

Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn and is provided solely for historical purposes.
It has been followed by the document identified below.

Withdrawal Date February 12, 2024

Original Release Date August 30, 2023

The attached draft document is followed by:

Status Final

Series/Number NIST SP 800-204D

Title Strategies for the Integration of Software Supply Chain Security in
DevSecOps CI/CD Pipelines

Publication Date February 2024

DOI https://doi.org/10.6028/NIST.SP.800-204D

CSRC URL https://csrc.nist.gov/pubs/sp/800/204/d/final

Additional Information

https://doi.org/10.6028/NIST.SP.800-204D
https://csrc.nist.gov/pubs/sp/800/204/d/final

NIST Special Publication
NIST SP 800-204D ipd

Strategies for the Integration of
Software Supply Chain Security in

DevSecOps CI/CD Pipelines
Initial Public Draft

Ramaswamy Chandramouli
Frederick Kautz

Santiago Torres Arias

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204D.ipd

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-204D.ipd

NIST Special Publication
NIST SP 800-204D ipd

Strategies for the Integration of
Software Supply Chain Security in

DevSecOps CI/CD Pipelines
Initial Public Draft

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

Frederick Kautz
TestifySec

Santiago Torres Arias

 Electrical and Computer Engineering Department
Purdue University

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204D.ipd

August 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are identified in 1
this paper in order to specify the experimental procedure adequately. Such identification does not imply 2
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or 3
equipment identified are necessarily the best available for the purpose. 4

There may be references in this publication to other publications currently under development by NIST in 5
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 6
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 7
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 8
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 9
these new publications by NIST. 10

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 11
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 12
https://csrc.nist.gov/publications. 13

Authority 14
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal 15
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. 16
NIST is responsible for developing information security standards and guidelines, including minimum requirements 17
for federal information systems, but such standards and guidelines shall not apply to national security systems 18
without the express approval of appropriate federal officials exercising policy authority over such systems. This 19
guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. 20

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding 21
on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be 22
interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or 23
any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and 24
is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST. 25

NIST Technical Series Policies 26
Copyright, Use, and Licensing Statements 27
NIST Technical Series Publication Identifier Syntax 28

Publication History 29
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added on final publication] 30

How to Cite this NIST Technical Series Publication: 31
Chandramouli R, Kautz F, Arias S T (2023) Strategies for the Integration of Software Supply Chain Security in 32
DevSecOps CI/CD Pipelines. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 33
Publication (SP) NIST SP 800-204D ipd. https://doi.org/10.6028/NIST.SP.800-204D.ipd 34

Author ORCID iDs 35
Ramaswamy Chandramouli: 0000-0002-7387-5858 36

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

Public Comment Period 37
August 30, 2023 – October 13, 2023 38

Submit Comments 39
sp800-204d-comments@nist.gov 40

41
National Institute of Standards and Technology 42
Attn: Computer Security Division, Information Technology Laboratory 43
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 44

All comments are subject to release under the Freedom of Information Act (FOIA).45

mailto:sp800-204d-comments@nist.gov?subject=Comments%20on%20NIST%20SP%20800-204D%20initial%20public%20draft

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

i

Abstract 46

The predominant application architecture for cloud-native applications consists of multiple 47
microservices with a centralized application infrastructure, such as a service mesh, that provides 48
all application services. This class of applications is generally developed using a flexible and 49
agile software development paradigm called DevSecOps. A salient feature of this paradigm is the 50
use of flow processes called CI/CD pipelines, which initially take the software through various 51
stages (e.g., build, test, package, and deploy) in the form of source code through operations that 52
constitute the software supply chain (SSC). This document outlines strategies for integrating 53
SSC security measures into CI/CD pipelines. 54

Keywords 55

actor; artifact; attestation; CI/CD pipeline; package; provenance; repository; SBOM; SDLC; 56
SLSA; software supply chain. 57

Reports on Computer Systems Technology 58

The Information Technology Laboratory (ITL) at the National Institute of Standards and 59
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 60
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 61
methods, reference data, proof of concept implementations, and technical analyses to advance 62
the development and productive use of information technology. ITL’s responsibilities include the 63
development of management, administrative, technical, and physical standards and guidelines for 64
the cost-effective security and privacy of other than national security-related information in 65
federal information systems. The Special Publication 800-series reports on ITL’s research, 66
guidelines, and outreach efforts in information system security, and its collaborative activities 67
with industry, government, and academic organizations. 68

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

ii

Call for Patent Claims 69

This public review includes a call for information on essential patent claims (claims whose use 70
would be required for compliance with the guidance or requirements in this Information 71
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 72
directly stated in this ITL Publication or by reference to another publication. This call also 73
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 74
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 75
ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 76
in written or electronic form, either: 77

a) assurance in the form of a general disclaimer to the effect that such party does not hold 78
and does not currently intend holding any essential patent claim(s); or 79

b) assurance that a license to such essential patent claim(s) will be made available to 80
applicants desiring to utilize the license for the purpose of complying with the guidance 81
or requirements in this ITL draft publication either: 82

i. under reasonable terms and conditions that are demonstrably free of any unfair 83
discrimination; or 84

ii. without compensation and under reasonable terms and conditions that are 85
demonstrably free of any unfair discrimination. 86

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 87
on its behalf) will include in any documents transferring ownership of patents subject to the 88
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 89
the transferee, and that the transferee will similarly include appropriate provisions in the event of 90
future transfers with the goal of binding each successor-in-interest. 91
The assurance shall also indicate that it is intended to be binding on successors-in-interest 92
regardless of whether such provisions are included in the relevant transfer documents. 93
Such statements should be addressed to: sp800-204d-comments@nist.gov 94

mailto:sp800-204d-comments@nist.gov

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

iii

Table of Contents 95

Executive Summary ... 1 96
 Introduction .. 2 97

 Purpose .. 2 98
 Scope ... 2 99
 Target Audience ... 2 100
 Relationship to Other NIST Documents .. 2 101
 Document Structure .. 3 102

 Software Supply Chain (SSC) — Definition and Model .. 4 103
 Definition .. 4 104
 Economics of Security .. 4 105
 Governance Model ... 4 106
 SSC Model ... 5 107

2.4.1. Software Supply Chain Defects .. 5 108
2.4.2. Software Supply Chain Attacks .. 5 109

 SSC Security — Risk Factors and Mitigation Measures .. 7 110
 Risk Factors in an SSC ... 7 111

3.1.1. Developer Environment .. 7 112
3.1.2. Threat Actors .. 7 113
3.1.3. Attack Vectors .. 8 114
3.1.4. Attack Targets (Assets) .. 8 115
3.1.5. Types of Exploits .. 8 116

 Mitigation Measures.. 9 117
3.2.1. Baseline Security ...10 118
3.2.2. Controls for Interacting With SCMs ..10 119

 CI/CD Pipelines — Background, Security Goals, and Entities to be Trusted11 120
 Broad Security Goals for CI/CD Pipelines ..11 121
 Entities That Need Trust in CI/CD Pipelines — Artifacts and Repositories11 122

 Integrating SSC Security Into CI/CD Pipelines ..13 123
 Securing Workflows in CI Pipelines ...13 124

5.1.1. Secure Build ..13 125
5.1.2. Secure Pull-Push Operations on Repositories ...15 126
5.1.3. Integrity of Evidence Generation During Software Updates15 127
5.1.4. Secure Code Commits ..16 128

 Securing Workflows in CD Pipelines ..17 129

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

iv

5.2.1. Secure CD Pipeline — Case Study (GitOps) ...18 130
 SSC Security for CI/CD Pipelines — Implementation Strategy18 131

 Summary and Conclusions ..20 132
References ..21 133
Appendix A. Mapping of Recommended Security Tasks in CI/CD Pipelines to 134
Recommended High-Level Practices in SSDF ..23 135
Appendix B. Justification for the Omission of Certain Measures Related to SSDF 136
Practices in This Document ...28 137
 138
 139

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

v

Acknowledgments 140

The authors would like to express their thanks to Isabel Van Wyk of NIST for her detailed 141
editorial review, both for the public comment version as well as for the final publication. 142

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

1

Executive Summary 143

Cloud-native applications are made up of multiple loosely couple components called 144
microservices. This class of applications is generally developed through an agile software 145
development life cycle (SDLC) paradigm called DevSecOps, which uses flow processes called 146
Continuous Integration/Continuous Delivery (CI/CD) pipelines. 147
Analyses of recent software attacks and vulnerabilities have led both government and private-148
sector organizations involved in software development, deployment, and integration to focus on 149
the activities involved in the entire SDLC. These collected activities are called the software 150
supply chain (SSC). 151
The integrity of these individual operations contributes to the overall security of an SSC, and 152
threats can arise from attack vectors unleashed by malicious actors as well as defects introduced 153
when due diligence practices are not followed during SDLC. 154
Executive Order (EO) 14028, NIST’s Secure Software Development Framework (SSDF)[2], 155
other government initiatives, and industry forums have discussed the security of SSC to enhance 156
the security of all deployed software. This document focuses on actionable measures to integrate 157
the various building blocks of SSC security assurance into CI/CD pipelines to prepare 158
organizations to address SSC security in the development and deployment of their cloud-native 159
applications. 160
Building a robust SSC security edifice requires various artifacts, such as a software bill of 161
materials (SBOM) and frameworks for the attestation of software components. Since the 162
specification of these artifacts, their mandatory constituents, and the requirements that processes 163
using them must satisfy are continually evolving through projects in government organizations 164
and various industry forums, they are beyond the scope of this document. 165

 166

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

2

 Introduction 167

Cloud-native applications consist of multiple loosely coupled services or microservices and are 168
deployed and run using an integrated application service infrastructure called a service mesh. 169
The applications are developed through an agile software development life cycle (SDLC) 170
paradigm called DevSecOps, which uses flow processes called Continuous Integration/ 171
Continuous Delivery (CI/CD) pipelines. The service mesh provides numerous runtime security 172
measures through mechanisms for assigning unique service identities for microservices and 173
policy enforcement through proxies. However, sophisticated attacks on software have been 174
carried out through the stealthy introduction of attack vectors during various activities in the 175
SDLC, which collectively constitute the software supply chain (SSC). Thus, in the context of 176
cloud-native applications, SSC security assurance measures must be integrated into CI/CD 177
pipelines. 178

 Purpose 179

This document outlines strategies for integrating SSC security assurance measures into CI/CD 180
pipelines. The overall goal is to ensure that the CI/CD pipeline activities that take source code 181
through the build, test, package, and deployment stages are not compromised. 182

 Scope 183

SSC security assurance measures use various artifacts, such as a software bill of materials 184
(SBOM) and frameworks for the attestation of software components. The specification of these 185
artifacts, their mandatory constituents, and the requirements that processes using them must 186
satisfy are continually evolving through projects in government organizations and various 187
industry forums and are therefore beyond the scope of this document. Rather, this document 188
focuses on actionable measures to integrate various building blocks for SSC security assurance 189
into CI/CD pipelines to enhance the preparedness of organizations to address SSC security in the 190
development and deployment of their cloud-native applications. 191

 Target Audience 192

This document is intended for a broad group of practitioners in the software industry, including 193
site reliability engineers, software engineers, project and product managers, and security 194
architects and engineers. 195

 Relationship to Other NIST Documents 196

This document is part of the NIST Special Publication (SP) 800-204 series of publications, 197
which offer guidance on providing security assurance for cloud-native applications that are 198
developed and deployed using the DevSecOps SDLC paradigm with CI/CD pipelines. SP 800-199
204C [1] discussed DevSecOps, which is an agile software development paradigm for cloud-200
native applications that focuses on the various types of code involved in microservices-based 201
applications that are supported by a service mesh infrastructure. SP 800-218 [2] provided a 202

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

3

comprehensive list of high-level practices and tasks for providing SSC security under the Secure 203
Software Development Framework (SSDF) based on the directives Executive Order (EO) 14028 204
[3]. Other documents in the SP 800-204 series have outlined the mechanisms for enforcing 205
various types of access controls for inter-service calls in the microservices environment during 206
runtime. 207
This document presents strategies for integrating SSC security into CI/CD pipelines through the 208
identification of workflow tasks that can meet the goals of the various high-level practices 209
outlined in the SSDF. Since the SSDF is application architecture and the SDLC paradigm is 210
agnostic, not all practices and tasks outlined in the SSDF may be applicable in the context of 211
cloud-native applications developed using the DevSecOPs SDLC paradigm. Hence, this 212
document maps the SSC security integration strategies for CI/CD pipelines to the high-level 213
practices in the SSDF. 214

 Document Structure 215

This document is organized as follows: 216

• Section 2 presents a series of definitions for modelling and understanding software 217
supply chains and their compromises. 218

• Section 3 provides a broad understanding of common risk factors and potential mitigation 219
measures with a particular focus on the software developer environment. 220

• Section 4 provides the background for CI/CD pipelines, the broad security goals of the 221
processes involved, and the entities that need to be trusted. 222

• Section 5 outlines strategies for integrating SSC security assurance measures into CI/CD 223
pipelines. 224

• Section 6 provides a summary and conclusions. 225

• Appendix A provides a mapping of the SSC security integration strategies for CI/CD 226
pipelines to the SSDF’s high-level practices. 227

• Appendix B provides a justification for the omission of certain measures related to SSDF 228
practices in this document. 229

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

4

 Software Supply Chain (SSC) — Definition and Model 230

 Definition 231

Most activities in the SSC strongly affect the resulting software product. As such, the security of 232
each individual activity is paramount for the security of the end result. This includes not only the 233
integrity of the activities themselves but also the assurance that all activities were carried out and 234
— conversely — that no unauthorized activities were injected into the chain. 235
While software composition (e.g., dependency management) is under the purview of software 236
supply chain activities, other often overlooked activities are central to the software supply chain. 237
This includes writing source code; building, packaging, and delivering an application; and 238
repackaging and containerization. 239
In order to carry out an SSC attack, an attacker needs to subvert, remove, or introduce a step 240
within the SSC to maliciously modify the resulting software product. In practice, attackers often 241
target the activities mentioned above to implant backdoors and subsequently compromise a target 242
or exfiltrate sensitive information once the application is delivered. 243
SSC security should also account for discovering and tracking software defects rather than 244
simply mitigating attackers. This can be achieved by sharing a software bill of materials (SBOM) 245
with end users who can build inventories of software components to identify and address any 246
vulnerabilities or defects in the software. 247

 Economics of Security 248

SSC attacks have two fundamental properties that make them appealing to attackers. First, they 249
allow attackers to infiltrate highly regulated environments through less secure but legitimate 250
channels. Second, due to the highly interconnected nature of supply chains, they allow for 251
widespread damage in a short period of time. 252
Attacks that target highly regulated environments often allow motivated attackers to identify 253
weak spots in the chain. In the case of SOLORIGATE [4], for example, attackers identified a 254
single point of compromise that delivered software to multiple government agencies. Such 255
attacks are also stealthy because they typically propagate through legitimate channels, such as 256
software updates, which allows for widespread damage to users of the target software. Since 257
attackers typically seek this avenue to obtain short-term benefits, widespread attacks of this 258
nature often rely on the use of private crypto miners and crypto jackers. This is evidenced in the 259
prevalence of these vectors existing in breadth-first approaches, such as typo and 260
combosquatting attacks. Regardless of the motivations of the attackers, both vectors highlight the 261
possibility of incredible impact when carried out successfully. 262

 Governance Model 263

Due to the distributed nature of an SSC, multiple practices, developer cultures, security and 264
quality expectations, and legislative frameworks exist. As a consequence, there is no unified 265
governance model, and these distinct models often overlap. 266

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

5

 SSC Model 267

At a high-level, an SSC is a collection of steps that create, transform, and assess the quality of 268
software artifacts. These steps are often carried out by different actors who use and consume 269
artifacts to produce new artifacts. For example, a build step uses a series of artifacts as tools 270
(e.g., a compiler and a linker) and consumes artifacts (i.e., source code) to produce a new artifact 271
(i.e., the compiled binary). 272
Without a loss of generality, this same definition can be applied to other actions, such as writing 273
code, packaging an application inside of a container, and performing quality assurance. This 274
definition also encompasses more activities than are colloquially considered. That is, it includes 275
elements of secure software development, secure build systems, and dependency management. 276
While this simplified model can accommodate multiple activities, mitigations and attacks may 277
surface in different, nuanced ways for each activity. 278
 279

 280
Fig. 1. Interaction between the different elements of a software supply chain step 281

2.4.1. Software Supply Chain Defects 282

Much like software defects (i.e., bugs), defective artifacts can propagate throughout an SSC and 283
affect its security posture. A noteworthy example of such a defect is that of Log4Shell [5], where 284
a vulnerability in a highly used software artifact allowed attackers to compromise a large number 285
of targets with very little effort. While the line between a defect and an attack is often blurred in 286
the SSC context, the guiding principle is that of intent — that is, whether or not the upstream 287
actor intended for that defect to be exploited. 288

2.4.2. Software Supply Chain Attacks 289

In contrast to defects, an SSC attack is when a malicious party tampers with steps, artifacts, or 290
actors within the chain to compromise the consumers of a software artifact down the line. 291
Explicitly, an SSC attack is a three-stage process: 292

1. Artifact, step, or actor compromise: An attacker compromises an element of the SSC 293
to modify an artifact or information of such. 294

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

6

2. Propagation: The attack propagates throughout the chain. 295
3. Exploitation: The attacker exploits the target to achieve their goals (e.g., exfiltration of 296

data, cryptojacking). 297

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

7

 SSC Security — Risk Factors and Mitigation Measures 298

This section considers the various risk factors that are applicable to the software development 299
environment and the mitigation measures that can counter those risks. 300

 Risk Factors in an SSC 301

The risk factors in an SSC are discussed under the following topics: 302

• Developer Environment 303

• Threat Actors 304

• Attack Vectors 305

• Attack Targets (Assets) 306

• Types of Exploits 307

3.1.1. Developer Environment 308

Developer workstations and their environments are at risk of compromise and present a 309
fundamental risk to the security of an SSC. The first and best line of defense is to not implicitly 310
trust the developer workstation. Mature SDLC processes accept code and assets into their 311
software configuration management (SCM) mainline and versions branches only after code 312
reviews and scanners are in place. Furthermore, if the developer is working on proprietary 313
software with sensitive IP, additional measures must be put in place to protect the confidentiality 314
of the source code and related material (e.g., architecture diagrams, documentation). 315

3.1.2. Threat Actors 316

Threat actors generally come in two types: 317

• External attackers who seek privileged access to an SSC 318

• Disgruntled employees or contractors who perpetuate insider threats 319
External attackers may include foreign adversaries, criminal organizations, and cyber-activists 320
who target an SSC for various reasons, such as espionage or sabotage. Internal attackers pose a 321
significant risk, as they may have insider access to sensitive information — often using 322
legitimate access rights — that allow them to launch attacks or steal confidential information. 323
Additionally, both categories of threat actors may use a variety of techniques to compromise the 324
software development environment and steal or manipulate software, such as phishing, malware, 325
social engineering, and physical access. Therefore, companies should be aware of these risks and 326
take appropriate measures to secure their SSC. 327

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

8

3.1.3. Attack Vectors 328

Attack vectors in an SSC include: 329

• Malware 330

• Social engineering 331

• Network-based attacks 332

• Physical attacks 333
Attack vectors can originate from various sources, including malware attacks on developer 334
workstations, social engineering attacks that target developers, network-based attacks that target 335
the development environment, and physical attacks on the hardware or networks used by 336
developers. These different attack vectors require distinct countermeasures, including endpoint 337
protection software, network security controls, access control policies, and physical security 338
measures. Companies should identify potential risks and vulnerabilities, assess their security 339
posture, and implement appropriate defensive measures to mitigate threats to their software 340
development environment. 341

3.1.4. Attack Targets (Assets) 342

The assets targeted under an SSC include: 343

• Source code 344

• Credentials 345

• Sensitive data 346
A software developer’s workstation typically contains various assets, including source code, 347
credentials, and access to sensitive information, such as personally identifiable information (PII), 348
protected health information (PHI), intellectual property (IP), and proprietary information. These 349
assets should be protected, as they are valuable to attackers who may attempt to steal or 350
compromise them. Companies should identify critical assets and implement controls to protect 351
them from unauthorized access, such as access controls, multi-factor authentication, encryption, 352
and data loss prevention (DLP) measures. 353

3.1.5. Types of Exploits 354

Exploits in the context of attack vectors and targeted assets in an SSC environment typically 355
include: 356

• Injection of vulnerabilities or malware into an SSC 357

• Stolen credentials that grant access to other systems 358

• Sensitive data leaked 359

• Injection of malicious code into repositories 360

• Lack of code integrity in public repositories 361

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

9

Threat actors may seek to compromise various components of the software development process, 362
including source code, testing environments, development tools, and build pipelines. They may 363
introduce vulnerabilities, malware, or stolen credentials to gain access to other systems or 364
compromise sensitive data. Such threats can result in financial losses, reputational damage, and 365
legal consequences. 366
To inject malicious code into repositories, attackers may perform an operation called “forking” 367
in GitHub. This operation allows the attacker to copy some repository and make modifications 368
freely outside of the original project. The attacker then initiates a pull request — a request to 369
merge the forked project with the original project. If the project maintainer accepts the request 370
without reviewing the changes and determining them to be suitable, they will merge them into 371
the original project, thus introducing malicious code into the repository. 372
Not all code is written from scratch. When open-source code is used, an artifact or package is 373
often pulled from a repository based on the reputation of the developer or the repository. 374
However, there is no guarantee that pulled code is the same software that the developer authored 375
and checked into their source code repository. The following actions could have potentially 376
occurred, resulting in a lack of assurance or an inability to trust the code: 377

• The source code could have been modified. 378

• Vulnerabilities could have been introduced due to an insecure build system. 379

• Checks, such as scanning and various types of tests (e.g., static, dynamic, or interactive), 380
may have been bypassed in the CI/CD process. 381

 Mitigation Measures 382

The following generic mitigation measures are applicable to the entire SDLC but are particularly 383
relevant to an SSC: 384

• Patch management 385

• Access control 386

• Malware protection 387

• Secure SDLC 388

• Data protection 389

• Physical security 390

• Audit and monitoring 391

• Adherence to applicable security standards (e.g., regulatory requirements) 392
Organizations can implement various controls to mitigate risks to their software development 393
environment, including regular patch management, access control, malware protection, secure 394
development life cycle (SDLC) practices, data protection measures, physical security controls, 395
and auditing and monitoring tools. They should regularly assess their security posture, identify 396
potential weaknesses and vulnerabilities, and implement appropriate defensive measures to 397
address them. Organizations should also ensure that their software development environment 398

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

10

remains compliant with various security standards, such as the OWASP Top Ten, SP 800-53, 399
HIPAA, and PCI DSS. 400
Overall, a secure software development environment can reduce the likelihood of security 401
incidents and ensure the confidentiality, integrity, and availability of software assets and 402
systems. It is crucial to assess security risks and implement appropriate defensive measures to 403
ensure a secure software development environment. The choice of a mitigation approach will 404
depend on the organization’s customized threat model. However, all developer systems should 405
meet a minimum baseline for security to ensure that the operating system and applications are 406
kept up to date with the latest security patches, that individual and unshared user accounts are 407
adequately protected, and that proper access controls are enforced when interacting with SCM. 408

3.2.1. Baseline Security 409

Independent and open-source developers will need to follow best practices to protect their own 410
systems. Government and enterprise environments should establish and adhere to a well-defined 411
security policy that meets regulatory requirements and industry best practices. Since the 412
development of such a policy is out of scope for this document, readers should refer to SP 800-413
53r5 (Revision 5) [6] for a more complete treatment of this topic. 414
An important responsibility of the developer is to download, evaluate, and integrate open-source 415
components into their projects. There has been a significant increase in malware deployed 416
through software repositories with typo-squatting, compromised repositories, or – in some 417
scenarios — malicious actors legally acquiring repositories. 418

3.2.2. Controls for Interacting With SCMs 419

Developers also use their workstations to create, edit, and test source code. This process requires 420
developers to pull source code from the SCM, modify the source code, and submit changes 421
(patches) back to the SCM. The proposed changes should adhere to the SDLC processes defined 422
by the organization. Pull access to the software depends on the policies of the software project in 423
question (e.g., open-source projects typically allow anyone to pull, replicate, modify, and share 424
the source code with minimal or copyleft restrictions). Proprietary software vendors often 425
enforce strict rules that describe who is allowed to access the source code and under what 426
conditions. In all cases, write access to the SCM should be considered a high risk and tightly 427
controlled. A mature SDLC process allows developers to propose patches to the SCM, but 428
another developer should perform a code review before the patch is merged. Code analysis tools 429
should be implemented to catch common mistakes, but care should be taken to not inundate the 430
developers with too many false positives to prevent alert fatigue. 431

 432

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

11

 CI/CD Pipelines — Background, Security Goals, and Entities to be Trusted 433

DevSecOps is an agile paradigm used for the development and deployment of cloud-native 434
applications. This paradigm consists of a series of stages that takes code from variously sourced 435
repositories (e.g., first-party or in-house, third parties or open-source/commercial) to perform 436
tasks or activities, such as building, packaging, testing, and deploying. The build process is based 437
on application logic-driven dependencies and generates builds using many individual source-438
code artifacts that are stored in build repositories. The build artifacts are tested and used to 439
generate packages. The generated package artifacts are then stored in designated repositories and 440
scanned before being deployed in testing or production environments. These stages and the 441
various tasks performed at each stage are collectively called CI/CD pipelines. In other words, 442
CI/CD pipelines use processes called workflows to transform source code to deployable 443
packages in production environments. There are several platforms that support these workflows 444
(e.g., GitHub Actions workflows, GitLab Runners, Buildcloud, etc.). A common approach for 445
SSC security in all of these workflows is to generate as much provenance data as possible. 446
From the above description of CI/CD pipelines and associated activities, one can identify the set 447
of security assurance measures that need to be added to those activities: 448

• Internal SSC security practices that are applied during the development and deployment 449
of first party software 450

• Security practices that are applied with respect to the procurement, integration, and 451
deployment of open-source and commercial software modules. 452

Not all artifacts involved are composed of entities developed in-house (i.e., first party). Some 453
components may involve third-party sources. 454

 Broad Security Goals for CI/CD Pipelines 455

There are two security goals in the application of SSC security measures or practices in CI/CD 456
pipelines: 457

1. Incorporate a range of defensive measures to ensure that attackers cannot tamper with 458
software production processes or introduce malicious software updates (e.g., secure 459
platform for build process). 460

2. Ensure the integrity of the CI/CD pipeline artifacts (e.g., repositories) and activities 461
through role definitions and authorizations for actors. 462

The most common approach to security assurance measures for CI/CD pipelines is the 463
introduction of security measures into the CI/CD platform, which allows developers to automate 464
their build, test, and deployment pipelines. There are many open-source CI/CD platforms, such 465
as GitHub Actions. 466

 Entities That Need Trust in CI/CD Pipelines — Artifacts and Repositories 467

Zero trust architectures focus on protecting assets and resources, such as services, the entire 468
application, and hardware systems (e.g., servers). The entities that access these assets — such as 469
users, services, and other servers — are not inherently trusted. Trust needs to be established 470

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

12

through the verification of credentials that these entities present through a process called 471
authentication. Based on this authentication, appropriate permissions or access rights are 472
assigned to those entities based on enterprise business policies. 473
In contrast, an SSC focuses on ensuring the integrity of artifacts and the repositories where they 474
are stored because artifacts that travel through various repositories ultimately become the final 475
product. This integrity assurance results in trust. 476
Table 1 gives examples of entities (i.e., artifacts and repositories) that need to be trusted in 477
typical CI/CD pipelines [7]. 478

Table 1. Entities that need to be trusted in typical CI/CD pipelines. 479
Artifact Repository

First-party code — source code or binary SCM

Third-party code — open source or commercial Artifact managers for language, container, etc.

Builds Build repository

Packages Package repository

 480

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

13

 Integrating SSC Security Into CI/CD Pipelines 481

In order to outline the strategies for integrating SSC security into CI/CD pipelines, it is necessary 482
to take a closer look at the workflows in each of the two pipelines (i.e., CI pipelines and CD 483
pipelines) and understand their overall security goals. 484
The prerequisites to activating CI/CD pipelines are: 485

• Define the roles for the various actors that operate the various CI/CD pipelines (e.g., 486
application updaters, package managers, deployment specialists, etc.). 487

• Identify the granular authorizations to perform various tasks, such as generating and 488
committing code to SCMs, generating builds and packages, and checking various 489
artifacts (e.g., builds and packages) into and out of the repositories. 490

• The entire CI/CD pipeline must be automated through the deployment of appropriate 491
tools. The driver tools for CI and CD pipelines are at a higher level, and they invoke a 492
sequence of function-specific tools, such as those for code checkouts from repositories, 493
edits and compilation, code commits, and testing (e.g., SAST, DAST and SAC testers). 494

• CI/CD pipeline activities and associated security requirements are defined for the 495
development and deployment of application code as well as: 496

o Infrastructure as code, which contains details about the deployment platform. 497
o Policy as code and configuration code, which specify runtime settings (e.g., 498

YAML files) 499

 Securing Workflows in CI Pipelines 500

The workflows in the CI pipeline mainly consist of build operations, push/pull operations on 501
repositories (both public and private), software updates, and code commits. 502
The overall security goals for the framework used for securely running CI pipelines include: 503

• The capability to support both cloud-native and legacy software development 504
environments. 505

• Standard compliant evidence structures, such as metadata and digital signatures 506

• Support for multiple hardware and software platforms 507

• Support for infrastructures for generating the evidence. 508
The following subsections consider the SSC security tasks for the various workflows in CI. 509

5.1.1. Secure Build 510

The following tasks are required to obtain SSC security assurance in the build process: 511

• Specify policies regarding the build, including (a) the use of a secure isolated platform 512
for performing the build, (b) the tools that will be used to perform the build, and (c) the 513
authentication/authorization required for the developers performing the build process. 514

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

14

• Enforce those build policies using an agent or some other means and a policy 515
enforcement engine. 516

• Ensure the concurrent generation of evidence for build attestation to demonstrate 517
compliance with secure build processes during the time of software delivery. 518

A common technique for facilitating the second task is to wrap commands from a CI tool with 519
capabilities to gather evidence and ultimately create an evidence trail of the entire SDLC [8]. The 520
evidence gathered consists of the hash of the final build artifact, files, libraries, and other 521
materials used in the artifacts and all events. This is then signed using a secure PKI distribution 522
system to become the attestation, which provides verifiable proof of the quality of the software to 523
consumers and enables them to verify the quality of that artifact independently from the producer 524
of the software. In this context, the artifact is the build generated by a series of CI process steps. 525
The attestation for a build consists of the following components [9]: 526

1. Environment Attestation: Environment attestation pertains to the inventory of the system 527
at the time when the CI process happens. It generally refers to the platform on which the 528
build process is run. The components of the platform (e.g., compiler, interpreter, etc.) 529
must be hardened, isolated, and secure. 530

2. Process Attestation: Process attestation pertains to the computer programs that 531
transformed the original source code or materials into an artifact (e.g., compilers, 532
packaging tools, etc.) and/or the programs that performed testing on that software (i.e., 533
code testing tool). 534

3. Materials Attestation: Materials attestation pertains to any raw data and can include 535
configuration, source code, and other data. 536

4. Artifacts Attestation: An artifact is the result or outcome of a CI process. For example, if 537
the CI process step involves running a compiler (e.g., GCC) on a source code written in 538
C, the artifact that will result is an executable binary of that source code. If the step 539
involves running a static application security testing (SAST) tool on the same source 540
code, the artifact that will result will be the “Scan Result.” The step that generated it can 541
be a final or intermediate step. An attestation pertaining to this newly generated product 542
falls under the category of artifacts attestation. 543

The signed evidence (i.e., attestation) must be stored securely in a server and can then be used to 544
evaluate policy compliance. A policy is a signed document that encodes the requirements for an 545
artifact to be validated. The policy may include checks as to whether each of the functionaries 546
involved in the CI process has used the right keys to generate the attestations, the required 547
attestations are found, and the methodology to evaluate the attestation against its associated 548
metadata has also been specified. The policy enables the verifiers to trace the compliance status 549
of the artifact at any point during its life cycle. 550
The above capabilities collectively provide the following assurances: 551

• The software was built by authorized persons using the authorized tools (e.g., machines 552
for each step) in the correct sequence of steps. 553

• There is no evidence of potential tampering or malicious activity. 554

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

15

5.1.2. Secure Pull-Push Operations on Repositories 555

The first SSC security task is to secure source code development practices. In the context of 556
CI/CD pipelines, code resides in repositories, is extracted by authorized developers using a 557
PULL operation, is modified, and is then put back into the repositories using a PUSH operation. 558
To authorize these PULL-PUSH operations, two forms of checks are required: 559

1. The type of authentication required for developers authorized to perform the PULL-560
PUSH operations. The request made by the developer must be consistent with their role 561
(e.g., application updater, package manager, etc.). 562

2. The integrity of the code in the repository can be trusted such that it can be used for 563
further updates. 564

The various mechanisms for ensuring the trustworthiness of the code in the repository are: 565

• PULL-PUSH_REQ-1: The project maintainer should run automated checks on all 566
artifacts covered in the pull request, such as unit tests, linters, integrity tests, security 567
checks, and more. 568

• PULL-PUSH-REQ-2: Running CI pipelines using external tools (e.g., Jenkins) should 569
be performed only when confidence is established in the trustworthiness of the source-570
code origin. 571

• PULL-PUSH-REQ-3: The repository or source-code management system (e.g., GitHub) 572
should have built-in protection that incorporates a delay in CI workflow runs until they 573
are approved by a maintainer with write access. This built-in protection should go into 574
effect when an outside contributor submits a pull request to a public repository. The 575
setting for this protection should be at the strictest level, such as “Require approval for all 576
outside collaborators” [10]. 577

• PULL-PUSH_REQ-4: If there are no native built-in protections available in the source-578
code management system, then external security tools with the following features are 579
required: 580
o Functionality to evaluate and enhance the security posture of the SCM systems with 581

or without a policy (e.g., OPA) to assess the security settings of the SCM account and 582
generate a status report with actionable recommendations 583

o Functionality to enhance the security of the source-code management system (e.g., 584
GitHub, GitLab) by detecting and remediating misconfigurations, security 585
vulnerabilities, and compliance issues 586

5.1.3. Integrity of Evidence Generation During Software Updates 587

One important process in an SSC is the software update process, which is typically carried out by 588
a special class of software development tool called software update systems. Ensuring the 589
security of these software update systems plays a critical role in the overall security of an SSC. 590
Threats to software update systems mainly target the evidence generation process so as to erase 591
the trail of updates and prevent the ability to determine whether the updates were legitimate or 592
not. 593

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

16

There are several types of software update systems [11]: 594

• Package managers that are responsible for all of the software that is installed on a system 595

• Application updaters that are only responsible for individual installed applications 596

• Software library managers that install software that adds functionality, such as plugins or 597
programming language libraries 598

The primary task performed by a software update system is to identify the files that are needed 599
for a given update ticket and download those files that are trusted. At first glance, it may appear 600
that the only checks needed for establishing trust in downloaded files are the various integrity 601
and authenticity checks performed by verifying the signatures on the metadata associated with 602
individual files or the package. However, the very process of signature generation may be 603
vulnerable to known attacks, so software update systems require many other security measures 604
related to signatures generation and verification. 605
The evolving framework for providing security for software update systems has incorporated 606
many of these required security measures into its specification and prescribed some others for 607
future specifications. A framework is a set of libraries, file formats, and utilities that can be used 608
to secure new and existing software update systems. The following are some of the consensus 609
goals for the framework: 610

• The framework for software update systems should provide protection against all known 611
attacks on the tasks performed by the software update systems, such as metadata (hash) 612
generation, the signing process, the management of signing keys, the integrity of the 613
authority performing the signing, key validation, and signature verification. 614

• The framework for software update systems should provide a means to minimize the 615
impact of key compromise. To do so, it must support roles with multiple keys and 616
threshold or quorum trust (with the exception of minimally trusted roles designed to use a 617
single key). The compromise of roles that use highly vulnerable keys should have 618
minimal impact. Therefore, online keys (i.e., keys used in an automated fashion) must not 619
be used for any role that clients ultimately trust for files they may install [11]. 620

• The framework must be flexible enough to meet the needs of a wide variety of software 621
update systems. 622

• The framework must be easy to integrate with software update systems. 623

5.1.4. Secure Code Commits 624

Appropriate forms of testing should be performed before code commits, and the following 625
requirements must be met: 626

• Both SAST and DAST tools used in CI/CD pipelines must provide coverage for different 627
language systems used in cloud-native applications. 628

• If open-source modules and libraries are used, dependencies must be detected using 629
appropriate SCA tools, and the security conditions they should meet for their inclusion must 630
also be tested. 631

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

17

An SSC security measure required during code commits is the prevention of secrets getting into 632
the committed code. This is enabled by a scanning operation for secrets and results in a feature 633
called push protection [12]. This feature should satisfy the following requirements: 634

• COMMIT-REQ-1: If the committed code has an embedded secret, there should be a 635
feature to generate an alert that contains information on the secret type (e.g., personal 636
access token) and location, as well as the methodology to remediate the exposure. 637

• COMMIT-REQ-2: Push protection features should be enabled for all repositories 638
assigned to an administrator [13]. 639

 Securing Workflows in CD Pipelines 640

Supply chain security measures also apply to controls during the CD process. The following are 641
some due diligence measures that should be used during CD. These due diligence measures can 642
be implemented by defining verification policies for allowing or disallowing an artifact for 643
deployment. 644

• DEPLOY-REQ-1: A key deploy time control that can be used is based on build 645
information. If a secure build environment and associated process have been established, 646
it should be possible to specify that the artifact (i.e., container image) being deployed 647
must have been generated by that build process in order to be cleared for deployment. 648
DEPLOY_REQ-2: Another deploy time control is to check for evidence that the 649
container image was scanned for vulnerabilities and attested vulnerability findings. This 650
technique enables DevOps teams to implement a proactive container security posture by 651
ensuring that only verified containers are admitted into the environment and remain 652
trusted during runtime [14]. Specifically, it should be possible to allow or block image 653
deployment based on organization-defined policies. 654
The tasks to be performed include: 655
o As soon as a container image is built, it should be scanned for vulnerabilities even 656

before it is pushed to a registry. The early scanning feature can also be built in as part 657
of the local workflows. 658

o There should be tools to manage container images and language packages. The 659
common repository over which both of these activities can be performed should 660
support native artifact protocols, and the tools used should be capable of integration 661
with CD tools, thus making all activities an integral part of automated CD pipelines. 662

• DEPLOY-REQ-3: For code that is already in the repository and ready to be deployed, a 663
security scanning sub-feature should be invoked to detect the presence of secrets in the 664
code, such as keys and access tokens. 665

• DEPLOY-REQ-4: Before merging pull requests, it should be possible to view the details 666
of any vulnerable versions through a form of dependency review [15]. 667

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

18

5.2.1. Secure CD Pipeline — Case Study (GitOps) 668

All operations during and after a build in the CI/CD pipeline involve interacting with a central 669
repository (usually GIT). Bitbucket, GitHub, and GitLab are some examples of GIT 670
repositories. The operations are collectively called GitOps and consist of commits, forking, and 671
pull and push requests. In other words, GitOps is an automated deployment process facilitated by 672
open-source tools, such as Argo CD and Flux. GitOps is carried out for both infrastructure code 673
and application code. The usage of GitOps covers the following [16]: 674

• Managing infrastructure as code 675

• Managing and applying cluster configurations 676

• Automating the deployment of containerized applications and their configurations to 677
distributed systems. 678

The following SSC security tasks are to be applied with respect to creating configuration data 679
prior to deployment, capturing all data pertaining to a particular release, modifying software 680
during runtime, and performing monitoring operations: 681

• GitOps-REQ-1: The process should rely on automation rather than manual operations. 682
For example, manually configuring hundreds of YAML files to roll back a deployment 683
on a cluster in a Git should be avoided. 684

• GitOps-REQ-2: Package managers that facilitate GitOps should preserve all data on the 685
packages that were released, including version numbers of all modules, all associated 686
configuration files, and other metadata as appropriate for the software operational 687
environment. 688

• GitOps-REQ-3: Another situation that should be avoided is manually applying changes 689
directly into the nodes with a kubectl edit during runtime. For example, security issues 690
discovered in running applications will need to be remediated in the build process rather 691
than an administrator making changes directly in the cluster. This is to ensure that Git 692
commits remain the single source of truth for what runs in the cluster. 693

• GitOps-REQ-4: (Monitoring and Remediation for Drift) — Since the Git repository 694
contains the application definitions and configuration as code, it should be pulled 695
automatically and compared with the specified state of these configurations. For any 696
configurations that deviate from their specified state, the following actions may be 697
performed: 698
o Administrators can choose to automatically resync configurations to the defined state. 699
o Notifications should be sent regarding the differences, and manual remediation 700

should be performed. 701

 SSC Security for CI/CD Pipelines — Implementation Strategy 702

The extensive set of steps needed for SSC security cannot be implemented all at once in the 703
SDLC of all enterprises without a great deal of disruption to underlying business processes and 704

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

19

operational costs. Rather, solutions that provide SSC security can be broadly classified into two 705
types [17]: 706

1. Solutions that ensure SSC security through the following features associated with each 707
task in the DevSecOps pipelines: 708

a. Verifying that the software is built correctly by ensuring tamper-proof build 709
pipelines, such as by providing verified visibility into the dependencies and steps 710
used in the build [18] 711

b. Including features for the specification of checklists for each step of the delivery 712
pipeline to provide guidance for implementation and to check and enforce 713
controls for complying with checklists 714

2. Solutions that ensure integrity and provenance through digital signatures and attestations 715

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

20

 Summary and Conclusions 716

This document provided an overview of strategies for integrating SSC security assurance 717
measures with various workflows associated with CI/CD pipelines, which is a methodology in 718
the DevSecOps paradigm that is widely used for the development and deployment of cloud-719
native applications. However, no recommendations were provided with respect to the specific 720
artifacts and frameworks associated with SSC security, such as SBOMs, code signing, and 721
attestation. This is due to the fact that specifications and the standards associated with them are 722
still evolving as part of projects in government institutions and industry forums. 723
 724

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

21

References 725

[1] Chandramouli R (2022) Implementation of DevSecOps for a Microservices-based 726
Application with Service Mesh. (National Institute of Standards and Technology, 727
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204C. 728
https://doi.org/10.6028/NIST.SP.800-204C 729

[2] Souppaya M, Scarfone K, Dodson D (2022) Secure Software Development Framework 730
(SSDF) Version 1.1: Recommendations for Mitigating the Risk of Software 731
Vulnerabilities. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 732
Special Publication (SP) NIST SP 800-218. https://doi.org/10.6028/NIST.SP.800-218 733

[3] EO14028 (2021) Improving the Nation’s Cybersecurity. Available at 734
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-735
nations-cybersecurity 736

[4] Goud N (2021) What is Solarigate. Available at https://www.cybersecurity-737
insiders.com/what-is-solorigate/ 738

[5] Berger A (2023) What is Log4Shell ? Available at 739
https://www.dynatrace.com/news/blog/what-is-740
log4shell/#:~:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%741
20messages%20in%20applications 742

[6] Joint Task Force (2020) Security and Privacy Controls for Information Systems and 743
Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 744
Special Publication (SP) 800-53, Rev. 5. Includes updates as of December 10, 2020. 745
https://doi.org/10.6028/NIST.SP.800-53r5 746

[7] Lorenc D (2021) Zero Trust Supply Chain Security. Available at 747
https://dlorenc.medium.com/zero-trust-supply-chain-security-e3fb8b6973b8 748

[8] Testify/Witness (2023) Witness – Secure Your Supply Chain. Available at 749
https://github.com/testifysec/witness/ 750

[9] Kennedy C (2021) What is a Software Supply Chain Attestation – and Why do I need it? 751
Available at https://www.testifysec.com/blog/what-is-a-supply-chain-attestation/ 752

[10] Gelb Y (2023) Mass Scanning of Popular GitHub Repos for CI Misconfiguration. 753
Available at https://medium.com/checkmarx-security/mass-scanning-of-popular-github-754
repos-for-ci-misconfiguration-cd36ad6be788 755

[11] TUF V1.0.31 (2022) The Update Framework Specification. Available at 756
https://theupdateframework.github.io/specification/latest/ 757

[12] Malik Z, Sulakian M (2023) Push Protection is generally available. Available at 758
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-759
public-760
repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-761
mention&utm_campaign=platform 762

[13] GitHub Docs (2023) Enabling Security Features for Multiple Repositories. Available at 763
https://docs.github.com/en/enterprise-cloud@latest/code-security/security-764
overview/enabling-security-features-for-multiple-repositories 765

[14] Cloud Build (2023) Securing Image Deployments to Cloud Run and GKE. Available at 766
https://cloud.google.com/build/docs/securing-builds/secure-deployments-to-run-gke 767

https://doi.org/10.6028/NIST.SP.800-204C
https://doi.org/10.6028/NIST.SP.800-218
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.cybersecurity-insiders.com/what-is-solorigate/
https://www.cybersecurity-insiders.com/what-is-solorigate/
https://www.dynatrace.com/news/blog/what-is-log4shell/#:%7E:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%20messages%20in%20applications
https://www.dynatrace.com/news/blog/what-is-log4shell/#:%7E:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%20messages%20in%20applications
https://www.dynatrace.com/news/blog/what-is-log4shell/#:%7E:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%20messages%20in%20applications
https://doi.org/10.6028/NIST.SP.800-53r5
https://dlorenc.medium.com/zero-trust-supply-chain-security-e3fb8b6973b8
https://github.com/testifysec/witness/
https://www.testifysec.com/blog/what-is-a-supply-chain-attestation/
https://medium.com/checkmarx-security/mass-scanning-of-popular-github-repos-for-ci-misconfiguration-cd36ad6be788
https://medium.com/checkmarx-security/mass-scanning-of-popular-github-repos-for-ci-misconfiguration-cd36ad6be788
https://theupdateframework.github.io/specification/latest/
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://docs.github.com/en/enterprise-cloud@latest/code-security/security-overview/enabling-security-features-for-multiple-repositories
https://docs.github.com/en/enterprise-cloud@latest/code-security/security-overview/enabling-security-features-for-multiple-repositories
https://cloud.google.com/build/docs/securing-builds/secure-deployments-to-run-gke

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

22

[15] GitHub Docs (2023) About dependency review. Available at 768
https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-769
security/understanding-your-software-supply-chain/about-dependency-review 770

[16] Williams A (2021) A Blueprint for Supply Chain Security. Published by Newstack 771
[17] Crane D (2023) Five Stages for A Secure Software Supply Chain. Available at 772

https://danacrane.medium.com/five-stages-for-a-secure-software-supply-chain-773
f8420841cc3a 774

[18] CyRise (2023) Supply Chain Security with Ensignia. Available at 775
https://medium.com/@cyrise/supply-chain-security-with-ensignia-483c1d872639 776

 777

https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review
https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review
https://danacrane.medium.com/five-stages-for-a-secure-software-supply-chain-f8420841cc3a
https://danacrane.medium.com/five-stages-for-a-secure-software-supply-chain-f8420841cc3a
https://medium.com/@cyrise/supply-chain-security-with-ensignia-483c1d872639

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

23

Appendix A. Mapping of Recommended Security Tasks in CI/CD Pipelines to 778
Recommended High-Level Practices in SSDF 779

Table 2. Mapping of recommended CI/CD pipeline security tasks to SSDF practices 780

Section Recommended Security Tasks in CI/CD
Pipeline

Recommended High-Level
Practice in SSDF

5.1.1 Secure Build
— Policies for Build
Process and
Mechanisms to
Enforce Policies

5.2 Securing
Workflows in CD
Pipelines

• Specify policies regarding the build. The
policies include (a) the use of secure
isolated platform for performing the build,
(b) the tools that will be used to perform the
build, and (c) the
authentication/authorization required for
developers performing the build process.

• Enforce those build policies using an agent
or some other means and a policy
enforcement engine.

 DEPLOY-REQ-1: A key deploy time control
that can be used is based on build information. If
a secure build environment and associated
process have been established, it should be
possible to specify that the artifact (i.e.,
container image) being deployed must have been
generated by that build process in order to be
allowed to be cleared for deployment.

DEPLOY_REQ-2: Another deploy time
control is to check for evidence that the
container image was scanned for vulnerabilities
and attested vulnerability findings. This
technique enables DevOps teams to implement a
proactive container security posture by ensuring
that only verified containers are admitted into
the environment and remain trusted during
runtime [14]. Specifically, it should be possible
to allow or block image deployment based on
organization-defined policies.

The tasks to be performed include:

 As soon as a container image is built, it should
be scanned for vulnerabilities even before it is
pushed to a registry. The early scanning feature
can also be built in as part of the local
workflows.

 There should be tools to manage container
images and language packages. The common
repository over which both of these activities
can be performed should support native artifact
protocols, and the tools used should be capable
of integration with CD tools, thus making all
activities an integral part of automated CD
pipelines.

Define Security Requirements for
Software Development (PO.1):
Ensure that the security requirements
for software development are known
at all times so that they can be taken
into account throughout the SDLC
and duplication of effort can be
minimized. This includes
requirements from internal sources
(e.g., the organization’s policies,
business objectives, and risk
management strategy) and external
sources (e.g., applicable laws and
regulations).

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

24

Section Recommended Security Tasks in CI/CD
Pipeline

Recommended High-Level
Practice in SSDF

• DEPLOY-REQ-3: For code that is already
in the repository and ready to be deployed, a
security scanning sub-feature should be
invoked to detect the presence of secrets in
the code, such as keys and access tokens.

• DEPLOY-REQ-4: Before merging pull
requests, it should be possible to view the
details of any vulnerable versions through a
form of dependency review.

5 Integrating SSC
Security in CI/CD
Pipelines

The prerequisites for activating CI/CD pipelines
are:
• Define roles for various actors operating the

various CI/CD pipelines (e.g., application
updaters, package managers, deployment
specialists, etc.)

• Identify the granular authorizations to
perform various tasks, such as generating
and committing code to SCMs, generating
builds and packages, and checking various
artifacts (e.g., builds and packages) into and
out of the repositories.

Implement Roles and
Responsibilities (PO.2): Ensure that
everyone inside and outside of the
organization involved in the SDLC is
prepared to perform their SDLC-
related roles and responsibilities
throughout the SDLC.

5 Integrating SSC
Security in CI/CD
Pipelines

A prerequisite for activating CI/CD pipelines is:
• The entire CI/CD pipeline must be

automated through the deployment of
appropriate tools. The driver tools for CI
and CD pipelines are at a higher level, and
they invoke a sequence of function-specific
tools, such as those for code checkouts from
repositories, edits and compilation, code
commits, and testing (e.g., SAST, DAST
and SAC testers).

Implement Supporting Toolchains
(PO.3): Use automation to reduce
human effort and improve the
accuracy, reproducibility, usability,
and comprehensiveness of security
practices throughout the SDLC, as
well as provide a way to document
and demonstrate the use of these
practices. Toolchains and tools may
be used at different levels of the
organization, such as organization-
wide or project-specific, and may
address a particular part of the
SDLC, like a build pipeline.

5.1.4 Secure Code
Commits

A prerequisite operation before code commits is
appropriate forms of testing. The following
requirements must be met:

• Both SAST and DAST tools used in CI/CD
pipelines must provide coverage for
different language systems used in cloud-
native applications.

• If open-source modules and libraries are
used, dependencies must be detected using
appropriate SCA tools, and the security
conditions they should meet for their
inclusion must also be tested.

Define and Use Criteria for
Software Security Checks (PO.4):
Help ensure that the software
resulting from the SDLC meets the
organization’s expectations by
defining and using criteria for
checking the software’s security
during development.

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

25

Section Recommended Security Tasks in CI/CD
Pipeline

Recommended High-Level
Practice in SSDF

5.1.1 Secure Build
Policies for Build
Process and
Mechanisms for
Enforcement of
Policies

Already covered under meeting requirements
for PO.1. In addition:
1. Environment Attestation: Environment

attestation pertains to the inventory of the
system when the CI process happens. It
generally refers to the platform on which
the build process is run. This platform must
be hardened, isolated, and secure.

Implement and Maintain Secure
Environments for Software
Development (PO.5): Ensure that all
components of the environments for
software development are strongly
protected from internal and external
threats to prevent the environments
or the software in them from being
compromised. Examples of
environments for software
development include development,
build, test, and distribution
environments.

5.1.2 Secure PULL-
PUSH Operations
on Repositories

All forms of code used in SDLC reside in
repositories. Code is extracted from these
repositories by authorized developers using a
PULL operation, modified, and then put back
into the repositories using a PUSH operation. To
authorize these PULL-PUSH operations, two
forms of checks are required.

1. The type of authentication required for

developers authorized to perform the
PULL-PUSH operations. The request made
by the developer must be consistent with
their role (e.g., application updater, package
manager, etc.).

2. The integrity of the code in the repository
can be trusted such that it can be used for
further updates.

Protect All Forms of Code From
Unauthorized Access and
Tampering (PS.1): Help prevent
unauthorized changes to code, both
inadvertent and intentional, that
could circumvent or negate the
intended security characteristics of
the software. For code that is not
intended to be publicly accessible,
this helps prevent theft and may
make it more difficult or time-
consuming for attackers to find
vulnerabilities in the software.

5.1.3 Integrity of
Evidence
Generation During
Software Updates
(To provide the
assurance to acquirers
that the software they
get is legitimate,
steps are taken to
protect the integrity
of evidence
generation tasks)

1. The framework for software update systems
should provide protection against all known
attacks on the tasks performed by the
software update systems, such as metadata
(hash) generation, the signing process, the
management of signing keys, the integrity
of the authority performing the signing, key
validation, and signature verification.

2. The framework for software update systems
should provide a means to minimize the
impact of key compromise. To do so, it
must support roles with multiple keys and
threshold or quorum trust (with the
exception of minimally trusted roles
designed to use a single key). The
compromise of roles that use highly
vulnerable keys should have minimal
impact. Therefore, online keys (i.e., keys
used in an automated fashion) must not be
used for any role that clients ultimately trust
for files they may install [11].

Provide a Mechanism for
Verifying Software Release
Integrity (PS.2): Help software
acquirers ensure that the software
they acquire is legitimate and has not
been tampered with.

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

26

Section Recommended Security Tasks in CI/CD
Pipeline

Recommended High-Level
Practice in SSDF

3. The framework must be flexible enough to
meet the needs of a wide variety of software
update systems.

4. The framework must be easy to integrate
with software update systems.

5.2.1 Secure CD
Pipeline — Case
Study (GitOps)

The following SSC security tasks are to be
applied with respect to creating configuration
data prior to deployment, capturing all data
pertaining to a particular release, modifying
software during runtime, and performing
monitoring operations:
• GitOps-REQ-2: Package managers that

facilitate GitOps should preserve all data on
the packages that were released, including
version numbers of all modules, all
associated configuration files, and other
metadata as appropriate for the software
operational environment.

Archive and Protect Each
Software Release (PS.3): Preserve
software releases in order to help
identify, analyze, and eliminate
vulnerabilities discovered in the
software after release.

5.1.2 Secure PULL-
PUSH Operations
on Repositories
(Implements secure
coding and build
processes to improve
security through
various checks during
PULL-PUSH
operations)

• PULL-PUSH_REQ-1: The project
maintainer should run automated checks on
all artifacts covered in the pull request, such
as unit tests, linters, integrity tests, security
checks, and more.

• PULL-PUSH-REQ-2: Running CI
pipelines using external tools (e.g., Jenkins)
should be performed only when confidence
is established in the trustworthiness of the
source-code origin.

• PULL-PUSH-REQ-3: The repository or
source-code management system (e.g.,
GitHub) should have built-in protection that
incorporates a delay in CI workflow runs
until they are approved by a maintainer with
write access. This built-in protection should
go into effect when an outside contributor
submits a pull request to a public repository.
The setting for this protection should be at
the strictest level, such as “Require approval
for all outside collaborators” [10] .

• PULL-PUSH_REQ-4: If there are no
native built-in protections available in the
source-code management system, then
external security tools with the following
features are required:

o Functionality to evaluate and
enhance the security posture of the
SCM systems with or without a
policy (e.g., OPA) to assess the
security settings of the SCM
account and generate a status
report with actionable
recommendations.

Create Source Code by Adhering
to Secure Coding Practices
(PW.5): Decrease the number of
security vulnerabilities in the
software and reduce costs by
minimizing vulnerabilities
introduced during source code
creation that meet or exceed
organization-defined vulnerability
severity criteria.

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

27

Section Recommended Security Tasks in CI/CD
Pipeline

Recommended High-Level
Practice in SSDF

o Functionality to enhance the
security of the source-code
management system (e.g., GitHub,
GitLab) by detecting and
remediating misconfigurations,
security vulnerabilities, and
compliance issues.

5.1.1 Secure Build
(Addresses the
requirements for
PW.6 through
security requirements
for the build
platform)

Environment Attestation: Environment
attestation pertains to the inventory of the
system at the time when the CI process happens.
It generally refers to the platform on which the
build process is run. This platform components
(e.g., compiler, interpreter, etc.) must be
hardened, isolated, and secure.

Configure the Compilation,
Interpreter, and Build Processes to
Improve Executable Security
(PW.6): Decrease the number of
security vulnerabilities in the
software and reduce costs by
eliminating vulnerabilities before
testing occurs.

5.1.4 Secure Code
Commits

A prerequisite operation before code commits is
appropriate forms of testing. The following
requirements must be met:
• Both SAST and DAST tools used in CI/CD

pipelines must provide coverage for the
different language systems used in cloud-
native applications.

• If open-source modules and libraries are
used, dependencies must be detected using
appropriate SCA tools, and the security
conditions they should meet for their
inclusion must also be tested.

Test Executable Code to Identify
Vulnerabilities and Verify
Compliance With Security
Requirements (PW.8): Identify
vulnerabilities so that they can be
corrected before the software is
released. Using automated methods
lowers the effort and resources
needed to detect vulnerabilities and
improves traceability and
repeatability. Executable code
includes binaries, directly executed
bytecode and source code, and any
other form of code that an
organization deems executable.

5 Integrating SSC
Security into CI/CD
Pipelines

CI/CD pipeline activities and associated security
requirements are defined for the development
and deployment of application code as well as:

• Infrastructure as code, which contains
details about the deployment platform

• Policy as code and configuration code,
which specify runtime settings (e.g.,
YAML files)

Configure Software to Have
Secure Settings by Default (PW.9):
Help improve the security of the
software at the time of installation to
reduce the likelihood of the software
being deployed with weak security
settings, thus putting it at greater risk
of compromise.

 781

 782

NIST SP 800-204D ipd Software Supply Chain Security
August 2023 in DevSecOps CI/CD Pipelines

28

Appendix B. Justification for the Omission of Certain Measures Related to SSDF 783
Practices in This Document 784

Table 3. Justification for the omission of certain SSDF practices 785

SSDF Practice Justification for Omission

Produce Well-Secured Software (PW)
PW1 through PW4, PW7

These practices pertain to secure software design,
review of the design, and software reuse. CI/CD
pipelines focus on setting up the environment for
secure development and deployment and not software
design per se.

Respond to Vulnerabilities (RV)
RV1 through RV3

Vulnerability management strategies are at the
organization policy level and are not specific to CI/CD
pipelines.

 786

	Executive Summary
	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Target Audience
	1.4. Relationship to Other NIST Documents
	1.5. Document Structure

	2. Software Supply Chain (SSC) — Definition and Model
	2.1. Definition
	2.2. Economics of Security
	2.3. Governance Model
	2.4. SSC Model
	2.4.1. Software Supply Chain Defects
	2.4.2. Software Supply Chain Attacks

	3. SSC Security — Risk Factors and Mitigation Measures
	3.1. Risk Factors in an SSC
	3.1.1. Developer Environment
	3.1.2. Threat Actors
	3.1.3. Attack Vectors
	3.1.4. Attack Targets (Assets)
	3.1.5. Types of Exploits

	3.2. Mitigation Measures
	3.2.1. Baseline Security
	3.2.2. Controls for Interacting With SCMs

	4. CI/CD Pipelines — Background, Security Goals, and Entities to be Trusted
	4.1. Broad Security Goals for CI/CD Pipelines
	4.2. Entities That Need Trust in CI/CD Pipelines — Artifacts and Repositories

	5. Integrating SSC Security Into CI/CD Pipelines
	5.1. Securing Workflows in CI Pipelines
	5.1.1. Secure Build
	5.1.2. Secure Pull-Push Operations on Repositories
	5.1.3. Integrity of Evidence Generation During Software Updates
	5.1.4. Secure Code Commits

	5.2. Securing Workflows in CD Pipelines
	5.2.1. Secure CD Pipeline — Case Study (GitOps)

	5.3. SSC Security for CI/CD Pipelines — Implementation Strategy

	6. Summary and Conclusions
	References
	Appendix A. Mapping of Recommended Security Tasks in CI/CD Pipelines to Recommended High-Level Practices in SSDF
	Appendix B. Justification for the Omission of Certain Measures Related to SSDF Practices in This Document

