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Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and
outreach efforts in information system security, and its collaborative activities with industry,
government, and academic organizations.

Abstract

This recommendation specifies the set of elliptic curves recommended for U.S. Government use.
In addition to the previously recommended Weierstrass curves defined over prime fields and
binary fields, this recommendation includes two newly specified Montgomery curves, which
claim increased performance, side-channel resistance, and simpler implementation when
compared to traditional curves. The recommendation also specifies alternative representations
for these new curves to allow more implementation flexibility. The new curves are interoperable
with those specified by the Crypto Forum Research Group (CFRG) of the Internet Engineering
Task Force (IETF).

Keywords

Computer security; discrete logarithm-based groups; elliptic curve cryptography; domain parameters.
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Audience

This document is intended for implementers of cryptographic schemes that include the use of
elliptic curve cryptography.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the
framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic
Module Validation Program (CMVP). The requirements of this Recommendation are indicated
by the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP
validation testing, and thus are the responsibility of entities using, implementing, installing or
configuring applications that incorporate this Recommendation.

Conformant implementations may perform procedures via an equivalent sequence of operations,
provided that these include all cryptographic checks included with the specifications in this
document. This is important because the checks are essential for the prevention of subtle attacks.
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Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use
would be required for compliance with the guidance or requirements in this Information
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be
directly stated in this ITL Publication or by reference to another publication. This call also
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf,
in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not hold
and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to
applicants desiring to utilize the license for the purpose of complying with the guidance
or requirements in this ITL draft publication either:

1. under reasonable terms and conditions that are demonstrably free of any unfair
discrimination; or

ii.  without compensation and under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances
on its behalf) will include in any documents transferring ownership of patents subject to the
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on
the transferee, and that the transferee will similarly include appropriate provisions in the event of
future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest
regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: SP800-186-comments@nist.gov
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Executive Summary

This recommendation specifies the set of elliptic curves recommended for U.S. Government use.
It includes:

— Specification of elliptic curves previously specified in FIPS Publication 186-4, Digital
Signature Schemes [FIPS 186-4]. This includes both elliptic curves defined over a prime
field and curves defined over a binary field. Although the specifications for elliptic
curves over binary fields are included, these curves are now deprecated.

— Specification of new Montgomery and Edwards curves, which are detailed in Elliptic
Curves for Security [REC 7748]. These curves are only to be used with the EDADSA
digital signature scheme in FIPS 186-5.

— A reference for the Brainpool curves, specified in [RFC 5639]. These curves are allowed
to be used for interoperability reasons.

— Elliptic curves in FIPS 186-4 that do not meet the current bit-security requirements put
forward in NIST Special Publication 800-57, Part 1, Recommendation for Key
Management Part 1: General [SP 800-57], are now legacy-use. They may be used to
process already protected information (e.g., decrypt or verify) but not to apply protection
to information (e.g., encrypt or sign). Also see NIST Special Publication 800-131A,
Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths [SP 800-131A].

This recommendation provides details regarding the group operations for each of the
specified elliptic curves and the relationship between the various curve models, allowing
flexibility regarding the use of curves most suitable in particular applications. It also
gives cryptographic criteria for the selection of suitable elliptic curves and provides more
details on finite field arithmetic and data representation than were available in FIPS 186-
4.
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1 Introduction

1.1 Background

Elliptic curve cryptography (ECC) has uses in applications involving digital signatures (e.g.,
Elliptic Curve Digital Signature Algorithm, or ECDSA) and key agreement schemes (e.g.,
Elliptic Curve Diffie-Hellman, or ECDH). The most widely used curves are usually expressed in
short-Weierstrass format. However, curves that are expressed using a different format, such as
Montgomery curves and twisted Edwards curves, have garnered academic interest. These curves
are claimed to have better performance and increased side-channel resistance.

A number of organizations (e.g., NIST, ANSI X9F, ISO, SEC, and IETF) have developed elliptic
curve standards. Other standards-setting organizations, such as the Crypto Forum Research
Group (CFRQG) of the IETF, have discussed ECC and made recommendations for alternate
elliptic curves and digital signatures. In June 2015, NIST organized an ECC workshop to discuss
the design of curves that are secure, efficient, and easy to use while also being resilient to a wide
range of implementation attacks. Subsequently, NIST solicited public comments on the Digital
Signature Standard (FIPS 186-4), requesting specific feedback regarding the digital signature
schemes in FIPS 186 as well as possible new recommended elliptic curves. This publication is
the result of that input.

1.2 Purpose and Scope

This recommendation provides updated specifications of elliptic curves that are appropriate for
use by the U.S. Federal Government for digital signatures. It is intended for use in conjunction
with other NIST publications, such as NIST Special Publication SP 800-56A, Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm-Based Cryptography [SP
800-56A]; Federal Information Processing Standard FIPS 186-5, Digital Signature Standard
[FIPS 186-5]; and related specifications. The key pairs specified here are used for digital
signature generation and verification or key agreement only and should not be used for any other
purposes.

This recommendation is intended to provide sufficient information for a vendor to implement
ECC using asymmetric algorithms in FIPS 140-3 [FIPS 140-3] validated modules.

1.3 Document Organization

The remainder of this document includes the following sections and appendices:

e Section 2: Glossary of Terms, Symbols, and Abbreviations

e Section 3: Overview of Elliptic Curves — This section details the different curve models
being used with this recommendation, including notational conventions.

e Section 4: Recommended Curves for Federal Government Use — This section highlights
the domain parameters for all elliptic curves recommended for U.S. Government use.

e References — This section contains references for additional information and links to
documents referenced in the publication.
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317 e Appendix A: Details of Elliptic Curve Group Operations — This appendix discusses the
318 group laws for each of the different curve models specified in this recommendation.

319 e Appendix B: Relationship Between Curve Models — This appendix details how different
320 curve models are related and how the coordinates of a point and the domain parameters of a
321 curve in one curve model relate to those in another curve model.

322 e Appendix C: Generation Details for Recommended Elliptic Curves — This appendix

323 describes the cryptographic criteria that guided the selection of suitable elliptic curves and
324 the process by which one of many such suitable elliptic curves is selected.

325 e Appendix D: Elliptic Curve Routines — This appendix details elementary routines for
326 elliptic curves, such as the verification that these curves are indeed well-formed, and point
327 compression.

328 e Appendix E: Auxiliary Functions — This appendix covers mathematical functions that are
329 used to describe elliptic curve operations and representation conversions, such as inversion,
330 and taking square roots.

331 e Appendix F: Data Conversion — This appendix documents the detailed procedure for the
332 conversion of data elements, such as integers, field elements, bit strings and octet strings,
333 and elliptic curve points.

334 e Appendix G: Implementation Aspects — This appendix discusses various implementation
335 aspects of binary curves, including conversions between different field representations; for
336 prime curves, it indicates how the special form of the underlying prime field aids in efficient
337 modular reduction.

338 e Appendix H: Other Allowed Elliptic Curves — This appendix lists other elliptic curves
339 that may be used for interoperability reasons.

340
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341 Glossary of Terms, Symbols, and Abbreviations
342 21 Glossary
Group Order Cardinality of the group.
Identity Unique group element 0 for which x+0=x for each group element x,
relative to the binary group operator +.
Inverse For some group element x, the unique element y for which x+y is the
identity element relative to the binary group operator + (y is usually
denoted as —x).
Isogeny Morphism from a first elliptic curve to a second elliptic curve.
Isomorphism Morphism that is, in fact, a bijection.
Kernel For a morphism, the set of group elements that map to the identity
element.
[-1sogeny Isogeny with kernel of size / (Note: if /=1, an [-isogeny is an
isomorphism).
Morphism Mapping from a first group to a second group that maintains the
group structure.
Point at Infinity Identity element of a Montgomery curve or a curve in short-
Weierstrass form.
Point Order Smallest multiple of a group element that results in the group’s
identity element.
Quadratic Twist Certain elliptic curve related to a specified elliptic curve.
Square The property that some element x of a finite field GF(q) can be
written as x=z° for some element z in the same field GF(g).
343
344 2.2 Symbols and Abbreviations
345  Selected acronyms and abbreviations used in this publication are defined below.
a mod n Smallest non-negative integer r so that a—r is a multiple of n.
La] The floor of a; the largest integer that is less than or equal to a. For

example, |5]= 5, 15.3]= 5, and |-2.1]=-3.
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Ba,p Elliptic curve in short-Weierstrass form defined over the binary field
GF(2™), with domain parameters a and b.

c Parameter used in domain parameter generation for some curves W, » in
short-Weierstrass form, where c = a*/b* (optional).

D Domain parameters of elliptic curve.

o Twisted Edwards curve, with domain parameters a and d.

G Base point of order » of an elliptic curve.

GF(g) Finite field of size gq.

GF(p) Prime field of size p, represented by the set of integers {0,1, ..., p—1}.

h Co-factor of an elliptic curve.

Hf Half-trace function (for binary fields).

len(a) The length of a in bits; the integer L, where 21! < g < 2%,

Map Montgomery curve, with domain parameters A and B.

n Order of a prime-order subgroup of elliptic curve.

p Prime Number.

RBG Random Bit Generator.

Seed String from which part of the domain parameters are derived (optional).

tr Trace of an elliptic curve.

Tr Trace function (for binary fields).

Type Indication of elliptic curve type.

u, v Coordinates on a Montgomery curve.

Wa,b Elliptic curve in short-Weierstrass form, with domain parameters a and
b.

X,y Coordinates on a (twisted) Edwards or Weierstrass curve.

x,y’ Coordinates on an Edwards448 curve that correspond to the x,y

coordinates on an E448 curve.
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0x Indication of a hexadecimal string.
%) Identity element of an elliptic curve.
\ Indication that an integer value stretches over several lines.
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3 Overview of Elliptic Curves

3.1 Non-Binary Curves
3.1.1 Curves in Short-Weierstrass Form

Let GF(g) denote the finite field with ¢ elements, where ¢ is an odd prime power and where g is
not divisible by three. Let W be the Weierstrass curve with the defining equation 3> = x> + a x
+ b, where a and b are elements of GF(gq) with 4 @* + 27 b? # 0. When selecting curve
parameters, a Seed value may be used to generate the parameters a and b as described in
Appendix C.2.1.1.

The points of W, are the ordered pairs (x, y) whose coordinates are elements of GF(g) and that
satisfy the defining equation (i.e., the affine points), together with the special point & (the “point
at infinity”’). This set forms a group under the operation of addition on elliptic curves via the
“chord-and-tangent” rule, where the point at infinity serves as the identity element. See
Appendix A.1.1 for details of the group operation.

3.1.2 Montgomery Curves

Let GF(g) denote the finite field with ¢ elements, where ¢ is an odd prime power. Let MaB be
the Montgomery curve with defining equation B v? = u (1> + A u + 1), where A and B are
elements of GF(q) with A #+ 2 and B # 0. The points of Ma s are the ordered pairs (u, v) whose
coordinates are elements of GF(¢g) and that satisfy the defining equation (i.e., the affine points),
together with the special point & (the “point at infinity”). This set forms a group under the
operation of addition on elliptic curves via the “chord-and-tangent” rule, where the point at
infinity serves as the identity element. See Appendix A.1.2 for details of the group operation.

3.1.3 Twisted Edwards Curves

Let GF(g) denote the finite field with ¢ elements, where ¢ is an odd prime power. Let Eq.« be the
twisted Edwards curve with defining equation a x> + y* = 1+ d x* )%, where a and d are elements
of GF(g) with a, d # 0 and a # d. The points of E4 4 are the ordered pairs (x, y) whose coordinates
are elements of GF(q) and that satisfy the defining equation (i.e., the affine points). It can be
shown that this set forms a group under the operation addition, where the point (0, 1) serves as
the identity element. If @ is a square in GF(gq), and d is not, the addition formulae are complete,
meaning that the formulae work for all inputs on the curve. See Appendix A.1.3 for details of the
group operation.

An Edwards curve is a twisted Edwards curve with a=1. Edwards curves are to be used with the
EdDSA digital signature scheme [FIPS 186-5].

3.2 Binary Curves
3.2.1 Curves in Short-Weierstrass Form

Let GF(g) denote the finite field with ¢ elements, where g=2". Let Ba,» be the Weierstrass curve
with defining equation y*+ x y = x> + a x> + b, where a and b are elements of GF(g) with b # 0.

6
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The points of Bas are the ordered pairs (x, y) whose coordinates are elements of GF(¢) and that
satisfy the defining equation (i.e., the affine points), together with the special point & (the “point
at infinity”).This set forms a group under the operation of addition on elliptic curves via the
“chord-and-tangent” rule, where the point at infinity serves as the identity element. See
Appendix A.2.1 for details of the group operation.
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388 K Recommended Curves for U.S. Federal Government Use

389  This section specifies the elliptic curves recommended for U.S. Federal Government use and
390 contains choices for the private key length and underlying fields. This includes elliptic curves
391  over prime fields (Section 4.2) and elliptic curves over binary fields (Section 4.3) where each
392  curve takes one of the forms described in Section 3 (referred to as “Type” below).

393  Each recommended curve is uniquely defined by its domain parameters D, which indicate the
394  field GF(q) over which the elliptic curve is defined and the parameters of its defining equation,
395  as well as principal parameters such as the co-factor 4 of the curve, the order » of its prime-order
396  subgroup, and a designated point G=(Gx, Gy) on the curve of order # (i.e., the “base point”).

397  When ECDSA domain parameters are generated (i.e., the NIST-recommended curves for

398  ECDSA are not used), the value of G should be generated canonically (verifiably random). An
399  approved hash function (such as those specified in FIPS 180 or FIPS 202) shall be used during
400  the generation of ECDSA domain parameters. When generating these domain parameters, the
401  security strength of a hash function used shall meet or exceed the security strength associated
402  with the bit length of n.!

403  Let E be an elliptic curve defined over the field GF(q).

404  The cardinality |E| of the curve is equal to the number of points on the curve and satisfies the
405  equation |E|=(g+1)—tr, where |tr] <2 \/E . (Thus, |E| and g have the same order of magnitude.)

406  The integer tr is called the trace of E over the field GF(g).

407  The points on E form a commutative group under addition (for the group law for each curve

408  form, see Appendix A). Any point P on the curve is the generator of a cyclic subgroup (P) = {kP

409 | k=0,1,2,...} of E. The order of P in E is defined as the cardinality of <P>. A curve is cyclic if
410 it is generated by some point on E. All curves of prime order are cyclic, while all curves of order

411  |E|=h-n, where n is a large prime number and where / is small number, have a large cyclic

412  subgroup of prime order 7.

413  If R is a point on the curve that is also contained in (P), there is a unique integer k in the interval
414 [0, I-1] so that R=kP, where [ is the order of P in E. This number is called the discrete logarithm
415  of R to the base P. The discrete logarithm problem is the problem of finding the discrete

416  logarithm of R to the base P for any two points P and R on the curve, if such a number exists.

417 A quadratic twist of £ is a curve E’ related to £, with cardinality |E’|=(g+1)+¢r. If E is a curve in
418  one of the curve forms specified in this Recommendation, a quadratic twist of this curve can be
419  expressed using the same curve model, although (naturally) with different curve parameters.

! The NIST-recommended curves for ECDSA were generated prior to the formulation of this guidance and using SHA-1, which
was the only approved hash function available at that time. Since SHA-1 was considered secure at the time of generation, the
curves were made public, and SHA-1 will only be used to validate those curves, the NIST-recommended curves for ECDSA are
still considered secure and appropriate for Federal Government use.
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For details regarding the generation method of the elliptic curves, see Appendix C.
4.1 Choices of Key Lengths, Underlying Fields, Curves, and Base Points

4.1.1 Choice of Key Lengths

The principal parameters for elliptic curve cryptography are the elliptic curve £ and a designated
point G on E called the base point. The base point has order n, which is a large prime. The
number of points on the curve is 4-n for some integer /4 (the cofactor), which is not divisible by
n. For efficiency reasons, it is desirable to have the cofactor be as small as possible.

All of the curves given below have cofactors 1, 2, or 4. As a result, the private and public keys
for a curve are approximately the same length.

4.1.2 Choice of Underlying Fields

For each key length, two kinds of fields are provided:

o A prime field is the field GF(p), which contains a prime number p of elements. The
elements of this field are the integers modulo p, and the field arithmetic is implemented
in terms of the arithmetic of integers modulo p.

e A binary field is the field GF(2™), which contains 2" elements for some m (called the
degree of the field). The elements of this field are the bit strings of length m, and the field
arithmetic is implemented in terms of operations on the bits.

The security strengths for four ranges of the bit length of » are provided in SP 800-57, Part 1. For
the field GF(p), the security strength is dependent on the length of the binary expansion of p. For
the field GF(2™), the security strength is dependent on the value of m. Table 1 provides the bit
lengths of the various underlying fields of the curves provided in this appendix. Column 1 lists
the ranges for the bit length of n. Column 2 identifies the value of p used for the curves over
prime fields, where len(p) is the length of the binary expansion of the integer p. Column 3
provides the value of m for the curves over binary fields.

Table 1: Bit Lengths of the Underlying Fields of the Recommended Curves

Bit Length of n Prime Field Binary Field
224 - 255 len(p) =224 m =233
256 — 383 len(p) = 256 m =283
384 - 511 len(p) =384 m =409

>512 len(p) =521 m=571
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4.1.3 Choice of Basis for Binary Fields

To describe the arithmetic of a binary field, it is first necessary to specify how a bit string is to be
interpreted. This is referred to as choosing a basis for the field. There are two common types of
bases: a polynomial basis and a normal basis.

A polynomial basis is specified by an irreducible polynomial modulo 2, called the field
polynomial. The bit string (am-1 ... a2 a1 ao) is used to represent the polynomial

amit™ + .+t tart+ao

over GF(2). The field arithmetic is implemented as polynomial arithmetic modulo p(?),
where p(?) is the field polynomial.

A normal basis is specified by an element & of a particular kind. The bit string (a0 a1 a2
... am-1) 1s used to represent the element

p) -1
ao0+ a10* + wb* + ... +am16*" .

Normal basis field arithmetic is not easy to describe or efficient to implement in general
except for a special class called Type T low-complexity normal bases. For a given field of
degree m, the choice of T specifies the basis and the field arithmetic (see Appendix G.3).

There are many polynomial bases and normal bases from which to choose. The following
procedures are commonly used to select a basis representation:

Polynomial Basis: If an irreducible trinomial " + t* + 1 exists over GF(2), then the field
polynomial p(7) is chosen to be the irreducible trinomial with the lowest-degree middle
term #£. If no irreducible trinomial exists, then a pentanomial " + * + >+ + 1 is
selected. The particular pentanomial chosen has the following properties: the second term
#“ has the lowest degree m; the third term #* has the lowest degree among all irreducible
pentanomials of degree m and the second term #%; and the fourth term ¢ has the lowest
degree among all irreducible pentanomials of degree m, with the second term #, and third
term 2.

Normal Basis: Choose the Type T low-complexity normal basis with the smallest 7.

For each binary field, the parameters are given for the above basis representations.

4.1.4 Choice of Curves

Two kinds of curves are given:

Pseudorandom curves are those whose coefficients are generated from the output of a
seeded cryptographic hash function. If the domain parameter seed value is given along
with the coefficients, it can be easily verified that the coefficients were generated by that
method.

Special curves are those whose coefficients and underlying field have been selected to

10
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optimize the efficiency of the elliptic curve operations.

For each curve size range, the following curves are given:

— A pseudorandom curve over GF(p).

— A pseudorandom curve over GF(2™).

— Special curves over GF(p) called Edwards curves and Montgomery curves.

— A special curve over GF(2™) called a Koblitz curve or anomalous binary curve.
The pseudorandom curves were generated as specified in Appendix C.3.
4.1.5 Choice of Base Points

Since any point of order » can serve as the base point, users could, in principle, generate their
own base points to ensure a cryptographic separation of networks, although this does result in
another set of domain parameters. When generating base points, users should use a verifiably
random method and check the validity of the point generated. See Appendix D.3 for more
details. If a base point is generated by another entity, it is recommended that its validity be
verified with the procedure in Appendix D.3.3 prior to use.

4.2 Curves over Prime Fields

This section specifies elliptic curves over prime fields recommended for U.S. Federal
Government use, where each curve takes the form of a curve in short-Weierstrass form (Section
4.2.1), a Montgomery curve (Section 4.2.2), or a twisted Edwards curve (Section 4.2.3).

4.2.1 Weierstrass Curves

This specification includes pseudorandom Weierstrass curves generated over prime fields P-192,
P-224, P-256, P-384, and P-521 (See Sections 4.2.1.1 - 4.2.1.5) and special Weierstrass curves
over prime fields W-25519 (Section 4.2.1.6) and W-448 (Section 4.2.1.7). The curves W-25519
and W-448 may provide improved performance of the elliptic curve operations as well as
increased resilience against side-channel attacks while allowing for ease of integration with
existing implementations.

For each Weierstrass curve,
E: y? = x*+ax +b (mod p),
the following domain parameters D=( p, h, n, Type, a, b, G, {Seed, c}) are given:
e The prime modulus p

e The cofactor &

o For pseudorandom curves, the cofactor # = 1 so the order # is prime

11
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o For special curves, the cofactor 4 > 1 so the order n is not prime
e The Type is “Weierstrass curve”

e The coefficient a

o For pseudorandom curves, a = -3 was made for reasons of efficiency; see IEEE
Std 1363-2000

e The coefficient b

o For pseudorandom curves, the coefficient b satisfies b* ¢ =27 (mod p)
e The base point G with x coordinate G»and y coordinate Gy

e The 160-bit input Seed to the SHA-1 hash algorithm in Appendix C.3 for pseudorandom
curves. Seed is not used with the special curves W-25519 (Section 4.2.1.6) and W-448
(Section 4.2.1.7).

e The output ¢ of the SHA-1 hash algorithm used for pseudorandom curves. The value c is
not used with the special curves W-25519 (Section 4.2.1.6) and W-448 (Section 4.2.1.7).

The integers p and n are given in decimal form; bit strings and field elements are given in
hexadecimal.

4211 P-192
The use of this curve is for legacy-use only. See [FIPS 186-4] for the specification.
421.2 P-224

The elliptic curve P-224 is a Weierstrass curve Wa» defined over the prime field GF(p) that has
order /-n, where h=1 and where 7 is a prime number. This curve has domain parameters D=( p,
h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters
are defined as follows:

p: 2224_ 296+ 1
=26959946667150639794667015087019630673557916260026308143510066298881
(FOxfEffffff fEFEFEff FEFEFEEE FEEEEEEE 00000000 00000000 00000001)
h: 1
n: 26959946667150639794667015087019625940457807714424391721682722368061
(FOxXffffffff fEffffff fEfEffff ffffl6a2 e0b8f03e 13dd2945 5c5c2a3d)
tr: 4733100108545601916421827343930821
(=(p+1)—h-n=0xe95c 1f470fcl ec22déba a3a3d5c5)
a: -3
=26959946667150639794667015087019630673557916260026308143510066298878
(FOxXfEffffff fEffffff fEfEffff fffffffe fEfEfffff fEfEffff fEfffffe)

12
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545 b 18958286285566608000408668544493926415504680968679321075787234672564

546 (=0xb4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 27003943 2355ffb4)
547  Gx: 19277929113566293071110308034699488026831934219452440156649784352033
548 (=0xb70e0cbd 6bb4bf7f 321390b9 4a03cld3 56c21122 343280d6 115cld2l)
549  Gy: 19926808758034470970197974370888749184205991990603949537637343198772
550 (=0xbd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34)

551  Seed: 0xbd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5

552 ¢ 9585649763196999776159690989286240671136085803543320687376622326267
553 (=0x5b056c7e 11dd68f4 0469ee7f 3c7a7d74 £7d12111 6506d031 218291fb)
554

555 4.21.3 P-256

556  The elliptic curve P-256 is a Weierstrass curve Wa» defined over the prime field GF(p) that has
557  order h-n, where h=1 and where 7 is a prime number. This curve has domain parameters D=( p,
558  h,n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters
559  are defined as follows:

560

561 p: 2256_ 2224+ 2192+ 296_ 1

562 =115792089210356248762697446949407573530\

563 086143415290314195533631308867097853951

564 (FOxfffff£f£ff 00000001 00000000 00000000 00000000 ffffffff fEFFFFfff
565 fEFEEFEE)

566  h: 1

567 m: 115792089210356248762697446949407573529\

568 996955224135760342422259061068512044369

569 (FOxffffffff 00000000 ffffffff ffEffffff bceb6faad a7179e84 f3b9cac?
570 £c632551)

571t 89188191154553853111372247798585809583

572 (=(p+1)—h-n=0x43190553 58e8617b 0c46353d 039cdaaf)

573 a: 3

574 =115792089210356248762697446949407573530\

575 086143415290314195533631308867097853948

576 (FOxffff£££f£f 00000001 00000000 00000000 00000000 ffffffff fEFfffff
577 fffffffc)

578 b:  41058363725152142129326129780047268409\

579 114441015993725554835256314039467401291

580 (=0x5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bcel3c3e
581 27d2604Db)

582  Gx: 48439561293906451759052585252797914202\

583 762949526041747995844080717082404635286

584 (=0x6b17d1f2 el2c4247 f8bcebe5 63a440f2 77037d81 2deb33a0 f4al3945
585 d898c296)

586  Gy: 36134250956749795798585127919587881956\

587 611106672985015071877198253568414405109

588 (F0x4fe342e2 fela7f9% 8eeTebda 7c0f9el6 2bce3357 6b315ece cbb64068
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589 37bf51£5)
590 Seed: 0xc49d3608 86e70493 6a6678el 139d26b7 819f7e90
591 ¢ 57436011470200155964173534038266061871\

592 440426244159038175955947309464595790349

593 (=0x7efbal66 2985be94 03cb055c 75d4f7e0 ce8d84a9 c5lldabc af317768
594 0104fa0d)

595

596 4.2.1.4 P-384

597  The elliptic curve P-384 is a Weierstrass curve Wa,» defined over the prime field GF(p) that has
598  order /-n, where h=1 and where 7 is a prime number. This curve has domain parameters D=( p,

599  h,n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters
600 are defined as follows:

601

602 p: 2384_ 2128_ 296+ 232_ 1

603 =3940200619639447921227904010014361380507973927046544666794\
604 8293404245721771496870329047266088258938001861606973112319
605 (FOxXffffffff fEEfFfEfff fEFEFEEf FEFFFEff FEFFEEFf fEFFFEFF
606 ffEfffff fffffffe ffE£f££££f 00000000 00000000 ffEfffff)
607  h: 1

608 m: 3940200619639447921227904010014361380507973927046544666794\
609 6905279627659399113263569398956308152294913554433653942643
610 (FOxXffffffff fEEfffff fEFfFfEff FfEFFFffff FfEFFEfff fEFFFEFfef
611 c7634d81 f4372ddf 581a0db2 48bl0a77a ececl96a ccc52973)
612 1388124618062372383606759648309780106643088307173319169677
613 (=(p+1)—h-n=0x389cb27e 0bc8d21f a7e5f24c b74f5885 1313e696
614 333ad68d)

615 a: -3

616 =3940200619639447921227904010014361380507973927046544666794\
617 8293404245721771496870329047266088258938001861606973112316
618 (FOxXffffffff fEEfffff fEEFFfFfff fEEFFFff FfEFFFFff FEFFFEFF
619 fffEffff fffffffe ffEEffEf 00000000 00000000 fffffffc)
620  b: 2758019355995970587784901184038904809305690585636156852142\
621 8707301988689241309860865136260764883745107765439761230575
622 (=0xb3312fa7 e23ee7ed 988e056b e3f82d19 181d9che fe814112
623 0314088f 5013875a c656398d 8a2edl19d 2a85c8ed d3eclaef)
624 G 2624703509579968926862315674456698189185292349110921338781\
625 5615900925518854738050089022388053975719786650872476732087
626 (=0xaa87ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
627 59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7)
628  Gy: 832571096148902998554675128952010817928785304886131559470\
629 9205902480503199884419224438643760392947333078086511627871
630 (=0x3617deda 96262c6f 5d9e98bf 9292dc29 f8f4ldbd 289%ald’c
631 e9da3113 b5f0b8c0 0a60blce 1d7e819d 7a431d7c 90ealeS5f)

632  Seed: 0xa335926a a319a27a 1d00896a 6773a482 T7acdac73

14



NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY:
ELLIPTIC CURVE DOMAIN PARAMETERS

633 ¢ 1874980186709887347182107097135388878869033900306543902178\

634 0101954060871745882341382251168574711376101826101037376643
635 (=0x79d1e655 £868£02f ff48dcde el4151dd b80643cl 406d0cal
636 0dfe6fc5 2009540a 495e8042 ea5f744f 6el184667 cc722483)
637

638 4.21.5 P-521

639  The elliptic curve P-521 is a Weierstrass curve Wz, defined over the prime field GF(p) that has
640  order A-n, where #=1 and where 7 is a prime number. This curve has domain parameters D=( p,
641  h,n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters
642  are defined as follows:

643

644 p: 23211

645 = 686479766013060971498190079908139321726943530014330540939\

646 446345918554318339765605212255964066145455497729631139148 \

647 0858037121987999716643812574028291115057151

648 (FO0x1ff ffEffffff fEEFFfFfff FEFEFEEf FEFFFEEFf FEFFEEFf fEEFEEFF
649 fEffffff fEEEfFfFff fEEEEFFf fEEEFFEf fEEEFEEf FEEFFELEE
650 fEEEfEff fEEEfEff fEEEFEff fEEEFEEF)

651 I 1

652 n: 686479766013060971498190079908139321726943530014330540939\

653 446345918554318339765539424505774633321719753296399637136\

654 3321113864768612440380340372808892707005449

655 (FO0x1ff ffffffff fEEfEffff fEFFEEFff FEFFEFFf FEFFEFFf FEFFEEFE
656 ffffffff fffffffa 51868783 bf2f966b 7fcc0148 £709a5d0
657 3bb5c9b8 899c47ae bb6fb7le 91386409)

658 657877501894328237357444332315020117536\

659 923257219387276263472201219398408051703

660 (=(p+1)—h-n=0x5 ae79787c 40406994 8033feb7 08f65a2f

661 c44a3647 7663b851 449048el 6ec79bf7)

662 a: -3

663 = 686479766013060971498190079908139321726943530014330540939\

664 446345918554318339765605212255964066145455497729631139148 \

665 0858037121987999716643812574028291115057148

666 (FO0x1ff fEfffffff fEEfEfff FEFFEFFf FEFFEFFf FEFFEEEf FEFEEFES
667 fEEFEEff fEFFEEFf fEFEEEFf FEFEEEFf FEFEFFFf FEEEEFFE
668 fEEEffff fEEffFffff fEEfFfEfff fEEffffc)

669 b 1093849038073734274511112390766805569936207598951683748994\

670 5863944959531161507350160137087375737596232485921322967063\

671 13309438452531591012912142327488478985984

672 (=0x051 953eb961 8elc9alf 929a2lal b68540ee a2da725b 99b315f3
673 b8b48991 8efl09%el 56193951 ec7e937b 1652c0bd 3bblbf07
674 3573df88 3d2c34fl ef451fd4 6b503£00)

675 Gx. 2661740802050217063228768716723360960729859168756973147706\

676 6713684188029449964278084915450806277719023520942412250655\

677 58662157113545570916814161637315895999846

678 (=0xc6 858e06b7 0404e9cd 9e3ecb66 23950442 9c648139 053fb521
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£828af60 6b4d3dba aldb5e77 efe75928 feldcl27 a2ffa8de
3348b3cl 856a429b £97e7e31 c2e5bd66)
Gy: 37571800257700204635455072244911836035944551347697624866945\
67779615544477440556316691234405012945539562144444537289428\
522585666729196580810124344277578376784

(:Ox118 39296a78 9a3bc004 5c8a5fb4 2c7dlbd9 98£54449 57904468
17afbdl7 273e662c 97ee7299 5ef42640 c550b901 3fadl0761

353¢c7086 a272c240 88be9476 9fd16650)
Seed: 0xd09e8800 291cb853 96cc6717 393284aa aldab4dba
c: 2420736670956961470587751833778383872272949280174637971106318\
2239560106363555573338990358663426503785752212772688861827046\
43828850020061383251826928984446519

(:OxOb4 8bfab5f42 0a349495 39d2bdfc 264eeceeb 077688e4 4fbf0ad8
£6d0edb3 7bd6b533 28100051 8el9flb9 ffbelOfe9 ed8a3c22

00b8£f875 e523868c 70clebSbf 55bad637)

42.1.6 W-25519

The elliptic curve W-25519 is a Weierstrass curve Wap defined over the prime field GF(p), with
p=2?>-19, and that has order 4-n, where /=8 and where 7 is a prime number. The quadratic twist
of this curve has order 41 -ni, where #1=4 and where #1 is a prime number. This curve has domain
parameters D=( p, h, n, Type, a, b, G), where the Type is “Weierstrass curve” and the other
parameters are defined as follows:

p: 22%-19
(FOxTEfEffff fEfEfFff FEFEFFEf FEFEFEEF FEFEFEEF FEFEFFEF FEFEFEEF
ffffffed)
h: 8
n: 72370055773322622139731865630429942408\
57116359379907606001950938285454250989
(=2%2 + 0xl4def9de a2f79cd6 5812631a 5cf5d3ed)
tr: —221938542218978828286815502327069187962
(=(p+1)—h-n=—0xa6f7cef5 17bcebb2 c09318d2 e7ae9f7a)
a: 19298681539552699237261830834781317975\
544997444273427339909597334573241639236
(=Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaads
4914a144)
b: 55751746669818908907645289078257140818\
241103727901012315294400837956729358436
(=0x7b425ed0 97b425ed 097b425e d097b425 ed097b42 5ed097b4d 260b5e9c
7710c864)
Gy 19298681539552699237261830834781317975\
544997444273427339909597334652188435546
(=Ox2aaaaaaa daaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaad245a)

Gy: 43114425171068552920764898935933967039\
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370386198203806730763910166200978582548
(=0x5f51e65e 475f£794b 1fel22d3 88b72eb3 6dc2b281 92839e4d
d6163a5d 81312cl4)

The curve W-25519 is isomorphic to the curve Curve25519 specified in Section 4.2.2.1, where
the base point of Curve25519 corresponds to the base point of W-25519, where the point at
infinity & of Curve25519 corresponds to the point at infinity & on W-25519 and where the point
(u, v) on Curve25519 corresponds to the point (x, y)=(u+A/3, v) on Wa.

See Appendix B.2 for more details.

Note that Curve25519 is not isomorphic with a Weierstrass curve with domain parameter a = —3.
In particular, this means that one cannot reuse an implementation for elliptic curves with short-
Weierstrass form that hard-codes the domain parameter a to —3 to implement Curve25519.

4.2.1.7 W-448

The elliptic curve Curve448 is the Weierstrass curve Wa» defined over the prime field GF(p),
with p=2*%-2224_1 and that has order /-n, where h=4 and where 7 is a prime number. The
quadratic twist of this curve has order 41-n1, where 71 =4 and where n1 is a prime number. This
curve has domain parameters D=( p, h, n, Type, a, b, G), where the Type is “Weierstrass curve”
and the other parameters are defined as follows:

p: 2448_2224_1
(COxXfEffffff fEFEfFfff fEFEFFEf fEFFEFEF fEFFEFEFf fEFFEFEFf fEfffffe
fEEEffff fEFEfFfff fEEEffff fEEEffff fEFEffff fEEfFfEfff fEEFFEFF)
h: 4
n: 1817096810739017226373309519720011335884103401718295150703725497951
46003961539585716195755291692375963310293709091662304773755859649779
(=2%6 — 0x8335dc16 3bbl24b6 5129c96f de933d8d 723a70aa dc873d6d
54a7bb0d)
tr: 28312320572429821613362531907042076847709625476988141958474579766324
(=(p+1)—h-n=0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab
721cf5b5 529%eec34)
a: 4845591495304045936995492052586696895690942404582120401876601327870
74885444487181790930922465784363953392589641229091574035657199637535
(ZOxaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa’d
fEEEEFff fEFEfFff fEEFFEff fEEFFEFf fEEFFEFf fEfffffe 1a76d41f)
b: 2691995275168914409441940029214831608717190224767844667709222959928
19380802492878772739401369880202196329216467349495319191685664513904
(=0x5ed097b4 25ed097b 425ed097 b425ed09 7b425ed0 97b425ed 097b425e
71c71c71 c71c71c7 1c71lc7lc 71c71c71l c71c7lc7 1c72c87b 7Tcc69£70)
Gy 4845591495304045936995492052586696895690942404582120401876601327870\
7488544448718179093092246578436395339258964122909157403566534562907
(=Oxaaaaaaaa dadadaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
00000000 00000000 00000000 00000000 00000000 00000000 0000cb91)
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Gy: 3552939267855681752641275020637833348089763993877142718318808984351\
69088786967410002932673765864550910142774147268105838985595290606362
(=0x7d235d12 95£5b1f6 6c98abbe 58326fce cbae5d34 £55545d0 60£75dc2
8df3f6ed b8027e23 46430d21 1312c4bl 50677af7 6£d7223d 457b5bla)

The curve W-448 is isomorphic to the curve Curve448 specified in Section 4.2.2.2, where the
base point of Curve448 corresponds to the base point of W-448, where the point at infinity & of
Curve448 corresponds to the point at infinity & on W-448 and where the point (u, v) on
Curve448 corresponds to the point (x, y)=(u+A/3, v) on Was.

See Appendix B.2 for more details.

Note that Curve448 is not isomorphic with a Weierstrass curve with domain parameter ¢ = -3. In
particular, this means that one cannot reuse an implementation for curves with short-Weierstrass
form that hard-codes the domain parameter a to —3 to implement Curve448.

4.2.2 Montgomery Curves

Similar to W-25519 and W-448, Montgomery curves may offer improved performance with
improved resistance to side-channel attacks. These curves can also provide a bridge between
short-Weierstrass curves and Edwards curves.

4.2.21 Curve25519

The elliptic curve Curve25519 is the Montgomery curve Ma s defined over the prime field
GF(p), with p=2%53-19, and with parameters A=486662 and B=1 [RFC 7748]. This curve has
order h-n, where #=8 and where 7 is a prime number. For this curve, A’>~4 is not a square in
GF(p), whereas A+2 is. The quadratic twist of this curve has order 41-n1, where h1=4 and where
n1 1s a prime number. This curve has domain parameters D=( p, &, n, Type, A, B, G), where the
Type is “Montgomery curve” and where the other parameters are defined as follows:

p: 225-19
(SOx7EEffffff fEfFffff fEEfffff fEFfffff fEEEffff fEFEEEEf FEEEEEEE
ffffffed)
h: 8
n: 72370055773322622139731865630429942408\
57116359379907606001950938285454250989
(=222 4+ 0x14def9de a2f79cd6 5812631la 5Scf5d3ed)
tr: —221938542218978828286815502327069187962
(=(p+1)—h-n=—0xa6f7cef5 17bcebb2 c09318d2 e7ae9f7a)

A: 486662
B: 1
Gu: 9

(=0x9)

Gv: 43114425171068552920764898935933967039\
370386198203806730763910166200978582548
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(=0x5f51e65e 475f794b 1fel22d3 88b72eb3 6dc2b281 92839%e4d d6163a5d
81312c14)

4.2.2.2 Curved48

The elliptic curve Curve448 is the Montgomery curve Ma s defined over the prime field GF(p),
with p=248-2224_1_and with parameters A=156326 and B=1 [RFC 7748]. This curve has order
h-n, where h=4 and where 7 is a prime number. For this curve, A>—4 is not a square in GF(p),
whereas A-2 is. The quadratic twist of this curve has order 41-n1, where 41 = 4 and where n1 is a
prime number. This curve has domain parameters D=( p, h, n, Type, A, B, G), where the Type is
“Montgomery curve” and where the other parameters are defined as follows:

p: 2448_2224_1
(FOxXffEfffff fEEfffff fEEEEFfff FEFEFFEf FEFEFEFf fEFEEEFf fEfffffe
fEEFEEFf fEEEEFEf FEEEEFEF FEEEEEEF FEFFEFEE FEFFFFEE FEFEFFES)
h: 4
n: 1817096810739017226373309519720011335884103401718295150703725497951
46003961539585716195755291692375963310293709091662304773755859649779
(=2*6 — 0x8335dc16 3bbl24b6 5129c96f de933ds8d 723a70aa dc873d6d
54a7bb0d)
tr: 28312320572429821613362531907042076847709625476988141958474579766324
(=(p+1) —h-n=0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab
721cf5b5 529eec34)

A: 156326
B: 1
Gu: 5

(=0x5)

Gy:  3552939267855681752641275020637833348089763993877142718318808984351\
69088786967410002932673765864550910142774147268105838985595290606362

(:OX7d235d12 95f5blf6 6c98abbe 58326fce cbaeb5d34 £55545d0 60£75dc2
8df3f6ed b8027e23 46430d21 1312c4bl 50677af7 6£d7223d 457b5b1a)

The base point of Curve448 corresponds to the base point of E448 and the point at infinity &,
and the point (0,0) of order two of Curve448 correspond to, respectively, the point (0, 1) and the
point (0, —1) of order two on E448. Each other point (u, v) on Curve448 corresponds to the point
(o u/v, (u+ 1)/(u — 1)) on E448, where a is the element of GF(p) defined by

o:  1978884672954644395383540097538580382568351525910598021481997791960\
87404232002515713604263127793030747855424464185691766453844835192428
(=0x45b2c5f7 d649eed0 77edlaed 5f44d541 43e34f71 4b71laa96 c945af01
2d182975 0734cde9 faddbdad c066f7ed 54419ca5 2c85dele 8aaedebe)

See Appendix B.1 for more details.
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4.2.3 Twisted Edwards Curves

Edwards curves offer high performance for elliptic curve calculations and protection against
side-channel attacks. The Edwards Curve Digital Signature Algorithm (EdDSA) is a digital
signature scheme based on twisted Edwards curves and is specified in FIPS 186-5.

4.2.3.1 Edwards25519

The elliptic curve Edwards25519 is the twisted Edwards curve Eq.« defined over the prime field
GF(p), with p=2?%-19, and with parameters a= —1 and d= —121665/121666 (i.c.,
37095705934669439343138083508754565189542113879843219016388785533085940283555)
[REC 8032]. This curve has order 4-n, where /=8 and where 7 is a prime number. For this curve,
a is a square in GF(p), whereas d is not. The quadratic twist of this curve has order /1-n1, where
h1=4 and where n1 is a prime number. This curve has domain parameters D=( p, h, n, Type, a, d,
G), where the Type is “twisted Edwards curve” and where the other parameters are defined as
follows:

p: 2*-19
(FOxTEEEEfff FEEFEFff FEEEEEEf FEEEEFEf FEFFEFEf FEFEFFEFf FEFEFEFS
ffffffed)
h: 8
n: 72370055773322622139731865630429942408\
57116359379907606001950938285454250989
(=222 4+ 0x14def9de a2f79cd6 5812631la 5cf5d3ed)
tr:  —221938542218978828286815502327069187962
(=(+1)—h-n=—0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a)
a: -1
d: —121665/121666 = 37095705934669439343138083508754565189\
542113879843219016388785533085940283555
(=0x52036cee 2b6ffe73 8cc74079 7779898 00700a4d 4141d8ab 75ebddca
135978a3)
Gyx: 15112221349535400772501151409588531511\
454012693041857206046113283949847762202
(=0x216936d3 cd6e53fe clad4e231 fddédc5c 692cc760 9525a7b2 c9562d60
8f25d51a)
Gy:  4/5=46316835694926478169428394003475163141\
307993866256225615783033603165251855960
(=0x66666666 66666666 66666666 66666666 66666666 66666666 66666666
66666658)

The curve Edwards25519 is isomorphic to the curve Curve25519 specified in Section 4.2.2.1,
where
e the base point of Curve25519 corresponds to the base point of Edwards25519;
e the point at infinity & and the point (0,0) of order two of Curve25519 correspond to,
respectively, the point (0, 1) and the point (0, —1) of order two on Edwards25519; and
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e cach other point (u, v) on Curve25519 corresponds to the point (o u/v, (u — 1)/(u + 1)) on
Edwards25519, where a is the element of GF(p) defined by

o 51042569399160536130206135233146329284\
152202253034631822681833788666877215207
(=0x70d9120b 9f5ff944 2d84£f723 £c03b081 3a5e2c2e b482e57d 3391fb55
00ba8le?).

The inverse mapping from Edwards25519 to Curve25519 is defined by
e mapping the point (0, 1) and the point (0, —1) of order two on Edwards25519 to,
respectively, the point at infinity & and the point (0,0) of order two of Curve25519 and
e having each other point (x, y) on Edwards25519 correspond to the point ((1 + y)/(1 —y),

ol +y)/(1-y)x).
See Appendix B.1 for more details.
4.2.3.2 Edwards448

The elliptic curve Edwards448 is the Edwards curve Eq.q defined over the prime field GF(p), with
p=2%8-2224_1_ and with parameters a=1 and d=-39081 [RFC 8032]. This curve has order /-n,
where 4=4 and where 7 is a prime number. For this curve, a is a square in GF(p), whereas d is
not. The quadratic twist of this curve has order /1-n1, where 41 =4 and where ni is a prime
number. This curve has domain parameters D=( p, &, n, Type, a, d, G), where the Type is
“twisted Edwards curve” and where the other parameters are defined as follows:

p: 2448_2224_1
(COxfEffffff fEfEfFff fEFEFFEf fEFEEFEF fEFFEFEFf fEFFEFEF fEfffffe
ffEfEfff ffEfEfff ffEfEfff ffEfffff ffEfffff ffEfEfff fEEFEEES)
h: 4
n: 1817096810739017226373309519720011335884103401718295150703725497951
46003961539585716195755291692375963310293709091662304773755859649779
(=2* — 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d
54a7bb0d)
tr: 28312320572429821613362531907042076847709625476988141958474579766324
(=(p+1)—h-n=0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab
721cf5b5 529eec34)
a: 1
d: -39081
=7268387242956068905493238078880045343536413606873180602814901991806\
12328166730772686396383698676545930088884461843637361053498018326358
(FOxXfEffffff fEFEFFff fEFEFFEf FEFEFFEF FEFEFFEF FEFEEFEF fEfffffe
fEEfEfff ffEfEfff fEEfEfff fEEfEfff fEEFfEfff fEEFEFEf £E£££6756)
Gy 2245800402959243001876043340998960362467896416325641342461254616869\
50415467406032909029192869357953282578032075146446173674602635247710
(=0x4£1970c6 6bedOded 221d15a6 22bf36da 9e146570 470f1767 eabde324

21



943
944
945
946
947
948
949
950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

981
982
983

984
985
986

NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY:
ELLIPTIC CURVE DOMAIN PARAMETERS

a3d3a464 12aelaf?7 2ab66511 433b80el 8b00938e 2626a82b c70cc05e)

Gy: 2988192100784814926760179304439306734375440401540802420959282413723\
31506189835876003536878655418784733982303233503462500531545062832660
(=0x693£4671 6eb6bc24 88762037 56c9c762 4beaT373 6ca39840 87789cle
05a0c2d7 3ad3fflc e67c39c4 fdbdl32c 4ed7c8ad 9808795b f£230fald)

4.2.3.3 E448

The elliptic curve E448 is the Edwards curve E..« defined over the prime field GF(p), with
p=2*8-2224_1_ and with parameters a=1 and d=39082/39081. This curve has order /-n, where
h=4 and where n is a prime number. For this curve, a is a square in GF(p), whereas d is not. The
quadratic twist of this curve has order 41-n1, where 41 =4 and where n1 is a prime number. This
curve has domain parameters D=(p, h, n, Type, a, d, G), where the Type is “twisted Edwards
curve” and where the other parameters are defined as follows:

p: 2448_2224_1
(SOXEEfEEFFE FEEEEEEE FEEEEEEf FEFFFFEE FEEEEEFf FEEEEEEf fEFFfffe
FEFFFFEf FEEEFEFf FEEEEEEf FEFFEEff fEEEFFFf fEEEFEEf fEEEFEEE)
h: 4
n: 1817096810739017226373309519720011335884103401718295150703725497951
46003961539585716195755291692375963310293709091662304773755859649779
(=2%6 — 0x8335dc16 3bbl24b6 5129c96f de933d8d 723a70aa dc873d6d
54a7bb0d)
tr: 28312320572429821613362531907042076847709625476988141958474579766324
(=(p+1) = h-n=0x1 0cd77058 eec492d9 44a725bf 7Tadcf635 c8e9clab
721cf5b5 529%eec34)
1
39082/39081 =
6119758507445291761604232209655533175432196968710166263289689364150\
87860042636474891785599283666020414768678979989378147065462815545017
(=0xd78b4bdc 7£0dafl9 £24£38c2 9373a2cc ad461572 42a50£37 809blda3
412al12e7 9ccc9c8l 264cfe9a d0809970 58fb6lcd 243cc32d baal56b9)
Gx: 3453974930397295163740086041505374102666552600751832902164069702816\
45695073672344430481787759340633221708391583424041788924124567700732
(=0x79a70b2b 70400553 ae7c9df4 16c792c6 112875la c9296924 0c25a07d
728bdc93 e21£7787 ed697224 9de732f3 8496cdll 69871309 3e9c04fc)
Gy:  3/2=
3634193621478034452746619039440022671768206803436590301407450995903\
06164083365386343198191849338272965044442230921818680526749009182718

(=Ox7fffffff fEfFfffff fEEFfffff fEFFFEFff FEFFEFFff FEFEFFFE FEEFFFEF
TELEfffff fEfff£f£ff fELEEEFff fELEEEFf fEE£EEEEf fELEEEFfFf fEffffffel)

SR

The mapping from E448 to Curve448 is defined by mapping the point (0, 1) and the point (0, —1)
of order two on E448 to, respectively, the point at infinity & and the point (0,0) of order two of
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Curve448 and having each other point (x, y) on E448 correspond to the point ((y + 1)/(y — 1), a(y
+ 1)/(y—1)x). The value of a is specified in 4.2.2.2. See Appendix B.1 for more details.

The curve Edwards448 (specified in Section 4.2.3.2) is 4-isogenous to the curve E448. See
Appendix B.4 for further information.

4.3 Curves over Binary Fields

This section specifies elliptic curves over binary fields where each curve takes the form of a
curve in short-Weierstrass form and is either a Koblitz curve (Section 4.3.1) or a pseudorandom
curve (Section 4.3.2). Due to their limited adoption, elliptic curves over binary fields (i.e., all the
curves specified in Section 4.3) are deprecated and may be removed from a subsequent revision
to these guidelines to facilitate interoperability and simplify elliptic curve standards and
implementations. New implementations should select an appropriate elliptic curve over a prime
field from Section 4.2.

Here, the domain parameters a and b for Koblitz curves are elements of the base field GF(2), i.e.,
b=1 and a=0 or a=1, whereas, for pseudorandom curves, a=1 and b is a nonzero element of
GF(2™).

For each field degree m, a pseudorandom curve is given, along with a Koblitz curve. The
pseudorandom curve has the form

E:y?+xy=x3+x2+b,
and the Koblitz curve has the form

Ea:y* +xy=x*+ax?+1,
where a=0or 1.

For each pseudorandom curve, the cofactor is 4 = 2. The cofactor of each Koblitz curve is 4 =2
ifa=1,andh=4ifa=0.

The coefficients of the pseudorandom curves and the coordinates of the base points of both kinds
of curves are given in terms of both the polynomial and normal basis representations discussed in
Section 4.1.3.

For each m, the following parameters are given:
Field Representation:

e The normal basis type T
e The field polynomial (a trinomial or pentanomial)

Koblitz Curve:

e The coefficient a
e The base point order n
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e The base point x coordinate Gx
e The base point y coordinate Gy

Pseudorandom curve:
e The base point order n
Pseudorandom curve (Polynomial Basis representation).:

e The coefficient b
e The base point x coordinate G«
e The base point y coordinate Gy

Pseudorandom curve (Normal Basis representation):

The 160-bit input Seed to the SHA-1 based algorithm (i.e., the domain parameter seed)
The coefficient b (i.e., the output of the SHA-1 based algorithm)

The base point x coordinate G«

The base point y coordinate Gy

Integers (such as 7, m, and n) are given in decimal form; bit strings and field elements are given
in hexadecimal.

4.3.1 Koblitz Curves

4.3.1.1 Curve K-163

The use of this curve is for legacy-use only. See FIPS 186-4 for the specification.
4.3.1.2 Curve K-233

The elliptic curve K-233 is a Weierstrass curve Ba» defined over the binary field GF(2"), with
m=233, and with parameters a=0 and b=1. This curve has order 4-n, where /=4 and where n is a
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}),
where the Type is “Weierstrass curve” and where the other parameters are defined as follows:

ﬂz): 2233 +Z74 + 1

h: 4
n: 345087317339528189371737793113851276057094098886225212\
6328087024741343
(=0x80 00000000 00000000 00000000 00069d5b b915bcdd 6efblad5 fl73abdf)
tr: —137381546011108235394987299651366779
(=2"+1)—h-n= -0xla756e e456f351 bbectb57 c5ceaf7b)
a: 0

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000000)
b: 1
(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000001)
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Polynomial basis:

Gx: 0x172 32ba853a 7e73lafl 29f22ff4 149563a4 19c26bf5 0adc9dee efad6l26
Gy: 0x1db 537dece8 19p7f£70f 555a67c4 27a8cd9% fl8aebSb 56e0cll0 56faebal
Normal basis:

Gx: 0x0fd e76d9dcd 26e643ac 26f1aa%0 1aal2978 4b71£fc07 22b2d056 14d650b3
Gy: 0x064 3e317633 155c9e04 47ba8020 a3c43177 450ee036 d6335014 34cac978

Seed: n/a (binary Koblitz curve)
4.3.1.3 Curve K-283

The elliptic curve K-283 is a Weierstrass curve Ba,» defined over the binary field GF(2™), with
m=283, and with parameters ¢=0 and b=1. This curve has order 4-n, where /=4 and where n is a
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}),
where the Type is “Weierstrass curve” and where the other parameters are defined as follows:

f(Z)Z ZZS3 +212 +Z7 +ZS +1
h: 4
n: 388533778445145814183892381364703781328481\
1733793061324295874997529815829704422603873
(FOx1ffffff ffEfffff ffEfffff ffEfffff ffffedae 2ed07577
265dff7f 94451e06 lel63c6l)
tr: 7777244870872830999287791970962823977569917
(=2"™+1)—h-n= 0x5947 44be2a23 66880201 aeeb87e7 87a70e7d)
a: 0
(=0x0000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000)
b: 1
(=0x0000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000001)
Polynomial basis:

Gx: 0x503213f 78ca4488 3fla3b8l 62f188eb 53cd265f 23clb567a
16876913 b0c2ac24 58492836
Gy Oxlccda38 0flc9e31 8d90£95d 07e5426f e87e45c0 8184698

4596236 4e341161 77dd2259
Normal basis:

Gx: 0x3ab9593 £8db09fc 188fld7c 4ac9fcc3 e57fcd3b dbl5024b
212c7022 9de5fcd9 2ebleatl
Gy: 0x2118c47 55e7345c d8f603ef 93b98bl0 6fe8854f feb9%9a3b3

04634cc8 3a0e759f 0c2686bl
Seed: n/a (binary Koblitz curve)

4.3.1.4 Curve K-409

The elliptic curve K-409 is a Weierstrass curve Ba,» defined over the binary field GF(2™), with
m=409, and with parameters a=0 and b=1. This curve has order 4-n, where /=4 and where n is a
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}),
where the Type is “Weierstrass curve” and where the other parameters are defined as follows:

25



1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

1119
1120

1121
1122

1123

1124
1125

1126
1127

1128

1129
1130

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

1141
1142

1143
1144

1145
1146
1147

NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY:

S2):
h:

n:

tr.

ELLIPTIC CURVE DOMAIN PARAMETERS

FAR AR

4

3305279843951242994759576540163855199142023414821406096423243\

95022880711289249191050673258457777458014096366590617731358671

(= Ox7fffff fEEfffff fEEfEfff fEEFEfff fEEFEfff fEEFEFFf fffffeSf
83b2d4ea 20400ec4 557d5ed3 e3e7cab5b 4b5c83b8 el0le5fcf)

10457288737315625927447685387048320737638796957687575791173829

(=(2"+1)—h-n=0x681 fl134ac57 Teffcdee aala84b0 7060d692 d28dfllc

7£8680c5)

0

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000)

1

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000001)

Polynomial basis:

Gy:

Gy:

0x060f05f 658f49cl ad3abl89 0f£718421 0efd0987 e307c84c 27accfb8
f9f67cc2 c460189%9e bS5aaaac?2 ee222ebl b35540cf 9023746
0x1e36905 0b7cd4ed?2 acbaldac bf04299c 3460782f 918ead27 6325165
e%ealle3 dab5f6cd42 e9c55215 aaf%9ca27a 5863ec48 dB8e0286b

Normal basis:

Gy:

Gy:

0x1b559c7 cba2422e 3affel33 43e808b5 5e012d72 o6calb7e6 aoc3aeafb
cle3a%98e 10calOfcf 98350c3b 7£89a975 4a8eldcO0 713cecida

0x16d8cd42 052f07e7 713e7490 eff318ba labdofef 8a5433c8 94b24f5c
817aeb79 852496fb ee803a47 bc8a2038 78ebflcd 99%afd7d6

Seed: n/a (binary Koblitz curve)

4.3.1.5 Curve K-571

The elliptic curve K-571 is a Weierstrass curve Ba,» defined over the binary field GF(2"), with
m=571, and with parameters a=0 and b=1. This curve has order 4-n, where /=4 and where n is a
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}),
where the Type is “Weierstrass curve” and where the other parameters are defined as follows:

S2):
h:

n:

tr.

P4 104 54 24

4
193226876150862917234767594546599367214946366485321749932\
861762572575957114478021226813397852270671183470671280082\
5351461273674974066617311929682421617092503555733685276673

(:OX2000OOO 00000000 00000000 00OOOOOOO OOOOOOOO0 00000000 00000000
00000000 00000000 131850el £f19a63e4 b391a8db 917£4138

b630d84b e5d63938 1le9ldeb4 5cfe778f 637c1001)

—148380926981691413899619140297051490364542\
574180493936232912339534208516828973111459843
=2"+1)—h-n= -0x4c614387 c6698f92 ced6al36e 45fd04e2 d8c3612f
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9758e4e0 7a477adl 73f9de3d 8df04003)
a: 0
(:OXOOOOOOO 00000000 00000000 00000000 00000000 00000000 000O000OCO
00000000 00000000 00000000 00000000 00000000 OOOOOOOO)
00000000 00000000 00000000 00000000 00000000)
b: 1
(:OXOOOOOOO 00000000 00000000 00000000 00000000 00000000 000O000OCO
00000000 00000000 00000000 00000000 00000000 00000000)
00000000 00000000 00000000 00000000 00000001)
Polynomial basis:

Gx: Ox26eb7a8 59923fbc 82189631 £8103fed4d ac9ca297 0012d5d4 60248048
01841cad4 43709584 93b205e6 47da304d bd4ceb08c bbdlba39
494776fb 988b4717 4dca88cT 2945283 a0lc8972

G@: 0x349dc80 7f4fbf37 4fdaeade 3bca9531 4dd58cec 9f307a54 ffcolefc
006d8a2c 9d4979c0 acddaea’ 4fbebbb9 f772aedc b620b0la
Tba7aflb 320430c8 591984f6 0lcd4cld 3eflc77a3

Normal basis:

Gy: 0x04bb2db a418d0db 107adae0 03427e5d 7ccl39%ac b465e593 4f0beaza
b2£3622b c2903d5b 9aa7alfd f£d5d8be6 6057cl00 8e7le484
bcd98£f22 bf847642 37673674 29%9ef2ec5 bc3ebcf?

G@: Ox44cbb57 de20788d 2c¢c952d7b 56cf39%bd 3e89b189 84bdl24e 751ceffd
369dd8da cobab9ebe 745df44d 8220ce22 aa2c852c fcbbef4d
ebaa98bd 2483e331 80e04286 feaa2530 50caffoel

Seed: n/a (binary Koblitz curve)

4.3.2 Pseudorandom Curves

4.3.2.1 Curve B-163

The use of this curve is for legacy-use only. See FIPS 186-4 for the specification.
4.3.2.2 Curve B-233

The elliptic curve B-233 is a Weierstrass curve Ba, defined over the binary field GF(2™), with
m=233, and with parameter a=1. This curve has order /-n, where #=2 and where 7 is a prime
number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the
Type is “Weierstrass curve” and where the other parameters are defined as follows:

fz): 2B+ 41

h: 2
n: 690174634679056378743475586227702555583981273734501355\
5379383634485463
(=0x100 00000000 00000000 00000000 0013e974 e72£f8a69 22031d26 03cfe0d7)
tr —206777407530349254000433718821372333
(=2"+1)—h-n= -0x27d2e9 ce5f14d2 44063ad4c 079fclad)
a: 1

(:OXOOO 00000000 00000000 0OOOOOOOO 00000000 00000000 00OCOOOOO OOOOOOOl)
Polynomial basis:
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b: 0x066 647edebc 332c7f8c 0923bb58 213b333b 20e9ced2 81fell5f 7d8f90ad
Gx: 0x0fa c9dfcbac 8313bb21 39flbb75 5fef65bc 391£f8b36 f£8f8eb73 71£d558Db
Cb: 0x100 6a08a419 03350678 e58528be bf8albef f867a7ca 36716f7e 01£81052
Normal basis:

b: 0x1a0 03e0962d 4f9%a8e40 7c904a95 38163adb 82521260 0c7752ad 52233279
Gx: 0x18b 863524b3 cdfefb94 £2784e0b 1ll6faac5 4404bc9]1 62a363ba b84aldch
Gy: 0x049 25df77bd 8b8ffla5 f£f519417 822bfedf 2bbd7526 44292c98 c7af6e02

Seed: 0x74d59ff0 7f6b413d 0Oealdb34 4b20a2db 049b50c3

4.3.2.3 Curve B-283

The elliptic curve B-283 is a Weierstrass curve B, defined over the binary field GF(2"), with
m=283, and with parameter a=1. This curve has order 4-n, where 4/=2 and where 7 is a prime
number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the
Type is “Weierstrass curve” and where the other parameters are defined as follows:

f(Z)I Z283 +212+Z7+ZS +1

h: 2

n: 7770675568902916283677847627294075626569625924376904889\
109196526770044277787378692871
(FOx3ffffff ffEffffff ffEfffff fEEfEffff ffffef90 399660fc

93829016 5b042a7c efadb307)

tr: 2863663306391796106224371145726066910599667
(=(2"+1)—h-n= 0x 20df8cd33e06d8eadfd349f7ab0620a499£3)

a: 1

(=OXOOOOOOO 00000000 00000000 00000000 00000000 00000000

00000000 00000000 OOOOOOOl)

Polynomial basis:

b: 0x27b680a c8b8596d abadaf8a 19a0303f ca97fd76 45309fa2
a581485a f6263e31 3b79a2f5

Gy: 0x5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c
80e2e198 f8cdbecd 0x86b12053

G@: 0x3676854 fe2414lc b98febd4d b20d02b4 516£f£702 350eddbO
826779c8 13f0df45 be8112f4

Normal basis:

b: 0x157261b 894739fb 5al13503f 55f0b3fl 0c560116 66331022
01138ccl 80c0206b dafbc951

Gx: 0x749468e 464eed68 0634b21f7 £61cb700 701817e6 bc36a236
4cb8906e 940948ea ad463c35d

Gy: 0x62968bd 3b489%ach c9b859da 68475c31 Sbafcdc4 ccd0dc90
5b70£f624 46£f49c05 2f49c08c

Seed: 0x77e2b073 70eb0f83 2a6ddbb6 2dfc88cd 06bb84be

4.3.2.4 Curve B-409

The elliptic curve B-409 is a Weierstrass curve Ba,» defined over the binary field GF(2"), with
m=409, and with parameter a=1. This curve has order 4-n, where 4/=2 and where n is a prime
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number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the
Type is “Weierstrass curve” and where the other parameters are defined as follows:

flz): 2+ 28741
h: 2
n: 6610559687902485989519153080327710398284046829642812192846487\
98304157774827374805208143723762179110965979867288366567526771
(=0x1000000 00000000 00000000 00000000 00000000 00000000 000001e2
aad6a6l2 £33307be 5fad7c3c 9e052£83 8164cd37 d9a21173)
tr: -6059503967182126918765909026644927652236777310526686418445029
=2"+1)—h-n= -0x3c5 55ad4c25 e6660f7c bf48f879 3c0a5f07
02c99a6f b34422e5)
a: 1
(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000001)
Polynomial basis:

b: 0x021a5c2 c8ee9feb 5c4b9%a75 3b7b476b 7fd6422e f1£f3dd6e7 4761fa99
deac27c8 a%al97b2 72822f6c d57a55aa 4f50ae31 7b13545f
G 0x15d4860 d088ddb3 496b0c60 64756260 441cdeda f1771d4d b01ffe5b
34e59703 dc255a86 8al118051 5603aeab 60794e54 bb7996a7
Gy 0x061lblcf abb6bebf3 2bbfa783 24edlO6a 7636b9c5 a7bdl198d 0158aa4df

5488d08f 38514f1f df4b4f40 d2181b36 81c364ba 0273c706
Normal basis:

b: 0x124d065 1¢c3d3772 f7f5alfe 6e715559 e2129%bdf a04d52f7 b6ac7c53
2cf0ed06 £610072d 88ad2fdc c50cofde 72843670 £f8b3742a
Gy: Ox0Oceacbc 9£f475767 d8e69f3b 5dfab398 13685262 bcacf22b 84c7b6dd
981899e7 318c96f0 761f77c6 02c0l6ce d7c¢c548de 830d708f
G@: 0x199d64b a8f089c6 db0elOb6l e80bb959 34afdlOca f2e8be76 dlche9af

fc7476df 49142691 ad303902 88aal9%bc ¢59¢c1573 aa3c009a
Seed: 0x4099p5a4 57£9d69f 79213d09 4cdbed4dd 4262210b

4.3.2.5 Curve B-571

The elliptic curve B-571 is a Weierstrass curve Ba,» defined over the binary field GF(2"), with
m=571, and with parameter a=1. This curve has order 4-n, where 4/=2 and where 7 is a prime
number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the
Type is “Weierstrass curve” and where the other parameters are defined as follows:

f2): 2N+ P+ 2+

h: 2

n: 386453752301725834469535189093198734429892732970643499865\
723525145151914228956042453614399938941577308313388112192\
6944486246872462816813070234528288303332411393191105285703

(:OX3fffff i e S s e i S e i s s e A i i s e e i D s e s i i R s s i i i i i
fEfEfffff ffffffff e661lcel8 ££559873 08059b18 6823851e

c7dd9cal 161de93d 5174d66e 8382e9bb 2fe84e47)

tr: - 9953438501360975865946981915046538223641239\
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6452349171016760770327496674607579419075443
=2"+1)—h-n= 0x333c63ce 0154cfl9 effdc9cf 2fb8f5c2 7044c6bd

1

Polynomial basis:

b:

Gi:

Gy:

0x2f40e7e

0x303001d

0x37b£273

Normal basis:

b:

Gy:

Seed:

0x3762d0d

0x0735e03

0x04a3642

0x2aa058£t7

d3c42d85 5d165322 f8fa2c89 a02f6373)

(:OXOOOOOOO 00000000 00000000 00000000 0OOOOOOO 0OOOOOOOO 00000000

00000000 00000000 0OOOOOOO OOOOOOOO 00000000 00000000
00000000 00000000 00000000 00000000 00000001)

2221£295
4a9%al8ad
78ffl2aa

34b85629
db7b2abd
8614£139

42da639b
3921e8ab
0485cl9b

47116006
9132d434
3cl275fa

5def5925
7dfeadd2
Off8£f2£3

0572616c
9cd3242c
b6a72d88

3a0e33ab

de297117
84ffabbd
520e4dde’

ocloc0d4
bde53950
4abfa3bd

odccfffe
84423e43
loe2fl151

179da356
26101ald
31£f5bc9f

cc33173e
d361089f
£9176418

df7e606f
4726be57
0062eed0

486b0f6l

b7f£3d62f
8efa5933
39bacalc

0d3cd775
£4c0d293
c850d927

b73d69d7
bab08a57
6e23dd3c

88eeacct
fb377411
4belalf4

b2a8ce77
0a7a0247
£97d117e

ccadaecft
9855e812
dd34b109

0410c53a

30

5c6a97ff
2be7ad6’7
Tffeff7f

0a93d1ld2
cdd711a3
ele7769c

8cobc27a6
6291af8f
lad4827af

591labcde
5586623
67f01ca8

67522b46
al84elc?
624e2015

c3b76dab
de7ec5c5
o6d3acbb6

7£132310

cb8ceffl
56a66e29
2955727a

955fa80a
5b67fbl4
8eec2dl9

009cbbca
461bb2a8
1b8acl5b

a7500011
£75£0000
85c74777

6d278b65
04417866
dfl662a8
0ebl248d

00b4576a
b01adad97

cdbbal8ce
4afdl85a

a5f40fc8
99%9ae6003

1980£853

b3531d2f

8d9608c5

lce61198

0a291612
e0felOfeb

dO03fbdfc
24628048
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Appendix A — Details of Elliptic Curve Group Operations

A.1 Non-Binary Curves

A.1.1 Group Law for Weierstrass Curves

For each point P on the Weierstrass curve W5, the point at infinity &J serves as the identity
element, i.e., P+ =T+ P=P.

For each point P=(x, y) on the Weierstrass curve Wa», the point —P is the point (x, —y), and one
has P+ (—P) = .

Let P1= (x1,y1) and P2= (x2, )2) be points on the Weierstrass curve Wa», where P1# + P2, and let
Q = P1+ P2. Then Q = (x, y), where

x+x;+x,=2Aand y+ vy, = A(x; —x),whereA = (y, — y;)/(x, — x1).

Let P = (x1,y1) be a point on the Weierstrass curve Wa», where P# — P, and let Q =2P. Then Q =
(x,y), where

x+2x; = A*and y+y; = A(x; — x),where A = (3x,% + a)/2y;.
A.1.2 Group Law for Montgomery Curves

For each point P on the Montgomery curve Ma g, the point at infinity & serves as the identity
element,ie., P+ =0+ P=P.

For each point P =(u, v) on the Montgomery curve Ma B, the point —P is the point (1, —v), and
one has P+ (—P) = .

Let P1= (u1,v1) and P2= (u2, v2) be points on the Montgomery curve Ma B, where P1# + P2, and
let O = P1 + P>. Then Q = (u, v), where

u+u + u, =BA? —Aand v+ v; = AMu; —u),whered = (v, — v1)/(uy —uy ).

Let P= (u1,v1) be a point on the Montgomery curve Ma s, where P# — P, and let Q = 2P. Then Q
= (u,v), where

u+2u; =BA%2—Aandv +v; = AMu; —u),whereA = (3u;? + 2Au, + 1)/2Bv;.
A.1.3 Group Law for Twisted Edwards Curves

Let P1= (x1,y1) and P2= (x2,)2) be points on the twisted Edwards curve E,q and let Q = P1 + P.
Then O = (x,y), where

X1Y2 +X2Y1 Y1Y2 — AX1X3 )

G = ,
1+ dx; %51y, 1 —dx1x1Y,
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For the twisted Edwards curves specified in this recommendation, the domain parameter a is
always a square in GF(q), whereas d is not. In this case, the addition formula above is defined for
each pair of points. In particular, for each point P = (x1,)1) on the twisted Edwards curve Eq 4,
point doubling yields the point Q = 2P, where Q = (x,y) and

2x1y1 }’12 - ax12>

(,y) = (1 + dx2y,2 "1 — dx; 2y, 2

Note that (0, 1) is the identity element, since for each point P = (x, y) on the twisted Edwards
curve Eag, one has P+ (0, 1) = (x, y) + (0, 1) = (x, y) = P.

For each point P= (x, y) on the twisted Edwards curve Ea B, the inverse point —P is the point (-x,
y) and one has P + (—P) = . The point (0, —1) has order 2.

A.2 Binary Curves

A.2.1 Group Law for Weierstrass Curves

For each point P on the Weierstrass curve Ba,», the point at infinity &J serves as the identity
element, i.e., P+ =T+ P=P.

For each point P = (x, y) on the Weierstrass curve Bas, the point —P is the point (x, x + y) and one
has P+ (—P) = .

Let P1= (x1,y1) and P2= (x2, )2) be points on the Weierstrass curve Ba,s, where P1# £ P2, and let
Q = P1+ P2. Then Q = (x, y), where

x+x;+x,=2A2+A+aand (x+y) +y; = Ax; + x),where A = (y, + y1)/(x2 + x1 ).

Let P = (x1,y1) be a point on the Weierstrass curve Ba», where P# — P, and let O = 2P. Then O =
(x,y), where

x=MAM+A+a=x?+b/x?and (x +y) +y; = Ax; + x), where A = x; + y;/x;.
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Appendix B — Relationship Between Curve Models

The non-binary curves specified in this recommendation are expressed in different curve models
defined over the same field GF(g)—namely as curves in short-Weierstrass form, as Montgomery
curves, or as twisted Edwards curves. These curve models are related, as follows.

B.1 Mapping Between Twisted Edwards Curves and Montgomery Curves

One can map points on the Montgomery curve Ma s to points on the twisted Edwards curve Eq.a,
where a=(A+2)/B and d=(A-2)/B and, conversely, map points on the twisted Edwards curve Es.q
to points on the Montgomery curve Ma s, where A=2(a+d)/(a-d) and where B=4/(a-d). For the
curves in this specification, this defines a one-to-one correspondence, which is an isomorphism
between Ma and Esq, thereby showing that the discrete logarithm problem in either curve
model is equally hard.

For the Montgomery curves and twisted Edwards curves in this specification, the mapping from
Ma B to Eqa is defined by mapping the point at infinity & and the point (0, 0) of order two on
Ma s to, respectively, the point (0, 1) and the point (0, —1) of order two on Eq4, while mapping
every other point (u, v) on Ma to the point (x, y)=(u/v, (u—1)/(u+1)) on Esa. The inverse
mapping from Eq.q to Map is defined by mapping the point (0, 1) and the point (0, —1) of order
two on Eq 4 to, respectively, the point at infinity ¢ and the point (0, 0) of order two on Ma s,
while every other point (x, y) on Es.« is mapped to the point (u, v)=((1+y)/(1-y), (1+y)/(1-y)x) on
MaB.

Implementations may take advantage of this mapping to carry out elliptic curve group operations
originally defined for a twisted Edwards curve on the corresponding Montgomery curve, or vice-
versa, and translating the result back to the original curve to potentially allow code reuse.

B.2 Mapping Between Montgomery Curves and Weierstrass Curves

One can map points on the Montgomery curve Ma s to points on the Weierstrass curve Wap,
where a=(3—A?)/3B? and b=(2A3-9A)/27B>. For the curves in this specification, this defines a
one-to-one correspondence, which is an isomorphism between Ma s and Wap, thereby showing
that the discrete logarithm problem in either curve model is equally hard.

For the Montgomery curves in this specification, the mapping from Ma to Was is defined by
mapping the point at infinity & on Ma s to the point at infinity & on Wa», while mapping every
other point (u, v) on Ma s to the point (x, y)=(u/B+A/3B, v/B) on Wa..

Note that not all Weierstrass curves can be mapped to Montgomery curves since the latter have a
point of order two and the former may not. In particular, if a Weierstrass curve has prime
order—as in the case with the curves P-224, P-256, P-385, and P-521 specified in this
recommendation—this mapping is not defined.

This mapping can be used to implement elliptic curve group operations originally defined for a
twisted Edwards curve or for a Montgomery curve using group operations on the corresponding
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elliptic curve in short-Weierstrass form and translating the result back to the original curve to
potentially allow code reuse.

Note that implementations for elliptic curves with short-Weierstrass form that hard-code the
domain parameter a to a= —3 cannot always be used this way since the curve Wa» may not
always be expressed in terms of a Weierstrass curve with a=—3 via a coordinate transformation.
This is, unfortunately, the case with the Montgomery curves and twisted Edwards curves
specified in this recommendation.

B.3 Mapping Between Twisted Edwards Curves and Weierstrass Curves

A straightforward method to map points on a twisted Edwards curve to points on a Weierstrass
curve is to convert the curve to Montgomery format first. Use the mapping described in
Appendix B.1 to map points on a twisted Edwards curve to points on a Montgomery curve. Then
use the mapping described in Appendix B.2 to convert points on the Montgomery curve to points
on a Weierstrass curve.

B.4 4-lsogenous Mapping

The 4-isogeny map between the Montgomery curve Curve448 and the Edwards curve
Edwards448 is given in [REC 7748] to be:

2 (2 —x2_ 42
(u,v):(z_z,(xx—sy)y)

(x ):( 4v(u?-1) ) — (WS —2ud—4uv?+u)
24 ut—2ul+4v2+17° (W5 —2u2v2-2udvi+u)

The curve Edwards448 (Section 4.2.3.2) is 4-isogenous to the curve E448 (Section 4.2.3.3),
where the base point of Edwards448 corresponds to the base point of E448 and where the
identity element (0, 1) and the point (0, —1) of order two of Edwards448 correspond to the
identity element (0, 1) on E448. Every other point (x, y) on Edwards448 corresponds to the point
on E448, where a is the element of GF(p) defined in Section 4.2.2.2:

o oxy 1+ d x%y?
'y = 2027 2 2
1—-dx?y? y?—x
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Appendix C — Generation Details for Recommended Elliptic Curves

C.1 General Cryptographic Criteria
All curves recommended in this specification satisfy the following general cryptographic criteria:

1. Underlying finite field. The underlying finite field GF(q) shall be either a prime number or
g=2" where m is a prime number.

2. Curve order. Each curve E defined over the finite field GF(g) shall have order |E|=h-n, where

n is a large prime number, where /4 is co-prime with n, and where 4 is small (/4 is called the

co-factor of E). Each curve shall have co-factor 4 < 21°,

Base point. Each curve E shall have a fixed base point G of prime order ».

4. Avoiding anomalous curve attack. Each curve E defined over the finite field GF(g) shall
have order |E|#g so as to avoid attacks using additive transfers.

5. Large embedding degree. The elliptic curve discrete logarithm problem in £ can be
converted to an ordinary discrete logarithm problem defined over the finite field GF(g")
where 7 is the smallest positive integer so that ¢’ = 1(mod #n), called the embedding degree.
Each curve shall have embedding degree ¢ > 2'°.

6. Endomorphism field. For each curve E over GF(q) with trace tr, the (negative) number
Disc=tr*—4q is closely related to the discriminant of the endomorphism field of E. As of the
publication of this document, there is no technical rationale for imposing a large lower bound
on the square-free part of |Disc|, although—except for curves used in pairing-based
cryptography—this value is often large. This recommendation does not impose restrictions
on the value of the square-free part of |Disc|.

(98]

C.1.1 Implementation Security Criteria

Each field shall have a fixed representation.

C.2 Curve Generation Details

C.2.1 Weierstrass Curves over Prime Fields
C.2.1.1 Curves P-224, P-256, P-384, P-521

Each of the curves P-224 (Section 4.2.1.2), P-256 (Section 4.2.1.3), P-384 (Section 4.2.1.4), and
P-521 (Section 4.2.1.5) is a curve Wapin short-Weierstrass form with prime order (and, thus, co-
factor #=1). Each curve is defined over a prime field GF(p) where the prime number is of a
special form to allow efficient modular reduction (see Appendix G.1).

The NIST prime curves were generated using the procedure in C.3.1 with Adigest = 160 and
SHA-1 hash function. The curve parameters a and b are:

1. The parameter @ was set to a = —3 (mod p) (this allows optimizations of the group law if
implemented via projective coordinates in Weierstrass form);
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1465 2. The parameter b was derived in a hard-to-invert way using the procedure in Appendix
1466 C.3.1 from a pseudorandom Seed value so that the following conditions are satisfied
1467 simultaneously:

1468 a. 4a® + 27b*# 0 in GF(p);

1469 b. The curve has prime order n (this implies that 2 = 1); and

1470 c. The curve satisfies the cryptographic criteria in Appendix C.1.

1471 3. Select a base point G = (Gx, Gy) of order n.

1472  C.2.1.2 Curves W-25519, W-448

1473 The curves W-25519 (Section 4.2.1.6) and W-448 (Section 4.2.1.7) were obtained via an
1474  1somorphic mapping (see Appendix B.1).

1475 C.2.2 Montgomery Curves

1476  C.2.2.1 Curve25519

1477  Curve25519 was specified in IETF 7748 by the Crypto Forum Research Group (CFRG). This
1478  curve is a Montgomery curve Ma g defined over the field GF(p), where p=22>—19 and where the
1479  curve has co-factor #=8 and the quadratic twist £1 has co-factor #1=4. The prime number is of a
1480  special form to allow efficient modular reduction and finite field operations that try and

1481  minimize carry effects of operands. The curve parameters A and B are:

1482 1. The parameter B was set to B=1.

1483 2. The parameter A was selected as the minimum value of |A| so that the following
1484 conditions are satisfied simultaneously:

1485 a. The curve is cyclic (this implies that A>~4 is not a square in GF(p));

1486 b. The curve has co-factor #=8 (this implies that A+2 is a square in GF(p));
1487 c. The quadratic twist has co-factor #’=4;

1488 d. A has the form A =2 (mod 4) (this allows optimized implementations of
1489 implementations of the group law using the Montgomery ladder); and
1490 e. The curve and the quadratic twist both satisfy the cryptographic criteria in
1491 Appendix C.1.

1492 3. Select the base point G = (Gx, Gy) of order n, where |G| is minimal and where Gy is odd.

1493  C.2.2.2 Curve448

1494  This curve is a Montgomery curve Ma s defined over the field GF(p), where p=2%48—2224—1 and
1495  where the curve has co-factor #=4 and the quadratic twist £1 has co-factor #1=4. The prime
1496  number is of a special form to allow efficient modular reduction and finite field operations that
1497  try to minimize the carry effects of operands. The curve parameters A and B are:

1498 1. The parameter B was set to B=1.

1499 2. The parameter A was selected as the minimum value of |A| so that the following
1500 conditions are satisfied simultaneously:

1501 a. The curve is cyclic (this implies that A>~4 is not a square in GF(p));

1502 b. The curve has co-factor # = 4 (this implies that A+2 is not a square in GF(p));
1503 c. The quadratic twist has co-factor #’= 4;
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d. A has the form A =2 (mod 4) (this allows optimized implementations of
implementations of the group law using the Montgomery ladder); and
e. The curve and the quadratic twist both satisfy the cryptographic criteria in
Appendix C.1.
3. Select the base point G = (Gx, Gy) of order n, where |G:| is minimal and where Gy is even.

C.2.3 Twisted Edwards Curves

The twisted Edwards curve Edwards25519 (Section 4.2.3.1) was obtained from the Montgomery
curve Curve25519 (Section 4.2.2.1) via an isomorphic mapping.

The Edwards curve E448 Section 4.2.3.3) was obtained from the Montgomery curve Curve448
(Section 4.2.2.2) via an isomorphic mapping.

The Edwards curve Edwards448 (Section 4.2.3.2) was obtained from the curve E448 (Section
4.2.3.3) via a 4-isogenous mapping (see Appendix B.4).

C.2.4 Weierstrass Curves over Binary Fields
C.2.4.1 Koblitz Curves K-233, K-283, K-409, K-571

Each of the curves K-233 (Section 4.3.1.2), K-283 (Section 4.3.1.3), K-409 (Section 4.3.1.4),
and K-571 (Section 4.3.1.5) is a curve B, in short-Weierstrass form with co-factor =2 or h=4.
Each curve is defined over a binary field GF(2"), where m is a prime number. For Koblitz
curves, the curve parameters a and b are elements of GF(2), with b = 1. Hence, for each
parameter m, there are only two Koblitz curves, viz. with a = 0 and with @ = 1. Koblitz curves
with a = 0 have order 0 (mod 4), while those with a = 1 have order 2 (mod 4).

The curve parameters a and m are:

1. The parameter a was set to a = 0.
2. The set of integers m in the interval [160,600] was determined, so that the following
conditions are satisfied simultaneously:
a. m is a prime number;
b. The curve has co-factor # =4 or the quadratic twist of this curve has co-factor 4 =
2 (the latter implies that the Koblitz curve defined over the binary field GF(2™)
with a = 1 has co-factor 4 = 2); and
c. The thus determined curve satisfies the cryptographic criteria in Appendix C.1.
3. Select a pair (a, m) from the set determined above.
4. Select an irreducible polynomial f{z) of degree m, where f{(z) is selected of a special form
so as to allow efficient modular reduction (f{(z) is a trinomial or pentanomial).
5. Select a base point G = (Gx, Gy) of order n.

C.2.4.2 Pseudorandom Curves B-233, B-283, B-409, B-571

Each of the curves B-233 (Section 4.3.2.2), B-283 (Section 4.3.2.3), B-409 (Section 4.3.2.4), and
B-571 (Section 4.3.2.5) is a curve Ba,» in short-Weierstrass form with co-factor # = 2. Each curve
is defined over a binary field GF(2™), where m is a prime number, where the prime number is
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amongst those values for which a binary Koblitz curve exists. The NIST prime curves were
generated using the procedure in C.3.3, with Adigest = 160 and SHA-1 hash function. The curve
parameters a and b are:

1. The parameter @ was set to @ = 1 (this ensures that curves with co-factor 4 = 2 may exist).
The parameter b was derived in a hard-to-invert way using the procedure in Appendix
C.3.3 from a pseudorandom Seed value so that the following conditions are satisfied
simultaneously:

a. b#0in GF(p);

b. The curve has co-factor 4 = 2; and

c. The curve satisfies the cryptographic criteria in Appendix C.1.
3. Select a base point G = (Gx, Gy) of order n.

C.3 Generation and Verification of Pseudorandom Curves
C.3.1 Generation of Pseudorandom Curves (Prime Case)

When generating the NIST pseudo-random curves (i.e, those in Section 4.2.1), hdigest = 160 and
SHA-1 hash were used.

Inputs:
1. Positive integer /
2. Bit-string s of length hdigest
3. Approved hash function HASH with output length of Adigest bits and security design
strength of at least requested security strength.

Output: Coefficient b used to generate a pseudorandom prime curve.
Process:

Let / be the bit length of p, and define
v =L (1-1) /hdigest]
w =[— hdigest*v — 1.
Choose an arbitrary hdigest-bit string s as the domain parameter Seed.
Compute 7 = HASH(s).
Let /0 be the bit string obtained by taking the w rightmost bits of 4.
Let z be the integer whose binary expansion is given by the Adigest-bit string s.
For i from 1 to v do:
5.1 Define the hdigest-bit string s: to be binary expansion of the integer
(z + i) mod (2 hdigest),
5.2 Compute hi= HASH(s:).

Nk W=

6. Let / be the bit string obtained by the concatenation of 4o, A1, ... , hy as follows:

h=ho || hi| ... | hv
. Let ¢ be the integer whose binary expansion is given by the bit string 4.
If((c=0o0r4c+27=0 (mod p))), then go to Step 1.

[o N
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9. Choose integers a, b € GF(p) such that
¢ b*=a’ (mod p).
(The simplest choice is a = ¢ and b = c. However, they may be chosen differently for
performance reasons.)
10. Check that the elliptic curve E over GF(p) given by y 2= x> + ax + b has suitable order. If
not, go to Step 1.

C.3.2 Verification of Curve Pseudorandomness (Prime Case)

Given the hdigest domain parameter seed value s, verify that the coefficient b was obtained from
s via the cryptographic hash function HASH as follows.

Inputs:
1. Positive integer /
2. Bit-string s of length hdigest
3. Approved hash function HASH with output length of Adigest bits and security design
strength of at least requested security strength

Output: Verification that the coefficient b was obtained from s via the cryptographic hash
function HASH.

Process:

Let / be the bit length of p, and define
v =L (1-1) /hdigest ],
w =[— hdigest *v— 1.
Compute 7 = HASH(s).
Let Ao be the bit string obtained by taking the w rightmost bits of 4.
Let z be the integer whose binary expansion is given by the Adigest -bit string s.
Fori=1tovdo
4.1 Define the hdigest -bit string si to be binary expansion of the integer
(z + 1) mod (2/digest ),
4.2 Compute hi= HASH(s:).

b=

5. Let & be the bit string obtained by the concatenation of ko, A1, ... , hv as follows:

h=nho || hi]l ... || ;o
. Let ¢ be the integer whose binary expansion is given by the bit string 4.
. Verify that * ¢ =27 (mod p).

~N N

C.3.3 Generation of Pseudorandom Curves (Binary Case)

Inputs:
1. Prime number m
2. Bit-string s of length hdigest
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1624 3. Approved hash function HASH with output length of Adigest bits and security design
1625 strength of at least requested security strength

1626

1627

1628  Output: Coefficient b used to generate a pseudorandom binary curve.

1629

1630  Process:

1631

1632 Let:

1633 v=L_(m-1)/hdigest ]

1634 w =m — hdigest*v.

1635 1. Choose an arbitrary Adigest -bit string s as the domain parameter seed.

1636 2. Compute h = HASH(s).

1637 3. Let Ao be the bit string obtained by taking the w rightmost bits of 4.

1638 4. Let z be the integer whose binary expansion is given by the hdigest-bit string s.

1639 5. Forifrom 1 to v do:

1640 5.1 Define the hdigest -bit string s; to be binary expansion of the integer

1641 (z + i) mod (2"digest),

1642 5.2 Compute hi = HASH(s:).

1643 6. Let & be the bit string obtained by the concatenation of 4o, 41, ..., hv as follows:
1644 h=ho || hi] ... | hv.

1645 7. Let b be the element of GF(2™) which is represented by the bit string / in the Gaussian
1646 Normal Basis (see Appendix G.3.1).

1647 8. Choose an element a of GF(2™).

1648 9. Check that the elliptic curve E over GF(2™) given by ° + xy = x> + ax* + b has suitable
1649 order. If not, go to Step 1.

1650

1651 C.3.4 Verification of Curve Pseudorandomness (Binary Case)

1652  Given the hdigest-bit domain parameter seed value s, verify that the coefficient b was obtained
1653  from s via the cryptographic hash function HASH as follows.

1654

1655  Inputs:

1656 1. Prime number m

1657 2. Bit-string s of length hdigest

1658 3. Approved hash function HASH with output length of Adigest bits and security design
1659 strength of at least requested security strength

1660

1661  Output: Verification that the coefficient » was obtained from s via the cryptographic hash
1662  function HASH.

1663

1664  Process:

1665  Define

1666 v=L_(m-1)/hdigest ]
1667 w=m — hdigest v
1668 1. Compute h = HASH(s).
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Let 4o be the bit string obtained by taking the w rightmost bits of 4.
Let z be the integer whose binary expansion is given by the Adigest-bit string s.
Fori=1tovdo
4.1 Define the hdigest-bit string si to be binary expansion of the integer (z + i) mod (2!
).
4.2 Compute hi = HASH(s: ).
Let % be the bit string obtained by the concatenation of ko, A1, ... , hy as follows:
h=nho || hi] ... | hv.
Let ¢ be the element of GF(2™ ) which is represented by the bit string /4 in the Gaussian

Normal Basis (see Section G.3.1).

7.

Verify that ¢ = b.
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Appendix D — Elliptic Curve Routines

D.1 Public Key Validation

D.1.1 Non-Binary Curves in Short-Weierstrass Form
D.1.1.1 Partial Public Key Validation

Inputs:

1. Weierstrass curve Wy,» defined over the prime field GF(p)
2. Point O=(x,y)

Output: ACCEPT or REJECT Q as an affine point on Wg,».
Process:

1. If Q is the point at infinity &, output REJECT.

2. Verify that x and y are integers in the interval [0, p—1]. Output REJECT if verification
fails.

3. Verify that (x, ) is a point on the Wq,» by checking that (x, y) satisfies the defining
equation > = x> + a x + b where computations are carried out in GF(p). Output REJECT
if verification fails.

4. Otherwise output ACCEPT.

D.1.1.2 Full Public Key Validation

Inputs:

1. Weierstrass curve Wap defined over the prime field GF(p)
2. Point QO

Output: ACCEPT or REJECT Q as a point on Wap of order n.
Process:

1. Perform partial public key validation on Q using the procedure of Appendix D.1.1.1.
Output REJECT if this procedure outputs REJECT.

2. Verify that n Q = . Output REJECT if verification fails.

3. Otherwise, output ACCEPT.

D.1.2 Montgomery Curves
D.1.2.1 Partial Public Key Validation
Inputs:

1. Montgomery curve Ma s defined over the prime field GF(p)
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1712 2. Point O=(u, v)
1713 Output: ACCEPT or REJECT Q as an affine point on Ma s.

1714  Process:

1715 1. If O is the point at infinity &, output REJECT.

1716 2. Verify that both u# and v are integers in the interval [0, p—1]. Output REJECT if
1717 verification fails.

1718 3. Verify that (u, v) is a point on the Ma s by checking that (u, v) satisfies the defining
1719 equation v* = u (u*> + A u + 1) where computations are carried out in GF(p). Output
1720 REJECT if verification fails.

1721 4. Otherwise output ACCEPT.

1722  D.1.2.2 Full Public Key Validation
1723  Inputs:

1724 1. Montgomery curve Ma s defined over the prime field GF(p)
1725 2. Point QO

1726 Output: ACCEPT or REJECT Q as a point on Ma s of order n.

1727  Process:

1728 1. Perform partial public key validation on Q using the procedure of Appendix D.1.2.1.
1729 Output REJECT if this procedure outputs REJECT.

1730 2. Verify that n Q = &. Output REJECT if verification fails.

1731 3. Otherwise output ACCEPT.

1732 D.1.3 Twisted Edwards Curves
1733  D.1.3.1 Partial Public Key Validation
1734  Inputs:

1735 1. Edwards curve Eaddefined over the prime field GF(p)
1736 2. Point O=(x, y)

1737  Output: ACCEPT or REJECT Q as an affine point on Ea.

1738 Process:

1739 1. Verify that both x and y are integers in the interval [0, p—1]. Output REJECT if
1740 verification fails.

1741 2. Verify that (x, y) is a point on the Ead by checking that (x, y) satisfies the defining
1742 equation a x*> + y> = 1+ d x* y* where computations are carried out in GF(p). Output
1743 REJECT if verification fails.

1744 3. Otherwise output ACCEPT.
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D.1.3.2 Full Public Key Validation
Inputs:

1. Edwards curve Ead defined over the prime field GF(p)
2. Point Q

Output: ACCEPT or REJECT Q as a point on Ead of order n.
Process:

1. Perform partial public key validation on Q using the procedure of Appendix D.1.3.1.
Output REJECT if this procedure outputs REJECT.

2. If Qs the point at identity element (0,1), output REJECT.

3. Verify that n Q = (0,1). Output REJECT if verification fails.

4. Otherwise output ACCEPT.

D.1.4 Binary Curves in Short-Weierstrass Form
D.1.4.1 Partial Public Key Validation
Inputs:

1. Weierstrass curve Bap defined over the binary field GF(2™)
2. Point O=(x, y)

Output: ACCEPT or REJECT Q as an affine point on Bayp.
Process:

1. If Q is the point at infinity &, output REJECT;

2. Verify that both x and y are binary polynomials in GF(2") according to the field
representation indicated by the parameter FR. Output REJECT if verification fails.

3. Verify that (x, y) is a point on the Bab by checking that (x, y) satisfies the defining
equation y* + x y = x> + a x*> + b, where computations are carried out in GF(2") according
to the field representation indicated by the parameter FR. Output REJECT if verification
fails.

4. Otherwise output ACCEPT.

D.1.4.2 Full Public Key Validation
Inputs:

1. Weierstrass curve Ba,b defined over the binary field GF(2™);
2. Point Q.

Output: ACCEPT or REJECT Q as a point on Ba,b of order .
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Process:

1. Perform partial public key validation on Q using the procedure of Appendix D.1.4.1.
Output REJECT if this procedure outputs REJECT.

2. Verify that n Q = &. Output REJECT if verification fails.

3. Otherwise output ACCEPT.

D.2 Point Compression

Point compression allows a shorter representation of elliptic curve points in affine coordinates by
exploiting algebraic relationships between the coordinate values based on the defining equation
of the curve in question. Point compression followed by its inverse, “point decompression,” is
the identity map.

D.2.1 Prime Curves in Short-Weierstrass Form
Point compression for non-binary curves in short-Weierstrass form is defined as follows.
Inputs:

1. Weierstrass curve Wa,b defined over the prime field GF(p)
2. Point P on Wa,p

Output: Compressed point_P.
Process:

1. If P is the point at infinity &, set P = P.
2. IfP=(x, y),set P=(x, y), where y =y (mod 2).
3. Output P.

Point decompression of an object P with respect to this Weierstrass curve is defined as follows.
Inputs:

1. Object P
2. Weierstrass curve Wa,b defined over the prime field GF(p)

Output: Point P on Wap or INVALID.
Process:

1. If P is the point at infinity &, output P = P.
2. If Pis the ordered pair (x, f), where x is an element of GF(p) and where ¢ is an element of
GF(2):
2.1. Compute w=x>+ax+b
2.2. Compute a square root y of w in GF(p) using the procedure of Appendix E.3;
output INVALID if that procedure outputs INVALID
23.Ify=0and ¢ =1, output INVALID
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2.4 1ft#y(mod2), sety=p—y
2.5. Output P = (x, )
3. Output INVALID

D.2.2 Binary Curves in Short-Weierstrass Form
Point compression for binary curves in short-Weierstrass form is defined as follows.

Inputs:

1. Weierstrass curve Ba,b defined over the binary field GF(2™)
2. Point P on Ba,b

Output: Compressed point P.
Process:

1. If P is the point at infinity &, set P = P.

2. If P=(x, y) and x=0, set P = (x, v), where y = 0 (mod 2).

3. If P=(x,y)and x #0:
3.1. Compute a=y/x, where a = oy + 1z + -+ 12
3.2. Set P =(x, y), where y =

4. Output P.

m—1

Consequently, for each affine point P = (x, y) on the Weierstrass curve Ba,b, the compressed
point P is an ordered pair (x, £) where x is an element of GF(2") and where ¢ is an element of
GF(2).

Point decompression of an object P with respect to this Weierstrass curve is defined as follows.
Inputs:

1. Object P
2. Weierstrass curve Ba,b defined over the binary field GF(2™), where m is an odd integer

Output: Point P on Ba,b or INVALID.
Process:

1. If Pis the point at infinity &, output P = P.
2. If P is the ordered pair (x, 7), where x is an element of GF(2”) and where ¢ is an element of
GF(2), perform the following:
2.1. If x = 0, perform the following steps:
2.1.1. Ift=1, output INVALID
2.1.2. Sety to the square root of b in GF(2") using the algorithm of Appendix E.1
2.2. If x # 0, perform the following steps:
2.2.1. Compute w= (x> + a x>+ b)/x*=x + a + b/x*
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2.2.2. Compute a solution o in GF(2") of the equation o + o. = w using the algorithm of
Appendix E.2; output INVALID if that procedure outputs INVALID
223. Ift#ay, wherea=ayg+ aqz+ -+ ap_12™ L seta=a+ 1
224, Sety=oax
2.3. Output P = (x, y)
3. Output INVALID.

D.3 Base Point (Generator) Selection

For user-generated base points, use a verifiably random method and check the validity of the
point generated. This Appendix describes these methods.

D.3.1 Generation of Base Points
A base point should be generated as follows.

Input: Elliptic curve E = (Fy, a, b), cofactor A, prime n, and, optionally, a bit string Seed, which
indicates that verifiably random G is desired.

Output: A base point G on the curve of order n, or FAILURE.
Process: The following or its equivalent:

1. Set base = 1.
2. Select elements x and y in the field Fy, doing so verifiably at random using Appendix
D.4.2 or by any desired method if Seed is not provided.

Comment: The pair (x, y) should be chosen to lie on the curve E, or else the
process could loop forever.

Let G = hR, where R = (x, y).
4. If G is not a valid base point (see Appendix D.4.3), then increment base and go back to
Step 1 unless base > 10A42, in which case, output FAILURE.

[98)

Comment: The validity of G as a point is partially assured by R having valid
coordinates and belonging to the curve. The verifiable random nature of G is also
assured, so this does not need to be checked. Therefore, when validating G, it is
only necessary to check that G # O and nG = O.

If the elliptic curve E does not have a multiple of # points, then the output will generally be
FAILURE. Conversely, if the algorithm outputs FAILURE, generally the elliptic curve does not
have /-n points. If the elliptic curve E has exactly /-n points but n is composite, then G is not
guaranteed to have order exactly » but will have an order dividing n. The probability that G has
an order exactly n depends on the factorization of n. If the elliptic curve E has kn points where k
# h, then the order G is not guaranteed to have order n. If # is prime, then G will generally have
an order which is a multiple of n. If the elliptic curve E has exactly /-n points, then base will
generally never be incremented.
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D.3.2 Verifiably Random Base Points
This procedure will generate a verifiably random candidate point.

Inputs: Bit string Seed, integer counter base, selected hash function with output length hashlen
bits, field size ¢, cofactor &

Output: Candidate point (x, )
Process: The following or its equivalent:

Set element = 1.

Convert base and element to octet strings Base and Element, respectively.
Compute H = Hash ("Base point" || Base || Element || Seed).

Convert H to an integer e.

Ifle/2g = | 2tashlen } 24 | then increment element and go to Step 2.

Let t = e mod 2g, so that ¢ is an integer in the interval [0, 2¢g — 1].
Letx=¢mod gandz=L|¢/ql.

Convert x to field element in Fy; using the routine in Appendix F.2.
Recover the field element y from (x, z) using an appropriate compression method from
Appendix D.2.

10. If the result is an error, then increment element and go to Step 2.

R e A

D.3.3 Validity of Base Points

A base point generator is valid if the following routine results in VALID.
Input: Elliptic curve domain parameters

Output: VALID or INVALID

Process: The following or its equivalent:

1. If G= 0, then stop and output INVALID.
If either of the base point coordinates x¢ and y¢ are invalid as elements of Fy (that is: if ¢
is odd, then either x¢ or yg 1s not an integer in the interval [0, g—1]; or if ¢ = 2™, then
either xg or y¢ is not a bit string of length m), then stop and output INVALID.

3. If Gis not on the elliptic curve, that is, y6* # x6> + axc + b if ¢ is odd, or y6* + x6yG #
xG> + axc® + b if g is even, then stop and output INVALID.

4. 1If nG # O, then stop and output INVALID. A full scalar multiplication shall be used.

Comment: Shortcuts for validating the order of point that assume a value for the
cofactor would not be considered a full scalar multiplication.

5. [If the input indicates that the base point G is generated verifiably at random, then do the
following:
5.1. Set base = 1.
5.2. With Seed and base values, generate a point R = (x, y), using the routine in
Appendix D.4.2.
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5.4. If nG" # O, then increment base and go back to Step 2.
Comment: The counter value base will generally never be incremented

5.5. If base > 1042, then stop and output INVALID.

5.6. Compare G’ with G. If not equal, then stop and output INVALID.

6. Otherwise, output VALID.
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Appendix E Auxiliary Functions

E.1 Computing Square Roots in Binary Fields

If x is an element of GF(2"), then its square root is the element x2"
E.2 Solving the Equation x? + x = w in Binary Fields

Input: Field element w in GF(2™), where m is an odd integer.

Output: Solution o in GF(2") of the equation o + a. = w, or INVALID.

Process:
1. Compute Tr(w) = w2’ + w2 + w2 + w2 + .+ w?" ' (the trace of w);
2. If Tr(w)=1, output INVALID;
3. Compute o:= Hf(x) = w2’ + w2’ + w2 + .+ w?™ " (the half-trace of w);
4. Output a.

E.3 Computing Square Roots in non-Binary Fields GF(q)

The Tonelli-Shanks algorithm can be used to compute a square root given an equation of the
form x> = n (mod p) where # is an integer, which is a quadratic residue (mod p), and p is an odd
prime.

Find Q and S (with O odd) such that p -1 = 025 by factoring out the powers of 2.
Note that if S = 1, as for primes p = 3 (mod 4), this reduces to finding x = #?"* (mod p)
Check to see if n€=1; if so then the root x = n@*Y’2 (mod p).

Otherwise select a z which is a quadratic non-residue modulo p. The Legendre symbol (g) where

p is an odd prime and « is an integer can be used to test candidate values for z to see if a value of
-1 is returned.

Search for a solution as follows:
Set x = n V2 (mod p)
Set t = n¢ (mod p)
SetM =S
Set ¢ = z¢ (mod p)
While ¢ # 1, repeat the following steps:

a) Using repeated squaring, find the smallest i such that t2' = 1, where 0 <i < M.
For example:

Lete=2
Loop fori=1 until i = M:
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If #° (mod p) = 1 then exit the loop.
Set e =2e
b) Update values:

b =2 (mod 1))

x = xb(mod p)
t = th?(mod p)
¢ = b%?(mod p)
M=i

The solution is x and the second solution is p - x. If the least i found is M, then no solution exists.

Square roots in a non-binary field GF(g) are relatively efficient to compute if ¢ has the special
form ¢ = 3 (mod 4) or g=5 (mod 8). All but one of the elliptic curves recommended in this
recommendation are defined over such fields. The following routines describe simplified cases to
compute square roots for p=3 (mod 4) or p=5(mod 8).

Letu=3*-1landv=d)*+ 1.

To find a square root of (u/v) if p=3 (mod 4) (as in E448), first compute the candidate root x
= (u/v) T4 =3y (uv?) P (mod p). If v x* = u, the square root is x. Otherwise, no square
root exists, and the decoding fails.

To find a square root of (u/v) if p =5 (mod 8) (as in Edwards25519), first compute the
candidate root x = (u/v) ©* =y v (u v") 3 (mod p). To find the root, check three cases:
e Ifvx*=u(mod p), the square root is x.
e Ifvx*=-u(mod p), the square root is x * 2",
e Otherwise, no square root exists for modulo p, and decoding fails.

If x =0 and xo = 1, point decoding fails. If x (mod 2) = xo, then the x-coordinate is x.
Otherwise, the x-coordinate is p - x.

E.4 Computing Inverses in GF(q)

If x is an element of GF(g) and x#0, its (multiplicative) inverse is the element x7 2.

If one is concerned about side-channel leakage, one should compute # ! indirectly by first
computing the inverse of the blinded element Au, where A is a random nonzero element of GF(g),
and subsequently computing A(Au)"! = u~!. This yields an inversion routine where the inversion
operation itself does not require side-channel protection and which may have relatively low
computational complexity.
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I Appendix F Data Conversion

1990 F.1 Conversion of a Field Element to an Integer

1991  Field elements shall be converted to integers according to the following procedure.
1992  Input: An element a of the field GF(q)

1993  Qutput: A non-negative integer x in the interval [0, g—1]

1994  Process:

1995 1. Ifgis an odd prime, a is an integer in the interval [0, g—1]. In this case, set x = a.

1996 2. If g =2", a must be a binary polynomial of degree smaller than m, i.e.,

1997 a=a(z) = am-1 2" + am—2 2" + ... + a1 z + ao, where each coefficient a; is 0 or 1.
1998 In this case, set x = a(2)=am-1 2" + am—22"2 + ... + a1 2' + a0 2"

1999 3. Output x.

2000

2001 F.2 Conversion of an Integer to a Field Element

2002  Integers shall be converted to field elements according to the following procedure.
2003  Inputs: Non-negative integer x and g, where ¢ is an odd prime or g=2"

2004  Output: An element a of the field GF(q)

2005 Process:

2006 1. Setx=x(mod q);

2007 2. If g is an odd prime, x is an integer in the interval [0, g—1]. In this case, set a = x;

2008 3. If ¢ =2", x can be uniquely written as x = am-1 2"~ + am—2 2" + ... + a1 2 + xo, where
2009 each coefficient x; is 0 or 1. In this case, set x = a(2)= am-1 2" + am22"2+ ... +a1z' +
2010 ao2°;

2011 4. Output a.

2012

2013 F.3 Conversion of an Integer to a Bit String

2014  Integers shall be converted to bit strings according to the following procedure.
2015  Inputs: Non-negative integer x in the range 0 < x < 2!

2016  Output: Bit-string X of length /

2017  Process:

2018 1. The integer x can be uniquely written as x = x-1 271 + x;2 2/ + ... + x1 2 + x0, Where
2019 each coefficient x; is 0 or 1.
2020 2. Set X to the bit string (x/-1, xr2, ..., X1, X0);
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3. Output X.
F.4 Conversion of a Bit String to an Integer
Bit strings shall be converted to integers according to the following procedure.
Input: Bit-string X of length /
Output: Non-negative integer x, where x<2/
Process:

1. Let X be the bit string (xr-1, x1-2, ..., x1, x0), where each coefficient x; is 0 or 1;
2. Setx to the integer value x = xi-1 271 + x1-2 212 + ... +x1 2 + xo;

3. Output x.
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PR3 Appendix G Implementation Aspects

2035 G.1 Implementation of Modular Arithmetic

2036  The prime moduli of the above recommended curves are of a special type (generalized Mersenne
2037  numbers and Crandall primes) for which modular multiplication can be carried out more

2038 efficiently than in general. This section provides the rules for implementing this faster arithmetic
2039  for each of these recommended prime moduli.

2040  The usual way to multiply two integers (mod m) is to take the integer product and reduce it
2041  (modulo m). One, therefore, has the following problem: given an integer A less than m?, compute

2042 B =4 (mod m).

2043  In general, one must obtain B as the remainder of an integer division. If m is a generalized
2044  Mersenne number, however, then B can be expressed as a sum or difference (mod m) of a small
2045  number of terms. To compute this expression, the integer sum or difference can be evaluated,
2046  and the result reduced modulo m. The latter reduction can be accomplished by adding or

2047  subtracting a few copies of m.

2048  The prime modulus p for each of the four recommended P-x curves is a generalized Mersenne
2049  number.

2050 G.1.1 Curve P-224

— 2224 _ 996

2051  The modulus for this curve is p + 1. Each integer 4 less than p? can be written as

A=A 2"+ A4, 2%+ 4,27+ 4,2 + 4, 2" + 4,27+ 4,27+ 4,27 +
A 2"+ 4,2+ 4,27+ 4, 2% + 4,27 + A4,

2052

2053  where each A4; is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by
2054 A=(Aiz|| A2 || ... || o).

2055  The expression for B is

2056 B=T+S81+S82-Di—D>(mod p),

2057  where the 224-bit terms are given by

2058 T = (Ac||As| Aa|l A3l A2]|| 41| 4o)
2059 Si= (Al As| A4s| A7]/01]0]0)

2060 S2= (0| A3|| 412|411 ]|0]/ 0] 0)
2061 Di= (A3 || Aiz|| A1 | Awo || Ao || As || A7)
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D2= (000 O] Al A412]] A11).
G.1.2 Curve P-256

The modulus for this curve is p = 226 — 2224+ 2192429 _ 1 Each integer 4 less than p* can be
written as

A=A 2% + 4, 2" +4,-2Y°+4,- 2+ 4,277+ 4,27+ 4,27+ 4,-27° +
A 27+ A 2" A2 4,2 A2+ A, 2% 4,27+ 4,

where each 4 i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by
A= (Ais|| Aa||-- || o).
The expression for B is
B=T+285+28+ 83+ 8s—Di1—D2— D3 — Ds(mod p),

where the 256-bit terms are given by

T = (A7 As || As || A4 || 43| A2 || A1 || Ao)
S1=(A4i5|| A1a|| A3 || 412 || A11 || 0]/ 0] 0)
S2=(0]|A415]| 414 ]| A13 || A12|| 0] 0 0)
S3=( A15||A14]|0|| 0] 0| A1o || Ao || As )
Sa=( As|| A3 || A1s || Ara || A13 || A1 || Ao || A9)
Di=(Aw || 43|00 0| A3 A2 || A11)
D2=(An|[A9]| 0] 0| 415]|| A14]| A13]| A12)
D3=(A12||0 || Aro|| Ao || 4s || 415 || A14 ]| A13)
Ds= (A0 A1 || Ao || Ao || O A1s || A1a)
G.1.3 Curve P-384

The modulus for this curve is p =2 3% -2 128294232 _ | Each integer 4 less than p? can be
written as

A=Ay 270+ Ay 27 + A 27 + Ay 2%+ Ay 2%+ A 27+ A, 27N 4,27+
A15 _2480 +Al4 ‘2448 + A13 .2416 + A12 .2384 + AH .2352 + Alo _2320 +A9 .2288 + AS .2256 +
A2 A 2 A 20 A, 2 A2 A, 2% 4,27 A,
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where each 4 is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by
A= (A || A22|| - - - || o).
The expression for B is
B=T+251+85+8 + 814+ 85+ S¢ — D1 — D2 — D3 (mod p),
where the 384-bit terms are given by
T = (Au| 4w || Ao| As || A7]|| Ae || As || A4 || A3 || A2 || A1 || Ao)
Si="(0[[O[[0O[O0 0 Azs[ A2 A2 [0 O[0]0)
S2= (Ax|| A2 || A21]| A20 || A19 || A1s || A17 || A1e || A1s || A1 || A13 || A12)
S3= (42| Ao || A1s || A17|| 416 || A15 || A14 || A13 || A12]| A23|| A22|| A21)
Sa= (Al Ais|| A17|| Aie || A1s || A1a || 413 || A12|| A20|] O ]| 423 || 0)
Ss= (0] O[[ 00| A2 A2z | A21 || A20 | O[[ O[O ]| 0)
Se=(O[IO[[O[O[O]0f A2 | A22[[ A2 || O[[ O] 420 )
Di= (A2 || A21]| A20 || A19 || A1s || A17 || A1e || A1s || A1a || A13 || A12 || A23)
Da="(O[[O[O[O[O[O]0]f A2 42| A21 || A20][ O)
Ds= (0 O[[ O[O0 O[O0 42|l 425 0[0]0).
G.1.4 Curve P-521

2521 _ 1. Each integer 4 less than p? can be written as

The modulus for this curve is p =
A=41-2%"+ Ao,
where each 4 1s a 521-bit integer. As a concatenation of 521-bit words, this can be denoted by

A = (41| Ao).

The expression for B is
B = (4o + A1) (mod p).
G.1.5 Curve Curve448

QM8_n224 _

The modulus for this curve is p = 1. Each integer 4 less than p? can be written
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A=A3-27+ 4> 28 + 4. 2724 + Ay,
where each 4 is a 224-bit integer. As a concatenation of 224-bit words, this can be denoted by

A= (43| A2 || A1]| Ao).

The expression for B is
B=(S1+8 + 83+ S1) (mod p),

where the 448-bit terms are given by

S1= (A1 Ao)
S2= (A2 42)
S3= (43| 43)
Si=  (A43]0).

G.1.6 Curve Curve25519

22%-19. Each integer 4 less than p? can be written

The modulus for this curve is p =
A=A41-2%%+ 4,
where each 4 1s a 256-bit integer. As a concatenation of 256-bit words, this can be denoted by
A = (A1]| Ao).
The expression for B is
B=(38- 41+ Ao) (mod 2p),

where all computations are carried out modulo 2p rather than modulo p.

This allows efficient modular reduction and finite field operations that try and minimize carry-
effects of operands if each integer X less than 2p is represented as
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X=Xo-22%+ X3- 2208 + X7. 2182 4 X¢. 2156 + X5. 2130 4 x3 . 2104 4 3. 278 + X 232 + X7 - 220 +
Xo,

where each X; is a 26-bit integer and where Xo is a 22-bit integer. Note that in this case,
multiplication by the small constant 38 does not lead to overflows if each X; is stored as a 32-bit
word. It turns out that the cost of occasional resizing of X, represented this way, is outweighed by
savings due to the possibility of postponing ‘carry’ operations. This representation can also be
used to efficiently compute —X so that intermediate integer segments are always non-negative
integers.

G.2 Scalar Multiplication for Koblitz Curves

This section describes a particularly efficient method of computing the scalar multiple Q:=kP on
the Koblitz curve Wa,» over GF(2™).

The operation 7 is defined by
7(x, ) = (2 )7).

When the normal basis representation is used, then the operation 7 is implemented by
performing right circular shifts on the bit strings representing x and y.

Given m and a, define the following parameters:

e (is some integer greater than 5.
o pu=(hH
e Fori=0andi=1, define the sequence si(m) by:

si(0) := 0, si(1):=1—1,
sim) = pu-siim—1)=2-si{m—2) + (-1).

e Define the sequence V(m) by
noy:=2,  M:=upu

Vim)=pu-V(im—-1)-2-V(m-2).
For the recommended Koblitz curves, the quantities si{m) and V(m) are as follows.
Curve K-163:
so(163) = 2579386439110731650419537
s1(163) = —755360064476226375461594

V(163) = —4845466632539410776804317
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Curve K-233:

50(233) =
51(233) =

Y(233) =

Curve K-283:

50(283) =
51(283) =

(283) =

Curve K-409:

50(409) =
51(409) =

V(409)=

Curve K-571:

so(571) =

si1(571) =

V(571)=

ELLIPTIC CURVE DOMAIN PARAMETERS

—27859711741434429761757834964435883
—44192136247082304936052160908934886

—137381546011108235394987299651366779

—665981532109049041108795536001591469280025
1155860054909136775192281072591609913945968

7777244870872830999287791970962823977569917

—18307510456002382137810317198756461378590542487556869338419259
—8893048526138304097196653241844212679626566100996606444816790

10457288737315625927447685387048320737638796957687575791173829

—3737319446876463692429385892476115567147293964596131024123406420\
235241916729983261305
—3191857706446416099583814595948959674131968912148564658610565117\
58982848515832612248752
—1483809269816914138996191402970514903645425741804939362329123395\

34208516828973111459843

The following algorithm computes the scalar multiple Q:=kP on the Koblitz curve Wa» over
GF(2™). The average number of elliptic additions and subtractions is at most ~ 1 + (m/3) and is at
most ~ m/3 with probability at least 1 —25°C.

1. Fori:=0to1do

1.1 k'« | k/2eCtm9/2]

1.2 g'«sim) -k’

13 hie Lg/om].
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14 j'«V(im)-h"
1.5 [« Round((g’+j)/20m/2),
1.6 A<« 17/2C
1.7 fi <~ Round( /).
1.8 ni<Ai—fi.
1.9 hi< 0.
2. n<2no+ umn.
3. If(n>1),
then
if (170 — 3 um <-1)
then set 71 < u
else set o < 1.
else
if(m+4um=2)
then set /41 < g
4. If(n<-1)
then
if (-3 um=1)
then set 71 < —
else set ho «— —1.
else
if(po+4um< -2)
then set 71 «— — .

5. qo < fo + ho.
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o)

. q1 < fi +h

7. ro<—n—(so+ usi) qo—2s1qi.

8. 7r1¢=5190—150q1.

9. Set O« O.

10. Po < P.

11.  While ((r0 #0) or (r1 #0))

11.1 If (o odd), then
11.1.1 setu <— 2 — (0o —2 rimod 4).
11.1.2 setro<—ro —u.
11.1.3 if (u = 1), then set Q < Q + Po.
11.1.4 if (u =-1), then set Q < Q — Po.

11.2 Set Po <« zPo.

11.3 Set (ro, 1) < (r1 + wro/2, —ro/2).

Endwhile
12. Output Q.

G.3 Polynomial and Normal Bases for Binary Fields
G.3.1 Normal Bases

The elements of GF(2"), where m is odd, are expressed in terms of the type 7' normal? basis B for
GF(2™), for some 7. Each element has a unique representation as a bit string:

(aoar ... am).
The arithmetic operations are performed as follows.

Addition: Addition of two elements is implemented by bit-wise addition modulo 2. Thus, for
example,

(1100111) + (1010010) = (0110101).

2 It is assumed in this section that m is odd and 7 is even since this is the only case considered in this standard.
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Squaring: if

a =(aal ... am2am-1),
then

=(ami1aoai... am2).

Multiplication: Multiplication depends on the following function F(x,v) on inputs
u=uoul ... Um-) and v=0Wovi... Vm1),
which is constructed s follows.

1. Setp=Tm+1;
2. Let u be an integer having order 7 modulo p;
3. Compute the sequence F (1), F (2), ... , F (p—1) as follows:
a. Setw=1;
b. For j from 0 to 7-1 do
1. Setn=w;
it.  Fori=0tom-1do
1. Set F(n)=1i;
2. Set n=2n (mod p);
1.2.3 Setw=uw (mod p);
2. Output the formulae F(u, v), where

p-2
F(u,v):= ZUF(kn)VF(pfk)'
k=1

This computation only needs to be performed once per basis.

Given the function F for B, the product

(coct «ov cm1)=(aoai ... am1)* (bob1 ... bm1)
is computed as follows:

1. Set(uoui ... um1)=(aoai... am);
2. Set(vovi... vm1)=(bobi ... bm1);
3. Fork=0tom—1do
a. Compute ck = F(u, v).
b. Set u = LeftShift (1) and v := LeftShift (v), where LeftShift denotes the circular
left shift operation.
4. Outputc=(coci ... cm1).

Example:
For the type-4 normal basis for GF(27), one has p = 29 and u = 12 or u = 17. Thus, the values of

F are given by:

64



2268
2269
2270
2271
2272
2273
2274
2275
2276

2277

2278

2279

2280

2281

2282
2283
2284
2285

2286

2287
2288

2289
2290

2291
2292
2293

2294

2295
2296
2297

2298
2299

2300

NIST SP 800-186 (DRAFT)

RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY:

ELLIPTIC CURVE DOMAIN PARAMETERS

F(1)=0 F@®)=3 F (15 =6 F22)=5
F2)=1 FO9)=3 F(16)=4 F(23)=6
F3)=5 F(0)=2 FA7)=0 F24)=1
F@)=2 F({1)=4 F((18)=4 F(25)=2
FG®)=1 F{12)=0 F((19)=2 F(26)=5
F®6)=6 F(13)=4 F(20)=3 FQ27NH=1
F()=5 F(4)=6 F21)=3 F(28)=0
Therefore,

Fy)=uovi+u (vot+tva+vs+ve)+uz(vi+vi+va+vs)+us(va+vs)+
us (v2+ve) +us (vi +v2+v3+ve) +us(vi +va+vs+ ve).
As a result, if
a=(1010111)andb=(1100001),
then

co=F(@(1010111),(1100001))=1,
c=F(@(0101111),(1000011))=0,

c=F({(1101011),(1110000))=1,
sothatc=a*b=(1011001).
For the binary curves recommended in this specification, the values of T are, respectively, 7= 2
(m=233), T=6(m=283), T=4 (m=409),and 7= 10 (m = 571).
G.3.2 Polynomial Basis to Normal Basis Conversion
Let o be an element of the field GF(2") with bit-string representation p with respect to a given
polynomial basis and bit-string representation n with respect to a given normal basis. The bit
strings p and n are related via

pl'=n,

where I" is an (m x m) matrix with entries in GF(2). The matrix I', which only depends on the

bases, can be easily computed given its second-to-last row. For each conversion, that second-to-
last row is given below.

Degree 233:

Ox0Obe 19089595 28bbc490 038f4bc4 da8bdfcl ca36bb05 853fd0ed 0ae200ce

Degree 283:
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0x3347£17 521fdabc 62eclb551 acfl56fb Obceb855 £174d4cl 7807511c 9£745382
add53bc3

Degree 409:

0x0eb00f2 ea95fdoc 64024e7f 0b68b81f 5ff8ad67 acc2bd4c3 b9372843 6265c7ff
a06d896c ae3a7e3l e295ec30 3eb9f769 de78bef5

Degree 571:
0x7940ffa ef996513 4d59dcbf e5bf239b edfedbdl 05959c5d 4d942ffd 46eal35£3

e3cdblOel 04a2aall cef30a3a 49478011 196bfb43 c55091b6 1174d7c0 8d0cddel
3bf6748a bad972a4

If 7 is the second-to-last row of I" and represents the element £ of GF(2™) with respect to the
normal basis, then the rows of I', from top to bottom, are the bit-string representations of the
elements

ﬂm—l’ﬁn1—2’ .“,ﬂ2’ ﬁ, 1

with respect to this normal basis. (Note that the element 1 is represented by the all-1 bit string.)

Alternatively, the matrix is the inverse of the matrix described in Appendix G.3.3.

More details of these computations can be found in Annex A.7 of the IEEE Standard 1363-2000
standard [IEEE 1363].

G.3.3 Normal Basis to Polynomial Basis Conversion

Let a be an element of the field GF(2") with bit-string representation n with respect to a given
normal basis and bit-string representation p with respect to a given polynomial basis. The bit
strings p and n are related via

nA=p,

where A is an (m x m) matrix with entries in GF(2). The matrix A, which depends only on the
bases, can be easily computed given its top row. For each conversion, that top row is given
below.

Degree 233:

0x149 9e398ach d79e3685 59b35cad4 9bb7305d a6c0390b cf9e2300 253203c9

Degree 283:

0x31eOed7 91c3282d c5624a72 0818049d 053e8c7a b8663792 bcld792e ba9867fc
70317a99

Degree 409:

0x0dfal6b e206aa97 b7a4lfff bO9b0c55f 8£f048062 fbe8381lb 4248adf9 2912ccc8
e3f91a24 elcfb395 0532b988 971c2304 2e85708d
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Degree 571:

0x452186b bf5840a0 bcf8c9f0 2a54efal 4e813b43 c3d41496 06c4d27b 487bf107
393c8907 £79d9778 beb35ee8 7467d328 8274caeb dabcel5a ebdcaScf 3c¢3044bd
4372232f 2cla2ic4

If 7 is the top row of A and represents the element £ of GF(2 ™), then the rows of A, from top to
bottom, are the bit strings representing the elements

BB pY, ... "

with respect to the polynomial basis. Alternatively, the matrix is the inverse of the matrix
described in Appendix G.3.2.

More details of these computations can be found in Annex A.7 of the IEEE Std 1363-2000
standard.
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pRZ%E Appendix H — Other Allowed Elliptic Curves

2346 H.1 Brainpool Curves

2347  This standard also allows the curves specified in Elliptic Curve Cryptography (ECC) Brainpool
2348  Standard Curves and Curve Generation [RFC 5639], which support a security strength of 112
2349  bits or higher. In particular, this includes brainpoolP224r1, brainpoolP256r1, brainpoolP320r1,
2350  brainpoolP384r1, and brainpoolP512r1. These curves were pseudorandomly generated and are
2351  allowed to be used for interoperability reasons.

2352
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