
NIST Special Publication 800-204B 
 

Attribute-based Access Control for 
Microservices-based Applications 

Using a Service Mesh 
 
 
 

Ramaswamy Chandramouli 
Zack Butcher 

Aradhna Chetal 
 
 
 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-204B



 

 NIST Special Publication 800-204B 
 

Attribute-based Access Control for 
Microservices-based Applications 

Using a Service Mesh 
 

Ramaswamy Chandramouli 
Computer Security Division  

Information Technology Laboratory 

Zack Butcher 
Tetrate  

San Francisco, CA 

Aradhna Chetal 
TIAA 

New York, NY 
  

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-204B 

August 2021 
 

 

 
 

U.S. Department of Commerce 
Gina M. Raimondo, Secretary 

 
National Institute of Standards and Technology  

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce 
for Standards and Technology & Director, National Institute of Standards and Technology



Authority 

This publication has been developed by NIST in accordance with its statutory responsibilities under the 
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 
minimum requirements for federal information systems, but such standards and guidelines shall not apply 
to national security systems without the express approval of appropriate federal officials exercising policy 
authority over such systems. This guideline is consistent with the requirements of the Office of Management 
and Budget (OMB) Circular A-130. 

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 
however, be appreciated by NIST.   

National Institute of Standards and Technology Special Publication 800-204B 
Natl. Inst. Stand. Technol. Spec. Publ. 800-204B, 41 pages (August 2021) 

CODEN: NSPUE2 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-204B 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 
available for the purpose.  

There may be references in this publication to other publications currently under development by NIST in accordance 
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 
may be used by federal agencies even before the completion of such companion publications. Thus, until each 
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 
planning and transition purposes, federal agencies may wish to closely follow the development of these new 
publications by NIST.   

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 
NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 
http://csrc.nist.gov/publications. 

Comments on this publication may be submitted to: 

National Institute of Standards and Technology 
Attn: Computer Security Division, Information Technology Laboratory 

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 
Email: sp800-204b-comments@nist.gov 

All comments are subject to release under the Freedom of Information Act (FOIA). 
   

http://csrc.nist.gov/publications
mailto:sp800-204b-comments@nist.gov


NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

ii 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance the 
development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in federal 
information systems. 

Abstract 

Deployment architecture in cloud-native applications now consists of loosely coupled 
components, called microservices, with all application services provided through a dedicated 
infrastructure, called a service mesh, independent of the application code. Two critical security 
requirements in this architecture are to build (1) the concept of zero trust by enabling mutual 
authentication in communication between any pair of services and (2) a robust access control 
mechanism based on an access control such as attribute-based access control (ABAC) that can be 
used to express a wide set of policies and is scalable in terms of user base, objects (resources), and 
deployment environment. This document provides deployment guidance for building an 
authentication and authorization framework within the service mesh that meets these requirements. 
A reference platform for hosting the microservices-based application and a reference platform for 
the service mesh are included to illustrate the concepts in the recommendations and provide the 
context in terms of the components used in real-world deployments. 
 

Keywords 

attribute-based access control; authentication policy; authorization policy; CI/CD; DevSecOps; 
JSON web token; microservices-based application; mutual TLS; next generation access control; 
policy enforcement point; role-based access control; service mesh; service proxy; zero trust. 

 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

iii 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

Acknowledgments 

The authors express their sincere thanks to Mr. David Ferraiolo of NIST for initiating this effort 
to provide a targeted deployment guidance in the form of an authentication and authorization 
framework in a service mesh environment used for protecting microservices-based applications. 
They also express thanks to Isabel Van Wyk of NIST for her detailed editorial review. 

 

Patent Disclosure Notice  

NOTICE: The Information Technology Laboratory (ITL) has requested that holders of patent claims 
whose use may be required for compliance with the guidance or requirements of this publication 
disclose such patent claims to ITL. However, holders of patents are not obligated to respond to ITL 
calls for patents, and ITL has not undertaken a patent search in order to identify which, if any, 
patents may apply to this publication. 

As of the date of publication and following call(s) for the identification of patent claims whose use 
may be required for compliance with the guidance or requirements of this publication, no such 
patent claims have been identified to ITL.  

No representation is made or implied by ITL that licenses are not required to avoid patent 
infringement in the use of this publication.  



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

iv 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

Executive Summary 

Two significant features of the application environment in emerging cloud-native applications 
are: 

1. Microservices: Applications have multiple, loosely coupled components called 
microservices that communicate with each other across the network. 

2. Service Mesh: A dedicated infrastructure called the service mesh provides services for the 
application (e.g., authentication, authorization, routing, network resilience, security 
monitoring), which can be deployed independently of the application code. 

With the disappearance of a network perimeter because of the need to provide ubiquitous access 
to applications from multiple remote locations using different types of devices, it is necessary to 
build the concept of zero trust into the application environment. Furthermore, the cloud-native 
applications span different domains and, therefore, require increased precision in specifying 
policy by considering a large set of variables (e.g., service, namespace). The service mesh 
provides a framework for building these and other operational assurances.  
 
The framework includes:  
• An authenticatable runtime identity for services, authenticable credentials for individual 

users of the service, and encryption of communication between services.  
• A Policy Enforcement Point (PEP) that is separately deployable and controllable from the 

application. The role of Policy Decision Point (PDP) can be filled by the service mesh’s side-
car proxies or an external service. 

• Logs and metrics for monitoring policy enforcement. 
 

The service mesh’s native feature to authenticate end-user credentials attached to the request 
(e.g., using a Java Web Token [JWT]) is augmented in many offerings to provide the ability to 
call external authentication and authorization systems on behalf of the application. The capability 
to deploy these authentication and authorization systems as services in the mesh also provides 
operational assurances for encryption in transit, identity, a PEP, authentication, and authorization 
for end-user identity.  
 
The objective of this document is to provide deployment guidance for an authentication and 
authorization framework within a service mesh for microservices-based applications that 
leverages the features listed above. A reference platform for hosting the microservices-based 
application and the service mesh is included to illustrate the concepts in the recommendations 
and provide context in terms of the components used in real-world deployments. 
  



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

v 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

Table of Contents 

Executive Summary ..................................................................................................... iv 

1 Introduction ............................................................................................................ 1 

1.1 Service Mesh Capabilities ............................................................................... 2 

1.2 Candidate Applications ................................................................................... 3 

1.3 Scope and Approach ...................................................................................... 3 

1.4 Target Audience.............................................................................................. 3 

1.5 Relationship to Other NIST Guidance Documents .......................................... 4 

1.6 Organization of This Document ...................................................................... 4 

2 Reference Platform for Microservices-based Application and Service Mesh... 5 

2.1 Reference Platform for Orchestration and Resource Management of a 
Microservices-based Application ............................................................................. 5 

2.1.1 Limitations of Reference Orchestration and Resource Management 
Platform for Security ........................................................................................ 6 

2.2 Service Mesh Reference Platform – Conceptual Architecture ........................ 7 

2.2.1 Service Mesh Functions for Reference Orchestration and Resource 
Management Platform ..................................................................................... 8 

3 Attribute-based Access Control (ABAC) – Background ..................................... 9 

3.1 ABAC Deployment for Microservices-based Applications Using Service Mesh
 12 

4 Authentication and Authorization Policy Configuration in Service Mesh ....... 13 

4.1 Application Orchestration and Resource Management Platform Configuration
 13 

4.2 Service Mesh Configuration .......................................................................... 13 

4.3 Higher-level Security Configuration Parameters for Applications .................. 15 

4.4 Authentication Policies .................................................................................. 15 

4.4.1 Specifying Authentication Policies ...................................................... 16 

4.4.2 Service-level Authentication ............................................................... 16 

4.4.3 End User Authentication ..................................................................... 17 

4.5 Authorization Policies .................................................................................... 18 

4.5.1 Service-level Authorization Policies .................................................... 18 

4.5.2 End-user Level Authorization Policies      ........................................... 19 

4.5.3 Model-based Authorization Policies.................................................... 21 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

vi 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

4.6 Authorization Policy Elements ......................................................................... 22 

4.6.1 Policy Types ......................................................................................... 22 

4.6.2 Policy Target or Authorization Scope ................................................... 22 

4.6.3 Policy Sources ..................................................................................... 23 

4.6.4 Policy Operations ................................................................................. 23 

4.6.5 Policy Conditions .................................................................................. 23 

4.6.6 Default Authorization Policy ................................................................. 24 

5 ABAC Deployment for Service Mesh .................................................................. 25 

5.1 Reference Monitor Concept in Authorization Framework .............................. 25 

5.2 Supporting Infrastructure for ABAC Authorization Framework ...................... 25 

5.2.1 Service-to-Service Request (SVC-SVC) – Supporting Infrastructure . 25 

5.2.2 End User + Service-to-Service Request (EU+SVC-SVC) – Supporting 
Infrastructure ................................................................................................. 26 

5.3 Advantages of ABAC Authorization Framework for Service Mesh ................ 26 

5.4 Enforcement Alternatives in Proxies ............................................................. 27 

6 Summary and Conclusions ................................................................................. 28 

References ................................................................................................................... 29 

Appendix A: List of Recommendations for deployment of an ABAC-based 
authentication and authorization framework for microservices-based applications 
using a service mesh .................................................................................................. 31 

 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

1 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

1 Introduction 

A microservices-based architecture in applications and service mesh application infrastructure 
that provides various security services through service proxies has emerged as the widespread 
application environment for cloud-native applications. With the disappearance of the network 
perimeter due to the need for ubiquitous access to these applications from multiple remote 
locations using different types of devices, it is necessary to build the concept of zero trust [1] into 
this application environment. Zero trust assumes that there is no implicit trust granted to assets or 
user accounts based solely on their physical or network location (i.e., local area networks versus 
the internet) or based on asset ownership (enterprise or personally owned) [1]. Zero trust focuses 
on protecting resources (e.g., assets, services, workflows, and network accounts) rather than 
network segments since the network location is no longer seen as the prime component to the 
security posture of the resource. Furthermore, the loosely coupled nature of the components (i.e., 
microservices) of these cloud-native applications facilitates independent design, development, 
and agile deployment (e.g., Continuous Integration/ Continuous Delivery or Deployment 
(CI/CD) [2]) of the constituent microservices, enabling paradigms such as DevSecOps [3] 
(representing Development, Security and Operations) to be used.  

The security requirements for microservices-based applications are discussed extensively in [4] 
and summarized here to provide context for this discussion. They are: 

● Multiple, loosely coupled microservices communicate through network calls, and these 
communication links must be protected. In the case of monolithic applications, these 
communications take place through procedure calls. 

● The entire network and all microservices are untrusted. Therefore, mutual authentication and 
secure communication channels between microservices through mechanisms such as mutual 
Transport Layer Security (TLS) (mTLS) are required. 

● The logging data that pertains to each microservice must be consolidated to obtain a security 
profile in order for forensics, audits, and analytics to assess the overall health of the 
application. 

Operating in multiple security domains and multiple clouds, cloud-native applications require a 
secure authentication and authorization framework. When implemented within the service mesh, 
the critical requirements of this framework are: 

● The code that is part of this framework should be verifiable and non-bypassable (always 
invoked), thus satisfying the requirements of a security kernel. 

● The framework should provide authentication and authorization services at both the service 
level and end-user level. 

● The framework should be able to support a diverse set of authorization policies. 

The operational assurances are required for meeting the above requirements, and others are 
provided by the service mesh. The specific features in the service mesh that enable these are 
given in the next section. 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

2 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

1.1 Service Mesh Capabilities 

A service mesh provides a framework for building a set of operational assurances for an 
application through its various features and the set of controls they enable. That framework 
includes an authenticatable runtime identity for services, the ability to authenticate credentials of 
individual users of a service, encryption of communication in transit between services, a Policy 
Enforcement Point (PEP) separately deployable and controllable from the application (e.g., 
service mesh’s side-car proxy), and logs and metrics for monitoring policy enforcement. Using 
these mesh features, a set of controls can be built for all applications that are part of the mesh 
(e.g., all traffic is encrypted, all traffic to an application goes through the side-car proxy [PEP]).  

A significant advantage of the service mesh architecture is that the key piece that allows for these 
controls to be built – the sidecar proxy deployed next to every application – has more security 
benefits than the traditional approach of building these operational assurances into the 
application code. First, the life cycle of the sidecar is independent of the application, making it 
easier to manage across a fleet (e.g., push updates, ensure a consistent version is deployed 
everywhere). Second, modern implementations (e.g., Istio) allow for dynamic configuration. It is 
easy to update policies, and updates take effect nearly immediately and without having to 
redeploy applications. Finally, the mesh’s centralized control allows security teams to build 
policies that apply to the entire organization so that application developers who build business 
value are secure by default. 

A service mesh provides the ability to authenticate end user credentials attached to the request, 
like a JSON (JavaScript Object Notation) Web Token (JWT). Many service meshes (e.g., Istio) 
go further and provide the ability for the mesh’s side-car to call external authentication and 
authorization systems on behalf of the application. This grants the ability to move request-level 
policy enforcement out of the application code, trusting instead on the mesh’s assurance that 
requests that reach the service have been authenticated and authorized for the action that the 
request is attempting. The mesh can even be configured to pass proof of this to the application. 
This, coupled with the service mesh’s centralized control, means it is possible for a central team 
to mandate and manage application-level security across the entire organization, delegating to 
individual application teams only to specify what permissions are required for each application’s 
actions. 

Using the service mesh architecture also means that authentication and authorization systems can 
be deployed as services in the mesh. Like any other service in the mesh, they benefit from the 
operational assurances the mesh provides: encryption in transit, identity, a PEP, authentication, 
and authorization for end user identity. This makes it cheaper to operate an organization’s 
authentication and authorization systems securely and reliably. 

In addition to the service mesh features, the capabilities of the access control model play an 
important role in the authentication and authorization framework. Attribute-based access control 
(ABAC) has emerged as a promising approach for supporting multiple authorization policies 
(third requirement above). As per [5], ABAC is defined as “an access control method where 
subject requests to perform operations on objects are granted or denied based on assigned 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

3 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

attributes of the subject, assigned attributes of the object, (optionally) environmental conditions, 
and a set of policies that are specified in terms of those attributes and conditions.” The main 
focus of this document is to provide guidance on an authentication and authorization framework, 
the latter using ABAC to secure microservices-based applications using service mesh. 

1.2 Candidate Applications 

The service mesh is most widely used today with containerized applications but can be extended 
into other environments, such as stateful applications.  

1.3 Scope and Approach  

This document focuses on providing guidance for building a secure authentication and 
authorization framework using components of a service mesh for securing services in 
microservice-based applications. The framework was developed by highlighting the set of 
features provided by the service mesh, illustrating how those features can be used to provide 
operational assurances for applications in the mesh, and making a set of recommendations for 
settings/defaults for those features that provide the best security posture for applications running 
on that mesh. The example of running the access control system – one of the most important 
systems in the organization – on the mesh leveraging those operational assurances makes the 
system more secure and cheaper to operate than it might be otherwise. 

A reference application orchestration and resource management platform and a reference service 
mesh platform have been used as examples to illustrate these recommendations in the context of 
real-world application artifacts (e.g., containers and virtual machines (VMs)). The chosen 
reference application orchestration and resource management platform is the open-source 
Kubernetes (although other application platforms can be chosen for reference), and the chosen 
reference service mesh platform is Istio. Application infrastructure components in the service 
mesh that provide other services like network routing, network resilience, and monitoring are 
outside of the scope of this document. 

1.4 Target Audience 

The target audience of this guidance document for developing an authentication and 
authorization framework for microservices-based applications using the service mesh includes: 

● Security solutions architects who want to protect the application workloads in microservices-
based applications 

● Platform architects who want to incorporate a service mesh into the platform offered by their 
organization to its developers 

● Developers who want to develop authentication and authorization plug-ins in this application 
environment 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

4 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

1.5 Relationship to Other NIST Guidance Documents 

This guidance focuses on building an authentication and authorization framework within the 
service mesh used for securing microservices-based applications. The following publications 
provide background information for the contents of this document: 

● Special Publication (SP) 800-204, Security Strategies for Microservices-based Application 
Systems [4], discusses the characteristics of microservices-based applications and the overall 
security requirements and strategies for addressing those requirements. 

● Special Publication (SP) 800-204A, Building Secure Microservices-based Applications 
Using Service-Mesh Architecture [6], provides deployment guidance for various security 
services (e.g., authentication and authorization, and security monitoring) for a microservices-
based application using a dedicated infrastructure (i.e., a service mesh).  

● Special Publication (SP) 800-162, Guide to Attribute Based Access Control (ABAC) 
Definitions and Considerations [17], provides a definition of attribute based access control 
(ABAC) as a logical access control methodology where authorization to perform a set of 
operations is determined by evaluating attributes associated with the subject, object, 
requested operations, and, in some cases, environment conditions against policy, rules, or 
relationships that describe the allowable operations for a given set of attributes. 

1.6 Organization of This Document 

The organization of this document is as follows: 

● Section 2 provides an overview of a microservices-based application, its security 
requirements, a brief description of the overall architecture of reference platform for 
orchestration and resource management of microservices-based applications and the 
reference service mesh platform. The latter two are used as examples to illustrate the building 
blocks involved in the deployment recommendations. 

● Section 3 outlines the advantages of ABAC for the application environment and describes the 
functional architecture for two of the standard ABAC representations. 

● Section 4 discusses the building blocks of the authentication and authorization framework, 
the requirements and recommendations for configuration of policies that are required in the 
reference orchestration and resource management platform and in the reference service mesh 
platform for implementing the framework. The recommendations span mechanisms for 
supporting both end user and service level authentication and authorization policies. The 
minimal set of policy elements needed in authorization policies are also outlined.  

● Section 5 discusses some architectural features of the framework such as functionality of a 
reference monitor, supporting infrastructure, advantages as an ABAC implementation, and 
enforcement alternatives. 

● Section 6 provides summary and conclusions. 

 

 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

5 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

 

2 Reference Platform for Microservices-based Application and Service Mesh 

The objective of this document is to offer recommendations for the deployment of an 
authentication and authorization framework for microservices-based applications within a 
service mesh that provides the infrastructure for various services, including critical security 
services. A reference platform for hosting microservices-based applications and the service mesh 
is included to provide clarity and context for concepts and recommendations in real-world 
application environments. A brief description of these reference platforms is also provided in 
terms of their overall architecture and salient building blocks. 

2.1 Reference Platform for Orchestration and Resource Management of a 
Microservices-based Application 

Kubernetes is an orchestration and resource management system widely used for microservices-
based applications. In a large application, there will be several microservices, each of which is 
implemented as a container. Scalable, automated means are required for deployments, 
operations, upgrading services, and monitoring the health of these containers. The Kubernetes 
platform provides the building blocks to achieve these goals.  

The fundamental building blocks in a Kubernetes platform are: pod, node, cluster, and control 
plane components. A pod is the smallest object deployed, represents a set of running containers, 
and is identified by a label that is a name/value pair. A node is a physical or virtual machine that 
houses a set of pods as well as the interfaces necessary to run the housed pods. The set of nodes 
is called a cluster.  
 
The control plane's components make global decisions about the cluster (for example, 
scheduling), as well as detecting and responding to cluster events (for example, starting up a 
new pod when workload increases). Some key control plane components include: Kubernetes 
API (application programming interface) server, a key/value store, a scheduler, and a set of 
controllers. The node controller is one such controller that manages various aspects of nodes. 

To ensure adequate performance and continued availability, it is imperative to have some cluster-
level mechanisms for the clusters that are configured using the hosts of the application 
components (i.e., microservices). Considering a scenario where the host is a node of a 
Kubernetes platform cluster and the application components are running inside of a container      
with a pod (i.e., a group of containers) as a deployment artifact, the following cluster-level 
mechanisms are required.  

For example, one of the most well-known features of Kubernetes is pod-level horizontal scaling. 
This means that when services receive more traffic, more instances will be generated across 
machines that grow or shrink on demand. Kubernetes supports auto-vertical scaling on the pod 
level. Thus, a cluster could be configured to scale the machine on which a pod runs up or down 
to more accurately fit the anticipated power needs of any microservice. For example, if certain 

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/architecture/controller/


NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

6 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

subsets of nodes saw spikes in traffic at key times, with the right usage analysis, one could 
potentially reschedule those jobs across machines in order to save costs and optimize 
performance [7]. 

Similarly, Kubernetes offers features to monitor the health of the microservices (e.g., check the 
status and readiness). The data to perform these functions is configured in declarative 
deployment documents, known as Yet Another Markup Language (YAML), that describe the 
ports that a pod’s containers are listening on. One can specify what to do when services do not 
start, do not perform as normal, or exit unexpectedly. 

2.1.1 Limitations of Reference Orchestration and Resource Management Platform for 
Security 

Microservices-based applications require several application infrastructure and security services, 
such as authentication, authorization, monitoring, logging, auditing, traffic control, caching, 
secure ingress, service-to-service, and egress communication. The reference hosting platform 
with interfaces for efficiently scheduling and running the multiple services of an application 
lacks the interfaces to run a set of application infrastructure services in a coordinated and 
consistent manner. Moreover, the following advantages of API architecture are not fully 
leveraged in the reference platform [8]: 
● A unified way to apply cross-cutting concernsOut-of-the-box plugins to quickly address 

cross-cutting concerns 
● A framework for building custom plugins 
● Managing security in a single plane 
● Reduced operation complexity 
● Easy governance of third-party developers and integrators 
● Saving the cost of development and operations 

By default, communication between Kubernetes containers is insecure, and there is no easy way 
to enforce TLS between pods since this would result in individually maintaining hundreds of 
TLS certificates. Pods that communicate do not apply identity and access management between 
themselves. Though there are tools to define a Kubernetes network policy that implements a 
firewall between pods, they provide a layer 3 solution rather than a layer 7 solution, which is 
what most modern firewalls do (a few tools for defining more sophisticated network policies are 
available). This means that while one can know the source of traffic, one cannot peek into the 
data packets to understand what they contain. It does not allow for making vital metadata-driven 
decisions, such as routing on a new version of a pod based on an Hypertext Transfer Protocol 
(HTTP) header.  

There are Kubernetes ingress objects that provide a reverse proxy based on layer 7, but they do 
not offer anything more than simple traffic routing.1 Kubernetes offers different ways of 

 
1 Custom development can extend Kubernetes ingress controllers and objects to provide more advanced capabilities. In fact, 

some service mesh implementations in some kubernetes environments leverage this as a way to route traffic. Further, the 
network configuration for the orchestration platform (Kubernetes) is not an integral part of the service mesh. Since 
microservices are implemented as containers, the network configuration is dependent on the associated Container Network 
Interface (CNI) implementation. Hence, the ability to have advanced networking has to do with the software that the operator 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

7 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

deploying pods that do some form of A/B testing or canary deployments, but they are done at the 
connection level and provide no fine-grained control or fast failback. For example, if a developer 
wants to deploy a new version of a microservice and pass 10 % of traffic through it, they will  
have to scale at least 10 containers – nine for the old version and one for the new version. 
Furthermore, Kubernetes cannot split the traffic intelligently and instead balances loads between 
pods in a round-robin fashion. Every Kubernetes container within a pod has a separate log, and 
hence a custom solution over Kubernetes must be implemented to capture and consolidate them.  

Although the Kubernetes dashboard offers features like monitoring pods and checking their 
health, it does not expose metrics that describe how application components interact with each 
other, how much traffic flows through each of the pods, or what chains of containers make up the 
application. Since traffic flow cannot be traced through Kubernetes pods out of the box, it is 
unclear where the failure for that application request occurred on the chain.  

A service mesh addresses these limitations [9]. This document will first consider the service 
mesh architecture, followed by implementation of service mesh capabilities in the context of the 
reference platform (Kubernetes). 

2.2 Service Mesh Reference Platform – Conceptual Architecture 

A service mesh is the network of microservices that provide the various application services and 
control the interactions between them. It helps to manage microservices-based applications using 
two major components: 

1. Data Plane. This is the component that performs the actual routing or communication of 
messages between microservices. It also gathers telemetry data, which helps to monitor the 
health and state of the services. The traffic that flows through the data plane is the 
application-related (business) data. 

2. Control Plane. This is the component that provides an API to define policies. This API is 
often independent of the platform on which the microservices application runs. The control 
plane also helps the administrator populate the data plane component with a configuration 
that determines how to route traffic. The control plane is the brain of a service mesh. The 
traffic that flows through the control plane consists of messages of interaction between 
service mesh components. 

The control plane may consist of multiple modules, and the distribution of functionality among 
these modules may be different in various service mesh offerings. However, they all provide the 
following core functions: 

a. A module that parses the policy rules defined in the control plane and converts them into 
configuration parameters in the data plane module (i.e., the sidecar proxy). These policies 
may pertain to various functions, such as authentication, authorization, service discovery, 
traffic management (including load balancing), intelligent routing, blue-green deployments, 

 
chooses to use as the cluster's ingress controller. 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

8 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

and canary rollouts. It may also include configuration parameters related to resiliency in the 
service mesh, such as timeout, retry, and circuit-breaking capabilities. 

b. A module that provides all of the infrastructure functionality for authentication, 
authorization, and establishing a secure, encrypted session while two microservices 
communicate. These functions include user authentication, credential management, digital 
certificate management, and traffic encryption.  

2.2.1 Service Mesh Functions for Reference Orchestration and Resource Management 
Platform 

In order to describe the generic service mesh functions in the context of the reference platform – 
which, in this case, is Kubernetes – the deployment details of both the microservices application 
and service mesh components in that platform must be considered. Since authentication and 
authorization functions are the focus of this document, discussions for those functions on the 
Kubernetes platform will be confined to the functions in the service mesh. 

Since the sidecar proxy code “implemented as a container” is hosted in the same pod as the 
microservice container, they share the same network namespace and are presented in the same 
node (e.g., VM or a physical machine). Both containers have the same Internet Protocol (IP) 
address and share the same IP Table rules. That allows the proxy to take complete control over 
the pod’s network and handle all traffic that passes through it [10].  

Taking the example of establishing a mutual TLS session, the proxy will interact with the 
module in the control plane of the service mesh to check whether it needs to encrypt traffic 
through the chain and establish mutual TLS with the backend pod. Enabling this functionality 
using mutual TLS requires every pod to have a certificate (i.e., a valid credential), and, since a 
good-sized microservice application may be hosted in hundreds of pods, this may involve 
managing hundreds of short-lived certificates. This, in turn, requires the service mesh to have a 
robust identity, access manager, certificate store, and certificate validation. In addition, 
mechanisms for identifying and authenticating the two communicating pods are required for 
supporting authentication policies. 

A service mesh not only provides various application services during runtime but also supports 
the DevSecOps development and maintenance paradigm. The development team can concentrate 
their efforts on efficient development paradigms, such as application architecture (code 
modularity and structuring) and secure deployment (including interaction with sidecars and data 
flows through PEPs), without worrying about the implementation (development and deployment) 
of all infrastructure services, including many aspects of security. The service mesh is reference 
platform-aware and thus automatically injects sidecar containers into the pods. Once the service 
mesh inserts the sidecar containers, the combined team of developers, operations, and security 
teams can define policies, deploy them, and monitor their enforcements during runtime. These 
teams can also configure monitoring of the microservices applications without interfering with 
the functioning of the applications. 

 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

9 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

3 Attribute-based Access Control (ABAC) – Background 

Attribute-based access control (ABAC) is an authorization framework or engine that computes 
decisions for user access requests based on attributes (properties) of users (subjects), application 
objects (resources), and the environment and policies expressed in terms of the attributes [5]. The 
advantages of ABAC for microservices-based applications using service mesh include: 

1. Cloud-native applications span different domains and require increased precision in specifying 
policy by considering a large set of variables (i.e., multiple attributes and their associated 
values). Because of its scalability with respect to attribute-value stores and associated policies, 
ABAC can meet this requirement. Attributes and their values associated with subjects are 
assigned by system administrators, while those associated with application objects and 
environment are independently assigned by developers.  

2. A policy is a logical expression that involves the attributes of the subject, object, and 
environment with an allowed/prohibited verdict attached to it. Policies based on the attributes do 
not create a tight relationship between a particular instance of a subject and an instance of an 
object, since attributes associated with them can take on any values and may change over time. 
The access decision to allow or disallow the request will be entirely dictated by the values of 
attributes associated with the instances at the time of the request.  

 3. Policies are expressed in terms of attributes without prior knowledge of potentially numerous 
users and resources that are or will be governed under those policies, and users and resources are 
independently assigned attribute values without knowledge of policy details. This dual feature 
enables access decisions on user requests to be based on centralized, enterprise-wide policies 
while also supporting the DevSecOps approach that provides autonomy to each microservice 
development team to make all decisions regarding their subset of applications (i.e., 
microservice), including the assignment of attribute values to their application objects.  

Due to the features described above, the ABAC authorization framework is a natural fit for the 
class of cloud-native applications whose design is based on microservices (with each being 
developed and deployed by independent teams). 

The ABAC framework has two standardized, representational structures.  
1. One uses a platform-neutral text-based language called eXtensible Access Control Markup 

Language (XACML) Version 3.0, which has been standardized by Open Artwork System 
Interchange Standard (OASIS).  

2. The other is Next Generation Access Control (NGAC), whose data structure and operations 
have been standardized under InterNational Committee for Information Technology 
(INCITS) 565-2020 [11]. This standardization includes the APIs of functional components 
(i.e., PEP, PDP, and Resource Access Point (RAP)), allowing for the interoperability of these 
components from different sources. Furthermore, the PEP interface is common for enforcing 
policies over both application requests and policy administration requests. The biggest 
advantage of NGAC is the use of linear time algorithms for computing access control 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

10 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

decisions and performing policy reviews (i.e., determining the set of resources that a user can 
access, determining the set of users who can access a resource) [12,13]. 

The functional architectures for these two representational structures are given in Figures 3.1 and 
3.2, respectively. It must be mentioned that there are certain open-source access control engines, 
such as Open Policy Agent (OPA) and Casbin, that have the capability to define ABAC policies 
and enforce them just like XACML implementations. A brief description of the modules in these 
two functional architectures is as follows: 
 
1. Policy Decision Point (PDP) – This is the core module of the ABAC functional architecture 
that computes decisions to permit or deny user access requests for performing actions on 
resources (application objects). Requests are received from and responses are sent to a module 
called Policy Enforcement Point (PEP) in both representations. 
2. Policy Enforcement Point (PEP) – This module is part of the application’s platform and is 
tightly integrated with the application. It is designed to intercept all access requests and either 
perform deny/permit actions on its own or consult an external PDP module. 
3. Policy Information Point (PIP)  
In the XACML representation, this is a module that contains the database of attributes and their 
associated values for all application-relevant objects or resources. The information here is used 
to extract the attributes and associated values for users and resources found in the access request. 
The extracted attribute values are then matched to the target clause, which in turn is used to find 
the applicable target policies in the Policy Retrieval Point (PRP) (described below). 
The NGAC representation is a repository of association relations of the form (u-ai, op-i, o-ai) for 
a given pc-i, where u-ai and o-ai are attribute values associated with a user and object (resource), 
respectively[11]. op-i denotes a set of allowed operations, and pc-i is an instance of the 
governing policy class. An association relation can be generically defined as a configured 
relation that defines an allocation of access rights (e.g., read, write) among policy elements 
(attribute values of user and object) that enables certain modes of access. 
To minimize the set of association relations in the authorization database (e.g., having triples to 
represent every user and object in the application), containment relations of the form (U < u-ai) 
are used to show the members of the user group and object group represented in the association 
relations. Instead of using the individual policy elements (e.g., u-ai, o-ai), the containment 
relation will use the powerset (2PE) of the set of all policy elements PE, which contain all 
possible subsets of the set PE, in formulating association relations. In addition, the same set of 
containment relations is used to denote the applicable policies for each object as well (O < pc-i). 
Once the applicable policies for an object O are known, the association relations for that pc-i and 
all o-ai (attribute values of that object) will provide the allowable set of users and operations for 
the Object O. 
4. Policy Retrieval Point (PRP) – In the XACML representation, this module is the repository 
for authorization policies expressed as logical formulas involving predicates on attribute values. 
The policy representation also contains the target resources that are covered by the policy. The 
resources requested in the access request are matched to these targets to retrieve the applicable 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

11 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

policies by the PDP when computing decisions for those requests. This module is not part of the 
functional architecture in the NGAC representation. 

5. Attribute Administration Point (AAP) – This is the interface for administering attributes 
stored in PIP in the XACML representation. This module is not necessary in NGAC 
representation since its association relations express the access rights on objects instantiated 
using attribute values. 

6. Policy Administration Point (PAP) – This is the interface for administering policies stored in 
PRP. 

 

 

Figure 3.1 ABAC Functional Architecture based on XACML Representation 

 

 



NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

12 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

 

Figure 3.2 ABAC Functional Architecture based on NGAC Representation 

 

3.1 ABAC Deployment for Microservices-based Applications Using Service Mesh 

In the context of a microservices-based application using service mesh, an ABAC deployment 
can take the following forms: 

● The proxies (e.g., Ingress, sidecar, and Egress) play the role of PEPs since they intercept all 
requests that emanate from each client, user, service, or external service. 

● The PEPs enforce access control policies by performing the allow/deny actions based on the 
verdict provided by PDP.  

● The enforcement function can be provided either natively (using local configuration 
structures, such as Access Control Lists [ACLs]) or using proxy extensions that call an 
external authorization server to obtain one or more of the data in the previous bullet. 

● The assurance mechanisms in the service mesh (e.g., certificate-based authentication, secure 
session, non-bypassability, execution isolation) can be leveraged to deploy a high assurance 
authorization framework. Execution isolation is running each software component in a 
contained environment or sandbox-leveraging hardware virtualization that limits the damage 
of malware, limits the speed and propagation of worms and viruses, and efficiently detects 
attacks. 

 



13 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

4 Authentication and Authorization Policy Configuration in Service Mesh 

Fine-grained access control for microservices can be enforced through the configuration of 
authentication and access control policies. These policies are defined in the control plane of the 
service mesh, mapped into low-level configurations, and pushed into the sidecar proxies that 
form the data plane of the service mesh. The configurations enable the proxies to enforce the 
policies at application runtime (or request time), thus making the proxies act as Policy 
Enforcement Points (PEPs). As stated in the introduction, the objective of this document is to 
provide guidance for the deployment of an authentication and authorization framework that is 
external to the application and agnostic to the platform hosting the application and the service 
mesh product that implements the application infrastructure. However, Kubernetes is used as 
the reference application platform and Istio as the service mesh infrastructure platform to 
provide concrete examples of the concepts and to allow for recommendations with more clarity 
and specificity.   

4.1 Application Orchestration and Resource Management Platform Configuration 

The reference application orchestration and resource management platform configuration data 
for microservices-based applications using service mesh that are, at the minimum, needed for 
authentication and authorization policy configuration are: 

• Metadata, like application service name and the sets of instances of that service hosted on 
the orchestration platform (such as Kubernetes) 

● Runtime data, such as a service’s protocols and ports 
● Namespaces that provide logical isolation boundaries for sets of services 
● Unique runtime identities for each service 

In the instance of the reference platform Kubernetes, this is realized as: 

● Service resource, which declares a service’s name, protocol (e.g., TCP), and ports (e.g., 
9080) 

● Deployment resource, which declares deployment of pods that implement that service, 
including metadata such as labels and version 

● Namespace construct and Role-based Access Control (RBAC) for managing how users are 
allowed to publish configuration into namespaces 

● Service accounts, which are identities unique to each namespace bound to individual 
services   

4.2  Service Mesh Configuration 

The installation of any service mesh involves the following components: 

● Ingress Gateway, which is the first point of entry into the microservices-based application. 
This gateway specification includes names, ports, and routes that the application client must 
take to access the application. In some implementations, an ingress gateway is optional as 
the sidecar itself can perform its functions. 

● Egress gateway for the application to call outside services or applications. Just like an 



14 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

ingress gateway, an egress gateway is optional as the sidecar itself can perform its 
functions. 

● Injection of sidecar proxies (in the form of containers). The consequence of this is that each 
of the application’s deployments in the platform will now have two containers – the 
original microservice container plus the mesh’s sidecar proxy. These sidecar proxies 
enforce authentication and authorization policies during application runtime, thus acting as 
Policy Enforcement Points (PEPs). It must be mentioned that agents (e.g., OPA) can 
sometimes be used to play the role of PDPs for the authorization service. In addition, 
proxies should emit metrics and logs to enable continuous monitoring of the system, which 
can ensure that policies are in place and being enforced. 

● A certificate authority (CA) module is needed to handle certificate requests from sidecar 
proxies, which need a runtime identity presented as an X.509 certificate. This CA 
generates, distributes, and manages keys and certificates used by the mesh and enables the 
mesh to perform automatic certificate rotation. The proof for the validity of the certificate is 
carried in the certificate itself by including a signed and dated “Online Certificate Status 
Protocol (OCSP)” server response as part of the certificate (called "OCSP stapling") via an 
X.509 extension.  

● A control plane module in the service mesh that monitors configuration data in the hosting 
platform, encodes policies, and distributes those policies in the form of configuration to 
various proxies in the mesh (e.g., ingress, sidecar, and egress). 

Having looked at the components in service mesh, we will now look at the minimal 
requirements for setting up mutual TLS authentication [14] for communication between 
Kubernetes workloads using these components as a pre-requisite for configuring and enforcing 
authentication and authorization policies. These requirements or recommendations come under 
initial service mesh configuration and are numbered using the acronym ISMC-SR-X, where 
ISMC stands for initial service mesh configuration, SR stands for security recommendation, 
and X is the sequence number. They include but are not limited to the following. 

ISMC-SR-1: If certificate-based authentication is used for authenticating service calls, the 
signing certificate used by the service mesh’s CA module should be rooted in the 
organization’s existing Public Key Infrastructure (PKI) to allow for auditability, rotation, and 
revocation. 

Some service meshes come with the ability to encrypt traffic using a self-signed certificate; 
such a certificate should not be used in secure deployments. 

ISMC-SR-2: Communication between the service mesh control plane and the application 
orchestration and resource management platform’s configuration server must be authenticated 
and authorized.  

In this reference platform, authentication is typically achieved by the Kubernetes API server 
(the configuration server) with simple TLS. Authentication of the client is based on the pod’s 
service account credential. Authorization for the client to receive platform information from the 
API server is enforced by Kubernetes RBAC. 



15 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

4.3 Higher-level Security Configuration Parameters for Applications 

Since the component microservices of the application are generally implemented as containers, 
the following higher-level security configuration parameters should be set. In the reference 
application orchestration and management platform Kubernetes, containers are implemented in 
pods, which contain a microservice container as well as a sidecar container. These higher-level 
security configurations are set through flags that come under the banner of pod security 
policies. The recommendations for these flag values are numbered using the acronym AHLC-
SR-X, where AHLC stands for application higher-level configuration, SR stands for security 
recommendation, and X is the sequence number. They include but are not limited to the 
following [5]: 
 
AHLC-SR-1: Containers and applications should not be run as root (thus becoming privileged 
containers).  
In Kubernetes, the configuration setting for this is to set the value TRUE for 
“MustRunAsNonRoot” flag. 
 
AHLC-SR-2: Host path volumes should not be used, because they create tight coupling 
between the container and the node on which it is hosted, constraining the migration and 
flexible resource scheduling process.  
 
AHLC-SR-3: Configure the container file system as read-only by default for all applications, 
overriding only when the underlying application (e.g., database) must write to disk.       
In Kubernetes, the configuration setting for this is to set the value of TRUE to 
“readOnlyRootFilesystem” flag. 
 
AHLC-SR-4: Explicitly prevent privilege escalation for containers. 
In Kubernetes, this is achieved by setting the value FALSE for the 
“allowPrivilegeEscalation” flag. 

4.4 Authentication Policies 

Authentication policies specify the process for validating identities. The integrity of this 
process and its strength determines the integrity of the authorization process since the latter 
depends on the strength of the authenticated identity. There are two types of identity needed in 
a microservices-based application: 

1. Microservices or workload identity 
2. End-user identity 

Service (microservice) identity is critical for the following reasons: 

● It enables the client to verify that the server with which it is communicating (server identity 
validated using the certificate it carries) is authorized to run the service. This assurance has 
to be provided by a secure naming service that maps the server identity to the service 
identity. In any orchestration platform (including Kubernetes), services can be moved 
around the nodes (server) for load balancing and service availability reasons. It is the 
responsibility of the control plane of the service mesh to refresh this mapping information 



16 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

by interacting with the API that contains this configuration information (e.g., through API 
server in Kubernetes) and conveying it to the sidecar proxy in the data plane of the service 
mesh.  

● The service identity is the basis for the target service to select and enforce applicable 
authorization policies. 

4.4.1 Specifying Authentication Policies 

Associated with these identities are the corresponding authentication processes that the service 
meshes have to support: 

● Service-level authentication or peer authentication using service identity 
● End user authentication or request authentication using end user credentials 

It is assumed that the reference hosting platform has been configured with the high-level 
requirements outlined in Section 4.1. It is also assumed that the reference service mesh 
platform has been installed and configured with the initial requirements outlined in Section 4.2.  

4.4.2 Service-level Authentication 

Service-level authentication is the mutual authentication of the communicating services and 
setup of a secure TLS session. Enabling this requires the capability to define a policy object, 
which should meet the following requirements. These requirements are enablers for service-
level authentication and are numbered using the acronym SAUN-SR-X, where SAUN stands 
for service-level authentication, SR stands for security recommendation, and X is the sequence 
number.: 

SAUN-SR-1: A policy object relating to service-level authentication should be defined that 
requires mTLS be used for communication. The policy object should be expressive enough to be 
defined at various levels (given below) with features for overrides at the lower levels or 
inheritance of the requirement specified at the higher levels.  

The following are the minimum required levels [6]: 
• Global level or the service mesh level  
• Namespace level  
• Workload or microservices level, used for applying authentication and authorization 

policies for a subset of traffic to a subset of resources (e.g., particular microservices, hosts 
or ports) 

• Port level, taking into account that certain traffic is designed for communicating through 
designated ports 

 
This form of authentication also requires assigning a strong identity to each service, 
authenticating that identity by mapping it to the server identity (where the service is hosted) 
and establishing the authenticity of the mapping using a digital signature. One way of 
implementing this is through a special digital authentication certificate (Secure Production 
Identity Framework for Everyone (SPIFFE)). To provide assurance that the server whose 



17 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

identity is found in the SPIFFE certificate is the one that is authorized to run the target service, 
the following requirements (also specified in SP 800-204A) are needed. 

SAUN-SR-2: If the certificate used for mTLS carries server identity, then the service mesh 
should provide a secure naming service that maps the server identity to the microservice name 
that is provided by the secure discovery service or DNS. This requirement is needed to ensure 
that the server is the authorized location for the microservices and to protect against network 
hijacking. 

The information for mapping the server identity to a service is obtained by the control plane of 
the service mesh by accessing the configuration information from the platform that is hosting 
the microservices-based application. In Kubernetes, the control plane of the service mesh 
obtains the mapping information through the API server module of the Kubernetes platform 
and populates that information in the secure naming service. Thus, the mutual certificate 
validation not only enables validation of the associated service identities of both the client and 
target services but also enables creation of a secure mTLS session. In Istio, the policy object for 
this type of authentication is called “peer authentication.” 

4.4.3 End User Authentication 

For the mesh to authenticate end user credentials (EUC), the application must participate in 
some way. Client services that make the request should acquire and attach an appropriate 
credential to each request (e.g., a JWT) in the request header. End user authentication, or 
request authentication, is the process of validating the credentials of the end user making a 
request by extracting them from the request’s metadata and authenticating them (locally or 
against an external server). For example, a common flow at many organizations is to exchange 
an external EUC, like an Oauth bearer token, at ingress for an internal credential that is 
encoded within a JWT. The JWT can be created by a custom authentication provider or 
standards-based OpenID Connect provider.  

The minimal information requirement in an end user authentication policy is designated using 
the acronym EAUN-SR-X, where EAUN stands for end user authentication, SR stands for 
security recommendation, and X is the sequence number.: 

 EAUN-SR-1: A request authentication policy must, at the minimum, provide the following 
information and must be enforced by the sidecar proxy: 

● Instructions for extracting the credential from the request 
● Instructions for validating the credential 

For a JWT, this might include: 

● Location (header name) of the JWT token that contains the user’s claims 
● How to extract the subject, claims, and issuers from the JWT 
● Public keys or the location for the key used for validating the JWT 



18 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

4.5 Authorization Policies 

Authorization policies, just like their authentication counterparts, can be specified at the service 
level as well as the end user level. In addition, authorization policies are expressed based on 
constructs of an access control model and may vary based on the nature of the application and 
enterprise-level directives. Further, the location of the access control data may vary depending 
on the identity and access management infrastructure in the enterprise. These variations result 
in the following variables: 

● Two authorization levels – service level and end user level 
● Access control model used to express authorization policies 
● Location of the access control data in a centralized or external authorization server or 

carried as header data 

The supported access control in the service mesh uses abstraction to group one or more policy 
components (described below in Section 4.5.1) for specifying either service-level or end user-
level authorization policies. Since microservices-based applications are implemented as APIs 
(e.g., Representational State Transfer (REST)ful API), authorization policy components 
described using key/value pairs will have attributes pertaining to an API, including the 
associated network protocols. The types of authorization policies are: 

● Service-level authorization policies 
● End user-level authorization policies 
● Model-based authorization policies 

4.5.1 Service-level Authorization Policies 

Service-level authorization policies are defined using a policy object that provides positive or 
negative permission (authorization) with the following policy components: 

a. The scope of the policy can span all applications at the service mesh level, namespace 
level, or one or more designated applications (microservice level). 

b. The permissions or operations can be restricted to one or more designated methods of a 
given service (e.g., an “HTTP GET method on the ‘/details’ path of an application named 
PRODUCT-CATALOG”) or to designated ports through which an application can be 
accessed. 

c. Conditions under which access can take place (e.g., possession of a token) are specified. 
d.  Sources allowed access are specified at the namespace or a particular service level (in   

terms of the service’s runtime identity).  

The requirements for a policy object for enabling service-level authorization policies are 
numbered using the acronym SAUZ-SR-X, where SAUZ stands for service-level authorization, 
SR stands for security recommendation, and X is the sequence number: 

SAUZ-SR-1: “A policy object describing service-to-service access should be in place for all 
services in the mesh. At a minimum, these policies should restrict access to the namespace level 
(e.g., “services in namespace A can call services in namespace B”). Ideally, policies should 



19 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

restrict access to individual services (e.g., “service Foo in namespace A can call service Bar in 
namespace B”).” 

Policies should describe the minimum access required for application functionality (e.g., 
“service ‘foo’ in namespace A can perform ‘GET /bar’ on service ‘bar’ in namespace B”). 

4.5.2 End-user Level Authorization Policies      

Given an authentication policy like Section 4.4.3, a sidecar in the mesh can extract a principal 
from the request to perform authorization on. Further, the sidecar typically has additional 
context about the request, including the resource being accessed (e.g., the path in an 
HTTP/REST API) and the action being taken (e.g., the HTTP verbs GET and PUT in the 
request to that API). This gives the sidecar enough information to act as a PEP and call a policy 
decision point. 

This is the most common case, especially for organizations with traditional Identity and Access 
Management (IAM) systems that exist as an external service, often called by an Software 
Development Kit (SDK). To handle this case, a service mesh’s sidecar proxy will typically 
support calling external services to render an authentication and authorization verdict. For 
example, the reference implementation Istio supports this via Envoy’s (i.e., the sidecar proxy) 
external authorization service [15]. 

The requirements for enabling end-user level authorization policies are numbered using the 
acronym EAUZ-SR-X, where EAUZ stands for end-user level authorization, SR stands for 
security recommendation, and X is the sequence number: 

EUAZ-SR-1: When a sidecar communicates with an authentication or authorization system, 
that communication must be secured with either the mesh’s built-in service-to-service 
authentication and authorization capabilities or using an existing enterprise Identity and 
Access Management (IAM) that is not part of the service mesh.  

An example is the external Software as a Service (SaaS) IAM, such as AuthO.   

EUAZ-SR-2: The sidecar should generate logs for every service request to ensure that 
authentication and authorization policies are enforced and relay telemetry data for the 
generation of metrics to ensure no degradation of service that will impact availability.   

End user authorization is not applied to the decision endpoint of the external authorization 
(PDP) service since the service is the principal making the call. It also avoids needing a default 
policy that allows all users to call the decision endpoint of the PDP. End user authorization 
should be applied to the PAP and other administrative endpoints of the authorization system, 
and applying that authorization can be facilitated by the mesh. 

However, there is another case that is common enough to address in which an external 
authorization system is not required. Making a network call to an authorization service for 
every hop in a service chain can be expensive and cause centralized failures. To mitigate these 
problems, many organizations will exchange end user credentials at ingress for an internal, 



20 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

trusted, authenticatable credential that conveys not just the user’s principal but also that user’s 
capabilities in the system. A JWT is frequently used for this because it is locally 
authenticatable and conveys the user’s principal (the JWT’s subject), the issuer of the JWT 
(issuer), and arbitrary claims that the organization can control (e.g., to use for access control). 

Performing end user authorization based on a JWT is built directly into Envoy, the sidecar 
proxy of the reference mesh Istio. Envoy can be configured with a filter [16] that will process 
requests in two steps: 

1. JWT token verification involves extracting the token from the request header, verifying 
whether issuers and audiences are allowed, fetching the public key, and verifying the digital 
signature on the token. 

2. Match the resources in the request to the claims in the token to determine whether the end 
user should be allowed access to the requested resources or denied. 

Envoy’s JWT filter acts as the PDP, making the access decision entirely locally. This requires 
that policy documents be small enough to reside on an individual sidecar proxy. Although a full 
ABAC is ideal for handling resource-level policies, the JWT filter is valuable as a 
steppingstone from a traditional system that only performs access control on the edge to a zero-
trust system that performs authentication and authorization at each service. The limitation of 
this approach is that it becomes hard to revoke a user’s access once a JWT is issued. 
Community standards, such as Internet Engineering Task Force (IETF) Request for Comments 
(RFC) for OAuth2 Introspection, can be used to address this. 

An example of an authorization policy that will enable the sidecar itself to make an access 
control decision based on claims in the JWT and enforce it, without calling on an external 
authorization system, is given below: 



21 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

apiVersion: security.istio.io/v1beta1 
kind: AuthorizationPolicy 
metadata: 
 name: backend 
 namespace: product 
spec: 
 action: ALLOW 
 rules: 
 - from: 
   - source: 
       principals: ["cluster.local/ns/product/sa/frontend"] 
   to: 
   - operation: 
       methods: ["GET"] 
       paths: ["/info*"] 
   - operation: 
       methods: ["POST"] 
       paths: ["/data"] 
   when: 
   - key: request.auth.claims[iss] 
     values: ["accounts.google.com"] 

Figure 4.1 – An example Istio authorization policy  
This allows the front end to call specific methods on the backend only if the request has an EUC attached issued 

by “accounts.google.com.” 
 

EUAZ-SR-3: All application traffic should carry end user credentials, and there should be a 
policy in the mesh enforcing that credentials are present. 

This is recommended even if the application is enforcing authentication and authorization 
independently of the mesh because these organization-wide controls allow functionalities like 
audit to be built on top of the mesh at a lower cost to central teams responsible for compliance 
and controls. 

4.5.3 Model-based Authorization Policies 

The service-level authorization policies and a use case of end-user authorization policies that 
uses JWT are natively implemented in the proxies. Since these cannot be used for resource-
level authorization policies, support for model-based authorization policies is needed as well. 
As already alluded to in Section 4.5.2, this requires a call from the proxy to an external 
authorization server, which holds the model-based authorization engine to obtain an access 
decision.   

The service principals in these model-based policies are identities (e.g., Service Account) 
provided by the underlying application orchestration platform (e.g., Kubernetes) and are the 
same as those used by authorization policies natively supported in the proxies. The user 
principals are usually obtained from the JWT. The popular access control models in the 
external authorization servers are RBAC and ABAC.  



22 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

4.6 Authorization Policy Elements 

The requirements that stipulate the minimal set of policy elements that should be present in 
authorization policies are given below and are numbered using the acronym APE-SR-X, where 
APE stands for authorization policy elements, SR stands for security recommendation, and X is 
the sequence number: 

APE-SR-1: The authorization policy should, at the minimum, contain the following policy 
elements:  

● Policy types – Positive (ALLOW) or Negative (DENY) 
● Policy target or authorization scope – the namespace, a particular service (application 

name), and version 
● Policy sources – covers the set of authorized services 
● Policy operations – specifies the operations on the target resources that are covered under 

the policy  
● Policy conditions – the metadata associated with the request that must be met for the 

application or invocation of the policy 

4.6.1 Policy Types  

Positive and negative policies are specified in order to set precedence relationships (e.g., 
DENY overrides and ALLOW). They are also used for situations that allow one type of policy 
for all services under a group and to specify exceptions (e.g., have an ALLOW policy for all 
services in a namespace but a DENY policy for a specified service) 

4.6.2 Policy Target or Authorization Scope 

This refers to the target resources in terms of a set of services, versions, and the namespaces 
under which the services are located. The service can be specified in the following ways: 

• Using path: The location of the target resource is specified using paths (e.g., for resources 
accessed using HTTP or Google Remote Procedure Call (gRPC) protocols)). The list of 
paths to be included in the authorization policy scope and paths that need to be excluded 
can be defined. Both of these sub-elements of the policy target component (i.e., the list of 
paths to be included and the list of paths to be excluded) are optional. 

• Using host name: In some instances, the target resources are specified using the host sub-
element. The list of hosts to be included in the authorization policy scope as well as those 
hosts that need to be excluded can be defined. Both of these sub-elements of the policy 
target component (i.e., list of hosts to be included and the list of hosts to be excluded) are 
optional. 

• Using network ports: The network port through which the target resource (the service) is 
accessed is often specified using the port sub-element. The list of ports to be included in the 
authorization policy scope as well as those ports that need to be excluded can be defined. 
Both of these sub-elements of the policy target component (i.e., list of ports to be included 
and the list of ports to be excluded) are optional. 



23 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

4.6.3 Policy Sources 

The policy sources are the set of services that are authorized to operate on the set of resources 
specified under the policy target (specified using name, path, host name, and ports). The policy 
sources are usually specified using a service account or name (called principal), all services in a 
particular logical group (e.g., namespace), or all services that are accessed from a group of 
network locations (e.g., IP blocks). Both included and excluded principals, namespaces, and IP 
blocks can be specified in some implementations. 

4.6.4 Policy Operations 

APE-SR-2: The policy should cover all of the operations that are part of the application type. 
For example, if the application is implemented as a REST API, all of the operations (also 
called HTTP verbs or HTTP methods) that are part of the REST API must be included: 

POST: This is equivalent to creating a resource. 

GET: This is equivalent to reading the contents of the resource. 

PUT: This is equivalent to updating the resource by replacing. 

PATCH: This is equivalent to updating the resource by modifying. 

DELETE: This is equivalent to deleting the resource. 

If the resource is accessed using gRPC instead of a RESTful protocol, there is only one 
operation or method: “POST.” The authorization policy definition may also have a feature to 
specify the list of operations (methods) to be excluded. Both policy sub-elements – one to 
specify the operations to be included in the authorization policy scope and the other to be 
excluded – are optional. 

4.6.5 Policy Conditions 

Policy conditions specify the constraints in the form of a key-value pair for the metadata 
associated with the request. This metadata may cover the following: 

• Metadata associated with the source: Some of the metadata (e.g., service account name, 
namespace, and IP blocks) are specified as part of the policy source specification itself. In 
addition, it is possible to list IP addresses in Classless Inter-Domain Routing (CIDR) format 
of the policy sources. 

• Metadata associated with the request: In this type of metadata, the parameters or attributes 
that pertain to a specific request can be specified. These parameters can include an audience 
that can present the authentication information expressed in the form of a Uniform 
Resource Locator (URL) (only applicable to HTTP protocol-based requests), a specific end 
user identifier associated with the audience that can present the authentication credentials, 
or the claim name that is carried in the token presented by the presenter. In addition, 



24 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

parameters that pertain to the user-agent (e.g., browser name) can also be specified for 
HTTP protocol-based requests.  

• Metadata associated with the destination: The range of allowable IP addresses can be 
specified in CIDR format as well as the associated list of ports. 

 

4.6.6 Default Authorization Policy 

APE-SR-3: A default policy should be authored in the system that rejects all requests that are 
unauthenticated, mandates that service and end-user credentials be present on every request, 
restricts all communication to services within the application’s own namespace, and allows 
service communication across namespaces only through an explicit policy. 



25 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

5 ABAC Deployment for Service Mesh 

The last section introduced three different types of authorization policies, including two use cases 
for end-user level authorization policies. This section will leverage those architectural choices to 
describe an ABAC-based authorization framework in the service mesh: 

● Security assurance for authorization framework enforcement 
● Supporting infrastructure for authorization requests 
● Advantages of an ABAC authorization framework for service mesh 
● Enforcement alternatives in proxies 

5.1  Reference Monitor Concept in Authorization Framework  

The authorization policy enforcement mechanism implemented in the service mesh for a 
microservices-based application must satisfy the three requirements of a reference monitor 
concept. It must be 1) non-bypassable, 2) protected from modification, and 3) verified and 
tested to be correct. These three requirements can be ensured by the following: 

● Every request from a client to the microservices-based application, from one service to 
another (inter-services call), and from a microservice to an external application is 
intercepted by the ingress gateway, sidecar proxy, and egress proxy, respectively. These 
PEPs are non-bypassable. 

● The policy enforcement modules are independent executables that are decoupled from the 
application logic and cannot be modified. 

● Their outcome can be independently verified and tested through both shadow operations 
and live production requests. 

In short, a proxy running in the data plane of the service mesh is the reference monitor with 
respect to authorization enforcement. The authorization policy engine (e.g., NGAC-based 
ABAC policy engine) implemented as a container executing either natively in the proxy 
memory space or callable from a corresponding filter module in the proxy runs as a separate 
process that does not share any memory space with the calling application. Hence, it satisfies 
the requirement of a security kernel. 

5.2 Supporting Infrastructure for ABAC Authorization Framework 

Now consider the basic building blocks of the supporting infrastructure for service-to-service 
and end user + service-to-service requests. 

5.2.1 Service-to-Service Request (SVC-SVC) – Supporting Infrastructure 

The policy object used for authorizing this type of request was described in Section 4.5.1. 
Service-to-service requests must be authorized based on the identity of the calling and called 
services. The trusted document that carries the identity of the service is an X.509 certificate 
issued by one of the control plane components of the service mesh after verifying whether the 
requested identity is valid for the microservice by consulting an identity registry. The proxy 
communicates with this control plane component through a local agent, obtains a certificate, 



26 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

and sends it to the proxy, which then performs the certificate validation process on behalf of 
the calling service or client during each service request. The identity is encoded as URI and 
carried in a certificate’s SAN (subject alternate name) field. It must be mentioned that the 
certificates that carry service account identities are short-lived certificates (rotated every hour 
or few hours) rather than the conventional HTTPS TLS terminating certificates whose validity 
lasts for several months.  

5.2.2 End User + Service-to-Service Request (EU+SVC-SVC) – Supporting 
Infrastructure 

The policy object used for authorizing this type of request was described in Section 4.5.2. This 
request type requires the verification of two identities: the calling user identity and the service 
identity. As described in the previous section, the service mesh provides the feature to perform 
authorization based on service identities. Since this is a standard feature, no extra components 
need to be built in the service mesh infrastructure for this type of authorization. However, when 
end user identities are introduced for authorization, the authorization framework should be 
tightly integrated with the following components of the architecture: 

● The service orchestration control plane for obtaining application object attributes as well as 
attributes of the registered application users (which includes user credentials), thus playing 
the role of PIP in ABAC-based authorization 

● A service mesh control plane for obtaining tokens that encode the claims based on the 
authorization decision 

● A service mesh data plane in the service proxy for making calls to the authorization engine 
(which is just another service), obtaining the authorization decision, enforcing the service-
to-service authorization policies, making calls to the service mesh control plane for 
authorization tokens (e.g., JWT), and attaching the tokens to the service request  

An advantage of an EU+SVC-SVC request processing scheme is that authorizations at a finer 
level of granularity than the method level can be specified, and conformant claims can be 
included in the authorization token. A disadvantage is that there is overhead involved in 
enforcing two layers of authorization – one layer based on policies specified for SVC-SVC 
requests and a second layer based on EU+SVC-SVC requests. Access control processing logic 
based on the second layer involves multiple calls by service proxy, such as (1) a call to the 
authorization engine service to obtain the access decision after obtaining the user attributes 
(including user credentials) and application object attributes from the orchestration system, (2) 
obtaining the authorization token from the service mesh control plane based on the access 
decision, and (3) including the authorization token along with the service request. 

5.3 Advantages of ABAC Authorization Framework for Service Mesh 

This section provides the justification for the various building blocks of the architecture for the 
authorization framework (e.g., the service mesh and NGAC-based ABAC model). It also 
highlights the scalability and flexibility of certain components such as proxy APIs and the 
NGAC authorization engine. 

a. A service mesh is the right architecture for the enforcement of authorization policies since 
the components involved are moved out of the application and executed in a space where 



27 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

they can form a security kernel that can be vetted. 
b. Both types of authorization requests (i.e., SVC-SVC and EU-SVC-SVC) can be handled by 

a runtime infrastructure that involves the coupling of an orchestration platform control 
plane, service mesh control plane, and mesh data plane to the access control engine. 

c. The extensible API of the proxy can be used to integrate any authorization engine using the 
appropriate type of access control model. ABAC has been found to be one of the most 
flexible, scalable access control models because of its ability to incorporate any number and 
type of attributes associated with the subject, object, and environment. 

d. Performance requirements for the authorization engine are met due to the linear time 
processing speed of the graph-based, NGAC-based ABAC model. 

e. The flexibility outlined in (c) can be leveraged to incorporate models for both application 
and data protection by making data protection models as part of the authorization server.  

5.4 Enforcement Alternatives in Proxies 

Authorization can be enforced through a native structure (e.g., authorization policy) supported 
in the particular version of the service mesh or using calls to an external authorization server. 
The external authorization server can use any access control model and any representation of 
policy expressions (logical rules or acyclic graph representations), but the mediation of a 
request coming into the proxy can be performed in the following ways: 

a. Each request is passed on to the external authorization server through the external 
authorization filter in the proxy, and the response from the authorization server is used for 
request mediation in the form of ALLOW or DENY. 

b. Prestored ACLs can be used in the proxy itself, generated by calls to the authorization 
server. If the authorization server uses an enterprise-wide access control model, an 
administrative API may be needed that will perform the function of mapping the enterprise 
resources to resources, users, and groups pertaining to the service served by its proxy to 
generate ACLs that are customized for the service.  

  



28 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

6 Summary and Conclusions 

Deployment guidance has been provided for an ABAC-based authorization framework for 
securing microservices-based applications using a service mesh. Background information on a 
reference platform for orchestration and resource management of microservices-based 
applications in terms of constituent building blocks and functional capabilities is outlined in 
Section 2.  In the same section, the architectural layers and features of a reference platform for 
service mesh are described. Section 3 provides background information on ABAC and 
discusses two representational structures and associated functional architecture. 

Section 4 provides the building blocks of the authentication and authorization framework – the 
set of recommendations for settings/defaults of those features of the service mesh that provide 
the operational assurances for applications, specifically for implementing authentication and 
authorization policies. The recommendations span mechanisms for supporting both end user 
and service level authentication and authorization policies. The minimal set of policy elements 
needed in authorization policies is also outlined. 

The presence of a reference monitor concept in the authorization framework, the description of 
the supporting infrastructure for implementing the framework, the advantages the service mesh 
provides for implementation of an ABAC authorization framework, and the enforcement 
alternatives in proxies form the content for Section 5.  

The list of all recommendations for deployment of an ABAC-based authentication and 
authorization framework for microservices-based application using a service mesh is given in 
Appendix A.  



29 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

References 

 [1] Rose S, Borchert O, Mitchell S, Connelly S (2020) Zero Trust Architecture. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication 
(SP) 800-207. https://doi.org/10.6028/NIST.SP.800-207 

[2] Red Hat (2021) What is CI/CD? Available at 
https://www.redhat.com/en/topics/devops/what-is-ci-
cd#:~:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%2
0continuous%20deployment 

[3] Red Hat (2021) What is DevSecOps? Available at 
https://www.redhat.com/en/topics/devops/what-is-devsecops 

[4] Chandramouli R (2019) Security Strategies for Microservices-based Application 
Systems. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 
Special Publication (SP) 800-204. https://doi.org/10.6028/NIST.SP.800-204 

[5] Hu VC, Ferraiolo DF, Chandramouli R, Kuhn DR (2018) Attribute-Based Access 
Control (Artech House, Boston USA). 

[6] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications 
using Service-Mesh Architecture. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) 800-204A. 
https://doi.org/10.6028/NIST.SP.800-204A 

[7] McEvoy E (2019) Cordanetes: Combining Corda and Kubernetes (Medium.com). 
Available at https://medium.com/corda/combining-corda-and-kubernetes-4e2ba54494c7 

[8] Ramakani A (2020) Kong API Gateway – From Zero to Production (Medium.com). 
Available at https://medium.com/swlh/kong-api-gateway-zero-to-production-
5b8431495ee 

 
[9] Agarwal G (2020) How to Manage Microservices on Kubernetes With Istio 

(Medium.com). Available at https://medium.com/better-programming/how-to-manage-
microservices-on-kubernetes-with-istio-c25e97a60a59 

 
[10] Agarwal G (2020) How Istio Works Behind the Scenes on Kubernetes (Medium.com). 

Available at https://medium.com/better-programming/how-istio-works-behind-the-
scenes-on-kubernetes-aeb8003f2cb5 

 
[11] InterNational Committee for Information Technology Standards (2020) INCITS 565-

2020 - Information technology - Next Generation Access Control (INCITS, 
Washington, DC). Available at 
https://standards.incits.org/apps/group_public/project/details.php?project_id=2328 

[12] Mell P, Shook J, Harang R, Gavrila S (2017) Linear Time Algorithms to Restrict Insider 
Access using Multi-Policy Access Control Systems. Journal of Wireless Mobile 

https://doi.org/10.6028/NIST.SP.800-207
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204A
https://medium.com/corda/combining-corda-and-kubernetes-4e2ba54494c7
https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee
https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/better-programming/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5
https://medium.com/better-programming/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5
https://standards.incits.org/apps/group_public/project/details.php?project_id=2328


30 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

Networks, Ubiquitous Computing, and Dependable Applications 8(1):4-25. 
https://doi.org/10.22667/JOWUA.2017.03.31.004 

[13] Ferraiolo D, Chandramouli R, Hu V, Kuhn R (2016) A Comparison of Attribute Based 
Access Control (ABAC) Standards for Data Service Applications: Extensible Access 
Control Markup Language (XACML) and Next Generation Access Control (NGAC)  
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 
Publication (SP) 800-204A. https://doi.org/10.6028/NIST.SP.800-178 

[14] Agarwal G (2020) Enable Mutual TLS Authentication between your Kubernetes 
Workloads Using Istio (Medium.com). Available at https://medium.com/better-
programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-
using-istio-65338c8adf82 

[15] Envoy (2021) External Authorization. Available at  
https://www.envoyproxy.io/docs/envoy/v1.17.0/intro/arch_overview/security/ext_authz
_filter#arch-overview-ext-authz 

[16] Envoy (2021) JWT Authentication. Available at 
https://www.envoyproxy.io/docs/envoy/v1.17.0/configuration/http/http_filters/jwt_auth
n_filter#config-http-filters-jwt-authn 

[17] Hu VC, Ferraiolo DF, Kuhn DR, Schnitzer A, Sandlin K, Miller R, Scarfone K (2014) 
Guide to Attribute Based Access Control (ABAC) Definitions and Considerations. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
162. https://doi.org/10.6028/NIST.SP.800-162 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.22667/JOWUA.2017.03.31.004
https://doi.org/10.6028/NIST.SP.800-178
https://medium.com/better-programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-using-istio-65338c8adf82
https://medium.com/better-programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-using-istio-65338c8adf82
https://medium.com/better-programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-using-istio-65338c8adf82
https://www.envoyproxy.io/docs/envoy/v1.17.0/intro/arch_overview/security/ext_authz_filter#arch-overview-ext-authz
https://www.envoyproxy.io/docs/envoy/v1.17.0/intro/arch_overview/security/ext_authz_filter#arch-overview-ext-authz
https://www.envoyproxy.io/docs/envoy/v1.17.0/configuration/http/http_filters/jwt_authn_filter#config-http-filters-jwt-authn
https://www.envoyproxy.io/docs/envoy/v1.17.0/configuration/http/http_filters/jwt_authn_filter#config-http-filters-jwt-authn
https://doi.org/10.6028/NIST.SP.800-162


31 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

Appendix A: List of Recommendations for deployment of an ABAC-based 
authentication and authorization framework for microservices-
based applications using a service mesh 

 

TAG RECOMMENDATION TEXT FRAMEWORK 
AREA 

ISMC-SR-1 If certificate-based authentication is used for authenticating 
service calls, the signing certificate used by the service mesh’s 
CA module should be rooted in the organization’s existing PKI 
to allow for auditability, rotation, and revocation. 

 

Initial Service Mesh 
Configuration 

ISMC-SR-2 Communication between the service mesh control plane and the 
application orchestration and resource management platform’s 
configuration server must be authenticated and authorized.  

Initial Service Mesh 
Configuration 

AHLC-SR-1 Containers and applications should not be run as root (thus 
becoming privileged containers).  
In Kubernetes, the configuration setting for this is to set the 
value TRUE for “MustRunAsNonRoot” flag. 

Higher-level Security 
Configuration 
Parameters for 
Applications 

AHLC-SR-2 Host path volumes should not be used, because they create tight 
coupling between the container and the node on which it is 
hosted, constraining the migration and flexible resource 
scheduling process.  

 

Higher-level Security 
Configuration 
Parameters for 
Applications 

AHLC-SR-3 Configure the container file system as read-only by default for 
all applications, overriding only when the underlying 
application (e.g., database) must write to disk.       
In Kubernetes, the configuration setting for this is to set the 
value of TRUE to “readOnlyRootFilesystem” flag. 
 
 
 

 

Higher-level Security 
Configuration 
Parameters for 
Applications 

AHLC-SR-4 Explicitly prevent privilege escalation for containers. 
In Kubernetes, this is achieved by setting the value FALSE for 
the “allowPrivilegeEscalation” flag. 
 

Higher-level Security 
Configuration 
Parameters for 
Applications 



32 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

SAUN-SR-1 A policy object relating to service-level authentication should 
be defined that requires mTLS be used for communication. The 
policy object should be expressive enough to be defined at 
various levels (given below) with features for overrides at the 
lower levels or inheritance of the requirement specified at the 
higher levels.  

The following are the minimum required levels [6]: 
• Global level or the service mesh level  
• Namespace level  
• Workload or microservices level, used for applying 

authentication and authorization policies for a subset of 
traffic to a subset of resources (e.g., particular 
microservices, hosts or ports) 

• Port level, taking into account that certain traffic is 
designed for communicating through designated ports 

 

Service-level 
Authentication 

SAUN-SR-2 If the certificate used for mTLS carries server identity, then the 
service mesh should provide a secure naming service that maps 
the server identity to the microservice name that is provided by 
the secure discovery service or DNS. This requirement is 
needed to ensure that the server is the authorized location for 
the microservices and to protect against network hijacking. 

 

Service-level 
Authentication 

EAUN-SR-1 A request authentication policy must, at the minimum, provide 
the following information and must be enforced by the sidecar 
proxy 

● Instructions for extracting the credential from the request 
● Instructions for validating the credential 

 

 

End-user level 
Authentication 

SAUZ-SR-1 A policy object describing service-to-service access should be in 
place for all services in the mesh. At a minimum, these policies 
should restrict access to the namespace level (e.g., “services in 
namespace A can call services in namespace B”). Ideally, 
policies should restrict access to individual services (e.g., 
“service Foo in namespace A can call service Bar in 
namespace B”).” 

 

 

Service-level 
Authorization 

EUAZ-SR-1 When a sidecar communicates with an authentication or 
authorization system, that communication must be secured with 
either the mesh’s built-in service-to-service authentication and 
authorization capabilities or using an existing enterprise 
Identity and Access Management (IAM) that is not part of the 
service mesh.  

End-user level 
Authorization 



33 

NIST SP 800-204B  ABAC FOR MICROSERVICES-BASED  
  APPLICATIONS USING A SERVICE MESH 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204B 

EUAZ-SR-2 The sidecar should generate logs for every service request to 
ensure that authentication and authorization policies are 
enforced and relay telemetry data for the generation of metrics 
to ensure no degradation of service that will impact availability.   

 

  End-user level 
Authorization 

EUAZ-SR-3 All application traffic should carry end user credentials, and 
there should be a policy in the mesh enforcing that 
credentials are present. 

  End-user level 
Authorization 

APE-SR-1 : The authorization policy should, at the minimum, contain the 
following policy elements:  

● Policy types – Positive (ALLOW) or Negative (DENY) 
● Policy target or authorization scope – the namespace, a 

particular service (application name), and version 
● Policy sources – covers the set of authorized services 
● Policy operations – specifies the operations on the target 

resources that are covered under the policy  
● Policy conditions – the metadata associated with the request 

that must be met for the application or invocation of the 
policy 

 

 

 

 

Authorization Policy 
Elements 

APE-SR-2 The policy should cover all of the operations that are part of the 
application type. For example, if the application is implemented 
as a REST API, all of the operations (also called HTTP verbs or 
HTTP methods) that are part of the REST API must be 
included: 
 
POST: This is equivalent to creating a resource. 
GET: This is equivalent to reading the contents of the resource. 
PUT: This is equivalent to updating the resource by replacing. 
PATCH: This is equivalent to updating the resource by 
modifying. 
DELETE: This is equivalent to deleting the resource.  

Authorization Policy 
Elements 

APE-SR-3 A default policy should be authored in the system that rejects all 
requests that are unauthenticated, mandates that service and 
end-user credentials be present on every request, restricts all 
communication to services within the application’s own 
namespace, and allows service communication across 
namespaces only through an explicit policy. 

 

Authorization Policy 
Elements 

 


	NIST SP 800-204B, Attribute-based Access Control for Microservices-based Applications Using a Service Mesh
	Executive Summary
	1 Introduction
	1.1 Service Mesh Capabilities
	1.2 Candidate Applications
	1.3 Scope and Approach
	1.4 Target Audience
	1.5 Relationship to Other NIST Guidance Documents
	1.6 Organization of This Document

	2 Reference Platform for Microservices-based Application and Service Mesh
	2.1 Reference Platform for Orchestration and Resource Management of a Microservices-based Application
	2.1.1 Limitations of Reference Orchestration and Resource Management Platform for Security

	2.2 Service Mesh Reference Platform – Conceptual Architecture
	2.2.1 Service Mesh Functions for Reference Orchestration and Resource Management Platform


	3 Attribute-based Access Control (ABAC) – Background
	3.1 ABAC Deployment for Microservices-based Applications Using Service Mesh

	4 Authentication and Authorization Policy Configuration in Service Mesh
	4.1 Application Orchestration and Resource Management Platform Configuration
	4.2  Service Mesh Configuration
	4.3 Higher-level Security Configuration Parameters for Applications
	4.4 Authentication Policies
	4.4.1 Specifying Authentication Policies
	4.4.2 Service-level Authentication
	4.4.3 End User Authentication

	4.5 Authorization Policies
	4.5.1 Service-level Authorization Policies
	4.5.2 End-user Level Authorization Policies
	4.5.3 Model-based Authorization Policies

	4.6 Authorization Policy Elements
	4.6.1 Policy Types
	4.6.2 Policy Target or Authorization Scope
	4.6.3 Policy Sources
	4.6.4 Policy Operations
	4.6.5 Policy Conditions
	4.6.6 Default Authorization Policy


	5 ABAC Deployment for Service Mesh
	5.1  Reference Monitor Concept in Authorization Framework
	5.2 Supporting Infrastructure for ABAC Authorization Framework
	5.2.1 Service-to-Service Request (SVC-SVC) – Supporting Infrastructure
	5.2.2 End User + Service-to-Service Request (EU+SVC-SVC) – Supporting Infrastructure

	5.3 Advantages of ABAC Authorization Framework for Service Mesh
	5.4 Enforcement Alternatives in Proxies

	6 Summary and Conclusions
	References
	Appendix A: List of Recommendations for deployment of an ABAC-based authentication and authorization framework for microservices-based applications using a service mesh

