Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes. It has been superseded by the document identified below.

Withdrawal Date October 17, 2019

Original Release Date December 17, 2018

Superseding Document

Status	2 nd Public Draft (2PD)
Series/Number	NIST Special Publication 800-189
Title	Resilient Interdomain Traffic Exchange: BGP Security and DDoS Mitigation
Publication Date	October 2019
DOI	https://doi.org/10.6028/NIST.SP.800-189-draft2
CSRC URL	https://csrc.nist.gov/publications/detail/sp/800-189/draft

Additional Information

1 2	Draft NIST Special Publication 800-189			
3	Secure Interdomain Traffic Exchange			
4	BGP Robustness and DDoS Mitigation			
5 6 7 8 9	Kotikalapudi Sriram Doug Montgomery			
10 11				
12 13 14 15	This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-189-draft			
16 17	COMPUTER SECURITY			
18 19				

20	Draft NIST Special Publication 800-189
21	-
22	Secure Interdomain Traffic Exchange
23	BGP Robustness and DDoS Mitigation
24	
25	Kotikalapudi Sriram
26	Doug Montgomery
27	Advanced Network Technology Division
28	Information Technology Laboratory
29	
30	
31	
32	
33	
34	
35	
36	This publication is available free of charge from:
37	https://doi.org/10.6028/NIST.SP.800-189-draft
38	
39	
40	December 2018
41	
42	SOLATINENT OF COMMITTINE T
43 44	STATES OF ANT
44 45 46 47 48	U.S. Department of Commerce <i>Wilbur L. Ross, Jr., Secretary</i> National Institute of Standards and Technology
49	Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

51 This publication has been developed by NIST in accordance with its statutory responsibilities under the

52 Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 53 (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including

54 minimum requirements for federal information systems, but such standards and guidelines shall not apply

55 to national security systems without the express approval of appropriate federal officials exercising policy

56 authority over such systems. This guideline is consistent with the requirements of the Office of Management

57 and Budget (OMB) Circular A-130.

58 Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 59 binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 60 guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 61 Director of the OMB, or any other federal official. This publication may be used by nongovernmental 62 organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 63 however, be appreciated by NIST.

64	National Institute of Standards and Technology Special Publication 800-189
65	Natl. Inst. Stand. Technol. Spec. Publ. 800-189, 70 pages (December 2018)
66	CODEN: NSPUE2
67	This publication is available free of charge from:
68	https://doi.org/10.6028/NIST.SP.800-189-draft

https://doi.org/10.6028/NIST.SP.800-189-draft

69 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 70 experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 71 endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 72 available for the purpose.

73 There may be references in this publication to other publications currently under development by NIST in accordance 74 with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 75 may be used by federal agencies even before the completion of such companion publications. Thus, until each 76 publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 77 planning and transition purposes, federal agencies may wish to closely follow the development of these new 78 publications by NIST.

79 Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 80 NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 81 https://csrc.nist.gov/publications.

82	[1/29/2019: Comment period extended.]
83	Public comment period: <i>December 17, 2018</i> through <mark>March 15</mark> , 2019
84 85 86 87	National Institute of Standards and Technology Attn: Advanced Network Technologies Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8920) Gaithersburg, MD 20899-8920 Email (for submission of reviewers' comments): <u>sp800-189@nist.gov</u>
88	All comments are subject to release under the Freedom of Information Act (FOIA).

Reports on Computer Systems Technology

90 The Information Technology Laboratory (ITL) at the National Institute of Standards and 91 Technology (NIST) promotes the U.S. economy and public welfare by providing technical 92 leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test 93 methods, reference data, proof of concept implementations, and technical analyses to advance the 94 development and productive use of information technology. ITL's responsibilities include the development of management, administrative, technical, and physical standards and guidelines for 95 96 the cost-effective security and privacy of other than national security-related information in federal 97 information systems. The Special Publication 800-series reports on ITL's research, guidelines, and 98 outreach efforts in information system security, and its collaborative activities with industry, 99 government, and academic organizations.

100

Abstract

101 In recent years, numerous routing control plane anomalies such as Border Gateway Protocol

102 (BGP) prefix hijacking and route leaks have resulted in Denial of Service (DoS), unwanted data

103 traffic detours, and performance degradation. Large-scale Distributed Denial of Service (DDoS)

104 attacks on servers using spoofed Internet Protocol (IP) addresses and reflection-amplification in

the data plane have also been frequent, resulting in significant disruption of services and

106 damages. This special publication on Secure Interdomain Traffic Exchange (SITE) includes

107 initial guidance on securing the interdomain routing control traffic, preventing IP address

108 spoofing, and certain aspects of DoS/DDoS detection and mitigation.

109 Many of the recommendations in this publication focus on the Border Gateway Protocol (BGP).

110 BGP is the control protocol used to distribute and compute paths between the tens of thousands

111 of autonomous networks that comprise the Internet. Technologies recommended in this

112 document for securing the interdomain routing control traffic include Resource Public Key

113 Infrastructure (RPKI), BGP origin validation (BGP-OV), and prefix filtering. Additionally,

114 technologies recommended for mitigating DoS/DDoS attacks focus on prevention of IP address

spoofing using Source Address Validation (SAV) with Access Control Lists (ACLs) and unicast

116 Reverse Path Forwarding (uRPF). Other technologies (including some application plane

117 methods) such as Remotely Triggered Black Hole (RTBH) filtering, Flow Specification

118 (Flowspec), and Response Rate Limiting (RRL) are also recommended as part of the overall

119 security mechanisms.

120

Keywords

121 Routing security and robustness; Internet infrastructure security; Border Gateway Protocol

122 (BGP) security; prefix hijacks; IP address spoofing; Distributed Denial of Service (DDoS);

123 Resource Public Key Infrastructure (RPKI); BGP origin validation (BGP-OV); prefix filtering;

124 BGP path validation (BGP-PV); BGPsec; route leaks; Source Address Validation (SAV); unicast

125 Reverse Path Forwarding (uRPF); Remotely Triggered Black Hole (RTBH) filtering; Flow

126 Specification (Flowspec).

127

Acknowledgements

The authors are grateful to William T. Polk, Scott Rose, Okhee Kim, Oliver Borchert, Susan
Symington, William C. Barker, William Haag, Allen Tan, and Jim Foti for their review and

130 Symington,131 comments.

132

Audience

133 This document gives technical guidance and recommendations for secure interdomain traffic

exchange. The primary audience include information security officers and managers of federal

enterprise networks. The guidance also applies to the network services of hosting providers (e.g.,cloud-based applications and service hosting) and Internet Service Providers (ISPs) when they

- are used to support federal IT systems. The guidance will also be useful for enterprise and transit
- 138 network operators and equipment vendors in general.
- 139 It is expected that the guidance and applicable recommendations from this publication will be
- 140 incorporated in the security plans and operational processes of federal enterprise networks.
- 141 Likewise, it is expected that applicable recommendations will be incorporated into the service
- agreements for federal contracts for hosted application services and Internet transit services.

143Trademark Information

144 All registered trademarks belong to their respective organizations.

145Executive Summary

- 146 There have been numerous incidents in recent years involving routing control plane anomalies
- such as Border Gateway Protocol (BGP) prefix hijacking, route leaks, and other forms of
- 148 misrouting resulting in Denial of Service (DoS), unwanted data traffic detours and performance
- 149 degradation. Large scale Distributed DoS (DDoS) attacks on servers using spoofed Internet
- Protocol (IP) addresses and reflection-amplification in the data plane have also been frequent,
- resulting in significant disruption of services and damages.
- 152 This document provides technical guidance and recommendations for technologies that improve
- 153 the security and robustness of interdomain traffic exchange. The primary focus of these
- 154 recommendations are the points of interconnection between enterprise networks, or hosted-
- 155 service providers, and the public Internet. In other words, between what are commonly known as
- 156 "stub" networks (i.e., those networks that only provide connectivity to their end systems) and
- 157 transit networks (i.e., those networks that serve to interconnect and pass traffic between stub
- 158 networks and other transit networks). These points of interconnection between stub and transit
- 159 networks are often referred to as the Internet's edge. There is usually a contractual relationship
- 160 between the transit networks and the stub networks that they service, and the technical
- 161 procedures and policies defined in that relationship is commonly called its "peering policy".
- 162 Many of the recommendations in this document also apply to the points of interconnection
- 163 between two transit networks. There are instances in which the recommendations for
- 164 interdomain traffic exchange between transit networks will vary from those for exchanges
- 165 between stub and transit networks.
- 166 The provided recommendations reduce the risk of accidental attacks (caused by
- 167 misconfiguration) and malicious attacks in the routing control plane, and they help detect and
- 168 prevent IP address spoofing and resulting DoS/DDoS attacks. These recommendations primarily
- 169 cover technologies (for security and robustness) to be used in border routers that operate the
- 170 Border Gateway Protocol (commonly called BGP routers). However, they also extend to other
- 171 systems that support reachability in the Internet, e.g., Domain Name Servers (DNS) and other
- 172 open Internet services, and Resource Public Key Infrastructure (RPKI) repositories.
- 173 It is expected that the guidance and applicable recommendations from this publication will be
- incorporated in the security plans and operational processes of federal enterprise networks.
- 175 Likewise, it is expected that applicable recommendations will be incorporated into the service
- agreements for federal contracts for hosted application services and Internet transit services. This
- document may also be helpful in the ongoing efforts by NIST and NTIA [NIST2018] [Botnet-
- 178 Roadmap] in response to the Presidential Executive Order 13800 [PEO-13800].
- 179 Technologies recommended in this document for securing the interdomain routing control traffic
- 180 include Resource Public Key Infrastructure (RPKI), BGP origin validation (BGP-OV), and
- 181 prefix filtering. Additionally, technologies recommended for mitigating DoS/DDoS attacks
- 182 include prevention of IP address spoofing using Source Address Validation (SAV) with Access
- 183 Control Lists (ACLs) and unicast Reverse Path Forwarding (uRPF). Other technologies
- 184 (including some application plane methods) such as Remotely Triggered Black Hole (RTBH)
- 185 filtering, Flow Specification (Flowspec), and Response Rate Limiting (RRL) are also

NIST SP 800-189 (DRAFT)

186 recommended as part of the overall security mechanisms.

187			Table of Contents	
188	Ex	ecutiv	e Summary	iv
189	1	Intro	oduction	1
190		1.1	What This Guide Covers	1
191		1.2	What This Guide Does Not Cover	1
192		1.3	Document Structure	1
193		1.4	Conventions Used in this Guide	2
194	2	Cont	trol Plane / BGP Vulnerabilities	3
195		2.1	Prefix Hijacking and Announcement of Unallocated Address Space	3
196		2.2	AS Path Modification	4
197		2.3	Route Leaks	4
198	3	IP A	ddress Spoofing & Reflection-Amplification Attacks	6
199		3.1	Spoofed Source Addresses	6
200		3.2	Reflection-Amplification Attacks	6
201	4	Cont	trol Plane / BGP Security – Solutions and Recommendations	7
202		4.1	Registration of Route Objects in Internet Routing Registries	7
203		4.2	Certification of Resources in Resource Public Key Infrastructure	
204		4.3	BGP Origin Validation (BGP-OV)	9
205			4.3.1 Forged-Origin Hijacks – How to minimize them	14
206		4.4	Categories of Prefix Filters	14
207			4.4.1 Unallocated Prefixes	
208			4.4.2 Special-Purpose Prefixes	15
209			4.4.3 Prefixes that Exceed a Specificity Limit	16
210			4.4.4 Default Route	16
211			4.4.5 IXP LAN Prefixes	16
212		4.5	Prefix Filtering for Peers of Different Types	17
213			4.5.1 Prefix Filtering with Lateral Peer	
214			4.5.2 Prefix Filtering with Transit Provider	18
215			4.5.3 Prefix Filtering with Customer	18
216			4.5.4 Prefix Filtering performed in a Leaf Customer Network	19
217		4.6	Role of RPKI in Prefix Filtering	
218		4.7	AS Path Validation (Emerging/Future)	
219		4.8	Route Leak Solution (Emerging/Future)	22

220 221	5 Securing Against DDoS & Reflection-Amplification – Solutions and Recommendations	. 23
222	5.1 Source Address Validation Techniques	. 23
223	5.1.1 SAV using Access Control List	. 23
224	5.1.2 SAV using Strict Unicast Reverse Path Forwarding	. 23
225	5.1.3 SAV using Feasible-Path Unicast Reverse Path Forwarding	. 24
226	5.1.4 SAV using Loose Unicast Reverse Path Forwarding	. 25
227	5.1.5 SAV using Enhanced Feasible-Path uRPF	. 25
228 229	5.1.6 More Effective Mitigation with Combination of Origin Validation and SAV 27	
230	5.2 SAV Recommendations for Various Types of Networks	. 27
231 232	5.2.1 Customer with Directly-Connected Allocated Address Space: Broadband and Wireless Service Providers	. 28
233	5.2.2 Enterprise Border Routers	. 28
234	5.2.3 Internet Service Providers	. 29
235	5.3 Role of RPKI in Source Address Validation	. 29
236 237	5.4 Monitoring UDP/TCP Ports with Vulnerable Applications and Employing Traffic Filtering	. 30
238	5.5 BGP Flow Specification (Flowspec)	. 33
239 240	List of Appendices	
241	Appendix A— Consolidated List of the Security Recommendations	. 35
242	Appendix B— Acronyms	. 46
243	Appendix C— References	. 49
244		
245	List of Figures	
246 247	Figure 1: Illustration of Prefix Hijacking and Announcement of Unallocated Address Space	3
248	Figure 2: Illustration of the basic notion of a route leak.	5
249	Figure 3: DDoS by IP source address spoofing, and reflection and amplification	7
250	Figure 4: Illustration of resource allocation certificate chain in RPKI	9
251	Figure 5: Creation of Route Origin Authorization (ROA) by prefix owner.	. 10
252	Figure 6: RPKI data retrieval, caching, and propagation to routers	. 11
253	Figure 7: Algorithm for origin validation (based on RFC 6811)	. 12

254	Figure 8: Basic principle of signing/validating AS paths in BGP updates	. 21
255	Figure 9: Scenario 1 for illustration of efficacy of uRPF schemes.	. 24
256	Figure 10: Scenario 2 for illustration of efficacy of uRPF schemes.	. 25
257	Figure 11: Scenario 3 for illustration of efficacy of uRPF schemes.	. 26
258	Figure 12: Illustration of how origin validation complements SAV	. 27
259		
260	List of Tables	
261	Table 1: Common Applications and their TCP/UDP Port Numbers	. 31
262	Table 2: BGP Flowspec types	. 33
263	Table 3: Extended community values defined in Flowspec to specify various types of	:

264	actions	
265	Table 4: Consolidated List of the Security Recommendations	35
266		

267 **1** Introduction

268 **1.1 What This Guide Covers**

This guide provides technical guidelines and recommendations for deploying protocols and technologies that improve the security of interdomain traffic exchange. These recommendations reduce the risk of accidental attacks (caused by misconfiguration) and malicious attacks in the routing control plane, and they help detect and prevent IP address spoofing and resulting DoS/DDoS attacks. These recommendations primarily cover protocols and techniques to be used in BGP routers. However, they also extend in part to other systems that support reachability in the Internet, e.g., DNS and other open Internet services, and RPKI repositories.

- 276 Technologies recommended in this document for securing the interdomain routing control traffic
- include RPKI, BGP origin validation (BGP-OV), and prefix filtering. Additionally, technologies
- 278 recommended for mitigating DoS/DDoS attacks include prevention of IP address spoofing using
- 279 Source Address Validation (SAV) with Access Control Lists (ACLs) and unicast Reverse Path
- Forwarding (uRPF). Other technologies (including some application plane methods) such as
 Remotely Triggered Black Hole (RTBH) filtering, Flow Specification (Flowspec), and Response
- Rate Limiting (RRL) are also recommended as part of the overall security mechanisms.

283 **1.2** What This Guide Does Not Cover

BGP origin validation relies on a global RPKI system (e.g., certificate authorities, publication

- repositories, etc.) as the source of trusted information about Internet address holders and their
- 286 route origin authorization statements. Each RIR operates trusted root CA in the RPKI system and
- publishes a Certificate Practice Statement [RFC7382] describing the security and robustness
- 288 properties of each implementation. Each RPKI CA has integrity and authentication mechanisms
- for data creation, storage and transmission. Nevertheless, compromise of the underlying servers and/or registry services is still a potential, if low probability, threat. Making security
- recommendations for mitigating against such threats is outside the scope of this document.
- Transport layer security is key to integrity of messages communicated in BGP sessions. Making security recommendations for the underlying transport layer is also outside the scope of this
- 294 document.
- 295 DDoS attacks using spoofed IP addresses make use of connectionless query-response services,
- e.g., DNS, NTP (Network Time Protocol), SSDP (Simple Service Discovery Protocol) servers, to
- 297 "reflect" and amplify the impact of the attacks on the intended targets. This document addresses
- some but not all aspects of security hardening of the servers that are exploited for reflection and
- amplification. Security measures such as limiting packet rate of outlier source addresses, limiting
- 300 IP connections, syn proxy, etc. may be effectively employed at servers that are used for reflection
- 301 and amplification of DoS/DDoS attacks, but this document does not cover them.

302 1.3 Document Structure

303 The rest of the document is presented in the following manner:

- Section 2: Routing control plane attacks such as BGP prefix hijacking, AS path
 modification, and route-leaks are described.
- Section 3: Data plane attacks involving source IP address spoofing and reflection amplification are described.
- Section 4: Solutions are described, and security recommendations are made for routing control plane/BGP security. The solution technologies that are discussed include RPKI, BGP origin validation (BGP-OV), prefix filtering, BGP path validation (BGP-PV), and route-leak detection and mitigation.
- Section 5: Solutions are described, and security recommendations are made for detection and mitigation of source IP address spoofing and reflection-amplification attacks. The solution technologies that are discussed include ACLs, various uRPF methods, response rate limiting (RRL), RTBH, and Flowspec.
- **1.4 Conventions Used in this Guide**
- 317 Throughout this guide, the following format conventions are used to denote special use text:
- 318 "Security Recommendation" denotes a recommendation that should be addressed in security
 319 plans and operational practices and in agreements for contracted services.
- 320 URLs are included in the text and references to guide readers to a given website or online tool
- 321 designed to aid administrators. This is not meant to be an endorsement of the website or any
- 322 product/service offered by the website publisher. All URLs were considered valid at the time of 323 writing.

324 2 Control Plane / BGP Vulnerabilities

325 2.1 Prefix Hijacking and Announcement of Unallocated Address Space

326 A BGP prefix hijack occurs when an Autonomous System (AS) accidentally or maliciously 327 originates a prefix that it is not authorized (by the prefix owner) to originate. This is also known 328 as false origination (or announcement). In contrast, if an AS is authorized to originate/announce 329 a prefix by the prefix owner, then such a route origination/announcement is called legitimate. In 330 the example illustrated in Figure 1, prefix 192.0.2.0/24 is legitimately originated by AS64500, 331 but AS64510 falsely originates it. The path to the prefix via the false origin AS will be shorter 332 for a subset of the ASes in the Internet, and this subset of ASes will install the false route in their 333 routing table or Forwarding Information Base (FIB). That is, ASes for which AS64510 is closer (i.e., shorter AS path length) would choose the false announcement and thus data traffic from 334

clients in those ASes destined for the network 192.0.2/24 will be misrouted to AS64510.

336337

Adverse effects: Denial of Service, Misrouting of traffic, Unauthorized routing

Figure 1: Illustration of Prefix Hijacking and Announcement of Unallocated Address Space.

338 The rules for IP route selection in the Internet always prefer the most specific (i.e., longest) 339 matching entry in a router's FIB. When an offending AS falsely announces a more specific 340 prefix (than a prefix announced by an authorized AS), the longer, unauthorized prefix will be 341 widely accepted and used to route data. Figure 1 also illustrates an example of unauthorized 342 origination of unallocated (reserved) address space 240.18.0.0/20. Currently 240.0.0.0/8 is 343 reserved for future use [IANA-v4-r]. Similarly, an AS may also falsely originate allocated but currently unused address space. This is referred to as *prefix squatting*, where someone else's 344 345 unused prefix is temporarily announced and used for sending spam or other malicious purpose.

The various types of unauthorized prefix originations described above are called *prefix hijacks* or *false-origin announcements*. The unauthorized announcement of a prefix longer than the

- 348 legitimate announcement is called a "sub-prefix hijack". The consequences of such adverse
- 349 actions can be serious, resulting in denial of service, eavesdropping, misdirection to imposter
- 350 servers (e.g., to steal login credentials or inject malware), defeat of IP reputation systems to
- launch spam email, etc. There have been numerous incidents involving prefix hijacks in recent
- 352 years. There are several commercial services and research projects that track and log anomalies
- in the global BGP routing system [BGPmon] [ThousandEyes] [BGPStream] [ARTEMIS]. Many
- 354 of these sites provide detailed forensic analysis of observed attack scenarios.

355 **2.2 AS Path Modification**

- 356 BGP messages carry a sequence of AS numbers that indicates the "path" of interconnected
- networks over which data will flow. This "AS_PATH" [RFC4271] data is often used to
- 358 implement routing policies that reflect the business agreements and peering policies that have
- been negotiated between networks. BGP is also vulnerable to modification of the AS_PATH
- 360 information that it conveys. As an example, a malicious AS which receives a BGP update may
- 361 illegitimately remove some of the preceding ASes in the AS_PATH attribute of the update to
- 362 make the path length seem shorter. When the update modified in this manner is propagated, the
- 363 ASes upstream can be deceived to believe that the path to the advertised prefix via the adversary
- AS is shorter. By doing this, the adversary AS may seek to increase (illegitimately) its revenue
- from its customers, or may be able to eavesdrop on traffic that would otherwise not transit
- through their AS.
- 367 Another example of maliciously modifying a BGP update is that an adversary AS replaces a
- 368 prefix in a received update by a more specific prefix (subsumed by the prefix), and then forwards
- the update to neighbors. This attack is known as Kapela-Pilosov attack [Kapela-Pilosov]. Only
- the prefix is replaced by a more specific prefix, but the AS path is not altered. In BGP path
- 371 selection, a more specific prefix advertisement wins over a covering less specific prefix
- advertisement. This means that ASes in the Internet would widely accept and use the adversary
- AS's advertisement for the more specific prefix. The exceptions are the ASes that are in the AS path from the adversary to the prefix. These exception ASes reject any advertisements that they
- may receive for the more specific prefix because they detect their own AS number in the AS
- 375 may receive for the more specific prefix because they detect their own AS number in the AS 376 path. This is called avoidance of loop detection and is a standard practice in BGP. Thus, the data
- path. This is called avoidance of loop detection and is a standard practice in BOT. Thus, the data 377 path from the adversary AS to the prefix (i.e., the network in consideration) remains intact (i.e.,
- 377 path from the adversary AS to the prefix (i.e., the network in consideration) remains intact (i.e., 378 unaffected by the malicious more specific advertisement). The net result of this attack is very
- 379 serious. The adversary would be able to force almost all traffic for the more specific prefix to be
- routed via their AS. Thus, they can eavesdrop on the data (destined for the more specific prefix)
- 381 while channeling it back to the legitimate destination to avoid detection.

382 2.3 Route Leaks

383 Previously we noted that the interconnections of networks in the Internet are dictated by

- 384 contracted business relationships that express the policies and procedures for the exchange of
- 385 control and data traffic at each point of interconnection. Such peering policies often specify
- 386 limits on what routing announcements will be accepted by each party. Often these policies reflect
- 387 a "customer", "transit provider", and/or "lateral peer" business relationship between networks.
- 388 Definitions of Peering Relations: A "transit provider" typically provides service to connect its

- 389 customer(s) to the global Internet. A "customer" AS or network may be single-homed to one
- transit provider or multihomed to more than one transit providers. A "stub customer" AS has no
- 391 customer ASes or lateral peer ASes of its own. A "leaf customer" is a stub customer that is
- 392 single-homed to one transit provider and not connected to any other AS. The term "customer 393 cone prefixes" of an AS refers to the union of the prefixes received from all directly connected
- customers and the prefixes originated by the AS itself. Naturally, this set recursively includes
- 395 customers' customers' prefix advertisements (down the hierarchy). "Lateral peer" ASes
- 396 typically announce their customer-cone prefixes to each other, and subsequently they announce
- 397 the lateral-peer's customer-cone prefixes to their respective customers but not to other lateral
- 398 peers or transit providers.
- 399 These relationships are significant because much of the operation of the global Internet is
- 400 designed such that a stub or customer AS should never be used to route between two transit
- 401 ASes. This policy is implemented by insuring that stub or customer ASes do not pass BGP
- 402 routing information received from one transit provider to another. Figure 2 illustrates a common
- 403 form of "route leak" that occurs when a multi-homed customer AS (such as AS3 in Figure 2)
- learns a prefix update from one transit provider (ISP1) and "leaks" the update to another transit
- 405 provider (ISP2) in violation of intended routing policies, and further the second transit provider
- 406 does not detect the leak and propagates the leaked update to its customers, lateral peers, and
- 407 transit ISPs [RFC7908]. Some examples of recent route leak incidents include: (1) MainOne (a
- 408 Nigerian ISP) leak of Google prefixes and outage caused for Google services for over an hour in
- 409 November 2018 [Naik], (2) the Dodo-Telstra incident in March 2012 that caused outage of
- 410 Internet services nationwide in Australia [Huston2012], (3) the massive Telekom Malaysia route
- 411 leaks, which in turn Level3 accepted and propagated [Toonk-B], etc..

412

In general, ISPs prefer customer route announcements over those from others.

Figure 2: Illustration of the basic notion of a route leak.

- 414 More generally, as defined in [RFC7908], a "route leak" is the propagation of routing
- 415 announcements beyond their intended scope. That is, an AS's announcement of a learned BGP

- 416 route to another AS is in violation of the intended policies of the receiver, the sender and/or one
- 417 of the ASes along the preceding AS path.

418 In [RFC7908], several types of route leaks are enumerated and described together with examples

419 of recent incidents. The result of a route leak can be redirection of traffic through an unintended

- 420 path which may enable eavesdropping or malicious traffic analysis. When a large number of
- routes is leaked simultaneously, the offending AS is often overwhelmed by the resulting
- 422 unexpected data traffic and drops a lot of the traffic that it receives [Huston2012] [Toonk-A]
- 423 [Naik]. This causes black-holing and denial of service for the affected prefixes. Route leaks can
- 424 be accidental or malicious, but most often arise from accidental misconfigurations.

425 **3** IP Address Spoofing & Reflection-Amplification Attacks

426 **3.1 Spoofed Source Addresses**

427 Distributed Denial of Service (DoS) is a form attack where the attack traffic is generated from 428 many distributed sources (to achieve a high-volume attack) and directed towards an intended 429 victim (system/server) [ISOC] [Huston2016] [Mirai1] [Kaeo]. To conduct a direct DDoS attack, 430 the attacker normally makes use of a few powerful computers or alternately a vast number of 431 unsuspecting compromised third-party computers/devices (laptops, tablets, cell phones, Internet 432 of Things (IoT) devices, etc.). The latter scenario is usually implemented through botnets [Arbor] 433 [Huston2016] [NIST2018]. In many DDoS attacks, the IP source addresses in the attack 434 messages are "spoofed" to avoid traceability [Arbor]. Some DDoS attacks are launched without 435 using spoofed source address. For example, in the Mirai attacks [Mirai1] [Mirai2] [Winward] 436 [TA16-288A], a very large number of compromised bots (IoT devices) that sent the attack traffic 437 used the normal source IP addresses of the IoT devices. Further, the source addresses could also 438 belong to a hijacked prefix with the intention of deceiving source address validation (SAV) 439 [BCP38] [BCP84] (also see Section 5.1.6). If a hijacked prefix is being used, then the source 440 addresses appearing in the DDoS attack packets is sometimes randomly selected from that prefix.

441 **3.2 Reflection-Amplification Attacks**

442 Source address spoofing is often combined with reflection and amplification from poorly

443 administered open Internet servers (e.g., DNS, NTP) to multiply the attack traffic volume by a

factor of 50 or more [ISOC]. The way this works can be explained with help of the illustration

- shown in Figure 3. The attacker normally makes use of a botnet consisting of many
- 446 compromised devices to send query requests to high-performance Internet servers. The attacking
- systems insert the IP address of the target (203.0.113.1) as the source address in the requests. For
- Internet services that use the User Datagram Protocol (UDP) (e.g., DNS, NTP) the query and
- response are contained in a single packet, and the exchange does not require the establishment of
- a connection (unlike Transmission Control Protocol (TCP)) between the source and the server.
 The responses from such open Internet servers are directed to the attack target since the target's
- 452 IP address was forged as the source address field of the request messages. Often the response
- 453 from the server to the target address is much larger than the query itself, amplifying the effect of
- the DoS attack (see Table 1 in Section 5.4). Such reflection and amplification attacks can result
- in massive DDoS with attack volumes in the range of hundreds of Gbps [Symantec] [ISTR-2015]
- 456 [ISTR-2016] [ISTR-2017] [ISOC] [Verisign1] [Verisign2] [Bjarnason]. In Q1 2018, there was

- 457 an increase of 100% quarter-over-quarter and 700% year-over-year in DNS amplification attacks
- 458 [HelpNet]. The attack volumes may still rise significantly if the Mirai-scale attacks are
- 459 combined with reflection-amplification attacks.
- 460

- 461
- 462

Figure 3: DDoS by IP source address spoofing, and reflection and amplification.

463 4 Control Plane / BGP Security – Solutions and Recommendations

464 BGP security vulnerabilities and mitigation techniques have been of interest for several years 465 within the networking community (e.g., [IETF-SIDR] [RFC7454] [NIST800-54] [NANOG] 466 [Murphy] [MANRS] [Quilt] [Levy] [CSRIC-WG6] [RFC6811] [RFC8205] [NSA-BGP]). This section highlights key BGP security technologies that have emerged from such efforts and makes 467 468 related security recommendations. Many of the solution technologies discussed here have been 469 developed and standardized in the IETF [IETF-SIDR] [IETF-SIDROPS] [IETF-IDR] [IETF-470 OPSEC] [IETF-GROW]. It is worth mentioning here that the [MANRS] document can be 471 thought as complementary to this document since it provides implementation guidance for some 472 of the solution technologies described in this section as well as Section 5.

473 **4.1** Registration of Route Objects in Internet Routing Registries

474 Declarative data about Internet resource allocations and routing policies has traditionally been 475 available from Regional Internet Registries (RIRs) and Internet Routing Registries (IRRs). The 476 RIR data are maintained regionally by ARIN in North America, RIPE in Europe, LACNIC in 477 Latin America, APNIC in Asia-Pacific, and AfriNIC in Africa. The IRRs are maintained by the 478 RIRs (ARIN, RIPE, etc.) as well as some major Internet Service Providers (ISPs). Additionally, 479 Merit's Routing Assets Database (RADb) [Merit-RADb] and other similar entities provide a collective routing information base consisting of registered (at their site) as well as mirrored 480 (from the IRRs) data. The route objects available in the IRRs provide routing information 481 482 declared by network operators. Specifically, the route objects contain information regarding the

- 483 origination of prefixes, i.e., the association between prefixes and the ASes which may originate
- them. Routing Policy Specification Language (RPSL) [RFC4012] [RFC7909] and Shared Whois
- 485 Project (SWIP) [SWIP] are two formats in which the data in RIRs/IRRs are presented. ARIN
- 486 predominantly uses SWIP but some RPSL as well. The rest of the RIRs and ISPs' IRRs use only487 RPSL.
- The completeness, correctness, freshness, and consistency of the data derived from these sources varies widely and hence the data is not always reliable. However, there are efforts underway to make the data complete and reliable [RFC7909]. Network operators typically obtain route object information from the IRRs and/or RADb, and they can make use of the data in the creation of
- 492 prefix filters (discussed in Sections 4.4 and 4.5) in their BGP routers.
- 493 Security Recommendation 1: All Internet Number Resources (e.g., address blocks
 494 and ASNs) should be properly registered in the appropriate RIR registration database and
 495 all appropriate point-of-contact (POC) information should be up to date. The granularity of
 496 such registrations should reflect all sub-allocations to entities (e.g., enterprises, branch497 offices, etc.) that operate their own network services (e.g., Internet access, DNS, etc.).
- 498 Security Recommendation 2: Route objects corresponding to the BGP routes
 499 originated from an Autonomous System should be registered and actively maintained in an
 500 appropriate RIR's IRR. Enterprises should ensure that appropriate IRR information exists
 501 for all IP address space used directly and by their outsourced IT systems and services.

502 **4.2** Certification of Resources in Resource Public Key Infrastructure

503 Resource Public Key Infrastructure (RPKI) is a standards-based approach for providing 504 cryptographically-secured registries of Internet resources and routing authorizations [RFC6480] 505 [RFC6482] [NANOG] [Murphy]. The IPv4/IPv6 address and AS number resource allocations 506 follow a hierarchy. Internet Assigned Numbers Authority (IANA) allocates resources to the 507 Reginal Internet Registries (RIRs) such as ARIN, RIPE, etc., and the RIRs suballocate resources 508 to ISPs and enterprises. The ISPs may further suballocate to other ISPs and enterprises. In some 509 regions, RIRs suballocate to Local Internet Registries (LIRs) which in turn suballocate to ISPs 510 and enterprises. RPKI is a global certificate authority (CA) and registry service offered by all 511 Reginal Internet Registries (RIRs). The RPKI certification chain follows the same allocation 512 hierarchy (see Figure 4). Although RPKI certifications are illustrated only under ARIN in Figure 513 4, a similar pattern is found in all other RIRs. Ideally there should be a single root or Trust 514 Anchor (TA) at the top of the hierarchy. But currently each of the five RIRs (AFRINIC, APNIC, 515 ARIN, LACNIC, and RIPE) maintains an independent TA for RPKI certification services in its 516 respective region. Thus, the global RPKI is currently operating with five TAs (see, for example, 517 [ARIN1] [ARIN2] [RIPE1] [RIPE2]).

Figure 4: Illustration of resource allocation and certificate chain in RPKI.

520 RPKI is based on the X.509 standard with RFC 3779 extensions that describe special certificate

521 profiles for Internet number resources (prefixes and ASN numbers) [RFC5280] [RFC6487] [RFC3779]. As shown in Figure 4, the RIRs issue resource certificates, called Certificate

522

523 Authority (CA) certificates, to ISPs and enterprises with registered number resource allocations

524 and assignments. There are two models of resource certification: hosted and delegated [ARIN1]

525 [RIPE1]. In the "hosted" model, the RIR keeps and manages keys and performs RPKI operations 526 on their servers. In the "delegated" model, a resource holder (an ISP or enterprise) receives a CA

527 certificate from their RIR and hosts their own certificate authority and performs RPKI operations

528 (e.g., signs ROAs, issues subordinate resource certificates to their customers).

- 529 Security Recommendation 3: Internet number resource holders with IPv4/IPv6 530 prefixes and/or AS numbers (ASNs) should obtain RPKI certificate(s) for their resources.
- 531 **Security Recommendation 4:** Transit providers should provide a service where they 532 create, publish, and manage subordinate resource certificates for address space and/or 533 ASNs suballocated to their customers.
- 534 Currently, RPKI services based on the hosted model and offered by RIRs are common. The 535 security recommendation immediately above can be implemented in the hosted or the delegated
- 536 model based on service agreements with customers.
- 537 4.3 **BGP Origin Validation (BGP-OV)**
- 538 Once an address prefix owner obtains a CA certificate, they can generate an End-Entity (EE)
- certificate and use the private key associated with the EE certificate to digitally sign a Route 539

- 540 Origin Authorization (ROA) [RFC6482] [RFC6811]. A ROA declares a specific AS as an
- authorized originator of BGP announcements for the prefix (see Figure 5). A ROA specifies one
- or more prefixes, optionally a maxlength per prefix, and a single AS number. The meaning of
- 543 maxlength is as follows. If a maxlength is specified for a prefix in the ROA, then any more 544 specific (i.e., longer) prefixes (subsumed under the prefix) with a length not exceeding the
- 544 specific (i.e., longer) prefixes (subsumed under the prefix) with a length not exceeding the 545 maxlength are permitted to be originated from the specified AS. In the absence of an explicit
- 546 maxlength for a prefix, the maxlength is equal to the length of the prefix itself. If the resource
- 547 owner has a resource certificate listing multiple prefixes, they can create one ROA in which
- 548 some or all those prefixes are listed. Alternatively, they can create one ROA per prefix.

Figure 5: Creation of Route Origin Authorization (ROA) by prefix owner.

551 ROAs can also be created (signed) by an ISP (transit provider) on behalf of its customer based

on a service agreement provided that the ISP suballocated the address space to the customer. ISP

553 can offer a service to its customers where the ISP creates and maintains CA certificates for the

554 customers' resources and ROAs for the customers' prefixes.

555 Once created, RPKI data is used throughout the Internet by Relying parties (RPs). RPs such as

556 RPKI validating servers can access RPKI data from the repositories (see Figure 6) using either

557 the Rsync protocol [Rsync] [Rsync-RPKI] or the RPKI Repository Delta Protocol (RRDP)

558 [RFC8182]. The RRDP protocol is often called *Delta protocol* for short. A BGP router typically 559 accesses the required ROA data from one or more RPKI cache servers that are maintained by its

accesses the required ROA data from one or more RPKI cache servers that are maintained by its AS. As shown in Figure 6, the RPKI-to-router protocol is used for communication between the

- 561 RPKI cache server and the router [RFC6810] [RFC8210]. More details regarding secure routing
- architecture based on RPKI can be found in [RFC6480].

Figure 6: RPKI data retrieval, caching, and propagation to routers.

565 A BGP router can use the ROA information retrieved from an RPKI cache server to mitigate the 566 risk of prefix hijacks and some forms of route leaks in advertised routes. A BGP router would 567 typically receive a list of {prefix, maxlength, origin AS} tuples (derived from valid ROAs) from one or more RPKI cache servers. The router makes use of the list with the BGP origin validation 568 569 (BGP-OV) process depicted in Figure 7 to determine the validation state of an advertised route 570 [RFC6811]. A BGP route is deemed to have a "Valid" origin if the {prefix, origin AS} pair in 571 the advertised route can be corroborated with the list, i.e., the pair is permissible in accordance with at least one ROA (see Figure 7 for the details). A route is considered "Invalid" if there is a 572 573 mismatch with the list (i.e., AS number does not match, or the prefix length exceeds maxlength) 574 - Figure 7 provides additional details. Further, a route is deemed "NotFound" if the prefix 575 announced is not covered by any prefix in the white list (i.e., there is no ROA that contains a 576 prefix that equals or subsumes the announced prefix). When an AS SET [RFC4271] is present in 577 a BGP update, it is not possible to clearly determine the origin AS from the AS PATH 578 [RFC6811]. Thus, an update containing an AS SET in its AS PATH can never receive an 579 assessment of 'Valid' in the origin validation process (see Figure 7). The use of AS SET in BGP 580 updates is discouraged in BCP 172 [RFC6472]. The RPKI-based origin validation may be

- 581 supplemented by validation based on IRR data (see Section 4.1).
- 582 There are several implementations of RPKI-based BGP OV in both hardware and software-based
- 583 router platforms [Juniper1] [Cisco1] [Patel] [Scudder] [NIST-SRx] [Parsons2] [goBGP]
- 584 [RTRlib]. Deployment guidance and configuration guidance for many of these implementations
- are available from several sources [NCCoE-sidr] [RIPE1] [MANRS] etc. Although BGP-OV is
- already implemented in commercial BGP routers, the activation and ubiquitous use of RPKI and
- 587 BGP-OV in BGP routers requires motivation and commitment on part of network operators.

590

591

592

593

- 594 **Security Recommendation 6:** Transit providers should provide a servi 595 create, publish, and maintain ROAs for their customers' prefixes.
- 596Note: The security recommendation immediately above can be implemented in the hosted597or the delegated model based on service agreements with customers.
- 598 **Security Recommendation 7:** If a prefix that is announced (or intended to be 599 announced) is multihomed and originated from multiple ASes, then one ROA per 600 originating AS should be registered for the prefix (possibly in combination with other 601 prefixes which are also originated from the same AS).
- 602Security Recommendation 8: When an ISP or enterprise owns multiple prefixes that603include less specific and more specific prefixes, they should ensure that the more specific604prefixes have ROAs before creating ROAs for the subsuming less specific prefixes.
- 605 **Security Recommendation 9:** An ISP should await until more specific prefixes that

606are announced from within their customer cone have ROAs prior to the creation of its607own ROAs for subsuming less specific prefix(es).

AS 0 is a special AS number that is not allocated to any autonomous system. AS 0 is also not

609 permitted in routes announced in BGP. An AS0 ROA is one which has an AS 0 in it for the

- 610 originating AS [RFC6483] [APNIC1]. An address resource owner can create an AS 0 ROA for
- 611 their prefix to declare the intention that the prefix or any more specific prefix subsumed under it
- 612 must not be announced until and unless a normal ROA simultaneously exists for the prefix or the
- 613 more specific prefix.

637

638

- 614 **Security Recommendation 10:** An ISP or enterprise should create an AS0 ROA for 615 any prefix that is currently not announced to the public Internet.
- 616Security Recommendation 11: A BGP router should not send updates with AS_SET617or AS_CONFED_SET in them (in compliance with BCP 172 [RFC6472]).
- 618Security Recommendation 12: ISPs and enterprises who operate BGP routers619should also operate one or more RPKI validating caches.
- 620Security Recommendation 13: A BGP router should maintain an up-to-date white621list consisting of {prefix, maxlength, origin ASN} that is derived from valid ROAs in the622global RPKI.
- 623Note: The white list of {prefix, maxlength, origin ASN} 3-tuples can be typically624obtained (and periodically refreshed) by a router from a local RPKI cache server. As625mentioned before, the RPKI-to-router protocol [RFC6810] [RFC8210] is used for this626communication.
- 627 Security Recommendation 14: In partial/incremental deployment state of the RPKI,
 628 the permissible {prefix, origin ASN} pairs should be generated by taking the union of
 629 such data obtained from ROAs, IRR data, and customer contracts.
- 630 Security Recommendation 15: BGP-OV results should be incorporated into local
 631 policy decisions to select BGP best paths.
- Note (concerning the security recommendation immediately above): Exactly how BGPOV results are used in path selection is strictly a local policy decision for each network
 operator. Typical policy choices include:
- Tag-Only BGP-OV results are only used to tag/log data about BGP routes for diagnostic purposes.
 - Prefer-Valid Use local preference settings to give priority to Valid routes. Note this is only a tie breaking preference among routes with the exact same prefix.
- 639
 Drop-Invalid Use local policy to ignore Invalid routes in the BGP decision process.
- 641 Careful planning and thought should be given in the application of such policies. In 642 general, it is important that BGP-OV local policies be consistent throughout an individual

- AS, both in terms of which peering sessions BGP-OV is enabled on, and in terms of how
- the results are used to influence the BGP decision process. It is recommended that
- 645 network operators proceed through an incremental deployment process of adopting more
- 646 stringent policies over time and after gaining experience and confidence in the system.
- 647 The three example polices above, can be viewed as recommended stages of an
- 648 incremental adoption plan.
- 649 It should be noted that enterprises should require their hosted-service providers (e.g., cloud,
- 650 CDN, DNS, email, etc.) to follow the security recommendations stated here concerning
- 651 certification of resources and creation of ROAs for the prefixes that are used in providing the
- 652 hosted services and belong to the providers. An enterprise can do this themselves if the hosted-
- 653 service provider is using the enterprises own address space for the hosted services.

654 **4.3.1** Forged-Origin Hijacks – How to minimize them

- 655 With ROA-based origin validation alone, it is possible to prevent accidental misoriginations.
- 656 However, a purposeful malicious hijacker can forge the origin AS of any update by prepending
- 657 the number of an AS found in a ROA for the target prefix onto his own unauthorized BGP
- announcement. In conjunction with forging the origin, for greater impact, the attacker may
- replace the prefix in the route with a more specific prefix (subsumed under the announced prefix)
- 660 that has a length not exceeding the maxlength in the ROA. The security recommendations that
- 661 follow are useful to minimize forged-origin attacks. (Note: BGP path validation (i.e., BGPsec
- 662 [RFC8205]) described in Section 4.7 is required for full protection against prefix and/or path
- 663 modifications.)
- 664 The following recommendation provides some degree of robustness against forged-origin665 attacks:
- 666 Security Recommendation 16: The maxlength in the ROA should preferably not
 667 exceed the length of the most specific prefix (subsumed under the prefix in consideration)
 668 that is originated (or intended to be originated) from the AS listed in the ROA.
- The following recommendation provides an even greater degree of robustness against forged-origin attacks.
- 671Security Recommendation 17: If a prefix and select more-specific prefixes672subsumed under it are announced (or intended to be announced), then instead of673specifying a maxlength, the prefix and the more specific prefixes should be listed674explicitly in multiple ROAs (i.e., one ROA per prefix or more specific prefix)675[maxlength].
- Note: In general, the use of maxlength should be avoided unless all or nearly all morespecific prefixes up to a maxlength are announced (or intended to be announced)
 [maxlength].

679 **4.4 Categories of Prefix Filters**

680 BGP prefix filtering (also known as route filtering) is the most basic mechanism for protecting

- BGP routers from accidental or malicious disruption [RFC7454] [NIST800-54]. Prefix filtering
- differs from BGP-OV in that only the prefixes expected in a peering (e.g., customer) relationship
- are accepted and prefixes not expected including bogons and unallocated are rejected.
- Further, origin validation is not a part of traditional prefix filtering, but it is complementary.
- Filtering capabilities on both incoming prefixes (inbound prefix filtering) and outgoing prefixes
 (outbound prefix filtering) should be implemented. Route filters are typically specified using a
- 687 syntax similar to that for access control lists. One option is to list ranges of IP prefixes that are
- to be denied, then permit all others. Alternatively, ranges of permitted prefixes can be specified,
- and the rest denied. The choice of which approach to use depends on practical considerations
- 690 determined by system administrators. Normally, BGP peers should have matching prefix filters,
- 691 i.e., the outbound prefix filters of an AS should be matched by the inbound prefix filters of peers
- 692 that it communicates with. For example, if AS 64496 filters its outgoing prefixes towards peer 693 AS 64500 to permit only those in set *P*, then AS 64500 establishes incoming prefix filters to
- 694 ensure that the prefixes it accepts from AS 64496 are only those in set *P*.
- 695 Different types of prefix filters are described in the rest of Section 4.4, and their applicability is696 described in the context of different peering relations in Section 4.5.

697 **4.4.1 Unallocated Prefixes**

- The Internet Assigned Numbers Authority (IANA) allocates address space to RIRs. All the IPv4
- address space (or prefixes) except for some reserved for future use have been allocated by IANA
- 700 [IANA-v4-r] [IPv4-addr]. The RIRs have also nearly fully allocated their IPv4 address space
- 701 [IPv4-addr]. (Some of the prefixes are designated for special use as discussed in Section 4.4.2.)
- The IPv6 address space is much larger than that of IPv4, and understandably the bulk of it is
- unallocated. Therefore, it is a good practice to accept only those IPv6 prefix advertisements that
- have been allocated by the IANA [IANA-v6-r]. Network operators should ensure that the IPv6 prefix filters are updated regularly (normally within a few weeks after any change in allocation
- of IPv6 prefixes). In the absence of such regular updating process, it is better not to configure
- filters based on allocated prefixes. Team Cymru provides a service for updating bogon prefix
- 708 lists for IPv4 and IPv6 [Cymru-bogon].
- 709Security Recommendation 18: IPv6 routes should be filtered to permit only710allocated IPv6 prefixes. Network operators should update IPv6 prefix filters regularly to711include any newly allocated prefixes.
- 712 Note: If prefix resource owners regularly register AS 0 ROAs (see Section 4.3) for
- allocated (but possibly currently unused) prefixes, then those ROAs could be a
- 714 complementary source for update of prefix filters mentioned above.
- 715 4.4.2 Special-Purpose Prefixes
- 716 IANA maintains registries for special-purpose IPv4 and IPv6 addresses [IANA-v4-sp] [IANA-
- v6-sp]. These registries also include specification of the routing scope of the special-purposeprefixes.
- 719Security Recommendation 19: Prefixes that are marked "False" in column "Global"720[IANA-v4-sp] [IANA-v6-sp] are forbidden from routing in the global Internet and should

be rejected if received from an external BGP (eBGP) peer.

An AS may originate one or multiple prefixes. In the inbound direction, the AS should (in most cases) reject routes for the prefixes it originates if received from any of its eBGP peers (transit provider, customer, or lateral peer). In general, the data traffic destined for these prefixes should stay local and should not be leaked over external peering. However, if the AS operator is uncertain whether a prefix they originate is single-homed (or multihomed), then the AS should accept the prefix advertisement from an eBGP peer (and assign a lower local preference value)

- so that the desired redundancy is maintained.
- Security Recommendation 20: For single-homed prefixes (subnets) that are owned
 and originated by an AS, any routes for those prefixes received at that AS from eBGP
 peers should be rejected.

732 4.4.3 Prefixes that Exceed a Specificity Limit

733 Normally, ISPs neither announce nor accept routes for prefixes that are more specific than a

certain level of specificity. For example, maximum acceptable prefix lengths are mentioned in

existing practices as /24 for IPv4 [RIPE-399] and /48 for IPv6 [RIPE-532]. The level of

race specificity that is acceptable is decided by each AS operator and communicated with peers. In

instances when Flowspec (see Section 5.5) [RFC5575] [Hares] [Ryburn] is used between

adjacent ASes for DDoS mitigation, the two ASes may mutually agree to accept longer prefix

lengths (for example, a /32 for IPv4) but only for certain pre-agreed prefixes. That is, the

announced more specific prefix must be contained within a pre-agreed prefix.

- 741 Security Recommendation 21: It is recommended that an eBGP router should set
 742 specificity limit for each eBGP peer and reject prefixes that exceed the specificity limit
 743 on a per peer basis.
- Note: The specificity limit may be the same for all peers, e.g., /24 for IPv4 and /48 for
 IPv6.

746 **4.4.4 Default Route**

A route for the prefix 0.0.0.0/0 is known as the default route in IPv4 and a route for ::/0 is known as the default route in IPv6. The default route is advertised or accepted only in specific customerprovider peering relations. For example, a transit provider and a customer that is a stub or leaf network may make this arrangement between them, whereby the customer accepts the default route from the provider instead of the full routing table. In general, filtering the default route is recommended except in situations where a special peering agreement exists otherwise.

753Security Recommendation 22: The default route (0.0.0/0 in IPv4 and ::/0 in IPv6)754should be rejected except when a special peering agreement exists that permits accepting755it.

756 **4.4.5 IXP LAN Prefixes**

757 Typically, there is a need for the clients at an Internet Exchange Point (IXP) to have knowledge

of the IP prefix used for the IXP LAN which facilitates peering between the clients.

Security Recommendation 23: An Internet Exchange Provider (IXP) should
announce – from its Route Server to all its member ASes – its LAN prefix or its entire
prefix which would be the same as or less specific than its LAN prefix. Each IXP
member AS in turn should accept this prefix and reject any more specifics prefixes (of
the IXP announced prefix) from any of its eBGP peers.

764 Implementing this recommendation will ensure reachability to the IXP LAN prefix for each of

the IXP members. It will also ensure that the Path Maximum Transmission Unit Discovery

766 (PMTUD) will work between the members even in the presence of unicast Reverse Path

767 Forwarding (uRPF). This is because the "packet too big" Internet Control Message Protocol

768 (ICMP) messages sent by IXP members' routers may be sourced using an IP address from the

769 IXP LAN prefix. See [RFC7454] for more details on this topic.

770 **4.5 Prefix Filtering for Peers of Different Types**

The inbound and outbound prefix filtering recommendations vary based on the type of peering

relationship that exists between networks: lateral peer, transit provider, customer, and leaf

customer (see definitions in Section 2.3). The different types of filters that apply are from the

174 list described in Sections 4.4.1 through 4.4.5.

The security recommendations that follow apply to enterprises when they have eBGP peering

with neighbor ASes. When an enterprise procures transit service from an ISP or hosted services

777 (e.g., cloud, CDN, DNS, email, etc.) from hosted-service providers, the security

recommendations should be included in the respective service contracts.

779 4.5.1 Prefix Filtering with Lateral Peer

780 Security Recommendation 24: Inbound prefix filtering (facing Lateral Peer):

781 The following prefix filters should be applied in the inbound direction:

- Unallocated Prefixes
 - Special-Purpose Prefixes
 - Prefixes that the AS Originates
 - Prefixes that Exceed a Specificity Limit
- 786• Default Route

783

784

785

787

• IXP LAN Prefixes

788 Security Recommendation 25: Outbound prefix filtering (facing Lateral Peer):

The appropriate outbound prefixes are those that are originated by the AS in question and
those originated by its downstream ASes (i.e., the ASes in its customer cone). The
following prefix filters should be applied in the outbound direction:

- Unallocated Prefixes
- 793• Special-Purpose Prefixes
- Prefixes that Exceed a Specificity Limit

- 795• Default Route
- 796IXP LAN Prefixes
- Unallocated Prefixes may be omitted from the list of outbound prefix filters above if there isconfidence that the inbound prefix filters are not letting them in.
- 799 **4.5.2 Prefix Filtering with Transit Provider**
- 800 Security Recommendation 26: Inbound prefix filtering (facing Transit
 801 Provider): In general, when the full routing table is required from the transit provider,
 802 the following prefix filters should be applied in the inbound direction:
- Unallocated Prefixes
- 804
 Special-Purpose Prefixes
- 805
 Prefixes that the AS Originates
- 806 Prefixes that Exceed a Specificity Limit
- IXP LAN Prefixes
- 808 Not that the default route is not included in the above list. In some cases, a customer network 809 prefers to receive the default route from a transit provider in addition to the full routing table.
- 810 Security Recommendation 27: Inbound prefix filtering (facing Transit
- 811 **Provider):** If the border router is configured for only the default route, then only the 812 default route should be accepted from the transit provider and nothing else.
- 813 Security Recommendation 28: Outbound prefix filtering (facing Transit
- 814 **Provider):** The same outbound prefix filters should be applied as those for a lateral peer 815 (see Section 4.5.1).
- Note: In conjunction with the above Outbound prefix filtering security recommendation,
 some policy rules may also be applied if a transit provider is not contracted (or not
 chosen) to provide transit for some subset of outbound prefixes.
- 819 **4.5.3 Prefix Filtering with Customer**
- 820 Inbound prefix filtering: There are two scenarios that need consideration. Scenario 1 is when 821 there is full visibility of the customer and its cone of customers (if any), and there is knowledge 822 of prefixes originated from such a customer and its cone. The knowledge of prefixes can be 823 based on direct customer knowledge, IRR data and/or RPKI data (if that data is known to be in 824 complete and well-maintained state for the customer in consideration and its customer cone). The 825 prefixes thus known for the customer and its customer cone are listed in the configuration of the 826 eBGP router in question.
- 827 Security Recommendation 29: Inbound prefix filtering (facing Customer,
 828 Scenario 1): Only the prefixes that are known to be originated from the customer and its
 829 customer cone should be accepted and all other route announcements should be rejected.
- 830 Scenario 2 is when there is not a reliable knowledge of all prefixes originated from the customer

and its cone of customers.

841

855

- 832 Security Recommendation 30: Inbound prefix filtering (facing Customer,
 833 Scenario 2): The same set of inbound prefix filters should be applied as those for a
- lateral peer (see Section 4.5.1).
- 835 Security Recommendation 31: Outbound prefix filtering (facing Customer): The
 836 filters applied in this case would vary depending on whether the customer wants to
 837 receive only the default route or full routing table. If it is the former, then the only the
 838 default route should be announced and nothing else. In the latter case, the following
 839 outbound prefix filters should be applied:
- Special-Purpose Prefixes
 - Prefixes that Exceed a Specificity Limit
- Note: The Default Route filter may be added in the above list if the customer requires thefull routing table but not the default route.
- 844 **4.5.4** Prefix Filtering performed in a Leaf Customer Network
- A leaf customer network is one which is single homed to a transit provider and has no lateral
 peers or customer ASes downstream.
- Security Recommendation 32: Inbound prefix filtering (Leaf Customer facing
 Transit Provider): A leaf customer may request only the default route from its transit
 provider. In this case, only the default route should be accepted and nothing else. If the
 leaf customer requires full routing table from the transit provider, then it should apply the
 following inbound prefix filters:
- Unallocated Prefixes
- Special-Purpose Prefixes
- Prefixes that the AS (i.e., leaf customer) Originates
 - Prefixes that Exceed a Specificity Limit
- Default Route

857 Security Recommendation 33: Outbound prefix filtering (Leaf Customer facing

858 Transit Provider): A leaf customer network should apply a very simple outbound policy
859 of announcing only the prefixes it originates. However, it may additionally apply the same
860 outbound prefix filters as those for a lateral peer (see Section 4.5.1) to observe extra
861 caution.

862 **4.6 Role of RPKI in Prefix Filtering**

- 863 An ISP can retrieve (from RPKI registries) all available Route Origin Authorizations (ROAs)
- 864 corresponding to autonomous systems (ASes) that are known to belong in their customer cone.
- 865 From the available ROAs, it is possible to determine the prefixes that can be originated from the
- 866 corresponding ASes in the customer cone. Based on a knowledge of the tree structure of the
- 867 customer cone, it is further possible to list all the prefixes that could be received on any given

- 868 customer interface (see Section 3.8 in [RouteLeak3]). As the RPKI registries become mature
- 869 (with increasing adoption), the prefix lists derived from ROAs will become useful for prefix
- 870 filtering. Even in the early stages of RPKI adoption, the prefix lists (from ROAs) can help cross-
- 871 check and/or augment the prefix filter lists that an ISP constructs by other means.
- 872 Note: The list of ASes in an AS's customer cone can be determined by forming the list of unique
- 873 origin ASes in all BGP announcements received (i.e., currently in the Adj-RIB-ins [RFC4271])
- 874 on all customer interfaces at the AS in consideration. This can be done in the network
- 875 management system (off the router).
- 876 Security Recommendation 34: The ROA data (available from RPKI registries) should 877 be used to construct and/or augment prefix filter lists for customer interfaces.

AS Path Validation (Emerging/Future) 878 4.7

879 Note: The IETF standard for BGP path validation (BGP-PV), namely BGPsec [RFC8205], is

880 available but commercial vendor implementations are not currently available. Hence, this section

881 briefly describes the technology and standards but does not make any security recommendations

- 882 concerning BGP-PV.
- 883 As observed in Sections 4.3 and 4.3.1, BGP origin validation (BGP-OV) is necessary but by
- 884 itself it is insufficient for fully securing the prefix and AS path in BGP announcements. BGP
- 885 path validation (BGP-PV) is additionally required to protect against prefix modifications and
- 886 forged-origin attacks (see Section 4.3.1) as well as other AS-path attacks such as path shortening
- 887 and Kapela-Pilosov attacks (see Section 2.2). There is significant interest in the networking
- 888 community to secure the AS path in BGP updates so that a more comprehensive protection can
- 889 be provided to BGP updates [RFC8205] [RFC8208] [RFC7353] [Huston2011] [RFC8374]. RFC 890
- 8205 is the IETF standard that specifies the BGPsec protocol, i.e., the protocol for BGP path validation. Open source prototype implementations of BGP-PV are available [NIST-SRx]
- 891
- 892 [Parsons2] [Adalier2].
- 893 The basic principles of BGP-PV are illustrated in Figure 8. (Please see [RFC8205] for a detailed
- 894 protocol specification.) A ROA signed by the owner the prefix 10.1.0.0/16 attests that AS1 is
- 895 authorized to originate the prefix. Further, each network operator that has deployed BGP-PV gets 896
- a resource certificate for their AS number, and the BGP-PV routers within the AS get router 897 certificates and private keys for signing updates. The certificates for all BGP-PV routers are
- 898 retrieved by all participating ASes, and the public keys of all BGP-PV routers are expected to be
- 899 available at each BGP-PV router. In Figure 8, AS1 uses its private key to generate its signature,
- 900 SIG1-2, attesting that it sent a route for 10.1.0.0/16 to AS2. The target AS is included in the data
- 901 that is under the signature. Likewise, AS2 signs the route to AS3 and so on. Each AS adds its 902 signature as it propagates the update to its neighbors. The update includes the Subject Key
- 903 Identifier (SKI) for the public key of each AS in the path (i.e., the public key of the BGP-PV
- 904 router in the AS). AS5 receives an update with four signatures (one corresponding to each hop).
- 905 If all signatures verify correctly at AS5, and the origin validation check also passes, then AS5
- 906 can be certain that the received update for 10.1.0.0/16 with AS path [AS1 (origin), AS2, AS3,
- 907 AS4] is legitimate (i.e., not corrupted by prefix or path modifications along the way). For
- 908 example, in Figure 8, AS6 will fail if it were to try to fake a connection to AS1 and announce a

- 909 signed BGPsec update to AS5 (with a shorter path and a forged-origin AS1). This is because
- AS6 does not have an update signed to it directly from AS1. 910

Note that if AS6 attempts to announce prefix P over a one-hop connection via AS1, it will not succeed because it never received a signed BGP announcement directly from AS1 it can never fake being directly connected to AS1.

911

912

Figure 8: Basic principle of signing/validating AS paths in BGP updates.

913 ECDSA-P256 algorithm is currently recommended for signing BGPsec updates between ASes

- 914 that peer with each other [RFC8208]. Updates will have a larger size due to the addition of a 64-
- 915 byte ECDSA P-256 signature for each hop. Also, the route processors in BGP-PV routers will be
- 916 required to perform additional processing due to signing and verification of path signatures. The
- 917 performance characterization of BGP-PV quantifying Routing Information Base (RIB) size and routing convergence time has been reported in [Sriram1]. High performance implementations of
- 918
- 919 the cryptographic operations (ECC signing and verifications) associated with BGPsec update
- 920 processing are available [Adalier1] [Adalier2] [NIST-SRx]. Optimization algorithms for BGPsec
- 921 update processing are proposed and analyzed in [Sriram2].
- 922 To reduce upgrade costs and encourage faster deployment, a leaf or stub AS is allowed to trust
- 923 its upstream AS and hence negotiate to receive unsigned updates, while it sends signed updates
- 924 to the upstream AS [RFC8205].
- 925 The standards for BGP-PV are documented in IETF RFC's #8205 through #8210. When
- 926 implementations based on these standards start to become available in commercial products, this 927
- document may be updated to recommend BGP-PV.
- 928
- 929

930 **4.8 Route Leak Solution (Emerging/Future)**

931 Section 2.3 described the route leaks problem space and noted that in RFC 7908 [RFC7908] the 932 various types of route leaks are enumerated. Route leak solutions fall in two categories: (1) Intra-933 AS and (2) Inter-AS (across AS hops). Many operators currently use an intra-AS solution which 934 is done by tagging BGP updates from ingress to egress (within the AS) using a BGP Community 935 [NANOG-list]. The BGP Community used is non-transitive because it does not propagate in 936 eBGP (between ASes). Each BGP update is tagged on ingress to indicate that it is was received 937 in eBGP from a customer, a lateral peer, a transit provider, etc. Further, a route that originated 938 within the AS is tagged to indicate the same. At the egress point, the sending router applies an 939 egress policy that makes use of the tagging. Routes that are received from a customer are 940 allowed on the egress to be forwarded to any type of peer – customer, lateral peer, or transit 941 provider. However, routes received from a lateral peer or transit provider are forwarded only to 942 customers (i.e., they are not allowed to be forwarded to a lateral peer or transit provider). These 943 ingress and egress policies are central to route leak prevention within an AS (intra-AS).

944Security Recommendation 35: An AS operator should have ingress policy to tag945routes internally (locally within the AS) to communicate from ingress to egress regarding946the type of peer (customer, lateral peer, or transit provider) from which the route was947received.

948 Security Recommendation 36: An AS operator should have egress policy to utilize
949 the tagged information (in the preceding Security Recommendation) to prevent route leaks
950 when routes are forwarded on the egress.

951 The above intra-AS solution for prevention of route leaks can also be implemented using a BGP

Attribute (instead of BGP Community). The Attribute-based solution [RouteLeak2] has the

advantage that it can be made available in commercial routers as a standard feature, which in

954 turn minimizes manual network operator actions. However, such a solution involves an update to

955 the BGP protocol [RFC4271] and requires standardization. Such an effort takes time and is

- 956 currently in progress in the IETF [RouteLeak2].
- 957 The second type of solution that is inter-AS is intended to work in eBGP across AS hops. With
- 958 the inter-AS solution, the focus shifts to detection and mitigation in case a route leak has already

959 occurred and started to propagate. The idea is that if a leak indeed propagates out of an AS, then

the peer AS or any AS along the subsequent AS path should be able to detect and stop it.

961 Solution for inter-AS route leak detection and mitigation is also work in progress in the IETF

962 [RouteLeak1] [RouteLeak3].

963 For robustness of the Internet routing infrastructure, inter-AS route-leak detection and mitigation

capability will also need to be implemented in addition to the intra-AS prevention capability.

965 When mechanisms for route-leak detection and mitigation capability are standardized and

become available in products, this document may be updated to include appropriate security

967 recommendations to reflect the same.

968

969 5 Securing Against DDoS & Reflection-Amplification – Solutions and 970 Recommendations

971 There are various existing techniques and recommendations for deterrence against DDoS attacks 972 with spoofed addresses [BCP38] [BCP84] [NABCOP] [CSRIC-WG5]. There are also some 973 techniques used for prevention of reflection-amplification attacks [RRL] [TA14-017A], which 974 are used in achieving greater impact in DDoS attacks. Employing a combination of these 975 preventive techniques in enterprise and ISP border routers, hosted-service provider networks, 976 DNS/NTP servers, broadband and wireless access networks, and data centers provides the 977 necessary protections against DDoS attacks.

978 **5.1 Source Address Validation Techniques**

979 Source address validation (SAV) is performed in network edge devices such as border routers,

980 Cable Modem Termination Systems (CMTS), Digital Subscriber Line Access Multiplexers

981 (DSLAM), and Packet Data Network (PDN) gateways in mobile networks. Ingress/egress

982 Access Control List (ACL) and unicast Reverse Path Forwarding (uRPF) are techniques

983 employed for implementing SAV [BCP38] [BCP84] [ISOC] [RFC6092; REC-5, REC-6]. Ingress

984 SAV applies to incoming (received) packets and egress SAV applies to outgoing (transmitted)

985 packets.

986 5.1.1 SAV using Access Control List

987 Ingress/egress Access Control Lists (ACLs) are maintained which list acceptable (or

988 alternatively, unacceptable) prefixes for the source addresses in the incoming/outgoing Internet

989 Protocol (IP) packets. Any packet with a source address that does not match the filter is dropped.

990 The ACLs for the ingress/egress filters need to be maintained to keep them up to date. Hence,

991 this method may be operationally difficult or infeasible in dynamic environments such as when a

992 customer network is multihomed, has address space allocations from multiple ISPs, or

993 dynamically varies its BGP announcements (i.e., routing) for traffic engineering purposes.

994 Typically, the egress ACLs in access aggregation devices (e.g., CMTS, DSLAM) permit source

addresses only from the address spaces (prefixes) that are associated with the interface on which

996 the customer network is connected. Ingress ACLs are typically deployed on border routers and

997 drop ingress packets when the source address is spoofed (i.e., belongs to obviously disallowed

998 prefix blocks, RFC 1918 prefixes, or provider's/enterprise's own prefixes).

999 **5.1.2 SAV using Strict Unicast Reverse Path Forwarding**

1000 In the strict unicast Reverse Path Forwarding (uRPF) method, an ingress packet on an interface

1001 at the border router is accepted only if (1) the Forwarding Information Base (FIB) contains a

1002 prefix that encompasses the source address, and (2) packet forwarding for that prefix points to

1003 the interface in consideration. In other words, the selected best path for routing to that source 1004 address (if it were used as a destination address) should point to the interface in consideration. It

1005 is well known that this method has limitations when a network or autonomous system is multi-

1006 homed and there is asymmetric routing of packets. Asymmetric routing occurs (see Figure 9)

1007 when a customer AS announces one prefix (P1) to one transit provider (ISP-a) and a different

1008 prefix (P2) to another transit provider (ISP-b), but routes data packets with source addresses in

1009 the second prefix (P2) to the first transit provider (ISP-a) or vice versa.

1011

1010

Figure 9: Scenario 1 for illustration of efficacy of uRPF schemes.

1012 SAV using Feasible-Path Unicast Reverse Path Forwarding 5.1.3

1013 The feasible-path uRPF helps partially overcome the problem identified with the strict uRPF in 1014 the multi-homing case. The feasible-path uRPF is similar to the strict uRPF, but the difference is that instead of inserting one best route in the FIB (or an equivalent Reverse Path Forwarding 1015 1016 (RPF) table), alternative routes are also added there. This method relies on announcements for 1017 the same prefixes (albeit some may be prepended to effect lower preference) propagating to all the eBGP-peer routers performing feasible-path uRPF check. So, in the multi-homing scenario, if 1018 1019 the customer AS announces routes for both prefixes (P1, P2) to both transit providers (with 1020 suitable prepends if needed for traffic engineering), then the feasible-path uRPF method works 1021 (see Figure 10). Alternatively, it also works if the customer AS announces the aggregate of P1 1022 and P2 (if possible) to each transit provider in addition to announcing P1 to one provider and P2 1023 to the other provider. It should be mentioned that the feasible-path uRPF works in this scenario

1024 only if customer route is preferred at AS2 and AS3 over the shorter path.

1026

Figure 10: Scenario 2 for illustration of efficacy of uRPF schemes.

1027 However, the feasible-path uRPF method has limitations as well. One form of limitation

1028 naturally occurs when the recommendation of propagating the same prefixes to all routers is not

1029 heeded. Another form of limitation can be described as follows. In Scenario 2 (described above,

1030 illustrated in Figure 10), it is possible that the second transit provider (ISP-b) does not propagate

1031 the prepended route (i.e., P1 [AS1 AS1]) to the first transit provider (ISP1). This is because

1032 ISP-b's decision policy permits giving priority to a shorter route to prefix P1 via ISP-a over a 1033 longer route learned directly from the customer (AS1). In such a scenario, AS3 (ISP-b) would

1035 not send any route announcement for prefix P1 to AS2 (ISP-a). Then a data packet originated

1035 from AS1 with source address in prefix P1 that traverses via AS3 (ISP-b) will get dropped at

1036 AS2 (ISP-a) despite the flexibility accorded by feasible path uRPF.

1037 **5.1.4** SAV using Loose Unicast Reverse Path Forwarding

1038 In the loose unicast Reverse Path Forwarding (uRPF) method, an ingress packet at the border

1039 router is accepted only if the FIB has one or more prefixes that encompass the source address.

1040 That is, a packet is dropped if no route exists in the FIB for the source address. Loose uRPF

1041 sacrifices directionality. In most cases, this method is not effective for prevention of address 1042 spoofing. Nearly all IPv4 address space already appears in the global routing table. Hence, for

spoofing. Nearly all IPv4 address space already appears in the global routing table. Hence, for IPv4, loose uRPF only drops packets if the spoofed address is non-routable (e.g., RFC 1918,

1044 unallocated, allocated but currently not routed). It may be noted that the method is more useful

1045 for IPv6 than IPv4.

1046 **5.1.5 SAV using Enhanced Feasible-Path uRPF**

1047 Note: The status of the Enhanced Feasible-Path uRPF (EFP-uRPF) is that it is currently work in 1048 progress in the IETF [EFP-uRPF]. It holds promise for providing a significant improvement in

- 1049 effectiveness and deployability over the Feasible Path uRPF. Hence, this section briefly
- describes the technology and standards effort but does not make a security recommendation
- 1051 concerning use of EFP-uRPF.

1052 Enhanced feasible-path uRPF (proposed in [EFP-uRPF]) adds greater flexibility and accuracy to

- 1053 uRPF operation than the three uRPF methods discussed above in Sections 5.1.2 through 5.1.4.
- 1054 The basic principle of EFP-uRPF method for enhancing the efficacy in multi-homing and
- 1055 asymmetric routing scenarios is as follows. If a route for prefix P1 is received on customer
- 1056 interface X and has origin AS1, and routes for P2 and P3 are received on other peering interfaces
- 1057 Y and Z but have the same origin AS1, then allow the flexibility that data packets with source 1058 address in any of these three prefixes (P1, P2, P3) may be legitimately received on customer
- 1059 interface X. Thus, based on the common origin AS principle, the prefix list for allowable source
- addresses in data packets is expanded to include all three prefixes (P1, P2, P3) for customer
- 1061 interface X. Further, the same principle is applied for determining the prefix list for allowable
- 1062 source addresses for each customer interface.

1063 Looking back at Scenarios 1 and 2 (Figure 9 and Figure 10), the EFP-uRPF provides comparable

1064 or better performance than the other uRPF methods for those scenarios. Scenario 3 (Figure 11)

- 1065 further illustrates that of EFP-uRPF method works best even in a much more complex
- 1066 asymmetric routing scenario. In Scenario 3 (Figure 11), the focus is on AS4 receiving data
- 1067 packets with source address in {P1, P2, P3}. If EFP-uRPF is used, the operator (at AS4) can be
- assured that DDoS mitigation would work effectively while none of those data packets would be
- subject to denial of service. The details concerning EFP-uRPF can be found in [EFP-uRPF]. It is
- 1070 still work in progress, so no security recommendations involving EFP-uRPF are offered here.

Consider that data packets (sourced from AS1) may be received on customer interfaces at AS4 with source address in P1, P2 or P3 :

X Feasible-Path uRPF fails

1071

- ✓ Loose uRPF works (but not desirable)
- Enhanced Feasible-Path uRPF works best

1073 **5.1.6** More Effective Mitigation with Combination of Origin Validation and SAV

1074 It is worth noting that with the combination of BGP origin validation (BGP-OV) (see Section

- 1075 4.3) and the SAV (uRPF) techniques discussed above, a stronger defense against address
- spoofing and DDoS is made possible. A determined DDoS attacker can subvert any of the uRPF
- methods by performing prefix hijacking followed by source address spoofing as illustrated in
 Figure 12. In the scenario in Figure 12, the attacker first compromises routers (or perhaps owns
- 1079 some of them) at AS98 and AS99, then falsely announces a less specific prefix (e.g., 10.1.0.0/21)
- 1080 encompassing the target's prefix (e.g., 10.1.0.0/22). The feasible-path uRPF filters at AS5 and
- 1081 AS6 are effectively deceived, and the attacker stays under the radar because the hijacked prefix
- 1082 is a less specific prefix. Then the attacker would be able to successfully perform address
- 1083 spoofing and DDoS with reflection-amplification. To protect against this type of multi-pronged
- 1084 attack, the combination of BGP-OV (to prevent the hijacking) and feasible-path uRPF (to
- 1085 prevent the address spoofing) should be employed. For this to work, the target prefix
- 1086 (10.1.0.0/22) owner should create a ROA for the prefix and all ASes (especially, AS5 and AS6)
- 1087 in Figure 12 should be performing BGP-OV in addition to employing uRPF.

1088 1089

Figure 12: Illustration of how origin validation complements SAV.

1090 **5.2** SAV Recommendations for Various Types of Networks

1091 Three types of network scenarios are considered here and SAV security recommendations are

- 1092 provided for each scenario. The network types are: (1) Networks that have customers with
- 1093 directly-connected allocated address space such as broadband and wireless service providers, (2)
- 1094 Enterprise networks, and (3) Internet Service Providers (ISPs).
- 1095 When a government agency (or enterprise) procures services of a hosted-service provider or
- 1096 transit ISP, the security recommendations listed here should be considered for inclusion in the
- 1097 service contracts as appropriate.

10995.2.1Customer with Directly-Connected Allocated Address Space: Broadband and
Wireless Service Providers

SAV with ACLs (described above) is relatively easy when a network served by an ISP's edge device (e.g., border router, CMTS, DSLAM, PDN gateway) is directly connected (without multihoming) and using an IP address space that is suballocated by the ISP. Hence, SAV using ACL method should be always used in such cases. For the egress packets (i.e., packets transiting via the edge device into the Internet), the source address must be within the allocated space. As an example, the DOCSIS 3.0 specification for CMTS already incorporates this security check [DOCSIS][Comcast].

- 1108Security Recommendation 37: BGP routers that have directly-connected customers1109with suballocated address space, CMTS (or equivalent) in broadband access networks,1110and PDN gateways (or equivalent) in mobile networks should implement SAV using1111ACLs (Section 5.1.1). The BGP routers in this context may alternatively use the strict1112uRPF method (Section 5.1.2).
- 1113 5.2.2 Enterprise Border Routers

1114 The SAV security recommendations for enterprise border routers vary based on egress/ingress

- 1115 nature of the data packets. Included here are recommendations concerning the routing control
- 1116 plane (BGP updates) as well.
- Security Recommendation 38: An enterprise border router that is multi-homed should
 always announce all its prefixes to each of its upstream transit providers (albeit with
 appropriate AS prepending for traffic engineering). It should avoid selectively announcing
 some prefixes to one transit ISP and other prefixes to another transit ISP.
- 1121Note: By following the above recommendation, the enterprise border router ensures that1122that the transit ISPs' border routers discard (due to uRPF) only those data packets from the1123enterprise that do not have source addresses belonging in any of the enterprise's announced1124prefixes. Thus, it also ensures that data packets from the enterprise that have source1125addresses belonging in any of the enterprise's announced prefixes are never denied.
- 1126Security Recommendation 39: This is the exception case when the enterprise border1127router does not adhere to the above recommendation and instead selectively announces1128some prefixes to one upstream transit ISP and other prefixes to another upstream transit1129ISP. In this case, it should ensure (by appropriate internal routing) that the source addresses1130in the data packets towards each upstream transit ISP belong in the prefix or prefixes1131announced to that ISP.
- Security Recommendation 40: On the ingress side (i.e., for data packets received from the transit ISP), enterprise border routers should deploy loose uRPF (Section 5.1.4) and/or ACLs (Section 5.1.1) to drop packets when the source address is spoofed (i.e., belongs to obviously disallowed prefix blocks, RFC 1918 prefixes, or enterprise's own prefixes).

1136 **5.2.3 Internet Service Providers**

- 1137 The SAV security recommendations for ISPs vary based on ingress/egress of packets as well as 1138 the relationship with the peer (e.g., customer, lateral peer, transit provider).
- Security Recommendation 41: On customer facing interfaces, ISPs should do SAV on
 ingress packets by deploying the feasible-path uRPF (see Section 5.1.3). They should avoid
 using strict or loose uRPF as they are not very effective, especially in the case of multi homed customers.
- 1143Note: In the future, the enhanced feasible-path uRPF (see Section 5.1.5) may be considered1144(based on progress with its standardization and availability of commercial implementation).
- 1145Security Recommendation 42: For feasible-path uRPF to work appropriately, the ISPs1146(at least those near the Internet edge) should propagate all their customer routes to their1147upstream transit ISPs (albeit with appropriate AS prepending for traffic engineering).
- 1148Security Recommendation 43: ISPs should prefer customer routes over other (i.e.1149transit provider or lateral peer) routes. (This is also normal ISP policy in most cases.)
- Note: Following the above recommendation facilitates a basis for adhering to the preceding
 recommendation as well. (The above recommendation is also one of the stability conditions
 on BGP policy for ensuring stable convergence of routing information [Gao-Rexford].)
- Security Recommendation 44: On interfaces with lateral (i.e., non-transit) peers, ISPs
 should do SAV on ingress packets by deploying the feasible-path uRPF (see Sections
 5.1.3). They should avoid using strict or loose uRPF as they are not very effective for SAV
 on the lateral peer interfaces.
- Security Recommendation 45: On interfaces with transit providers, ISPs should do
 SAV on ingress packets by deploying loose uRPF (Section 5.1.4) and/or ACLs (Section
 5.1.1) to drop packets when the source address is spoofed (i.e., belongs to obviously
 disallowed prefix blocks, RFC1918 prefixes, ISP's own prefixes).
- Security Recommendation 46: On the egress side towards customers, lateral (i.e., non-transit) peers and transit providers, the ISP's border routers should deploy ACLs
 (Section 5.1.1) to drop packets when the source address is spoofed (i.e., belongs to obviously disallowed prefix blocks, RFC 1918 prefixes, ISP's internal-use only prefixes).

1165 **5.3** Role of RPKI in Source Address Validation

- 1166 A method was described in Section 4.6 on how ISPs can use the ROAs in RPKI registries to
- assist with construction of prefix filters. The same technique can be applied to construct ACLs
- 1168 for SAV on each customer facing interface. These ACLs can be used to cross-check and/or
- 1169 augment entries in the RPF lists corresponding to each customer facing interface.
- 1170Security Recommendation 47: The ROA data (available from RPKI registries) should1171be used to construct and/or augment ACLs/RPF lists for SAV on customer interfaces

11725.4Monitoring UDP/TCP Ports with Vulnerable Applications and Employing Traffic1173Filtering

- 1174 DDoS threats involving vulnerable applications using various UDP/TCP ports and IoT devices
- are continually evolving and varied, e.g., memcached DDoS reflection attacks and SSDP
- 1176 diffraction, etc. [Bjarnason]. Hence, traffic filtering methods mentioned in this section are not
- 1177 meant to be exhaustive.
- 1178 Traffic monitoring and filtering based on specific User Datagram Protocol (UDP) and
- 1179 Transmission Control Protocol (TCP) ports is done to deny traffic of certain application types
- 1180 that are not expected on a given interface in consideration [TA14-017A] [Acunetix] [ISC2]
- 1181 [Arbor]. In some cases, the applications may be legitimate but the observed traffic volumes may
- 1182 be suspiciously high, in which case response rate limiting is applied [Redbarn] [ISC1].
- 1183 In the case of the DNS (Port 53), the DNS resolver can limit the scope of clients from which it
- 1184 will accept requests. The clients normally come from within the same network where the DNS
- resolver resides. Hence, the DNS resolver can maintain access lists in the configuration so that
- an otherwise open DNS resolver can be effectively 'closed' [ISOC]. Another effective measure
- 1187 is for the authoritative DNS resolvers to monitor the rate of queries per source address and apply
- 1188 Response Rate Limiting (RRL). The RRL dampens the rate at which authoritative servers
- 1189 respond to high volumes of malicious queries [Redbarn] [ISC1].

- 1190 Table 1 below lists application-layer protocols and their port numbers. The UDP-based
- applications have been identified as vulnerable to reflection/amplification attacks.
- 1192

Table 1: Common	Applications and their	TCP/UDP	Port Numbers.
-----------------	------------------------	---------	---------------

Application Protocol	Bandwidth Amplification Factor	Port #	Port Assignment Status			
Domain Name System (DNS)	28 to 54	53, 853, 953	Official			
Network Time Protocol (NTP)	557	123	Official			
Simple Network Management Protocol (SNMP), SNMPv2	6	161	Official			
NetBIOS Name/Datagram/Session	4	137/138/139	Official			
Simple Service Discovery Protocol (SSDP); discovery of UPnP devices	31	1900	Official			
Character Generation Protocol (CharGEN)	359	19	Official			
Quote of the Day (QOTD)	140	17	Official			
BitTorrent	4	6881-6887; 6889-90; 6891- 6900; etc. various ranges	Unofficial			
Kad network (Kademlia P2P overlay protocol)	16	6419, 6429	Unofficial			
Quake Network Protocol	64	15, 28, 27500- 27900, 27901- 27910, 27950, 27952, 27960- 27969, etc.	Unofficial			
Streaming Protocols (e.g., QuickTime)		6970-9999, etc.	Unofficial			
Real-Time Streaming Protocol (RTSP); ms-streaming		554, 1755	Official			
Routing Information Protocol (RIP, RIPng)	131	520, 521	Official			
Multicast DNS (mDNS)	2 to 10	5353	Official			
Portmap/RPC	7 to 28	369	Official			

1193 In Table 1, the amplification factor listed for each protocol is the traffic volume multiplier that

1194 can be achieved by exploiting the reflection/amplification effect of that protocol run on UDP

1195 [TA14-017A]. Port assignment status is called 'Official' if officially assigned by IANA;

1196 otherwise it is 'Unofficial' [TCP-UDP-port]. The following set of security recommendations

- 1197 pertain to vulnerable applications such as those listed in Table 1.
- 1198Security Recommendation 48: Port 0 is a reserved port. Hence, deny TCP/UDP traffic1199on Port 0 on all interfaces.
- Security Recommendation 49: In BGP routers, allow peers to connect to only port
 179. The standard port for receiving BGP session OPEN messages is port 179, so attempts
 by BGP peers to reach other ports are likely to indicate faulty configuration or potential
 malicious activity.
- Security Recommendation 50: Disable applications or services that are unwanted in
 the network or system in consideration.
- Security Recommendation 51: Deny traffic for any TCP/UDP ports for which the
 network or system in consideration does not support the corresponding applications. In
 some cases, an application or service is supported on some interfaces (e.g., customer or
 internal facing interfaces) but not others (e.g., Internet facing interfaces). In such cases, the
 traffic with port ID specific to the application in consideration should be denied on
 interfaces on which the application is not supported.
- Security Recommendation 52: This recommendation is aimed at detection of traffic 1212 1213 overload and mitigating actions. The relevant mitigation techniques are (a) Response Rate 1214 Limiting (RRL) [ISC1] [Redbarn], and (b) Source-based Remote Triggered Black Hole (S/RTBH) filtering enabled with Flowspec [RFC5575] (see Section 5.5 for details). These 1215 1216 techniques are applicable to open services/protocols such as those listed in Table 1 which 1217 are themselves vulnerable to DoS/DDoS attacks or may be exploited for reflection/amplification. The recommendation consists of multiple steps as follow [TA14-1218 1219 017A]:
- 1220 • Monitor the rate of queries/requests per source address and detect if abnormally 1221 high volume of responses is headed to the same destination (i.e., same IP address). Apply the Response Rate Limiting (RRL) technique to mitigate the attack. 1222 1223 • Using BGP messaging (Flowspec), create a Remotely Triggered Black Hole 1224 (RTBH) filter. This can be coordinated with the upstream ISP. 1225 Maintain emergency contact information for the upstream provider to coordinate • 1226 response to the attack. 1227 An upstream ISP should actively coordinate response with downstream customers. ٠ 1228 Note: The RRL technique is commonly used in DNS and dampens the rate at which authoritative servers respond to high volumes of malicious queries. It can also be applied 1229 1230 in other applications (shown in Table 1) for dampening the response rate. 1231 The security recommendations that follow below are specific to NTP and DNS.
- 1232Security Recommendation 53: Deny NTP monlist request traffic (by disabling the1233monlist command) altogether, or at least enforce that the requests come from valid1234(permitted) source addresses.

- 1235 Security Recommendation 54: To limit exploitation, a DNS recursive resolver should 1236 limit the scope of clients from which it accepts requests. The clients normally come from 1237 within the same network where the DNS resolver resides. Hence, the DNS resolver can 1238 maintain access lists in the configuration so that the recursive resolver is not open to the 1239 entire network (or Internet) [ISOC] [TA14-017A].
- 1240 Security Recommendation 55: Deny all traffic with a source or destination address 1241 that matches a DNS anycast address. An exception should be made for internal recursive 1242 resolvers that are used to do outbound recursion.
- 1243 Security Recommendation 56: Block all inbound/outbound Port 53 UDP messages at 1244 DNS recursive resolvers except those from designated recursive resolvers.

BGP Flow Specification (Flowspec) 1245 5.5

- 1246 Destination-based Remote Triggered Black-Holing (D/RTBH) [RFC3882] [RFC7999] and
- Source-based Remote Triggered Black-Holing (S/RTBH) [RFC5635] (the latter in conjunction 1247
- 1248 with uRPF) have been used as techniques for DDoS mitigation. However, with the
- 1249 standardization and vendor support of Flowspec [RFC5575] [RFC7674] [Hares] [Ryburn]
- 1250 [Cisco4] [Juniper4], the basic principles of D/RTBH and S/RTBH are significantly enhanced and
- 1251 can be operationally deployed in a fine-grained, dynamic and efficient way. In D/RTBH, a BGP
- message is sent to trigger the Provider Edge (PE) routers (within the victim's AS or its transit 1252
- 1253 provider AS) to block ingress traffic to a specified IP address where the affected server resides. In S/RTBH, a BGP message is sent to trigger the Provider Edge (PE) routers (within the victim's 1254
- 1255 AS or its transit provider AS) to block ingress traffic from a specified IP address that is the
- source address employed by the attacker. In S/RTBH, loose uRPF is used to filter traffic from the 1256
- 1257 specified source address. In the BGP Flowspec mechanism, a flow specification NLRI is defined
- 1258 and it is used to convey information about traffic filtering rules for traffic that should be
- 1259 discarded [RFC5575]. This mechanism allows an upstream AS to perform inbound filtering in
- 1260 their edge routers of traffic that a given downstream AS wishes to drop. Table 2 shows the 1261
- information that can be included in BGP Flowspec [RFC5575].

1262

Table 2: BGP Flowspec types.

Type 1	Destination Prefix
Type 2	Source Prefix
Туре 3	IP Protocol
Type 4	Source or Destination Port
Type 5	Destination Port
Type 6	Source Port
Type 7	ICMP Type
Type 8	ICMP Code
Type 9	TCP flags
Type 10	Packet length
Type 11	DSCP
Type 12	Fragment Encoding

- 1264 Table 3 shows the extended community values that are defined to specify various types of
- actions [RFC5575] requested at the upstream AS.

Table 3: Extended community values defined in Flowspec to specify various types of actions.

type	extended community	encoding
0x8006	traffic-rate (set to 0 to drop all traffic)	2-byte as#, 4-byte float
0x8007	traffic-action (sampling)	bitmask
0x8008	redirect to VRF (route target)	6-byte Route Target
0x8009	traffic-marking	DSCP value

1267 In the table above VRF stands for Virtual Routing and Forwarding, and DSCP stands for

1268 Differentiated Services Code Point (DSCP). As evident from the discussion above and Table 2

- 1269 and Table 3, Flowspec facilitates flexible specification and communication (by downstream AS)
- 1270 of rules and actions for DDoS mitigation to be executed at edge routers in the upstream AS.
- Security Recommendation 57: Edge routers should be equipped to perform
 Destination-based Remote Triggered Black Hole (D/RTBH) filtering and Source-based
 Remote Triggered Black Hole (S/RTBH) filtering.
- Security Recommendation 58: Edge routers should be equipped to make use of BGP
 flow specification (Flowspec) to facilitate DoS/DDoS mitigation (in coordination between
 upstream and downstream autonomous systems).
- 1277 **Security Recommendation 59:** Edge routers – in an AS providing RTBH filtering – 1278 should have ingress policy towards RTBH customers to accept routes more specific than 1279 /24 in IPv4 and more specific than /64 in IPv6. Also, the edge routers should accept such 1280 more specific route (in case of D/RTBH) only if it is subsumed by a less specific route that 1281 the customer is authorized to announce as standard policy (e.g., has a ROA for the less 1282 specific route). Further, the edge routers should not drop RTBH-related more-specific route 1283 advertisements from customers even though BGP origin validation may mark them as 1284 Invalid.
- 1285Security Recommendation 60: A customer AS should make sure that the routes1286announced for RTBH filtering have NO_EXPORT, NO_ADVERTISE, or similar1287communities.
- Security Recommendation 61: An ISP providing RTBH filtering service to customers must have egress policy that denies routes that have community tagging meant for triggering RTBH filtering. This is an additional safeguard in case NO_EXPORT, NO ADVERTISE, or similar tagging fails to work for some reason.
- 1292Security Recommendation 62: An ISP providing RTBH filtering service to customers1293must have egress policy that denies prefixes that are longer than expected. This provides1294added safety in case NO_EXPORT, NO_ADVERTISE, or similar tagging fails to work for1295some reason.

1296 Appendix A— Consolidated List of the Security Recommendations

1297 Table 4 provides a consolidated list of the Security Recommendations (copied from the various 1298 sections throughout the document). If "Enterprise" column is checked, it means that the security 1299 recommendation should be considered for implementation in enterprise and hosted-service 1300 provider autonomous systems (ASes) - in some cases action(s) to be performed by the AS 1301 operator and in other cases feature(s) that should be available in their BGP router(s). Similar 1302 statement applies for ISPs when the ISP column is checked. The "Open Servers" column pertains 1303 to providers of open Internet services such as DNS, DNSSEC, NTP, etc. When an enterprise 1304 outsources services, then the feature/service corresponding to a security recommendation that 1305 applies to them would in turn apply to their hosting service provider. An enterprise should 1306 always consider (in their service contract) whether their transit ISP meets security 1307 recommendations that are checked in the ISP column. There is no column in Table 4 1308 corresponding to Internet Exchange Point (IXP), but the BGP (control plane) security 1309 recommendations for ISPs also apply to opaque IXPs (i.e., IXPs that insert their ASN in the AS

1310 path and operate BGP).

Table 4: Consolidated List of the Security Recommendations

	Ар	Applicable to	
Security Recommendation	Enter- prise	ISP	Open Servers
BGP Origin Validation:			
Security Recommendation 1: All Internet Number Resources (e.g., address blocks and ASNs) should be properly registered in the appropriate RIR registration database and all appropriate point-of-contact (POC) information should be up to date. The granularity of such registrations should reflect all sub-allocations to entities (e.g., enterprises, branch-offices, etc.) that operate their own network services (e.g., Internet access, DNS, etc.).	X	X	
Security Recommendation 2: Route objects corresponding to the BGP routes originated from an Autonomous System should be registered and actively maintained in an appropriate RIR's IRR. Enterprises should ensure that appropriate IRR information exists for all IP address space used directly and by their outsourced IT systems and services.	Х	x	
Security Recommendation 3: Internet number resource holders with IPv4/IPv6 prefixes and/or AS numbers (ASNs)	X	X	

¹³¹¹

should obtain RPKI certificate(s) for their resources.			
Security Recommendation 4: Transit providers should provide a service where they create, publish, and manage subordinate resource certificates for address space and/or ASNs suballocated to their customers.		X	
Security Recommendation 5: Resource holders should register ROA(s) in the global RPKI for all prefixes that are announced or intended to be announced in the public Internet.	Х	X	
Security Recommendation 6: Transit providers should provide a service where they create, publish, and maintain ROAs for their customers' prefixes.		X	
Note: The security recommendation immediately above can be implemented in the hosted or the delegated model based on service agreements with customers.			
Security Recommendation 7: If a prefix that is announced (or intended to be announced) is multihomed and originated from multiple ASes, then one ROA per originating AS should be registered for the prefix (possibly in combination with other prefixes which are also originated from the same AS).	Х	x	
Security Recommendation 8: When an ISP or enterprise owns multiple prefixes that include less specific and more specific prefixes, they should ensure that the more specific prefixes have ROAs before creating ROAs for the subsuming less specific prefixes.	Х	X	
Security Recommendation 9: An ISP should await until more specific prefixes that are announced from within their customer cone have ROAs prior to the creation of its own ROAs for subsuming less specific prefix(es).		X	
Security Recommendation 10: An ISP or enterprise should create an AS0 ROA for any prefix that is currently not announced to the public Internet.	Х	X	
Security Recommendation 11: A BGP router should not send updates with AS_SET or AS_CONFED_SET in them (in compliance with BCP 172 [RFC6472]).	Х	х	

Security Recommendation 12: ISPs and enterprises who operate BGP routers should also operate one or more RPKI validating caches.		X	
Security Recommendation 13: A BGP router should maintain an up-to-date white list consisting of {prefix, maxlength, origin ASN} that is derived from valid ROAs in the global RPKI.	Х	X	
Security Recommendation 14: In partial/incremental deployment state of the RPKI, the permissible {prefix, origin ASN} pairs should be generated by taking the union of such data obtained from ROAs, IRR data, and customer contracts.	Х	Х	
Security Recommendation 15: BGP-OV results should be incorporated into local policy decisions to select BGP best paths.	Х	X	
Note (concerning the security recommendation immediately above): Exactly how BGP-OV results are used in path selection is strictly a local policy decision for each network operator. Typical policy choices include:			
 Tag-Only – BGP-OV results are only used to tag/log data about BGP routes for diagnostic purposes. Prefer-Valid – Use local preference settings to give priority to Valid routes. Note this is only a tie breaking preference among routes with the exact same prefix. Drop-Invalid – Use local policy to ignore Invalid routes in the BGP decision process. 			
Security Recommendation 16: The maxlength in the ROA should preferably not exceed the length of the most specific prefix (subsumed under the prefix in consideration) that is originated (or intended to be originated) from the AS listed in the ROA.	Х	x	
Security Recommendation 17: If a prefix and select more- specific prefixes subsumed under it are announced (or intended to be announced), then instead of specifying a maxlength, the prefix and the more specific prefixes should be listed explicitly in multiple ROAs (i.e., one ROA per prefix or more specific prefix) [maxlength].	Х	X	
Note: In general, the use of maxlength should be avoided unless all or nearly all more-specific prefixes up to a maxlength are announced (or intended to be announced) [maxlength].			

Prefix (Route) Filtering:			
		ļ	
Security Recommendation 18: IPv6 routes should be filtered to permit only allocated IPv6 prefixes. Network operators should update IPv6 prefix filters regularly to include any newly allocated prefixes.	Х	Х	
Note: If prefix resource owners regularly register AS 0 ROAs (see Section 4.3) for allocated (but possibly currently unused) prefixes, then those ROAs could be a complementary source for update of prefix filters mentioned above.			
Security Recommendation 19: Prefixes that are marked "False" in column "Global" [IANA-v4-sp] [IANA-v6-sp] are forbidden from routing in the global Internet and should be rejected if received from an external BGP (eBGP) peer.	Х	x	
Security Recommendation 20: For single-homed prefixes (subnets) that are owned and originated by an AS, any routes for those prefixes received at that AS from eBGP peers should be rejected.	Х	X	
Security Recommendation 21: It is recommended that an eBGP router should set specificity limit for each eBGP peer and reject prefixes that exceed the specificity limit on a per peer basis.	Х	X	
Note: The specificity limit may be the same for all peers, e.g., /24 for IPv4 and /48 for IPv6.			
Security Recommendation 22: The default route (0.0.0.0/0 in IPv4 and ::/0 in IPv6) should be rejected except when a special peering agreement exists that permits accepting it.	Х	X	
Security Recommendation 23: An Internet Exchange Provider (IXP) should announce – from its Route Server to all its member ASes – its LAN prefix or its entire prefix which would be the same as or less specific than its LAN prefix. Each IXP member AS in turn should accept this prefix and reject any more specifics prefixes (of the IXP announced prefix) from any of its eBGP peers.	Х	x	
Security Recommendation 24: Inbound prefix filtering (facing Lateral Peer): The following prefix filters should be applied in the inbound direction:	Х	X	
Unallocated Prefixes			
Special-Purpose Prefixes			

	1		·
• Prefixes that the AS Originates			
 Prefixes that Exceed a Specificity Limit 			
Default Route			
IXP LAN Prefixes			
Security Recommendation 25: Outbound prefix filtering	V	v	
(facing Lateral Peer): The appropriate outbound prefixes are	X	X	
those that are originated by the AS in question and those			
originated by its downstream ASes (i.e., the ASes in its customer			
cone). The following prefix filters should be applied in the			
outbound direction:			
Unallocated Prefixes			
 Special-Purpose Prefixes 			
1 1			
 Prefixes that Exceed a Specificity Limit Default Route			
IXP LAN Prefixes			
Security Recommendation 26: Inbound prefix filtering			
(facing Transit Provider): In general, when the full routing table	X	Х	
is required from the transit provider, the following prefix filters			
should be applied in the inbound direction:			
11			
Unallocated Prefixes			
Special-Purpose Prefixes			
• Prefixes that the AS Originates			
• Prefixes that Exceed a Specificity Limit			
• IXP LAN Prefixes			
Security Recommendation 27: Inbound prefix filtering	37	N	
(facing Transit Provider): If the border router is configured for	X	X	
only the default route, then only the default route should be			
accepted from the transit provider and nothing else.			
Security Recommendation 28: Outbound prefix filtering			
(facing Transit Provider): The same outbound prefix filters	X	Х	
should be applied as those for a lateral peer (see Section 4.5.1).			
should be upplied us those for a fateral peer (see Section 1.3.1).			
Note: In conjunction with the above Outbound prefix filtering			
security recommendation, some policy rules may also be applied if			
a transit provider is not contracted (or not chosen) to provide			
transit for some subset of outbound prefixes.			
		ļ	
Security Recommendation 29: Inbound prefix filtering		x	
(facing Customer, Scenario 1): Only the prefixes that are known			
to be originated from the customer and its customer cone should			

	Х	
	х	
Х		
Х		
	Х	
		x x

Route Leak Mitigation:			
Security Recommendation 35: An AS operator should have ingress policy to tag routes internally (locally within the AS) to communicate from ingress to egress regarding the type of peer (customer, lateral peer, or transit provider) from which the route was received.	x	x	
Security Recommendation 36: An AS operator should have egress policy to utilize the tagged information (in the preceding Security Recommendation) to prevent route leaks when routes are forwarded on the egress.	X	X	
DDoS Mitigation (Anti-spoofing):			
Security Recommendation 37: BGP routers that have directly-connected customers with allocated address space, CMTS (or equivalent) in broadband access networks, and PDN gateways (or equivalent) in mobile networks should implement SAV using ACLs (Section 5.1.1). The BGP routers in this context may alternatively use the strict uRPF method (Section 5.1.2).		X	
Security Recommendation 38: An enterprise border router that is multi-homed should always announce all its prefixes to each of its upstream transit providers (albeit with appropriate AS prepending for traffic engineering). It should avoid selectively announcing some prefixes to one transit ISP and other prefixes to another transit ISP.	Х		
Security Recommendation 39: This is the exception case when the enterprise border router does not adhere to the above recommendation and instead selectively announces some prefixes to one upstream transit ISP and other prefixes to another upstream transit ISP. In this case, it should ensure (by appropriate internal routing) that the source addresses in the data packets towards each upstream transit ISP belong in the prefix or prefixes announced to that ISP.	Х		
Security Recommendation 40: On the ingress side (i.e., for data packets received from the transit ISP), enterprise border routers should deploy loose uRPF (Section 5.1.4) and/or ACLs (Section 5.1.1) to drop packets when the source address is spoofed (i.e., belongs to obviously disallowed prefix blocks, RFC 1918 prefixes, or enterprise's own prefixes).	Х		

 Security Recommendation 41: On customer facing interfaces, ISPs should do SAV on ingress packets by deploying the feasible-path uRPF (see Section 5.1.3). They should avoid using strict or loose uRPF as they are not very effective, especially in the case of multi-homed customers. Security Recommendation 42: For feasible-path uRPF to work appropriately, the ISPs (at least those near the Internet edge) should propagate all their customer routes to their upstream transit 	x x	
ISPs (albeit with appropriate AS prepending for traffic engineering).		
routes over other (i.e. transit provider or lateral peer) routes. (This is also normal ISP policy in most cases.) Note: Following the above recommendation facilitates a basis for adhering to the preceding recommendation as well. (The above	X	
recommendation is also one of the stability conditions on BGP policy for ensuring stable convergence of routing information [Gao-Rexford].) Security Recommendation 44: On interfaces with lateral (i.e.,		
non-transit) peers, ISPs should do SAV on ingress packets by deploying the feasible-path uRPF (see Sections 5.1.3). They should avoid using strict or loose uRPF as they are not very effective for SAV on the lateral peer interfaces.	X	
Security Recommendation 45: On interfaces with transit providers, ISPs should do SAV on ingress packets by deploying loose uRPF (Section 5.1.4) and/or ACLs (Section 5.1.1) to drop packets when the source address is spoofed (i.e., belongs to obviously disallowed prefix blocks, RFC1918 prefixes, ISP's own prefixes).	X	
Security Recommendation 46: On the egress side towards customers, lateral (i.e., non-transit) peers and transit providers, the ISP's border routers should deploy ACLs (Section 5.1.1) to drop packets when the source address is spoofed (i.e., belongs to obviously disallowed prefix blocks, RFC 1918 prefixes, ISP's internal-use only prefixes).	X	
Security Recommendation 47: The ROA data (available from RPKI registries) should be used to construct and/or augment ACLs/RPF lists for customer interfaces.	X	

Traffic Filtering (Monitoring UDP/TCP Ports with Vulnerable Applications):			
Security Recommendation 48: Port 0 is a reserved port. Hence, deny TCP/UDP traffic on Port 0 on all interfaces.	Х	X	Х
Security Recommendation 49: In BGP routers, allow peers to connect to only port 179. The standard port for receiving BGP session OPEN messages is port 179, so attempts by BGP peers to reach other ports are likely to indicate faulty configuration or potential malicious activity.	Х	X	
Security Recommendation 50: Disable applications or services that are unwanted in the network or system in consideration.			Х
Security Recommendation 51: Deny traffic for any TCP/UDP ports for which the network or system in consideration does not support the corresponding applications. In some cases, an application or service is supported on some interfaces (e.g., customer or internal facing interfaces) but not others (e.g., Internet facing interfaces). In such cases, the traffic with port ID specific to the application in consideration should be denied on interfaces on which the application is not supported.			Х
 Security Recommendation 52: This recommendation is aimed at detection of traffic overload and mitigating actions. The relevant mitigation techniques are (a) Response Rate Limiting (RRL) [ISC1] [Redbarn], and (b) Source-based Remote Triggered Black Hole (S/RTBH) filtering enabled with Flowspec [RFC5575] (see Section 5.5 for details). These techniques are applicable to open services/protocols such as those listed in Table 1 which are themselves vulnerable to DoS/DDoS attacks or may be exploited for reflection/amplification. The recommendation consists of multiple steps as follow [TA14-017A]: Monitor the rate of queries/requests per source address and detect if abnormally high volume of responses is headed to the same destination (i.e., same IP address). Apply the Response Rate Limiting (RRL) technique to mitigate the attack. Using BGP messaging (Flowspec), create a Remotely Triggered Black Hole (RTBH) filter. This can be coordinated with the upstream ISP. 			X

• Maintain emergency contact information for the upstream provider to coordinate response to the attack.			
An upstream ISP should actively coordinate response with downstream customers.			
Security Recommendation 53: Deny NTP monlist request traffic (by disabling the monlist command) altogether, or at least enforce that the requests come from valid (permitted) source addresses.			Х
Security Recommendation 54: To limit exploitation, a DNS recursive resolver should limit the scope of clients from which it accepts requests. The clients normally come from within the same network where the DNS resolver resides. Hence, the DNS resolver can maintain access lists in the configuration so that the recursive resolver is not open to the entire network (or Internet) [ISOC] [TA14-017A].			Х
Security Recommendation 55: Deny all traffic with a source or destination address that matches a DNS anycast address. An exception should be made for internal recursive resolvers that are used to do outbound recursion.			Х
Security Recommendation 56: Block all inbound/outbound Port 53 UDP messages at DNS recursive resolvers except those from designated recursive resolvers.			Х
DDoS Mitigation (Remote Triggered Black Hole filtering, Flow specification):			
Security Recommendation 57: Edge routers should be equipped to perform Destination-based Remote Triggered Black Hole (D/RTBH) filtering and Source-based Remote Triggered Black Hole (S/RTBH) filtering.	Х	X	
Security Recommendation 58: Edge routers should be equipped to make use of BGP flow specification (Flowspec) to facilitate DoS/DDoS mitigation (in coordination between upstream and downstream autonomous systems).	X	X	
Security Recommendation 59: Edge routers – in an AS providing RTBH filtering – should have ingress policy towards RTBH customers to accept routes more specific than /24 in IPv4 and more specific than /64 in IPv6. Also, the edge routers should accept such more specific route (in case of D/RTBH) only if it is subsumed by a less specific route that the customer is authorized		X	

to announce as standard policy (e.g., has a ROA for the less specific route). Further, the edge routers should not drop RTBH- related more-specific route advertisements from customers even though BGP origin validation may mark them as Invalid.			
Security Recommendation 60: A customer AS should make sure that the routes announced for RTBH filtering have NO_EXPORT, NO_ADVERTISE, or similar communities.	Х	X	
Security Recommendation 61: An ISP providing RTBH filtering service to customers must have egress policy that denies routes that have community tagging meant for triggering RTBH filtering. This is an additional safeguard in case NO_EXPORT, NO_ADVERTISE, or similar tagging fails to work for some reason.		X	
Security Recommendation 62: An ISP providing RTBH filtering service to customers must have egress policy that denies prefixes that are longer than expected. This provides added safety in case NO_EXPORT, NO_ADVERTISE, or similar tagging fails to work for some reason.		Х	

1313 Appendix B— Acronyms

1314 Selected acronyms and abbreviations used in this paper are defined below.

ACL	Access Control List
AfriNIC	African Network Information Center
APNIC	Asia-Pacific Network Information Centre
ARIN	American Registry for Internet Numbers
AS	Autonomous System
BGP	Broder Gateway Protocol
BGP-OV	BGP Origin Validation
BGP-PV	BGP Path Validation
BGPsec	Broder Gateway Protocol with Security Extensions
DA	Destination Address
DSCP	Differentiated Services Code Point
DHS	Department of Homeland Security
DoS	Denial of Service
DDoS	Distributed Denial of Service
DNS	Domain Name System
DNSSEC	Domain Name System Security Extensions
eBGP	External BGP
EFP-uRPF	Enhanced Feasible Path Unicast Reverse Path Forwarding
FIB	Forwarding Information Base
FISMA	Federal Information Security Modernization Act
Flowspec	Flow Specification
FP-uRPF	Feasible Path Unicast Reverse Path Forwarding
IANA	Internet Assigned Numbers Authority

iBGP	Internal BGP
ICMP	Internet Control Message Protocol
IETF	Internet Engineering Task Force
IGP	Internal Gateway Protocol
IRR	Internet Routing Registry
ISP	Internet Service Provider
IXP	Internet Exchange Point
LACNIC	Latin America and Caribbean Network Information Centre
maxlength	Maximum allowed length of a prefix specified in RAO
NCCoE	National Cybersecurity Center of Excellence
NIST SP	NIST Special Publication
NLRI	Network Layer Routing Information (synonymous with prefix)
NTP	Network Time Protocol
RFC	Request for Comments (IETF standards document)
RFD	Route Flap Damping
RIB	Routing Information Base
RIPE	Réseaux IP Européens
RIR	Regional Internet Registry
ROA	Route Origin Authorization
RPKI	Resource Public Key Infrastructure
RPKI-to-router protocol	RPKI cache to router protocol
RLP	Route Leak Protection
RRDP	RPKI Repository Delta Protocol
RTBH	Remotely Triggered Black-Holing

D/RTBH	Destination-based Remotely Triggered Black-Holing
S/RTBH	Source-based Remotely Triggered Black-Holing
SA	Source Address
SAV	Source Address Validation
SIDR	Secure Inter-Domain Routing
SIDR WG	Secure Inter-Domain Routing Working Group (in the IETF)
SSDP	Simple Service Discovery Protocol
ТСР	Transmission Control Protocol
TLS	Transport Layer Security
UDP	User Datagram Protocol
UPnP	Universal Plug and Play
uRPF	Unicast Reverse Path Forwarding

1316 Appendix C— References

[Acunetix]	"Prevention of NTP Reflection DDoS attacks based on CVE-2013-5211," Acunetix blog, September 2014. <u>http://www.acunetix.com/blog/articles/ntp-reflection-ddos-attacks/</u>
[Adalier1]	M. Adalier, K. Sriram, O. Borchert, K. Lee, and D. Montgomery, "High Performance BGP Security: Algorithms and Architectures", North American Network Operators Group (NANOG69), Washington D.C, February 2017. <u>https://nanog.org/meetings/abstract?id=3043</u>
[Adalier2]	M. Adalier, "Efficient and Secure Elliptic Curve Cryptography Implementation of Curve P-256," NIST Workshop on ECC Standards, June 2015. <u>http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session6- adalier-mehmet.pdf</u>
[APNIC1]	G. Michaelson, "MyAPNIC RPKI service now supports AS0 ROA creation," APNIC technical note online, November 2018. <u>https://blog.apnic.net/2018/11/09/myapnic-rpki-service-now-supports-as0-roa-creation/</u>
[Arbor]	"Worldwide Infrastructure Security Report," Vol. XI, Arbor Networks report (2016). <u>https://www.arbornetworks.com/images/documents/WISR2016_EN_Web.pdf</u>
[ARIN1]	"Using RPKI at ARIN to certify resources," ARIN online. https://www.arin.net/resources/rpki/using_rpki.html#hosted
[ARIN2]	M. Kosters, "Securing Core Internet Functions – Resource Certification, RPKI," Presentation by ARIN at NANOG on The Road (NOTR), September 2018. <u>http://www.cvent.com/events/notr-washington-dc/custom-17-</u> 2bd749ab3c1f46de9be85e47c942fd5d.aspx
[ARTEMIS]	Automatic and Real-Time dEtection and Mitigation (ARTEMIS) http://www.inspire.edu.gr/artemis/
[BCP38]	P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing," BCP 38 (RFC 2827), May 2000. <u>https://tools.ietf.org/html/bcp38</u>
[BCP84]	F. Baker and P. Savola, "Ingress Filtering for Multihomed Networks," BCP 84 (RFC 3704), March 2004, <u>https://tools.ietf.org/html/bcp84</u>
[BGPmon]	BGPmon: <u>https://bgpmon.net/</u>
[BGPStream]	BGPStream: https://bgpstream.caida.org/

[Bjarnason]	S. Bjarnason, "Withstanding the Infinite: DDoS Defense in the Terabit Era," Presentation at NANOG-74, October 2018. <u>https://pc.nanog.org/static/published/meetings/NANOG74/1789/20181001_Bjarnason_Withstanding_The_Infinite_v1.pdf</u>
[Botnet- Roadmap]	"A Road Map Toward Resilience Against Botnets," Joint US DoC/DHS report, November 2018. <u>https://www.commerce.gov/sites/default/files/2018-</u> <u>11/Botnet%20Road%20Map%20112918%20for%20posting_0.pdf</u>
[Cisco1]	"BGP—Origin AS Validation," <u>http://www.cisco.com/c/en/us/td/docs/ios-</u> xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-origin-as.pdf
[Cisco2]	"Understanding Unicast Reverse Path Forwarding," Cisco blog, http://www.cisco.com/c/en/us/about/security-center/unicast-reverse-path- forwarding.html
[Cisco3]	"Unicast reverse path forwarding enhancements for the internet service provider—internet service provider network edge," Cisco WP, <u>http://www.cisco.com/c/dam/en_us/about/security/intelligence/urpf.pdf</u>
[Cisco4]	"Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide, Release 5.2.x – Chapter: Implementing BGP Flowspec," <u>http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-</u> <u>2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_c</u> <u>hapter_011.html</u>
[Comcast]	"Comcast network management: Preventing Network Spoofing," March 2014, <u>http://networkmanagement.xfinity.com/index.php/faqs-on-preventing-network-spoofing</u>
[CVE-2013- 5211]	"Vulnerability summary for CVE-2013-5211," (for vulnerability related to monlist feature in NTP), National Vulnerability Database, September 27, 2016. <u>https://nvd.nist.gov/vuln/detail/CVE-2013-5211</u>
[CSRIC- WG5]	CSRIC Working Group 5 Final Report: Remediation of Server-Based DDoS Attacks. <u>https://transition.fcc.gov/pshs/advisory/csric4/CSRIC_IV_WG5_Remediation</u> of_Server-Based_DDoS_Attacks_Report_Final_(pdf)_V11.pdf
[CSRIC- WG6]	"Long-Term Core Internet Protocol Improvements," Working Group 6 presentation, September 2015. <u>https://transition.fcc.gov/pshs/advisory/csric4/CSRIC_IV_WG6_Presentation</u> _09242014.pdf

[DOCSIS]	"DOCSIS 3.0: MAC and upper layer protocols interface specification," Cable Labs publication. <u>h http://www.cablelabs.com/wp-</u> <u>content/uploads/specdocs/CM-SP-MULPIv3.0-I29-151210.pdf</u>
[EFP-uRPF]	K. Sriram, D. Montgomery, and J. Haas, "Enhanced Feasible-Path Unicast Reverse Path Filtering," IETF Internet Draft, April 2018. <u>https://datatracker.ietf.org/doc/draft-ietf-opsec-urpf-improvements/</u>
[FISMA2002]	Federal Information Security Management Act of 2002, Pub. L. 107-347 (Title III), 116 Stat. 2946. <u>http://www.gpo.gov/fdsys/pkg/PLAW-107publ347/pdf/PLAW-107publ347.pdf</u> .
[FISMA2014]	Federal Information Security Modernization Act of 2014, Pub. L. 113-283, 128 Stat. 3073. <u>http://www.gpo.gov/fdsys/pkg/PLAW-113publ283/pdf/PLAW-113publ283.pdf</u> .
[Gao- Rexford]	Freedman, M., "Interdomain Routing Policy", Princeton University COS 461 Lecture Notes; Slides 25-27, Spring 2011, <u>http://www.cs.princeton.edu/courses/archive/spr11/cos461/docs/lec17-bgp-policy.ppt</u>
[goBGP]	Use of Resource Public Key Infrastructure (RPKI) server to do Origin AS Validation in goBGP. <u>https://github.com/osrg/gobgp/blob/master/docs/sources/rpki.md</u>
[Hares]	S. Hares, C. Loibl, R. Raszuk, D. McPherson, and M. Bacher, "Dissemination of Flow Specification Rules," IETF I.D. draft-ietf-idr-rfc5575bis (work in progress), June 2018. <u>https://datatracker.ietf.org/doc/draft-ietf-idr-rfc5575bis/</u>
[HelpNet]	"DNS amplification attacks double in Q1 2018," Help Net Security blog, June 2018. <u>https://www.helpnetsecurity.com/2018/06/14/dns-amplification-attacks-q1-2018/</u>
[Huston2011]	G. Huston and R. Bush, "Securing BGP," The Internet Protocol Journal, Volume 14, No. 2, June 2011. <u>http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-52/142-bgp.html</u>
[Huston2012]	G. Huston, "Leaking Routes," Asia Pacific Network Information Centre (APNIC) Blog, March 2012, <u>http://labs.apnic.net/blabs/?p=139/</u>
[Huston2016]	G. Huston, "Taking a Closer Look at the Recent DDoS Attacks and What It Means for the DNS," CircleID Blog, October 2016. <u>http://www.circleid.com/posts/20161026_closer_look_at_recent_ddos_attacks</u> and what it means for dns/

[IANA-v4-r]	"IANA IPv4 Address Space Registry," IANA web page.
	http://www.iana.org/assignments/ipv4-address-space

[IANA-v6-r] "Internet Protocol Version 6 Address Space," IANA web page. http://www.iana.org/assignments/ipv6-address-space

[IANA-v4-"IANA IPv4 Special-Purpose Address Registry," IANA web page.sp]<u>https://www.iana.org/assignments/iana-ipv4-special-registry</u>

[IANA-v6-"IANA IPv6 Special-Purpose Address Registry," IANA web page.sp]http://www.iana.org/assignments/iana-ipv6-special-registry

[IETF-IETF Global Routing Operations (GROW) Working GroupGROW]https://datatracker.ietf.org/wg/grow/documents/

- [IETF-IDR] IETF Inter-Domain Routing (IDR) Working Group https://datatracker.ietf.org/wg/idr/documents/
- [IETF-IETF Operational Security Capabilities for IP Network InfrastructureOPSEC](OPSEC) Working Group https://datatracker.ietf.org/wg/opsec/documents/
- [IETF-SIDR] IETF Secure Inter-Domain Routing (SIDR) Working Group https://datatracker.ietf.org/wg/sidr/documents/

[IETF-IETF Secure Inter-Domain Routing Operations (SIDROPS) Working GroupSIDROPS]https://datatracker.ietf.org/wg/sidrops/documents/

- [ISC1] "A Quick Introduction to Response Rate Limiting," ISC Knowledge Base blog. <u>https://kb.isc.org/article/AA-01000/0/A-Quick-Introduction-to-</u> <u>Response-Rate-Limiting.html</u>
- [ISC2] "A Chargen-base DDoS? Chargen still a thing?" ISC blog, <u>https://isc.sans.edu/forums/diary/A+Chargenbased+DDoS+Chargen+is+still+</u> a+thing/15647
- [ISOC] P. Vixie (Ed.), "Addressing the challenge of IP spoofing," ISOC report, September 2015. <u>https://www.internetsociety.org/wp-</u> <u>content/uploads/2017/08/ISOC-AntiSpoofing-20150909-en-2.pdf</u>
- [ISTR-2015] Internet Security Threat Report 2015, Volume 20, Symantec Corporation, Mountain View, CA, April 2015. <u>https://www.symantec.com/content/en/us/enterprise/other_resources/2134793</u> <u>3_GA_RPT-internet-security-threat-report-volume-20-2015.pdf</u>
- [ISTR-2016] Internet Security Threat Report 2016, Volume 21, Symantec Corporation, Mountain View, CA, April 2016. https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-

en.pdf

[ISTR-2017]	<i>Internet Security Threat Report 2017, Volume 22</i> , Symantec Corporation, Mountain View, CA, April 2017.
	https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017- en.pdf

- [Juniper1] "Example: Configuring Origin Validation for BGP," Juniper blog, <u>http://www.juniper.net/techpubs/en_US/junos12.2/topics/topic-map/bgp-origin-as-validation.html</u>
- [Juniper2] "Configuring Unicast RPF," Juniper blog, <u>https://www.juniper.net/documentation/en_US/junos14.2/topics/usage-guidelines/interfaces-configuring-unicast-rpf.html</u>
- [Juniper3] "Example: Configuring Unicast Reverse-Path-Forwarding Check," Juniper blog, <u>http://www.juniper.net/documentation/en_US/junos15.1/topics/topic-</u> map/unicast-rpf.html
- [Juniper4] "Example: Enabling BGP to Carry Flow-Specification Routes," Juniper TechLibrary. <u>https://www.juniper.net/documentation/en_US/junos12.3/topics/example/routing-bgp-flow-specification-routes.html</u>
- [Kaeo] M. Kaeo, "Routing Security, DDoS and Route Hijacks," NANOG on The Road (NOTR), September 2018. <u>http://www.cvent.com/events/notr-</u> washington-dc/custom-17-2bd749ab3c1f46de9be85e47c942fd5d.aspx
- [Kapela-Pilosov] A. Pilosov, A. and T. Kapela, "Stealing the Internet: An Internet-Scale Man in the Middle Attack", 16th Defcon Conference, August 2008, <u>https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-</u> pilosov-kapela.pdf.
- [Levy] M. Levy, "RPKI The required cryptographic upgrade to BGP routing," Cloudflare blog, September 2018. <u>https://blog.cloudflare.com/rpki/</u>
- [MANRS] "Mutually Agreed Norms for Routing Security (MANRS) Implementation Guide," Published by the Internet Society (ISOC), retrieved October 2018. https://www.manrs.org/isps/guide/
- [maxlength] Y. Gilad, S. Goldberg, K. Sriram, J. Snijders, and B. Maddison, "The use of maxlength in the RPKI," IETF Internet Draft, April 2018. https://tools.ietf.org/html/draft-ietf-sidrops-rpkimaxlen-00

[Merit- "Merit RADb" (Merit Network Inc.) <u>http://www.radb.net</u>.

RADb]

[Mirai1]	"Mirai: what you need to know about the botnet behind recent major DDoS attacks," Symantec Security Response, October 27, 2016. <u>https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks</u>
[Mirai2]	"Dyn Analysis Summary of Friday October 21 Attack," Dyn Company News, October 26, 2016. <u>https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/</u>
[Murphy]	S. Murphy, "RPKI Tutorial: Routing Security and RPKI", NANOG on the Road (NORT), St. Louis, MO, November, 2015 <u>https://www.nanog.org/sites/default/files/04-Murphy-StLouis.pdf</u>
[NABCOP]	"DDoS-DoS-attack-BCOP," North American BCOP, http://nabcop.org/index.php/DDoS-DoS-attack-BCOP
[Naik]	A. Naik, "Internet Vulnerability Takes Down Google," ThousandEyes report, November 2018. <u>https://blog.thousandeyes.com/internet-vulnerability-takes-down-google/</u>
[NANOG]	"Practical BGP Origin Validation using RPKI: Vendor Support, Signing and Validation Services, and Operational Experience," NANOG Track, NANOG 67, Chicago, IL, June 2016. https://www.nanog.org/meetings/abstract?id=2846
[NANOG- list]	"Intra-AS messaging for route leak prevention," NANOG Email List - Discussion Thread, June 2016. <u>http://mailman.nanog.org/pipermail/nanog/2016-June/thread.html#86348</u>
[NCCoE- sidr]	W. Haag, D. Montgomery, W.C. Barker, A. Tan, "Protecting the Integrity of Internet Routing: Border Gateway Protocol (BGP) Route Origin Validation, Volume B," NIST Special Publication (SP) 1800-14B, August 2018. <u>https://www.nccoe.nist.gov/sites/default/files/library/sp1800/sidr-piir-nist-sp1800-14b-draft.pdf</u>
[NIST2018]	U.S. Department of Commerce, U.S. Department of Homeland Security, "A Report to the President on Enhancing the Resilience of the Internet and Communications Ecosystem Against Botnets and Other Automated, Distributed Threats," May 22, 2018. <u>https://csrc.nist.gov/publications/detail/white-paper/2018/05/30/enhancing- resilience-against-botnetsreport-to-the-president/final</u>
[NIST-CSF]	Cybersecurity Framework, National Institute of Standards and Technology [Web site], <u>http://www.nist.gov/cyberframework/</u>
[NIST- RIDR]	"Robust Inter-Domain Routing," NIST RIDR project. https://www.nist.gov/programs-projects/robust-inter-domain-routing

- [NIST-SRx] BGP Secure Routing Extension (BGP-SRx): Open source Origin Validation and BGPsec Path Validation implementations in Quagga. <u>https://wwwx.antd.nist.gov/bgpsrx/</u>
- [NIST-RPKI] "RPKI Deployment Monitor," NIST's online monitor with Global and Regional views. <u>https://rpki-monitor.antd.nist.gov/</u>
- [NSA-BGP] "A guide to Border Gateway Protocol (BGP) Best Practices," NSA Technical Report, September 2018. <u>https://apps.nsa.gov/iaarchive/library/reports/a-</u> guide-to-border-gateway-protocol-bgp-best-practices.cfm
- [Patel] K. Patel, "Cisco's Origin Validation Implementation," NANOG 67, June 2016. <u>https://www.nanog.org/sites/default/files/Patel.pdf</u>
- [Parsons1] "Secure Your Routing Infrastructure," Parsons blog. http://www.securerouting.net/
- [Parsons2] Open source Origin Validation and BGPsec Path Validation implementations in BIRD, Parsons blog. <u>http://www.securerouting.net/tools/bird/</u>
- [PEO-13800] U.S. Presidential Executive Order 13800: Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure, May 2017. <u>https://www.whitehouse.gov/the-press-office/2017/05/11/presidential-</u> <u>executive-order-strengthening-cybersecurity-federal</u>
- [Quilt] "The Quilt security cookbook," published by the Quilt community, https://www.nitrd.gov/nitrdgroups/images/d/db/Quilt-Network-Security-Cookbook-v7.pdf
- [Redbarn] "Response Rate Limiting in the Domain Name System (DNS RRL)," Redbarn blog. <u>http://www.redbarn.org/dns/ratelimits</u>
- [RFC3882] D. Turk, "Configuring BGP to Block Denial-of-Service Attacks," IETF RFC 3882, September 2004. <u>https://tools.ietf.org/rfc/rfc3882.txt</u>
- [RFC4012] L. Blunk, J. Damas, F. Parent, and A. Robachevsky, "Routing Policy Specification Language next generation (RPSLng)," IETF RFC 4012, March 2005. <u>https://tools.ietf.org/html/rfc4012</u>
- [RFC4271] Y. Rekhter, T. Li, and S. Hares, "A Border Gateway Protocol 4 (BGP-4)," IETF RFC 4271, January 2006.
- [RFC5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, "Internet X.509 Public Key Infrastructure Certification and Certificate Revocation List (CRL) Profile," IETF RFC 5280, May 2008. <u>http://www.ietf.org/rfc/rfc5280.txt</u>.

- [RFC5575] P. Marques et al., "Dissemination of Flow Specification Rules," IETF RFC 5575, August 2009. <u>https://tools.ietf.org/html/rfc5575</u>
- [RFC5635] W. Kumari and D. McPherson, "Remote Triggered Black Hole Filtering with Unicast Reverse Path Forwarding (uRPF)", RFC 5635, DOI 10.17487/RFC5635, August 2009. https://tools.ietf.org/html/rfc5635
- [RFC6092] J. Woodyatt, "Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6 Internet Service," IETF RFC 6092, January 2011. <u>https://tools.ietf.org/html/rfc6092</u>
- [RFC6472] W. Kumari and K. Sriram, "Recommendation for Not Using AS_SET and AS_CONFED_SET in BGP," BCP 172 (RFC 6472), December 2011. https://tools.ietf.org/html/rfc6472
- [RFC6480] M. Lepinski and S. Kent, "An Infrastructure to Support Secure Internet Routing," RFC6480, February 2012. <u>https://tools.ietf.org/html/rfc6480</u>
- [RFC6481] G. Huston, R. Loomans, and G. Michaelson, "A Profile for Resource Certificate Repository Structure", RFC 6481, February 2012. https://tools.ietf.org/html/rfc6481
- [RFC6482] M. Lepinski, S. Kent, and D. Kong, "A Profile for Route Origin Authorizations (ROAs)", RFC 6482, February 2012. https://tools.ietf.org/html/rfc6482
- [RFC6483] G. Huston and G. Michaelson, "Validation of Route Origination Using the Resource Certificate Public Key Infrastructure (PKI) and Route Origin Authorizations (ROAs) ", RFC 6483, February 2012. https://tools.ietf.org/html/rfc6483
- [RFC6487] G. Huston, G. Michaelson, and R. Loomans, "A Profile for X.509 PKIX Resource Certificates," RFC 6487, February 2012. https://tools.ietf.org/html/rfc6487
- [RFC6492] G. Huston, R. Loomans, B. Ellacott, and R. Austein, "A Protocol for Provisioning Resource Certificates," RFC 6492, February 2012. <u>https://tools.ietf.org/html/rfc6492</u>
- [RFC6810] R. Bush and R. Austein, "The Resource Public Key Infrastructure (RPKI) to Router Protocol," RFC 6810, January 2013. <u>https://tools.ietf.org/html/rfc6810</u>
- [RFC6811] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein, "BGP Prefix Origin Validation," IETF RFC 6811, January 2013. <u>https://tools.ietf.org/pdf/rfc6811.pdf</u>

- [RFC7318] A. Newton and G. Huston, "Policy Qualifiers in Resource Public Key Infrastructure (RPKI) Certificates," RFC 7318, July 2014. <u>https://tools.ietf.org/html/rfc7318</u>
- [RFC7353] S. Bellovin, R. Bush, and D. Ward, "Security Requirements for BGP Path Validation," IETF RFC 7353, August 2014. <u>https://tools.ietf.org/html/rfc7353</u>
- [RFC7382] S. Kent, D. Kong, and K. Seo, "Template for a Certification Practice Statement (CPS) for the Resource PKI (RPKI)," IETF RFC 7382, April 2015. https://tools.ietf.org/html/rfc7382
- [RFC7454] J. Durand, I. Pepelnjak, and G. Doering, "BGP Operations and Security," IETF RFC 7454, February 2015. <u>https://tools.ietf.org/html/rfc7454</u>
- [RFC7674] J. Haas, "Clarification of the Flowspec Redirect Extended Community," IETF RFC 7674, October 2015. <u>https://tools.ietf.org/html/rfc7674</u>
- [RFC7908] K. Sriram, D. Montgomery, D. McPherson, E. Osterweil, and B. Dickson, "Problem Definition and Classification of BGP Route Leaks", RFC 7908, June 2016. <u>https://tools.ietf.org/html/rfc7908</u>
- [RFC7909] R. Kisteleki and B. Haberman, "Securing Routing Policy Specification Language (RPSL) Objects with Resource Public Key Infrastructure (RPKI) Signatures," IETF RFC 7909, June 2016. https://tools.ietf.org/html/rfc7909
- [RFC7935] G. Huston and G. Michaelson, "The Profile for Algorithms and Key Sizes for Use in the Resource Public Key Infrastructure," IETF RFC 7935, August 2016. <u>https://tools.ietf.org/html/rfc7935</u>
- [RFC7999] T. King, et al., "BLACKHOLE Community," IETF RFC 7999, October 2016. https://tools.ietf.org/html/rfc7999
- [RFC8182] T. Bruijnzeels, O. Muravskiy, B. Webre, and R. Austein, "RPKI Repository Delta Protocol (RRDP)," IETF RFC 8182, July 2017. <u>https://tools.ietf.org/html/rfc8182</u>
- [RFC8205] M. Lepinski (Ed.) and K. Sriram (Ed.), "BGPsec Protocol Specification," IETF RFC 8205, September 2017. <u>https://tools.ietf.org/html/rfc8205</u>
- [RFC8208] S. Turner and O. Borchert, "BGPsec Algorithms, Key Formats, & Signature Formats," IETF RFC 8208, September 2017. https://tools.ietf.org/html/rfc8208
- [RFC8210] R. Bush and R. Austein, "The Resource Public Key Infrastructure (RPKI) to Router Protocol, Version 1," IETF RFC 8210, September 2017. https://tools.ietf.org/html/rfc8210

- [RFC8374]K. Sriram (Ed.), "BGPsec Design Choices and Summary of Supporting
Discussions," IETF RFC 8374, April 2018. https://tools.ietf.org/html/rfc8374
- [RIPE1] RIPE NCC Resource Certification: Using the RPKI System, <u>https://www.ripe.net/manage-ips-and-asns/resource-</u> management/certification/using-the-rpki-system
- [RIPE2] RIPE NCC RPKI Validator, <u>https://www.ripe.net/manage-ips-and-asns/resource-management/certification/tools-and-resources</u>
- [RIPE3] "Router Configuration with JunOS and Cisco IOS," RIPE NCC blog, https://www.ripe.net/manage-ips-and-asns/resourcemanagement/certification/router-configuration
- [RIPE-399] P. Smith, R. Evans, and M. Hughes, "RIPE-399 RIPE Routing Working Group Recommendations on Route Aggregation", December 2006. https://www.ripe.net/publications/docs/ripe-399
- [RIPE-532] P. Smith and R. Evans, "RIPE-532 RIPE Routing Working Group Recommendations on IPv6 Route Aggregation", November 2011. https://www.ripe.net/publications/docs/ripe-532
- [RouteLeak1] K. Sriram (Ed.) and A. Azimov (Ed.), "Methods for Detection and Mitigation of BGP Route Leaks", IETF Internet Draft, July 2018. https://datatracker.ietf.org/doc/draft-ietf-idr-route-leak-detection-mitigation/
- [RouteLeak2] A. Azimov, E. Bogomazov, R. Bush, K. Patel, and K. Sriram, "Route Leak Prevention using Roles in Update and Open Messages", IETF Internet Draft, June 2018. <u>https://datatracker.ietf.org/doc/draft-ietf-idr-bgp-open-policy/</u>
- [RouteLeak3] K. Sriram (Ed.), "Design Discussion of Route Leaks Solution Methods", IETF Internet Draft, July 2018. <u>https://datatracker.ietf.org/doc/draft-sriram-idr-route-leak-solution-discussion/</u>
- [Rsync] Wiki page on the Rsync protocol. <u>https://en.wikipedia.org/wiki/Rsync</u>
- [Rsync-S. Kent and K. Sriram, "RPKI Rsync Download Delay Modeling," PresentedRPKI]at the IETF-86, IETF SIDR WG Meeting, March 2013.https://www.ietf.org/proceedings/86/slides/slides-86-sidr-1.pdf
- RTRlib "An open-source C implementation of the RPKI/Router Protocol client," <u>https://github.com/rtrlib</u> and <u>http://www.mi.fu-</u> <u>berlin.de/en/inf/groups/ilab/software/index.html</u>
- [Ryburn] J. Ryburn, "DDoS Mitigation," NANOG-63, February 2015. https://www.nanog.org/meetings/abstract?id=2487

- [Scudder] "RPKI on Juniper Routers," NANOG 67, June 2016. https://www.nanog.org/sites/default/files/Scudder.pdf
- [SP800-53] Joint Task Force Transformation Initiative, "Security and Privacy Controls for Federal Information Systems and Organizations," (National Institute of Standards and Technology, Gaithersburg, MD) NIST Special Publication (SP) 800-53 Revision 4, April 2013 (includes updates as of 01-22-2015). https://doi.org/10.6028/NIST.SP.800-53r4
- [SP800-54] D.R. Kuhn, K. Sriram, and D. Montgomery, "Border Gateway Protocol Security," (National Institute of Standards and Technology, Gaithersburg, MD) NIST Special Publication (SP) 800-54, July 2007. <u>https://doi.org/10.6028/NIST.SP.800-54</u>
- [SWIP] S. Whipple, "The SWIP Template Tutorial," ARIN VII, April 2001. <u>https://www.arin.net/vault/participate/meetings/reports/ARIN_VII/PDF/tutori</u> <u>als/swip_arin.pdf</u>
- [Sriram1] K. Sriram, D. Montgomery, and R. Bush, "RIB Size and CPU Workload Estimation for BGPSEC," Presentation at the IETF-91 Joint IDR/SIDR WG Meeting, November 2014. <u>http://www.ietf.org/proceedings/91/slides/slides-91-idr-17.pdf</u>
- [Sriram2] V.K. Sriram and D. Montgomery, "Design and analysis of optimization algorithms to minimize cryptographic processing in BGP security protocols," Computer Communications, volume 106, pages 75-85, July 2017. https://doi.org/10.1016/j.comcom.2017.03.007
- [Symantec] C. Wueest, "Denial-of-service attacks short but strong: DDoS amplification attacks continue to increase as attackers experiment with new protocols," Symantec Blog, October 2014. http://www.symantec.com/connect/blogs/denial-service-attacks-short-strong

[ThousandEyThousandEyes: BGP Route Monitoringes]https://www.thousandeyes.com/solutions/bgp-and-route-monitoring

- [Winward] R. Winward, "Mirai Inside of an IoT Botnet," NANOG-69, February 2017. https://www.nanog.org/sites/default/files/1 Winward Mirai The Rise.pdf
- [Wishnick] D. Wishnick and C. Yoo, "Overcoming Legal Barriers to RPKI Adoption," Presented at NANOG-74, October 2018. <u>https://pc.nanog.org/static/published/meetings//NANOG74/daily/day_2.html#t</u> <u>alk_1767</u>
- [TA16-288A] "Heightened DDoS Threat Posed by Mirai and Other Botnets," US-CERT alert TA16-288A, November 30, 2016. <u>https://www.uscert.gov/ncas/alerts/TA16-288A</u>

- [TA14-017A] "UDP-Based Amplification Attacks," US-CERT alert TA14-017A, January 17, 2014. <u>https://www.us-cert.gov/ncas/alerts/TA14-017A</u>
- [TCP-UDP-"List of TCP and UDP ports,"port]https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.
- [Cymru-
bogon]"Bogon route server project: Bogons via BGP" <a href="http://www.team-
cymru.org/bogon-reference-bgp.html
- [Cymru-
UTRS]Unwanted traffic removal service (UTRS), Team Cymru blog,
http://www.team-cymru.com/utrs.html
- [Toonk-A] Toonk, A., "What caused the Google service interruption", BGPMON Blog, March 2015, <u>http://www.bgpmon.net/what-caused-the-google-service-interruption/</u>.
- [Toonk-B] Toonk, A., "Massive route leak causes Internet slowdown", BGPMON Blog, June 2015, <u>http://www.bgpmon.net/massive-route-leak-cause-internet-</u> slowdown/.
- [Verisign1] "Verisign Releases Q4 2016 DDoS Trends Report: 167% Increase in Average Peak Attack from 2015 to 2016," CircleID blog post, February 2017. <u>http://www.circleid.com/posts/20170214_verisign_releases_q4_2016_ddos_tr</u> ends_report_167_increase/
- [Verisign2] "Distributed Denial of Service Trends Report" by Verisign, Published quarterly. <u>http://www.verisign.com/en_US/security-services/ddos-</u> protection/ddos-report/index.xhtml
- [White] R. White, "Rethinking Path Validation," NANOG-66, February 2016. https://www.nanog.org/sites/default/files/White_Rethinking_Bgp_Path.pdf
- [Zmijewski] E. Zmijewski, "Indonesia Hijacks the World", Dyn Research/Renesys Blog, April 2014, <u>http://research.dyn.com/2014/04/indonesia-hijacks-world</u>.