. If the KDM in the combiner (14) is a 
two-step method (i.e., using (13)), extraction is performed with all shared secrets as the 
input.

SP 800-56C allows OtherInput to contain an input that is chosen arbitrarily by the pro-
tocol specification. This optional input is contained in a parameter called FixedInfo in 
SP 800-56C. By choosing FixedInfo appropriately, one can also construct approved key 
combiners of the form (14) that receive inputs in addition to shared secrets, such as en-
capsulation keys, ciphertexts, parameter sets, and domain separators.

Several key combiners can be generated according to Expression (14). As a simple exam-

ple, consider the following special case. Choose KDM to be the one-step key-derivation 
method, where KDF is an approved hash function. Set OtherInput to contain the list of 
ciphertexts and encapsulation keys together with a domain separator domain_sep (possi-
bly including the parameter set p). Define a key combiner algorithm KeyCombine simply 
by setting

KeyCombine(K1,K2,c1,c2,ek1,ek2, p) := H(K1,K2,c1,c2,ek1,ek2,domain_sep) . (15)

One can then instantiate the composite KEM example from Sec. 4.6 by using this key com-

biner. The resulting composite KEM will have a shared secret key whose length is the out-
put length of H.

Key combiners derived from SP 800-133. SP 800-133 [18] provides three approved meth-

ods for combining cryptographic keys that were generated in an approved way. These 
methods can be broadly described as concatenation, XORing, and key extraction using 
HMAC. Some of these methods can also be applied to just a single key. As discussed in 
Sec. 4.3, these methods are approved for key derivation for approved KEMs.

When combining multiple keys K1,K2, . . . ,Kt , the key-combination methods found in SP 
800-133 [18] require every key K j for j ∈ {1,2, . . . , t} to be generated using approved
methods. These methods can be used directly as key combiners for constructing multi-

algorithm schemes in cases where all of the component schemes are approved, and each 
one produces a key. Any protocol using multi-algorithm KEMs with a concatenation key 
combiner should ensure that the final shared secret key from the key combiner is passed 
through a KDF before use.
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4.6.3. Security Considerations for Composite Schemes

The typical goal of a composite KEM construction is to ensure that security will hold if any
of the component KEMs is secure. There are some important security considerations when 
constructing composite KEMs.

Theoretical security. The two main security properties that KEMs can satisfy (see Sec. 2.3) 
are:

1. IND-CPA security (i.e., security against passive eavesdropping attacks)

2. IND-CCA security (i.e., security against active attacks)

A well-constructed composite KEM C[Π1,Π2] should preserve the security properties of 
its component KEMs Π1 and Π2. This crucially depends on how the composite KEM is 
constructed and the choice of the key combiner.

An important example is when the goal is active (i.e., IND-CCA) security, but only one of 
the two schemes Π1 and Π2 is itself IND-CCA, and the designer of the composite scheme 
may not know which one it is. In this case, the choice of the key combiner is particularly 
relevant. As shown in [24], the straightforward key combiner

K← KDF(K1,K2) (16)

that only uses the two shared secret keys K1 (of Π1) and K2 (of Π2) does not preserve 
IND-CCA security, regardless of the properties of the KDF. So, for example, the scheme 
Π2 could be so broken that C[Π1,Π2] is not IND-CCA, even if Π1 is IND-CCA and regardless 
of what KDF is used.

Therefore, NIST encourages the use of key combiners that generically preserve IND-CCA 
security, in the sense that the combined scheme is IND-CCA, provided at least one of the 
ingredient KEMs is IND-CCA. One example of such a key combiner is as in (15). Let H
denote a hash function from the SHA-3 family, which is approved for use in one-step key 
derivation in SP 800-56C [21]. Define the key combiner KeyCombineCCA

H  as follows (recalling 
the notation in Sec. 4.6):

• Inputs from Π1: ek1, c1, K1

• Inputs from Π2: ek2, c2, K2

• Output: H(K1,K2,c1,c2,ek1,ek2,domain_sep)

The domain separator domain_sep should be used to uniquely identify the composite 
scheme in use (e.g., Π1, Π2, order of composition, choice of parameter set, key combiner, 
KDF). As shown in [25], KeyCombineCCA

H  preserves IND-CCA security if H is modeled as a 
random oracle. Note that [25] does not incorporate encapsulation keys into the combiner, 
as this is not needed to achieve the IND-CCA-preserving property. However, including en-
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capsulation keys can have other potential advantages in secure protocols, such as binding 
the final shared secret to the identities of the participating parties.

Security in practice. While composite schemes are meant to increase security, they nec-
essarily add a layer of additional complexity to the basic KEM framework. This additional 
complexity will be reflected in implementations and applications and could introduce se-
curity vulnerabilities. Moreover, adding composite schemes introduces additional choices 
in protocols, which could also introduce vulnerabilities (e.g., in the form of “downgrade 
attacks”). Implementers and users should be aware of the potential challenges in imple-

menting and deploying composite schemes.
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5. Examples

This section is meant to help readers understand some aspects of how KEMs are con-
structed. It only provides examples, not requirements or specific guidelines.

5.1. Examples of KEMs

The following subsections discuss three key-encapsulation mechanisms: ECDH-KEM, RSA-
KEM, and ML-KEM. While ECDH and RSA key transport are not typically described as KEMs, 
the discussions below will give a high-level description of how both can be naturally viewed 
as KEMs. The goal of these descriptions is illustrative only. As FIPS 203 already contains a 
complete description of ML-KEM, the discussion below will simply reference the relevant 
parts of FIPS 203 [3].

5.1.1. A KEM From Diffie-Hellman

A KEM may be constructed from a Diffie-Hellman (DH) key-agreement scheme. The high-
level idea is that, if the two parties in a DH scheme send their messages in sequential order 
(e.g., Alice first, then Bob), then:

1. The public message and private randomness of Alice can be viewed as an encapsu-
lation key and a decapsulation key, respectively, and

2. The public message of Bob can be viewed as a ciphertext.

For example, a KEM can be constructed from the C(1e, 1s, ECC CDH) Scheme from SP 800-
56A [1] as follows:

• ECDH-KEM.ParamSets. The parameter sets are the same as those specified for ECDH 
in Sec. 5.5.1.2 of SP 800-56A.

• ECDH-KEM.KeyGen. The key-generation algorithm is the same as the one specified 
in Sec. 5.6.1.2 of SP 800-56A. Alice generates a static key pair and makes the static 
public key available as the encapsulation key. Bob generates an ephemeral key pair 
when initiating the key establishment with Alice.

• ECDH-KEM.Encaps. To encapsulate, perform Party U’s actions from Sec. 6.2.2.2 of SP 
800-56A. The output is the key (i.e., the derived secret keying material) along with 
the ciphertext (i.e., the ephemeral public key Qe,U ).

• ECDH-KEM.Decaps. To decapsulate, perform Party V’s actions from Sec. 6.2.2.2 of 
SP 800-56A. The output key is the derived secret keying material.

The use of this KEM requires that all assumptions for the scheme specified in SP 800-56A 
are met and that all necessary assurances have been obtained. This KEM is IND-CPA-
secure if the computational Elliptic Curve Diffie Hellman problem is hard for parameter set 
ParamSets. The computational Elliptic Curve Diffie Hellman problem is efficiently solved by 
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a quantum computer so this KEM is considered to be quantum-vulnerable, as mentioned in 
Section 2.2. This KEM is not claimed to be IND-CCA-secure. In similar ways, KEMs could be 
constructed from the C(1e, 1s, FFC DH), C(2e, 0s, ECC CDH), and C(2e, 0s, FFC DH) schemes.

5.1.2. A KEM From RSA Secret-Value Encapsulation

As discussed in Sec. 2.2, any PKE scheme can be used to construct a KEM. A concrete exam-

ple of this is RSA Secret-Value Encapsulation (RSASVE)4

4Note that RSASVE is NOT a standalone approved scheme. It is a component of the approved KAS1 and KAS2 
schemes.

 with an agreed-upon key-derivation 
method applied to the shared secret value Z to derive a shared secret key. The high-level 
idea is described as follows:

1. Alice sends an RSA public key to Bob. Optionally, Alice can also send some other 
public information to Bob, such as a nonce for key derivation.

2. Bob generates a secret value and encapsulates it with Alice’s RSA public key to pro-
duce the ciphertext. A key is derived from the secret value. The output of encapsu-
lation is the ciphertext and the derived key. The ciphertext is sent to Alice.

3. Alice decapsulates the ciphertext using her RSA private key to obtain the secret value 
that is used to derive the key.

For example, a KEM can be constructed from RSASVE from SP 800-56B [2] as follows:

1. RSASVE-KEM.ParamSets. The parameter set is the binary length of the modulus 
(specified in Table 2, Sec. 6.3 of SP 800-56B) along with the exponent e.

2. RSASVE-KEM.KeyGen. The key-generation algorithm is specified in Sec. 6.3 of SP 
800-56B (also see Appendix C.2 of FIPS 186-5).

3. RSASVE-KEM.Encaps. To encapsulate, Bob (in his role as Party U) performs 
RSASVE.GENERATE, as specified in Sec. 7.2.1.2 of SP 800-56B. The output is the ci-
phertext and a secret value Z. Bob applies the agreed-upon key-derivation method 
to the secret value Z to derive a shared secret key.

4. RSASVE-KEM.Decaps. To decapsulate, Alice (in her role as Party V) performs 
RSASVE.RECOVER using the ciphertext from Bob, as specified in Sec. 7.2.1.3 of SP 
800-56B. The output is the secret value Z. Alice applies the agreed-upon key-
derivation method to the secret value Z to derive a shared secret key.

Using this KEM requires that all assumptions for the scheme specified in SP 800-56B are 
met and that all necessary assurances have been obtained. This KEM is IND-CPA-secure if 
the computational RSA problem is hard for parameter set ParamSets. The computational 
RSA problem is efficiently solved by a quantum computer so this KEM is considered to be 
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quantum-vulnerable, as mentioned in Section 2.2. This KEM is not claimed to be IND-CCA-
secure. In similar ways, KEMs could be constructed from RSA-OAEP-basic, as specified in 
Sec. 9.2.3 of SP 800-56B.

5.1.3. ML-KEM

ML-KEM is a high-performance, general-purpose, lattice-based key-encapsulation mecha-

nism. It is a NIST-approved KEM and was standardized in FIPS 203 [3]. ML-KEM is based on 
CRYSTALS-Kyber [26], which was a candidate in the NIST PQC standardization process. It is 
believed to satisfy IND-CCA security (Definition 4), even against adversaries in possession 
of a cryptanalytically relevant quantum computer [17, 27, 28]. The asymptotic, theoreti-
cal security of ML-KEM is based on the presumed hardness of the Module Learning with 
Errors (MLWE) problem [29, 30].

FIPS 203 directly describes ML-KEM as a KEM in a manner that closely matches the notation 
of this document. Specifically, the components of ML-KEM are described in FIPS 203 as 
follows [3]:

• ML-KEM.ParamSets. There are three parameter sets described in Sec. 8 of FIPS 203: 
ML-KEM-512, ML-KEM-768, and ML-KEM-1024.

• ML-KEM.KeyGen. The key-generation algorithm of ML-KEM is specified as Algorithm 
19 in Sec. 7.1 of FIPS 203.

• ML-KEM.Encaps. The encapsulation algorithm of ML-KEM is specified as Algorithm 
20 in Sec. 7.2 of FIPS 203.

• ML-KEM.Decaps. The decapsulation algorithm of ML-KEM is specified as Algorithm 
21 in Sec. 7.3 of FIPS 203.

This document treats parameter sets as an explicit input for the KEM algorithms KeyGen, 
Encaps, and Decaps. By contrast, the algorithms of ML-KEM described in FIPS 203 expect 
the chosen parameter set to be stored in a set of global variables that are accessible to 
each of the algorithms of ML-KEM. This is only a difference in presentation and does not 
imply any particular implementation requirement.

5.2. Examples of KEM Applications

This section provides a high-level overview of several example applications of KEMs.

5.2.1. KEM-DEM Public-Key Encryption

A KEM can be combined with a symmetric-key encryption scheme to yield very effi-

cient public-key encryption. This is sometimes referred to as the KEM-DEM paradigm for 
PKE [17]. Examples include El Gamal encryption [31] and the Elliptic Curve Integrated En-
cryption Scheme (ECIES) standardized in ANSI X9.63 [15].
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The prescription for constructing a KEM-DEM PKE scheme is as follows. Let Π be a KEM, 
and let Ξ = (Encrypt,Decrypt) be a symmetric-key encryption scheme. One then con-
structs a PKE called KD-PKE as follows:

• KD-PKE.ParamSets= Π.ParamSets

• KD-PKE.KeyGen= Π.KeyGen

• KD-PKE.Encrypt: given input parameter set p, ek, and message m:

1. Compute (K,cΠ)←Π.Encaps(p,ek).

2. Compute cΞ← Ξ.Encrypt(K,m).

3. Output (cΠ,cΞ).

• KD-PKE.Decrypt: given input p, dk, and (cΠ,cΞ),

1. Compute K′←Π.Decaps(p,dk,cΠ).

2. Output m′← Ξ.Decrypt(K′,cΞ).

Here, the keys of Ξ are assumed to be the same length as the shared secret keys pro-
duced by Π. If not, appropriate key-derivation steps (see Sec. 4.3) can be added to 
KD-PKE.Encrypt and KD-PKE.Decrypt to transform the shared secret key of Π into a key 
that is appropriate for use with Ξ.

Figure 7 shows the procedure for sending an encrypted message m from Bob to Alice using 
KD-PKE. In this description, Alice selects the parameter set p.

Fig. 7. Sending a message using the KEM-DEM paradigm

Alice Bob

(ek,dk)←Π.KeyGen(p)
ek, p−−−−−−−−→

(K,cΠ)←Π.Encaps(p,ek)

cΞ← Ξ.Encrypt(K,m)
cΠ,cΞ←−−−−−−−−

K′←Π.Decaps(p,dk,cΠ)

m← Ξ.Decrypt(K′,cΞ)

        

This same procedure can also be used to perform key transport by choosing m uniformly 
at random as the key to be transported. This allows one to perform key transport using 
any KEM, even one that does not natively perform key transport (e.g., ML-KEM).
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5.2.2. Unilateral Authenticated Key Establishment Using a KEM

Most applications of key establishment require at least one party (typically, a server) to 
authenticate their identity. One approach to achieving this is for the server to acquire a 
certificate of authenticity for their long-term, static KEM encapsulation key. This certificate 
can then be provided to a client as proof that the key is associated with the server’s identity. 
An example description of key establishment in this setting is given below and depicted in 
Fig. 8. The example uses a simplified key confirmation process (see Sec. 4.4).

Fig. 8. Unilateral authenticated key establishment using a KEM

Alice (server) Bob (client)
1. static: (ek,dk)

cert[ek, p, Alice]
cert[ek, p,Alice]−−−−−−−−−−→

2. if cert[ek, p, Alice] invalid, abort.
(KB,c)←Π.Encaps(p,ek)

c←−−−−−−−−−−−
3. KA←Π.Decaps(p,dk,c)

4. t← MAC(KA,c)
t−−−−−−−−−−→

if MAC.Ver(KB,c, t) rejects, abort.
5. result: KA result: KB

1. At the outset, Alice has a long-term, static key pair that she generated earlier via 
(ek,dk)← Π.KeyGen(p). Here, Π is some KEM, and p is some parameter set of 
Π. Alice also has a certificate cert[ek, p,Alice] that contains ek and p and associates 
them both with Alice’s identity.

2. When Bob wants to connect to Alice, he acquires cert[ek, p,Alice] (e.g., from Alice), 
verifies that the certificate is valid, and extracts ek and p from the certificate. He 
then performs encapsulation with ek, saves the resulting shared secret key KB, and 
sends the ciphertext c to Alice.

3. Alice decapsulates c and gets a shared secret key KA.

4. Alice and Bob then perform a simplified key-confirmation step. Alice uses a MAC
algorithm to generate a tag t ← MAC(KA,c) for the ciphertext c and sends t to Bob. 
Bob then runs MAC verification using KB and aborts unless the tag t is accepted. If 
the tag is accepted, Bob knows that Alice’s key KA and his key KB are the same (i.e., 
they share the same key).
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5. Alice and Bob can now use their shared secret key to communicate efficiently and 
securely using symmetric-key cryptography.

If the KEM Π is secure, then only a holder of the decapsulation key dk (corresponding to 
the encapsulation key ek in the certificate) should be able to generate a valid MAC tag in 
step 4.

5.2.3. Ephemeral Authenticated Key Establishment

This section describes an alternative approach to unilaterally authenticated key establish-
ment using a KEM. Compared to the example in Sec. 5.2.2, Alice and Bob will now have the 
opposite roles in the protocol. Specifically, Bob is now the authenticated party (e.g., a web 
server), while Alice is the unauthenticated party (e.g., a browser client). Ephemeral KEM 
key-pair generation will now be performed by the client (i.e., Alice), and Alice will discard 
the KEM key pair once the connection is established. The server will not use a long-term, 
static KEM key pair but will need to establish his identity through other means. In this 
example, identity establishment will be done via a certificate that associates a particular 
digital signature verification key with Bob’s identity.

The following ingredients are required. Let Σ be a digital signature scheme with algorithms 
Σ.KeyGen, Σ.Sign, and Σ.Ver. As before, KEM key pairs are denoted by (ek,dk). Digital 
signature key pairs are denoted by (vk,sk), where vk is a public verification key and sk is 
the corresponding private signing key.

The protocol proceeds as follows (see Fig. 9.)

1. At the outset, Bob has previously generated a static digital signature key pair 
(vkB,skB) and procured a certificate cert[vkB,Bob] that associates the public veri-
fication key with his identity.

2. When connecting to Bob, Alice generates an ephemeral KEM key pair (ekA,dkA) and 
sends the encapsulation key ekA and her chosen parameter set p to Bob, keeping 
the decapsulation key dkA private.

3. Bob performs encapsulation using ekA, which results in a KEM ciphertext cB and a 
shared secret key KB. Bob then uses his private signing key skB to sign the transcript 
of all communications with Alice, including what he will send in this transmission. 
This transcript includes ekA, p, vkB, cB, and Bob’s certificate cert[vkB,Bob]. He then 
sends the certificate, signature, and ciphertext to Alice. Finally, he applies a key-
derivation function KDF to KB in order to produce two symmetric keys K′B and K′′B , 
destroys KB, and keeps K′B and K′′B private.

4. Next, Alice performs two checks. First, she checks the validity of Bob’s claimed cer-
tificate with the appropriate certification authority. Second, she verifies Bob’s signa-
ture on the transcript. If either check fails, Alice aborts. Otherwise, she decapsulates 
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Fig. 9. Using a KEM for key establishment with unilateral authentication

Alice (client) Bob (server)
1. static: (vkB,skB)

cert[vkB,Bob]

2. (ekA,dkA)←Π.KeyGen(p)
ekA, p−−−−−−−−−−−→

3. (KB,cB)←Π.Encaps(p,ekA)

σ ← Σ.Sign(skB, transcript)
(K′B,K

′′
B)← KDF(KB)

cert[vkB,Bob],σ ,cB←−−−−−−−−−−−
4. if cert[vkB, Bob] invalid, abort.
if Σ.Ver(vkB,σ , transcript) =⊥,  abort.
KA←Π.Decaps(p,dkA,cB)

(K′A,K
′′
A)← KDF(KA)

5. result: K′A,K
′′
A result: K′B,K

′′
B

          

cB and keeps the resulting shared secret key KA private. She also derives two keys 
K′A and K′′A via KDF applied to KA and destroys KA.

5. Alice and Bob can now use the keys K′A and K′′A for symmetric-key cryptography. For 
example, they could use K′A for encryption and K′′A for authentication.

5.2.4. Static-Ephemeral Unilateral Authenticated Key Establishment Using KEMs

This section presents a static-ephemeral key-establishment scheme with unilateral authen-
tication, as described in [32]. The scheme combines a shared secret key generated by a 
static KEM key pair with a shared secret key produced by a freshly generated, ephemeral 
KEM key pair. Just as in Example 5.2.2, one party possesses a static KEM key pair that is 
associated with a certificate.

In this example, Alice and Bob’s key pairs are generated using the same KEM Π and param-

eter set p. In this case, Π and p are determined by Bob’s certificate. Note that Bob may use 
the same static key pair to perform key establishment with many different parties. To see 
how different KEMs might be used within one authenticated key-establishment scheme, 
see Example 5.2.5.
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KEMTLS is a protocol with similar elements to this example, though it includes additional 
features that are not presented here [33]. In particular, KEMTLS utilizes KEM-based au-
thentication and also combines two shared secret keys: one generated by a static KEM key 
pair and one by an ephemeral KEM key pair.

In this example, H denotes a KDF, and Bob is authenticated while Alice is not. Note that the 
choice of KDF for H in [32] is a cryptographic hash function. There is no key-confirmation 
step in this scheme, but one may easily incorporate such a step if desired.

Fig. 10. Static-ephemeral unilateral authenticated key establishment using KEMs

Alice (client) Bob (server)
1. static: (ekB,dkB)

cert[ekB, p, Bob]
cert[ekB, p,Bob]←−−−−−−−−−−

2. if cert[ekB, p, Bob] invalid, abort.
(ek,dk)←Π.KeyGen(p)

(KB,cB)←Π.Encaps(p,ekB)

ek, p,cB−−−−−−−−−−−→
3. (K, c)←Π.Encaps(p,ek)

K′B←Π.Decaps(p,dkB,cB)
c←−−−−−−−−−−−

4. K′←Π.Decaps(p,dk,c)

5. result: H(K′,KB) result: H(K,K′B)

        

1. At the outset, Bob has a long-term, static key pair that he generated earlier via 
(ekB,dkB)← Π.KeyGen(p). Here, Π is some KEM, and p is some parameter set of 
Π. Bob also has a certificate cert[ekB, p,Bob] that contains ekB and p and associates 
them both with Bob’s identity.

2. When Alice wants to connect to Bob, she acquires cert[ekB, p,Bob] (e.g., from Bob), 
verifies that the certificate is valid, and extracts ekB and p from the certificate. She 
then performs encapsulation with ekB, saves the resulting shared secret key KB, and 
sends the ciphertext cB to Bob. Alice additionally generates an ephemeral KEM key 
pair (ek,dk) using the same KEM Π and parameter set p and sends the encapsulation 
key ek and relevant parameter set p to Bob, keeping the private decapsulation key 
dk private.
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3. Bob uses (p, ek) to perform encapsulation, which results in a KEM ciphertext c and 
shared secret key K. Bob also performs decapsulation using (p,dkB,cB) to produce 
another shared secret key K′B. Bob sends ciphertext c to Alice.

4. Alice uses c, p, and dk to run decapsulation and recover her copy of the ephemeral 
shared secret key K′.

5. Alice and Bob combine their copies of the shared ephemeral secret key K′ (K) and 
the shared secret key KB (K′B) that was computed using Bob’s static key pair. A hash 
function H is applied to the result to establish a final shared secret key.

It is assumed that if the certificate is valid, then only Bob is capable of performing decap-
sulation of ciphertexts that were encapsulated using ekB.

5.2.5. Authenticated Key Establishment Using KEMs

This section presents a bilaterally authenticated key-establishment scheme using KEMs, as 
described in [32]. In this example, both Alice and Bob are authenticated using static KEM 
key pairs associated with certificates. The KEM shared secret keys produced using their 
static key pairs contribute to the final key and a shared secret key produced using a freshly 
generated ephemeral KEM key pair. This scheme achieves weak forward secrecy [32, 34].

Alice’s static key pair may correspond to a different KEM than the one associated with Bob’s 
static key pair as the choices of KEM and parameter set used by Alice and Bob are deter-
mined by their certificates. As such, both parties must be able to operate using each other’s 
KEM encapsulation algorithm. Moreover, the ephemeral KEM key pair may correspond to 
a third, completely different KEM. To capture this possibility, let (ΠA, pA), (ΠB, pB), and 
(Π, p) denote the KEM algorithm and parameter set associated with Alice’s static key pair, 
Bob’s static key pair, and the ephemeral KEM key pair, respectively. This notation allows 
for the possibility that ΠA = ΠB = Π and pA = pB = p. Additionally, parameter sets are 
formatted differently for different KEMs (e.g., lattice-based KEMs might include lattice di-
mension, while code-based KEMs include code length and dimension). Therefore, if two 
KEMs Πi and Π j are distinct, the corresponding parameter sets are likely also distinct.

As with other examples, Alice and Bob will need to negotiate which KEM Π and parameter 
set p they will use for the ephemeral key pair prior to protocol execution. As in Example 
5.2.3, H denotes a KDF. Note that in [32] H is chosen to be a cryptographic hash function. 
There is no key-confirmation step included in this example, but one could be added.

1. At the outset, Alice and Bob each have a long-term, static key pair. Al-

ice has (ekA,dkA), and Bob has (ekB,dkB), which were generated earlier via 
ΠA.KeyGen(pA) and ΠB.KeyGen(pB), respectively. Alice and Bob also have certifi-
cates cert[ekA, pA,Alice] and cert[ekB, pB,Bob], respectively, which contain their cor-
responding public keys and associate them to their respective identities.

41



NIST SP 800-227
September 2025 Recommendations for KEMs

Fig. 11. Authenticated key establishment using KEMs

2.

Alice (client) Bob (server)
1. static: (ekA,dkA) static: (ekB,dkB)

cert[ekA, pA, Alice] cert[ekB, pB, Bob]

cert[ekA, pA,Alice]−−−−−−−−−−−→
cert[ekB, pB,Bob]←−−−−−−−−−−−

2. if cert[ekB, pB, Bob] invalid, abort. if cert[ekA, pA, Alice] invalid, abort.
(ek,dk)←Π.KeyGen(p)

(KB,cB)←ΠB.Encaps(pB,ekB)

ek,cB−−−−−−−−−−−→
3. (K,c)←Π.Encaps(p,ek)

(KA,cA)←ΠA.Encaps(pA,ekA)

K′B←ΠB.Decaps(pB,dkB,cB)
c,cA←−−−−−−−−−−−

4. K′←Π.Decaps(p,dk,c)

K′A←ΠA.Decaps(pA,dkA,cA)

5. result: H(K′,K′A,KB) result: H(K,KA,K′B)

When Alice wants to connect to Bob, she acquires cert[ekB, pB,Bob] (e.g., from Bob),
verifies that the certificate is valid, and extracts ekB, pB from the certificate. Bob also 
acquires and verifies Alice’s certificate in this step.

Alice then performs encapsulation with Bob’s static public key ekB, saves the result-
ing shared secret key KB, and sends the ciphertext cB to Bob. Alice additionally gen-
erates an ephemeral KEM key pair (ek,dk) and sends the encapsulation key ek and 
relevant parameter set p to Bob, keeping the private decapsulation key dk private.

3. Bob uses (p, ek) to perform encapsulation, which results in a KEM ciphertext c and
shared secret key K. Bob extracts ekA and pA from Alice’s certificate and then per-
forms encapsulation with ekA and pA to generate KA and cA.

Bob also performs decapsulation using (pB,dkB,cB) to produce another shared se-
cret key K′B. Bob sends ciphertexts c and cA to Alice.

4. Alice uses c, p, and dk to run decapsulation and recover her copy of the ephemeral

shared secret key K′. Alice additionally uses cA, pA, and dkA to run decapsulation
and recover her copy of the long-term shared secret key K′A.
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5. Alice and Bob combine their copies of the shared ephemeral secret key K′ (K) and
static shared secret keys K′A and KB (KA and K′B.) and apply a KDF H to establish a
final shared secret key.
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Appendix A. List of Acronyms

CAVP Cryptographic Algorithm Verification Program

CMVP Cryptographic Module Verification Program

DRBG Deterministic Random Bit Generator

FIPS Federal Information Processing Standards

IND-CCA Indistinguishability under Chosen Ciphertext Attack 

IND-CPA Indistinguishability under Chosen Plaintext Attack 

ITL Information Technology Laboratory

KC Key Confirmation

KDF Key-Derivation Function

KDM Key-Derivation Method

KEM Key-Encapsulation Mechanism

MAC Message Authentication Code

ML-KEM Module-Lattice-Based Key-Encapsulation Mechanism 

NIST National Institute of Standards and Technology

PKE Public-Key Encryption

PoP Proof of Possession

RBG Random Bit Generator

SP Special Publication

TLS Transport Layer Security

TTP Trusted Third Party
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Appendix B. Glossary

This section is informative.

approved FIPS-approved and/or NIST-recommended. An algorithm or technique that is
either 1) specified in a FIPS or NIST recommendation, 2) adopted in a FIPS or NIST
recommendation, or 3) specified in a list of NIST-approved security functions.

ciphertext With regard to KEMs, a bit string that is produced by the encapsulation algo-
rithm and used as an input to the decapsulation algorithm.

computationally bounded adversary  An adversarial algorithm that is constrained in run-
ning time and memory, and is thus unlikely to break a cryptosystem under con-
sideration. The nature of the constraints depends on the context, including the
desired security strength of the cryptosystem.

cryptanalytically relevant quantum computer A device capable of using quantum algo-
rithms to break a cryptosystem that is secure against classical (i.e., non-quantum)

computers.

decapsulation The process of applying the Decaps algorithm of a KEM. This algorithm ac-
cepts a KEM ciphertext and the decapsulation key as input and produces a shared
secret key as output.

decapsulation key A cryptographic key produced by a KEM during key generation and
used during decapsulation.

destroy An action applied to a key or other piece of secret data. After a key or piece of
secret data is destroyed, no information about its value can be recovered.

efficient (cryptographic) algorithm  An algorithm whose running time is practical for the
relevant security strength.

encapsulation The process of applying the Encaps algorithm of a KEM. This algorithm ac-
cepts the encapsulation key as input, requires private randomness, and produces
a shared secret key and an associated ciphertext as output.

encapsulation key A cryptographic key produced by a KEM during key generation and
used by the encapsulation algorithm.

ephemeral key A cryptographic key that is generated for each execution of a crypto-
graphic process (e.g., key establishment) and meets other requirements of the
key type (e.g., unique to each message or session).

hash function A function on arbitrarily long bit strings in which the length of the output is
fixed. At a minimum, the hash function must be one-way and collision-resistant.
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identifier A bit string that is associated with a person, device, or organization. It may be
an identifying name or something more abstract (e.g., a string consisting of an IP
address).

key agreement A (pair-wise) key-establishment procedure in which the resultant secret
keying material is a function of information contributed by both participants so
that neither party can predetermine the value of the secret keying material inde-
pendent of the contributions of the other party. Contrast with key transport.

key combiner A function that takes multiple keys or shared secret values as input (possibly
along with other information) and produces a single combined key.

key confirmation A procedure that provides assurance to one party (i.e., key-confirmation

recipient) that another party (i.e., key-confirmation provider) possesses the cor-
rect secret keying material and/or shared secret from which that secret keying
material is derived.

key-confirmation provider The party that provides assurance to the other party (i.e., the
recipient) that the two parties have indeed established a shared secret key or other
keying material.

key-confirmation recipient The party that receives assurance from the other party (i.e.,
the provider) that the two parties have indeed established a shared secret key or
other keying material.

key-derivation method A method used to derive keying material from initial shared se-
crets and possibly other information.

key-derivation key A key used as an input to a key-derivation method to derive additional
keying material.

key-encapsulation mechanism (KEM) A set of three cryptographic algorithms: KeyGen
(key generation), Encaps (encapsulation), and Decaps (decapsulation). These al-
gorithms can be used by two parties to securely establish a shared secret key over
a public channel.

key establishment A procedure that results in secret keying material that is shared among

different parties. Key agreement, using a KEM, and key transport are all types of
key establishment.

keying material A bit string such that any non-overlapping, contiguous segments of the
string with required lengths can be used as secret keys, secret initialization vectors,
and other secret parameters.

key pair A set of two keys with the property that one key can be made public, while the
other key must be kept private. In this publication, this could refer to either the
(encapsulation key, decapsulation key) key pair of a KEM or the (encryption key,
decryption key) key pair of a public-key encryption (PKE) scheme .
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key transport A (pair-wise) key-establishment procedure whereby one party (i.e., the
sender) selects a value for the secret keying material and then securely distributes
the value to another party (i.e., the receiver). Contrast with key agreement.

message authentication code (MAC) A family of symmetric-key cryptographic algorithms

that act on input data of arbitrary length to produce an output value of a specified
length (i.e., the MAC of the input data). The MAC can be employed to authenticate
the origin of the input data and/or provide data integrity protection.

message authentication code (MAC) tag Data obtained from the output of a MAC algo-
rithm (possibly by truncation) that can be used by an entity to securely verify the
integrity and origin of the information used as input to the MAC algorithm.

must Indicates a requirement of this recommendation that might not be testable by a
CMVP testing lab.

negligible Extremely small. Typically quantifies the probability of an undesirable event
that might occur during the lifetime of a cryptosystem (including during attacks by
computationally bounded adversaries).

party An individual (person), organization, device, or process. In this recommendation,

there are typically two parties (e.g., Party A and Party B, Alice and Bob) that jointly
perform the key-establishment process using a KEM.

post-quantum algorithm A cryptographic algorithm that is believed to be secure, even
against adversaries who possess a cryptanalytically relevant quantum computer.

pseudorandom A process (or data produced by a process) whose outcome is determinis-

tic yet also appears effectively random if the internal action of the process is hid-
den from observation. For cryptographic purposes, “effectively random” means

“computationally indistinguishable from random within the limits of the intended
security strength.”

public channel A communication channel between two honest parties that can be ob-
served and compromised by third parties.

quantum-vulnerable algorithm A cryptographic algorithm that is believed to be secure
against adversaries who possess only a classical computer but is known to be in-
secure against adversaries who possess a cryptanalytically relevant quantum com-

puter.

security strength A number associated with the amount of work that is required to break
a cryptographic algorithm or system.

seed A bit string used as input to a pseudorandom process.

shall Used to indicate a requirement of this document that will be tested by a CMVP test-
ing lab.
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shared secret A secret value that has been computed during a key-establishment scheme,

is known by all participating parties, and is used as input to a key-derivation
method to produce keying material.

shared secret key A shared secret that can be used directly as keying material or as a sym-

metric key.

should Used to indicate a strong recommendation but not a requirement of this docu-
ment. Ignoring the recommendation could lead to undesirable results.

side-channel attack An attack enabled by the leakage of information from a deployed
cryptosystem. Characteristics that could be exploited in a side-channel attack in-
clude timing, power consumption, and electromagnetic and acoustic emissions.

static key A key that is intended for use for a relatively long period of time and is typically
intended for use in many instances of a cryptographic key-establishment scheme.

Contrast with ephemeral key.

symmetric-key algorithm A cryptographic algorithm that uses the same secret key for an
operation and its complement (e.g., encryption and decryption). Also called a
secret-key algorithm.

trusted third party An entity other than the owner and verifier that is trusted by the
owner, the verifier, or both to provide certain services.
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Appendix C. Cryptographic Components

Appendix C.1. Message Authentication Codes (MACs)

A MAC algorithm defines a family of cryptographic functions that is parameterized by a
symmetric key. It is computationally infeasible to determine the MAC of a newly formed

MAC_Data output value without knowledge of the KC_Key value, even if one has seen 
the MACs corresponding to other MAC_Data values that were computed using that same 
KC_Key value.

The input to a MAC algorithm includes a symmetric key KC_Key and a binary data string 
MAC_Data that serves as the “message.” That is, a MAC computation is represented as 
MAC(KC_Key, MAC_Data). In this recommendation, a MAC algorithm is used if key con-
firmation is performed during key establishment (see Sec. 4.4).

When key confirmation requires the use of a MAC algorithm, it shall be an approved MAC

algorithm (i.e., HMAC, AES-CMAC, or KMAC). HMAC is specified in SP 800-224 [35] and
requires the use of an approved hash function. AES-CMAC is specified in SP 800-38B [36]
for the AES block cipher algorithm specified in FIPS 197. KMAC is specified in SP 800-185
[37]. In addition, AES-GMAC (specified in [9]) is an approved MAC algorithm and may be
used.

When a MAC tag (MacTag) is used for key confirmation, an entity shall compute the MAC 
tag on received or derived data using a MAC algorithm with a KC_Key that is determined 
from a shared secret key. The MAC tag is sent to the other entity participating in the key-
establishment scheme in order to provide assurance that the shared secret key or derived
keying material was correctly computed. MacTag computation and verification are de-
scribed below.

MAC Tag Computation for Key Confirmation. Key confirmation can be performed as one
or more additional steps in a KEM scheme. The computation of a MAC tag is represented
as follows:

MacTag = TMacTagBits[MAC(KC_Key, MAC_Data)].

To compute a MacTag:

1. The agreed-upon MAC algorithm (see Table 1) is used with KC_Key to compute the
MAC on MAC_Data, where KC_Key is a symmetric key, and MAC_Data represents
the input “message” data. The minimum length of KC_Key is specified in Table 1.

KC_Key is obtained from the the shared secret key, as specified in Sec. 4.4.2.

The output of the MAC algorithm MacOut put is a bit string whose length in bits is
MacOut putBits.
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Table 1. Approved MAC algorithms for key confirmation

MAC Algorithm MacOutputBits
Permissible KC_Key 
Lengths (µ bits)

Supported Security 
Strengths for Key 
Confirmation (s bits)

HMAC_SHA-256 256

s≤ µ ≤ 512
128≤ s≤ 256

HMAC_SHA-512/256 256

HMAC_SHA-384 384

HMAC_SHA-512 512

HMAC_SHA3-256 256

HMAC_SHA3-384 384

HMAC_SHA3-512 512

KMAC128 ≤ 22040−1
s = 128

KMAC256 128≤ s≤ 256
AES-128-CMAC 128 µ = 128 s = 128
AES-192-CMAC 128 µ = 192 128≤ s≤ 192
AES-256-CMAC 128 µ = 256 128≤ s≤ 256
AES-128-GMAC 128 µ = 128 s = 128
AES-192-GMAC 128 µ = 192 128≤ s≤ 192
AES-256-GMAC 128 µ = 256 128≤ s≤ 256

2. The MacOut put bits are input to the truncation function TMacTagBits, which re-
turns the leftmost (i.e., initial) bits of MacOut put to be used as the value of 
MacTag. MacTagBits needs to be less than or equal to MacOut putBits long. When 
MacTagBits equals MacOut putBits, TMacTagBits acts as the identity function. The 
minimum value for MacTagBits is 64.

MacTag Verification for Key Confirmation. To verify a received MacTag (i.e., received dur-
ing key confirmation), a new Mac tag MacTag′ is computed using the values of KC_Key, 
MacTagBits, and MAC_Data generated by the recipient (as specified in Sec. 4.4.1). 
MacTag′ is compared with the received MacTag. If their values are equal, then it may 
be inferred that the same KC_Key, MacTagBits, and MAC_Data values were used in the 
two MacTag computations.

Appendix C.2. Nonces

A nonce is a time-varying value with a negligible chance of repeating. A decapsulator may 
be required to provide a public nonce that is used for key-confirmation purposes. This 
circumstance arises when the decapsulator’s public key is static.

A nonce may be composed of one or more of the following components, though other 
components may also be appropriate:
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1. A random bit string that is generated anew for each nonce using an approved ran-
dom bit generator. A nonce containing a component of this type is called a random
nonce.

2. A timestamp of sufficient resolution so that it is different each time it is used.

3. A monotonically increasing sequence number.

4. A combination of a timestamp and a monotonically increasing sequence num-

ber such that the sequence number is reset when and only when the timestamp

changes. For example, a timestamp may show the date but not the time of day, so
a sequence number is appended that will not repeat during a particular day.

When a nonce is required for key-confirmation purposes as specified in this recommen-

dation, it should be a random nonce that contains a random bit string output from an
approved random bit generator, where both the security strength supported by the in-
stantiation of the random bit generator and the bit length of the random bit string are
greater than or equal to the targeted security strength of the key-establishment scheme

in which the nonce is used during key confirmation. When feasible, the bit length of the
random bit string should be at least twice the targeted security strength. For details con-
cerning the security strength supported by an instantiation of a random bit generator, see
the SP 800-90 series of publications [6–8].

As part of the proper implementation of this recommendation, system users and/or agents
trusted to act on their behalf should determine whether the components selected for in-
clusion in any required nonces meet their security requirements.
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Appendix D. Changes From Draft SP 800-227

1. Section numbers have shifted due to reorganization.

2. Section 4.5 was added to address discussions from the NIST KEM workshop and writ-
ten public comments about how the unique functionality of RSA allows for special 
procedures to achieve proof of possession that does not generally apply to KEMs.

3. To align with existing requirements in SP800-56A and SP800-56B, additional require-
ments were added to Sec. 4.1 and 4.2 for ephemeral and static KEM key-pairs, 
namely:

• Additional shall statement in Sec. 4.2: Ephemeral key pairs shall be used in only 
one execution of key-establishment via a KEM and shall be destroyed as soon 
as possible after use.

• Additional must statement in Sec. 4.2: If an encapsulating party obtains 
the static encapsulation key of another party, it must have assurance of the 
other party’s ownership of the key before or during the execution of key-
establishment. This assurance can be obtained from a trusted party (e.g., a 
certificate authority) or a combination of proof of possession and verification 
of real-world identity.

4. In Sec. 4.6.2, the concatenation of inputs to hash functions was modified to be 
comma separated. Public comments noted that concatenation may not be appro-
priate, depending on the protocol or context.

5. Two examples were added to Sec. 5 (Sec. 5.2.4 and 5.2.5) to illustrate how to use 
KEMs to achieve authenticated key establishment. Additionally, existing examples 
were updated.

6. Section 4.3 was updated with guidelines on how to create keys that are smaller than 
the output KEM key. Public comments noted this as particularly relevant for ML-

KEM, which outputs 256-bit keys at all security levels.

7. A public comment noted that a “shall” requirement in Sec. 4.4 was overly restrictive 
in permitting KEM parameters of one security level to be used alongside lower secu-
rity level protocols (e.g., running ML-KEM 768 at 128 bits of security). This has been 
updated accordingly.
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