
NIST Special Publication 800

NIST SP 800-227 ipd

1

2

3

4

5

6

7
8
9

10
11
12
13

14
15

16

Recommendations for Key-Encapsulation

Mechanisms

Initial Public Draft

Gorjan Alagic

Elaine Barker

Lily Chen

Dustin Moody

Angela Robinson

Hamilton Silberg

Noah Waller

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-227.ipd

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-227.ipd

NIST Special Publication 800

NIST SP 800-227 ipd

17

18

19

20

21

22

23
24
25
26
27
28
29
30
31

32
33

34

35

36
37

38
39
40

Recommendations for Key-Encapsulation

Mechanisms

Initial Public Draft

Gorjan Alagic
Elaine Barker

Lily Chen
Dustin Moody

Angela Robinson
Hamilton Silberg

Noah Waller

Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-227.ipd

January 2025

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Charles H. Romine, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST

Director

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are 41
identified in this paper in order to specify the experimental procedure adequately. Such identification does 42
not imply recommendation or endorsement of any product or service by NIST, nor does it imply that the 43
materials or equipment identified are necessarily the best available for the purpose.44

There may be references in this publication to other publications currently under development by NIST in 45
accordance with its assigned statutory responsibilities. The information in this publication, including 46
concepts and methodologies, may be used by federal agencies even before the completion of such 47
companion publications. Thus, until each publication is completed, current requirements, guidelines, and 48
procedures, where they exist, remain operative. For planning and transition purposes, federal agencies 49
may wish to closely follow the development of these new publications by NIST.50

Organizations are encouraged to review all draft publications during public comment periods and provide 51
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 52
https://csrc.nist.gov/publications.53

Authority54
This publication has been developed by NIST in accordance with its statutory responsibilities under the 55
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 56
113-283. NIST is responsible for developing information security standards and guidelines, including 57
minimum requirements for federal information systems, but such standards and guidelines shall not apply 58
to national security systems without the express approval of appropriate federal officials exercising policy 59
authority over such systems. This guideline is consistent with the requirements of the Office of 60
Management and Budget (OMB) Circular A-130.61

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 62
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 63
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 64
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 65
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 66
however, be appreciated by NIST.67

NIST Technical Series Policies68
Copyright, Use, and Licensing Statements69
NIST Technical Series Publication Identifier Syntax70

Publication History 71
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added in the final publication.]72

How to cite this NIST Technical Series Publication:73
Alagic G, Barker EB, Chen L, Moody D, Robinson A, Silberg H, Waller N (2025) Recommendations for 74
Key-Encapsulation Mechanisms. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 75
Special Publication (SP) NIST SP 800-227 ipd. https://doi.org/10.6028/NIST.SP.800-227.ipd76

Author ORCID iDs77
Gorjan Alagic: 0000-0002-0107-603778
Elaine Barker: 0000-0003-0454-046179
Lily Chen: 0000-0003-2726-427980
Dustin Moody: 0000-0002-4868-668481
Angela Robinson: 0000-0002-1209-037982
Hamilton Silberg: 0009-0004-4178-895483
Noah Waller: 0000-0002-6979-972584

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

Public Comment Period85
January 7, 2025 - March 7, 202586

Submit Comments87
sp800-227-comments@nist.gov88

Additional Information89
Additional information about this publication is available at 90
https://csrc.nist.gov/pubs/sp/800/227/ipd, including related content, potential updates, 91
and document history.92

All comments are subject to release under the Freedom of Information Act (FOIA).93

mailto:sp800-227-comments@nist.gov
https://csrc.nist.gov/pubs/sp/800/227/ipd

NIST SP 800-227 ipd (Initial Public Draft)
January 2025

Abstract94

95
96
97
98
99

100
101

102

103
104

105

106
107
108
109
110
111
112
113
114
115
116

A key-encapsulation mechanism (KEM) is a set of algorithms that can be used by two par-
ties under certain conditions to securely establish a shared secret key over a public channel.
A shared secret key that is established using a KEM can then be used with symmetric-key
cryptographic algorithms to perform essential tasks in secure communications, such as
encryption and authentication. This document describes the basic definitions, properties,
and applications of KEMs. It also provides recommendations for implementing and using
KEMs in a secure manner.

Keywords

cryptography; encryption; key-encapsulation mechanism; key establishment; public-key
cryptography.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses
to advance the development and productive use of information technology. ITL’s respon-
sibilities include the development of management, administrative, technical, and physical
standards and guidelines for the cost-effective security and privacy of other than national
security-related information in federal information systems. The Special Publication 800-
series reports on ITL’s research, guidelines, and outreach efforts in information system se-
curity, and its collaborative activities with industry, government, and academic organiza-
tions.

i

NIST SP 800-227 ipd (Initial Public Draft)
January 2025

Call for Patent Claims117

118
119
120
121
122
123

124
125

126
127

128
129
130
131
132
133
134

135
136
137
138
139

140
141

142

This public review includes a call for information on essential patent claims (claims whose use would
be required for compliance with the guidance or requirements in this Information Technology Labo-
ratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL
Publication or by reference to another publication. This call also includes disclosure, where known,
of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication
and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in
written or electronic form, either:

1. assurance in the form of a general disclaimer to the effect that such party does not hold and
does not currently intend holding any essential patent claim(s); or

2. assurance that a license to such essential patent claim(s) will be made available to applicants
desiring to utilize the license for the purpose of complying with the guidance or requirements

in this ITL draft publication either:

(a) under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination; or

(b) without compensation and under reasonable terms and conditions that are demon-

strably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances
on its behalf) will include in any documents transferring ownership of patents subject to the as-
surance, provisions sufficient to ensure that the commitments in the assurance are binding on the
transferee, and that the transferee will similarly include appropriate provisions in the event of fu-
ture transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest regard-
less of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: sp800-227-comments@nist.gov

ii

mailto:sp800-227-comments@nist.gov

143 NIST SP 800-227 ipd (Initial Public Draft)
144 January 2025

Table of Contents145

1. Introduction . 1146

1.1. Background . 1147

1.2. Scope and Purpose . 1148

2. Definitions and Requirements . 2149

2.1. Definitions . 2150

2.2. Requirements . 5151

3. Overview of Key-Encapsulation Mechanisms . 7152

3.1. Introduction . 7153

3.2. Basic Definitions and Examples . 8154

3.3. Theoretical Security of KEMs . 11155

4. Requirements for Secure KEM Implementations 14156

4.1. Compliance to NIST Standards and Validation 14157

4.2. Managing Cryptographic Data . 15158

4.3. Additional Requirements . 17159

5. Using KEMs Securely in Applications . 18160

5.1. How to Establish a Key With a KEM . 18161

5.2. Conditions for Using KEMs Securely . 20162

5.3. Key Derivation . 22163

5.4. Key Confirmation . 22164

5.4.1. Creating the MAC Data . 23165

5.4.2. Obtaining the Key-Confirmation Key 24166

5.4.3. Key-Confirmation Example . 25167

5.5. Multi-algorithm KEMs and PQ/T Hybrids . 26168

5.5.1. Constructing a Composite KEM . 27169

5.5.2. Approved Key Combiners . 29170

5.5.3. Security Considerations for Composite Schemes 31171

6. Examples . 32172

6.1. Examples of KEMs . 32173

6.1.1. A KEM From Diffie-Hellman . 32174

6.1.2. A KEM from RSA Secret-Value Encapsulation 33175

iii

6.1.3. ML-KEM . 33176

6.2. Examples of Applications of KEMs . 34177

6.2.1. Hybrid Public-Key Encryption (HPKE) 34178

6.2.2. Static-Ephemeral Key Establishment 35179

6.2.3. Ephemeral Authenticated Key Establishment 36180

References . 39181

Appendix A. Cryptographic Components . 42182

A.1. Message Authentication Codes (MACs) . 42183

A.2. Random Bit Generators . 43184

A.3. Nonces . 43185

List of Tables186

Table 1. Approved MAC algorithms for key confirmation 43187

List of Figures188

Fig. 1. Outline of key establishment using a KEM . 8189
Fig. 2. The IND-CPA security experiment for a KEM Π 12190
Fig. 3. The IND-CCA security experiment for a KEM Π 12191
Fig. 4. Simple key establishment using a KEM . 19192
Fig. 5. Key-confirmation example with an ephemeral key pair 25193
Fig. 6. Sending a message using HPKE . 35194
Fig. 7. Static-ephemeral key establishment using a KEM 36195
Fig. 8. Using a KEM for key establishment with unilateral authentication 37196

iv

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

1. Introduction197

198

199
200
201
202

203
204
205
206
207
208
209
210
211
212
213

214
215
216
217

218

219
220
221
222
223

224
225
226
227

228
229
230
231

1.1. Background

A key-establishment scheme is a set of algorithms that can be used to securely establish
a shared secret key between two or more parties. Such a shared secret key can then be
used to perform tasks that are suitable for symmetric-key cryptography, such as efficient
confidential communication.

Many widely-deployed key-establishment schemes — including those specified in NIST
Special Publication (SP) 800-56Ar3 [1] and SP 800-56Br2 [2] — are vulnerable to crypto-
graphic attacks that make use of a large-scale, cryptanalytically-relevant quantum com-

puter. In 2016, NIST initiated a process to select and standardize post-quantum key-establishment
schemes (i.e., key-establishment schemes that would not be vulnerable to attacks even
by cryptanalytically-relevant quantum computers). In response, NIST received feedback
from the cryptographic community that the post-quantum key-establishment schemes
best suited for standardization and widespread deployment are key-encapsulation mecha-

nisms (KEMs). The first KEM standard that resulted from this NIST post-quantum cryptogra-
phy (PQC) standardization process was ML-KEM, which is specified in Federal Information
Procession Standards (FIPS) 203 [3].

At the time of standardization of ML-KEM, NIST had not provided extensive guidance on
the basic definitions, properties, and applications of KEMs. This recommendation is meant
to provide this guidance, supplement the current and future standardization of KEMs, and
provide recommendations for implementing and using KEMs in a secure manner.

1.2. Scope and Purpose

In combination with the appropriate FIPS or SPs that specify a particular KEM, this recom-

mendation is intended to provide the necessary information for implementing that KEM
in FIPS 140-validated modules. This recommendation also provides guidance for vendors
who wish to securely combine keying material produced via quantum-vulnerable methods
with keying material produced via post-quantum methods.

This recommendation does not discuss how or when to migrate from quantum-vulnerable
key-establishment procedures to post-quantum KEMs (see [4]). This recomendation does
not provide a specification for any particular KEM; such specifications will be provided in
other FIPS and/or SPs, such as the specification of ML-KEM in FIPS 203 [3].

This recommendation includes purely explanatory and educational material to aid in the
general understanding of KEMs. While NIST SPs typically only include material that pertains
to what is approved, this SP describes KEMs both generally and with respect to what is
approved. Specific requirements will be clearly noted with “shall” and “must” statements.

1

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

2. Definitions and Requirements232

2.1. Definitions233

approved FIPS-approved and/or NIST-recommended. An algorithm or technique that is 234
either 1) specified in a FIPS or NIST recommendation, 2) adopted in a FIPS or NIST 235
recommendation, or 3) specified in a list of NIST-approved security functions.236

(KEM) ciphertext A bit string that is produced by the encapsulation algorithm and used as 237
an input to the decapsulation algorithm.238

computationally-bounded For a bit security strength λ , an adversarial algorithm is compu-239
tationally-bounded if it is allowed at most 2λ basic operations.240

cryptanalytically-relevant quantum computer A device capable of using quantum algo-241
rithms to break a cryptosystem that is secure against classical (i.e., non-quantum) 242
computers.243

decapsulation The process of applying the Decaps algorithm of a KEM. This algorithm ac-244
cepts a KEM ciphertext and the decapsulation key as input and produces a shared 245
secret key as output.246

decapsulation key A cryptographic key produced by a KEM during key generation and 247
used during decapsulation.248

efficient (cryptographic) algorithm An algorithm whose running time is practical for the 249
relevant security strength. At a minimum, such an algorithm runs in time polyno-250
mial in the bit security strength λ .251

encapsulation The process of applying the Encaps algorithm of a KEM. This algorithm ac-252
cepts the encapsulation key as input, requires private randomness, and produces 253
a shared secret key and an associated ciphertext as output.254

encapsulation key A cryptographic key produced by a KEM during key generation and 255
used by the encapsulation algorithm.256

hash function A function on arbitrarily-long bit strings in which the length of the output 257
is fixed.258

identifier A bit string that is associated with a person, device, or organization. It may be 259
an identifying name or something more abstract (e.g., a string consisting of an IP 260
address).261

key agreement A (pair-wise) key-establishment procedure in which the resultant secret 262
keying material is a function of information contributed by both participants so 263
that neither party can predetermine the value of the secret keying material inde-264
pendent of the contributions of the other party. Contrast with key transport.265

2

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

key confirmation A procedure that provides assurance to one party (the key-confirmation266
recipient) that another party (the key-confirmation provider) possesses the correct267
secret keying material and/or shared secret from which that secret keying material268
is derived.269

key-confirmation provider The party that provides assurance to the other party (the re-270
cipient) that the two parties have indeed established a shared secret key or shared 271
keying material.272

key-confirmation recipient The party that receives assurance from the other party (the 273
provider) that the two parties have indeed established a shared secret key or 274
shared keying material.275

key-derivation method A method used to derive keying material from an initial shared 276
secret(s) and possibly other information.277

key-derivation key A key used as an input to a key-derivation function to derive additional 278
keying material.279

key-encapsulation mechanism (KEM) A set of three cryptographic algorithms: KeyGen280
(key generation), Encaps (encapsulation), and Decaps (decapsulation). These al-281
gorithms can be used by two parties to securely establish a shared secret key over282
a public channel.283

key establishment A procedure that results in secret keying material that is shared among 284
different parties. Key agreement, KEM, and key transport are all types of key es-285
tablishment.286

keying material A bit string such that any non-overlapping, contiguous segments of the 287
string with required lengths can be used as secret keys, secret initialization vectors, 288
and other secret parameters.289

key pair A public key and its corresponding private key.290

key transport A (pair-wise) key-establishment procedure whereby one party (the sender) 291
selects a value for the secret keying material and then securely distributes the 292
value to another party (the receiver). Contrast with key agreement.293

message authentication code (MAC) A family of symmetric-key cryptographic algorithms 294
acting on input data of arbitrary length to produce an output value of a specified295
length (called the MAC of the input data). The MAC can be employed to provide296
authentication of the origin of the input data and/or data integrity protection.297

message authentication code (MAC) tag Data obtained from the output of a MAC algo-298
rithm (possibly by truncation) that can be used by an entity to securely verify the 299
integrity and origination of the information used as input to the MAC algorithm.300

must Indicates a requirement of this SP that might not be testable by a CMVP testing lab.301

3

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

negligible A quantity is negligible for bit security strength λ if it is smaller than 2−λ .302

party An individual (person), organization, device, or process. In this recommendation, 303
there are typically two parties (e.g., Party A and Party B or Alice and Bob) that 304
jointly perform the key-establishment process using a KEM.305

pseudorandom A process (or data produced by a process) is said to be pseudorandom 306
when the outcome is deterministic yet also appears random to computationally-307
bounded adversaries as long as the internal action of the process is hidden from 308
observation. For cryptographic purposes, “effectively random” means “computa-309
tionally indistinguishable from random within the limits of the intended security 310
strength.”311

public channel A communication channel between two honest parties that can be ob-312
served and compromised by third parties.313

post-quantum algorithm A cryptographic algorithm that is believed to be secure even 314
against adversaries who possess a cryptanalytically-relevant quantum computer.315

quantum-vulnerable algorithm A cryptographic algorithm that is believed to be secure 316
against adversaries who possess only a classical computer but is known to be in-317
secure against adversaries who possess a cryptanalytically-relevant quantum com-318
puter.319

shared secret A secret value that has been computed during a key-establishment scheme, 320
is known by all participating parties, and is used as input to a key-derivation method 321
to produce keying material.322

shared secret key A shared secret that can be used directly as keying material, or as a 323
symmetric key.324

security strength A number associated with the amount of work that is required to break 325
a cryptographic algorithm or system.326

shall Used to indicate a requirement of this SP that will be tested by a CMVP testing lab.327

should Used to indicate a strong recommendation but not a requirement of this SP. Ignor-328
ing the recommendation could lead to undesirable results.329

side-channel attack An attack enabled by the leakage of information from a deployed 330
cryptosystem. Characteristics that could be exploited in a side-channel attack in-331
clude timing, power consumption, and electromagnetic and acoustic emissions.332

symmetric-key algorithm A cryptographic algorithm that uses the same secret key for an 333
operation and its complement (e.g., encryption and decryption). Also called a 334
secret-key algorithm.335

4

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

2.2. Requirements336

Conforming implementations of approved KEMs are required to satisfy all of the below.337

Requirements that are testable by a CMVP validation lab (i.e., shall statements):338

RS1 (Section 4.1) KEM implementations shall comply with the specific NIST FIPS or SP339
that concretely specifies the algorithms of the relevant KEM. For example, imple-340
mentations of ML-KEM shall comply with FIPS 203 [3]. (Note: the CMVP will per-341
form random input-output tests in an attempt to ascertain whether this requirement342
is satisfied. Ensuring full functional equivalence to the specification via testing is not343
possible; see also the “must” requirement RM1 below.)344

RS2 (Section 4.1) KEM implementations shall comply with the guidance given in FIPS345
140-3 [5] and associated implementation guidance.346

RS3 (Section 4.1) KEM implementations shall use approved components with security347
strengths that are chosen appropriately for each KEM parameter set.348

RS4 (Section 4.1) Random bits shall be generated using approved techniques, as de-349
scribed in the latest revisions of SP 800-90A, SP 800-90B, and SP 800-90C [6–8].350

RS5 (Section 4.2) Except for random seeds and data that can be easily computed from351
public information, all intermediate values used in any given KEM algorithm (i.e.,352
KeyGen, Encaps, and Decaps) shall be destroyed before the algorithm terminates.353

RS6 (Section 5.4.1) When a nonce is used by the decapsulator during key confirmation (as354
specified herein), a nonce with a bit length (at least) equal to the targeted security355
strength of the KEM key-establishment process shall be used (see Appendix A.3).356

RS7 (Section 5.4.1) For key confirmation, the MAC algorithm and KC_Key used shall357
have security strengths equal to or greater than the security strength of the KEM358
and parameter set used.359

RS8 (Section 5.4.2) The KC_Key shall only be used for key confirmation and destroyed 360
after use.361

RS9 (Section 5.5.1) In multi-algorithm key-establishment schemes, shared secrets shall362
be combined via an approved key-combiner, as described in Section 5.5.2.363

RS10 (Appendix A.1) When key confirmation requires the use of a MAC, it shall be an364
approved MAC algorithm (i.e., HMAC, AES-CMAC, or KMAC).365

RS11 (Appendix A.1) When a MAC tag is used for key confirmation, an entity shall compute366
the MAC tag on received or derived data using a MAC algorithm with a MacKey that 367
is determined from a shared secret key.368

Requirements that are not testable by a validation lab (i.e., must statements):369

5

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

RM1 (Section 4.1). Implementations must correctly implement the mathematical func-370
tionality of the target KEM. (Note: the CMVP will perform random input-output tests 371
in an attempt to ascertain whether this requirement is satisfied. Ensuring full func-372
tional equivalence to the specification is not possible.)373

RM2 (Section 5.2) In applications of KEMs, a parameter set with application-appropriate 374
security strength must be selected (see [9, Section 2.2]).375

6

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

3. Overview of Key-Encapsulation Mechanisms376

This section gives a high-level overview of key-encapsulation mechanisms (KEMs). It con-377
siders a KEM to be a collection of mathematical functions, together with data that specify 378
parameters. Section 4 describes how to implement a KEM as a collection of computer 379
programs. Section 5 describes how to deploy KEMs in applications.380

3.1. Introduction381

Modern symmetric-key cryptography provides a wide range of useful functionalities, in-382
cluding secure and highly efficient computation and communication. Before symmetric-383
key cryptography can be used, the participating parties need to establish a shared (i.e., 384
symmetric) secret key. One approach to establishing such a key is over a public communi-385
cation channel. Any algorithmic method that establishes a shared secret key over a public 386
channel is called a key-establishment scheme. A general key-establishment scheme can 387
require multiple rounds of communication and involve any number of parties.388

A KEM is a specific type of key-establishment scheme. Typical key establishment via a KEM 389
involves two parties (here referred to as Alice and Bob) and consists of the following three 390
stages (see Figure 1):391

1. (Key Generation) Alice generates a (private) decapsulation key and a (public) encap-392
sulation key.393

2. (Encapsulation) Bob uses Alice’s encapsulation key to generate a shared secret key 394
and an associated ciphertext. The ciphertext is sent to Alice.395

3. (Decapsulation) Alice uses the ciphertext and her decapsulation key to compute an-396
other copy of the shared secret key.397

Security of KEMs. When a KEM is used as in Figure 1, the result should be a shared secret 398
key that is random, unknown to adversaries, and identical for Alice and Bob. Ensuring that 399
security holds in practice is a complex task that relies on three conditions:400

1. Theoretical security: Selecting a KEM that (as a collection of mathematical functions) 401
is well-defined, correct, and satisfies an application-appropriate mathematical no-402
tion of security (see Sections 3.2 and 3.3)403

2. Implementation security: Implementing the selected KEM in a real-world algorithm 404
(e.g., a collection of routines) in a secure manner (see Section 4)405

3. Deployment security: Deploying the implemented KEM in a manner that is secure 406
for the relevant application and using the shared secret key in a secure manner (see 407
Section 5.2)408

Each of these three conditions are essential for security. For example, a KEM that is the-409
oretically secure (i.e., it satisfies condition 1) but is implemented without side-channel 410

7

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

decapsulation key

ciphertext

shared secret key
(Alice’s copy)

shared secret key
(Bob’s copy)

encapsulation key

Key Generation

Decapsulation Encapsulation

countermeasures (so that it does not satisfy condition 2) or is deployed on a device with 411
physical vulnerabilities (so that it does not satisfy condition 3) is likely to be insecure in 412
practice.413

History and development. KEMs were first introduced by Cramer and Shoup [10, 11] as a 414
building block for constructing highly efficient public-key encryption (PKE) schemes. Their 415
approach combines a Key Encapsulation Mechanism with a Data Encryption Mechanism 416
(DEM); a DEM is simply a symmetric-key encryption scheme. The KEM is used to gener-417
ate a shared secret key, while the DEM is used to encrypt an arbitrarily long stream of 418
messages under that key. This is commonly referred to as the KEM/DEM paradigm (see 419
the HPKE example in Section 6.2.1). This approach to constructing highly efficient public-420
key encryption has been the subject of several standards [1, 2, 10, 12–15]. Most recently, 421
KEMs have attracted significant attention due to all of the post-quantum key-establishment 422
candidates in the NIST PQC standardization process being KEMs. This ongoing process has 423
produced one new KEM standard — ML-KEM in FIPS 203 [3] — with more KEM standards 424
likely to follow.425

3.2. Basic Definitions and Examples426

This section establishes the basic definitions and properties of KEMs. Note that probabilis-427
tic algorithms require randomness, while deterministic algorithms do not.428

Definition 1. A KEM denoted by Π consists of the following four components:429

1. Π.ParamSets (parameters): A collection of parameter sets430

8

Fig. 1. Outline of key establishment using a KEM

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

2. Π.KeyGen (key-generation algorithm): An efficient probabilistic algorithm that ac-431
cepts a parameter set p ∈Π.ParamSets as input and produces an encapsulation key 432
ek and a decapsulation key dk as output433

3. Π.Encaps (encapsulation algorithm): An efficient probabilistic algorithm that ac-434
cepts a parameter set p ∈ Π.ParamSets and an encapsulation key ek as input and 435
produces a shared secret key K and a ciphertext c as output436

4. Π.Decaps (decapsulation algorithm): An efficient deterministic algorithm that ac-437
cepts a parameter set p ∈ Π.ParamSets, a decapsulation key dk, and a ciphertext c438
as input and produces a shared secret key K′ as output439

As this section views KEMs purely as mathematical objects, the labels p, ek, dk, c, K, and 440
K′ in Definition 1 are viewed as abstract variables that represent, for example, numbers 441
or bit strings. In implementations, these variables will be represented with concrete data 442
types (see Section 4).443

In general, Definition 1 only requires some very basic properties from the four components 444
that make up a KEM (see Example 1 below). In order to be useful and secure, a KEM should 445
fulfill a number of additional properties. The first such property is correctness of the KEM 446
algorithm. Correctness ensures that, in an ideal setting, the process in Figure 1 almost 447
always produces the same shared secret key value for both parties.448

Definition 2. The key-encapsulation correctness experiment for a KEM Π and parameter
set p ∈Π.ParamSets consists of the following three steps:

1. (ek,dk)←Π.KeyGen(p) (perform key generation) (1)

2. (K,c)←Π.Encaps(p,ek) (perform encapsulation) (2)

3. K′←Π.Decaps(p,dk,c) (perform decapsulation) (3)

The KEM Π is correct if, for all p ∈ Π.ParamSets, the correctness experiment for p results 449
in K = K′ with all but negligible probability.450

When Π.KeyGen and Π.Encaps are invoked in the correctness experiment, it is implied 451
that their randomness is generated internally and uniformly at random. If one wishes to 452
explicitly refer to the randomness used by these algorithms, then the following expressions 453
can be used:454

Key generation (using randomness r): (ek,dk)←Π.KeyGen(p;r) (4)

Encapsulation (using randomness s): (K,c)←Π.Encaps(p,ek;s) (5)

These expressions can, for example, refer to the process of re-expanding a key pair (ek,dk)455
by running KeyGen using a stored seed r.456

9

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

The following two simple but instructive examples show abstract KEMs that satisfy Defini-457
tion 1 and Definition 2.458

Example 1: Simple but insecure. As the following example shows, a correct and efficient 459
KEM can still be completely insecure. Define a KEM DONOTUSE as follows:460

• DONOTUSE.ParamSets: Contains a single, empty parameter set461

• DONOTUSE.KeyGen: On randomness r, outputs dk := r and ek := r462

• DONOTUSE.Encaps: On input ek and randomness s, outputs K := s and c := s463

• DONOTUSE.Decaps: On input dk and c, outputs K′ := c464

While DONOTUSE is obviously a correct KEM since K′ always equals K, it is also completely 465
insecure since the shared secret key K is transmitted in plaintext. This shows that a KEM 466
needs to satisfy additional properties in order to be secure (see Section 3.3).467

Example 2: key transport using PKE. The following is a simple construction of a KEM 468
from any public-key encryption scheme. A public-key encryption scheme PKE consists 469
of a collection PKE.ParamSets of parameter sets and three algorithms: key generation 470
PKE.KeyGen (that accepts a parameter set), encryption PKE.Encrypt (that accepts a param-471
eter set, an encryption key, and a plaintext), and decryption PKE.Decrypt (that accepts a 472
parameter set, a decryption key, and a ciphertext). One can construct a KEM KEMFROMPKE473
from the public-key encryption scheme PKE as follows:474

• KEMFROMPKE.ParamSets= PKE.ParamSets475

• KEMFROMPKE.KeyGen= PKE.KeyGen476

• KEMFROMPKE.Encaps: On input p, ek and randomness s, output key K := s and 477
ciphertext c← PKE.Encrypt(p,ek,s).478

• KEMFROMPKE.Decaps: On input p, dk and c, output key K′ := PKE.Decrypt(p,dk,c).479

The efficiency, correctness, and security properties of KEMFROMPKE depend on the respec-480
tive properties of PKE.481

Approved examples. Section 6.1 briefly discusses three additional examples of KEMs, each 482
of which is an approved algorithm.483

1. In Section 6.1.1, ECDH-KEM is a KEM based on ECDH key exchange.484

2. In Section 6.1.2, RSASVE-KEM is RSA key transport.485

3. In Section 6.1.3, ML-KEM is a lattice-based post-quantum KEM.486

ECDH-KEM and RSASVE-KEM are based on NIST-standardized key-establishment schemes 487
that can easily be viewed as KEMs. ML-KEM is the first key-establishment scheme to be 488
standardized by NIST directly as a KEM.489

10

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

A remark on key transport and key agreement. There are various ways to categorize two-490
party key-establishment schemes. One particular categorization distinguishes between key 491
agreement and key transport. In key agreement (e.g., a Diffie-Hellman key exchange), both 492
parties contribute information that influences the final shared secret key. In key transport 493
(e.g., RSA-OAEP [2]), one party selects the key and then transmits it (in some form) to the 494
other party.495

Depending on the internal structure of the encapsulation function, a KEM could be viewed 496
as either a key-agreement scheme or a key-transport scheme. For example, the shared 497
secret key in ML-KEM [16] is a function of both the randomness provided by Bob and the 498
(randomly generated) encapsulation key of Alice. Therefore, ML-KEM could be viewed as a 499
key agreement scheme. However, as the example KEMFROMPKE shows, the encapsulation 500
operation in a KEM might simply consist of Bob generating the shared secret key and then 501
encrypting it; this is precisely key transport. If an application requires a particular type of 502
key establishment (either key agreement or key transport), this can be achieved using any 503
KEM by taking appropriate additional steps using standard symmetric-key cryptography 504
techniques.505

3.3. Theoretical Security of KEMs506

This section discusses the theoretical security of KEMs. Section 4 discusses KEM imple-507
mentation security, and Section 5.2 discusses the secure deployment of KEMs.508

Semantic security. Informally speaking, a secure key-establishment procedure produces a 509
shared secret key K that is uniformly random and unknown to adversaries. This property 510
should hold despite the fact that adversaries can freely observe the messages transmitted 511
by Alice and Bob. In the case of KEMs, the encapsulation key ek and ciphertext c should 512
reveal no information about the underlying shared secret key K or the decapsulation key 513
dk. Moreover, even adversaries who somehow learn some partial information (e.g., if the 514
first half of K is accidentally leaked) should not be able to combine that information with 515
ek and c to learn more (e.g., the last bit of K). This informal notion of security can be 516
rigorously formalized, and the resulting definition is called semantic security [17].517

Passive adversaries and IND-CPA. The formal definition of semantic security for KEMs is 518
somewhat complex and unwieldy. Thankfully, it has an equivalent definition that is sim-519
ple to describe and easy to work with. It is defined in terms of an imaginary “ciphertext 520
indistinguishability” experiment (see Figure 2). In this experiment, an adversary is given 521
an encapsulation key ek, a ciphertext c, and either the true shared secret key underlying 522
c or a freshly generated random string. The adversary’s goal is to distinguish these two 523
scenarios, and they are free to use ek to generate their own encapsulations to help them 524
in this task. This experiment is called “indistinguishable ciphertexts under chosen plaintext 525
attack” (IND-CPA).526

11

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Challenger: Adversary:

(ek,dk)←Π.KeyGen(p)

(K0,c)←Π.Encaps(p,ek)

K1←{0,1}|K0|

b←{0,1}
ek, c, Kb−−−−−−−−−→

b′←−−−−−−−−−
output WIN iff b = b′.

Fig. 2. The IND-CPA security experiment for a KEM Π

Definition 3 (IND-CPA, informal). A KEM Π has indistinguishable ciphertexts (or is IND-527
CPA) if, for every computationally-bounded adversary A, the probability that A wins the 528
experiment IND-CPA[Π] is negligibly close to 1/2.529

In the IND-CPA experiment, the adversary is free to study the encapsulation key ek and 530
the ciphertext c in order to identify whether Kb is the true key. However, the adversary is 531
not capable of actively interfering with the challenger’s use of the decapsulation key. As a 532
result, IND-CPA only captures security against passive adversaries (i.e., eavesdroppers).533

Challenger: Adversary:

(ek,dk)←Π.KeyGen(p)

(K0,c)←Π.Encaps(p,ek)

K1←{0,1}|K0|

b←{0,1}
ek, c, Kb−−−−−−−−−→

� Π.Decaps(dk,?)

b′←−−−−−−−−−
output WIN iff b = b′.

Fig. 3. The IND-CCA security experiment for a KEM Π

Active adversaries and IND-CCA. Real-world experience indicates that adversaries can 534
sometimes actively interfere with key-establishment processes and use this ability to un-535
cover the shared secret key. For example, an active adversary may be able to convince an 536

12

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

honest user to decapsulate some ciphertexts of the adversary’s choosing. In such a sce-537
nario, it is natural to ask whether other ciphertexts are still protected. In this setting, IND-538
CPA security is insufficient. Instead, one must consider security against so-called chosen-539
ciphertext attacks (CCA).540

The IND-CCA[Π] experiment for a KEM Π is described in Figure 3. It is similar to the 541
IND-CPA experiment, except that the adversary is now also granted “black-box oracle ac-542
cess” to the decapsulation function c 7→ Π.Decaps(p,dk,c). This means that the adver-543
sary is allowed to submit ciphertexts c∗ that they generate and get the response K∗ ←544
Π.Decaps(p,dk,c∗). The only restriction is that they cannot submit the actual ciphertext 545
c produced by the challenger since that would make the game trivial to win for any KEM.546

Definition 4 (IND-CCA, informal). A KEM Π is IND-CCA if, for every efficient adversary A, 547
the probability that A wins the experiment IND-CCA[Π] is negligibly close to 1/2.548

Note that ML-KEM, the first post-quantum KEM standardized by NIST, is believed to satisfy 549
IND-CCA security [3].550

13

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

4. Requirements for Secure KEM Implementations551

As discussed in Section 3.1, a KEM (as a mathematical object) should satisfy both correct-552
ness (Definition 2) and an appropriate notion of security (Definition 3 or Definition 4). In 553
order for such a KEM to be used in real-world applications, it needs to be implemented in 554
actual code as part of a cryptographic module. The quality of the resulting implementation 555
has a dramatic impact on usability and security in real-world applications.556

The following subsections detail some requirements for cryptographic modules that im-557
plement a KEM. While adherence to these requirements is required for conforming imple-558
mentations of approved KEMs, it does not guarantee that a given implementation will be 559
secure.560

For a discussion of requirements for applications that make use of a KEM cryptographic 561
module, see Section 5.2.562

4.1. Compliance to NIST Standards and Validation563

Conforming implementations of approved KEMs are required to comply with the require-564
ments outlined in this section, as well as all other applicable NIST standards. In addition, 565
such implementations are required to use only approved cryptographic elements, and to 566
pass FIPS-140 validation.567

Implementing according to NIST standards. Implementations shall comply with a specific 568
NIST FIPS or SP that concretely specifies the algorithms of the relevant KEM. For example, 569
a conforming implementation of ML-KEM shall comply with FIPS 203 [3]. Each FIPS or SP 570
that specifies a KEM will have special requirements for the particular scheme in question. 571
These requirements will include specifications for all algorithms and parameter sets of the 572
relevant KEM. In particular, concrete data types will be specified for the parameter sets, 573
keys, ciphertexts, and shared secret keys (recalling Definition 1) of the relevant KEM.574

The requirements in any FIPS or SP that standardizes a particular KEM are in addition to 575
the general requirements described in this section. Any implementations shall follow the 576
guidance given in FIPS 140-3 [5] and associated implementation guidance.577

Approved cryptographic elements. KEMs commonly make use of other cryptographic el-578
ements (see Appendix A), such as random bit generators (RBGs) and hash functions. KEM 579
implementations shall use approved cryptographic elements with security strengths that 580
are appropriately chosen for each KEM parameter set. In particular, random bits shall be 581
generated using approved techniques, as described in the latest revisions of SP 800-90A, 582
SP 800-90B, and SP 800-90C [6–8].583

Testing and validation. Mistakes in implementations can easily lead to security vulnera-584
bilities or a loss of usability. Therefore, it is crucial that implementations are validated for 585

14

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

conformance to the appropriate cryptographic specifications and FIPS 140 by the Crypto-586
graphic Algorithm Validation Program (CAVP) and Cryptographic Module Validation Pro-587
gram (CMVP).588

It is important to note that validation testing typically only tests that a given implemen-589
tation correctly computes the desired output for a small number of (often randomly sam-590
pled) inputs. This means that validation testing does not guarantee correct functioning on 591
all inputs—in fact, this is often impossible to ensure. Nonetheless, implementations must592
correctly implement the mathematical functionality of the target KEM.593

As validation only tests input-output behavior, implementations need not follow the exact 594
step-by-step algorithmic specifications in the NIST standard specifying the relevant KEM. 595
Any implementation that produces the correct output for every input will pass validation.596

Requiring equivalence only at the level of input-output functionality (e.g., rather than in 597
terms of step-by-step behavior) is desirable, as different implementations can then be op-598
timized for different goals. For example, some implementations will focus on maximizing 599
efficiency, while other implementations will employ numerous side-channel and leakage 600
protection techniques.601

4.2. Managing Cryptographic Data602

KEM implementations need to manage all cryptographic data appropriately. This applies 603
to data used during the execution of the three KEM algorithms as well as data-at-rest. 604
As a cryptographic module has no control over data that exists outside the module (e.g., 605
while in transit from one module to another), such data is not discussed here. However, 606
a cryptographic module can exert control over what data it outputs to the outside world 607
(e.g., by ensuring correct implementations of all functions, as discussed above). It can 608
also exert control over what data it accepts from the outside world (e.g., by performing 609
appropriate input-checking and importing, as discussed below).610

In general, data needs to be destroyed as soon as it is no longer needed. Some examples 611
include destroying intermediate computation values at the end of an algorithm, destroying 612
randomness generated by RBGs after encapsulation, and destroying keys after all relevant 613
communication sessions are completed.614

Input checking. The correct and secure operation of cryptographic operations depends 615
crucially on the validity of the provided inputs. Even relatively benign faults, such as an 616
input that is too long or too short, can have serious security consequences. KEM imple-617
mentations need to perform input checking in an appropriate manner for all KEM algo-618
rithms (i.e., KeyGen, Encaps, and Decaps). The exact form of the required input checking 619
is described in the FIPS or SP that specifies the relevant KEM.620

15

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Sometimes, an input will not need to be checked. Instead, the implementer can acquire 621
assurance that the input was validly generated or has already been checked, as in the fol-622
lowing cases:623

1. If the cryptographic module generated an input internally using an algorithm that 624
ensures validity and stored that input in a manner that prevents modification, then 625
the module is not required to check that input. For example, if the module gener-626
ated a decapsulation key dk via KeyGen and then stored dk in a manner that prevents 627
modification, then the module can later invoke Decaps directly on dk without per-628
forming any input checking.629

2. If the cryptographic module checks an input once and stores that input in a man-630
ner that prevents modification, then the module is not required to check that input 631
again. For example, if the module performed input-checking on a given encapsula-632
tion key ek and stored it in a manner that prevents modification, then the module 633
may invoke Encaps directly on ek (even repeatedly) without performing any further 634
input checking.635

3. If the cryptographic module imports the relevant input from a trusted third party 636
(TTP) and the TTP can provide assurance that the input does not need input-checking, 637
then the module is not required to check the input.638

Intermediate values. All intermediate values used in any given KEM algorithm (i.e., KeyGen, 639
Encaps, Decaps) shall be destroyed before the algorithm terminates. However, there are 640
two exceptions to this rule:641

1. A random seed used for key generation may be stored for the purpose of recomput-642
ing the same key pair at a later time.643

2. Data that can be easily computed from public information (e.g., from the encapsu-644
lation key) may be stored to improve efficiency.645

When values are stored under either of these exceptions, the storage needs to be per-646
formed according to the rules for data-at-rest.647

The outputs of an algorithm are not considered to be intermediate values and will thus not 648
be immediately destroyed in typical situations. The format in which outputs and inputs are 649
stored depends on the implementation (see discussion of data formats below.)650

Data at rest. A cryptographic module that implements a KEM needs to maintain certain 651
data-at-rest. This can include both private data (e.g., seeds and decapsulation keys) and 652
public data (e.g., encapsulation keys). In general, private data needs to be stored within 653
the cryptographic module in a manner that is secure and protected against both leakage 654
and unauthorized modification. Private data needs to be destroyed as soon as it is no 655
longer needed. The import and export of private data (e.g., seeds, decapsulation keys, 656
shared secret keys) need to be performed in a secure manner. In general, public data 657

16

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

stored within the cryptographic module needs to be stored in a manner that is secure and 658
protected against unauthorized modification [5, 18].659

Data formats, import and export. FIPS validation tests input and output behavior of the 660
relevant KEM algorithms using a specific data format. Typically, this format is byte arrays 661
containing the relevant inputs and outputs as described in the FIPS or SP specifying the rel-662
evant KEM. This format is required for testing, but is not to be viewed as a requirement for 663
internal storage, data import, or data export. A given cryptographic module may choose to 664
store, import, or export data (whether sensitive or not) using other formats. The desired 665
format can vary significantly depending on the application. For example, some applica-666
tions might call for storing keys using only a short seed, while other applications might call 667
for storing keys in an expanded format that allows for faster computations. In any case, 668
storage, import, and export of sensitive data needs to be performed securely, regardless 669
of the chosen data format.670

4.3. Additional Requirements671

The following are additional requirements for cryptographic modules implementing ap-672
proved KEMs.673

Failures and aborts. Each of the KEM algorithms (i.e., KeyGen, Encaps, Decaps) and any 674
algorithms of their cryptographic elements (e.g., DRBGs or hash functions) can potentially 675
fail or abort. This could be a result of normal KEM operations (e.g., decapsulating a cipher-676
text that was corrupted by the environment during transmission), a hardware or software 677
failure (e.g., a failed DRBG execution due to a memory fault), or an adversarial attack. Im-678
plementers need to take precautions to ensure that the cryptographic module handles fail-679
ures and aborts appropriately. In particular, leaking information about failures and aborts 680
outside of the perimeter of the cryptographic module should be avoided.681

Side-channel protection. Cryptographic modules for KEMs should be designed with ap-682
propriate countermeasures against side-channel attacks. This includes protecting against 683
timing attacks with constant-time implementations and protecting memory from leakage. 684
Universal guidance is unlikely to be helpful as exposure to side-channel attacks varies sig-685
nificantly with the desired application, and countermeasures are often costly.686

17

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

5. Using KEMs Securely in Applications687

This section describes how to deploy a KEM in real-world applications in a manner that is 688
useful and secure, assuming that the KEM under discussion satisfies an appropriate notion 689
of theoretical security (see Section 3.3) and has been securely implemented in a crypto-690
graphic module (see Section 4).691

5.1. How to Establish a Key With a KEM692

693
694
695
696
697

698
699
700

701

702
703
704
705

706
707

708
709
710

711
712

713
714

715
716

717

This section describes how a KEM can be used to establish a shared secret key between
two parties. The description will go into greater detail than the brief outline of Section 3.1.
However, since KEMs are highly flexible and can be used in a wide range of applications and
contexts, no single description can account for all variations. Sections 6.2.1, 6.2.2 and 6.2.3
provide more detailed examples of special cases of key establishment using a KEM.

For simplicity of exposition, the two parties in the key establishment process will be re-
ferred to as Alice and Bob. It is assumed that Alice and Bob are communicating over a
single bidirectional channel and will only use that channel to transmit data to each other.

The key establishment process using a KEM Π proceeds as follows:

1. Preparation. Before key establishment can begin, a parameter set p∈Π.ParamSets
needs to be selected. Depending on the application, p may be selected by Alice,
by Bob, or through an interactive negotiation between Alice and Bob. (In fact, the
choice of the KEM Π itself could be made at this stage.)

2. Key generation. Alice begins by running the key generation algorithm in her crypto-
graphic module:

(ekA,dkA)←Π.KeyGen(p) . (6)

During the execution of KeyGen, Alice’s module internally generates private random-

ness using an appropriate RBG. Alice then transmits ekA to Bob and keeps dkA pri-
vate.

3. Encapsulation. Bob receives ekA from Alice and uses it to execute the encapsulation
algorithm in his cryptographic module:

(KB,cB)←Π.Encaps(p,ekA) . (7)

During the execution of Encaps, Bob’s module internally generates private random-

ness using an appropriate RBG. Bob then transmits cB to Alice and keeps KB private.

4. Decapsulation. Alice receives cB from Bob and runs the decapsulation algorithm in
her module using her decapsulation key and Bob’s ciphertext:

KA←Π.Decaps(dkA,cB) . (8)

Alice keeps KA private.

18

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

5. Using the shared secret key. If the appropriate conditions are satisfied (see Section 718
5.2), then KA will equal KB and can be used by Alice and Bob for any symmetric-719
key cryptographic protocol. A typical choice is to use KA = KB as the key for an 720
authenticated encryption scheme (e.g., AES-GCM [19]), thereby establishing a com-721
munication channel between Alice and Bob that satisfies both confidentiality and 722
integrity.723

Figure 4 depicts the high-level stages of this process.724

Alice: Bob:

1.
Π, p←−−−−−−−→

2. (ekA,dkA)←Π.KeyGen(p)
ekA−−−−−−−−−→

3. (KB,cB)←Π.Encaps(ekA)
cB←−−−−−−−−

4. KA←Π.Decaps(dkA,cB)

5. output: KA output: KB

Fig. 4. Simple key establishment using a KEM

725
Additional considerations. The steps 1-5 in the key establishment process above might 726
need to be modified depending on the security and functionality needs of the application. 727
Some common modifications are as follows.728

Static versus ephemeral. Consider an application in which Alice independently decides on 729
a parameter set, performs key generation, and publishes the resulting encapsulation key 730
ekA. Alice might then accept many connections from multiple parties over a long period 731
of time, each initiated via ekA. Each such connection would follow stages 3-5 described 732
above. While the other party in each connection would always encapsulate with ekA, each 733
ciphertext is freshly generated and only applicable to the connection between Alice and 734
that party. In this scenario, Alice’s encapsulation key is said to be static.735

In other applications, Alice might want to use a particular key pair to establish only a sin-736
gle connection (e.g., as part of a protocol that ensures forward secrecy). In that case, she 737
will perform key generation, send her encapsulation key ekA to a specific party (Bob), and 738
discard ekA once the connection with Bob is established. In this scenario, Alice’s encapsu-739
lation key is said to be ephemeral. In some applications, Alice might decide to use ekA for 740
multiple connections but only for a brief period of time, which is typically still considered 741
an ephemeral setting.742

19

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Authentication. In most applications, some form of authentication and cryptographic in-743
tegrity checking is required (e.g., to prevent “machine-in-the-middle” attacks). Assuring 744
this is highly application-dependent and typically requires additional cryptographic ele-745
ments, such as digital signatures and certificates. Section 6.2.2 and Section 6.2.3 provide 746
some illustrative examples.747

Key confirmation and derivation. In some applications, Alice and Bob will use KA and KB748
directly as symmetric keys as soon as the decapsulation and encapsulation stages are suc-749
cessfully completed, respectively. If KA 6= KB, a failure in the desired symmetric-key func-750
tionality will likely follow. For other applications, Alice and Bob might need to first post-751
process KA and KB appropriately and then use the results of that post-processing step—if 752
successful—as their symmetric keys. This post-processing might include key confirmation 753
steps to confirm that KA = KB and reject them otherwise (see Section 5.4). It might also 754
include key derivation steps that securely produce multiple symmetric keys from the ini-755
tial shared secret key (see Section 5.3). In some cases, key confirmation might also involve 756
performing additional computations during the encapsulation and decapsulation stages to 757
reduce the number of communication rounds.758

5.2. Conditions for Using KEMs Securely759

This section discusses general requirements for securely using approved KEMs in applica-760
tions. As discussed in point 1 below, the first step involves selecting an approved KEM that 761
has been implemented in a validated cryptographic module (see Section 4). Deploying 762
such a cryptographic module in applications entails a number of additional requirements 763
that are outlined below. Adherence to these requirements does not guarantee that the 764
relevant KEM application will be secure.765

The overall requirements fall into four general categories: KEM algorithm security, device 766
security, channel security, and key usage security. Below, each category is briefly sum-767
marized in one prescriptive statement; a more detailed description of the requirements 768
applicable to that category then follow.769

1. KEM algorithm security: the selected KEM Π is approved, appropriate for the ap-770
plication, and implemented and deployed in a secure manner.771

Being an approved KEM, Π will satisfy correctness (Definition 2) and either IND-CPA 772
or IND-CCA security (see Section 3.3). Whenever possible, IND-CCA-secure KEMs773
should be used. For some specific applications (e.g., ephemeral key establishment), 774
IND-CPA security might be sufficient.775

Cryptographic module implementation. The implementations of Π used by Alice and 776
Bob need to satisfy the requirements in Section 4. Whether a given implementation 777
is sufficiently secure is an application-dependent question. For example, an imple-778
mentation might be secure enough for use on a web server in a physically secure 779

20

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

location but have insufficient side-channel protections for use on an embedded de-780
vice.781

Parameter set selection. A parameter set of Π with application-appropriate security 782
strength must be selected (see [9, Section 2.2]).783

KEM key management. If the application calls for an ephemeral-ephemeral key ex-784
change, each key pair is only used for a brief period of time. In any case, all KEM 785
keys and any seeds are destroyed as soon as they are no longer needed.786

2. Device security: the devices used to execute KEM algorithms and store any inter-787
mediate data (e.g., decapsulation keys) are appropriately secured.788

Physical protection. The devices need to be appropriately protected against attacks 789
(see [18, Section 5]). This includes protection against leakage, physical intrusion, 790
remote access, and corruption.791

Secure storage. The device needs to provide appropriate secure storage for sensitive 792
data (e.g., KEM keys, seeds, shared secret keys, and any derived keys) and destroy 793
that data when required by the cryptographic module (See Section 4.2).794

3. Channel security: the key-establishment process that takes place over the channel 795
used by Alice and Bob needs to satisfy an application-appropriate notion of integrity.796

Pre-established versus simultaneous. Ensuring the integrity of the key-establishment 797
process could be achieved by first ensuring the integrity of the channel and then 798
performing key establishment. More commonly, integrity is assured simultaneously 799
with key establishment by augmenting the key-establishment process with addi-800
tional steps and checks.801

Unilateral versus bilateral. For some applications, only Alice is assured of Bob’s iden-802
tity and the integrity of Bob’s messages. This is commonly called a unilaterally au-803
thenticated key exchange (see Section 6.2.3). In other applications, both Alice and 804
Bob will require assurances of the other party’s identity and the integrity of their 805
messages. This is commonly called a bilaterally authenticated key exchange.806

Secure authentication algorithms. For all applications, the cryptographic algorithms 807
(e.g., signatures, other KEMs) and other elements (e.g., certificates) required to es-808
tablish channel integrity need to be selected and deployed securely.809

4. Key usage security: the shared secret key produced by the KEM is used appropriately 810
and securely.811

Key processing and management. Key confirmation and key derivation steps are 812
performed appropriately, as required by the application (see Sections 5.4 and 5.3). 813
Each shared secret key and any derived keys are destroyed as soon as they are no 814
longer needed (see Section 4.2).815

21

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Secure symmetric-key algorithms. The KEM shared secret key and any derived keys 816
should only be used with appropriately secure symmetric-key cryptographic algo-817
rithms. In particular, the security of the symmetric-key algorithms used is appropri-818
ate for the security provided by the KEM so that the combined algorithm (consisting 819
of key establishment followed by symmetric cryptography operations) fulfills the de-820
sired security properties.821

5.3. Key Derivation822

Certain key-establishment schemes (e.g., Diffie-Hellman key exchange) can be viewed as 823
first generating a shared secret, and then performing a key derivation step that transforms 824
the shared secret into a shared secret key. KEMs, on the other hand, by definition output a 825
key that is ready to use. As a result, key derivation is not required when using KEMs. Still, 826
some applications using KEMs will require key derivation. This is the case, for example, 827
when the application requires that the shared secret key K is expanded in order to create 828
a collection of keys whose total length exceeds the length of K.829

As specified in SP 800-108 [20], key derivation consists of applying a key-derivation method830
(KDM) to a key-derivation key. A KDM is an algorithm for transforming a given key-derivation 831
key (along with possibly some other data) into keying material (e.g., a list of keys).832

An example of a key-derivation method is:833

1. Concatenate the key-derivation key K with optional data z.834

2. Apply a key-derivation function KDF.835

The final output of key derivation is then simply KDF(K||z).836

In SP 800-56C [21], several key-derivation methods are defined for the setting in which 837
the input to key derivation is a shared secret for one of the key-establishment schemes 838
specified in [1, 2] (rather than a key-derivation key).839

When key derivation for a KEM Π is needed, the shared secret key output by Π (i.e., as 840
an output of Π.Encaps or Π.Decaps) may be used as a key-derivation key supplied to an841
approved key-derivation method specified in SP 800-108 [20], SP 800-56C [21], or SP 800-842
133 [22]. In the case where a KDM from SP 800-56C is used, the shared secret key of the 843
KEM is used as an input to the KDM in place of the shared secret.844

A simple example of key derivation is included in the example protocol in Section 6.2.3.845

5.4. Key Confirmation846

Key confirmation (KC) refers to the actions taken to provide assurance to one party (the 847
key-confirmation recipient) that another party (the key-confirmation provider) possesses 848
matching keying material. In the case of KEMs, this confirmation is done for keying material 849
that was produced by encapsulation and/or decapsulation.850

22

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Key confirmation should be used during KEM usage, as it may enhance the security proper-851
ties of the overall key-establishment process. Confirming successful establishment of the 852
shared secret key can also address potential errors in transmission or decapsulation. While 853
this section describes an explicit process, key confirmation can be accomplished in a vari-854
ety of other ways. For example, successful use of the shared secret key for authenticated 855
encryption can act as key confirmation.856

Key confirmation is typically achieved by exchanging a value that can only be calculated 857
correctly with very high probability if the key establishment was successful. Some com-858
mon protocols perform key confirmation in a manner that is integrated into the steps of 859
the protocol. For example, bilateral key confirmation is provided during a TLS handshake 860
protocol by the generation and verification of a MAC over all previous messages in the 861
handshake using a symmetric MAC key that was established during the handshake.862

In some circumstances, it may be appropriate to perform key confirmation by including 863
dedicated key-confirmation steps into a key-establishment scheme. An acceptable method 864
for providing key confirmation during a key-establishment scheme is provided below. In 865
this method, key confirmation is provided by the KC provider calculating a MAC tag and 866
sending it to the KC recipient for confirmation of the provider’s correct calculation of the 867
shared secret key. Unilateral key confirmation is provided when only one of the parties 868
serves as the key-confirmation provider. If mutual key confirmation is desired (i.e., bilateral 869
key confirmation), then the parties swap roles for the second KC process, and the new 870
provider (i.e., the previous recipient) sends a MAC value on a different data string (i.e., 871
MAC_Data) to the new recipient (i.e., the previous provider).872

If other methods are used, this recommendation makes no statement as to their adequacy.873

874
Key-confirmation key. The key-confirmation steps specified in this recommendation can 875
be incorporated into any scheme using a KEM to establish a shared secret key. To per-876
form key confirmation, a dedicated KC key will be determined from the shared secret key 877
produced by the KEM. The KC provider will then use the KC key with an approved MAC 878
algorithm to create a MAC tag on certain data and provide the tag to the KC recipient. The 879
KC recipient will then obtain the KC key from their copy of the shared secret key produced 880
by the KEM and use it to verify the MAC tag.881

5.4.1. Creating the MAC Data882

During key confirmation, the KC provider creates a message with a MacTag that is com-883
puted on MAC_Data that contains context-specific information. The MAC_Data is for-884
matted as follows:885

MAC_Data = KC_Step_Label‖ IDP ‖ IDR ‖EphP ‖EphR ‖ExtraP ‖ExtraR886

23

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

• KC_Step_Label is a six-byte character string that indicates that the MAC_Data is 887
used for key confirmation, whether the MAC_Data is used for the first or second 888
key-confirmation message, and the party serving as the KC provider, either the en-889
capsulator (E) or decapsulator (D). The four valid options are ”KC_1_E”, ”KC_2_E”, 890
”KC_1_D”, or ”KC_2_D”. As an example, ”KC_1_D” indicates that the decapsu-891
lator (D) is the KC provider and sends the first KC message. ”KC_2_E” could then 892
be used by the encapsulator (E) to provide bilateral key confirmation.893

• IDP and IDR are the identifiers used to label the KC provider and recipient, respec-894
tively.895

• EphP and EphR are ephemeral data provided by the KC provider and recipient, re-896
spectively. The encapsulator’s ephemeral data is the ciphertext. The decapsulator’s 897
ephemeral data is encapsulation key ek if ek is ephemeral; otherwise, the decap-898
sulator’s ephemeral data shall be a nonce with a bit length that is at least equal to 899
the targeted security strength of the KEM key-establishment process (see Appendix 900
A.3).901

When a nonce is used during key confirmation, it needs to be provided to the encap-902
sulator before they can complete MAC_Data for MacTag generation or verification.903

• ExtraP and ExtraR are optional additional data provided by the KC provider and re-904
cipient, respectively. This could include additional identifiers, values computed dur-905
ing the key-establishment process, or any other information that the party wants to 906
include. This information can be known ahead of time by both parties or transmitted 907
during key confirmation.908

The MAC algorithm and KC_Key used shall have security strengths that are equal to or 909
greater than the security strength of the KEM and parameter set used. See Appendix A.1 910
for permitted MAC algorithms and further details.911

5.4.2. Obtaining the Key-Confirmation Key912

In order to create and validate the MAC tag for the created MAC_Data, the parties create 913
a dedicated key-confirmation key, or KC_Key. This can be either a section of the KEM 914
shared secret key or part of the derived keying material from the KEM shared secret key 915
when using a derivation function (see Section 5.3). The KC_Key shall only be used for key 916
confirmation and destroyed after use.917

When a derivation function is used. After computing the plaintext shared secret 918
value and applying the key-derivation method to obtain the derived keying material 919
Derived_Keying_Material, the key-confirmation provider uses agreed-upon bit lengths to 920
parse Derived_Keying_Material into two parts — the key-confirmation key (KC_Key) and 921
the key(s) to subsequently protect data (Data_Key):922

Derived_Keying_Material = KC_Key || Data_Key.923

24

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

When a derivation function is NOT used. The key-confirmation provider parses the plain-924
text output of the encapsulation process into KC_Key and Data_Key:925

KEM_plaintext_output = KC_Key || Data_Key.926

5.4.3. Key-Confirmation Example927

The key-confirmation process can be achieved in multiple ways. The provided example 928
showcases unilateral key confirmation from the encapsulator to the decapsulator, which 929
can be used for a client (i.e., Alice) requesting confirmation of successful key establishment 930
from the server (i.e., Bob). Figure 5 shows this process.931

Alice (Decapsulator, Client): Bob (Encapsulator, Server):

1. (ek,dk)←Π.KeyGen(p)
ek, IDA,ExtraA−−−−−−−−−→

2. (c,KB0)←Π.Encaps(p,ek)

KBkc||KB1← KDF(KB0)

3. Construct MAC_Data
tag← MAC(KBkc, MAC_Data)

c, tag, IDB,ExtraB←−−−−−−−−−−−
4. KA0←Π.Decaps(p,dk,c)

KAkc||KA1← KDF(KA0)

5. Construct MAC_Data
if MAC.Ver(KAkc,MAC_Data, tag)
rejects, abort.

6. result: KA1 result: KB1

Fig. 5. Key-confirmation example with an ephemeral key pair

1. The decapsulating party (i.e., Alice) begins by generating a set of ephemeral keys 932
(ek,dk) for KEM Π under the agreed parameter set p. Alice then sends ek, Alice’s 933
identifying string (IDA), and any extra data ExtraA to include in the key confirmation 934
to Bob.935

2. The encapsulating party (i.e., Bob) performs encapsulation with the received ek to 936
generate ciphertext c and initial key KB0. Bob then derives two keys from KB0: a 937
key-confirmation key KBkc to perform key confirmation and additional key material 938
KB1.939

3. Bob constructs MAC_Data using the following in order:940

25

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

• The constant string ”KC_1_E”, which indicates that the encapsulator (i.e., Bob) 941
is providing key confirmation and that this is the first KC message942

• IDB, which is Bob’s identifier string943

• IDA, which is Alice’s identifier string944

• Ciphertext c, which is the KC provider’s (Bob’s) ephemeral value945

• Encapsulation key ek, which is the KC recipient’s (Alice’s) ephemeral value946

• ExtraB, which refers to any extra data that Bob (the KC provider) would like to 947
include948

• ExtraA, which refers to any extra data provided by Alice (the KC recipient)949

Bob calculates the MAC tag tag using KBkc on MAC_Data and sends the following 950
to Alice: 1) ciphertext c, 2) the generated tag tag, 3) and any extra data (ExtraB) that 951
Bob included in the MAC_Data.952

4. Alice performs decapsulation on the received ciphertext c using the previously gen-953
erated decapsulation key dk to calculate initial key KA0. Alice then derives two keys 954
from KA0 similarly to Bob (in step 2) with key-confirmation key KAkc and other keying 955
material KA1.956

5. Alice constructs MAC_Data as Bob did in step 3 and verifies the received tag for 957
the MAC_Data using key KAkc. Alice aborts if the tag is rejected or continues if it is 958
verified.959

6. Alice now has additional assurance that KA1 matches KB1. Alice and Bob destroy the 960
key-confirmation keys KAkc and KBkc and can proceed to use KA1 and KB1 as planned.961

5.5. Multi-algorithm KEMs and PQ/T Hybrids962

Combining multiple key-establishment schemes into a single key-establishment scheme 963
can be advantageous for some applications, e.g., during the migration to post-quantum 964
cryptography. The discussions of such schemes in this document will adhere to the termi-965
nology established in [23].966

A multi-algorithm key-establishment scheme combines shared secrets that are generated 967
using two or more key-establishment schemes. The underlying schemes are called the 968
components of the overall scheme. In general, it is not necessary that the multi-algorithm 969
scheme has the same interface as its components. In this document, for example, multi-970
algorithm schemes will always be KEMs, while their components need not be.971

A well-designed multi-algorithm scheme will be secure if at least one of the component 972
schemes is secure. This may provide some protection against vulnerabilities that are dis-973
covered in one of component schemes after deployment. The migration to post-quantum 974

26

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

key-establishment techniques, for example, might initially include multi-algorithm so-975
lutions that combine one new post-quantum algorithm with one tried-and-tested but 976
quantum-vulnerable (or traditional) algorithm. This is sometimes referred to as hybrid 977
PQ/T (post-quantum / traditional) key establishment. For example, X-Wing is a hybrid 978
PQ/T KEM built from two components: ML-KEM (a lattice-based post-quantum KEM) and 979
X25519 (a traditional Diffie-Hellman-style key exchange) [24].980

This section outlines approved approaches for multi-algorithm key establishment. Such an 981
approach proceeds in two stages, as follows.982

1. Establish shared secrets. All component key establishment schemes are run (typi-983
cally in parallel), resulting in Alice and Bob sharing a collection of shared secrets, one 984
for each component scheme.985

2. Combine shared secrets. Alice and Bob individually use a key combiner to combine 986
their individual shared secrets into a single shared secret each. Approved key com-987
biners are described in Section 5.5.2.988

For simplicity, the exposition below focuses on a particular case: constructing a single KEM 989
from two component KEMs. Since both the components and the multi-algorithm scheme 990
in this case are of the same type (i.e., KEMs), the result is called a composite KEM. Note 991
that most key-establishment schemes of interest can easily be adapted into KEMs (see, e.g., 992
ECDH-KEM in Section 6.1.1 and RSA-KEM in Section 6.1.2). Moreover, the hybrid PQ/T ap-993
plication typically calls for two component schemes: one post-quantum scheme, and one 994
traditional scheme. The two-algorithm composite KEM described below is easily adapted 995
to other cases, such as combining more than two schemes, or combining KEMs with non-996
KEMs.997

5.5.1. Constructing a Composite KEM998

Given two KEMs Π1 and Π2, one can construct a composite KEM C[Π1,Π2] via the following 999
sequence of steps:1000

1. Choose parameter sets. Choose a collection C[Π1,Π2].ParamSets of parameter 1001
sets. Each parameter set will be a pair p = (p1, p2), where p1 ∈Π1.ParamSets and 1002
p2 ∈Π2.ParamSets.1003

2. Select a key combiner. Choose a key combiner algorithm KeyCombine. The inputs 1004
to KeyCombine consist of a pair of shared secret keys (one from Π1 and one from 1005
Π2), as well as a pair of ciphertexts, a pair of encapsulation keys, and a parameter 1006
set; the output is a single shared secret key. Section 5.5.2 discusses NIST-approved 1007
key combiners.1008

3. Construct a composite key-generation algorithm. When a parameter set p =1009
(p1, p2) is input, the algorithm C[Π1,Π2].KeyGen will perform:1010

27

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

1. (ek1,dk1)←Π1.KeyGen(p1).1011

2. (ek2,dk2)←Π2.KeyGen(p2).1012

3. Output composite encapsulation key ek1‖ek2.1013

4. Output composite decapsulation key dk1‖dk2.1014

4. Construct a composite encapsulation algorithm. When a parameter set p =1015
(p1, p2) and encapsulation key ek1‖ek2 are input, the algorithm C[Π1,Π2].Encaps1016
will perform:1017

1. (K1,c1)←Π1.Encaps(p1,ek1).1018

2. (K2,c2)←Π2.Encaps(p2,ek2).1019

3. Output combined shared secret key1020

K← KeyCombine(K1,K2,c1,c2,ek1,ek2, p) . (9)

4. Output composite ciphertext c := c1‖c2.1021

5. Construct a composite decapsulation algorithm. When a parameter set p =1022
(p1, p2), decapsulation key dk1‖dk2, and ciphertext c1‖c2 are input, the algorithm 1023
C[Π1,Π2].Decaps will perform:1024

1. K′1←Π1.Decaps(p1,dk1,c1).1025

2. K′2←Π2.Decaps(p2,dk2,c2).1026

3. Output combined shared secret key1027

K′← KeyCombine(K′1,K
′
2,c1,c2,ek1,ek2, p) . (10)

Note that, since the inputs to KeyCombine include the composite encapsulation key, the 1028
decapsulating party must retain a copy of that key (or maintain the ability to re-create it) 1029
after performing key generation.1030

General multi-algorithm schemes. The above construction can be extended in the obvi-1031
ous way to composite constructions that use more than two component KEMs. Extend-1032
ing to the case of a completely general multi-algorithm key-establishment scheme can be 1033
more complex, as the components in such a scheme can vary widely. For example, such 1034
schemes could potentially include pre-shared keys or shared secrets established via Quan-1035
tum Key Distribution. Still, most multi-algorithm schemes will likely include a step in which 1036
a series of shared secrets are combined via a key combiner algorithm of a form similar to 1037
KeyCombine above. In those cases, an approved key-combiner discussed in Section 5.5.2 1038
shall be used.1039

28

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

5.5.2. Approved Key Combiners1040

This section describes approved methods for combining shared secrets as part of a multi-1041
algorithm key-establishment scheme. Choosing such a method amounts to selecting a key 1042
combiner KeyCombine. At a minimum, KeyCombine accepts two shared secrets as in-1043
put. Optionally, KeyCombine can also accept additional information, such as ciphertexts, 1044
encapsulation keys, parameter sets, or other context-dependent data (see, e.g., the com-1045
posite KEM in Section 5.5.1). As output, KeyCombine produces a shared secret key.1046

This section describes how cryptographic methods standardized in other NIST publications 1047
can, under an appropriate interpretation, be used as key combiners. There are two cate-1048
gories of such key combiners:1049

1. Key combiners from key derivation methods approved in SP 800-56Cr2 [21]1050

2. Key combiners from key combination methods approved in SP 800-133r2 [22]1051

Key derivation in SP800-56Cr2, in brief. SP 800-56Cr2 [21] specifies a collection of ap-1052
1053
1054
1055

1056

1057
1058

1059
1060
1061
1062

1063

proved methods for performing key derivation. In SP 800-56Cr2, a key derivation method
(KDM) is applied to a shared secret Z generated as specified in SP 800-56A [1] or SP 800-
56B [2] along with some additional input, and results in keying material K:

K← KDM(Z,OtherInput) . (11)

The key derivation method KDM can take one of two forms:

1. One-step key derivation. In this case, K is computed by applying a key-derivation
function KDF to the concatenation of the two inputs Z and OtherInput.

K← KDF(Z‖OtherInput) . (12)

2. Two-step key derivation. In this case, one requires two functions: Extract (which
is a randomness extractor) and Expand. The process begins with applying Extract
to Z, using a salt as the seed. Expand is then applied to the result along with the
remaining part of OtherInput.

K← Expand(Extract(salt,Z),OtherInput) . (13)

In this method, it is required that extraction is applied to the shared secret Z.

SP 800-56Cr2 describes the specific approved choices of KDF, Extract, and Expand, as 1064
well as the format and content of OtherInput. These details will not be discussed in this 1065
document.1066

As discussed in Section 5.3, this publication approves the application of SP 800-56Cr2 KDMs 1067
to the shared secret keys of approved KEMs. In particular, this means that the quantity Z1068
in Equation (11) (and hence also in (12) and (13)) can be the shared secret key of ML-KEM.1069

29

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Key combiners from SP800-56C. In both one-step and two-step key derivation, SP 800-1070
1071
1072
1073
1074
1075

1076

56Cr2 allows the shared secret Z to have the form Z = S1‖S2, where S1 is a shared secret
generated as specified in SP 800-56A [1] or SP 800-56B [2], while S2 is a shared secret
generated in some other (not necessarily approved) manner. This yields a key combiner
K←KDM(S1‖S2,OtherInput) for a two-algorithm key-establishment scheme. Since one
is free to choose S2 arbitrarily, one can also combine many shared secrets:

K← KDM(S1‖S2‖· · ·‖St ,OtherInput) (14)

This publication approves the use of the key combiner (14) for any t > 1, so long as at
least one shared secret (i.e., S j for some j) is a shared secret generated from the key-1077
establishment methods of SP 800-56A [1] or SP 800-56B [2], or an approved KEM. It is 1078
important to note that, in the case where the KDM in the combiner (14) is a two-step 1079
method (i.e., using (13)), extraction is performed with all shared secrets as the input.1080

SP 800-56Cr2 allows OtherInput to contain an input that is chosen arbitrarily by the al-1081
gorithm designer; this optional input is contained in a parameter called FixedInfo in SP 1082
800-56Cr2. By choosing FixedInfo appropriately, one can also construct approved key 1083
combiners of the form (14) that, in addition to shared secrets, also receive additional in-1084
puts like encapsulation keys, ciphertexts, parameter sets, and domain separators.1085

As an example, consider the following simple special case. Choose KDM to be the one-1086
1087
1088
1089
1090

1091

step key derivation method where KDF is a hash function H (chosen from the list of hash
functions approved for this purpose by SP 800-56Cr2). Set OtherInput to contain only
the concatenation of ciphertexts, encapsulation keys, and the parameter set. Then define
a key combiner algorithm KeyCombine simply by setting

KeyCombine(K1,K2,c1,c2,ek1,ek2, p) := H(K1‖K2‖c1‖c2‖ek1‖ek2‖p) . (15)

One can then instantiate the composite KEM example from Section 5.5 by using this key
combiner. The resulting composite KEM will have a shared secret key whose length is the 1092
output length of H.1093

Key combiners derived from SP 800-133r2. Section 6.3 of SP 800-133r2 [22] provides 1094
three approved methods for combining cryptographic keys that were generated in an ap-1095
proved way. These methods can be broadly described as concatenation, XORing, and key 1096
extraction using HMAC. Some of these methods can also be applied to just a single key. 1097
As discussed in Section 5.3, these methods are approved for key derivation for approved 1098
KEMs.1099

When combining multiple keys K1,K2, . . . ,Kt , the key-combination methods found in SP 1100
800-133 [22] require every key K j for j ∈ {1,2, . . . , t} to be generated using approved 1101
methods. These methods can thus be used directly as key combiners for constructing 1102
multi-algorithm schemes in cases where all of the component schemes are approved, and 1103
each one produces a key.1104

30

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

5.5.3. Security Considerations for Composite Schemes1105

The typical goal of a composite KEM construction is to ensure that security will hold if either1106
of the component KEMs is secure. There are some important security considerations when 1107
constructing composite KEMs.1108

Theoretical security. The two main security properties that KEMs can satisfy (see Section 1109
3.3) are:1110

1. IND-CPA security (i.e., security against passive eavesdropping attacks)1111

2. IND-CCA security (i.e., security against active attacks)1112

A well-constructed composite KEM C[Π1,Π2] should preserve the security properties of 1113
its component KEMs Π1 and Π2. This crucially depends on how the composite KEM is 1114
constructed and particularly on the choice of key combiner.1115

An important example is the case in which the goal is active (i.e., IND-CCA) security, but 1116
1117
1118
1119

1120

only one of the two schemes Π1 and Π2 is itself IND-CCA (and of course, the designer of the
composite scheme does not know which one it is). In this case, the choice of key combiner
is particularly relevant here. As shown in [25], the straightforward key combiner

K← KDF(K1‖K2) (16)

that only uses the two shared secret keys K1 (of Π1) and K2 (of Π2) does not preserve
IND-CCA security. So, for example, the scheme Π2 could be so broken that C[Π1,Π2] is not 1121
IND-CCA, even if Π1 is IND-CCA and regardless of what KDF is used.1122

Therefore, NIST encourages the use of key combiners that generically preserve IND-CCA 1123
security. One example of such a key-combiner is as follows [25]. Let H denote a hash 1124
function approved for one-step key-derivation in SP 800-56C [21]. Define the key combiner 1125
KeyCombineCCA

H as follows (recalling the notation of Section 5.5):1126

• Inputs from Π1: ek1, c1, K11127

• Inputs from Π2: ek2, c2, K21128

• Output: H(K1‖K2‖c1‖c2‖ek1‖ek2‖domain_separator)1129

The domain_separator should be used to uniquely identify the composite scheme in use 1130
(e.g., Π1, Π2, the order of composition, the choice of key combiner and KDF)1131

Security in practice. While composite schemes are meant to increase security, they nec-1132
essarily add a layer of additional complexity to the basic KEM framework. This additional 1133
complexity will be reflected in implementations and applications and could introduce se-1134
curity vulnerabilities. Moreover, adding composite schemes introduces additional choices 1135
in protocols, which could also introduce vulnerabilities (e.g., in the form of “downgrade” 1136
attacks). Implementers and users should be aware of the potential challenges in imple-1137
menting and deploying composite schemes.1138

31

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

6. Examples1139

This section contains a number of examples. It does not contain any requirements or spe-1140
cific guidance. Instead, its purpose is to aid the reader in understanding some aspects of 1141
how KEMs are constructed and used in a manner that is consistent with NIST guidance.1142

6.1. Examples of KEMs1143

The following subsections discuss three key-encapsulation mechanisms: ECDH-KEM, RSA-1144
KEM, and ML-KEM. While ECDH and RSA key transport are perhaps not typically described 1145
as KEMs, the discussions below will give a high-level description of how both can be natu-1146
rally viewed as KEMs. The goal of these descriptions is illustrative only. As FIPS 203 already 1147
contains a complete description of ML-KEM, the relevant discussion below will simply ref-1148
erence the relevant parts of FIPS 203 [3].1149

6.1.1. A KEM From Diffie-Hellman1150

A KEM may be constructed from a Diffie-Hellman (DH) key-agreement scheme. The high-1151
level idea is that, if the two parties in a DH scheme send their messages in sequential order 1152
(e.g., Alice first, then Bob), then:1153

1. the public message and private randomness of Alice can be viewed as an encapsu-1154
lation key and a decapsulation key (respectively), and1155

2. the public message and private randomness of Bob can be viewed as a ciphertext 1156
and a shared secret (respectively).1157

For example, a KEM can be constructed from the C(1e, 1s, ECC CDH) Scheme from SP 800-1158
56Ar3 [1] as follows:1159

• ECDH-KEM.ParamSets. The parameter sets are the same as those specified for ECDH 1160
in Section 5.5.1.2 of SP 800-56Ar3.1161

• ECDH-KEM.KeyGen. The key-generation algorithm is the same as the one specified 1162
in Section 5.6.1.2 of SP 800-56Ar3.1163

• ECDH-KEM.Encaps. To encapsulate, perform Party U’s actions from Section 6.2.2.2 1164
of SP 800-56Ar3. The output is the key (i.e., the derived secret keying material) along 1165
with the ciphertext (i.e., the ephemeral public key Qe,U).1166

• ECDH-KEM.Decaps. To decapsulate, perform Party V’s actions from Section 6.2.2.2 1167
of SP 800-56Ar3. The output key is the derived secret keying material.1168

Use of this KEM would require that all assumptions for the scheme specified in SP 800-1169
56Ar3 are met and that all necessary assurances have been obtained. In similar ways, 1170
KEMs could be constructed from the C(1e, 1s, FFC DH), C(2e, 0s, ECC CDH), and C(2e, 0s, 1171
FFC DH) schemes.1172

32

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

6.1.2. A KEM from RSA Secret-Value Encapsulation1173

As discussed in Section 3.2, any public-key encryption (PKE) scheme can be used to con-1174
struct a KEM. A concrete example of this is RSA Secret-Value Encapsulation (RSASVE). The 1175
high-level idea is described as follows.1176

1. Alice sends an RSA public-key to Bob. (Optionally, Alice can send some other public 1177
information to Bob such as a nonce for key derivation.)1178

2. Bob generates a secret value and encapsulates it with the RSA public-key to produce 1179
the ciphertext. A key is derived from the secret value. The output of encapsulation 1180
is the ciphertext and derived key.1181

3. Alice decapsulates the ciphertext using her RSA private key to obtain the secret value 1182
that is used to derive the key.1183

For example, a KEM can be constructed from RSASVE from SP 800-56Br2 [2] as follows:1184

1. RSASVE-KEM.ParamSets. The parameter set is the binary length of the modulus as 1185
specified as in Table 2, Section 6.3 of SP 800-56Br2, along with the exponent e.1186

2. RSASVE-KEM.KeyGen. The key generation algorithm is specified in Section 6.3 of SP 1187
800-56Br2 (see also Appendix C.2 of FIPS 186-5).1188

3. RSASVE-KEM.Encaps. To encapsulate, perform RSASVE.GENERATE as specified in 1189
Section 7.2.1.2 of SP 800-56Br2. The output is the secret value (from which to derive 1190
a key) and ciphertext. With a nonce for key derivation provided by Party V, this step 1191
is the same as the operation of Party U in the KAS1-basic scheme specified in Section 1192
8.2.2 of SP 800-56Br2.1193

4. RSASVE-KEM.Decaps. To decapsulate, perform RSASVE.RECOVER as specified in Sec-1194
tion 7.2.1.3 of SP 800-56Br2. The output key is derived from the secret value output 1195
by RSASVE.RECOVER. With a nonce for key derivation (previously provided to Party 1196
U), this step is the same as the operation of Party V in the KAS1-basic scheme spec-1197
ified in Section 8.2.2 of SP 800-56Br2.1198

Use of this KEM would require that all assumptions for the scheme specified in SP 800-1199
56Ar2 are met and that all necessary assurances have been obtained. In similar ways, 1200
KEMs could be constructed from RSA-OAEP-basic as specified in Section 9.2.3.1201

6.1.3. ML-KEM1202

ML-KEM is a high-performance, general-purpose, lattice-based key-encapsulation mecha-1203
nism. It is a NIST-approved KEM and was standardized in FIPS 203 [3]. ML-KEM is based on 1204
CRYSTALS-Kyber [26], which was a candidate submitted to the NIST PQC standardization 1205
process. It is believed to satisfy IND-CCA security (Definition 4), even against adversaries 1206

33

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

in possession of a cryptanalytically-relevant quantum computer [17, 27, 28]. The asymp-1207
totic, theoretical security of ML-KEM is based on the presumed hardness of the Module 1208
Learning with Errors (MLWE) problem [29, 30].1209

FIPS 203 describes ML-KEM directly as a KEM in a manner that closely matches the notation 1210
of this document. Specifically, the components of ML-KEM are described in FIPS 203 as 1211
follows [3]:1212

• ML-KEM.ParamSets. There are three parameter sets described in Section 8 of FIPS 1213
203: ML-KEM-512, ML-KEM-768, and ML-KEM-1024.1214

• ML-KEM.KeyGen. The key generation algorithm of ML-KEM is specified as Algorithm 1215
19 in Section 7.1 of FIPS 203.1216

• ML-KEM.Encaps. The encapsulation algorithm of ML-KEM is specified as Algorithm 1217
20 in Section 7.2 of FIPS 203.1218

• ML-KEM.Decaps. The decapsulation algorithm of ML-KEM is specified as Algorithm 1219
21 in Section 7.3 of FIPS 203.1220

Note that this document treats parameter sets as an explicit input for the KEM algorithms 1221
KeyGen, Encaps, and Decaps. By contrast, the algorithms of ML-KEM as described in FIPS 1222
203 expect the chosen parameter set to be stored in a set of global variables that are 1223
accessible to each of the algorithms of ML-KEM. This is only a difference in presentation 1224
and does not imply any particular implementation requirement.1225

6.2. Examples of Applications of KEMs1226

This section provides a high-level overview of a few example applications of KEMs.1227

6.2.1. Hybrid Public-Key Encryption (HPKE)1228

A KEM can be combined with a symmetric-key encryption scheme to yield very effi-1229
cient public-key encryption. This is sometimes referred to as a hybrid PKE (HPKE), which 1230
should not be confused with “hybrid PQC.” The former refers to combining a KEM with 1231
symmetric-key encryption, and the latter refers to combining a quantum-vulnerable key-1232
establishment scheme with a quantum-resistant KEM.1233

The prescription for constructing an HPKE scheme is as follows. Let Π be a KEM, and let 1234
Ξ= (Encrypt,Decrypt) be a symmetric-key encryption scheme. One then constructs a PKE 1235
called HPKE as follows:1236

• HPKE.ParamSets= Π.ParamSets1237

• HPKE.KeyGen= Π.KeyGen1238

• HPKE.Encrypt: Using input p, ek, and message m:1239

34

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

1. Compute (K,cΠ)←Π.Encaps(p,ekA);1240

2. Compute cΞ← Ξ.Encrypt(K,m); and1241

3. Output (cΠ,cΞ).1242

• HPKE.Decrypt: Using input p, dk, and (cΠ,cΞ),1243

1. Compute K′←Π.Decaps(p,dk,cΠ); and1244

2. Output m′← Ξ.Decrypt(K′,cΞ).1245

Here, the keys of Ξ are assumed to be the same length as the shared secret keys pro-1246
duced by Π. If not, appropriate key-derivation steps (see Section 5.3) can be added to 1247
HPKE.Encrypt and HPKE.Decrypt to transform the shared secret key of Π into a key that is 1248
appropriate for use with Ξ.1249

Figure 6 shows the procedure for sending an encrypted message m from Bob to Alice using 1250
HPKE.1251

Alice Bob

(ek,dk)←Π.KeyGen(p)
ek, p−−−−−−−−→

(K,cΠ)←Π.Encaps(p,ek)

cΞ← Ξ.Encrypt(K,m)
cΠ,cΞ←−−−−−−−−

K′←Π.Decaps(p,dk,cΠ)

m← Ξ.Decrypt(K′,cΞ)

Fig. 6. Sending a message using HPKE

This same procedure can also be used to perform key transport by choosing m uniformly 1252
at random.1253

6.2.2. Static-Ephemeral Key Establishment1254

Most applications of key establishment require at least one party to authenticate their 1255
identity, such as KEM key establishment with a static encapsulation key that is authen-1256
ticated by a chain of certificates. A description of such a procedure is given below and 1257
depicted in Figure 7.1258

1. At the outset, Alice has a long-term key pair that she generated earlier via (ek,dk)←1259
Π.KeyGen(p). Here, Π is some KEM, and p is some parameter set of Π. Alice also 1260

35

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Alice (server) Bob (client)
1. static: (ek,dk)

cert[ek, p, Alice]
cert[ek, p,Alice]−−−−−−−−−−→

2. if cert[ek, p, Alice]invalid, abort.
(KB,c)←Π.Encaps(p,ek)

c←−−−−−−−−−−−
3. KA←Π.Decaps(p,dk,c)

4. t← MAC(KA,c)
t−−−−−−−−−−→

if MAC.Ver(KB,c, t)rejects, abort.
5. result: KA result: KB

Fig. 7. Static-ephemeral key establishment using a KEM

has a certificate cert[ek, p,Alice] that contains ek and p and associates them both to 1261
Alice’s identity.1262

2. When Bob wants to connect to Alice, he acquires cert[ek, p,Alice] (e.g., from Alice), 1263
verifies that the certificate is valid, and extracts ek and p from the certificate. He 1264
then performs encapsulation with ek, saves the resulting shared secret key KB, and 1265
sends the ciphertext c to Alice.1266

3. Alice decapsulates c and gets a shared secret key KA.1267

4. Alice and Bob perform key confirmation to ensure that key establishment was suc-1268
cessful. Alice uses a message authentication code MAC to generate a tag t ←1269
MAC(KA,c) for the ciphertext c and sends t to Bob. Bob then runs MAC verification 1270
and aborts unless the tag t is accepted.1271

5. Alice and Bob can now use their shared secret keys to communicate efficiently and 1272
securely using symmetric-key cryptography.1273

It is assumed that if the certificate chain was valid, then only Alice was capable of perform-1274
ing decapsulation of ciphertexts encapsulated using ek.1275

6.2.3. Ephemeral Authenticated Key Establishment1276

This section describes an alternative approach to unilaterally authenticated key establish-1277
ment using a KEM. Compared to the example in Section 6.2.2, Alice and Bob will now have 1278
the opposite roles in the protocol. Specifically, Bob is now the authenticated party (e.g., 1279

36

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

a web server), while Alice is the unauthenticated party (e.g., a browser client). KEM key 1280
generation will now be performed by the client (i.e., Alice), and Alice will discard the KEM 1281
key pair once the connection is established. As the server (i.e., Bob) no longer uses a static 1282
KEM encapsulation key, he will need to establish his identity through other means. In this 1283
example, that will be done via a digital signature verification key provided in a certificate 1284
and verified as part of a certificate chain.1285

The protocol proceeds as follows (see Figure 8.) Let Σ be a digital signature scheme with 1286
algorithms Σ.KeyGen, Σ.Sign, and Σ.Ver. Recall that KEM key pairs are denoted by ek1287
(encaps key, public) and dk (decaps key, private). For the digital signature, key pairs are 1288
denoted by vk (verification key, public) and sk (signing key, private).1289

Alice (client) Bob (server)
1. static: (vkB,skB)

cert[vkB,Bob]

2. (ekA,dkA)←Π.KeyGen(p)
ekA, p−−−−−−−−−−−→

3. (KB,cB)←Π.Encaps(p,ekA)

σ ← Σ.Sign(skB, transcript)
(K′B,K

′′
B)← KDF(KB)

cert[vkB,Bob],σ ,cB←−−−−−−−−−−−
4. if cert[vkB, Bob]invalid, abort.
if Σ.Ver(vkB,σ , transcript) =⊥, abort.
KA←Π.Decaps(p,dkA,cB)

(K′A,K
′′
A)← KDF(KA)

5. result: K′A,K
′′
A result: K′B,K

′′
B

Fig. 8. Using a KEM for key establishment with unilateral authentication

1. The protocol begins with Alice (who will not need to authenticate herself) and Bob 1290
(who has previously generated a static digital signature key pair (vkB,skB)).1291

2. Alice generates a KEM key pair (ekA,dkA) and sends the encapsulation key ekA and 1292
the relevant parameter set p to Bob, keeping the decapsulation key dkA private.1293

3. Bob performs encapsulation using ekA, which results in a KEM ciphertext cB and a 1294
shared secret key KB. Bob then uses his private signing key skB to sign the transcript 1295
of all communications with Alice, including what he will send in this transmission. 1296

37

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

This transcript includes ekA, p, vkB, cB, and a certificate chain cert[vkB,Bob] that 1297
establishes that vkB is associated with Bob’s identity. He then sends the ciphertext, 1298
certificate chain, and signature to Alice. Finally, he applies a key-derivation function 1299
KDF to KB in order to produce two symmetric keys K′B and K′′B , destroys KB, and 1300
keeps K′B and K′′B private.1301

4. Next, Alice performs two checks. First, she checks the validity of Bob’s claimed cer-1302
tificate chain with the appropriate certification authority. Second, she verifies Bob’s 1303
signature on the transcript. If either check fails, Alice aborts. Otherwise, she decap-1304
sulates cB and keeps the resulting shared secret key KA private. She also derives two 1305
keys K′A and K′′A via KDF applied to KA.1306

5. Alice and Bob can now use the keys K′A and K′′A for symmetric-key cryptography. For 1307
example, they could use K′A for encryption and K′′A for authentication.1308

38

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

References1309

[1] Barker EB, Chen L, Roginsky A, Vassilev A, Davis R (2018) Recommendation for pair-1310
wise key-establishment schemes using discrete logarithm cryptography (U.S. Depart-1311
ment of Commerce, Washington, D.C.), NIST Special Publication (SP) NIST SP 800-1312
56Ar3. https://doi.org/10.6028/NIST.SP.800-56Ar31313

[2] Barker EB, Chen L, Roginsky A, Vassilev A, Davis R, Simon S (2019) Recommendation 1314
for pair-wise key-establishment using integer factorization cryptography (U.S. Depart-1315
ment of Commerce, Washington, D.C.), NIST Special Publication (SP) NIST SP 800-1316
56Br2. https://doi.org/10.6028/NIST.SP.800-56Br21317

[3] National Institute of Standards and Technology (2024) Module-lattice-based key-1318
encapsulation mechanism standard (U.S. Department of Commerce, Washington, 1319
D.C.), Federal Information Processing Standards Publications (FIPS PUBS) NIST FIPS 1320
203, August, 2024. https://doi.org/10.6028/NIST.FIPS.2031321

[4] Moody D, Perlner R, Regenscheid A, Robinson A, Cooper D (2024) Transition to post-1322
quantum cryptography standards (National Institute of Standards and Technology),1323

[5] National Institute of Standards and Technology (2001) Security requirements for cryp-1324
tographic modules (U.S. Department of Commerce, Washington, D.C.), Federal In-1325
formation Processing Standards Publications (FIPS PUBS) NIST FIPS 140-3, March 03, 1326
2019. https://doi.org/10.6028/NIST.FIPS.140-31327

[6] Barker EB, Kelsey J (2015) Recommendation for random number generation using 1328
deterministic random bit generators (U.S. Department of Commerce, Washington, 1329
D.C.), NIST Special Publication (SP) NIST SP 800-90Ar1. https://doi.org/10.6028/NIST1330
.SP.800-90Ar11331

[7] Turan MS, Barker E, Kelsey J, McKay K, Baish M, Boyle M (2018) Recommendation for 1332
the entropy sources used for random bit generation (U.S. Department of Commerce, 1333
Washington, D.C.), NIST Special Publication (SP) NIST SP 800-90B. https://doi.org/101334
.6028/NIST.SP.800-90B1335

[8] Barker EB, Kelsey J, Roginsky A, Turan MS (2024) Recommendation for random bit 1336
generator (RBG) constructions (U.S. Department of Commerce, Washington, D.C.), 1337
NIST Special Publication (SP) NIST SP 800-90C4pd. https://doi.org/10.6028/NIST.SP.1338
800-90C.4pd1339

[9] Barker E, Branstad D, Smid M (2015) A Profile for U.S. Federal Cryptographic Key Man-1340
agement Systems (CKMS) (National Institute of Standards and Technology, Gaithers-1341
burg, MD), NIST Special Publication (SP) NIST SP 800-152. https://doi.org/10.6028/1342
NIST.SP.800-1521343

[10] Shoup V (2001) A proposal for an ISO standard for public key encryption, Cryptology 1344
ePrint Archive, Paper 2001/112. Available at https://eprint.iacr.org/2001/112.1345

[11] Cramer R, Shoup V (2003) Design and analysis of practical public-key encryption 1346
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Comput-1347
ing 33(1):167–226.1348

39

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90C.4pd
https://doi.org/10.6028/NIST.SP.800-90C.4pd
https://doi.org/10.6028/NIST.SP.800-90C.4pd
https://doi.org/10.6028/NIST.SP.800-152
https://doi.org/10.6028/NIST.SP.800-152
https://doi.org/10.6028/NIST.SP.800-152
https://eprint.iacr.org/2001/112

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

[12] Herranz J, Hofheinz D, Kiltz E (2006) Some (in)sufficient conditions for secure hybrid 1349
encryption, Cryptology ePrint Archive, Paper 2006/265. Available at https://eprint.i1350
acr.org/2006/265.1351

[13] Brainard J, Kaliski B, Turner S, Randall J (2010) Use of the RSA-KEM Key Transport 1352
Algorithm in the Cryptographic Message Syntax (CMS), RFC 5990. https://doi.org/1353
10.17487/RFC5990.1354

[14] American National Standards Institute (2011) ANSI X9.63, Public Key Cryptography 1355
for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic 1356
Curve Cryptography.1357

[15] American National Standards Institute (2007) ANSI X9.44, Public Key Cryptography for 1358
the Financial Services Industry: Key Establishment Using Integer Factorization Cryp-1359
tography.1360

[16] National Institute of Standards and Technology (2023) Module-lattice-based key-1361
encapsulation mechanism standard (U.S. Department of Commerce, Washington, 1362
D.C.), Federal Information Processing Standards Publications (FIPS PUBS) NIST FIPS 1363
203 ipd, August, 2023. https://doi.org/10.6028/NIST.FIPS.203.ipd1364

[17] Katz J, Lindell Y (2020) Introduction to Modern Cryptography (Chapman & Hall/CRC), 1365
3rd Ed.1366

[18] Barker E (2020) Recommendation for Key Management: Part 1 – General (National 1367
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication 1368
(SP) NIST SP 800-57pt1r5. https://doi.org/10.6028/NIST.SP.800-57pt1r51369

[19] Dworkin M (2007) Recommendation for Block Cipher Modes of Operation: Ga-1370
lois/Counter Mode (GCM) and GMAC (National Institute of Standards and Technology, 1371
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-38D. https://doi.org/1372
10.6028/NIST.SP.800-38D1373

[20] Chen L (2022) Recommendation for key derivation using pseudorandom functions 1374
(U.S. Department of Commerce, Washington, D.C.), NIST Special Publication (SP) NIST 1375
SP 800-108r1. https://doi.org/10.6028/NIST.SP.800-108r11376

[21] Barker EB, Chen L, Davis R (2020) Recommendation for key-derivation methods in 1377
key-establishment schemes (U.S. Department of Commerce, Washington, D.C.), NIST 1378
Special Publication (SP) NIST SP 800-56Cr2. https://doi.org/10.6028/NIST.SP.800-51379
6Cr21380

[22] Barker EB, Roginsky A, Davis R (2020) Recommendation for cryptographic key gen-1381
eration (U.S. Department of Commerce, Washington, D.C.), NIST Special Publication 1382
(SP) NIST SP 800-13r2. https://doi.org/10.6028/NIST.SP.800-133r21383

[23] Driscoll F, Parsons M, Hale B (2024) Terminology for Post-Quantum Traditional Hy-1384
brid Schemes (Internet Engineering Task Force), Internet-Draft draft-ietf-pquip-pqt-1385
hybrid-terminology-05. Work in Progress. Available at https://datatracker.ietf.org/d1386
oc/draft-ietf-pquip-pqt-hybrid-terminology/05/.1387

[24] Barbosa M, Connolly D, Duarte JD, Kaiser A, Schwabe P, Varner K, Westerbaan B (2024) 1388
X-wing. IACR Communications in Cryptology 1(1). https://doi.org/10.62056/a3qj89n1389
4e1390

40

https://eprint.iacr.org/2006/265
https://eprint.iacr.org/2006/265
https://eprint.iacr.org/2006/265
https://doi.org/10.17487/RFC5990
https://doi.org/10.17487/RFC5990
https://doi.org/10.17487/RFC5990
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-108r1
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-133r2
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/05/
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/05/
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/05/
https://doi.org/10.62056/a3qj89n4e
https://doi.org/10.62056/a3qj89n4e
https://doi.org/10.62056/a3qj89n4e

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

[25] Giacon F, Heuer F, Poettering B (2018) KEM combiners. Public-Key Cryptography – PKC 1391
2018, eds Abdalla M, Dahab R (Springer International Publishing, Cham), pp 190–218.1392

[26] Avanzi R, Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashekvsky V, Schanck JM, Schwabe 1393
P, Seiler G, Stehlé’ D (2021) CRYSTALS-Kyber Algorithm Specifications and Supporting 1394
Documentation (version 3.02). Available at https://pq-crystals.org/kyber/data/kyb1395
er-specification-round3-20210804.pdf.1396

[27] Avanzi R, Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe 1397
P, Seiler G, Stehlé D (2020) CRYSTALS-Kyber algorithm specifications and supporting 1398
documentation, Third-round submission to the NIST’s post-quantum cryptography 1399
standardization process. Available at https://csrc.nist.gov/Projects/post-quantum-c1400
ryptography/post-quantum-cryptography-standardization/round-3-submissions.1401

[28] Almeida JB, Olmos SA, Barbosa M, Barthe G, Dupressoir F, Grégoire B, Laporte V, 1402
Léchenet JC, Low C, Oliveira T, Pacheco H, Quaresma M, Schwabe P, Strub PY (2024) 1403
Formally verifying Kyber episode V: Machine-checked IND-CCA security and correct-1404
ness of ML-KEM in EasyCrypt, Cryptology ePrint Archive, Paper 2024/843. Available 1405
at https://eprint.iacr.org/2024/843.1406

[29] Regev O (2005) On lattices, learning with errors, random linear codes, and cryptogra-1407
phy. Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Comput-1408
ing STOC ’05 (Association for Computing Machinery, New York, NY, USA), pp 84––93. 1409
https://doi.org/10.1145/1060590.1060603.1410

[30] Langlois A, Stehlé D (2015) Worst-case to average-case reductions for module lattices. 1411
Designs, Codes and Cryptography 75(3):565–599. https://doi.org/10.1007/s10623-01412
14-9938-4.1413

[31] Sönmez Turan M, Brandão L (2010) Keyed-Hash Message Authentication Code 1414
(HMAC): Specification of HMAC and Recommendations for Message Authentication 1415
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Pub-1416
lication (SP) NIST SP 800-224 ipd. https://doi.org/10.6028/NIST.SP.800-224.ipd1417

[32] Dworkin M (2010) Recommendation for Block Cipher Modes of Operation: Three 1418
Variants of Ciphertext Stealing for CBC Mode (National Institute of Standards and 1419
Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-38B. 1420
https://doi.org/10.6028/NIST.SP.800-38B1421

[33] Kelsey J, Chang SJ, Perlner R (2016) SHA-3 derived functions: cSHAKE, KMAC, Tuple-1422
Hash and ParallelHash (U.S. Department of Commerce, Washington, D.C.), NIST Spe-1423
cial Publication (SP) NIST SP 800-185. https://doi.org/10.6028/NIST.SP.800-1851424

41

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2024/843
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.6028/NIST.SP.800-224.ipd
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-185

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Appendix A. Cryptographic Components1425

1426

Appendix A.1. Message Authentication Codes (MACs)

A message authentication code (MAC) algorithm defines a family of cryptographic func-1427
tions that is parameterized by a symmetric key. It is computationally infeasible to de-1428
termine the MAC of a newly formed MacData output value without knowledge of the 1429
MacKey value, even if one has seen the MACs corresponding to other MacData values 1430
that were computed using that same MacKey value.1431

The input to a MAC algorithm includes a symmetric key MacKey and a binary data string 1432
MacData that serves as the “message.” That is, a MAC computation is represented as 1433
MAC(MacKey, MacData). In this recommendation, a MAC algorithm is used if key confir-1434
mation is performed during key establishment (see Section 5.4).1435

When key confirmation requires the use of a MAC, it shall be an approved MAC algorithm 1436
(i.e., HMAC, AES-CMAC, or KMAC). HMAC is specified in SP 800-224 [31] and requires the 1437
use of an approved hash function. AES-CMAC is specified in SP 800-38B [32] for the AES 1438
block cipher algorithm specified in FIPS 197. KMAC is specified in SP 800-185 [33].1439

When a MAC tag (MacTag) is used for key confirmation, an entity shall compute the MAC 1440
tag on received or derived data using a MAC algorithm with a MacKey that is determined 1441
from a shared secret key. The MAC tag is sent to the other entity participating in the key-1442
establishment scheme in order to provide assurance that the shared secret key or derived 1443
keying material was correctly computed. MAC-tag computation and verification are de-1444
fined in Sections A.1.3.1 and A.1.3.2.1445

MAC Tag Computation for Key Confirmation. Key confirmation can be performed as one 1446
or more additional steps in a KEM scheme. The computation of a MacTag is represented 1447
as follows:1448

MacTag = TMacTagBits[MAC(MacKey, MacData)].1449

To compute a MacTag:1450

1. The agreed-upon MAC algorithm (see Section A.1.3) is used with MacKey to com-1451
pute the MAC on MacData, where MacKey is a symmetric key, and MacData rep-1452
resents the input “message” data. The minimum length of MacKey is specified in 1453
Table 1.1454

MacKey is obtained from the Derived_Keying_Material when a KEM scheme em-1455
ploys key confirmation, as specified in Section 5.4.1456

The output MacOut put of the MAC algorithm is a bit string whose length in bits is 1457
MacOut putBits.1458

42

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

Table 1. Approved MAC algorithms for key confirmation

Mac Algorithm MacOutputBits
Permissible
Lengths (µ bits)

KC_Key
Supported Security
Strengths for Key
Confirmation (s bits)

HMAC_SHA-256 256

s≤ µ ≤ 512
128≤ s≤ 256

HMAC_SHA-512/256 256

HMAC_SHA-384 384

HMAC_SHA-512 512

HMAC_SHA3-256 256

HMAC_SHA3-384 384

HMAC_SHA3-512 512

KMAC128 ≤ 22040−1
s = 128

KMAC256 128≤ s≤ 256
AES-128-CMAC 128 µ = 128 s = 128
AES-192-CMAC 128 µ = 192 128≤ s≤ 192
AES-256-CMAC 128 µ = 256 128≤ s≤ 256

2. Those bits are input to the truncation function TMacTagBits, which returns the 1459
leftmost (i.e., initial) bits of MacOut put to be used as the value of MacTag. 1460
MacTagBits shall be less than or equal to MacOut putBits. When MacTagBits1461
equals MacOut putBits, TMacTagBits acts as the identity function. The minimum value 1462
for MacTagBits is 64, as specified in Section 5.4.1.1463

MacTag Verification for Key Confirmation. To verify a received MacTag (i.e., received dur-1464
ing key confirmation), a new MacTag MacTag′ is computed using the values of MacKey, 1465
MacTagBits, and MacData possessed by the recipient (as specified in Section 5.4.1). 1466
MacTag′ is compared with the received MacTag. If their values are equal, then it may 1467
be inferred that the same MacKey, MacTagBits, and MacData values were used in the 1468
two MacTag computations.1469

Appendix A.2. Random Bit Generators1470

When this recommendation requires the use of a randomly generated value (e.g., for ob-1471
taining the randomness use in KeyGen and Encaps), the values shall be generated using an 1472
approved random bit generator that supports the targeted security strength (see the SP 1473
800-90 series of publications).1474

Appendix A.3. Nonces1475

A nonce is a time-varying value with a negligible chance of repeating (where the meaning 1476
of “negligible” may be application-specific). A decapsulator may be required to provide a 1477

43

NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

public nonce that is used for key-confirmation purposes. This circumstance arises when 1478
the decapsulator’s public key is static.1479

A nonce may be composed of one or more of the following components, though other 1480
components may also be appropriate:1481

1. A random bit string that is generated anew for each nonce using an approved ran-1482
dom bit generator. A nonce containing a component of this type is called a random 1483
nonce.1484

2. A timestamp of sufficient resolution so that it is different each time it is used.1485

3. A monotonically increasing sequence number.1486

4 A combination of a timestamp and a monotonically increasing sequence num-1487
ber such that the sequence number is reset when and only when the timestamp 1488
changes. For example, a timestamp may show the date but not the time of day, so 1489
a sequence number is appended that will not repeat during a particular day.1490

Whenever a nonce is required for key-confirmation purposes as specified in this recom-1491
mendation, it should be a random nonce containing a random bit string output from an 1492
approved random bit generator, where both the security strength supported by the instan-1493
tiation of the random bit generator and the bit length of the random bit string are greater 1494
than or equal to the targeted security strength of the key-establishment scheme in which 1495
the nonce is used during key confirmation. When feasible, the bit length of the random 1496
bit string should be at least twice the targeted security strength. For details concerning 1497
the security strength supported by an instantiation of a random bit generator, see the SP 1498
800-90 series of publications [6? , 7].1499

As part of the proper implementation of this recommendation, system users and/or agents 1500
trusted to act on their behalf should determine that the components selected for inclusion 1501
in any required nonces meet their security requirements.1502

44

	1 Introduction
	1.1 Background
	1.2 Scope and Purpose

	2 Definitions and Requirements
	2.1 Definitions
	2.2 Requirements

	3 Overview of Key-Encapsulation Mechanisms
	3.1 Introduction
	3.2 Basic Definitions and Examples
	3.3 Theoretical Security of KEMs

	4 Requirements for Secure KEM Implementations
	4.1 Compliance to NIST Standards and Validation
	4.2 Managing Cryptographic Data
	4.3 Additional Requirements

	5 Using KEMs Securely in Applications
	5.1 How to Establish a Key With a KEM
	5.2 Conditions for Using KEMs Securely
	5.3 Key Derivation
	5.4 Key Confirmation
	5.4.1 Creating the MAC Data
	5.4.2 Obtaining the Key-Confirmation Key
	5.4.3 Key-Confirmation Example

	5.5 Multi-algorithm KEMs and PQ/T Hybrids
	5.5.1 Constructing a Composite KEM
	5.5.2 Approved Key Combiners
	5.5.3 Security Considerations for Composite Schemes

	6 Examples
	6.1 Examples of KEMs
	6.1.1 A KEM From Diffie-Hellman
	6.1.2 A KEM from RSA Secret-Value Encapsulation
	6.1.3 ML-KEM

	6.2 Examples of Applications of KEMs
	6.2.1 Hybrid Public-Key Encryption (HPKE)
	6.2.2 Static-Ephemeral Key Establishment
	6.2.3 Ephemeral Authenticated Key Establishment

	References
	Appendix A Cryptographic Components
	A.1 Message Authentication Codes (MACs)
	A.2 Random Bit Generators
	A.3 Nonces

