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Abstract 99 

This recommendation specifies the set of elliptic curves recommended for U.S. Government use. 100 
In addition to the previously recommended Weierstrass curves defined over prime fields and 101 
binary fields, this recommendation includes two newly specified Montgomery curves, which 102 
claim increased performance, side-channel resistance, and simpler implementation when 103 
compared to traditional curves. The recommendation also specifies alternative representations 104 
for these new curves to allow more implementation flexibility. The new curves are interoperable 105 
with those specified by the Crypto Forum Research Group (CFRG) of the Internet Engineering 106 
Task Force (IETF). 107 
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Executive Summary 157 

This recommendation specifies the set of elliptic curves recommended for U.S. Government use. 158 
It includes:  159 

− Specification of elliptic curves previously specified in FIPS Publication 186-4, Digital 160 
Signature Schemes [FIPS 186-4]. This includes both elliptic curves defined over a prime 161 
field and curves defined over a binary field. Although the specifications for elliptic 162 
curves over binary fields are included, these curves are now deprecated. 163 

− Specification of new Montgomery and Edwards curves, which are detailed in Elliptic 164 
Curves for Security [RFC 7748]. These curves are only to be used with the EdDSA 165 
digital signature scheme in FIPS 186-5. 166 

− A reference for the Brainpool curves, specified in [RFC 5639]. These curves are allowed 167 
to be used for interoperability reasons. 168 

− Elliptic curves in FIPS 186-4 that do not meet the current bit-security requirements put 169 
forward in NIST Special Publication 800-57, Part 1, Recommendation for Key 170 
Management Part 1: General [SP 800-57], are now legacy-use. They may be used to 171 
process already protected information (e.g., decrypt or verify) but not to apply protection 172 
to information (e.g., encrypt or sign). Also see NIST Special Publication 800-131A, 173 
Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms 174 
and Key Lengths [SP 800-131A]. 175 
 176 
This recommendation provides details regarding the group operations for each of the 177 
specified elliptic curves and the relationship between the various curve models, allowing 178 
flexibility regarding the use of curves most suitable in particular applications. It also 179 
gives cryptographic criteria for the selection of suitable elliptic curves and provides more 180 
details on finite field arithmetic and data representation than were available in FIPS 186-181 
4. 182 

  183 
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1 Introduction 280 

1.1 Background 281 

Elliptic curve cryptography (ECC) has uses in applications involving digital signatures (e.g., 282 
Elliptic Curve Digital Signature Algorithm, or ECDSA) and key agreement schemes (e.g., 283 
Elliptic Curve Diffie-Hellman, or ECDH). The most widely used curves are usually expressed in 284 
short-Weierstrass format. However, curves that are expressed using a different format, such as 285 
Montgomery curves and twisted Edwards curves, have garnered academic interest. These curves 286 
are claimed to have better performance and increased side-channel resistance.  287 

A number of organizations (e.g., NIST, ANSI X9F, ISO, SEC, and IETF) have developed elliptic 288 
curve standards. Other standards-setting organizations, such as the Crypto Forum Research 289 
Group (CFRG) of the IETF, have discussed ECC and made recommendations for alternate 290 
elliptic curves and digital signatures. In June 2015, NIST organized an ECC workshop to discuss 291 
the design of curves that are secure, efficient, and easy to use while also being resilient to a wide 292 
range of implementation attacks. Subsequently, NIST solicited public comments on the Digital 293 
Signature Standard (FIPS 186-4), requesting specific feedback regarding the digital signature 294 
schemes in FIPS 186 as well as possible new recommended elliptic curves. This publication is 295 
the result of that input. 296 

1.2 Purpose and Scope 297 

This recommendation provides updated specifications of elliptic curves that are appropriate for 298 
use by the U.S. Federal Government for digital signatures. It is intended for use in conjunction 299 
with other NIST publications, such as NIST Special Publication SP 800-56A, Recommendation 300 
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm-Based Cryptography [SP 301 
800-56A]; Federal Information Processing Standard FIPS 186-5, Digital Signature Standard 302 
[FIPS 186-5]; and related specifications. The key pairs specified here are used for digital 303 
signature generation and verification or key agreement only and should not be used for any other 304 
purposes.  305 

This recommendation is intended to provide sufficient information for a vendor to implement 306 
ECC using asymmetric algorithms in FIPS 140-3 [FIPS 140-3] validated modules. 307 

1.3 Document Organization 308 

The remainder of this document includes the following sections and appendices: 309 

• Section 2: Glossary of Terms, Symbols, and Abbreviations 310 

• Section 3: Overview of Elliptic Curves — This section details the different curve models 311 
being used with this recommendation, including notational conventions. 312 

• Section 4: Recommended Curves for Federal Government Use — This section highlights 313 
the domain parameters for all elliptic curves recommended for U.S. Government use. 314 

• References — This section contains references for additional information and links to 315 
documents referenced in the publication. 316 
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• Appendix A: Details of Elliptic Curve Group Operations — This appendix discusses the 317 
group laws for each of the different curve models specified in this recommendation. 318 

• Appendix B: Relationship Between Curve Models — This appendix details how different 319 
curve models are related and how the coordinates of a point and the domain parameters of a 320 
curve in one curve model relate to those in another curve model.  321 

• Appendix C: Generation Details for Recommended Elliptic Curves — This appendix 322 
describes the cryptographic criteria that guided the selection of suitable elliptic curves and 323 
the process by which one of many such suitable elliptic curves is selected. 324 

• Appendix D: Elliptic Curve Routines — This appendix details elementary routines for 325 
elliptic curves, such as the verification that these curves are indeed well-formed, and point 326 
compression. 327 

• Appendix E: Auxiliary Functions — This appendix covers mathematical functions that are 328 
used to describe elliptic curve operations and representation conversions, such as inversion, 329 
and taking square roots. 330 

• Appendix F: Data Conversion — This appendix documents the detailed procedure for the 331 
conversion of data elements, such as integers, field elements, bit strings and octet strings, 332 
and elliptic curve points. 333 

• Appendix G: Implementation Aspects — This appendix discusses various implementation 334 
aspects of binary curves, including conversions between different field representations; for 335 
prime curves, it indicates how the special form of the underlying prime field aids in efficient 336 
modular reduction. 337 

• Appendix H: Other Allowed Elliptic Curves — This appendix lists other elliptic curves 338 
that may be used for interoperability reasons.   339 

  340 
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2 Glossary of Terms, Symbols, and Abbreviations 341 

2.1 Glossary 342 

Group Order Cardinality of the group. 

Identity Unique group element 0 for which x+0=x for each group element x, 
relative to the binary group operator +. 

Inverse For some group element x, the unique element y for which x+y is the 
identity element relative to the binary group operator + (y is usually 
denoted as −x). 

Isogeny Morphism from a first elliptic curve to a second elliptic curve. 

Isomorphism Morphism that is, in fact, a bijection. 

Kernel For a morphism, the set of group elements that map to the identity 
element. 

l-isogeny Isogeny with kernel of size l (Note: if l=1, an l-isogeny is an 
isomorphism). 

Morphism Mapping from a first group to a second group that maintains the 
group structure. 

Point at Infinity Identity element of a Montgomery curve or a curve in short-
Weierstrass form. 

Point Order Smallest multiple of a group element that results in the group’s 
identity element. 

Quadratic Twist Certain elliptic curve related to a specified elliptic curve. 

Square The property that some element x of a finite field GF(q) can be 
written as x=z2 for some element z in the same field GF(q). 

 343 

2.2 Symbols and Abbreviations  344 

Selected acronyms and abbreviations used in this publication are defined below. 345 

a mod n  Smallest non-negative integer r so that a−r is a multiple of n. 

a The floor of a; the largest integer that is less than or equal to a. For 
example, 5 = 5,  5.3 = 5, and -2.1 = -3. 
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Ba,b Elliptic curve in short-Weierstrass form defined over the binary field 
GF(2m), with domain parameters a and b. 

c Parameter used in domain parameter generation for some curves Wa,b in 
short-Weierstrass form, where  c = a2/b3 (optional). 

D Domain parameters of elliptic curve. 

Ea,d Twisted Edwards curve, with domain parameters a and d. 

G Base point of order n of an elliptic curve. 

GF(q) Finite field of size q. 

GF(p) Prime field of size p, represented by the set of integers {0,1, …, p−1}. 

h Co-factor of an elliptic curve. 

Hf Half-trace function (for binary fields). 

len(a) The length of a in bits; the integer L, where 2L-1 ≤ a < 2L. 

MA,B Montgomery curve, with domain parameters A and B. 

n Order of a prime-order subgroup of elliptic curve. 

p Prime Number. 

RBG Random Bit Generator. 

Seed String from which part of the domain parameters are derived (optional). 

tr Trace of an elliptic curve. 

Tr Trace function (for binary fields).  

Type Indication of elliptic curve type. 

u, v Coordinates on a Montgomery curve. 

Wa,b Elliptic curve in short-Weierstrass form, with domain parameters a and 
b. 

x, y Coordinates on a (twisted) Edwards or Weierstrass curve. 

x’, y’ Coordinates on an Edwards448 curve that correspond to the x,y 
coordinates on an E448 curve. 
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0x Indication of a hexadecimal string. 

∅ Identity element of an elliptic curve. 

\ Indication that an integer value stretches over several lines. 
  346 
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3 Overview of Elliptic Curves 347 

3.1 Non-Binary Curves 348 

3.1.1 Curves in Short-Weierstrass Form 349 

Let GF(q) denote the finite field with q elements, where q is an odd prime power and where q is 350 
not divisible by three. Let Wa,b be the Weierstrass curve with the defining equation y2 = x3 + a x 351 
+ b, where a and b are elements of GF(q) with 4 a3 + 27 b2 ≠ 0. When selecting curve 352 
parameters, a Seed value may be used to generate the parameters a and b as described in 353 
Appendix C.2.1.1. 354 

The points of Wa,b are the ordered pairs (x, y) whose coordinates are elements of GF(q) and that 355 
satisfy the defining equation (i.e., the affine points), together with the special point ∅ (the “point 356 
at infinity”). This set forms a group under the operation of addition on elliptic curves via the 357 
“chord-and-tangent” rule, where the point at infinity serves as the identity element. See 358 
Appendix A.1.1 for details of the group operation. 359 

3.1.2 Montgomery Curves 360 

Let GF(q) denote the finite field with q elements, where q is an odd prime power. Let MA,B be 361 
the Montgomery curve with defining equation B v2 = u (u2 + A u + 1), where A and B are 362 
elements of GF(q) with A ≠ ± 2 and B ≠ 0. The points of MA,B are the ordered pairs (u, v) whose 363 
coordinates are elements of GF(q) and that satisfy the defining equation (i.e., the affine points), 364 
together with the special point ∅ (the “point at infinity”). This set forms a group under the 365 
operation of addition on elliptic curves via the “chord-and-tangent” rule, where the point at 366 
infinity serves as the identity element. See Appendix A.1.2 for details of the group operation. 367 

3.1.3 Twisted Edwards Curves 368 

Let GF(q) denote the finite field with q elements, where q is an odd prime power. Let Ea,d be the 369 
twisted Edwards curve with defining equation a x2 + y2 = 1+ d x2 y2, where a and d are elements 370 
of GF(q) with a, d ≠ 0 and a ≠ d. The points of Ea,d are the ordered pairs (x, y) whose coordinates 371 
are elements of GF(q) and that satisfy the defining equation (i.e., the affine points). It can be 372 
shown that this set forms a group under the operation addition, where the point (0, 1) serves as 373 
the identity element. If a is a square in GF(q), and d is not, the addition formulae are complete, 374 
meaning that the formulae work for all inputs on the curve. See Appendix A.1.3 for details of the 375 
group operation. 376 

An Edwards curve is a twisted Edwards curve with a=1. Edwards curves are to be used with the 377 
EdDSA digital signature scheme [FIPS 186-5]. 378 

3.2 Binary Curves 379 

3.2.1 Curves in Short-Weierstrass Form 380 

Let GF(q) denote the finite field with q elements, where q=2m. Let Ba,b be the Weierstrass curve 381 
with defining equation y2 + x y = x3 + a x2 + b, where a and b are elements of GF(q) with b ≠ 0. 382 
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The points of Ba,b are the ordered pairs (x, y) whose coordinates are elements of GF(q) and that 383 
satisfy the defining equation (i.e., the affine points), together with the special point ∅ (the “point 384 
at infinity”).This set forms a group under the operation of addition on elliptic curves via the 385 
“chord-and-tangent” rule, where the point at infinity serves as the identity element. See 386 
Appendix A.2.1 for details of the group operation.  387 
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4 Recommended Curves for U.S. Federal Government Use 388 

This section specifies the elliptic curves recommended for U.S. Federal Government use and 389 
contains choices for the private key length and underlying fields. This includes elliptic curves 390 
over prime fields (Section 4.2) and elliptic curves over binary fields (Section 4.3) where each 391 
curve takes one of the forms described in Section 3 (referred to as “Type” below). 392 

Each recommended curve is uniquely defined by its domain parameters D, which indicate the 393 
field GF(q) over which the elliptic curve is defined and the parameters of its defining equation, 394 
as well as principal parameters such as the co-factor h of the curve, the order n of its prime-order 395 
subgroup, and a designated point G=(Gx, Gy) on the curve of order n (i.e., the “base point”).  396 

When ECDSA domain parameters are generated (i.e., the NIST-recommended curves for 397 
ECDSA are not used), the value of G should be generated canonically (verifiably random). An 398 
approved hash function (such as those specified in FIPS 180 or FIPS 202) shall be used during 399 
the generation of ECDSA domain parameters. When generating these domain parameters, the 400 
security strength of a hash function used shall meet or exceed the security strength associated 401 
with the bit length of n.1  402 

Let E be an elliptic curve defined over the field GF(q).  403 

The cardinality |E| of the curve is equal to the number of points on the curve and satisfies the 404 
equation |E|=(q+1)−tr, where |tr| ≤ 2 �𝑞𝑞. (Thus, |E| and q have the same order of magnitude.)  405 

The integer tr is called the trace of E over the field GF(q).  406 

The points on E form a commutative group under addition (for the group law for each curve 407 
form, see Appendix A). Any point P on the curve is the generator of a cyclic subgroup 〈P〉 = {kP 408 
| k =0, 1, 2, …} of E. The order of P in E is defined as the cardinality of <P>. A curve is cyclic if 409 
it is generated by some point on E. All curves of prime order are cyclic, while all curves of order 410 
|E|=h⋅n, where n is a large prime number and where h is small number, have a large cyclic 411 
subgroup of prime order n. 412 

If R is a point on the curve that is also contained in 〈P〉, there is a unique integer k in the interval 413 
[0, l−1] so that R=kP, where l is the order of P in E. This number is called the discrete logarithm 414 
of R to the base P. The discrete logarithm problem is the problem of finding the discrete 415 
logarithm of R to the base P for any two points P and R on the curve, if such a number exists. 416 

A quadratic twist of E is a curve E’ related to E, with cardinality |E’|=(q+1)+tr. If E is a curve in 417 
one of the curve forms specified in this Recommendation, a quadratic twist of this curve can be 418 
expressed using the same curve model, although (naturally) with different curve parameters. 419 

                                                 
1 The NIST-recommended curves for ECDSA were generated prior to the formulation of this guidance and using SHA-1, which 
was the only approved hash function available at that time. Since SHA-1 was considered secure at the time of generation, the 
curves were made public, and SHA-1 will only be used to validate those curves, the NIST-recommended curves for ECDSA are 
still considered secure and appropriate for Federal Government use. 
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For details regarding the generation method of the elliptic curves, see Appendix C. 420 

4.1 Choices of Key Lengths, Underlying Fields, Curves, and Base Points 421 

4.1.1 Choice of Key Lengths  422 

The principal parameters for elliptic curve cryptography are the elliptic curve E and a designated 423 
point G on E called the base point. The base point has order n, which is a large prime. The 424 
number of points on the curve is h⋅n for some integer h (the cofactor), which is not divisible by 425 
n. For efficiency reasons, it is desirable to have the cofactor be as small as possible. 426 

All of the curves given below have cofactors 1, 2, or 4. As a result, the private and public keys 427 
for a curve are approximately the same length.  428 

4.1.2 Choice of Underlying Fields  429 

For each key length, two kinds of fields are provided: 430 

• A prime field is the field GF(p), which contains a prime number p of elements. The 431 
elements of this field are the integers modulo p, and the field arithmetic is implemented 432 
in terms of the arithmetic of integers modulo p.  433 

• A binary field is the field GF(2m), which contains 2m elements for some m (called the 434 
degree of the field). The elements of this field are the bit strings of length m, and the field 435 
arithmetic is implemented in terms of operations on the bits.  436 

The security strengths for four ranges of the bit length of n are provided in SP 800-57, Part 1. For 437 
the field GF(p), the security strength is dependent on the length of the binary expansion of p. For 438 
the field GF(2m), the security strength is dependent on the value of m. Table 1 provides the bit 439 
lengths of the various underlying fields of the curves provided in this appendix. Column 1 lists 440 
the ranges for the bit length of n. Column 2 identifies the value of p used for the curves over 441 
prime fields, where len(p) is the length of the binary expansion of the integer p. Column 3 442 
provides the value of m for the curves over binary fields. 443 

Table 1: Bit Lengths of the Underlying Fields of the Recommended Curves 444 

Bit Length of n Prime Field Binary Field 

224 – 255 len(p) = 224 m = 233 

256 – 383 len(p) = 256 m = 283 

384 – 511 len(p) = 384 m = 409 

≥ 512 len(p) = 521 m = 571 

 445 



NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY: 
ELLIPTIC CURVE DOMAIN PARAMETERS 

10 

 
 

 
 

 
 

 
 

 

 

4.1.3 Choice of Basis for Binary Fields 446 

To describe the arithmetic of a binary field, it is first necessary to specify how a bit string is to be 447 
interpreted. This is referred to as choosing a basis for the field. There are two common types of 448 
bases: a polynomial basis and a normal basis.  449 

• A polynomial basis is specified by an irreducible polynomial modulo 2, called the field 450 
polynomial. The bit string (am–1 … a2  a1  a0) is used to represent the polynomial 451 

am–1 t m–1 + …+ a2 t2 + a1 t + a0 452 

over GF(2). The field arithmetic is implemented as polynomial arithmetic modulo p(t), 453 
where p(t) is the field polynomial. 454 

• A normal basis is specified by an element θ of a particular kind. The bit string (a0  a1  a2  455 
… am–1) is used to represent the element 456 

a0θ + a1θ 2 + a2θ 2 2 + … + am–1θ 2 m–1. 457 

Normal basis field arithmetic is not easy to describe or efficient to implement in general 458 
except for a special class called Type T low-complexity normal bases. For a given field of 459 
degree m, the choice of T specifies the basis and the field arithmetic (see Appendix G.3).  460 

There are many polynomial bases and normal bases from which to choose. The following 461 
procedures are commonly used to select a basis representation:   462 

• Polynomial Basis: If an irreducible trinomial tm + tk + 1 exists over GF(2), then the field 463 
polynomial p(t) is chosen to be the irreducible trinomial with the lowest-degree middle 464 
term tk. If no irreducible trinomial exists, then a pentanomial tm + ta + tb + tc + 1 is 465 
selected. The particular pentanomial chosen has the following properties: the second term 466 
ta has the lowest degree m; the third term tb has the lowest degree among all irreducible 467 
pentanomials of degree m and the second term ta; and the fourth term tc has the lowest 468 
degree among all irreducible pentanomials of degree m, with the second term ta, and third 469 
term tb. 470 

• Normal Basis: Choose the Type T low-complexity normal basis with the smallest T.  471 
For each binary field, the parameters are given for the above basis representations.  472 

4.1.4 Choice of Curves  473 

Two kinds of curves are given:  474 

• Pseudorandom curves are those whose coefficients are generated from the output of a 475 
seeded cryptographic hash function. If the domain parameter seed value is given along 476 
with the coefficients, it can be easily verified that the coefficients were generated by that 477 
method.  478 

• Special curves are those whose coefficients and underlying field have been selected to 479 
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optimize the efficiency of the elliptic curve operations.  480 
For each curve size range, the following curves are given:  481 

→ A pseudorandom curve over GF(p).  482 

→ A pseudorandom curve over GF(2m).  483 

→ Special curves over GF(p) called Edwards curves and Montgomery curves.  484 

→ A special curve over GF(2m) called a Koblitz curve or anomalous binary curve.  485 

The pseudorandom curves were generated as specified in Appendix C.3. 486 

4.1.5 Choice of Base Points  487 

Since any point of order n can serve as the base point, users could, in principle, generate their 488 
own base points to ensure a cryptographic separation of networks, although this does result in 489 
another set of domain parameters. When generating base points, users should use a verifiably 490 
random method and check the validity of the point generated. See Appendix D.3 for more 491 
details. If a base point is generated by another entity, it is recommended that its validity be 492 
verified with the procedure in Appendix D.3.3 prior to use. 493 

4.2 Curves over Prime Fields 494 

This section specifies elliptic curves over prime fields recommended for U.S. Federal 495 
Government use, where each curve takes the form of a curve in short-Weierstrass form (Section 496 
4.2.1), a Montgomery curve (Section 4.2.2), or a twisted Edwards curve (Section 4.2.3). 497 

4.2.1 Weierstrass Curves 498 

This specification includes pseudorandom Weierstrass curves generated over prime fields P-192, 499 
P-224, P-256, P-384, and P-521 (See Sections 4.2.1.1 - 4.2.1.5) and special Weierstrass curves 500 
over prime fields W-25519 (Section 4.2.1.6) and W-448 (Section 4.2.1.7). The curves W-25519 501 
and W-448 may provide improved performance of the elliptic curve operations as well as 502 
increased resilience against side-channel attacks while allowing for ease of integration with 503 
existing implementations. 504 

For each Weierstrass curve,  505 

E :  y2 ≡  x3 +ax +b (mod p), 506 

the following domain parameters D=( p, h, n, Type, a, b, G, {Seed, c}) are given:  507 

• The prime modulus p 508 

• The cofactor h 509 
o For pseudorandom curves, the cofactor h = 1 so the order n is prime  510 
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o For special curves, the cofactor h > 1 so the order n is not prime 511 

• The Type is “Weierstrass curve” 512 

• The coefficient a 513 
o For pseudorandom curves, a = -3 was made for reasons of efficiency; see IEEE 514 

Std 1363-2000 515 

• The coefficient b 516 

o For pseudorandom curves, the coefficient b satisfies b2 c ≡ –27 (mod p) 517 

• The base point G with x coordinate Gx and y coordinate Gy  518 

• The 160-bit input Seed to the SHA-1 hash algorithm in Appendix C.3 for pseudorandom 519 
curves. Seed is not used with the special curves W-25519 (Section 4.2.1.6) and W-448 520 
(Section 4.2.1.7). 521 

• The output c of the SHA-1 hash algorithm used for pseudorandom curves. The value c is 522 
not used with the special curves W-25519 (Section 4.2.1.6) and W-448 (Section 4.2.1.7). 523 

The integers p and n are given in decimal form; bit strings and field elements are given in 524 
hexadecimal.  525 

4.2.1.1 P-192 526 

The use of this curve is for legacy-use only. See [FIPS 186-4] for the specification. 527 

4.2.1.2 P-224 528 

The elliptic curve P-224 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 529 
order h⋅n, where h=1 and where n is a prime number. This curve has domain parameters D=( p, 530 
h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters 531 
are defined as follows: 532 
 533 
p:       2224 −  296 + 1 534 

    = 26959946667150639794667015087019630673557916260026308143510066298881 535 
    (=0xffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001)  536 
h:  1  537 
n:        26959946667150639794667015087019625940457807714424391721682722368061 538 
      (=0xffffffff ffffffff ffffffff ffff16a2 e0b8f03e 13dd2945 5c5c2a3d) 539 
tr:      4733100108545601916421827343930821 540 
 (=(p+1) − h⋅ n = 0xe95c 1f470fc1 ec22d6ba a3a3d5c5) 541 
a:       −3 542 
          = 26959946667150639794667015087019630673557916260026308143510066298878 543 
 (=0xffffffff ffffffff ffffffff fffffffe ffffffff ffffffff fffffffe) 544 
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b:       18958286285566608000408668544493926415504680968679321075787234672564545 
 (=0xb4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4) 546 
Gx:     19277929113566293071110308034699488026831934219452440156649784352033547 
 (=0xb70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21) 548 
Gy:     19926808758034470970197974370888749184205991990603949537637343198772549 
 (=0xbd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34) 550 
Seed: 0xbd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5 551 
c:        9585649763196999776159690989286240671136085803543320687376622326267 552 

   (=0x5b056c7e 11dd68f4 0469ee7f 3c7a7d74 f7d12111 6506d031 218291fb) 553 
 554 

4.2.1.3 P-256 555 

The elliptic curve P-256 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 556 
order h⋅n, where h=1 and where n is a prime number. This curve has domain parameters D=( p, 557 
h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters 558 
are defined as follows: 559 
 560 
p:       2256 −  2224 + 2192 + 296 − 1 561 

    = 115792089210356248762697446949407573530\ 562 
             086143415290314195533631308867097853951  563 
    (=0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff 564 

    ffffffff )  565 
h:  1  566 
n:        115792089210356248762697446949407573529\ 567 
           996955224135760342422259061068512044369  568 

    (=0xffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2  569 
    fc632551) 570 

tr:       89188191154553853111372247798585809583 571 
 (=(p+1) − h⋅ n = 0x43190553 58e8617b 0c46353d 039cdaaf) 572 
a:       −3 573 
          = 115792089210356248762697446949407573530\ 574 
              086143415290314195533631308867097853948 575 

 (=0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff 576 
     fffffffc) 577 

b:       41058363725152142129326129780047268409\ 578 
          114441015993725554835256314039467401291 579 

 (=0x5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 580 
     27d2604b) 581 

Gx:     48439561293906451759052585252797914202\ 582 
          762949526041747995844080717082404635286  583 
 (=0x6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 584 
      d898c296) 585 
Gy:     36134250956749795798585127919587881956\ 586 
          611106672985015071877198253568414405109 587 

 (=0x4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068     588 



NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY: 
ELLIPTIC CURVE DOMAIN PARAMETERS 

14 

 
 

 
 

 
 

 
 

 

 

     37bf51f5) 589 
Seed: 0xc49d3608 86e70493 6a6678e1 139d26b7 819f7e90  590 
c:        57436011470200155964173534038266061871\ 591 
           440426244159038175955947309464595790349 592 

   (=0x7efba166 2985be94 03cb055c 75d4f7e0 ce8d84a9 c5114abc af317768 593 
      0104fa0d) 594 
 595 
4.2.1.4 P-384 596 

The elliptic curve P-384 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 597 
order h⋅n, where h=1 and where n is a prime number. This curve has domain parameters D=( p, 598 
h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters 599 
are defined as follows: 600 
 601 
p: 2384 −  2128 − 296 + 232 − 1 602 

= 3940200619639447921227904010014361380507973927046544666794\  603 
   8293404245721771496870329047266088258938001861606973112319 604 
    (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  605 

ffffffff fffffffe ffffffff 00000000 00000000 ffffffff) 606 
h: 1 607 
n:  3940200619639447921227904010014361380507973927046544666794\  608 

6905279627659399113263569398956308152294913554433653942643  609 
    (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  610 
     c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973) 611 

tr:       1388124618062372383606759648309780106643088307173319169677 612 
 (=(p+1) − h⋅ n = 0x389cb27e 0bc8d21f a7e5f24c b74f5885 1313e696   613 
   333ad68d) 614 
a:         −3 615 

= 3940200619639447921227904010014361380507973927046544666794\ 616 
   8293404245721771496870329047266088258938001861606973112316 617 
    (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 618 
      ffffffff fffffffe ffffffff 00000000 00000000 fffffffc) 619 

b:   2758019355995970587784901184038904809305690585636156852142\ 620 
8707301988689241309860865136260764883745107765439761230575 621 
    (=0xb3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112  622 
      0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef) 623 

Gx:   2624703509579968926862315674456698189185292349110921338781\ 624 
5615900925518854738050089022388053975719786650872476732087  625 
    (=0xaa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98  626 
      59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7)  627 

Gy: 832571096148902998554675128952010817928785304886131559470\ 628 
9205902480503199884419224438643760392947333078086511627871  629 
    (=0x3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c  630 
      e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f) 631 

Seed:  0xa335926a a319a27a 1d00896a 6773a482 7acdac73  632 
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c:  1874980186709887347182107097135388878869033900306543902178\ 633 
0101954060871745882341382251168574711376101826101037376643 634 
    (=0x79d1e655 f868f02f ff48dcde e14151dd b80643c1 406d0ca1  635 
    0dfe6fc5 2009540a 495e8042 ea5f744f 6e184667 cc722483)  636 

 637 
4.2.1.5 P-521 638 

The elliptic curve P-521 is a Weierstrass curve Wa,b defined over the prime field GF(p) that has 639 
order h⋅n, where h=1 and where n is a prime number. This curve has domain parameters D=( p, 640 
h, n, Type, a, b, G, {Seed, c}), where the Type is “Weierstrass curve” and the other parameters 641 
are defined as follows: 642 
 643 
p:         2521 − 1 644 

      = 686479766013060971498190079908139321726943530014330540939\  645 
         446345918554318339765605212255964066145455497729631139148 \ 646 
         0858037121987999716643812574028291115057151  647 
       (=0x1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  648 

            ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  649 
            ffffffff ffffffff ffffffff ffffffff) 650 

h:        1 651 
n:         686479766013060971498190079908139321726943530014330540939\  652 
            446345918554318339765539424505774633321719753296399637136\  653 
            3321113864768612440380340372808892707005449  654 
                    (=0x1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  655 

            ffffffff fffffffa 51868783 bf2f966b 7fcc0148 f709a5d0  656 
                  3bb5c9b8 899c47ae bb6fb71e 91386409) 657 
tr:       657877501894328237357444332315020117536\ 658 
 923257219387276263472201219398408051703 659 
 (=(p+1) − h⋅ n = 0x5 ae79787c 40d06994 8033feb7 08f65a2f  660 

      c44a3647 7663b851 449048e1 6ec79bf7) 661 
a:        −3 662 

     = 686479766013060971498190079908139321726943530014330540939\  663 
        446345918554318339765605212255964066145455497729631139148 \ 664 

              0858037121987999716643812574028291115057148 665 
      (=0x1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  666 

                 ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff  667 
                 ffffffff ffffffff ffffffff fffffffc) 668 
b:        1093849038073734274511112390766805569936207598951683748994\ 669 
           5863944959531161507350160137087375737596232485921322967063\ 670 
           13309438452531591012912142327488478985984 671 
                (=0x051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3 672 
                b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd 3bb1bf07 673 
                3573df88 3d2c34f1 ef451fd4 6b503f00)  674 
Gx:      2661740802050217063228768716723360960729859168756973147706\ 675 
           6713684188029449964278084915450806277719023520942412250655\ 676 
           58662157113545570916814161637315895999846   677 
                (=0xc6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 053fb521 678 
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          f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127 a2ffa8de 679 
               3348b3c1 856a429b f97e7e31 c2e5bd66)  680 
Gy:      37571800257700204635455072244911836035944551347697624866945\ 681 
           67779615544477440556316691234405012945539562144444537289428\ 682 
           522585666729196580810124344277578376784                    683 

    (=0x118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468 684 
                17afbd17 273e662c 97ee7299 5ef42640 c550b901 3fad0761  685 
                353c7086 a272c240 88be9476 9fd16650) 686 
Seed:  0xd09e8800 291cb853 96cc6717 393284aa a0da64ba  687 
c:        2420736670956961470587751833778383872272949280174637971106318\ 688 
           2239560106363555573338990358663426503785752212772688861827046\ 689 
           43828850020061383251826928984446519 690 

    (=0x0b4 8bfa5f42 0a349495 39d2bdfc 264eeeeb 077688e4 4fbf0ad8 691 
          f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9 ed8a3c22  692 

                00b8f875 e523868c 70c1e5bf 55bad637)  693 
 694 
4.2.1.6 W-25519 695 

The elliptic curve W-25519 is a Weierstrass curve Wa,b defined over the prime field GF(p), with 696 
p=2255-19, and that has order h⋅n, where h=8 and where n is a prime number. The quadratic twist 697 
of this curve has order h1 ⋅n1, where h1=4 and where n1 is a prime number. This curve has domain 698 
parameters D=( p, h, n, Type, a, b, G), where the Type is “Weierstrass curve” and the other 699 
parameters are defined as follows: 700 
 701 
p:       2255−19 702 
 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 703 
     ffffffed) 704 
h:  8  705 
n: 72370055773322622139731865630429942408\ 706 
 57116359379907606001950938285454250989 707 
      (=2252 +  0x14def9de a2f79cd6 5812631a 5cf5d3ed) 708 
tr:      −221938542218978828286815502327069187962 709 
 (=(p+1) − h⋅ n = − 0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a) 710 
a:       19298681539552699237261830834781317975\ 711 
          544997444273427339909597334573241639236 712 

 (=0x2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaa98    713 
     4914a144) 714 

b:       55751746669818908907645289078257140818\ 715 
          241103727901012315294400837956729358436 716 

 (=0x7b425ed0 97b425ed 097b425e d097b425 ed097b42 5ed097b4 260b5e9c 717 
     7710c864) 718 

Gx:     19298681539552699237261830834781317975\ 719 
          544997444273427339909597334652188435546 720 

(=0x2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa 721 
    aaaaaaaa aaad245a) 722 

Gy:     43114425171068552920764898935933967039\ 723 
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 370386198203806730763910166200978582548 724 
 (=0x5f51e65e 475f794b 1fe122d3 88b72eb3 6dc2b281 92839e4d 725 
d6163a5d 81312c14) 726 

 727 
The curve W-25519 is isomorphic to the curve Curve25519 specified in Section 4.2.2.1, where 728 
the base point of Curve25519 corresponds to the base point of W-25519, where the point at 729 
infinity ∅ of Curve25519 corresponds to the point at infinity ∅ on W-25519 and where the point 730 
(u, v) on Curve25519 corresponds to the point (x, y)=(u+A/3, v) on Wa,b.  731 
 732 
See Appendix B.2 for more details. 733 
 734 
Note that Curve25519 is not isomorphic with a Weierstrass curve with domain parameter a = −3. 735 
In particular, this means that one cannot reuse an implementation for elliptic curves with short-736 
Weierstrass form that hard-codes the domain parameter a to −3 to implement Curve25519. 737 
 738 
4.2.1.7 W-448 739 

The elliptic curve Curve448 is the Weierstrass curve Wa,b defined over the prime field GF(p), 740 
with p=2448−2224−1, and that has order h⋅n, where h=4 and where n is a prime number. The 741 
quadratic twist of this curve has order h1⋅n1, where h1 =4 and where n1 is a prime number. This 742 
curve has domain parameters D=( p, h, n, Type, a, b, G), where the Type is “Weierstrass curve” 743 
and the other parameters are defined as follows: 744 
 745 
p:       2448−2224−1 746 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 747 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 748 
h:  4  749 
n:       1817096810739017226373309519720011335884103401718295150703725497951 750 
 46003961539585716195755291692375963310293709091662304773755859649779 751 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 752 
   54a7bb0d) 753 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 754 
 (=(p+1) − h⋅ n =0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  755 
     721cf5b5 529eec34) 756 
a:       4845591495304045936995492052586696895690942404582120401876601327870 757 
          74885444487181790930922465784363953392589641229091574035657199637535 758 
      (=0xaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa9 759 
      ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 1a76d41f) 760 
b:       2691995275168914409441940029214831608717190224767844667709222959928 761 
          19380802492878772739401369880202196329216467349495319191685664513904 762 
     (=0x5ed097b4 25ed097b 425ed097 b425ed09 7b425ed0 97b425ed 097b425e 763 
        71c71c71 c71c71c7 1c71c71c 71c71c71 c71c71c7 1c72c87b 7cc69f70) 764 
Gx:     4845591495304045936995492052586696895690942404582120401876601327870\ 765 
          7488544448718179093092246578436395339258964122909157403566534562907 766 

 (=0xaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa  767 
      00000000 00000000 00000000 00000000 00000000 00000000 0000cb91) 768 
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Gy:     3552939267855681752641275020637833348089763993877142718318808984351\ 769 
 69088786967410002932673765864550910142774147268105838985595290606362 770 

 (=0x7d235d12 95f5b1f6 6c98ab6e 58326fce cbae5d34 f55545d0 60f75dc2  771 
     8df3f6ed b8027e23 46430d21 1312c4b1 50677af7 6fd7223d 457b5b1a) 772 

 773 
The curve W-448 is isomorphic to the curve Curve448 specified in Section 4.2.2.2, where the 774 
base point of Curve448 corresponds to the base point of W-448, where the point at infinity ∅ of 775 
Curve448 corresponds to the point at infinity ∅ on W-448 and where the point (u, v) on 776 
Curve448 corresponds to the point (x, y)=(u+A/3, v)  on Wa,b.  777 
 778 
See Appendix B.2 for more details. 779 
 780 
Note that Curve448 is not isomorphic with a Weierstrass curve with domain parameter a = −3. In 781 
particular, this means that one cannot reuse an implementation for curves with short-Weierstrass 782 
form that hard-codes the domain parameter a to −3 to implement Curve448. 783 
 784 
4.2.2 Montgomery Curves 785 

Similar to W-25519 and W-448, Montgomery curves may offer improved performance with 786 
improved resistance to side-channel attacks. These curves can also provide a bridge between 787 
short-Weierstrass curves and Edwards curves.  788 

4.2.2.1 Curve25519 789 

The elliptic curve Curve25519 is the Montgomery curve MA,B defined over the prime field 790 
GF(p), with p=2255-19, and with parameters A=486662 and B=1 [RFC 7748]. This curve has 791 
order h⋅n, where h=8 and where n is a prime number. For this curve, A2−4 is not a square in 792 
GF(p), whereas A+2 is. The quadratic twist of this curve has order h1⋅n1, where h1=4 and where 793 
n1 is a prime number. This curve has domain parameters D=( p, h, n, Type, A, B, G), where the 794 
Type is “Montgomery curve” and where the other parameters are defined as follows: 795 
 796 
p:       2255−19 797 
 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 798 
     ffffffed) 799 
h:  8  800 
n: 72370055773322622139731865630429942408\ 801 
 57116359379907606001950938285454250989 802 
      (=2252 + 0x14def9de a2f79cd6 5812631a 5cf5d3ed) 803 
tr:      −221938542218978828286815502327069187962 804 
 (=(p+1) − h⋅ n = − 0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a) 805 
A:       486662 806 
B:       1 807 
Gu:      9 808 
 (=0x9) 809 
Gv:      43114425171068552920764898935933967039\ 810 
 370386198203806730763910166200978582548 811 
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 (=0x5f51e65e 475f794b 1fe122d3 88b72eb3 6dc2b281 92839e4d d6163a5d 812 
81312c14) 813 

 814 
 815 
4.2.2.2 Curve448 816 

The elliptic curve Curve448 is the Montgomery curve MA,B defined over the prime field GF(p), 817 
with p=2448−2224−1, and with parameters A=156326 and B=1 [RFC 7748]. This curve has order 818 
h⋅n, where h=4 and where n is a prime number. For this curve, A2−4 is not a square in GF(p), 819 
whereas A-2 is. The quadratic twist of this curve has order h1⋅n1, where h1 = 4 and where n1 is a 820 
prime number. This curve has domain parameters D=( p, h, n, Type, A, B, G), where the Type is 821 
“Montgomery curve” and where the other parameters are defined as follows: 822 
 823 
p:       2448−2224−1 824 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 825 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 826 
h:  4  827 
n:       1817096810739017226373309519720011335884103401718295150703725497951 828 
 46003961539585716195755291692375963310293709091662304773755859649779 829 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 830 
   54a7bb0d) 831 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 832 
 (=(p+1) − h⋅ n =0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  833 
     721cf5b5 529eec34) 834 
A:       156326 835 
B:       1 836 
Gu:     5 837 
 (=0x5) 838 
Gv:     3552939267855681752641275020637833348089763993877142718318808984351\ 839 
 69088786967410002932673765864550910142774147268105838985595290606362 840 

 (=0x7d235d12 95f5b1f6 6c98ab6e 58326fce cbae5d34 f55545d0 60f75dc2  841 
     8df3f6ed b8027e23 46430d21 1312c4b1 50677af7 6fd7223d 457b5b1a) 842 

 843 
The base point of Curve448 corresponds to the base point of E448 and the point at infinity ∅, 844 
and the point (0,0) of order two of Curve448 correspond to, respectively, the point (0, 1) and the 845 
point (0, −1) of order two on E448. Each other point (u, v) on Curve448 corresponds to the point 846 
(α u/v, (u + 1)/(u − 1)) on E448, where α is the element of GF(p) defined by  847 
 848 
α:      1978884672954644395383540097538580382568351525910598021481997791960\ 849 
          87404232002515713604263127793030747855424464185691766453844835192428 850 
 (=0x45b2c5f7 d649eed0 77ed1ae4 5f44d541 43e34f71 4b71aa96 c945af01  851 
     2d182975 0734cde9 faddbda4 c066f7ed 54419ca5 2c85de1e 8aae4e6c) 852 
 853 
See Appendix B.1 for more details. 854 
 855 
 856 
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4.2.3 Twisted Edwards Curves 857 

Edwards curves offer high performance for elliptic curve calculations and protection against 858 
side-channel attacks. The Edwards Curve Digital Signature Algorithm (EdDSA) is a digital 859 
signature scheme based on twisted Edwards curves and is specified in FIPS 186-5. 860 

4.2.3.1 Edwards25519 861 

The elliptic curve Edwards25519 is the twisted Edwards curve Ea,d defined over the prime field 862 
GF(p), with p=2255-19, and with parameters a= −1 and d= −121665/121666 (i.e., 863 
37095705934669439343138083508754565189542113879843219016388785533085940283555) 864 
[RFC 8032]. This curve has order h⋅n, where h=8 and where n is a prime number. For this curve, 865 
a is a square in GF(p), whereas d is not. The quadratic twist of this curve has order h1⋅n1, where 866 
h1=4 and where n1 is a prime number. This curve has domain parameters D=( p, h, n, Type, a, d, 867 
G), where the Type is “twisted Edwards curve” and where the other parameters are defined as 868 
follows: 869 
 870 
p:       2255−19 871 
 (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 872 
     ffffffed) 873 
h:  8  874 
n: 72370055773322622139731865630429942408\ 875 
 57116359379907606001950938285454250989 876 
      (=2252 + 0x14def9de a2f79cd6 5812631a 5cf5d3ed) 877 
tr:      −221938542218978828286815502327069187962 878 
 (=(p+1) − h⋅ n = − 0xa6f7cef5 17bce6b2 c09318d2 e7ae9f7a) 879 
a:       −1 880 
d:       −121665/121666 = 37095705934669439343138083508754565189\ 881 
             542113879843219016388785533085940283555 882 
 (=0x52036cee 2b6ffe73 8cc74079 7779e898 00700a4d 4141d8ab 75eb4dca 883 
     135978a3) 884 
Gx:     15112221349535400772501151409588531511\ 885 
 454012693041857206046113283949847762202 886 
 (=0x216936d3 cd6e53fe c0a4e231 fdd6dc5c 692cc760 9525a7b2 c9562d60 887 
      8f25d51a) 888 
Gy:      4/5 = 46316835694926478169428394003475163141\ 889 
      307993866256225615783033603165251855960 890 
 (=0x66666666 66666666 66666666 66666666 66666666 66666666 66666666 891 
       66666658) 892 
 893 
The curve Edwards25519 is isomorphic to the curve Curve25519 specified in Section 4.2.2.1, 894 
where  895 

• the base point of Curve25519 corresponds to the base point of Edwards25519; 896 
• the point at infinity ∅ and the point (0,0) of order two of Curve25519 correspond to, 897 

respectively, the point (0, 1) and the point (0, −1) of order two on Edwards25519; and 898 
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• each other point (u, v) on Curve25519 corresponds to the point (α u/v, (u − 1)/(u + 1)) on 899 
Edwards25519, where α is the element of GF(p) defined by  900 

 901 
α:      51042569399160536130206135233146329284\ 902 
          152202253034631822681833788666877215207 903 
 (=0x70d9120b 9f5ff944 2d84f723 fc03b081 3a5e2c2e b482e57d 3391fb55 904 
      00ba81e7). 905 

 906 
The inverse mapping from Edwards25519 to Curve25519 is defined by  907 

• mapping the point (0, 1) and the point (0, −1) of order two on Edwards25519 to, 908 
respectively, the point at infinity ∅ and the point (0,0) of order two of Curve25519 and 909 

• having each other point (x, y) on Edwards25519 correspond to the point ((1 + y)/(1 − y), 910 
α(1 + y)/(1−y)x).  911 

 912 
See Appendix B.1 for more details. 913 
 914 
4.2.3.2 Edwards448 915 

The elliptic curve Edwards448 is the Edwards curve Ea,d defined over the prime field GF(p), with 916 
p=2448−2224−1, and with parameters a=1 and d= −39081 [RFC 8032]. This curve has order h⋅n, 917 
where h=4 and where n is a prime number. For this curve, a is a square in GF(p), whereas d is 918 
not. The quadratic twist of this curve has order h1⋅n1, where h1 =4 and where n1 is a prime 919 
number. This curve has domain parameters D=( p, h, n, Type, a, d, G), where the Type is 920 
“twisted Edwards curve” and where the other parameters are defined as follows: 921 
 922 
p:       2448−2224−1 923 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 924 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 925 
h:  4  926 
n:       1817096810739017226373309519720011335884103401718295150703725497951 927 
 46003961539585716195755291692375963310293709091662304773755859649779 928 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 929 
   54a7bb0d) 930 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 931 
 (=(p+1) − h⋅ n =0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  932 
     721cf5b5 529eec34) 933 
a:       1 934 
d:       −39081  935 
          = 7268387242956068905493238078880045343536413606873180602814901991806\ 936 
             12328166730772686396383698676545930088884461843637361053498018326358937 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 938 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffff6756) 939 
Gx:     2245800402959243001876043340998960362467896416325641342461254616869\ 940 
          50415467406032909029192869357953282578032075146446173674602635247710941 
 (=0x4f1970c6 6bed0ded 221d15a6 22bf36da 9e146570 470f1767 ea6de324 942 
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     a3d3a464 12ae1af7 2ab66511 433b80e1 8b00938e 2626a82b c70cc05e) 943 
Gy:     2988192100784814926760179304439306734375440401540802420959282413723\ 944 
          31506189835876003536878655418784733982303233503462500531545062832660          945 
      (=0x693f4671 6eb6bc24 88762037 56c9c762 4bea7373 6ca39840 87789c1e 946 
    05a0c2d7 3ad3ff1c e67c39c4 fdbd132c 4ed7c8ad 9808795b f230fa14) 947 
 948 
 949 
4.2.3.3 E448 950 

The elliptic curve E448 is the Edwards curve Ea,d defined over the prime field GF(p), with 951 
p=2448−2224−1, and with parameters a=1 and d=39082/39081. This curve has order h⋅n, where 952 
h=4 and where n is a prime number. For this curve, a is a square in GF(p), whereas d is not. The 953 
quadratic twist of this curve has order h1⋅n1, where h1 =4 and where n1 is a prime number. This 954 
curve has domain parameters D=(p, h, n, Type, a, d, G), where the Type is “twisted Edwards 955 
curve” and where the other parameters are defined as follows: 956 
 957 
p:       2448−2224−1 958 
 (=0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe 959 
     ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff) 960 
h:  4  961 
n:       1817096810739017226373309519720011335884103401718295150703725497951 962 
 46003961539585716195755291692375963310293709091662304773755859649779 963 
      (=2446 − 0x8335dc16 3bb124b6 5129c96f de933d8d 723a70aa dc873d6d 964 
   54a7bb0d) 965 
tr:      28312320572429821613362531907042076847709625476988141958474579766324 966 
 (=(p+1) − h⋅ n =0x1 0cd77058 eec492d9 44a725bf 7a4cf635 c8e9c2ab  967 
     721cf5b5 529eec34) 968 
a:       1 969 
d:       39082/39081 =  970 
 6119758507445291761604232209655533175432196968710166263289689364150\ 971 
 87860042636474891785599283666020414768678979989378147065462815545017 972 

 (=0xd78b4bdc 7f0daf19 f24f38c2 9373a2cc ad461572 42a50f37 809b1da3 973 
      412a12e7 9ccc9c81 264cfe9a d0809970 58fb61c4 243cc32d baa156b9) 974 

Gx:     3453974930397295163740086041505374102666552600751832902164069702816\ 975 
          45695073672344430481787759340633221708391583424041788924124567700732 976 

 (=0x79a70b2b 70400553 ae7c9df4 16c792c6 1128751a c9296924 0c25a07d   977 
     728bdc93 e21f7787 ed697224 9de732f3 8496cd11 69871309 3e9c04fc) 978 

Gy:     3/2 =  979 
          3634193621478034452746619039440022671768206803436590301407450995903\ 980 
          06164083365386343198191849338272965044442230921818680526749009182718 981 
      (=0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 982 
            7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffeL)  983 
 984 
The mapping from E448 to Curve448 is defined by mapping the point (0, 1) and the point (0, −1) 985 
of order two on E448 to, respectively, the point at infinity ∅ and the point (0,0) of order two of 986 
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Curve448 and having each other point (x, y) on E448 correspond to the point ((y + 1)/(y − 1), α(y 987 
+ 1)/(y−1)x). The value of α is specified in 4.2.2.2. See Appendix B.1 for more details. 988 
 989 
The curve Edwards448 (specified in Section 4.2.3.2) is 4-isogenous to the curve E448. See 990 
Appendix B.4 for further information. 991 
 992 
4.3 Curves over Binary Fields 993 

This section specifies elliptic curves over binary fields where each curve takes the form of a 994 
curve in short-Weierstrass form and is either a Koblitz curve (Section 4.3.1) or a pseudorandom 995 
curve (Section 4.3.2). Due to their limited adoption, elliptic curves over binary fields (i.e., all the 996 
curves specified in Section 4.3) are deprecated and may be removed from a subsequent revision 997 
to these guidelines to facilitate interoperability and simplify elliptic curve standards and 998 
implementations. New implementations should select an appropriate elliptic curve over a prime 999 
field from Section 4.2. 1000 

Here, the domain parameters a and b for Koblitz curves are elements of the base field GF(2), i.e., 1001 
b=1 and a=0 or a=1, whereas, for pseudorandom curves, a=1 and b is a nonzero element of 1002 
GF(2m).  1003 

For each field degree m, a pseudorandom curve is given, along with a Koblitz curve. The 1004 
pseudorandom curve has the form  1005 

E: y 2 + x y = x 3 + x 2 + b, 1006 

and the Koblitz curve has the form  1007 

Ea: y2 + x y = x 3 + ax 2 + 1, 1008 
where a = 0 or 1.  1009 

For each pseudorandom curve, the cofactor is h = 2. The cofactor of each Koblitz curve is h = 2 1010 
if a = 1, and h = 4 if a = 0.  1011 

The coefficients of the pseudorandom curves and the coordinates of the base points of both kinds 1012 
of curves are given in terms of both the polynomial and normal basis representations discussed in 1013 
Section 4.1.3.  1014 

For each m, the following parameters are given:  1015 

Field Representation:  1016 

• The normal basis type T  1017 
• The field polynomial (a trinomial or pentanomial)  1018 

Koblitz Curve:  1019 

• The coefficient a  1020 
• The base point order n  1021 
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• The base point x coordinate Gx  1022 
• The base point y coordinate Gy  1023 

Pseudorandom curve:  1024 

• The base point order n  1025 

Pseudorandom curve (Polynomial Basis representation):  1026 

• The coefficient b  1027 
• The base point x coordinate Gx  1028 
• The base point y coordinate Gy 1029 

Pseudorandom curve (Normal Basis representation):  1030 

• The 160-bit input Seed to the SHA-1 based algorithm (i.e., the domain parameter seed) 1031 
• The coefficient b (i.e., the output of the SHA-1 based algorithm) 1032 
• The base point x coordinate Gx 1033 
• The base point y coordinate Gy 1034 

Integers (such as T, m, and n) are given in decimal form; bit strings and field elements are given 1035 
in hexadecimal.  1036 

4.3.1 Koblitz Curves 1037 

4.3.1.1 Curve K-163 1038 

The use of this curve is for legacy-use only. See FIPS 186-4 for the specification. 1039 

4.3.1.2 Curve K-233 1040 

The elliptic curve K-233 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1041 
m=233, and with parameters a=0 and b=1. This curve has order h⋅n, where h=4 and where n is a 1042 
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), 1043 
where the Type is “Weierstrass curve” and where the other parameters are defined as follows: 1044 
 1045 
f(z): z233 + z74 + 1 1046 
h: 4 1047 
n:  345087317339528189371737793113851276057094098886225212\ 1048 

6328087024741343 1049 
  (=0x80 00000000 00000000 00000000 00069d5b b915bcd4 6efb1ad5 f173abdf) 1050 

tr:         −137381546011108235394987299651366779 1051 
   (=(2m+1) − h⋅ n =   −0x1a756e e456f351 bbec6b57 c5ceaf7b) 1052 
a:         0 1053 

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000000) 1054 
b:   1 1055 

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000001) 1056 



NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY: 
ELLIPTIC CURVE DOMAIN PARAMETERS 

25 

 
 

 
 

 
 

 
 

 

 

Polynomial basis: 1057 
Gx:      0x172 32ba853a 7e731af1 29f22ff4 149563a4 19c26bf5 0a4c9d6e efad6126 1058 
Gy:    0x1db 537dece8 19b7f70f 555a67c4 27a8cd9b f18aeb9b 56e0c110 56fae6a3 1059 
Normal basis: 1060 
Gx:      0x0fd e76d9dcd 26e643ac 26f1aa90 1aa12978 4b71fc07 22b2d056 14d650b3 1061 
Gy:    0x064 3e317633 155c9e04 47ba8020 a3c43177 450ee036 d6335014 34cac978 1062 
Seed:  n/a (binary Koblitz curve) 1063 
 1064 
4.3.1.3 Curve K-283 1065 

The elliptic curve K-283 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1066 
m=283, and with parameters a=0 and b=1. This curve has order h⋅n, where h=4 and where n is a 1067 
prime number. This curve has domain parameters D=(m,  f(z), h, n, Type, a, b, G, {Seed, c}), 1068 
where the Type is “Weierstrass curve” and where the other parameters are defined as follows: 1069 
 1070 
f(z): z283 + z12 + z7 + z5 + 1  1071 
h: 4 1072 
n: 388533778445145814183892381364703781328481\ 1073 

1733793061324295874997529815829704422603873  1074 
(=0x1ffffff ffffffff ffffffff ffffffff ffffe9ae 2ed07577  1075 
            265dff7f 94451e06 1e163c61) 1076 

tr:         7777244870872830999287791970962823977569917  1077 
   (=(2m+1) − h⋅ n =   0x5947 44be2a23 66880201 aeeb87e7 87a70e7d) 1078 
a:         0 1079 

(=0x0000000 00000000 00000000 00000000 00000000 00000000  1080 
      00000000 00000000 00000000) 1081 

b:   1 1082 
(=0x0000000 00000000 00000000 00000000 00000000 00000000  1083 

      00000000 00000000 00000001) 1084 
Polynomial basis: 1085 
Gx:       0x503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a  1086 

            16876913 b0c2ac24 58492836 1087 
Gy:   0x1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 e8184698  1088 
             e4596236 4e341161 77dd2259 1089 
Normal basis: 1090 
Gx:       0x3ab9593 f8db09fc 188f1d7c 4ac9fcc3 e57fcd3b db15024b  1091 

                        212c7022 9de5fcd9 2eb0ea60 1092 
Gy:     0x2118c47 55e7345c d8f603ef 93b98b10 6fe8854f feb9a3b3  1093 

                       04634cc8 3a0e759f 0c2686b1 1094 
Seed:  n/a (binary Koblitz curve) 1095 
 1096 
4.3.1.4 Curve K-409 1097 

The elliptic curve K-409 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1098 
m=409, and with parameters a=0 and b=1. This curve has order h⋅n, where h=4 and where n is a 1099 
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), 1100 
where the Type is “Weierstrass curve” and where the other parameters are defined as follows: 1101 
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 1102 
f(z): z409 + z8 + 1 1103 
h: 4 1104 
n: 3305279843951242994759576540163855199142023414821406096423243\ 1105 

95022880711289249191050673258457777458014096366590617731358671 1106 
(=  0x7fffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffe5f  1107 

      83b2d4ea 20400ec4 557d5ed3 e3e7ca5b 4b5c83b8 e01e5fcf) 1108 
tr:         10457288737315625927447685387048320737638796957687575791173829  1109 
   (=(2m+1) − h⋅ n = 0x681 f134ac57 7effc4ee aa0a84b0 7060d692 d28df11c 1110 
       7f8680c5) 1111 
a:         0 1112 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  1113 
      00000000 00000000 00000000 00000000 00000000 00000000) 1114 

b:   1 1115 
(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  1116 

      00000000 00000000 00000000 00000000 00000000 00000001) 1117 
Polynomial basis: 1118 
Gx:       0x060f05f 658f49c1 ad3ab189 0f718421 0efd0987 e307c84c 27accfb8 1119 

            f9f67cc2 c460189e b5aaaa62 ee222eb1 b35540cf e9023746 1120 
Gy:     0x1e36905 0b7c4e42 acba1dac bf04299c 3460782f 918ea427 e6325165 1121 

      e9ea10e3 da5f6c42 e9c55215 aa9ca27a 5863ec48 d8e0286b 1122 
Normal basis: 1123 
Gx:       0x1b559c7 cba2422e 3affe133 43e808b5 5e012d72 6ca0b7e6 a63aeafb 1124 
          c1e3a98e 10ca0fcf 98350c3b 7f89a975 4a8e1dc0 713cec4a  1125 
Gy:     0x16d8c42 052f07e7 713e7490 eff318ba 1abd6fef 8a5433c8 94b24f5c 1126 
         817aeb79 852496fb ee803a47 bc8a2038 78ebf1c4 99afd7d6  1127 
Seed:  n/a (binary Koblitz curve) 1128 
 1129 
4.3.1.5 Curve K-571 1130 

The elliptic curve K-571 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1131 
m=571, and with parameters a=0 and b=1. This curve has order h⋅n, where h=4 and where n is a 1132 
prime number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), 1133 
where the Type is “Weierstrass curve” and where the other parameters are defined as follows: 1134 
 1135 
f(z): z571 + z10 + z5 + z2 + 1 1136 
h: 4 1137 
n: 193226876150862917234767594546599367214946366485321749932\ 1138 

861762572575957114478021226813397852270671183470671280082\ 1139 
5351461273674974066617311929682421617092503555733685276673  1140 
(=0x 2000000 00000000 00000000 00000000 00000000 00000000 00000000 1141 
            00000000 00000000 131850e1 f19a63e4 b391a8db 917f4138 1142 
   b630d84b e5d63938 1e91deb4 5cfe778f 637c1001) 1143 

 1144 
tr:         −148380926981691413899619140297051490364542\ 1145 
   574180493936232912339534208516828973111459843  1146 
   (=(2m+1) − h⋅ n =       -0x4c614387 c6698f92 ce46a36e 45fd04e2 d8c3612f  1147 
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           9758e4e0 7a477ad1 73f9de3d 8df04003) 1148 
a:         0 1149 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  1150 
      00000000 00000000 00000000 00000000 00000000 00000000) 1151 
      00000000 00000000 00000000 00000000 00000000) 1152 

b:   1 1153 
(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  1154 

      00000000 00000000 00000000 00000000 00000000 00000000) 1155 
      00000000 00000000 00000000 00000000 00000001) 1156 

Polynomial basis: 1157 
Gx:      0x26eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4 60248048 1158 

  01841ca4 43709584 93b205e6 47da304d b4ceb08c bbd1ba39  1159 
  494776fb 988b4717 4dca88c7 e2945283 a01c8972 1160 

Gy:    0x349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54 ffc61efc 1161 
         006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a  1162 

     7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3  1163 
Normal basis: 1164 
Gx:     0x04bb2db a418d0db 107adae0 03427e5d 7cc139ac b465e593 4f0bea2a 1165 
        b2f3622b c29b3d5b 9aa7a1fd fd5d8be6 6057c100 8e71e484 1166 

     bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7  1167 
Gy:   0x44cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bd124e 751ceff4 1168 
        369dd8da c6a59e6e 745df44d 8220ce22 aa2c852c fcbbef49 1169 
        ebaa98bd 2483e331 80e04286 feaa2530 50caff60  1170 
Seed:  n/a (binary Koblitz curve) 1171 
 1172 
4.3.2 Pseudorandom Curves 1173 

4.3.2.1 Curve B-163 1174 

The use of this curve is for legacy-use only. See FIPS 186-4 for the specification. 1175 

4.3.2.2 Curve B-233 1176 

The elliptic curve B-233 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1177 
m=233, and with parameter a=1. This curve has order h⋅n, where h=2 and where n is a prime 1178 
number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the 1179 
Type is “Weierstrass curve” and where the other parameters are defined as follows: 1180 
 1181 
f(z): z233 + z74 + 1 1182 
h: 2 1183 
n:  690174634679056378743475586227702555583981273734501355\ 1184 
  5379383634485463  1185 
   (=0x100 00000000 00000000 00000000 0013e974 e72f8a69 22031d26 03cfe0d7) 1186 
tr:         −206777407530349254000433718821372333  1187 
   (=(2m+1) − h⋅ n =   −0x27d2e9 ce5f14d2 44063a4c 079fc1ad) 1188 
a:         1 1189 

(=0x000 00000000 00000000 00000000 00000000 00000000 00000000 00000001) 1190 
Polynomial basis: 1191 
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b:        0x066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad 1192 
Gx:       0x0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36 f8f8eb73 71fd558b 1193 
Gy:     0x100 6a08a419 03350678 e58528be bf8a0bef f867a7ca 36716f7e 01f81052 1194 
Normal basis: 1195 
b:      0x1a0 03e0962d 4f9a8e40 7c904a95 38163adb 82521260 0c7752ad 52233279 1196 
Gx:       0x18b 863524b3 cdfefb94 f2784e0b 116faac5 4404bc91 62a363ba b84a14c5 1197 
Gy:     0x049 25df77bd 8b8ff1a5 ff519417 822bfedf 2bbd7526 44292c98 c7af6e02 1198 
Seed:      0x74d59ff0 7f6b413d 0ea14b34 4b20a2db 049b50c3 1199 
 1200 
4.3.2.3 Curve B-283 1201 

The elliptic curve B-283 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1202 
m=283, and with parameter a=1. This curve has order h⋅n, where h=2 and where n is a prime 1203 
number. This curve has domain parameters D=(m,  f(z), h, n, Type, a, b, G, {Seed, c}), where the 1204 
Type is “Weierstrass curve” and where the other parameters are defined as follows: 1205 
 1206 
f(z): z283 + z12 + z7 + z5 + 1 1207 
h: 2 1208 
n: 7770675568902916283677847627294075626569625924376904889\  1209 

109196526770044277787378692871  1210 
(=0x3ffffff ffffffff ffffffff ffffffff ffffef90 399660fc  1211 

938a9016 5b042a7c efadb307) 1212 
tr:         2863663306391796106224371145726066910599667  1213 
   (=(2m+1) − h⋅ n =   0x 20df8cd33e06d8eadfd349f7ab0620a499f3) 1214 
a:         1 1215 

(=0x0000000 00000000 00000000 00000000 00000000 00000000  1216 
      00000000 00000000 00000001) 1217 

Polynomial basis: 1218 
b:       0x27b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2  1219 

a581485a f6263e31 3b79a2f5 1220 
Gx:       0x5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c  1221 

80e2e198 f8cdbecd 0x86b12053 1222 
Gy:   0x3676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0  1223 

826779c8 13f0df45 be8112f4 1224 
Normal basis: 1225 
b:       0x157261b 894739fb 5a13503f 55f0b3f1 0c560116 66331022 1226 
    01138cc1 80c0206b dafbc951 1227 
Gx:       0x749468e 464ee468 634b21f7 f61cb700 701817e6 bc36a236  1228 

4cb8906e 940948ea a463c35d 1229 
Gy:     0x62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4 ccd0dc90  1230 

5b70f624 46f49c05 2f49c08c 1231 
Seed:    0x77e2b073 70eb0f83 2a6dd5b6 2dfc88cd 06bb84be 1232 
 1233 
4.3.2.4 Curve B-409 1234 

The elliptic curve B-409 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1235 
m=409, and with parameter a=1. This curve has order h⋅n, where h=2 and where n is a prime 1236 
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number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the 1237 
Type is “Weierstrass curve” and where the other parameters are defined as follows: 1238 
 1239 
f(z): z409 + z87 + 1 1240 
h: 2 1241 
n: 6610559687902485989519153080327710398284046829642812192846487\ 1242 

98304157774827374805208143723762179110965979867288366567526771 1243 
(=0x1000000 00000000 00000000 00000000 00000000 00000000 000001e2 1244 
            aad6a612 f33307be 5fa47c3c 9e052f83 8164cd37 d9a21173) 1245 

tr:         -6059503967182126918765909026644927652236777310526686418445029  1246 
   (=(2m+1) − h⋅ n =                 -0x3c5 55ad4c25 e6660f7c bf48f879 3c0a5f07 1247 
      02c99a6f b34422e5) 1248 
a:         1 1249 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  1250 
      00000000 00000000 00000000 00000000 00000000 00000001) 1251 

Polynomial basis: 1252 
b:      0x021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 4761fa99 1253 
         d6ac27c8 a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f 1254 
Gx:      0x15d4860 d088ddb3 496b0c60 64756260 441cde4a f1771d4d b01ffe5b 1255 
               34e59703 dc255a86 8a118051 5603aeab 60794e54 bb7996a7 1256 
Gy:    0x061b1cf ab6be5f3 2bbfa783 24ed106a 7636b9c5 a7bd198d 0158aa4f 1257 
              5488d08f 38514f1f df4b4f40 d2181b36 81c364ba 0273c706 1258 
Normal basis: 1259 
b:      0x124d065 1c3d3772 f7f5a1fe 6e715559 e2129bdf a04d52f7 b6ac7c53 1260 
             2cf0ed06 f610072d 88ad2fdc c50c6fde 72843670 f8b3742a 1261 
Gx:      0x0ceacbc 9f475767 d8e69f3b 5dfab398 13685262 bcacf22b 84c7b6dd 1262 
        981899e7 318c96f0 761f77c6 02c016ce d7c548de 830d708f  1263 
Gy:    0x199d64b a8f089c6 db0e0b61 e80bb959 34afd0ca f2e8be76 d1c5e9af 1264 
             fc7476df 49142691 ad303902 88aa09bc c59c1573 aa3c009a 1265 
Seed:   0x4099b5a4 57f9d69f 79213d09 4c4bcd4d 4262210b 1266 
 1267 
4.3.2.5 Curve B-571 1268 

The elliptic curve B-571 is a Weierstrass curve Ba,b defined over the binary field GF(2m), with 1269 
m=571, and with parameter a=1. This curve has order h⋅n, where h=2 and where n is a prime 1270 
number. This curve has domain parameters D=(m, f(z), h, n, Type, a, b, G, {Seed, c}), where the 1271 
Type is “Weierstrass curve” and where the other parameters are defined as follows: 1272 
 1273 
f(z): z571 + z10 + z5 + z2 + 1 1274 
h: 2 1275 
n: 386453752301725834469535189093198734429892732970643499865\ 1276 

723525145151914228956042453614399938941577308313388112192\ 1277 
6944486246872462816813070234528288303332411393191105285703 1278 
(=0x3fffff ffffffff ffffffff fffffffff ffffffff ffffffff ffffffff 1279 
        ffffffff ffffffff e661ce18 ff559873 08059b18 6823851e 1280 
       c7dd9ca1 161de93d 5174d66e 8382e9bb 2fe84e47) 1281 

 1282 
tr:       9953438501360975865946981915046538223641239\ 1283 
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 6452349171016760770327496674607579419075443 1284 
 (=(2m+1) − h⋅ n =             0x333c63ce 0154cf19 eff4c9cf 2fb8f5c2 7044c6bd 1285 
         d3c42d85 5d165322 f8fa2c89 a02f6373) 1286 
a:         1 1287 

(=0x0000000 00000000 00000000 00000000 00000000 00000000 00000000  1288 
     00000000 00000000 00000000 00000000 00000000 00000000 1289 
        00000000 00000000 00000000 00000000 00000001) 1290 

Polynomial basis: 1291 
b:     0x2f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1 cd6ba8ce 1292 
        4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29 4afd185a 1293 
        78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a 1294 
Gx:     0x303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a a5f40fc8 1295 

db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003 1296 
8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19  1297 

Gy:   0x37bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980f853 1298 
        3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f 1299 
        0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b 1300 
Normal basis: 1301 
b:     0x3762d0d 47116006 179da356 88eeaccf 591a5cde a7500011 8d9608c5 1302 
          9132d434 26101a1d fb377411 5f586623 f75f0000 1ce61198  1303 

     3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777   1304 
Gx:     0x0735e03 5def5925 cc33173e b2a8ce77 67522b46 6d278b65 0a291612 1305 
        7dfea9d2 d361089f 0a7a0247 a184e1c7 0d417866 e0fe0feb 1306 
        0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8 1307 
Gy:   0x04a3642 0572616c df7e606f ccadaecf c3b76dab 0eb1248d d03fbdfc 1308 
         9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a 24628048 1309 
        b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97 1310 
Seed:  0x2aa058f7 3a0e33ab 486b0f61 0410c53a 7f132310 1311 
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Appendix A – Details of Elliptic Curve Group Operations  1314 

A.1 Non-Binary Curves 1315 

A.1.1 Group Law for Weierstrass Curves 1316 

For each point P on the Weierstrass curve Wa,b, the point at infinity ∅ serves as the identity 1317 
element, i.e., P + ∅ = ∅ + P = P. 1318 

For each point P=(x, y) on the Weierstrass curve Wa,b, the point −P is the point (x, −y), and one 1319 
has P + (−P) = ∅. 1320 

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the Weierstrass curve Wa,b, where P1 ≠ ± P2, and let 1321 
Q = P1 + P2. Then Q = (x, y), where 1322 

𝑥𝑥 + 𝑥𝑥1 + 𝑥𝑥2 =  λ2 and  𝑦𝑦 + 𝑦𝑦1 =  λ(𝑥𝑥1 − 𝑥𝑥), where λ =  (𝑦𝑦2 −  𝑦𝑦1)/(𝑥𝑥2 − 𝑥𝑥1 ).  1323 

Let P = (x1, y1) be a point on the Weierstrass curve Wa,b, where P ≠ − P, and let Q =2P. Then Q = 1324 
(x, y), where 1325 

𝑥𝑥 + 2𝑥𝑥1 =  λ2 and  𝑦𝑦 + 𝑦𝑦1 =  λ(𝑥𝑥1 − 𝑥𝑥), where λ = (3 x12 +  𝑎𝑎)/2𝑦𝑦1.  1326 

A.1.2 Group Law for Montgomery Curves 1327 

For each point P on the Montgomery curve MA,B, the point at infinity ∅ serves as the identity 1328 
element, i.e., P + ∅ = ∅ + P = P. 1329 

For each point P =(u, v) on the Montgomery curve MA,B, the point −P is the point (u, −v), and 1330 
one has P + (−P) = ∅. 1331 

Let P1 = (u1, v1) and P2 = (u2, v2) be points on the Montgomery curve MA,B, where P1 ≠ ± P2, and 1332 
let Q = P1 + P2. Then Q = (u, v), where 1333 

𝑢𝑢 + 𝑢𝑢1 + 𝑢𝑢2 = B λ2 − A and  𝑣𝑣 + 𝑣𝑣1 =  λ(𝑢𝑢1 − 𝑢𝑢), where λ = (𝑣𝑣2 −  𝑣𝑣1)/(𝑢𝑢2 − 𝑢𝑢1 ).  1334 

Let P= (u1, v1) be a point on the Montgomery curve MA,B, where P ≠ − P, and let Q = 2P. Then Q 1335 
= (u, v), where 1336 

𝑢𝑢 + 2𝑢𝑢1 = B λ2 − A and 𝑣𝑣 + 𝑣𝑣1 =  λ(𝑢𝑢1 − 𝑢𝑢), where λ = (3 𝑢𝑢12 +  2A𝑢𝑢1 + 1)/2B𝑣𝑣1.  1337 

A.1.3 Group Law for Twisted Edwards Curves 1338 

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the twisted Edwards curve Ea,d and let Q = P1 + P2. 1339 
Then Q  = (x, y), where 1340 

(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥1𝑦𝑦2 + 𝑥𝑥2𝑦𝑦1

1 + 𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2 ,
𝑦𝑦1𝑦𝑦2 − 𝑎𝑎𝑥𝑥1𝑥𝑥2

1 − 𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2
�. 1341 
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For the twisted Edwards curves specified in this recommendation, the domain parameter a is 1342 
always a square in GF(q), whereas d is not. In this case, the addition formula above is defined for 1343 
each pair of points. In particular, for each point P = (x1, y1) on the twisted Edwards curve Ea,d, 1344 
point doubling yields the point Q = 2P, where Q = (x, y)  and 1345 

(𝑥𝑥,𝑦𝑦) = �
2𝑥𝑥1𝑦𝑦1 

1 + 𝑑𝑑𝑥𝑥12𝑦𝑦12
 ,
𝑦𝑦12 −  𝑎𝑎 𝑥𝑥12

1 − 𝑑𝑑𝑥𝑥12𝑦𝑦12
�. 1346 

Note that (0, 1) is the identity element, since for each point P = (x, y) on the twisted Edwards 1347 
curve Ea,d, one has P + (0, 1)  = (x, y) + (0, 1) = (x, y) = P.  1348 

For each point P= (x, y) on the twisted Edwards curve EA,B, the inverse point −P is the point (-x, 1349 
y) and one has P + (−P) = ∅. The point (0, −1) has order 2.  1350 

A.2 Binary Curves 1351 

A.2.1 Group Law for Weierstrass Curves 1352 

For each point P on the Weierstrass curve Ba,b, the point at infinity ∅ serves as the identity 1353 
element, i.e., P + ∅ = ∅ + P = P. 1354 

For each point P = (x, y) on the Weierstrass curve Ba,b, the point −P is the point (x, x + y) and one 1355 
has P + (−P) = ∅. 1356 

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the Weierstrass curve Ba,b, where P1 ≠ ± P2, and let 1357 
Q = P1 + P2. Then Q = (x, y), where 1358 

𝑥𝑥 + 𝑥𝑥1 + 𝑥𝑥2 =  λ2 + λ + 𝑎𝑎 and (𝑥𝑥 + 𝑦𝑦) + 𝑦𝑦1 =  λ(𝑥𝑥1 + 𝑥𝑥), where λ =  (𝑦𝑦2 + 𝑦𝑦1)/(𝑥𝑥2 + 𝑥𝑥1 ).  1359 

Let P = (x1, y1) be a point on the Weierstrass curve Ba,b, where P ≠ − P, and let Q = 2P. Then Q = 1360 
(x, y), where 1361 

𝑥𝑥 =  λ2 + λ + 𝑎𝑎 = 𝑥𝑥12 + 𝑏𝑏/𝑥𝑥12 and (𝑥𝑥 + 𝑦𝑦) + 𝑦𝑦1 =  λ(𝑥𝑥1 + 𝑥𝑥), where λ = 𝑥𝑥1 + 𝑦𝑦1/𝑥𝑥1. 1362 
  1363 
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Appendix B – Relationship Between Curve Models  1364 

The non-binary curves specified in this recommendation are expressed in different curve models 1365 
defined over the same field GF(q)—namely as curves in short-Weierstrass form, as Montgomery 1366 
curves, or as twisted Edwards curves. These curve models are related, as follows.  1367 

B.1 Mapping Between Twisted Edwards Curves and Montgomery Curves 1368 

One can map points on the Montgomery curve MA,B to points on the twisted Edwards curve Ea,d , 1369 
where a=(A+2)/B and d=(A-2)/B and, conversely, map points on the twisted Edwards curve Ea,d 1370 
to points on the Montgomery curve MA,B, where A=2(a+d)/(a-d) and where B=4/(a-d). For the 1371 
curves in this specification, this defines a one-to-one correspondence, which is an isomorphism 1372 
between MA,B and Ea,d, thereby showing that the discrete logarithm problem in either curve 1373 
model is equally hard.  1374 

For the Montgomery curves and twisted Edwards curves in this specification, the mapping from 1375 
MA,B to Ea,d is defined by mapping the point at infinity ∅ and the point (0, 0) of order two on 1376 
MA,B to, respectively, the point (0, 1) and the point (0, −1) of order two on Ea,d, while mapping 1377 
every other point (u, v) on MA,B to the point (x, y)=(u/v, (u−1)/(u+1)) on Ea,d. The inverse 1378 
mapping from Ea,d to MA,B is defined by mapping the point (0, 1) and the point (0, −1) of order 1379 
two on Ea,d to, respectively, the point at infinity ∅ and the point (0, 0) of order two on MA,B, 1380 
while every other point (x, y) on Ea,d is mapped to the point (u, v)=((1+y)/(1−y), (1+y)/(1−y)x) on 1381 
MA,B. 1382 

Implementations may take advantage of this mapping to carry out elliptic curve group operations 1383 
originally defined for a twisted Edwards curve on the corresponding Montgomery curve, or vice-1384 
versa, and translating the result back to the original curve to potentially allow code reuse. 1385 

B.2 Mapping Between Montgomery Curves and Weierstrass Curves  1386 

One can map points on the Montgomery curve MA,B to points on the Weierstrass curve Wa,b , 1387 
where a=(3−A2)/3B2 and b=(2A3−9A)/27B3. For the curves in this specification, this defines a 1388 
one-to-one correspondence, which is an isomorphism between MA,B and Wa,b, thereby showing 1389 
that the discrete logarithm problem in either curve model is equally hard.  1390 

For the Montgomery curves in this specification, the mapping from MA,B to Wa,b is defined by 1391 
mapping the point at infinity ∅ on MA,B to the point at infinity ∅ on Wa,b, while mapping every 1392 
other point (u, v) on MA,B to the point (x, y)=(u/B+A/3B, v/B) on Wa,b.  1393 

Note that not all Weierstrass curves can be mapped to Montgomery curves since the latter have a 1394 
point of order two and the former may not. In particular, if a Weierstrass curve has prime 1395 
order—as in the case with the curves P-224, P-256, P-385, and P-521 specified in this 1396 
recommendation—this mapping is not defined. 1397 

This mapping can be used to implement elliptic curve group operations originally defined for a 1398 
twisted Edwards curve or for a Montgomery curve using group operations on the corresponding 1399 
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elliptic curve in short-Weierstrass form and translating the result back to the original curve to 1400 
potentially allow code reuse. 1401 

Note that implementations for elliptic curves with short-Weierstrass form that hard-code the 1402 
domain parameter a to a= −3 cannot always be used this way since the curve Wa,b may not 1403 
always be expressed in terms of a Weierstrass curve with a=−3 via a coordinate transformation. 1404 
This is, unfortunately, the case with the Montgomery curves and twisted Edwards curves 1405 
specified in this recommendation. 1406 

B.3 Mapping Between Twisted Edwards Curves and Weierstrass Curves  1407 

A straightforward method to map points on a twisted Edwards curve to points on a Weierstrass 1408 
curve is to convert the curve to Montgomery format first. Use the mapping described in 1409 
Appendix B.1 to map points on a twisted Edwards curve to points on a Montgomery curve. Then 1410 
use the mapping described in Appendix B.2 to convert points on the Montgomery curve to points 1411 
on a Weierstrass curve.  1412 

B.4 4-Isogenous Mapping 1413 

The 4-isogeny map between the Montgomery curve Curve448 and the Edwards curve 1414 
Edwards448 is given in [RFC 7748] to be: 1415 
 1416 

     (u, v) = (𝑦𝑦2

𝑥𝑥2, (2 − 𝑥𝑥2 − 𝑦𝑦2)𝑦𝑦
𝑥𝑥3 ) 1417 

     (x, y) = ( 4𝑣𝑣(𝑢𝑢2−1)
𝑢𝑢4−2𝑢𝑢2+4𝑣𝑣2+1), 

−(𝑢𝑢5−2𝑢𝑢3−4𝑢𝑢𝑣𝑣2+𝑢𝑢)
(𝑢𝑢5−2𝑢𝑢2𝑣𝑣2−2𝑢𝑢3𝑣𝑣2+𝑢𝑢) 1418 

 1419 
The curve Edwards448 (Section 4.2.3.2) is 4-isogenous to the curve E448 (Section 4.2.3.3), 1420 
where the base point of Edwards448 corresponds to the base point of E448 and where the 1421 
identity element (0, 1) and the point (0, −1) of order two of Edwards448 correspond to the 1422 
identity element (0, 1) on E448. Every other point (x, y) on Edwards448 corresponds to the point 1423 
on E448, where α is the element of GF(p) defined in Section 4.2.2.2: 1424 
 1425 

(𝑥𝑥′,𝑦𝑦′) = �
α𝑥𝑥𝑦𝑦

1 − 𝑑𝑑 𝑥𝑥2𝑦𝑦2
,
1 + 𝑑𝑑 𝑥𝑥2𝑦𝑦2

𝑦𝑦2 −  𝑥𝑥2
� 1426 

 1427 
 1428 
  1429 
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Appendix C – Generation Details for Recommended Elliptic Curves 1430 

C.1 General Cryptographic Criteria 1431 

All curves recommended in this specification satisfy the following general cryptographic criteria: 1432 

1. Underlying finite field. The underlying finite field GF(q) shall be either a prime number or 1433 
q=2m where m is a prime number.  1434 

2. Curve order. Each curve E defined over the finite field GF(q) shall have order |E|=h⋅n, where 1435 
n is a large prime number, where h is co-prime with n, and where h is small (h is called the 1436 
co-factor of E). Each curve shall have co-factor h ≤ 210. 1437 

3. Base point. Each curve E shall have a fixed base point G of prime order n. 1438 
4. Avoiding anomalous curve attack. Each curve E defined over the finite field GF(q) shall 1439 

have order |E|≠q so as to avoid attacks using additive transfers. 1440 
5. Large embedding degree. The elliptic curve discrete logarithm problem in E can be 1441 

converted to an ordinary discrete logarithm problem defined over the finite field GF(qt) 1442 
where t is the smallest positive integer so that qt ≡ 1(mod n), called the embedding degree. 1443 
Each curve shall have embedding degree t ≥ 210. 1444 

6. Endomorphism field. For each curve E over GF(q) with trace tr, the (negative) number 1445 
Disc=tr2−4q is closely related to the discriminant of the endomorphism field of E. As of the 1446 
publication of this document, there is no technical rationale for imposing a large lower bound 1447 
on the square-free part of |Disc|, although—except for curves used in pairing-based 1448 
cryptography—this value is often large. This recommendation does not impose restrictions 1449 
on the value of the square-free part of |Disc|. 1450 
 1451 

C.1.1 Implementation Security Criteria 1452 

Each field shall have a fixed representation. 1453 

C.2 Curve Generation Details 1454 

C.2.1 Weierstrass Curves over Prime Fields 1455 

C.2.1.1 Curves P-224, P-256, P-384, P-521 1456 

Each of the curves P-224 (Section 4.2.1.2), P-256 (Section 4.2.1.3), P-384 (Section 4.2.1.4), and 1457 
P-521 (Section 4.2.1.5) is a curve Wa,b in short-Weierstrass form with prime order (and, thus, co-1458 
factor h=1). Each curve is defined over a prime field GF(p) where the prime number is of a 1459 
special form to allow efficient modular reduction (see Appendix G.1). 1460 

The NIST prime curves were generated using the procedure in C.3.1 with hdigest = 160 and 1461 
SHA-1 hash function. The curve parameters a and b are: 1462 

1. The parameter a was set to a ≡ −3 (mod p) (this allows optimizations of the group law if 1463 
implemented via projective coordinates in Weierstrass form); 1464 
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2. The parameter b was derived in a hard-to-invert way using the procedure in Appendix 1465 
C.3.1 from a pseudorandom Seed value so that the following conditions are satisfied 1466 
simultaneously: 1467 

a. 4a3 + 27b2 ≠ 0 in GF(p); 1468 
b. The curve has prime order n (this implies that h = 1); and 1469 
c. The curve satisfies the cryptographic criteria in Appendix C.1. 1470 

3. Select a base point G = (Gx, Gy) of order n. 1471 

C.2.1.2 Curves W-25519, W-448 1472 

The curves W-25519 (Section 4.2.1.6) and W-448 (Section 4.2.1.7) were obtained via an 1473 
isomorphic mapping (see Appendix B.1).  1474 

C.2.2 Montgomery Curves 1475 

C.2.2.1 Curve25519 1476 

Curve25519 was specified in IETF 7748 by the Crypto Forum Research Group (CFRG). This 1477 
curve is a Montgomery curve MA,B defined over the field GF(p), where p=2255−19 and where the 1478 
curve has co-factor h=8 and the quadratic twist E1 has co-factor h1=4. The prime number is of a 1479 
special form to allow efficient modular reduction and finite field operations that try and 1480 
minimize carry effects of operands. The curve parameters A and B are: 1481 

1. The parameter B was set to B = 1. 1482 
2. The parameter A was selected as the minimum value of |A| so that the following 1483 

conditions are satisfied simultaneously: 1484 
a. The curve is cyclic (this implies that A2−4 is not a square in GF(p)); 1485 
b. The curve has co-factor h=8 (this implies that A+2 is a square in GF(p)); 1486 
c. The quadratic twist has co-factor h’=4; 1487 
d. A has the form A ≡ 2 (mod 4) (this allows optimized implementations of 1488 

implementations of the group law using the Montgomery ladder); and 1489 
e. The curve and the quadratic twist both satisfy the cryptographic criteria in 1490 

Appendix C.1. 1491 
3. Select the base point G = (Gx, Gy) of order n, where |Gx| is minimal and where Gy is odd.  1492 

C.2.2.2 Curve448 1493 

This curve is a Montgomery curve MA,B defined over the field GF(p), where p=2448−2224−1 and 1494 
where the curve has co-factor h=4 and the quadratic twist E1 has co-factor h1=4. The prime 1495 
number is of a special form to allow efficient modular reduction and finite field operations that 1496 
try to minimize the carry effects of operands. The curve parameters A and B are: 1497 

1. The parameter B was set to B = 1. 1498 
2. The parameter A was selected as the minimum value of |A| so that the following 1499 

conditions are satisfied simultaneously: 1500 
a. The curve is cyclic (this implies that A2−4 is not a square in GF(p)); 1501 
b. The curve has co-factor h = 4 (this implies that A+2 is not a square in GF(p)); 1502 
c. The quadratic twist has co-factor h’= 4; 1503 
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d. A has the form A ≡ 2 (mod 4) (this allows optimized implementations of 1504 
implementations of the group law using the Montgomery ladder); and 1505 

e. The curve and the quadratic twist both satisfy the cryptographic criteria in 1506 
Appendix C.1. 1507 

3. Select the base point G = (Gx, Gy) of order n, where |Gx| is minimal and where Gy is even.  1508 

C.2.3 Twisted Edwards Curves 1509 

The twisted Edwards curve Edwards25519 (Section 4.2.3.1) was obtained from the Montgomery 1510 
curve Curve25519 (Section 4.2.2.1) via an isomorphic mapping.   1511 

The Edwards curve E448 Section 4.2.3.3) was obtained from the Montgomery curve Curve448 1512 
(Section 4.2.2.2) via an isomorphic mapping.  1513 

The Edwards curve Edwards448 (Section 4.2.3.2) was obtained from the curve E448 (Section 1514 
4.2.3.3) via a 4-isogenous mapping (see Appendix B.4). 1515 

C.2.4 Weierstrass Curves over Binary Fields 1516 

C.2.4.1 Koblitz Curves K-233, K-283, K-409, K-571 1517 

Each of the curves K-233 (Section 4.3.1.2), K-283 (Section 4.3.1.3), K-409 (Section 4.3.1.4), 1518 
and K-571 (Section 4.3.1.5) is a curve Ba,b in short-Weierstrass form with co-factor h=2 or h=4. 1519 
Each curve is defined over a binary field GF(2m), where m is a prime number. For Koblitz 1520 
curves, the curve parameters a and b are elements of GF(2), with b = 1. Hence, for each 1521 
parameter m, there are only two Koblitz curves, viz. with a = 0 and with a = 1. Koblitz curves 1522 
with a = 0 have order 0 (mod 4), while those with a = 1 have order 2 (mod 4). 1523 

The curve parameters a and m are: 1524 

1. The parameter a was set to a = 0.  1525 
2. The set of integers m in the interval [160,600] was determined, so that the following 1526 

conditions are satisfied simultaneously: 1527 
a. m is a prime number; 1528 
b. The curve has co-factor h = 4 or the quadratic twist of this curve has co-factor h = 1529 

2 (the latter implies that the Koblitz curve defined over the binary field GF(2m) 1530 
with a = 1 has co-factor h = 2); and 1531 

c. The thus determined curve satisfies the cryptographic criteria in Appendix C.1. 1532 
3. Select a pair (a, m) from the set determined above. 1533 
4. Select an irreducible polynomial f(z) of degree m, where f(z) is selected of a special form 1534 

so as to allow efficient modular reduction (f(z) is a trinomial or pentanomial). 1535 
5. Select a base point G = (Gx, Gy) of order n. 1536 

C.2.4.2 Pseudorandom Curves B-233, B-283, B-409, B-571 1537 

Each of the curves B-233 (Section 4.3.2.2), B-283 (Section 4.3.2.3), B-409 (Section 4.3.2.4), and 1538 
B-571 (Section 4.3.2.5) is a curve Ba,b in short-Weierstrass form with co-factor h = 2. Each curve 1539 
is defined over a binary field GF(2m), where m is a prime number, where the prime number is 1540 
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amongst those values for which a binary Koblitz curve exists. The NIST prime curves were 1541 
generated using the procedure in C.3.3, with hdigest = 160 and SHA-1 hash function. The curve 1542 
parameters a and b are: 1543 

1. The parameter a was set to a = 1 (this ensures that curves with co-factor h = 2 may exist). 1544 
2. The parameter b was derived in a hard-to-invert way using the procedure in Appendix 1545 

C.3.3 from a pseudorandom Seed value so that the following conditions are satisfied 1546 
simultaneously: 1547 

a. b ≠ 0 in GF(p); 1548 
b. The curve has co-factor h = 2; and 1549 
c. The curve satisfies the cryptographic criteria in Appendix C.1. 1550 

3. Select a base point G = (Gx, Gy) of order n. 1551 
   1552 

C.3 Generation and Verification of Pseudorandom Curves 1553 

C.3.1 Generation of Pseudorandom Curves (Prime Case) 1554 

When generating the NIST pseudo-random curves (i.e, those in Section 4.2.1), hdigest = 160 and 1555 
SHA-1 hash were used. 1556 
 1557 
Inputs:  1558 

1. Positive integer l 1559 
2. Bit-string s of length hdigest 1560 
3. Approved hash function HASH with output length of hdigest bits and security design 1561 

strength of at least requested_security_strength. 1562 
 1563 
Output:  Coefficient b used to generate a pseudorandom prime curve. 1564 
 1565 
Process: 1566 
 1567 
Let l be the bit length of p, and define  1568 

v  =  ( l – 1) /hdigest 1569 
w  = l – hdigest*v – 1. 1570 

1.  Choose an arbitrary hdigest-bit string s as the domain parameter Seed. 1571 
2.  Compute h = HASH(s). 1572 
3.  Let h0 be the bit string obtained by taking the w rightmost bits of h.  1573 
4.  Let z be the integer whose binary expansion is given by the hdigest-bit string s.  1574 
5.  For i from 1 to v do:  1575 

5.1  Define the hdigest-bit string si to be binary expansion of the integer  1576 
       (z + i) mod (2 hdigest).  1577 
5.2  Compute hi = HASH(si). 1578 

6.  Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  1579 

h = h0  || h1 || … || hv. 1580 
7. Let c be the integer whose binary expansion is given by the bit string h.  1581 
8. If ((c = 0 or 4c + 27 ≡ 0 (mod p))), then go to Step 1.  1582 
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9. Choose integers a, b ∈GF(p) such that  1583 
c b2 ≡ a3 (mod p). 1584 

(The simplest choice is a = c and b = c. However, they may be chosen differently for 1585 
performance reasons.)  1586 

10. Check that the elliptic curve E over GF(p) given by y 2 = x3 + ax + b has suitable order. If 1587 
not, go to Step 1.  1588 

 1589 

C.3.2 Verification of Curve Pseudorandomness (Prime Case) 1590 

Given the hdigest domain parameter seed value s, verify that the coefficient b was obtained from 1591 
s via the cryptographic hash function HASH as follows.  1592 
 1593 
Inputs:  1594 

1. Positive integer l  1595 
2. Bit-string s of length hdigest 1596 
3. Approved hash function HASH with output length of hdigest bits and security design 1597 

strength of at least requested_security_strength 1598 
 1599 
Output: Verification that the coefficient b was obtained from s via the cryptographic hash 1600 
function HASH. 1601 
 1602 
Process: 1603 
 1604 
Let l be the bit length of p, and define  1605 
  v  =  ( l – 1) /hdigest , 1606 
  w  = l – hdigest *v – 1. 1607 

1.  Compute h = HASH(s). 1608 
2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.  1609 
3.  Let z be the integer whose binary expansion is given by the hdigest -bit string s.  1610 
4.  For i = 1 to v do 1611 

4.1  Define the hdigest -bit string si to be binary expansion of the integer  1612 
    (z + i) mod (2hdigest ).  1613 
4.2  Compute hi = HASH(si). 1614 

5.  Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  1615 

  h = h0  || h1 || … || hv. 1616 
6. Let c be the integer whose binary expansion is given by the bit string h.  1617 
7. Verify that b2 c ≡ –27 (mod p).  1618 

 1619 

C.3.3 Generation of Pseudorandom Curves (Binary Case) 1620 

Inputs:  1621 
1. Prime number m 1622 
2. Bit-string s of length hdigest 1623 
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3. Approved hash function HASH with output length of hdigest bits and security design 1624 
strength of at least requested_security_strength 1625 

 1626 
 1627 
Output: Coefficient b used to generate a pseudorandom binary curve. 1628 
 1629 
Process: 1630 
 1631 
Let:  1632 

v =  (m – 1) / hdigest  1633 
w = m – hdigest*v. 1634 

1.  Choose an arbitrary hdigest -bit string s as the domain parameter seed. 1635 
2.  Compute h = HASH(s). 1636 
3.   Let h0 be the bit string obtained by taking the w rightmost bits of h.  1637 
4.   Let z be the integer whose binary expansion is given by the hdigest-bit string s.  1638 
5. For i from 1 to v do:  1639 

5.1  Define the hdigest -bit string si to be binary expansion of the integer  1640 
(z + i) mod (2hdigest ).  1641 

5.2  Compute hi  = HASH(si).  1642 
6.   Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  1643 

h = h0  || h1 || … || hv. 1644 
7.   Let b be the element of GF(2m) which is represented by the bit string h in the Gaussian 1645 
Normal Basis (see Appendix G.3.1). 1646 
8. Choose an element a of GF(2m). 1647 
9.   Check that the elliptic curve E over GF(2m) given by y2 + xy =  x3 + ax2 + b has suitable 1648 

order. If not, go to Step 1.  1649 
 1650 
C.3.4 Verification of Curve Pseudorandomness (Binary Case) 1651 

Given the hdigest-bit domain parameter seed value s, verify that the coefficient b was obtained 1652 
from s via the cryptographic hash function HASH as follows.  1653 
 1654 
Inputs: 1655 

1. Prime number m 1656 
2. Bit-string s of length hdigest 1657 
3. Approved hash function HASH with output length of hdigest bits and security design 1658 

strength of at least requested_security_strength 1659 
 1660 
Output: Verification that the coefficient b was obtained from s via the cryptographic hash 1661 
function HASH. 1662 
 1663 
Process: 1664 
Define  1665 

v =  (m – 1) / hdigest  1666 
w= m – hdigest v 1667 

1. Compute h = HASH(s). 1668 
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2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.  1669 
3.  Let z be the integer whose binary expansion is given by the hdigest-bit string s.  1670 
4.  For i = 1 to v do  1671 

4.1  Define the hdigest-bit string si to be binary expansion of the integer (z + i) mod (2160 1672 
). 1673 
4.2  Compute hi = HASH(si ).  1674 

5.  Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  1675 
h = h0  || h1 || … || hv. 1676 

6. Let c be the element of GF(2m ) which is represented by the bit string h in the Gaussian 1677 
Normal Basis (see Section G.3.1).  1678 
7. Verify that c = b. 1679 
 1680 
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Appendix D — Elliptic Curve Routines 1681 

D.1 Public Key Validation 1682 

D.1.1 Non-Binary Curves in Short-Weierstrass Form 1683 

D.1.1.1 Partial Public Key Validation 1684 

Inputs:  1685 

1. Weierstrass curve Wa,b defined over the prime field GF(p) 1686 
2. Point Q=(x,y) 1687 

Output: ACCEPT or REJECT Q as an affine point on Wa,b. 1688 

Process: 1689 

1. If Q is the point at infinity ∅, output REJECT. 1690 
2. Verify that x and y are integers in the interval [0, p−1]. Output REJECT if verification 1691 

fails. 1692 
3. Verify that (x, y) is a point on the Wa,b by checking that (x, y) satisfies the defining 1693 

equation y2 = x3 + a x + b where computations are carried out in GF(p). Output REJECT 1694 
if verification fails. 1695 

4. Otherwise output ACCEPT. 1696 

 1697 
D.1.1.2 Full Public Key Validation 1698 

Inputs:  1699 

1. Weierstrass curve Wa,b defined over the prime field GF(p) 1700 
2. Point Q 1701 

Output: ACCEPT or REJECT Q as a point on Wa,b of order n. 1702 

Process: 1703 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.1.1. 1704 
Output REJECT if this procedure outputs REJECT. 1705 

2. Verify that n Q = ∅. Output REJECT if verification fails. 1706 
3. Otherwise, output ACCEPT. 1707 

D.1.2 Montgomery Curves 1708 

D.1.2.1 Partial Public Key Validation 1709 

Inputs:  1710 

1. Montgomery curve MA,B defined over the prime field GF(p) 1711 
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2. Point Q=(u, v) 1712 

Output: ACCEPT or REJECT Q as an affine point on MA,B. 1713 

Process: 1714 

1. If Q is the point at infinity ∅, output REJECT.  1715 
2. Verify that both u and v are integers in the interval [0, p−1]. Output REJECT if 1716 

verification fails. 1717 
3. Verify that (u, v) is a point on the MA,B by checking that (u, v) satisfies the defining 1718 

equation v2 = u (u2 + A u + 1) where computations are carried out in GF(p). Output 1719 
REJECT if verification fails. 1720 

4. Otherwise output ACCEPT. 1721 

D.1.2.2 Full Public Key Validation 1722 

Inputs:  1723 

1. Montgomery curve MA,B defined over the prime field GF(p) 1724 
2. Point Q 1725 

Output: ACCEPT or REJECT Q as a point on MA,B of order n. 1726 

Process: 1727 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.2.1. 1728 
Output REJECT if this procedure outputs REJECT. 1729 

2. Verify that n Q = ∅. Output REJECT if verification fails. 1730 
3. Otherwise output ACCEPT. 1731 

D.1.3 Twisted Edwards Curves 1732 

D.1.3.1 Partial Public Key Validation 1733 

Inputs:  1734 

1. Edwards curve Ea,d defined over the prime field GF(p) 1735 
2. Point Q=(x, y) 1736 

Output: ACCEPT or REJECT Q as an affine point on Ea,d. 1737 

Process: 1738 

1. Verify that both x and y are integers in the interval [0, p−1]. Output REJECT if 1739 
verification fails. 1740 

2. Verify that (x, y) is a point on the Ea,d by checking that (x, y) satisfies the defining 1741 
equation a x2 + y2 = 1+ d x2 y2 where computations are carried out in GF(p). Output 1742 
REJECT if verification fails. 1743 

3. Otherwise output ACCEPT. 1744 
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 1745 

D.1.3.2 Full Public Key Validation 1746 

Inputs:  1747 

1. Edwards curve Ea,d defined over the prime field GF(p) 1748 
2. Point Q 1749 

Output: ACCEPT or REJECT Q as a point on Ea,d of order n. 1750 

Process: 1751 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.3.1. 1752 
Output REJECT if this procedure outputs REJECT. 1753 

2. If Q is the point at identity element (0,1), output REJECT.  1754 
3. Verify that n Q = (0,1). Output REJECT if verification fails. 1755 
4. Otherwise output ACCEPT. 1756 

D.1.4 Binary Curves in Short-Weierstrass Form 1757 

D.1.4.1 Partial Public Key Validation 1758 

Inputs:  1759 

1. Weierstrass curve Ba,b defined over the binary field GF(2m) 1760 
2. Point Q=(x, y) 1761 

Output: ACCEPT or REJECT Q as an affine point on Ba,b. 1762 

Process: 1763 

1. If Q is the point at infinity ∅, output REJECT; 1764 
2. Verify that both x and y are binary polynomials in GF(2m) according to the field 1765 

representation indicated by the parameter FR. Output REJECT if verification fails. 1766 
3. Verify that (x, y) is a point on the Ba,b by checking that (x, y) satisfies the defining 1767 

equation y2 + x y = x3 + a x2 + b, where computations are carried out in GF(2m) according 1768 
to the field representation indicated by the parameter FR. Output REJECT if verification 1769 
fails. 1770 

4. Otherwise output ACCEPT. 1771 

D.1.4.2 Full Public Key Validation 1772 

Inputs:  1773 

1. Weierstrass curve Ba,b defined over the binary field GF(2m); 1774 
2. Point Q. 1775 

Output: ACCEPT or REJECT Q as a point on Ba,b of order n. 1776 
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Process: 1777 

1. Perform partial public key validation on Q using the procedure of Appendix D.1.4.1. 1778 
Output REJECT if this procedure outputs REJECT. 1779 

2. Verify that n Q = ∅. Output REJECT if verification fails. 1780 
3. Otherwise output ACCEPT. 1781 

D.2 Point Compression 1782 

Point compression allows a shorter representation of elliptic curve points in affine coordinates by 1783 
exploiting algebraic relationships between the coordinate values based on the defining equation 1784 
of the curve in question. Point compression followed by its inverse, “point decompression,” is 1785 
the identity map. 1786 

D.2.1 Prime Curves in Short-Weierstrass Form  1787 

Point compression for non-binary curves in short-Weierstrass form is defined as follows. 1788 

Inputs:  1789 

1. Weierstrass curve Wa,b defined over the prime field GF(p) 1790 
2. Point P on Wa,b 1791 

Output: Compressed point P. 1792 

Process:  1793 

1. If P is the point at infinity ∅, set P = P. 1794 
2. If P = (x, y), set P = (x, y), where y = y (mod 2). 1795 
3. Output P. 1796 

Point decompression of an object P with respect to this Weierstrass curve is defined as follows.  1797 

Inputs:  1798 

1. Object P 1799 
2. Weierstrass curve Wa,b defined over the prime field GF(p) 1800 

Output: Point P on Wa,b or INVALID. 1801 

Process:  1802 

1. If P is the point at infinity ∅, output P = P. 1803 
2. If P is the ordered pair (x, t), where x is an element of GF(p) and where t is an element of 1804 

GF(2): 1805 
2.1. Compute w = x3 + a x + b 1806 
2.2. Compute a square root y of w in GF(p) using the procedure of Appendix E.3; 1807 

output INVALID if that procedure outputs INVALID 1808 
2.3. If y = 0 and t = 1, output INVALID 1809 
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2.4. If t ≠ y (mod 2), set y = p−y 1810 
2.5. Output P = (x, y) 1811 

3. Output INVALID 1812 
 1813 

D.2.2 Binary Curves in Short-Weierstrass Form 1814 

Point compression for binary curves in short-Weierstrass form is defined as follows. 1815 

Inputs:  1816 

1. Weierstrass curve Ba,b defined over the binary field GF(2m) 1817 
2. Point P on Ba,b 1818 

Output: Compressed point P. 1819 

Process:  1820 

1. If P is the point at infinity ∅, set P = P. 1821 
2. If P = (x, y) and x=0, set P = (x, y), where y = 0 (mod 2). 1822 
3. If P = (x, y) and x ≠ 0: 1823 

3.1. Compute α = y/x, where α = α0 + α1𝑧𝑧 + ⋯+ α𝑚𝑚−1𝑧𝑧𝑚𝑚−1 1824 
3.2. Set P = (x, y), where y = α0 1825 

4. Output P. 1826 

Consequently, for each affine point P = (x, y) on the Weierstrass curve Ba,b, the compressed 1827 
point P is an ordered pair (x, t) where x is an element of GF(2m) and where t is an element of 1828 
GF(2). 1829 

Point decompression of an object P with respect to this Weierstrass curve is defined as follows.  1830 

Inputs:  1831 

1. Object P 1832 
2. Weierstrass curve Ba,b defined over the binary field GF(2m), where m is an odd integer 1833 

Output: Point P on Ba,b or INVALID. 1834 

Process:  1835 

1. If P is the point at infinity ∅, output P = P. 1836 
2. If P is the ordered pair (x, t), where x is an element of GF(2m) and where t is an element of 1837 

GF(2), perform the following: 1838 
2.1. If x = 0, perform the following steps: 1839 

2.1.1. If t = 1, output INVALID 1840 
2.1.2. Set y to the square root of b in GF(2m) using the algorithm of Appendix E.1 1841 

2.2. If x ≠ 0, perform the following steps: 1842 
2.2.1. Compute w = (x3 + a x2 + b)/x2 = x + a + b/x2 1843 
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2.2.2. Compute a solution α in GF(2m) of the equation α2 + α = w using the algorithm of 1844 
Appendix E.2; output INVALID if that procedure outputs INVALID 1845 

2.2.3. If t ≠ α0, where α = α0 +  α1𝑧𝑧 + ⋯+ α𝑚𝑚−1𝑧𝑧𝑚𝑚−1, set α = α + 1 1846 
2.2.4. Set y = α x 1847 

2.3. Output P = (x, y) 1848 
3. Output INVALID. 1849 

D.3 Base Point (Generator) Selection 1850 

For user-generated base points, use a verifiably random method and check the validity of the 1851 
point generated. This Appendix describes these methods. 1852 

D.3.1 Generation of Base Points 1853 

A base point should be generated as follows. 1854 

Input: Elliptic curve E = (Fq, a, b), cofactor h, prime n, and, optionally, a bit string Seed, which 1855 
indicates that verifiably random G is desired. 1856 

Output: A base point G on the curve of order n, or FAILURE. 1857 

Process: The following or its equivalent: 1858 

1. Set base = 1. 1859 
2. Select elements x and y in the field Fq, doing so verifiably at random using Appendix 1860 

D.4.2 or by any desired method if Seed is not provided.  1861 
Comment: The pair (x, y) should be chosen to lie on the curve E, or else the 1862 
process could loop forever.  1863 

3. Let G = hR, where R = (x, y). 1864 
4. If G is not a valid base point (see Appendix D.4.3), then increment base and go back to 1865 

Step 1 unless base > 10h2, in which case, output FAILURE. 1866 

Comment: The validity of G as a point is partially assured by R having valid 1867 
coordinates and belonging to the curve. The verifiable random nature of G is also 1868 
assured, so this does not need to be checked. Therefore, when validating G, it is 1869 
only necessary to check that G ≠ O and nG = O. 1870 

If the elliptic curve E does not have a multiple of n points, then the output will generally be 1871 
FAILURE. Conversely, if the algorithm outputs FAILURE, generally the elliptic curve does not 1872 
have h·n points. If the elliptic curve E has exactly h·n points but n is composite, then G is not 1873 
guaranteed to have order exactly n but will have an order dividing n. The probability that G has 1874 
an order exactly n depends on the factorization of n. If the elliptic curve E has k·n points where k 1875 
≠ h, then the order G is not guaranteed to have order n. If n is prime, then G will generally have 1876 
an order which is a multiple of n. If the elliptic curve E has exactly h·n points, then base will 1877 
generally never be incremented. 1878 
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D.3.2 Verifiably Random Base Points 1879 

This procedure will generate a verifiably random candidate point. 1880 

Inputs: Bit string Seed, integer counter base, selected hash function with output length hashlen 1881 
bits, field size q, cofactor h 1882 

Output: Candidate point (x, y) 1883 

Process: The following or its equivalent: 1884 

1. Set element = 1. 1885 
2. Convert base and element to octet strings Base and Element, respectively. 1886 
3. Compute H = Hash ("Base point" || Base || Element || Seed). 1887 
4. Convert H to an integer e.  1888 
5. If e / 2q =  2hashlen / 2q, then increment element and go to Step 2. 1889 
6. Let t = e mod 2q, so that t is an integer in the interval [0, 2q – 1]. 1890 
7. Let x = t mod q and z = t / q. 1891 
8. Convert x to field element in Fq using the routine in Appendix F.2. 1892 
9. Recover the field element y from (x, z) using an appropriate compression method from 1893 

Appendix D.2.   1894 
10. If the result is an error, then increment element and go to Step 2. 1895 

D.3.3 Validity of Base Points 1896 

A base point generator is valid if the following routine results in VALID. 1897 

Input: Elliptic curve domain parameters 1898 

Output: VALID or INVALID 1899 

Process: The following or its equivalent: 1900 

1. If G = O, then stop and output INVALID. 1901 
2. If either of the base point coordinates xG and yG are invalid as elements of Fq (that is: if q 1902 

is odd, then either xG or yG is not an integer in the interval [0, q–1]; or if q = 2m, then 1903 
either xG or yG is not a bit string of length m), then stop and output INVALID. 1904 

3. If G is not on the elliptic curve, that is, yG2 ≠ xG3 + axG + b if q is odd, or yG2 + xGyG ≠ 1905 
xG3 + axG2 + b if q is even, then stop and output INVALID. 1906 

4. If nG ≠ O, then stop and output INVALID. A full scalar multiplication shall be used. 1907 
Comment: Shortcuts for validating the order of point that assume a value for the 1908 
cofactor would not be considered a full scalar multiplication. 1909 

5. If the input indicates that the base point G is generated verifiably at random, then do the 1910 
following: 1911 
5.1. Set base = 1. 1912 
5.2. With Seed and base values, generate a point R = (x, y), using the routine in 1913 

Appendix D.4.2.  1914 
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5.3. Compute G' = hR.  1915 
5.4. If nG' ≠ O, then increment base and go back to Step 2. 1916 

Comment: The counter value base will generally never be incremented 1917 
5.5. If base > 10h2, then stop and output INVALID. 1918 
5.6. Compare G' with G. If not equal, then stop and output INVALID. 1919 

6. Otherwise, output VALID. 1920 

 1921 
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Appendix E Auxiliary Functions  1922 

E.1 Computing Square Roots in Binary Fields 1923 

If x is an element of GF(2m), then its square root is the element 𝑥𝑥2𝑚𝑚−1 . 1924 

E.2 Solving the Equation x2 + x = w in Binary Fields 1925 

Input: Field element w in GF(2m), where m is an odd integer. 1926 

Output: Solution α in GF(2m) of the equation α2 + α = w, or INVALID.  1927 

Process: 1928 

1. Compute Tr(𝑤𝑤) = 𝑤𝑤20 + 𝑤𝑤21 +  𝑤𝑤22 +  𝑤𝑤23 +  … + 𝑤𝑤2𝑚𝑚−1 (the trace of w); 1929 
2. If Tr(w)=1, output INVALID; 1930 
3. Compute α:= Hf(𝑥𝑥) = 𝑤𝑤20 + 𝑤𝑤22 + 𝑤𝑤24 +  … + 𝑤𝑤2𝑚𝑚−1 (the half-trace of w); 1931 
4. Output α. 1932 

E.3 Computing Square Roots in non-Binary Fields GF(q) 1933 

The Tonelli-Shanks algorithm can be used to compute a square root given an equation of the 1934 
form x2 ≡ n (mod p) where n is an integer, which is a quadratic residue (mod p), and p is an odd 1935 
prime.  1936 
Find Q and S (with Q odd) such that p -1 = Q2S by factoring out the powers of 2. 1937 

Note that if S = 1, as for primes p ≡ 3 (mod 4), this reduces to finding x = n(p+1)/4 (mod p) 1938 
Check to see if nQ =1; if so then the root x = n(Q+1)/2 (mod p).  1939 

Otherwise select a z which is a quadratic non-residue modulo p. The Legendre symbol �𝑎𝑎
𝑝𝑝
� where 1940 

p is an odd prime and a is an integer can be used to test candidate values for z to see if a value of 1941 
-1 is returned. 1942 
Search for a solution as follows:  1943 

Set x = n(Q+1)/2 (mod p)   1944 
Set t = nQ (mod p)   1945 
Set M = S  1946 
Set c = zQ (mod p)  1947 
While t ≠ 1, repeat the following steps: 1948 

a) Using repeated squaring, find the smallest i such that  𝑡𝑡2𝑖𝑖 = 1, where 0 < i < M. 1949 
For example: 1950 

Let e = 2  1951 
Loop for i = 1 until i = M: 1952 
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If te (mod p) = 1 then exit the loop.   1953 
Set e = 2e  1954 

b) Update values: 1955 

𝑏𝑏 = 𝑐𝑐2𝑀𝑀−𝑖𝑖−1(mod 𝑝𝑝) 1956 
𝑥𝑥 = 𝑥𝑥𝑏𝑏(mod 𝑝𝑝) 1957 
𝑡𝑡 = 𝑡𝑡𝑏𝑏2(mod 𝑝𝑝) 1958 
𝑐𝑐 = 𝑏𝑏2(mod 𝑝𝑝) 1959 
𝑀𝑀 = 𝑖𝑖 1960 

The solution is x and the second solution is p - x. If the least i found is M, then no solution exists.  1961 
Square roots in a non-binary field GF(q) are relatively efficient to compute if q has the special 1962 
form q ≡ 3 (mod 4) or q≡5 (mod 8). All but one of the elliptic curves recommended in this 1963 
recommendation are defined over such fields. The following routines describe simplified cases to 1964 
compute square roots for p≡3 (mod 4) or p≡5(mod 8).  1965 

Let u = y2 - 1 and v = d y2 + 1.   1966 
 1967 
To find a square root of (u/v) if p≡3 (mod 4) (as in E448), first compute the candidate root x 1968 
= (u/v) (p+1)/4 = u3 v (u5v3) (p-3)/4 (mod p). If v x2 = u, the square root is x. Otherwise, no square 1969 
root exists, and the decoding fails. 1970 

 1971 
To find a square root of (u/v) if p ≡ 5 (mod 8) (as in Edwards25519), first compute the 1972 
candidate root x = (u/v) (p+3)/8 = u v3 (u v7) (p-5)/8 (mod p). To find the root, check three cases: 1973 

• If v x2 = u (mod p), the square root is x. 1974 
• If v x2 = -u (mod p), the square root is x * 2((p-1)/4). 1975 
• Otherwise, no square root exists for modulo p, and decoding fails. 1976 

 1977 
If x = 0 and x0 = 1, point decoding fails. If x (mod 2) = x0, then the x-coordinate is x.  1978 
Otherwise, the x-coordinate is p - x.   1979 

 1980 

E.4 Computing Inverses in GF(q) 1981 

If x is an element of GF(q) and x≠0, its (multiplicative) inverse is the element xq−2.  1982 

If one is concerned about side-channel leakage, one should compute u−1 indirectly by first 1983 
computing the inverse of the blinded element λu, where λ is a random nonzero element of GF(q), 1984 
and subsequently computing λ(λu)−1 = u−1. This yields an inversion routine where the inversion 1985 
operation itself does not require side-channel protection and which may have relatively low 1986 
computational complexity. 1987 

 1988 
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Appendix F Data Conversion 1989 

F.1 Conversion of a Field Element to an Integer  1990 

Field elements shall be converted to integers according to the following procedure. 1991 

Input: An element a of the field GF(q) 1992 

Output: A non-negative integer x in the interval [0, q−1] 1993 

Process:  1994 

1. If q is an odd prime, a is an integer in the interval [0, q−1]. In this case, set x = a. 1995 
2. If q = 2m, a must be a binary polynomial of degree smaller than m, i.e.,  1996 

a =a(z) = am−1 zm−1 + am−2 zm−2 + … + a1 z + a0, where each coefficient ai is 0 or 1. 1997 
In this case, set x = a(2)=am−1 2m−1 + am−2 2m−2 + … + a1 21 + a0 20; 1998 

3. Output x. 1999 
 2000 
F.2 Conversion of an Integer to a Field Element 2001 

Integers shall be converted to field elements according to the following procedure. 2002 

Inputs: Non-negative integer x and q, where q is an odd prime or q=2m 2003 

Output: An element a of the field GF(q) 2004 

Process:  2005 

1. Set x = x (mod q); 2006 
2. If q is an odd prime, x is an integer in the interval [0, q−1]. In this case, set a = x; 2007 
3. If q = 2m, x can be uniquely written as x = am−1 2m−1 + am−2 2m−2 + … + a1 2 + x0, where 2008 

each coefficient xi is 0 or 1. In this case, set x = a(z)= am−1 zm−1 + am−2 zm−2 + … + a1 z1 + 2009 
a0 20; 2010 

4. Output a. 2011 
 2012 
F.3 Conversion of an Integer to a Bit String 2013 

Integers shall be converted to bit strings according to the following procedure. 2014 

Inputs: Non-negative integer x in the range 0 ≤ x < 2l 2015 

Output: Bit-string X of length l 2016 

Process:  2017 

1. The integer x can be uniquely written as x = xl−1 2l−1 + xl−2 2l−2 + … + x1 2 + x0, where 2018 
each coefficient xi is 0 or 1. 2019 

2. Set X to the bit string (xl−1, xl-2, …, x1, x0); 2020 
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3. Output X. 2021 
 2022 
F.4 Conversion of a Bit String to an Integer 2023 

Bit strings shall be converted to integers according to the following procedure. 2024 

Input: Bit-string X of length l 2025 

Output: Non-negative integer x, where x<2l 2026 

Process:  2027 

1. Let X be the bit string (xl−1, xl−2, …, x1, x0), where each coefficient xi is 0 or 1; 2028 

2. Set x to the integer value x = xl−1 2l−1 + xl−2 2l−2 + … + x1 2 + x0; 2029 
3. Output x. 2030 

 2031 
 2032 
  2033 
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Appendix G  Implementation Aspects 2034 

G.1 Implementation of Modular Arithmetic 2035 

The prime moduli of the above recommended curves are of a special type (generalized Mersenne 2036 
numbers and Crandall primes) for which modular multiplication can be carried out more 2037 
efficiently than in general. This section provides the rules for implementing this faster arithmetic 2038 
for each of these recommended prime moduli.  2039 

The usual way to multiply two integers (mod m) is to take the integer product and reduce it 2040 
(modulo m). One, therefore, has the following problem: given an integer A less than m2, compute  2041 

B = A (mod m). 2042 

In general, one must obtain B as the remainder of an integer division. If m is a generalized 2043 
Mersenne number, however, then B can be expressed as a sum or difference (mod m) of a small 2044 
number of terms. To compute this expression, the integer sum or difference can be evaluated, 2045 
and the result reduced modulo m. The latter reduction can be accomplished by adding or 2046 
subtracting a few copies of m.  2047 

The prime modulus p for each of the four recommended P-x curves is a generalized Mersenne 2048 
number.  2049 

G.1.1 Curve P-224  2050 

The modulus for this curve is 𝑝𝑝 = 2224 − 296 + 1. Each integer A less than p2 can be written as 2051 

,22222
22222222

0
32

1
64

2
96

3
128

4
160

5

192
6

224
7

256
8

288
9

320
10

352
11

384
12

416
13

AAAAAA
AAAAAAAAA

+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=  2052 

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by 2053 

A = ( A13 || A12 || … || A0 ). 2054 

The expression for B is 2055 

B = T + S 1 + S 2 – D1 – D2 (mod p), 2056 

where the 224-bit terms are given by 2057 

T  = ( A6 || A5 || A4 || A3 || A2 || A1 || A0 ) 2058 

S1 = ( A10 || A9 || A8 || A7 || 0 || 0 || 0 ) 2059 

S2 = ( 0 || A13 || A12 || A11 || 0 || 0 || 0 ) 2060 

D1 =  ( A13  || A12 || A11 || A10 || A9 || A8 || A7 ) 2061 
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D2 =  ( 0 || 0 || 0 || 0 || A13 || A12 || A11 ). 2062 

G.1.2 Curve P-256  2063 

The modulus for this curve is p = 2256 – 2224 + 2192 + 296  – 1. Each integer A less than p2 can be 2064 
written as 2065 

,2222222
22222222

0
32

1
64

2
96

3
128

4
160

5
192

6
224

7

256
8

288
9

320
10

352
11

384
12

416
13

448
14

480
15

AAAAAAAA
AAAAAAAAA

+⋅+⋅+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=  2066 

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by  2067 

A = (A15 || A14 || ⋅ ⋅ ⋅ || A0 ). 2068 

The expression for B is 2069 

B = T + 2S1 + 2S2 + S3 + S4 – D1 – D2 – D3 – D4 (mod p), 2070 

where the 256-bit terms are given by 2071 

T  =  ( A7  || A6   ||  A5  || A4 || A3 || A2 || A1 || A0 ) 2072 

S1 = ( A15 || A14 || A13 || A12 || A11 || 0 || 0 || 0 ) 2073 

S2 = ( 0 || A15 || A14 || A13 || A12 || 0 || 0 || 0 ) 2074 

S3 = (  A15 || A14 || 0 || 0 || 0 || A10 || A9  ||  A8  ) 2075 

S4 = (  A8 || A13 || A15 || A14 || A13 || A11 || A10 || A9 ) 2076 

D1 = ( A10  ||  A8 || 0 || 0 || 0 || A13 || A12 || A11 ) 2077 

D2 = ( A11 || A9 || 0 || 0 || A15 || A14 || A13 || A12 ) 2078 

D3 = ( A12 || 0 || A10 || A9 || A8 || A15 || A14 || A13 ) 2079 

D4 = ( A13 || 0 || A11 || A10 || A9 || 0 || A15 || A14 ) 2080 

G.1.3 Curve P-384  2081 

The modulus for this curve is p = 2 384 – 2 128 – 2 96 + 2 32  – 1. Each integer A less than p2 can be 2082 
written as 2083 

,2222222
22222222

22222222

0
32

1
64

2
96

3
128

4
160

5
192

6
224

7

256
8

288
9

320
10

352
11

384
12

416
13

448
14

480
15

512
16

544
17

576
18

608
19

640
20

672
21

704
22

736
23

AAAAAAAA
AAAAAAAA

AAAAAAAAA

+⋅+⋅+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

 2084 
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where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by  2085 

A = (A23 || A22 || ⋅ ⋅ ⋅ || A0). 2086 

The expression for B is 2087 

B = T + 2S1 + S2 + S3 + S4 + S5 + S6 – D1 – D2 – D3 (mod p), 2088 

where the 384-bit terms are given by 2089 

T  =   (A11 || A10  || A9 || A8 || A7 || A6 || A5 || A4 || A3 || A2 || A1  ||  A0 ) 2090 

S1 = ( 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || 0 || 0 ) 2091 

S2 =  (A23 || A22  || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12) 2092 

S3 =  (A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12 || A23|| A22|| A21) 2093 

S4 =  ( A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12 || A20 || 0 || A23 || 0 ) 2094 

S5 = ( 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 || 0 || 0 || 0 ) 2095 

S6 =  ( 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || A20 ) 2096 

D1 =  (A22 || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13  ||  A12 || A23 ) 2097 

D2 =  ( 0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 ) 2098 

D3 =  ( 0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A23 || 0 || 0 || 0 ). 2099 

G.1.4 Curve P-521 2100 

The modulus for this curve is p = 2 521 – 1. Each integer A less than p2 can be written as 2101 

A = A1 ⋅ 2521 + A0, 2102 

where each A i is a 521-bit integer. As a concatenation of 521-bit words, this can be denoted by  2103 

A = (A1 || A0). 2104 

 2105 

The expression for B is 2106 

B = (A0 + A1) (mod p). 2107 

G.1.5 Curve Curve448  2108 

The modulus for this curve is p = 2448−2224 – 1. Each integer A less than p2 can be written 2109 



NIST SP 800-186 (DRAFT) RECOMMENDATIONS FOR DISCRETE-LOGARITHM BASED CRYPTOGRAPHY: 
ELLIPTIC CURVE DOMAIN PARAMETERS 

59 

 
 

 
 

 
 

 
 

 

 

A = A3 ⋅ 2672 + A2 ⋅ 2448 + A1 ⋅ 2224 + A0, 2110 

where each A i is a 224-bit integer. As a concatenation of 224-bit words, this can be denoted by  2111 

A = (A3 || A2 || A1 || A0). 2112 

 2113 

The expression for B is 2114 

B = (S1 + S2 + S3 + S4) (mod p), 2115 

where the 448-bit terms are given by  2116 

S1 = ( A1 || A0) 2117 

S2 = ( A2 || A2) 2118 

S3 = ( A3 || A3) 2119 

S4 = ( A3 || 0). 2120 

G.1.6 Curve Curve25519 2121 

The modulus for this curve is p = 2255– 19. Each integer A less than p2 can be written 2122 

A = A1 ⋅ 2256 + A0, 2123 

where each A i is a 256-bit integer. As a concatenation of 256-bit words, this can be denoted by  2124 

A = (A1 || A0). 2125 

The expression for B is 2126 

B = (38 ⋅ A1 + A0) (mod 2p), 2127 

where all computations are carried out modulo 2p rather than modulo p. 2128 

This allows efficient modular reduction and finite field operations that try and minimize carry-2129 
effects of operands if each integer X less than 2p is represented as  2130 

2131 
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X = X9 ⋅ 2234 + X8⋅ 2208 + X7 ⋅ 2182 + X6 ⋅ 2156 + X5 ⋅ 2130 + X4 ⋅ 2104 + X3 ⋅ 278 + X2 ⋅ 252 + X1 ⋅ 226 + 2132 
X0, 2133 

where each Xi is a 26-bit integer and where X9 is a 22-bit integer. Note that in this case, 2134 
multiplication by the small constant 38 does not lead to overflows if each Xi is stored as a 32-bit 2135 
word. It turns out that the cost of occasional resizing of X, represented this way, is outweighed by 2136 
savings due to the possibility of postponing ‘carry’ operations. This representation can also be 2137 
used to efficiently compute –X so that intermediate integer segments are always non-negative 2138 
integers. 2139 

G.2 Scalar Multiplication for Koblitz Curves 2140 

This section describes a particularly efficient method of computing the scalar multiple Q:=kP on 2141 
the Koblitz curve Wa,b over GF(2m).  2142 

The operation τ  is defined by 2143 

τ (x, y) := (x2, y2). 2144 

When the normal basis representation is used, then the operation τ  is implemented by 2145 
performing right circular shifts on the bit strings representing x and y.  2146 

Given m and a, define the following parameters:  2147 

• C is some integer greater than 5. 2148 

• µ = (–1)1–a. 2149 

• For i = 0 and i = 1, define the sequence si(m) by: 2150 
si(0) := 0, si(1) := 1 – i, 2151 

si(m) = µ ⋅ si(m – 1) – 2 ⋅ si(m – 2) + (–1)i. 2152 

• Define the sequence V(m) by 2153 

V(0) := 2, V(1) := µ, 2154 

V(m) = µ ⋅ V(m –1) – 2 ⋅ V(m – 2). 2155 

For the recommended Koblitz curves, the quantities si(m)  and V(m) are as follows. 2156 

Curve K-163: 2157 

s0(163) =  2579386439110731650419537 2158 

s1(163) =  –755360064476226375461594 2159 

V(163) =  –4845466632539410776804317 2160 
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Curve K-233: 2161 

s0(233) =  –27859711741434429761757834964435883 2162 

s1(233) =  –44192136247082304936052160908934886 2163 

V(233) =  –137381546011108235394987299651366779 2164 

Curve K-283: 2165 

s0(283) =  –665981532109049041108795536001591469280025 2166 

s1(283) =  1155860054909136775192281072591609913945968 2167 

V(283) =  7777244870872830999287791970962823977569917 2168 

Curve K-409: 2169 

s0(409) =  –18307510456002382137810317198756461378590542487556869338419259 2170 

s1(409) =  –8893048526138304097196653241844212679626566100996606444816790 2171 

V(409)= 10457288737315625927447685387048320737638796957687575791173829 2172 

Curve K-571: 2173 

s0(571) =  –3737319446876463692429385892476115567147293964596131024123406420\ 2174 

235241916729983261305 2175 

s1(571) =  –3191857706446416099583814595948959674131968912148564658610565117\ 2176 

58982848515832612248752 2177 

V(571)= –1483809269816914138996191402970514903645425741804939362329123395\ 2178 

34208516828973111459843 2179 

The following algorithm computes the scalar multiple Q:=kP on the Koblitz curve Wa,b over 2180 
GF(2m). The average number of elliptic additions and subtractions is at most ∼ 1 + (m/3) and is at 2181 
most ∼ m/3 with probability at least 1 – 25–C. 2182 

1. For i := 0 to 1 do 2183 

1.1 k′ ←   k / 2a–C + (m–9) / 2. 2184 

1.2 g′ ← si(m) · k′. 2185 

1.3 h′ ←   g′ / 2m . 2186 
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1.4 j′ ← V(m) · h′. 2187 

1.5 l′ ← Round((g′ + j′) / 2(m+5) / 2). 2188 

1.6 λi ← l′ / 2C. 2189 

1.7 fi ← Round(λi). 2190 

1.8 ηi ← λi – fi.. 2191 

1.9 hi ← 0. 2192 

2. η ← 2 η0 +  µ η1. 2193 

3. If (η ≥ 1), 2194 

      then 2195 

if (ηo – 3 µη1 < –1) 2196 

then set h1 ← µ 2197 

else set h0 ← 1. 2198 

  else 2199 

   if (η0 + 4 µ η1 ≥ 2) 2200 

    then set h1 ← µ. 2201 

4. If (η < –1) 2202 

         then 2203 

if (η0 – 3 µ η1 ≥  1) 2204 

then set h1 ← – µ 2205 

else set h0 ← –1. 2206 

  else 2207 

   if (η0 + 4 µ η1 <  –2) 2208 

    then set h1 ← – µ. 2209 

5. q0  ← f0  + h0.  2210 
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6. q1  ← f1  + h1.  2211 

7. r0 ← n – (s0  + µ s1) q0 – 2s1 q1. 2212 

8. r1 ← s1 q0 – s0 q1. 2213 

9. Set Q ← O. 2214 

10. P0 ← P. 2215 

 11. While ((r0 ≠ 0) or (r1 ≠ 0)) 2216 

11.1 If (r0  odd), then 2217 

11.1.1 set u ← 2 – (r0  – 2 r1 mod 4). 2218 

11.1.2 set r0 ← r0  – u. 2219 

11.1.3 if (u = 1), then set Q ← Q + P0. 2220 

11.1.4 if (u = –1), then set Q ← Q – P0. 2221 

11.2 Set P0 ← τP0. 2222 

11.3 Set (r0 , r1) ← (r1 + µr0 /2, – r0 /2). 2223 

 Endwhile 2224 
12. Output Q. 2225 

G.3  Polynomial and Normal Bases for Binary Fields 2226 

G.3.1 Normal Bases 2227 

The elements of GF(2m), where m is odd, are expressed in terms of the type T normal2 basis B for 2228 
GF(2m), for some T. Each element has a unique representation as a bit string:  2229 

(a0 a1 …  am–1). 2230 

The arithmetic operations are performed as follows. 2231 

Addition: Addition of two elements is implemented by bit-wise addition modulo 2. Thus, for 2232 
example,  2233 

(1100111) + (1010010) = (0110101). 2234 

                                                 
2 It is assumed in this section that m is odd and T is even since this is the only case considered in this standard. 
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Squaring: if   2235 

α  = (a0 a1  …  am–2 am–1), 2236 

then 2237 

α2 = (am–1 a0 a1 …  am–2). 2238 

Multiplication: Multiplication depends on the following function F(u,v) on inputs 2239 

u = (u0 u1 …  um–1)  and  v = (v0 v1 …  vm–1), 2240 

which is constructed s follows. 2241 

1.  Set p = Tm + 1; 2242 
2. Let u be an integer having order T modulo p; 2243 
3. Compute the sequence F (1), F (2), … , F (p–1) as follows: 2244 

a.  Set w = 1; 2245 
b. For j from 0 to T–1 do 2246 

i. Set n = w; 2247 
ii. For i = 0 to m–1 do 2248 

1. Set F(n) = i; 2249 
2. Set  n = 2n (mod p); 2250 

1.2.3 Set w = uw (mod  p); 2251 
2. Output the formulae F(u, v), where  2252 

∑
−

=
−+=

2

1
)()1( .:),(

p

k
kpFkF vuvuF

 2253 

This computation only needs to be performed once per basis. 2254 

Given the function F for B, the product 2255 

(c0 c1 …  cm–1) = (a0 a1 …  am–1) * (b0 b1 …  bm–1) 2256 

is computed as follows: 2257 

1. Set (u0 u1 …  um–1) = (a0 a1 . . .  am–1); 2258 
2. Set (v0 v1 …  vm–1) = (b0 b1 . . .  bm–1 ); 2259 
3. For k = 0 to m – 1 do 2260 

a.  Compute ck = F(u, v). 2261 
b. Set u = LeftShift (u) and v := LeftShift (v), where LeftShift denotes the circular 2262 
  left shift operation. 2263 

4. Output c = (c0 c1 …  cm–1). 2264 

Example:  2265 
For the type-4 normal basis for GF(27), one has p = 29 and u = 12 or u = 17. Thus, the values of 2266 
F are given by: 2267 
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F (1) = 0  F (8) = 3  F (15) = 6  F (22) = 5  2268 
F (2) = 1  F (9) = 3 F (16) = 4 F (23) = 6  2269 
F (3) = 5  F (10) = 2  F (17) = 0  F (24) = 1  2270 
F (4) = 2  F (11) = 4  F (18) = 4  F (25) = 2  2271 
F (5) = 1  F (12) = 0  F (19) = 2  F (26) = 5  2272 
F (6) = 6  F (13) = 4  F (20) = 3  F (27) = 1  2273 
F (7) = 5 F (14) = 6  F (21) = 3  F (28) = 0  2274 

 2275 
Therefore, 2276 

F (u, v) = u0 v1 + u1 (v0 + v2 + v5 + v6) + u2 (v1 + v3 + v4 + v5) + u3 (v2 + v5) + 2277 

 u4 (v2 + v6) + u5 (v1 + v2 + v3 + v6) + u6 (v1 + v4 + v5 + v6). 2278 

As a result, if 2279 

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1), 2280 

then 2281 

c0 = F ((1 0 1 0 1 1 1), (1 1 0 0 0 0 1)) = 1, 2282 
c1 = F ((0 1 0 1 1 1 1), (1 0 0 0 0 1 1)) = 0, 2283 

⋮ 2284 
c6 = F ((1 1 0 1 0 1 1), (1 1 1 0 0 0 0)) = 1, 2285 

so that c = a*b = (1 0 1 1 0 0 1). 2286 

For the binary curves recommended in this specification, the values of T are, respectively, T = 2 2287 
(m = 233), T = 6 (m = 283), T = 4 (m = 409), and T = 10 (m = 571). 2288 

 2289 
G.3.2 Polynomial Basis to Normal Basis Conversion 2290 

Let α be an element of the field GF(2m) with bit-string representation p with respect to a given 2291 
polynomial basis and bit-string representation n with respect to a given normal basis. The bit 2292 
strings p and n are related via  2293 

p Γ = n, 2294 

where Γ is an (m × m) matrix with entries in GF(2). The matrix Γ, which only depends on the 2295 
bases, can be easily computed given its second-to-last row. For each conversion, that second-to-2296 
last row is given below. 2297 

Degree 233:  2298 

     0x0be 19b89595 28bbc490 038f4bc4 da8bdfc1 ca36bb05 853fd0ed 0ae200ce  2299 

Degree 283:  2300 
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0x3347f17 521fdabc 62ec1551 acf156fb 0bceb855 f174d4c1 7807511c 9f745382 2301 
 add53bc3  2302 

Degree 409:   2303 

 0x0eb00f2 ea95fd6c 64024e7f 0b68b81f 5ff8a467 acc2b4c3 b9372843 6265c7ff 2304 
  a06d896c ae3a7e31 e295ec30 3eb9f769 de78bef5  2305 

Degree 571:  2306 

 0x7940ffa ef996513 4d59dcbf e5bf239b e4fe4b41 05959c5d 4d942ffd 46ea35f3 2307 
  e3cdb0e1 04a2aa01 cef30a3a 49478011 196bfb43 c55091b6 1174d7c0 8d0cdd61 2308 
  3bf6748a bad972a4  2309 

If r is the second-to-last row of Γ and represents the element β of GF(2m) with respect to the 2310 
normal basis, then the rows of Γ, from top to bottom, are the bit-string representations of the 2311 
elements 2312 

β m–1, β m–2, …, β 2, β, 1 2313 

with respect to this normal basis. (Note that the element 1 is represented by the all-1 bit string.) 2314 
Alternatively, the matrix is the inverse of the matrix described in Appendix G.3.3. 2315 

More details of these computations can be found in Annex A.7 of the IEEE Standard 1363-2000 2316 
standard [IEEE 1363].  2317 

G.3.3 Normal Basis to Polynomial Basis Conversion 2318 

Let α be an element of the field GF(2m) with bit-string representation n with respect to a given 2319 
normal basis and bit-string representation p with respect to a given polynomial basis. The bit 2320 
strings p and n are related via 2321 

n ∆ = p, 2322 

where ∆ is an (m × m) matrix with entries in GF(2). The matrix ∆, which depends only on the 2323 
bases, can be easily computed given its top row. For each conversion, that top row is given 2324 
below. 2325 

Degree 233:  2326 

            0x149 9e398ac5 d79e3685 59b35ca4 9bb7305d a6c0390b cf9e2300 253203c9  2327 

 Degree 283:   2328 

   0x31e0ed7 91c3282d c5624a72 0818049d 053e8c7a b8663792 bc1d792e ba9867fc 2329 
  7b317a99  2330 

Degree 409:   2331 

 0x0dfa06b e206aa97 b7a41fff b9b0c55f 8f048062 fbe8381b 4248adf9 2912ccc8 2332 
  e3f91a24 e1cfb395 0532b988 971c2304 2e85708d  2333 
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Degree 571:  2334 

 0x452186b bf5840a0 bcf8c9f0 2a54efa0 4e813b43 c3d41496 06c4d27b 487bf107 2335 
  393c8907 f79d9778 beb35ee8 7467d328 8274caeb da6ce05a eb4ca5cf 3c3044bd 2336 
  4372232f 2c1a27c4  2337 

If r is the top row of ∆ and represents the element β of GF(2 m), then the rows of ∆, from top to 2338 
bottom, are the bit strings representing the elements 2339 

β, β 2, β 22, … , β 2m–1 2340 

with respect to the polynomial basis. Alternatively, the matrix is the inverse of the matrix 2341 
described in Appendix G.3.2. 2342 

More details of these computations can be found in Annex A.7 of the IEEE Std 1363-2000 2343 
standard.  2344 
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Appendix H – Other Allowed Elliptic Curves 2345 

H.1 Brainpool Curves 2346 

This standard also allows the curves specified in Elliptic Curve Cryptography (ECC) Brainpool 2347 
Standard Curves and Curve Generation [RFC 5639], which support a security strength of 112 2348 
bits or higher. In particular, this includes brainpoolP224r1, brainpoolP256r1, brainpoolP320r1, 2349 
brainpoolP384r1, and brainpoolP512r1. These curves were pseudorandomly generated and are 2350 
allowed to be used for interoperability reasons. 2351 

 2352 
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