
Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes.
It has been superseded by the document identified below.

Withdrawal Date August 07, 2019

Original Release Date March 25, 2019

Superseding Document

Status Final

Series/Number NIST Special Publication 800-204

Title Security Strategies for Microservices-based Application Systems

Publication Date August 2019

DOI https://doi.org/10.6028/NIST.SP.800-204

CSRC URL https://csrc.nist.gov/publications/detail/sp/800-204/final

Additional Information N/A

https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://csrc.nist.gov/publications/detail/sp/800-204/final

Draft NIST Special Publication 800-204 1
 2

Security Strategies for 3

Microservices-based Application 4

Systems 5

 6

 7
 8
 9

Ramaswamy Chandramouli 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

This publication is available free of charge from: 21
https://doi.org/10.6028/NIST.SP.800-204-draft 22

 23
 24
 25
 26

C O M P U T E R S E C U R I T Y 27
28

Draft NIST Special Publication 800-204 29

 30
 31
 32

Security Strategies for 33

Microservices-based Application 34

Systems 35

 36

Ramaswamy Chandramouli 37
Computer Security Division 38

Information Technology Laboratory 39
 40
 41
 42
 43
 44
 45
 46

 47
 48
 49

This publication is available free of charge from: 50
https://doi.org/10.6028/NIST.SP.800-204-draft 51

 52
 53

March 2019 54
 55
 56

 57
 58

 59
U.S. Department of Commerce 60

Wilbur L. Ross, Jr., Secretary 61
 62

National Institute of Standards and Technology 63
Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology64

i

 65
Authority 66

 67
This publication has been developed by NIST in accordance with its statutory responsibilities under the 68
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 69
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 70
minimum requirements for federal information systems, but such standards and guidelines shall not apply 71
to national security systems without the express approval of appropriate federal officials exercising policy 72
authority over such systems. This guideline is consistent with the requirements of the Office of Management 73
and Budget (OMB) Circular A-130. 74

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 75
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 76
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 77
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 78
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 79
however, be appreciated by NIST. 80
 81

National Institute of Standards and Technology Special Publication 800-204 82
Natl. Inst. Stand. Technol. Spec. Publ. 800-204, 41 Pages (March 2019) 83

CODEN: NSPUE2 84
 85

This publication is available free of charge from: 86
https://doi.org/10.6028/NIST.SP.800-204-draft 87

 88

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 89
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 90
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 91
available for the purpose. 92

There may be references in this publication to other publications currently under development by NIST in accordance 93
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 94
may be used by federal agencies even before the completion of such companion publications. Thus, until each 95
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 96
planning and transition purposes, federal agencies may wish to closely follow the development of these new 97
publications by NIST. 98

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 99
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 100
https://csrc.nist.gov/publications. 101

 102
Public comment period: March 25, 2019 through April 26, 2019 103

 104
National Institute of Standards and Technology 105

Attn: Computer Security Division, Information Technology Laboratory 106
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 107

Email: sp800-204-comments@nist.gov 108
 109

All comments are subject to release under the Freedom of Information Act (FOIA). 110
 111

https://csrc.nist.gov/publications
mailto:sp800-204-comments@nist.gov

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

ii

 112
Reports on Computer Systems Technology 113

 114
The Information Technology Laboratory (ITL) at the National Institute of Standards and 115
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 116
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 117
methods, reference data, proof of concept implementations, and technical analyses to advance the 118
development and productive use of information technology. ITL’s responsibilities include the 119
development of management, administrative, technical, and physical standards and guidelines for 120
the cost-effective security and privacy of other than national security-related information in 121
Federal information systems. The Special Publication 800-series reports on ITL’s research, 122
guidelines, and outreach efforts in information system security, and its collaborative activities with 123
industry, government, and academic organizations. 124
 125
 126

Abstract 127
 128
Microservices architecture is increasingly being used to develop application systems since its 129
smaller codebase facilitates faster code development, testing, and deployment as well as 130
optimization of the platform based on the type of microservice, support for independent 131
development teams, and the ability to scale each component independently. Microservices 132
generally communicate with each other using APIs, which requires several core features to support 133
complex interactions between a substantial number of components. These core features include 134
authentication and access management, service discovery, secure communication protocols, 135
security monitoring, availability/resiliency improvement techniques (e.g., circuit breakers), load 136
balancing and throttling, integrity assurance techniques during induction of new services, and 137
handling of session persistence. Additionally, the core features could be bundled or packaged into 138
architectural frameworks such as API gateways and service mesh. The purpose of this document 139
is to analyze the multiple implementation options available for each individual core feature and 140
configuration options in architectural frameworks, develop security strategies that counter threats 141
specific to microservices, and enhance the overall security profile of the microservices-based 142
application. 143
 144

Keywords 145
 146
microservices; load balancing; circuit breaker; Application Programming Interface (API); API 147
gateway; service mesh; proxy. 148
 149
 150
 151

 152
Acknowledgements 153

 154
<TBD> 155

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

iii

Call for Patent Claims 156
 157
This public review includes a call for information on essential patent claims (claims whose use 158
would be required for compliance with the guidance or requirements in this Information 159
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 160
directly stated in this ITL Publication or by reference to another publication. This call also 161
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 162
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 163

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 164
written or electronic form, either: 165

a) assurance in the form of a general disclaimer to the effect that such party does not hold 166
and does not currently intend holding any essential patent claim(s); or 167

b) assurance that a license to such essential patent claim(s) will be made available to 168
applicants desiring to utilize the license for the purpose of complying with the guidance 169
or requirements in this ITL draft publication either: 170

i. under reasonable terms and conditions that are demonstrably free of any unfair 171
discrimination; or 172

ii. without compensation and under reasonable terms and conditions that are 173
demonstrably free of any unfair discrimination. 174

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 175
on its behalf) will include in any documents transferring ownership of patents subject to the 176
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 177
the transferee, and that the transferee will similarly include appropriate provisions in the event of 178
future transfers with the goal of binding each successor-in-interest. 179

The assurance shall also indicate that it is intended to be binding on successors-in-interest 180
regardless of whether such provisions are included in the relevant transfer documents. 181

Such statements should be addressed to: sp800-204-comments@nist.gov. 182

mailto:sp800-204-comments@nist.gov

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

iv

Table of Contents 183
 184
EXECUTIVE SUMMARY .. vi 185

1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE ... 1 186

1.1 Scope of this document ... 1 187

1.2 Target Audience .. 1 188

1.3 Relationship to other NIST Guidance Documents ... 1 189
1.4 Methodology and Organization ... 2 190

2. MICROSERVICES-BASED APPLICATION SYSTEMS – TECHNOLOGY BACKGROUND 3 191

2.1 Microservices – a Conceptual View ... 3 192

2.2 Microservices – Design Principles ... 3 193

2.3 Business drivers .. 4 194

2.4 Building Blocks .. 4 195

2.5 Microservices – Interaction Styles .. 5 196
2.6 Microservices – State of the Practice Core Features .. 7 197

2.7 Microservices – Architectural Frameworks ... 8 198

2.7.1 API Gateway .. 9 199

2.7.2 Service Mesh ... 10 200

2.8 Comparison with Monolithic Architecture .. 11 201

2.9 Comparison with Service-Oriented Architecture (SOA) .. 11 202

2.10 Advantages of Microservices .. 12 203
2.11 Disadvantages of Microservices... 12 204

3. MICROSERVICES – THREAT BACKGROUND .. 13 205

3.1 Review of Threat Sources Landscape ... 13 206

3.2 Microservices-specific Threats ... 14 207

3.2.1 Service Discovery Mechanism Threats .. 14 208

3.2.2 Botnet Attacks .. 14 209

3.2.3 Cascading Failure ... 14 210
4. SECURITY STRATEGIES FOR IMPLEMENTATION OF CORE FEATURES AND COUNTERING 211
THREATS ... 15 212

4.1 Strategies for Identity and Access Management ... 15 213

4.2 Strategies for Service Discovery Mechanism ... 16 214

4.4 Strategies for Security Monitoring .. 19 215

4.5 Availability/Resiliency Improvement Strategies .. 19 216

4.5.1 Analysis of Circuit Breaker implementation options ... 19 217
4.5.2 Strategies for Load Balancing ... 20 218

4.5.3 Rate Limiting (Throttling) .. 20 219

4.6 Integrity Assurance strategies... 21 220

4.7 Countering Botnet Attacks ... 22 221

5. SECURITY STRATEGIES FOR ARCHITECTURAL FRAMEWORKS IN MICROSERVICES 23 222

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

v

Appendix A: Differences between Monolithic Application and Microservices-based Application 24 223
A.1 Design and Deployment Differences ... 24 224

A.1.1 An Example Application to illustrate the design and deployment differences................................ 25 225

A.2 Run-time Differences ... 26 226

Appendix B: Traceability of Security Strategies to Microservices Architectural Features 28 227

Appendix C: References ... 32 228
 229
 230
 231

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

vi

EXECUTIVE SUMMARY 232
 233
The microservices paradigm is being increasingly used for designing and deploying large-scale 234
application systems in both cloud-based and enterprise infrastructures. The resulting application 235
system consists of relatively small, loosely coupled entities or components called microservices 236
that communicate with each other using lightweight communication protocols. 237
 238
Incentives to design and deploy a microservices-based application system include: (a) agility in 239
development due to relatively small and less complex codebases since each one typically 240
implements a single business function; (b) independence among teams in the development 241
process thanks to the loosely coupled nature of microservices; and (c) availability of deployment 242
tools that provide infrastructure services such as authentication, access control, service discovery 243
and communication, and load balancing. 244
 245
Despite several facilitating technologies (e.g., orchestration), there are many challenges to be 246
addressed in the development and deployment of a microservices-based application. Network 247
security, reliability, and latency are critical factors since every transaction implemented using 248
this type of system will involve the transmission of messages across a network. Further, the 249
presence of multiple microservices exposes a large attack surface. 250
 251
The goal of this document is to outline strategies for the secure deployment of a microservices-252
based application by analyzing the implementation options for core state of practice features, 253
considering the configuration options for architectural frameworks such as API gateway and 254
service mesh, and countering microservices-specific threats. 255
 256

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

1

1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE 257
 258
Application systems are increasingly developed and deployed using the microservices paradigm 259
due to advantages such as agility, flexibility, scalability, and availability of tools for automating the 260
underlying processes. However, the tremendous increase in the number of components in a 261
microservices-based application system combined with complex network environments comprised 262
of various interaction styles among components call for several core infrastructure features to be 263
implemented either alone or bundled/packaged into architectural frameworks, such as API gateway 264
and service mesh. The objective of this document is to perform an analysis of the implementation 265
options for core features and configuration options for architectural frameworks as well as outline 266
security strategies that counter microservice-specific threats. 267
 268

1.1 Scope of this document 269
 270
This document will not discuss the various tools used in the deployment of microservices-based 271
application systems. Discussion of core features and architectural frameworks will be limited to 272
highlighting issues relevant to secure implementation. The core focus is on the methodology to 273
develop security strategies for microservices-based applications through the following three 274
fundamental steps: 275
 276

• Study of the technology behind microservices-based application systems focusing on design 277
principles, basic building blocks, and associated infrastructure 278

• Focused review of the threat background specific to the operating environment of 279
microservices 280

• Analysis of implementation options related to state of practice core features and 281
configuration options related to architectural frameworks for developing security strategies 282
 283

1.2 Target Audience 284
 285
The target audience for the security strategies discussed in this document includes: 286
 287
• Chief Security Officer (CSO) or Chief Technology Officer (CTO) of an IT department in a 288

private enterprise or government agency who wishes to develop enterprise infrastructures to 289
host distributed systems based on microservices architecture 290

• Application architects who wishes to design a microservices-based application system 291
 292

1.3 Relationship to other NIST Guidance Documents 293
 294
This is guidance document focuses on a class of application based on a specific architecture. 295
However, since an essential architectural component—the microservice—can be implemented 296
inside a container, the security guidance and recommendations related to application container 297
technology may also be relevant security strategies for the application architecture discussed in this 298
document. Such guidance includes: 299

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

2

 300
 301
 302

• NIST SP 800-190, Application Container Security Guide 303
• NIST IR 8176, Security Assurance Requirements for Linux Application Container 304

Deployments 305
 306

1.4 Methodology and Organization 307
 308
Since microservices-based application systems encompass diverse technologies (e.g., server 309
virtualization, containers, cloud middleware), the focus here is on core features of this application 310
class and the architectural frameworks that bundle or package them. The threat analysis approach 311
involves taking a macro view of the entire deployment stack of microservices-based application 312
systems and the layer at which these core features are located. The threats specific to those features 313
are identified, and the overall approach for developing security strategies is to analyze the multiple 314
implementations for core features and the architectural frameworks as well as ensure that those 315
implementation options counter microservices-specific threats. The roadmap for the materials used 316
in this methodology is as follows: 317
 318
• Review of all state of practice core features that form the infrastructure for microservices 319

(Section 2.6) 320
• Review of the layers in the deployment stack, location of the core features in those layers, and 321

identification of microservices-specific threats (Section 3) 322
• Analysis of all different implementation options for these core features and outline of security 323

strategies based on these implementation options for core features (Section 4) 324
• Review of all architectural frameworks that bundle several core features as a single product and 325

outline security strategies based on the configuration options for architectural frameworks 326
(Section 5) 327

 328
A slightly more detailed summarization of the contents of the various sections in this document is 329
as follows: 330
 331
• Chapter 2 provides a high-level but expansive overview of microservices-based application 332

systems, starting with a conceptual view followed by design principles, business drivers, 333
building blocks, component interaction styles, state of practice core features, and architectural 334
frameworks 335

• Chapter 3 provides a stack level view of the threat background and some threats that are 336
specific to the microservices environment 337

• Chapter 4 contains analysis information pertaining to various state of practice core features for 338
supporting a microservices-based application and outlines the security strategies for 339
implementing the core features based on analysis of implementation options 340

• Chapter 5 contains analysis information pertaining to architectural frameworks that bundle core 341
features needed in the infrastructure for microservices-based applications and outlines the 342
security strategies for configuring the architectural frameworks 343
 344

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

3

2. MICROSERVICES-BASED APPLICATION SYSTEMS – TECHNOLOGY 345
BACKGROUND 346

2. APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS 347
In this section, the technology behind the development and deployment of a microservices-based 348
application system will be described using the underlying design drivers or principles, the artifacts 349
that constitute the building blocks, and the different ways the building blocks can be configured to 350
produce different architectural options. This is not meant to be a comprehensive description of the 351
technology but rather provide sufficient information about components and concepts to facilitate 352
the identification of security threats and the development of secure implementation strategies for a 353
microservices-based application system. 354
 355

2.1 Microservices – a Conceptual View 356

 357
A microservices-based application system consists of multiple components (microservices) that 358
communicate with each other through synchronous remote procedure calls or an asynchronous 359
messaging system. Each microservice typically implements one (rarely more) distinct business 360
process or functionality (e.g., storing customer details, storing and displaying product catalog, 361
customer order processing). Each microservice is a mini-application that has its own business logic 362
and various adapters for carrying out functions such as database access and messaging. Some 363
microservices would expose a RESTful API [1] that is consumed by other microservices or by the 364
application’s clients [2]. Other microservices might implement a web UI. At runtime, a 365
microservice instance may be configured to run as a process in an application server, in a virtual 366
machine (VM), or in a container. 367
 368
Though a microservices-based application can be implemented purely as an enterprise application 369
and not as a cloud service, its development is often identified as cloud-native application 370
development with a service-based architecture, application programming interface (API)-driven 371
communications, container-based infrastructure, and a bias for DevOps processes such as 372
continuous improvement, agile development, continuous delivery, and collaborative development 373
among developers, quality assurance teams, security professionals, IT operations, and line-of-374
business stakeholders [3]. Part of the reason for this perspective is due to the fact that on-premises 375
software development and deployment relies on a server-centric infrastructure with tightly 376
integrated application modules rather than on loosely coupled, services-based architectures with 377
API-based communications. 378
 379

2.2 Microservices – Design Principles 380
 381
The design of a microservice is based on the following drivers [4]: 382
 383
• Each microservice must be managed, replicated, scaled, upgraded, and deployed independently 384

of other microservices 385
• Each microservice must have a single function and operate in a bounded context (i.e., have 386

limited responsibility and dependence on other services) 387

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

4

• All microservices should be designed for constant failure and recovery and must therefore be as 388
stateless as possible 389

• One should reuse existing trusted services (e.g., databases, caches, directories) for state 390
management 391

These drivers, in turn, result in the following design principles for a microservice: 392
 393
• Autonomy 394
• Loose coupling 395
• Re-use 396
• Composability 397
• Fault tolerance 398
• Discoverability 399
• APIs alignment with business processes 400

2.3 Business drivers 401
 402
Though the business drivers for deployment of microservices-based application systems are only 403
marginally related to the theme of this document, it is useful to identify and state those that are 404
relevant from the point of view of user and organizational behavior [5]: 405
 406

• Ubiquitous access: users want access to applications from multiple client devices (e.g., 407
browsers, mobile devices) 408

• Scalability: applications must be highly scalable to maintain availability in the face of 409
increasing number of users and/or increased rate of usage from the existing user base 410

• Agile development: organizations want frequent updates to quickly respond to 411
organizational (process and structural) changes and market demands 412
 413

2.4 Building Blocks 414

 415
Microservices-based applications (e.g., distributed enterprise or web applications [1]) are built 416
using an architectural style or design pattern that is not restricted to any specific technology and is 417
comprised of small independent entities (end points) that communicate with each other using 418
lightweight mechanisms. These end points are implemented using well-defined APIs. There are 419
several types of API endpoints, such as SOAP or REST (HTTP protocol). Each of the small 420
independent entities provides a distinct business capability called a “service” and may have its own 421
data store or repository. Access to these services is provided by various platforms or client types, 422
such as web browsers or mobile devices, using a component called the “client.” Together, the 423
component services and the client form the complete microservices-based application system. The 424
services in such a system may be classified as: 425
 426

• Application-functionality services 427

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

5

• Infrastructure services (called “core features” in this document) implemented alone or 428
bundled into architectural frameworks (e.g., API gateway, service mesh), including 429
authentication and authorization, service registration and discovery, and security monitoring 430

In a microservices-based application system, each of the multiple, collaborative services can be 431
built using different technologies. This promotes the concept of technical heterogeneity, which 432
means that each service in a microservices-based application system may be written in a different 433
programming language, development platform, or using different data storage technologies. This 434
concept enables developers to choose the right tool or language depending on the type of service. 435
Thus, in a single microservices-based application system, the constituting services may be built 436
using different languages (e.g., Ruby, Golang, Java) and may be hosting different stores (e.g., 437
document datastore, graphical DB, or multimedia DB). Each component service is developed by a 438
team–a microservice or DevOps team—which provides all of the development and operational 439
requirements for that service with a high degree of autonomy regarding development and 440
deployment techniques so long as the service functionality or service contract is agreed upon [6]. 441
 442
Services in microservices are separately deployed on different nodes. The communication between 443
them is transformed from a local function call to a remote call, which would affect system 444
performance due to a high latency of network communication. Thus, a lightweight communication 445
infrastructure is required. 446
 447
Scaling can be applied selectively on those services that have performance bottlenecks due to 448
insufficient CPU or memory resources, while other services can continue to be run using smaller, 449
less expensive hardware. The functionality associated with such a service may be consumed in 450
different ways for different purposes, thereby promoting reusability and composability. One 451
example includes a customer database service, the contents of which are used both by shipping 452
departments for preparing bills of lading and by accounts receivable or the billing department to 453
send invoices. 454
 455

2.5 Microservices – Interaction Styles 456
 457
In monolithic applications, each component (i.e., a procedure or function) invokes another using a 458
language-level call, such as a method or function. In microservices-based applications, each service 459
is typically a process running in its own distinct network node that communicates with other 460
services through an inter-process communication mechanism (IPC) [7]. Additionally, a service is 461
defined using an interface definition language (IDL) (e.g., Swagger), resulting in an artifact called 462
the application programming interface (API). The first step in the development of a service 463
involves writing the interface definition, which is reviewed with client developers and iterated 464
multiple times before the implementation of the service begins. Thus, an API serves as a contract 465
between clients and services. 466
 467
The choice of the IPC mechanism dictates the nature of the API [7]. The following table provides 468
the nature of API definitions for each IPC mechanism. 469
 470
 471

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

6

Table 1: IPC Mechanisms and API Types 472
IPC Mechanism Nature of API Definition

Asynchronous, message-based (e.g., AMQP
or STOMP)

Made up of message channels and message
types

Synchronous request/response (e.g., HTTP-
based REST or Thrift)

Made up of URLs and request and response
formats

 473
There can be different types of message formats used in IPC communication: text-based and 474
human-readable, such as JSON or XML, or of a purely machine-readable binary format, such as 475
Apache Avro or Protocol buffers. 476
 477
The principle of autonomy described earlier may call for each microservice to be a self-contained 478
entity that delivers all of the functions of an application stack. However, for a microservices-based 479
application that provides multiple business process capabilities (e.g., an online shopping application 480
that provides business processes such as ordering, shipping, and invoicing), a component 481
microservice is always dependent, in some fashion, on another microservice (e.g., data). In the 482
context of our example, the shipping microservice is dependent upon “unfulfilled orders” data in 483
the ordering microservice to perform its function of generating a shipping or bill of lading record. 484
Hence, there is always the need to couple microservices while still retaining autonomy. The various 485
approaches to creating the coupling, which are often dictated by business process and IT 486
infrastructure needs, include interaction patterns, messaging patterns, and consumption modes. In 487
this document, the term “interaction pattern” is used, and the primary interaction patterns are as 488
follows. 489
 490
Request-reply: Two distinct types of requests include queries for the retrieval of information and 491
commands for a state-changing business function [2]. In the first type, a microservice makes a 492
specific request for information or to take some action and functionally waits for a response. The 493
purpose of the request for information is retrieval for presentation purposes. In the second type, one 494
microservice asks another to take some action involving a state-changing business function (e.g., a 495
customer modifying their personal profile or submitting an order). In the request-reply pattern, 496
there is a strong runtime dependency between the two microservices involved, which manifests in 497
the following two ways: 498
 499

• One microservice can execute its function only when the other microservice is available 500
• The microservice making the request must ensure that the request has been successfully 501

delivered to the target microservice 502

Because of the nature of communication in the request-reply protocol, a synchronous 503
communication protocol, such as HTTP, is used. If the microservice is implemented with a REST 504
API, the messages between the microservices become HTTP REST API calls. The REST APIs are 505
often defined using a standardized language, such as RAML (RESTful API Modeling Language), 506
which was developed for microservice interface definition and publication. HTTP is a blocking 507
type of communication wherein the client that initiates a request can continue its task only when it 508
receives a response. 509
 510
Publish-Subscribe: This pattern is used when microservices need to collaborate for the realization 511
of a complex business process or transaction. This is also called a business domain event-driven 512

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

7

approach or domain event subscription approach. In this pattern, a microservices registers itself or 513
subscribes to business domain events (e.g., interested in specific information or being able to 514
handle certain requests), which are published to a message broker through an event-bus interface. 515
These microservices are built using event-driven APIs and use asynchronous messaging protocols, 516
such as Message Queuing Telemetry Transport (MQTT), Advanced Message Queuing Protocol 517
(AMQP), and Kafka Messaging, which enable support for notifications and subscriptions. In 518
asynchronous protocols, the message sender does not typically wait for a response but simply sends 519
the message to a message agent (e.g., RabbitMQ queue). One of the use cases for this approach is 520
the propagation of data updates to multiple microservices based on certain events [8]. 521
 522
 523

2.6 Microservices – State of the Practice Core Features 524

 525
The criticality of the communication infrastructure in a microservices-based application 526
environment calls for several sophisticated capabilities to be provided as core features in many 527
deployments. As already stated, many of these features can be implemented either stand-alone or 528
bundled together in architectural frameworks such as API gateway or service mesh. Even within 529
the API gateway, these features can be implemented through service composition or direct 530
implementation within the code base. These features include but are not limited to authentication, 531
access control, service discovery, load balancing, response caching, application-aware health 532
checks, and monitoring [2]. A brief description of these features [5] includes: 533
 534
• Authentication and access control – The infrastructure platform can be leveraged to centralize 535

enforcement of authentication and access control for all downstream microservices, eliminating 536
the need to provide authentication and access control for each of the individual services. 537
Authentication and access policy may vary depending on the type of APIs exposed by 538
microservices—some may be public APIs; some may be private APIs; and some may be partner 539
APIs, which are available only for business partners. 540

• Service Discovery – In legacy distributed systems, there are multiple services configured to 541
operate at designated locations (IP address and port number). In the microservices-based 542
application, the following scenario exists and calls for a robust service discovery mechanism: 543
(a) There are a substantial number of services and many instances associated with each service 544

with dynamically changing locations. 545
(b) Each of the microservices may be implemented in VMs or containers, which may be 546

assigned dynamic IP addresses, especially when they are hosted in an IAAS or SAAS cloud 547
service. 548

(c) The number of instances associated with a service can vary based on the load using features 549
such as autoscaling. 550

• Security monitoring and analytics – To detect attacks and identify factors for degradation of 551
services (which may impact availability), it is necessary to monitor network traffic into and out 552
of microservices with analytics capabilities in addition to routine logging features. 553

 554
An API gateway is generally needed for implementing the following core features: 555
 556
• Optimized endpoint – This involves several capabilities. 557

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

8

a) Request and response collapsing: Most business transactions will involve calls to multiple 558
microservices, often in a pre-determined sequence. An API gateway can simplify the 559
situation for clients by exposing an endpoint that will automatically make all the needed 560
multiple requests (calls) and return a single, aggregated response to the client. 561

b) API Transformation: The API gateway can provide a public interface to the client which is 562
different from the individual APIs it has to consume or the program calls it has to make to 563
cater to a given request. This feature is called API transformation and enables: 564
i) Changing the implementation and even the API interface for individual microservices 565
ii) Transitioning from an initial, monolithic application to a microservices-based 566

application by enabling continued access to clients through the API gateway while 567
progressively splitting the monolithic application, creating microservice APIs in the 568
background, and changing the API transformation configuration accordingly 569

c) Protocol Translation: Calls from clients to microservices endpoints may be in web 570
protocols, such as HTTPS, while microservices communicate among themselves using 571
synchronous protocols, such as RPC/Thrift, or asynchronous protocols, such as AMQP. The 572
necessary protocol translation in client requests is typically carried out by the API gateway. 573

• Circuit breaker – This is a feature to set a threshold for the failed responses to an instance of a 574
microservice and cut off proxying requests to that instance when the failure is above the 575
threshold. This avoids the possibility of a cascaded failure, allows time to analyze logs, 576
implement the necessary fix, and push an update for the failing instance. 577

• Load balancing: There is a need to have multiple instances of the same service, and the load on 578
these instances must be evenly distributed to avoid delayed responses or service crashes due to 579
overload. 580

• Rate limiting (throttling) – The rate of requests coming into a service must be limited to ensured 581
continued availability of service for all clients. 582

• Blue/green deployments – When a new version of a microservice is deployed, requests from 583
customers using the old version can be redirected to the new version since the API gateway can 584
be programmed to be aware of the locations of both versions. 585

• Canary releases – Only a limited amount of traffic is initially sent to a new version of a 586
microservice since the correctness of its response or performance metric under all operating 587
scenarios is not fully known. Once sufficient data is gathered about its operating characteristics, 588
then all of the requests can be proxied to the new version of the microservice. 589

 590

2.7 Microservices – Architectural Frameworks 591

 592
The two main architectural frameworks for bundling or packaging core features that primarily 593
ensure reliable, resilient, and secure communication in a microservices-based application are: 594
 595
• API gateway, augmented with or without micro gateways 596
• Service mesh 597
 598
The role of these frameworks in the operating environment of a microservices-based application 599
system are given in Table 2 below [4]: 600

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

9

 601
Table 2: Role of Architectural Frameworks in Microservices Operations 602

 603
Architectural Framework Role in the Overall Architecture

API gateway, augmented with or without
micro gateways

Used for controlling north-south and east-west
traffic (the latter using micro gateways);
micro gateways are deployed when
microservices are implemented in
web/application servers

Service mesh Deployed for purely east-west traffic when
microservices are implemented using
containers but can also be used in situations
where microservices are housed in VMs or
application servers

 604

2.7.1 API Gateway 605
 606
The API gateway is a popular architectural framework for microservices-based application systems. 607
Unlike a monolithic application where the endpoint may be a single server, a microservices-based 608
application consists of multiple fine-grained endpoints. Direct communication of clients to multiple 609
endpoints results in too many point-to-point connections. Hence, it makes sense to provide a single 610
entry point for all clients to multiple component microservices of the application. This is the 611
underlying objective behind the API gateway architecture. The primary function of the API 612
gateway is to support clients with different form factors (e.g., browser, mobile device) and 613
functional requirements. The core features of the API gateway are request routing, composition, 614
and protocol translation (i.e., translation between web protocols, such as HTTP and WebSocket, 615
and web-unfriendly protocols that are used internally, such as AMQP and Thrift binary RPC). All 616
requests from clients first go through the API gateway, which then routes requests to the 617
appropriate microservice. The API gateway will often handle a request by invoking multiple 618
microservices and aggregating the results. 619
 620
The multiple APIs or microservices accessible through the API gateway can be specified as part of 621
the input port definition of the gateway (e.g., mobileAPI or MobileService) or be specified 622
dynamically through a deploy operation of the API gateway service with a request parameter that 623
contains the name of the service that should be embedded with the requested service [9]. Thus, the 624
API gateway, located between clients and microservices, represents a pattern wherein a proxy 625
aggregates multiple services. Many API gateway implementations can support APIs written in 626
different languages, such as Jolie, JavaScript, or Java. 627
 628
Since the API gateway is the entry point for microservices, it should be equipped with the 629
necessary infrastructure services (in addition to its main service of request shaping), such as service 630
discovery, authentication and access control, load balancing, caching, providing custom APIs for 631
each type of client, application-aware health checks, service monitoring, and circuit breakers. These 632
additional features may be implemented in the API gateway in two ways: 633
 634

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

10

• By composing the specific services developed for respective functionality (e.g., service 635
registry for service discovery) 636

• Implementing these functionalities directly inside the codebase that utilizes the API 637
gateway 638

Gateway implementations 639
To prevent the gateway from having too much logic to handle request shaping for different client 640
types, it is divided into multiple gateways [8]. This results in a pattern called backends for 641
frontends (BFF). In BFF, each client type is given its own gateway (e.g., web app BFF, mobile app 642
BFF) as a collection point for service requests. The respective backend is closely aligned with the 643
corresponding front end (client) and is typically developed by the same team. 644
 645
API management for a microservices-based application can be implemented through either a 646
monolithic API gateway architecture or a distributed API gateway architecture. In the monolithic 647
API gateway architecture, there is only one API gateway that is typically deployed at the edge of 648
the enterprise network (e.g., DMZ) and provides all services to the API at the enterprise level. In 649
the distributed API gateway architecture, there are multiple instances of microgateways, which are 650
deployed closer to microservice APIs [10]. A microgateway is typically a low footprint, scriptable 651
API gateway that can be used to define and enforce customized policies and is therefore suitable for 652
microservices-based applications, which must be protected through service-specific security 653
policies. 654
 655
The microgateway is typically implemented as a stand-alone container using development 656
platforms such as Node.js. It is different from a sidecar proxy of the service mesh architecture 657
(refer to Section 2.7.2), which is implemented at the API endpoint itself. The security policies in a 658
microgateway are encoded using JSON format and input through a graphical policy management 659
interface. The microgateway should contain policies for both application requests and responses. 660
Since policies and their enforcement are implemented as a container, they are immutable and thus 661
provide a degree of protection against accidental and unintended modifications that may result in 662
security breaches or conflicts, since any security policy update requires redeployment of the 663
microgateway. It is essential that the microgateway deployed for any microservice instance 664
communicate with service registry and monitoring modules to keep track of the operational status 665
of the microservice it is designed to protect. 666

2.7.2 Service Mesh 667
 668
A service mesh is a dedicated infrastructure layer that facilitates service-to-service communication 669
through service discovery, routing and internal load balancing, traffic configuration, encryption, 670
authentication and authorization, metrics, and monitoring. It provides the capability to 671
declaratively define network behavior, node identity, and traffic flow through policy in an 672
environment of changing network topology due to service instances coming and going offline and 673
continuously being relocated. It can be looked upon as a networking model that sits at a layer of 674
abstraction above the transport layer of the OSI model (e.g., TCP/IP) and addresses the service’s 675
session layer (Layer 5 of the OSI model) concerns, eliminating the need to address them through 676
application code [11]. A service mesh conceptually has two modules—the data plane and the 677
control plane. The data plane carries the application request traffic between service instances 678
though service-specific proxies. The control plane configures the data plane, provides a point of 679

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

11

aggregation for telemetry, and provides APIs for modifying the behavior of the network through 680
various features, such as load balancing, circuit breaking, or rate limiting. 681
 682
Service meshes create a small proxy server instance for each service within a microservices 683
application. This specialized proxy car is sometimes called a “sidecar proxy” in service mesh 684
parlance [12]. The sidecar proxy forms the data plane, while the runtime operations needed for 685
enforcing security (access control, communication-related) are enabled by injecting policies (e.g., 686
access control policies) into the sidecar proxy from the control plane. This also provides the 687
flexibility to dynamically change policies without modifying the microservices code. 688
 689

2.8 Comparison with Monolithic Architecture 690
 691
To fully compare the microservice architecture with the monolithic architecture used for all legacy 692
applications, it is necessary to compare the features of applications developed using these 693
architectural styles as well as provide an example of an application under both architectures for a 694
specific business process. A detailed discussion involving these aspects is provided in Appendix A. 695

 696

2.9 Comparison with Service-Oriented Architecture (SOA) 697
 698
The architectural style of microservices shares many similarities with service-oriented architecture 699
(SOA) due to the following common technical concepts [13]: 700
 701

• Services – The application system provides its various functionalities through self-contained 702
entities or artifacts called services that may have other attributes such as being visible or 703
discoverable, stateless, reusable, composable, or have technological-diversity 704

• Interoperability – A service can call any other service using artifacts such as an enterprise 705
service bus (ESB) in the case of SOA or through a remote procedural call (RPC) across a 706
network as in the case of a microservices environment 707

• Loose coupling – There is minimal dependency between services such that the change in 708
one service does not require a change in another service 709

In spite of the three common technical concepts described above, technical opinion on the 710
relationship between an SOA and microservices environment falls along the following three lines 711
[13]: 712
 713

• Microservices are a separate architectural style 714
• Microservices represent one SOA pattern 715
• Microservice is a refined SOA 716

The most prevalent opinion is that the differences between SOA and microservices do not concern 717
the architectural style except in its concrete realization, such as development or deployment 718
paradigms and technologies [2]. 719

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

12

2.10 Advantages of Microservices 720
 721
• For large applications, splitting the application into loosely coupled components enables 722

independence between the developer teams assigned to each component. Each team can then 723
optimize by choosing its own development platform, tools, language, middleware, and 724
hardware based on their appropriateness for the component being developed. 725

• Each of the components can be scaled independently. The targeted allocation of resources 726
results in maximum utilization of resources. 727

• If components have HTTP RESTful interfaces, implementation can be changed without 728
disruption to the overall function of the application as long as the interface remains the same. 729

• The relatively smaller codebase involved in each component enables the development team to 730
produce updates more quickly and provide the application with the agility to respond to changes 731
in business processes or market conditions. 732

• The loose coupling between the components enables containment of the outage of a 733
microservice such that the impact is restricted to that service without a domino effect on other 734
components or other parts of the application. 735

• When components are linked together using an asynchronous event-handling mechanism, the 736
impact of a component’s outage is temporary since the required functions will automatically 737
execute when the component begins running again, thus maintaining the overall integrity of the 738
business process. 739

• By aligning the service definition to business capabilities (or by basing the decomposition logic 740
for the overall application functionality based on business processes or capabilities), the overall 741
architecture of the microservices-based system is aligned with the organizational structure. This 742
promotes agile response when business processes associated with an organizational unit change 743
and consequently require that associated service to be modified and deployed. 744

2.11 Disadvantages of Microservices 745
 746
• Multiple components (microservices) must be monitored instead of one single application. A 747

central console is needed to obtain the status of each component and the overall state of the 748
application. Therefore, an infrastructure must be created with distributed monitoring and 749
centralized viewing capabilities. 750

• The presence of multiple components creates the availability problem since any component 751
may cease functioning at any time. 752

• A component may have to call the latest version of another component for some clients and call 753
the previous version of the same component for another set of clients (i.e., version 754
management). 755

• Running an integration test is more difficult since a test environment is needed wherein all 756
components must be working and communicating with each other. 757

 758

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

13

3. MICROSERVICES – THREAT BACKGROUND 759
 760
The threat background for a microservices-based application system should be treated as a 761
continuation of the technology background provided in Section 2. The following approach has been 762
adopted to review the threat background: 763
 764
• Consider all layers in the deployment stack of a typical microservices-based application and 765

when identifying typical potential threats at each layer 766
• Identify the distinct set of threats exclusive to microservices-based application systems 767

3.1 Review of Threat Sources Landscape 768
 769
Six layers are present in the deployment stack of a typical microservices-based application as 770
suggested in [13]: hardware, virtualization, cloud, communication, service/application, and 771
orchestration. This document considers these layers to be threat sources, and several of the security 772
concerns affiliated with them are described below to provide an overview of the threat background 773
in a microservices-based application. It is important to remember that many of the possible threats 774
are common to other application environments and not specific to a microservices-based 775
application environment. 776
 777
• Hardware layer – Though hardware flaws, such as Meltdown and Spectre [8], have been 778

reported, such threats are rare. In the context of this document, hardware is assumed to be 779
trusted, and threats from this layer are not considered. 780

• Virtualization layer: In this layer, threats to microservices or hosting containers originate from 781
compromised hypervisors and the use of malicious or vulnerable container images and VM 782
images. These threats are addressed in other NIST documents and are therefore not discussed 783
here. 784

• Cloud environment – Since virtualization is the predominant technology used by cloud 785
providers, the same set of threats to the virtualization layer applies. Further, there are potential 786
threats within the networking infrastructure of the cloud provider. For example, hosting all 787
microservices within a single cloud provider may result in fewer network-level security controls 788
for inter-process communication as opposed to controls for communication between external 789
clients and the microservices hosted within the cloud. Security threats within a cloud 790
infrastructure are considered in several other NIST documents and are therefore not addressed 791
here. 792

• Communication layer – This layer is unique to microservices-based applications due to the 793
sheer number of microservices, adopted design paradigms (loose coupling and API 794
composition), and different interaction styles (synchronous or asynchronous) among them. 795
Many of the core features of microservices pertain to this layer, and the threats to these core 796
features are identified under microservices-specific threats in Section 3.2. 797

• Service/application layer – In this layer, threats are the results of malicious or faulty code. As 798
this falls under secure application development methodologies, it is outside of the scope of this 799
document. 800

• Orchestration layer – An orchestration layer may come into play if the microservices 801
implementation involves technologies such as containers. The threats in this layer pertain to the 802

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

14

subversion of automation or configuration features, especially related to scheduling and 803
clustering of servers, containers, or VMs hosting the services, and are therefore beyond the 804
scope of this document. 805

3.2 Microservices-specific Threats 806
 807
Most state-of-practice core features refer to the communication layer in the deployment stack of 808
microservices-based applications. Hence, the overall security strategies for microservices-based 809
applications should involve choosing the right implementation options, identifying the architectural 810
frameworks packaging those core features, identifying microservice-specific threats, and providing 811
coverage for countering those threats in the implementation options. 812

3.2.1 Service Discovery Mechanism Threats 813

The basic functions in a service discovery mechanism are: 814
 815
• Service registration and de-registration 816
• Service discovery 817

 818
The potential security threats to the service discovery mechanism include: 819
 820
• Registering malicious nodes within the system, redirecting communication to them, and 821

subsequently compromising service discovery 822
• Corruption of the service registry database leading to redirection of service requests to wrong 823

services and resulting in denial of services; also, redirection to malicious services resulting in 824
compromise of the entire application system 825

3.2.2 Botnet Attacks 826

Unlike monolithic applications, wherein calls to a functional module of the application originate 827
from a local procedure call or through a local data structure (i.e., sockets), calls to an API in a 828
microservices-based application always originate from a program, not a direct client or user 829
invocation), many of them from a remote program across the network. This exposes a 830
microservices API to a multitude of botnets, which can vary based on the type of damage it inflicts 831
(e.g., credential stuffing/abuse, takeover of accounts, page scraping, harvesting data, denial of 832
service). 833

3.2.3 Cascading Failure 834

The presence of multiple components in a microservices-based application enhances the probability 835
of a failure of a service. Though the components are designed to be loosely coupled from the point 836
of view of deployment, there is a logical or functional dependency since many business 837
transactions require the execution of multiple services in sequence to deliver the required outputs. 838
Therefore, if a service that is upstream in the processing logic of a business transaction fails, other 839
services that depend upon it may become unresponsive as well. This phenomenon is known as 840
cascading failure. 841

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

15

4. SECURITY STRATEGIES FOR IMPLEMENTATION OF CORE FEATURES AND 842
COUNTERING THREATS 843

 844
Security strategies for the design and deployment of microservices-based application systems will 845
span the following: 846
 847
Analysis of implementation options for core features: 848
 849

a) Identity and access management 850
b) Service discovery 851
c) Secure communication protocols 852
d) Security monitoring 853
e) Resiliency or availability improvement techniques 854
f) Integrity assurance improvement techniques 855

 856
Countering microservices-specific threats: 857
 858

a) Threats to service discovery mechanism 859
b) Botnet attacks 860
c) Cascading failures 861

 862
Note that service discovery is a core feature in microservices, and analysis of the implementation 863
options will also take into consideration threats to service discovery mechanisms. Similarly, 864
implementation options for resiliency or availability improvement will also address the counter 865
measures for cascading failures. As such, there will not be separate security strategies for these 866
items. 867

4.1 Strategies for Identity and Access Management 868
 869
Since microservices are packaged as APIs, the initial form of authentication to microservices 870
involves the use of API keys (cryptographic). Authentication tokens encoded in SAML or through 871
OpenID connect under the OAuth 2.0 framework provide an option for enhancing security [14]. 872
Additionally, a centralized architecture for provisioning and enforcement of access policies 873
governing access to all microservices is required due to the sheer number of services, the 874
implementation of services using APIs, and the need for service composition to support real-world 875
business transactions (e.g., customer order processing and shipping). A standardized, platform-876
neutral method for conveying authorization decisions through a standardized token (e.g., JSON 877
web tokens (JWT), which are OAuth 2.0 access tokens encoded in JSON format [15]) is also 878
required since each of the microservices may be implemented in a different language or platform 879
framework. Policy provisioning and computation of access decisions require the use of an 880
authorization server. 881
 882
The disadvantage to implementing access control policies at the access point of each microservice 883
is that additional effort is required to ensure that cross-cutting (common) policies applicable to all 884
microservice APIs are implemented uniformly. Any discrepancy in security policy implementation 885
among APIs will have security implications for the entire microservices-based application. Further, 886
the footprint for implementing access control in each microservices node can result in performance 887

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

16

issues in some nodes. Since multiple microservices nodes collaborate to perform a transaction, 888
performance problems associated with any node can quickly cascade across multiple services. The 889
strategies for secure identity and access management to microservices are outlined below. 890
 891
Security strategies for authentication (MS-SS-1): 892

• Authentication to microservices APIs that have access to sensitive data should not be done 893
simply by using API keys. Rather, an additional form of authentication should also be used. 894

• Every API Key that is used in the application should have restrictions specified both for the 895
applications (e.g., mobile app, IP address) and the set of APIs where they can be used. 896

 897
Security strategies for access management (MS-SS-2): 898
• Access policies to all APIs and their resources should be defined and provisioned centrally to 899

an access server 900
• The access server should be capable of supporting fine-grained policies 901
• Access decisions from the access server should be conveyed to individual and sets of 902

microservices through standardized tokens encoded in a platform-neutral format (e.g., OAuth 903
2.0 token encoded in JSON format) 904

• The scope in authorization tokens (extent of permissions and duration) should be carefully 905
controlled; for example, in a request for transaction, the allowed scope should only involve the 906
API endpoints that must be accessed for completing that transaction 907

• It is preferable to generate tokens for performing authentication instead of passing credentials to 908
the API endpoints since any damage would be limited to the time that the token is valid; 909
authentication tokens should be cryptographically signed or hashed tokens 910

 911

4.2 Strategies for Service Discovery Mechanism 912
 913

Microservices may have to be replicated and located anywhere in the enterprise or cloud 914
infrastructure for optimal performance and load balancing reasons. In other words, services could 915
be frequently added or removed and dynamically assigned to any network location. Hence, it is 916
inevitable in a microservices-based application architecture to have a service discovery mechanism, 917
which is typically implemented using the service registry. The service registry service is used by 918
microservices that are coming online to publish their locations in a process called service 919
registration and is also used by microservices seeking to discover registered services. The service 920
registry must therefore be configured with confidentiality, integrity, and availability 921
considerations. 922
 923
In service-oriented architectures (SOA), service discovery is implemented as part of the 924
centralized enterprise service bus (ESB). However, in microservices architecture—where the 925
business functions are packaged and deployed as services within containers and communicate 926
with each other using API calls—it is necessary to implement a lightweight message bus that can 927
implement all three interaction styles mentioned in Section 2.5. Additionally, alternatives to the 928
ways in which service registry service can be implemented span two dimensions: (a) the way 929
clients access the service registry service and (b) centralized versus distributed service registry. 930
Clients can access the service registry service using two primary methods: client-side discovery 931
pattern and server-side discovery pattern [16]. 932

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

17

 933
 934
Analysis of the client-side service discovery pattern 935
The client-side option consists of building registry-aware clients. The client queries the service 936
registry for the location of all services needed to make requests. It then contacts the target service 937
directly. Though simple, this implementation option for service discovery requires the discovery 938
logic (querying the service registry) to be implemented for each programming language and/or 939
framework that is used for client implementations. 940
 941
Analysis of the service-side service discovery pattern 942
The service-side discovery has two implementations: one pattern delegates the discovery logic to a 943
dedicated router service set at a fixed location, while the other utilizes a server in front of each 944
microservice with the functionality of a dynamic DNS-resolver. In the dedicated router option, the 945
client makes all service requests to this dedicated router service, which in turn queries the service 946
registry for the location of the client-requested service and forwards that request to the discovered 947
location. This removes the tight coupling between an application service and an infrastructure 948
service such as the service registry service. In the DNS resolver pattern, each microservice 949
completes its own service discovery using its built-in DNS resolver to query the service registry. 950
The DNS resolver maintains a table of available service instances and their endpoint locations (i.e., 951
IP addresses). To keep the table up to date, the asynchronous, nonblocking DNS resolver queries 952
the service registry regularly—perhaps every few seconds—using DNS SRV records for service 953
discovery. Since the service discovery function through the DNS resolver runs as a background 954
task, the endpoints (URLs) for all peer microservices are instantly available when a service instance 955
needs to make a request [2]. 956
 957
A good strategy would be to use a combination of the service-side service discovery pattern and 958
the client-side service discovery pattern [16]. The former can be used for providing access to all 959
public APIs, while the latter can allow clients to access all cluster-internal interactions. 960
 961
Centralized versus distributed service registry 962
In a centralized service registry implementation, all services wishing to publish their service 963
register at a single point, and all services seeking these services use the single registry to discover 964
them. The security disadvantage of this pattern is the single point of failure [17]. However, data 965
consistency will not be an issue. In the decentralized service registry, there may be multiple 966
service registry instances, and services can register with any of the instances. In the short term, 967
the disadvantage is that there will be data inconsistency between the various service registries. 968
Eventually, consistency among these various instances of service registry is achieved either 969
through broadcasting from one instance to all others or by propagation from one node to all 970
others via attached data in a process called piggybacking. 971
 972
Regardless of the pattern used for service discovery, secure deployment of service discovery 973
functions should meet the following service registry configuration requirements. 974
 975
Security strategies for service registry configuration (MS-SS-3) 976

• Service registry capabilities should be provided through a cluster of servers with a 977
configuration that can perform frequent replication. 978

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

18

• Service registry clusters should be in a dedicated network where no other application 979
service is run. 980

• Communication between an application service and a service registry should occur through 981
a secure communication protocol such as HTTPS or TLS. 982

• Service registry should have validation checks to ensure that only legitimate services are 983
performing the registration, refresh operations, and database queries to discover services. 984

• The bounded context and loose coupling principle for microservices should be observed for 985
the service registration/deregistration functions. In other words, the application service 986
should not have tight coupling with an infrastructure service, such as a service registry 987
service, and service self-registration/deregistration patterns should be avoided. When an 988
application service crashes or is running but unable to handle requests, its inability to 989
perform deregistration affects the integrity of the whole process. Therefore, 990
registration/deregistration of an application service should be enabled using a third-party 991
registration pattern, and the application service should be restricted to querying the service 992
registry for service location information as described under the client-side discovery pattern. 993

• If a third-party registration pattern is implemented, registration/deregistration should only 994
take place after a health check on the application service is performed. 995

• Distributed service registry should be deployed for large microservices application, and care 996
should be taken to maintain data consistency among multiple service registry instances. 997

 998
4.3 Strategies for Secure Communication Protocols 999
 1000
Secure communication between clients and services (north-south traffic) and between services 1001
(east-west traffic) is critical for the operation of a microservices-based application. It is a good 1002
practice to build security features into infrastructure rather than application code, and several 1003
technologies have evolved with that objective. 1004
 1005
However, certain strategies for security services—such as authentication or the establishment of 1006
secure connections—can be handled at the individual microservices nodes. For example, in the 1007
fabric model, each microservice instance has the capability to function as an SSL client and SSL 1008
server (i.e., each microservice is an SSL/TLS endpoint). Thus, a secure SSL/TLS connection is 1009
possible for interservice or inter-process communication from an overall application perspective. 1010
These connections can be created dynamically (i.e., before each interservice request) or be created 1011
as a keep-alive connection. In the keep-alive connection scheme, a “service A” creates a connection 1012
after a full SSL/TLS handshake—the first time an instance of that service makes a request to an 1013
instance of a “service B.” However, neither service instances terminate the connection after a 1014
response returns for that request from service B. Rather, the same connection is reused in future 1015
requests. The advantage of this scheme is that the costly overhead involved in performing the initial 1016
SSL/TLS handshake can be avoided during each request, and an existing connection can be reused 1017
for thousands of following interservice requests. Thus, a permanent secure interservice network 1018
connection is available for all instances of requests. 1019
 1020
Security strategies for secure communication (MS-SS-4) 1021
• Clients should not be configured to call its target services directly but rather to point to the 1022

single gateway URL 1023

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

19

• Client-to-API-gateway communication should take place after mutual authentication and be 1024
encrypted (e.g., using mTLS protocol) 1025

• Frequently interacting services should create keep-alive TLS connections 1026
 1027

4.4 Strategies for Security Monitoring 1028
 1029
Compared to monitoring a monolithic application which runs in a server (or some replicas for load 1030
balancing), a microservices-based system must monitor a large number of services, each running in 1031
different servers possibly hosted on heterogeneous application platforms. Further, any meaningful 1032
transaction in the system will involve at least two or more services. 1033
 1034
Security strategies for security monitoring (MS-SS-5) 1035

• An analytics engine analyzes the dependencies among the services and identifies nodes 1036
(services) and paths (network) that are bottlenecks 1037

• A central dashboard displays the status of various services and the network segments that 1038
link them 1039

4.5 Availability/Resiliency Improvement Strategies 1040
 1041
In microservices-based applications, targeted efforts that improve the availability or resiliency of 1042
certain critical services are needed to enhance the overall security profile of the application. Some 1043
technologies that are commonly deployed include: 1044
 1045
• Circuit breaker function 1046
• Load balancing 1047
• Rate limiting (throttling) 1048
 1049

4.5.1 Analysis of Circuit Breaker implementation options 1050

A common strategy for preventing or minimizing cascading failures involves the use of circuit 1051
breakers, which prohibits the delivery of data to the component (microservice) that is failing 1052
beyond a specified threshold. This is also known as the fail fast principle. Since the errant service is 1053
quickly taken offline, incidences of cascading failures are minimized while the errant component’s 1054
logs are analyzed, required fixes are performed, and microservices are updated. There are three 1055
options for deploying circuit breakers [9]: directly inside the client, on the side of services, or in 1056
proxies that operate between clients and services. 1057
 1058
Client-side circuit breaker option: In this option, each client has a separate circuit breaker for each 1059
external service that the client calls. When the circuit breaker in a client has decided to cut off calls 1060
to a service (called “open state” with respect to that service), no message will be sent to the service, 1061
and communication traffic in the network is subsequently reduced. Moreover, the circuit breaker 1062
functionality need not be implemented in the microservice, which frees valuable resources for 1063
efficient implementation of that service. However, locating the circuit breaker in the client carries 1064
two disadvantages from a security point of view. First, a great deal of trust must be placed in the 1065
client that the circuit breaker code executes properly. Second, the overall integrity of the operation 1066
is at risk since knowledge of the unavailability of the service is very much local to the client, a 1067

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

20

status that is determined based on the frequency of calls from that client to the service rather than 1068
on the combined response status received by all clients against that service. 1069
 1070
Server-side circuit breaker option: In this option, an internal circuit breaker in the microservice 1071
processes all client invocations and decides whether it should be allowed to invoke the service or 1072
not. The security advantages of this option are that clients need not be trusted to implement the 1073
circuit breaker function, and since the service has a global picture of the frequency of all 1074
invocations from all clients, it can throttle requests to a level which it can conveniently handle (e.g., 1075
temporarily lighten the load). 1076
 1077
Proxy circuit breaker option: In this option, circuit breakers are deployed in a proxy service, located 1078
between clients and microservices, which handles all incoming and outgoing messages. Within this, 1079
there may be two options: one proxy for each target microservice or a single proxy for multiple 1080
services (usually implemented in API gateway) that includes both client-side circuit breakers and 1081
service-side circuit breakers existing within that proxy. The security advantage of this option is that 1082
neither the client code nor the services code needs to be modified, which avoids trust and integrity 1083
assurance issues associated with both these categories of code as well as the circuit breaker 1084
function. This option also provides additional protections such as making clients more resilient to 1085
faulty services, and shielding services from cases in which a single client sends too many requests 1086
[9], resulting in some type of denial of service to other clients that use that service. 1087
 1088
Security strategies for implementing circuit breakers (MS-SS-6) 1089
• A proxy circuit breaker option should be deployed to limit the trusted component to the proxy. 1090

This avoids the need to place the trust on the clients and microservices (e.g., setting thresholds 1091
and cutting off requests based on the set threshold) since they are multiple components. 1092

 1093

4.5.2 Strategies for Load Balancing 1094

Load balancing is an integral functional module in all microservices-based applications, and its 1095
main purpose is to distribute loads to services. A service name is associated with a namespace 1096
that supports multiple instances of the same service. In other words, many instances of the same 1097
service would use the same namespace [17]. To balance the service load, the load balancer 1098
chooses one service instance in the request namespace using an algorithm such as the round-robin 1099
algorithm—a circular pattern to assign the request to a service instance. 1100
 1101
Security strategies for load balancing (MS-SS-7) 1102
• All programs supporting the load balancing function should be decoupled from individual 1103

service requests. For example, the program that performs health checks on services to 1104
determine the load balancing pool should run asynchronously in the background. 1105

• When a DNS resolver is deployed in front of a source microservice to provide a table of 1106
available target microservice instances, it should work in tandem with the health check program 1107
to present a single list to the calling microservice. 1108

4.5.3 Rate Limiting (Throttling) 1109
The goal of rate limiting is to ensure that a service is not oversubscribed. That is, when one client 1110
increases the rate of requests, the service continues its response to other clients. This is achieved by 1111
setting a limit on how often a client can call a service within a defined window of time. When the 1112

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

21

limit is exceeded, the client—rather than receiving an application-related response—receives a 1113
notification that the allowed rate has been exceeded as well as additional data regarding the limit 1114
number and the time at which the limit counter will be reset for the requestor to resume receiving 1115
responses. Closely related to the concept of rate limiting is quota management or conditional rate 1116
limiting where limits are determined based on application requirements rather than infrastructure 1117
limitations or requirements. 1118
 1119
Security strategies for rate limiting (MS-SS-8) 1120
• Quotas or limits for application usage should be based on both infrastructure and application-1121

related requirements. 1122
• Limits should be determined based on well-defined API usage plans. 1123
 1124

4.6 Integrity Assurance strategies 1125
 1126
Integrity assurance requirements in the context of microservices-based applications arise under two 1127
contexts: 1128
 1129
• When new versions of microservices are inducted into the system 1130
• For supporting session persistence during transaction 1131

 1132
Monitored induction of new releases: Whenever a newer version of a microservice is released, its 1133
induction must be a gradual process since (a) all clients may not be ready to use the new version, 1134
and (b) the behavior of the new version for all scenarios and use cases may not meet the business 1135
process expectation despite extensive testing. To address this situation, a technique called canary 1136
release is often adopted [4]. Under this technique, only a limited number of requests are routed to 1137
the new version after it is brought online, and the rest are routed to the existing operational version. 1138
After a period of observation provides assurance that the new version meets performance and 1139
integrity metrics, all of the requests are routed to the new version. 1140
 1141
Security (integrity assurance) strategies for the induction of new versions of microservices 1142
(MS-SS-9): 1143
• The traffic to both the existing version and the new version of the service should be routed 1144

through a central node, such as an API gateway, to monitor the total number of calls to the 1145
service. 1146

• Security monitoring should cover nodes hosting both the existing and newer versions. 1147
• Usage monitoring of the existing version should steadily increase traffic to the new version. 1148
• The performance and functional correctness of the new version should be factors in increasing 1149

traffic to the new version. 1150
• Client preference for the version (existing or new) should be taken into consideration while 1151

designing a canary release technique. 1152
 1153
Session persistence: It is critical to send all requests in a client session to the same upstream 1154
microservice instance since clients execute a complete transaction through multiple requests to a 1155
specific service, and the target of all requests should be to the same upstream service instance in 1156
that session. This requirement is called session persistence. A situation that could potentially break 1157
this requirement is one wherein the microservice stores its state locally, and the load balancer 1158

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

22

handling individual requests forwards a request from an in-progress user session to a different 1159
microservice server or instance. One of the methods for implementing session persistence is sticky 1160
cookie. In this method, there is a mechanism to add a session cookie to the first response from the 1161
upstream microservice group to a given client, identifying (in an encoded fashion) the server that 1162
generated the response. Subsequent requests from the client include the cookie value, and the same 1163
mechanism uses it to route the request to the same upstream server [18]. 1164
 1165
Security (integrity assurance) strategies for handling session persistence (MS-SS-10): 1166
• The session information for a client must be stored securely 1167
• The artifact used for conveying the binding server information must be protected 1168

 1169

4.7 Countering Botnet Attacks 1170
 1171
Though it is impossible to protect against all types of botnets, microservice APIs must be provided 1172
with detection and prevention capabilities against credential-stuffing and credential abuse attacks. 1173
This is especially critical for those applications where each of the microservices are independently 1174
callable and carry their own sets of credentials. Credential abuse attacks can be detected using 1175
offline threat analysis or run-time solutions [19]. Detection of botnet attacks is provided by a 1176
dedicated bot manager product or as an add-on feature in web application firewalls (WAF). 1177
 1178
Security strategies for preventing credential abuse and stuffing attacks (MS-SS-11): 1179
• A run-time prevention strategy for credential abuse is preferable to offline strategy. A threshold 1180

for a designated time interval from a given location (e.g., IP address) for the number of login 1181
attempts should be established; if the threshold is exceeded, prevention measures must be 1182
triggered. 1183

• A credential-stuffing detection solution has the capability to check user logins against the stolen 1184
credential database and warn legitimate users that their credentials have been stolen. 1185

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

23

5. SECURITY STRATEGIES FOR ARCHITECTURAL FRAMEWORKS IN 1186
MICROSERVICES 1187

 1188
The two main architectural frameworks considered in this document for microservices-based 1189
application systems are the API gateway and service mesh. The primary security considerations 1190
in the implementation of the API gateway involve choosing the right platform for hosting it, 1191
proper integration and configuration with enterprise-wide authentication and authorization 1192
frameworks, and securely leveraging the traffic flowing through it for security monitoring and 1193
analysis. 1194
 1195
Security strategy for API gateway implementation (MS-SS-12): 1196
• API gateway platform requirements: Since some microservices have multiple communication 1197

styles (i.e., synchronous and asynchronous), it is imperative that the API gateway that serves as 1198
the entry point for these services should support multiple communication protocols, and a high-1199
performance webserver and reverse proxy should support its basic functional capabilities. 1200

• Integrate API gateway with an identity management application to provision credentials before 1201
activating the API. 1202

• When identity management is invoked through the API gateway, connectors should be provided 1203
for integrating with identity providers (IdPs). 1204

• The API gateway should have a connector to an artifact that can generate an access token for 1205
the client request (e.g., OAuth 2.0 Authorization Server). 1206

• Securely channel all traffic information to a monitoring and/or analytics application for 1207
detecting attacks (e.g., denial of service, malicious actions) and unearthing explanations for 1208
degrading performance. 1209

 1210
Implementing a service mesh can help ensure that proper configuration parameters associated with 1211
various security policies are defined correctly in the control plane so that the intent of the security 1212
policies are met, and the service mesh alone does not introduce new vulnerabilities. 1213
 1214
Security strategy for service mesh implementation (MS-SS-13): 1215
• Provide policy support for designating a specific communication protocol between pairs of 1216

services and specifying the traffic load between pairs of services based on application 1217
requirements. 1218

• Default configuration should always enable access control policies for all services. 1219
• Avoid configurations that may lead to privilege escalation (e.g., the service role permissions 1220

and binding of the service role to service user accounts). 1221
 1222

 1223
 1224

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

24

Appendix A: Differences between Monolithic Application and Microservices-based 1225
Application 1226

A.1 Design and Deployment Differences 1227

 1228
Conceptually, a monolithic architecture of an application involves generating one huge artifact that 1229
must be deployed in its entirety, while a microservices-based application contains multiple self-1230
contained, loosely-coupled executables called services or microservices. The individual services 1231
can be deployed independently. In monolithic applications, any change to a certain functionality of 1232
the overall application will involve recompilation and, in some instances, re-testing of the whole 1233
application before being deployed again. However, in the case of microservices, only the relevant 1234
service is modified and redeployed since the independent nature of the services ensures that a 1235
change in one does not logically affect the functionality of another. In monolithic applications, any 1236
increase in workload due to an increase in the number of users or the frequency of application 1237
usage will involve allocating resources to the whole application, whereas in microservices, the 1238
increase in resources can be selectively applied to those whose performance is less than desirable, 1239
thus providing flexibility in scalability efforts. 1240
 1241
Some monolithic applications may be constructed modularly but may not have semantic or logical 1242
modularity. Modular construction refers to how an application may be built from a large number of 1243
components and libraries that may have been supplied by different vendors, and some components 1244
(e.g., database) may be distributed across the network [17]. In such monolithic applications, the 1245
design and specification of APIs may be similar to that in a microservices architecture. However, 1246
the difference between such modularly designed monolithic applications (sometimes called a 1247
classic modular design) and a microservices-based application is that in the latter, the individual 1248
API is network-exposed and therefore independently callable and re-usable. 1249
 1250
The differences between monolithic and microservices-based applications is summarized in Table 1251
A.1 below: 1252
 1253

Table A.1: Logical Differences between Monolithic and Microservices-based Application 1254
 1255

Monolithic Application Microservices-based Application
Must be deployed as a whole Independent or selective deployment of

services
Change in a small part of the application
requires re-deployment of the entire
application

Only the modified services need to be re-
deployed

Scalability involves allocating resources to
the application as a whole

Each of the individual services can be
selectively scaled up by allocating more
resources

API calls are local Network-exposed APIs enable independent
invocation and re-usability

 1256

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

25

A.1.1 An Example Application to illustrate the design and deployment differences 1257
 1258
The following example of a small, online retail application illustrates the design and deployment 1259
differences discussed above. The main functions of this application are: 1260
 1261

• A module that displays the catalog of products offered by the retailer with pictures of the 1262
products, product numbers, product names, and the unit prices 1263

• A module for processing customer orders by gathering information about the customer (e.g., 1264
name, address) and the details of the order (e.g., name of the product from the catalog, 1265
quantity, unit price) as well as creating a bin containing all the items ordered in that session 1266

• A module for preparing the order for shipping, specifying the total bill of lading (i.e., the 1267
total package to be shipped, quantity of each item in the order, shipping preferences, 1268
shipping address) 1269

• A module for invoicing the customer with a built-in feature for making payments by credit 1270
card or bank account 1271

 1272
The differences in the design of this online retail application as a monolithic versus microservices-1273
based are given in table below. 1274
 1275

Table A.2: Differences in Application Construct between Monolithic and Microservices-based Application 1276
 1277

Application Construct Monolith Microservices-based
Communication between
functional modules

All communications are in
the form of procedure calls or
some internal data structures
(e.g., socket). The module
handling the order processing
makes a procedural call to the
module handling the shipping
function and waits for
successful completion
(blocking type synchronous
communication).

The shipping functionality
and the order processing
functionality are each
designed as independent
services. Communication
takes place as an API call
across the network using a
web protocol. The order
processing microservice can
either (a) make a request-
response call to the shipping
microservice and wait for a
response or (b) put the details
of the order to be shipped in a
message queue to be picked
up asynchronously by the
shipping microservice, which
has subscribed to the event.

Handling changes or
enhancements (e.g., invoicing
module needs to be changed
to accept debit cards)

The entire application must
be recompiled and redeployed
after making the necessary
changes.

The invoicing function is
designed as a separate
microservice, so that service
can simply recompiled and
redeployed.

Scaling the application,
allocation of increased

The order processing
functionality involves longer

It is enough to allocate
increased resources for

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

26

resources (e.g., order
processing module needs to
be allocated more resources
to handle a larger load)

transaction times compared to
shipping or invoicing
functions. Vertical scaling
that involves using servers
with more memory or CPUs
must be deployed for the
entire application.

hardware where the order
processing microservice is
deployed. Also, the number
of instances of order-
processing microservices can
be increased for better load
balancing.

Development and deployment
strategy

Development is handled by
the development team which,
after necessary testing by the
QA team, transfers the task of
deployment to an
infrastructure team that
oversees the allocation of
suitable resources for
deployment.

The complete lifecycle—
from development to
deployment—is handled by a
single DevOps team for each
microservice since it is a
relatively small module with
a single functionality and
built-in a platform (e.g., OS,
languages libraries) that is
optimal for that functionality.

 1278

A.2 Run-time Differences 1279
 1280
A monolithic application runs as a single computational node such that the node is aware of the 1281
overall system or application state. In a microservices environment, the application is designed as a 1282
set of multiple nodes that each provide a service. Since they operate without the need to coordinate 1283
with others, the overall system state is unknown to individual nodes. In the absence of any global 1284
information or global variable values, the individual nodes make decisions based on locally 1285
available information. The independence of the nodes means that failure of one node does not 1286
affect other nodes. Unlike monolithic applications where services may share database connections 1287
or a data repository, a microservice architecture may deploy a pattern wherein each service has its 1288
own data repository. In many situations, interaction between services may require a distributed 1289
transaction which, if not designed properly, may affect the integrity of the databases. 1290
 1291
The runtime differences between monolithic and microservices applications and their implications 1292
are summarized in Table A.2 below. 1293

 1294
Table A.3: Architectural Differences between Monolithic and Microservices-based Application 1295

 1296
Monolithic Application Microservices-based Application

Runs as a single computational node; overall
state information fully known

Designed as a set of multiple nodes, each
providing a service; overall system state is
unknown to individual nodes

Designed to make use of global information
or values of global variables

Individual nodes make decisions based on
locally available information

Failure of the node means crash of the
application

Failure of one node should not affect other
nodes

Figure A.1: Online Shopping Application – Monolithic Architecture 1297

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

27

 1298
 1299

Figure A.1: Online Shopping Application – Monolithic Architecture 1300
 1301
 1302
 1303
 1304

 1305

 1306
 1307

Figure A.2: Online Shopping Application – Microservices Architecture1308

28

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

Appendix B: Traceability of Security Strategies to Microservices Architectural 1309
Features 1310

 1311

Security
Strategy
Identifier

Security Strategy

Microservices
Core Feature/
Architectural
framework

MS-SS-1 • Authentication to microservice APIs that have access to sensitive
data should not be done simply by using API keys; an additional
form of authentication should also be used.

• Every API Key that is used in the application should have
restrictions specified both for applications (e.g., mobile app, IP
address) and the set of APIs where they can be used

Authentication

MS-SS-2 • Access policies to all APIs and their resources should be defined
and provisioned centrally to an access cover

• The access server should be capable of supporting fine-grained
policies

• Access decisions from the access server should be conveyed to
individual and sets of microservices through standardized tokens
encoded in a platform-neutral format (e.g., OAuth 2.0 token
encoded in JSON format)

• The scope in authorization tokens (i.e., extent of permissions and
duration) should be carefully controlled; for example, in a request
for a transaction, the allowed scope should only involve the API
endpoints that must be accessed to complete that transaction

• It is preferable to generate tokens for performing authentication
instead of passing credentials to the API endpoints since potential
damage will be limited to the time that the token is valid instead of
the long-term damage due to compromised credentials;
authentication tokens should be cryptographically signed or hashed

Access
management

29

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

Security
Strategy
Identifier

Security Strategy

Microservices
Core Feature/
Architectural
framework

MS-SS-3 • Service registry capability should be provided through a cluster of
servers with a configuration that can perform frequent replication

• Service registry clusters should be in a dedicated network where no
other application services are run

• Communication between an application service and a service
registry should be through a secure communication protocol, such
as HTTPS/TLS

• Service registry should have validation checks to ensure that only
legitimate services are performing the registration and refresh
operations or querying its database to discover services

• The bounded context and loose coupling principle for microservices
should be observed for the service registration/deregistration
function; the application service should not have tight coupling with
an infrastructure service, such as service registry service, and the
service self-registration/deregistration pattern should be avoided.
Moreover, when an application service crashes or is running but not
in a position to handle requests, it cannot perform deregistration,
thus affecting the integrity of the whole process. Registration or
deregistration of an application service should be enabled using a
third-party registration pattern, and the application service should
be restricted to simply querying the service registry for service
location information as described in the client-side discovery
pattern.

• If third-party registration pattern is implemented,
registration/deregistration should only take place after performing a
health check on the application service

• Distributed service registry should be deployed for large
microservices applications, and care should be taken to maintain
data consistency among multiple service registry instances

Service registry
configuration

MS-SS-4 • Clients should not be configured to call their target services directly
but rather be configured to point to the single gateway URL

• Client to API gateway communication should take place after
mutual authentication and be encrypted (e.g., using mTLS protocol)

• Frequently interacting services should create keep-alive TLS
connections

Secure
communication

30

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

Security
Strategy
Identifier

Security Strategy

Microservices
Core Feature/
Architectural
framework

MS-SS-5 • Analytics engine that analyzes dependencies among the services
and identifies nodes (services) and paths (network) that are the
bottlenecks

• A central dashboard that displays the status of various services and
the network segments linking them

Security
monitoring

MS-SS-6 • Proxy circuit breaker option should be deployed to limit the trusted
component to be the proxy, which avoids the need to place the trust
on the clients and microservices (setting thresholds and cutting off
requests based on the set threshold) since they are multiple
components

Implementing
circuit breaker

MS-SS-7 • The load balancing function should be decoupled from individual
service requests; for example, the program that performs health
checks on the services to determine the load balancing pool should
run asynchronously in the background

• When a DNS resolver is deployed in front of a source microservice
to provide a table of available target microservice instances, it
should work in tandem with the health check program to present a
single list to the calling microservice

Implementing
load balancing

MS-SS-8 • Quotas or limits for application usage should be based on both
infrastructure and application-related requirements

• Limits should be determined based on well-defined API usage plans

Rate limiting
(throttling)

MS-SS-9 • Traffic to both the existing version and the new version of the
service should be routed through a central node, such as an API
gateway, to monitor the total number of calls to the service

• Security monitoring should cover nodes hosting both the existing
and newer versions

Induction of new
versions of
microservice

MS-SS-10 • Session information for a client must be stored securely
• The artifact used for conveying the binding server information must

be protected

Handling session
persistence

MS-SS-11 • A run-time prevention strategy for credential abuse is preferable to
an offline strategy; a threshold for a designated time interval from a
given location (e.g., IP address) for the number of login attempts
should be set up, and prevention measures must be triggered if the
threshold is exceeded

• A credential-stuffing detection solution with the capability to check
user logins against the stolen credential database and warn the
legitimate users that their credentials have been stolen

Preventing
credential abuse
and stuffing
attacks

31

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

Security
Strategy
Identifier

Security Strategy

Microservices
Core Feature/
Architectural
framework

MS-SS-12 • Channel all traffic information to a monitoring and/or analytics
application for detecting attacks (e.g., denial of service, malicious
threats) through unusual usage patterns or deteriorating response
times

• Integrate API gateway with an identity management application to
provision credentials before activating the API

• API gateway platform requirements: since some microservices have
multiple communication styles (i.e., synchronous and
asynchronous), it is imperative that the API gateway which serves
as the entry point for these services support multiple
communication styles; a high-performance webserver and reverse
proxy should support its basic functional capabilities

• When identity management is invoked through an API gateway,
connectors should be provided for integrating with IdPs

• API gateway should have a connector to an artifact that can
generate an access token for the client request (e.g., OAuth 2.0
Authorization Server)

API gateway
configuration

MS-SS-13 • Policy support should be enabled for: (a) designating a specific
communication protocol between pairs of services and (b)
specifying the traffic load between pairs of services based on
application requirements

• Default configuration should always be to enable access control
policies for all services

• Avoid configurations that may lead to privilege escalation (e.g., the
service role permissions and binding of the service role to service
user accounts)

Service mesh
configuration

1312

32

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

Appendix C: References 1313
 1314
[1] Sill, A. (2016). The design and architecture of microservices. IEEE Cloud Computing. 1315
 1316
[2] Richardson, C. and Smith, F. (2016). Microservices: From design to deployment. NGINX 1317

Inc. 1318
 1319
[3] TechTarget. (n.d.). Comparing two schools of application development: Traditional vs. 1320

Cloud-Native. Retrieved from 1321
https://searchcloudcomputing.techtarget.com/PaaS/Comparing-Two-Schools-of-1322
Application-Development-Traditional-vs-Cloud-Native. 1323

 1324
[4] Richardson, C. (2015). Building microservices: Using an API gateway. Retrieved from 1325

https://www.nginx.com/blog/building-microservices-using-an-api-gateway/. 1326
 1327
[5] Palladino, M. (2016). Microservices and API gateway, Part 1: Why an API gateway? 1328

Retrieved from www.nginx.conf. Accessed March 2019. 1329
 1330
[6] Jander, K., Braubach, L., and Pokahr, A. (2018). Defense in-depth and role authentication 1331

for microservice systems. Proceedings of the 9th International Conference on Ambient 1332
Systems, Networks and Technologies. 1333

 1334
[7] Richardson, C. (2015). Building microservices: Inter-process communication in a 1335

microservices architecture. Retrieved from https://www.nginx.com/blog/building-1336
microservices-inter-process-communication/. 1337

 1338
[8] Guidelines for Adopting Frontend Architectures and Patterns in Microservices-Based 1339

Systems, Proceedings of 11th Joint Meeting of the European Software Engineering 1340
Conference (ESEC) and the ACM SIGSOFT Symposium on the Foundations of 1341
Software Engineering (FSE), Paderborn, Germany, Sept 4-8, 2017. 1342

 1343
[9] Montesi, F. and Weber, J. (2016). Circuit breakers, discovery, and API gateways in 1344

microservices. 1345
 1346
[10] O’Neill, M. and Malinverno, P. (2018). Critical capabilities for full life cycle API 1347

management. Gartner Report 334223. 1348
 1349
[11] Calcote, L. (2018). The enterprise path to service mesh architectures. O’Reilly. 1350
 1351
[12] Twistlock. (n.d.) Securing the service mesh: Understanding the value of service meshes, 1352

why Istio is rising in popularity, and exploring official Twistlock compliance checks for 1353
Istio. Retrieved from https://www.twistlock.com/resources/securing-service-mesh-istio-1354
compliance-checks/. 1355

 1356
[13] Yarygina, T. and Bagge, A.H. (2018). Overcoming security challenges in microservice 1357

architecture. Proceedings of 2018 IEEE Symposium on Service-Oriented System 1358
Engineering. 1359

https://searchcloudcomputing.techtarget.com/PaaS/Comparing-Two-Schools-of-Application-Development-Traditional-vs-Cloud-Native
https://searchcloudcomputing.techtarget.com/PaaS/Comparing-Two-Schools-of-Application-Development-Traditional-vs-Cloud-Native
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
http://www.nginx.conf/
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://www.twistlock.com/resources/securing-service-mesh-istio-compliance-checks/
https://www.twistlock.com/resources/securing-service-mesh-istio-compliance-checks/

33

NIST SP 800-204 (DRAFT) SECURITY STRATEGIES FOR MICROSERVICES-
 BASED APPLICATION SYSTEMS

 1360
[14] OpenID. (n.d.). Welcome to OpenID Connect. Retrieved from https://openid.net/connect/. 1361

Accessed March 2019. 1362
 1363
[15] Internet Engineering Task Force (IETF). (2012). The OAuth 2.0 authorization framework. 1364

Retrieved from https://tools.ietf.org/html/rfc6749. Accessed March 2019. 1365
 1366
[16] Circuit Breakers, Discovery, and API Gateways in Microservices 1367
 1368
[17] T. Yarygina and A.H. Bagge, “Overcoming Security Challenges in Microservice 1369

Architecture”, Proceedings of 2018 IEEE Symposium on Service-Oriented System 1370
Engineering, 2018. 1371

 1372
[18] NGINX. (n.d.). High-performance load balancing: Scale out your applications with 1373

NGINX and NGINX Plus. Retrieved from https://www.nginx.com/products/nginx/load-1374
balancing/#session-persistence. 1375

 1376
[19] Katz, O. (2017). Improving credential abuse threat mitigation. Retrieved from 1377

https://blogs.akamai.com/2017/01/improving-credential-abuse-threat-mitigation.html. 1378
Accessed March 2019. 1379

https://openid.net/connect/
https://tools.ietf.org/html/rfc6749
https://www.nginx.com/products/nginx/load-balancing/#session-persistence
https://www.nginx.com/products/nginx/load-balancing/#session-persistence
https://blogs.akamai.com/2017/01/improving-credential-abuse-threat-mitigation.html

	Call for Patent Claims
	EXECUTIVE SUMMARY
	1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE
	1.1 Scope of this document
	1.2 Target Audience
	1.3 Relationship to other NIST Guidance Documents
	1.4 Methodology and Organization

	2. MICROSERVICES-BASED APPLICATION SYSTEMS – TECHNOLOGY BACKGROUND
	2.1 Microservices – a Conceptual View
	2.2 Microservices – Design Principles
	2.3 Business drivers
	2.4 Building Blocks
	2.5 Microservices – Interaction Styles
	2.6 Microservices – State of the Practice Core Features
	2.7 Microservices – Architectural Frameworks
	2.7.1 API Gateway
	2.7.2 Service Mesh

	2.8 Comparison with Monolithic Architecture
	2.9 Comparison with Service-Oriented Architecture (SOA)
	2.10 Advantages of Microservices
	2.11 Disadvantages of Microservices

	3. MICROSERVICES – THREAT BACKGROUND
	3.1 Review of Threat Sources Landscape
	3.2 Microservices-specific Threats
	3.2.1 Service Discovery Mechanism Threats
	3.2.2 Botnet Attacks
	3.2.3 Cascading Failure

	4. SECURITY STRATEGIES FOR IMPLEMENTATION OF CORE FEATURES AND COUNTERING THREATS
	4.1 Strategies for Identity and Access Management
	4.2 Strategies for Service Discovery Mechanism
	4.4 Strategies for Security Monitoring
	4.5 Availability/Resiliency Improvement Strategies
	4.5.1 Analysis of Circuit Breaker implementation options
	4.5.2 Strategies for Load Balancing
	4.5.3 Rate Limiting (Throttling)

	4.6 Integrity Assurance strategies
	4.7 Countering Botnet Attacks

	5. SECURITY STRATEGIES FOR ARCHITECTURAL FRAMEWORKS IN MICROSERVICES
	Appendix A: Differences between Monolithic Application and Microservices-based Application
	A.1 Design and Deployment Differences
	A.1.1 An Example Application to illustrate the design and deployment differences

	A.2 Run-time Differences

	Appendix B: Traceability of Security Strategies to Microservices Architectural Features
	Appendix C: References

