
NIST Special Publication 800-163
Revision 1

Vetting the Security of
Mobile Applications

Michael Ogata
Josh Franklin
Jeffrey Voas

Vincent Sritapan
Stephen Quirolgico

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-163r1

C O M P U T E R S E C U R I T Y

NIST Special Publication 800-163
Revision 1

Vetting the Security of
Mobile Applications

 Michael Ogata Vincent Sritapan
 Software and Systems Division Office of Science and Technology
 Information Technology Laboratory U.S. Department of Homeland Security

 Josh Franklin* Stephen Quirolgico
 Applied Cybersecurity Division Office of the Chief Information Officer
 Information Technology Laboratory U.S. Department of Homeland Security

 Jeffrey Voas *Former employee; all work for this
 Computer Security Division publication was done while at NIST
 Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-163r1

April 2019

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-163 Revision 1
Natl. Inst. Stand. Technol. Spec. Publ. 800-163 Rev. 1, 55 pages (April 2019)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-163r1

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: nist800-163@nist.gov

 All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:nist800-163@nist.gov

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and
outreach efforts in information system security, and its collaborative activities with industry,
government, and academic organizations.

Abstract

Mobile applications are an integral part of our everyday personal and professional lives. As both
public and private organizations rely more on mobile applications, ensuring that they are
reasonably free from vulnerabilities and defects becomes paramount. This paper outlines and
details a mobile application vetting process. This process can be used to ensure that mobile
applications conform to an organization’s security requirements and are reasonably free from
vulnerabilities.

 Keywords

app vetting; app vetting system; malware; mobile applications; mobile security; NIAP; security
requirements; software assurance; software vulnerabilities; software testing.

Trademark Information

All registered trademarks belong to their respective organizations.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Table of Contents

1 Introduction .. 1

1.1 Purpose .. 2

1.2 Scope .. 2

1.3 Intended Audience .. 3

1.4 Document Structure .. 3

1.5 Document Conventions ... 3

2 App Security Requirements .. 4

2.1 General Requirements .. 4

2.1.1 National Information Assurance Partnership (NIAP)............................. 4

2.1.2 OWASP Mobile Risks, Controls and App Testing Guidance 5

2.1.3 MITRE App Evaluation Criteria ... 6

2.1.4 NIST SP 800-53 ... 7

2.2 Organization-Specific Requirements ... 7

2.3 Risk Management and Risk Tolerance ... 9

3 App Vetting Process .. 11

3.1 App Intake ... 12

3.2 App Testing ... 13

3.3 App Approval/Rejection .. 14

3.4 Results Submission .. 15

3.5 App Re-Vetting.. 15

4 App Testing and Vulnerability Classifiers ... 17

4.1 Testing Approaches .. 17

4.1.1 Correctness Testing ... 17

4.1.2 Source and Binary Code Testing .. 17

4.1.3 Static and Dynamic Testing .. 18

4.2 Vulnerability Classifiers and Quantifiers .. 19

4.2.1 Common Weakness Enumeration (CWE) .. 19

4.2.2 Common Vulnerabilities and Exposures (CVE) 19

4.2.3 Common Vulnerability Scoring System (CVSS) 20

5 App Vetting Considerations .. 21

5.1 Managed and Unmanaged Apps .. 21

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

5.2 App Whitelisting and App Blacklisting ... 21

5.3 App Vetting Limitations ... 22

5.4 Local and Remote Tools and Services ... 23

5.5 Automated Approval/Rejection ... 23

5.6 Reciprocity .. 23

5.7 Tool Report Analysis ... 24

5.8 Compliance versus Certification.. 24

5.9 Budget and Staffing .. 25

6 App Vetting Systems ... 26

List of Appendices

Appendix A— Threats to Mobile Applications .. 29

A.1 Ransomware ... 29

A.2 Spyware .. 29

A.3 Adware .. 30

A.4 Rooting ... 30

A.5 Trojan Horse ... 30

A.6 Infostealer ... 30

A.7 Hostile Downloader ... 31

A.8 SMS Fraud .. 31

A.9 Call Fraud ... 31

A.10 Man in the Middle Attack (MITM) .. 31

A.11 Toll Fraud .. 31

Appendix B— Android App Vulnerability Types .. 33

Appendix C— iOS App Vulnerability Types .. 36

Appendix D— Acronyms .. 39

Appendix E— Glossary ... 41

Appendix F— References ... 44

List of Figures

Figure 1 - Software assurance during mobile application lifecycle. 2

Figure 2 - Risk Management Framework .. 10

Figure 3 - App vetting process overview. .. 11

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Figure 4 - Four sub-processes of an app vetting process. .. 12

Figure 5 - Test tool workflow. .. 14

Figure 6 - App approval/rejection process. .. 15

Figure 7 - Example app vetting system architecture. .. 26

List of Tables

Table 1 - NIAP Functional Requirements. ... 5

Table 2 - Organization-specific security criteria. .. 7

Table 3 - Android Vulnerabilities, A Level. ... 33

Table 4 - Android Vulnerabilities by level. ... 34

Table 5 - iOS Vulnerability Descriptions, A Level. ... 36

Table 6 - iOS Vulnerabilities by level. .. 37

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

1 Introduction

Mobile applications (or apps) have had a transformative effect on organizations. Through ever-
increasing functionality, ubiquitous connectivity and faster access to mission-critical
information, mobile apps continue to provide unprecedented support for facilitating
organizational objectives. Despite their utility, these apps can pose serious security risks to an
organization and its users due to vulnerabilities that may exist within their software 1.Such
vulnerabilities may be exploited to steal information, control a user’s device, deplete hardware
resources, or result in unexpected app or device behavior.

App vulnerabilities are caused by several factors including design flaws and programming errors,
which may have been inserted intentionally or inadvertently. In the app marketplace, apps
containing vulnerabilities are prevalent due in part to the submission of apps by developers who
may trade security for functionality in order to reduce cost and time to market.

The commercial app stores provided by mobile operating system vendors (Android, iOS) review
the apps for issues such as malware, objectionable content, collecting user information without
notice, performance impact (e.g., battery), etc. prior to allowing them to be hosted in their app
market. The level and type of reviews conducted are opaque to consumers and the federal
government. Furthermore, these app markets serve a global customer base that numbers in the
billions and their reviews of apps are consumer- and brand-focused. Enterprise organizations
federal agencies, regulated industries, other non-governmental organizationsthat plan to use
consumer apps for their business will need to make risk-based decisions for app acquisition
based on their own security, privacy and policy requirements and risk tolerance.

The level of risk related to vulnerabilities varies depending on several factors including the data
accessible to an app. For example, apps that access data such as precise and continuous
geolocation information, personal health metrics or personally identifiable information (PII) may
be considered to be of higher risk than those that do not access sensitive data. In addition, apps
that depend on wireless network technologies (e.g., Wi-Fi, cellular, Bluetooth) for data
transmission may also be of high risk since these technologies also can be used as vectors for
remote exploits. Even apps considered low risk, however, can have significant impact if
exploited. For example, public safety apps that fail due to a vulnerability exploit could
potentially result in the loss of life.

To mitigate potential security risks associated with mobile apps, organizations should employ a
software assurance process that ensures a level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or accidentally inserted at any time
during its life cycle, and that the software functions in the intended manner [2]. In this document,
we define a software assurance process for mobile applications. We refer to this process as an
app vetting process.

1 A vulnerability is defined as one or more weaknesses that can be accidentally triggered or intentionally exploited and result in a
violation of desired system properties [1]

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

1.1 Purpose

This document defines an app vetting process and provides guidance on (1) planning and
implementing an app vetting process, (2) developing security requirements for mobile apps, (3)
identifying appropriate tools for testing mobile apps and (4) determining if a mobile app is
acceptable for deployment on an organization’s mobile devices. An overview of techniques
commonly used by software assurance professionals is provided, including methods of testing
for discrete software vulnerabilities and misconfigurations related to mobile app software.

1.2 Scope

Software assurance activities for a mobile application may occur in one or more phases of the
mobile application lifecycle: (1) during the development of the app by its developer (i.e., the app
development phase), (2) after receiving a developed app but prior to its deployment by the end-
user organization (i.e., the app acquisition phase) or (3) during deployment of the app by the end-
user organization (i.e., the app deployment phase). These three phases of the mobile application
lifecycle are shown in Figure 1.

Figure 1 - Software assurance during mobile application lifecycle.

In this document, we focus primarily on the software assurance activities of the app vetting
process, which we define as part of the app acquisition phase of the mobile application lifecycle.
Thus, software assurance activities performed during the app’s development phase (e.g., by
source code analyzers) or during the app’s deployment phase (e.g., by endpoint solutions) are
considered out of scope for this document.

In addition, this document does not address the use of Enterprise Mobility Management (EMM),
mobile app management or mobile threat defense systems, although integrations with these
systems are briefly examined. Further, this document does not discuss vetting the security of
Internet of Things (IoT) apps or address the security of underlying mobile platforms and
operating systems. These subjects are addressed in other publications [3]–[5]. Finally, discussion
surrounding the security of web services and cloud infrastructures used to support backend
processing of apps is also out of scope for this document.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Finally, it should be noted that mobile apps, and the devices they run on, communicate using a
variety of network infrastructures: Wi-Fi, cellular networks, Bluetooth, etc. These networks
represent possible failure points for the security of an app. A deep evaluation of each of these
network infrastructures is out of scope for this document.

1.3 Intended Audience

This document is intended for public- and private-sector organizations that seek to improve the
software assurance of mobile apps deployed on their mobile devices. More specifically, this
document is intended for those who are:

• Responsible for establishing an organization’s mobile device security posture,
• Responsible for the management and security of mobile devices within an organization,
• Responsible for determining which apps are used within an organization, and
• Interested in understanding what types of assurances the app vetting process provides.

1.4 Document Structure

The remainder of this document is organized into the following sections:

• Section 2—App Security Requirements
• Section 3—App Vetting Process
• Section 4—App Testing Approaches and Vulnerability Classifiers
• Section 5—App Vetting Considerations
• Section 6—App Vetting Systems
• Appendix A—Threats to Mobile Applications
• Appendix B—Android App Vulnerability Types
• Appendix C— iOS App Vulnerability Types
• Appendix D—Acronyms and Abbreviations
• Appendix E—Glossary
• Appendix F—References

1.5 Document Conventions

Applications written specifically for a mobile platform are referred to as “apps” throughout this
special publication.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

2 App Security Requirements

Before vetting a mobile app for security, an organization must define the security requirements
that an app must meet in order to be approved for use by the organization. In this document, we
define two types of app security requirements that organizations should develop: general and
organization-specific.

2.1 General Requirements

General app security requirements define the software and behavioral characteristics of an app
that should or should not be present in order to ensure the security of the app. These
requirements are considered “general” since they can be applied across all mobile applications
and tailored to meet the security needs and risk tolerance of an organization. General app
security requirements may be derived from a number of available standards, best practices, and
resources including those specified by NIAP, OWASP, MITRE and NIST2.

2.1.1 National Information Assurance Partnership (NIAP)

The NIAP Protection Profiles (PPs) specify an implementation-independent set of security
requirements for a category of information technology (IT) products that meet specific federal
customer needs. Specifically, the NIAP PPs are intended for use in certifying products for use in
national security systems to meet a defined set of security requirements. NIAP PP certified
products are also used by federal organizations in non-national security systems. The NIAP PPs
define in detail the security objectives, requirements and assurance activities that must be met for
a product evaluation to be considered International Organization for Standardization (ISO)/
International Electrotechnical Commission (IEC) 15408 certified [6]. While many mobile apps
fall outside the defined scope for requiring ISO/IEC 15408 certification, security analysis of
these apps is still useful. For these apps, the NIAP recommends a set of activities and evaluations
defined in Requirements for Vetting Mobile Apps from the Protection Profile for Application
Software [7]. The requirements defined in this document are divided into two broad categories:

1) Functional Requirements—Declarations concerning the required existence or absence of
particular software behavior or attributes.

2) Assurance Requirements—Declarations concerning actions the evaluator must take or
stipulations that must be true for vetting to successfully execute.

Table 1 summarizes the NIAP functional requirements3.

2 Additional threats and vulnerabilities can be found in Appendices A, B, and C.

3 For brevity, many, but not all the functional requirements are listed in Table 1. Some are high-level descriptions of multiple
related controls. See NIAP Protection Profile for the full list [7].

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Table 1 - NIAP Functional Requirements.

Functional Requirements
Access to Platform Resources

Anti-Exploitation Capabilities

Cryptographic Key Functionality

Cryptographic Operations
Encryption of Sensitive Application Data

Hyper Text Transfer Protocol Secure (HTTPS)

Integrity for Installation and Update

Network Communications

Protection of Data in Transit

Random Bit Generation

Secure by Default Configuration

Software Identification and Versions

Specification of Management Functions

Storage of Credentials

Supported Configuration Mechanism

Transport Layer Security Operations

Use of Supported Services and Application Programming Interfaces

Use of Third-Party Libraries

User Consent for Transmission of Personally Identifiable Information

X.509 Functionality

The Assurance Requirement found in the protection profile can be summarized as follows:

• The application shall be labeled with a unique reference.
• The evaluator shall test a subset of the Target of Evaluation (TOE) security functions

(TSF) to confirm that the TSF operates as specified.
• The application shall be suitable for testing (free from obfuscation4)
• The evaluator shall perform a search of public domain sources to identify potential

vulnerabilities in the TOE.

2.1.2 OWASP Mobile Risks, Controls and App Testing Guidance

The Open Web Application Security Project (OWASP) maintains multiple useful resources
concerning mobile app testing and security. Their Mobile Application Security Verification
Standard (MASVS) [8] is a detailed model for mobile app security that can be used to provide
baseline security requirements for an organization. Like the NIAP PP, the MASVS defines a set

4 It should be noted that code obfuscation has legitimate uses in industry as a method to attempt to safeguard apps and intellectual
property. In cases where obfuscated apps need to be analyzed, organizations could leverage businesses relationships with
app developers to circumvent these precautions for the duration of the analysis.

https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm#abbr_TSF
https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm#abbr_TSF

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

of declarations concerning the structure and behavior of an app. However, the MASVS also
defines three verification levels:

• Standard Security (Level 1)
• Defense in Depth (Level 2)
• Resilience against Reverse Engineering and Threats (Level 3).

Each level’s control lists are divided into the categories listed below, with the object described
for each control depending on the desired verification level:

• Architecture, Design, and Threat Modeling Requirements

• Data Storage and Privacy Requirements

• Cryptography Requirements

• Authentication and Session Management Requirements

• Network Communication Requirements

• Platform Integration Requirements

• Code Quality and Build-Setting Requirements

• Resilience Requirements

The OWASP Mobile Security Testing Guide (MSTG) [9] is a manual for testing the security of
mobile apps. It describes the technical processes for verifying the requirements listed in the
MASVS.

2.1.3 MITRE App Evaluation Criteria

In 2016, the MITRE Corporation (MITRE) performed an analysis of the effectiveness of mobile
app security vetting solutions for helping enterprises automate portions of their vetting process.
To perform the analysis, MITRE developed solution criteria based on NIAP’s Protection Profile
for Application Software as well as additional criteria to address broader app vetting solution
capabilities, threats against the app vetting solution itself, and other common mobile app
vulnerabilities and malicious behaviors.

Using its criteria, MITRE developed or obtained multiple vulnerable and malicious-appearing
apps for use in assessing mobile app vetting solutions. MITRE used the apps to test the
capabilities of mobile app vetting solutions.

MITRE published a technical report [10] describing their methodology, evaluation criteria, test
applications and overall results from analyzing then-available solutions. The report and test

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

applications are available on MITRE’s GitHub site5.

2.1.4 NIST SP 800-53

NIST Special Publication 800-53 [5] provides an extensive catalog of security and privacy
controls designed for federal information systems. In addition, the document defines a process
for selecting controls to defend IT systems, individuals and other organizational assets from a
variety of threats, such as hostile cyber-attacks, natural disasters, structural failures and human
errors. The controls can be customized to an organization-specific process to manage
information security and privacy risk. The controls can support a diverse set of security and
privacy requirements across an organization’s required policies, standards, and/or business
needs. A set of three security control baseline are provided based on high, medium and low
impact. Going further, the publication also describes how to develop specialized sets of controls,
also known as control overlays, that can be tailored for unique, or specific types of
missions/business functions and technologies. The NIST 800-53 security controls address
privacy and security from a functionality perspective (the strength of security functions and
mechanisms provided) and an assurance perspective (the measures of confidence in the
implemented security capability). Addressing both security functionality and security assurance
ensures that information technology products and the information systems built from those
products using sound systems and security engineering principles are sufficiently trustworthy.

2.2 Organization-Specific Requirements

Organization-specific security requirements define the policies, regulations and guidance that an
organization must follow to ensure the security posture of the organization. Examples include
banning social media apps from installation on the organization’s mobile devices and restricting
installation of apps developed by specific vendors.

To help develop organization-specific security requirements, it is helpful to identify non-
vulnerability-related factors that can impact the security posture of mobile apps. Such factors can
be derived by considering the criteria as shown in Table 2.

Table 2 - Organization-specific security criteria.

Criterion Description

Policies The security, privacy and acceptable use policies; social media guidelines; and
regulations applicable to the organization.

Provenance Identity of the developer, developer’s organization, developer’s reputation,
consumer reviews, etc.

Data Sensitivity The sensitivity of data collected, stored, or transmitted by the app.
App Criticality The level of importance of the app relative to the organization’s business.
Target Users The app’s intended set of users from the organization.

Target Hardware The intended hardware platform on which the app will be deployed.

5 https://github.com/mitre/vulnerable-mobile-apps

https://github.com/mitre/vulnerable-mobile-apps

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Target Operating
Platform

The operating system, operating system version/Software Development Kit
(SDK), and configuration on which the app will be deployed.

Target
Environment

The intended operational environment of the app (e.g., general public use vs.
sensitive military environment).

Digital Signature Digital signatures applied to the app binaries, libraries, or packages.

App
Documentation

User Guide

When available, the app’s user guide assists testing by specifying
the expected functionality and expected behaviors. This is simply
a statement from the developer describing what they claim their
app does and how it does it.

Test Plans

Reviewing the developer’s test plans may help focus app vetting
by identifying any areas that have not been tested or were tested
inadequately. A developer could opt to submit a test oracle in
certain situations to demonstrate its internal test effort.

Test Results

Code review results and other testing results will indicate which
security standards were followed. For example, if an app threat
model was created, this standard should be submitted. It will list
weaknesses that were identified and should have been
addressed during app design and coding.

Service-
Level
Agreement

If an app was developed for an organization by a third-party, a
Service-Level Agreement (SLA) may have been included as part
of the vendor contract. This contract should require the app to be
compatible with the organization’s security policy.

Some information can be gleaned from app documentation in certain cases, but even if
documentation does exist it might lack technical clarity and/or use jargon specific to the circle of
users who would normally purchase the app. Since the documentation for different apps will be
structured in different ways, it may also be time-consuming to find this information for
evaluation. Therefore, a standardized questionnaire might be appropriate for determining the
software’s purpose and assessing an app developer’s efforts to address security weaknesses.
Such questionnaires aim to identify software quality issues and security weaknesses by helping
developers address questions from end-users/adopters about their software development
processes. For example, developers can use the Department of Homeland Security (DHS)
Custom Software Questionnaire [11] to answer questions such as “Does your software validate
inputs from untrusted resources?” and “What threat assumptions were made when designing
protections for your software?” Another useful question, not included in the DHS questionnaire,
is: “Does your app access a network application programming interface (API)?” Note that such
questionnaires can be used only in certain circumstances such as when source code is available
and when developers can answer questions.

Known flaws in app design and coding may be reported in publicly accessible vulnerability
databases such as the U.S. National Vulnerability Database (NVD).6 Before conducting the full
vetting process for a publicly available app, analysts should check one or more vulnerability
databases to determine if there are known flaws in the corresponding version of the app. If one or
more serious flaws already have been discovered, this finding alone might be sufficient grounds
to reject the version of the app for organizational use, thus allowing the rest of the vetting

6 Vulnerability databases generally reference vulnerabilities by their Common Vulnerabilities and Exposures (CVE)
identifier. For more information about CVE, see [12].

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

process to be skipped. However, in most cases such flaws will not be known, and the full vetting
process will be needed. This necessity is because there are many forms of vulnerabilities other
than known flaws in app design and coding. Identifying these weaknesses necessitates first
defining the app security requirements, so that deviations from these requirements can be flagged
as weaknesses.

In some cases, an organization will have no defined organization-specific requirements. As a
result, analysts will evaluate the security posture of the app based solely on reports and risk
assessments from test tools.

Note that the satisfaction or violation of an organization-specific requirement is not based on the
presence or absence of a software vulnerability and thus cannot typically be determined by test
tools. Instead, the satisfaction or violation of organization-specific requirements must be
determined manually by an analyst.

2.3 Risk Management and Risk Tolerance

The NIST Risk Management Framework (RMF) represents a joint effort spearheaded by NIST,
the Department of Defense (DoD), and the Committee on National Security Systems (CNSS).
The RMF describes a process through which an organization establishes, maintains and
communicates a strategy to manage organization risk in relation to an information system [13].
The RMF is a seven-step process consisting of the following steps:

• Step 0: Prepare – identifying key individuals and their assigned roles within the
organization, as well as the identification, organization, and prioritization of required
resources

• Step 1: Categorize – identifying the security requirements associated with a system by
classifying the system according to legislation, policies, directives, regulations, standards,
and organizational mission/business/operational requirements

• Step 2: Select – determining the baseline set of security controls that match the
organization’s risk tolerance

• Step 3: Implement – implementing and documentation of selected controls
• Step 4: Assess – examining the implementation of the security controls with respect to

the organization’s requirements
• Step 5: Authorize – enabling the system to be used within the organization
• Step 6: Monitor – ongoing and/or reoccurring reassessment of the selected security

controls

Figure 2 describes the relationship between the steps of the RMF, as well as showing appropriate
supporting documentation for each step:

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Figure 2 - Risk Management Framework

A key activity in Step 0 involves identifying an organization’s risk tolerance [14]. Risk tolerance
is the level of risk, or degree of uncertainty, that is acceptable to an organization [15]. A defined
risk tolerance level identifies the degree to which an organization should be protected against
confidentiality, integrity or availability compromise.

Risk tolerance should take into account the following factors:

• Compliance with security regulations, recommendations and best practices;
• Privacy risks;
• Security threats;
• Data and asset value;
• Industry and competitive pressure; and
• Management preferences.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

3 App Vetting Process

An app vetting process is a sequence of activities performed by an organization to determine if a
mobile app conforms to the organization’s app security requirements7. If an app is found to
conform to the organization’s app security requirements, the app is typically accepted for
deployment on the organization’s devices. An overview of the app vetting process is shown in
Figure 3.

Figure 3 - App vetting process overview.

Although app vetting processes may vary among organizations, each instance of the process
should be repeatable, efficient and consistent. The process should also limit errors to the extent
possible (e.g., false-positive results). Typically, an app vetting process is performed manually or
by an app vetting system that manages and automates all or part of the app vetting activities [16].
As part of an app vetting system, one or more test tools may be used to analyze an app for the
existence of software vulnerabilities or malicious behavior consistent with malware.

As shown in Figure 1, organizations perform an app vetting process during the app acquisition
phase of a mobile application lifecycle; that is, when the app is received by the organization but
prior to the app’s deployment on the organization’s devices. The rationale for this approach
stems from the fact that while developers may perform their own software assurance processes
on an app, there is no guarantee the app will conform to an organization’s security requirements.
Furthermore, because testing of the app by the developer occurs outside the vetting process, an
organization must trust the work of these previously-performed assurance activities.
Organizations should not assume an app has been fully vetted or conforms to their security
requirements simply because it is available through an official app store.

7 An app vetting process also can be used to assess other issues including reliability, performance and accessibility, but is
primarily intended to assess security-related issues.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

It should be noted, when organizations have a close relationship with the app developer, the core
loop of app vettingrejectionvendor feedbackapp vetting shown in Figure 3 can be
accelerated if organizations are tightly embedded in an app developer’s testing infrastructure.
That is, organizations can leverage modern agile software development models [17] to better
meet their security requirements.

Performing an app vetting process prior to deployment on a mobile device affords certain
benefits including rigorous and comprehensive analysis that can leverage scalable computational
resources. Furthermore, since testing occurs before deployment, the vetting process is not limited
by timing constraints for remediating discovered threats. However, while this document focuses
on the vetting of mobile apps during the organization’s app acquisition phase, NIST recommends
organizations also perform security analysis during the deployment phase using, for example, an
endpoint solution on a mobile device.

An app vetting process comprises four sub-processes: app intake, app testing, app
approval/rejection, and results submission processes. These processes are shown in Figure 4.

Figure 4 - Four sub-processes of an app vetting process.

3.1 App Intake

The app intake process begins when an app is received for analysis. This process is typically
performed manually by an organization administrator or automatically by an app vetting system.
The app intake process has two primary inputs: the app under consideration (required) and
additional testing artifacts such as reports from previous app vetting results (optional).

After receiving an app, the app may be registered by recording information about the app
including developer information, time and data of submission, and any other relevant
information needed for the app vetting process. After registration, an app may also be
preprocessed. Preprocessing typically involves decoding or decompiling the app to extract
required meta-data (e.g., app name, version number) and to confirm that the app can be properly

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

decoded or decompiled since test tools may need to perform this operation prior to performing
their analyses.

In addition to the app itself, the app developer may optionally provide software assurance
artifacts including previous security analysis reports. It should be noted that organizations
accepting these artifacts must accept the validity and integrity of app quality statements made by
the artifacts at the word of the app developer.

3.2 App Testing

The app testing process begins after an app has been registered and preprocessed and is
forwarded to one or more test tools. A test tool is a software tool or service that tests an app for
the presence of software vulnerabilities8. Such testing will involve the use of different analysis
methodologies (e.g., static analysis) and may be performed manually or automatically. Note that
the tests performed by a test tool may identify software vulnerabilities that are common across
different apps and will often satisfy general app security requirements (such as those specified by
NIAP).

After testing an app, a test tool will generate a report that identifies any detected software
vulnerabilities or potentially harmful behaviors. Additionally, the report typically will include a
score that estimates the likelihood that a detected vulnerability or behavior will be exploited and
the impact the detected vulnerability may have on the app or its related device or network. Note
that a test tool may generate a report that conforms to an existing standard such as NIAP. Further
note that some test tools will be able to detect violations of general app security requirements but
not violations of organization-specific policies, regulations, etc.

Figure 5 shows the workflow for a typical test tool. When an app is received by a test tool, it is
typically saved as a file on the tool vendor’s server. If the test tool is static (i.e., the app’s code is
analyzed), the app is typically decoded, decompiled or decrypted from its binary executable form
to an intermediate form that can be analyzed.9 If the test tool is dynamic (i.e., the run-time
behavior of the app is analyzed), the app is typically installed and executed on a device or
emulator where the behavior of the app can be analyzed. After the tool analyzes the app, it
generates a vulnerability report and risk assessment and submits this report to the app vetting
system.

8 Section 4 describes techniques and approaches used by app vetting tools.

9 Typically, decoded or decompiled code does not result in source code, but rather an intermediate code that can be analyzed.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Figure 5 - Test tool workflow.

3.3 App Approval/Rejection

The app approval/rejection process begins after a vulnerability and risk report is generated by a
test tool and made available to one or more security analysts. A security analyst (or analyst)
inspects vulnerability reports and risk assessments from one or more test tools to ensure that an
app meets all general app security requirements. An analyst will also evaluate organization-
specific app security requirements to determine if an app violates any security policies or
regulations. After evaluating all general and organization-specific app security requirements, an
analyst will collate this information into a report that specifies a recommendation for approving
or rejecting the app for deployment on the organization’s mobile devices.

The recommendation report from an analyst is then made available to an authorizing official,
who is a senior official of the organization responsible for determining which apps will be
deployed on the organization’s mobile devices. An authorizing official decides the approval or
rejection of an app using the recommendations provided by the analysts and considers other
organization-specific (non-security-related) criteria including cost, need, etc. The analyst may
add potential mitigating controls for some findings such as the use of a per-app Virtual Private
Network (VPN) to protect data in transit. When making the app determination, the authorizing
official considers these mitigations as well the sensitivity of data generated or accessed by the
app, the type of users and how the app will be used, who owns and manages the device and
whether the app will access back-end systems or data (see Step 1of the Risk Management
Framework [13]). These analyst reports describe the app’s security posture as well as possibly
other non-security-related requirements. The organization’s official approval or rejection is
specified in a final approval/rejection report. Figure 6 shows the app approval/rejection process.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Figure 6 - App approval/rejection process.

3.4 Results Submission

The results submission process begins after the final app approval/rejection report is finalized by
the authorizing official and artifacts are prepared for submission to the requesting source. These
artifacts may include the final approval/rejection report, test tool reports and possibly a digitally
signed version of the app that indicates the app has completed the app vetting process. The use of
a digital signature provides source authentication and integrity protection, attesting that the
version of the analyzed app is the same as the version that was initially submitted and was not
deliberately modified.

3.5 App Re-Vetting

The threat landscape for mobile apps is a constantly moving target. As time progresses, new
vulnerabilities are discovered. Likewise, the tools used to identify them attempt to keep pace. As
such, vulnerabilities can be discovered in an app at any point of an app’s lifecycle, even post
deployment. Furthermore, the current paradigm of mobile app development allows for apps to
receive multiple updates and patches that add functionality, provide bug fixes, and patch
vulnerabilities. From the perspective of a security analyst, these updates can force the evaluation
of updated apps to be treated as wholly new pieces of software. Depending on the risk tolerance
of an organization, this can make the re-vetting of mobile apps critical for certain apps.
Organizations will need to establish protocols for what conditions trigger app re-vetting. A

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

complete analysis of these triggers is out of scope for this document. However, organizations
should consider the following when establishing their re-vetting policies:

• Depending on the risk tolerance of an organization, applications that are not receiving
regular updates can be re-vetting periodically (e.g. quarterly, biannually, annually) to
benefit from improved analysis tools and techniques.

• Organizations can leverage business relationships with app developers who purpose build
applications for their use to understand the degree to which app updates may affect an app’s
risk profile.

• If allowed/enforced by organization policy, apps originating from commercial app stores
can receive updates automatically. This can occur either by allowing devices to pull app
updates directly from their respective app store or by having Mobile Application
Management (MAM)10 software push updated apps to enrolled devices. These actions can
dramatically alter the risk profile of an organization at scale.

Ideally, an organization would be able to track and analyze all apps after an update prior to
allowing installation; however, this is resource intensive and introduces delay for users. Some app
security vendors provide ‘continuous mobile app vetting’ of an organization’s managed apps
through automated tracking of installed apps and security analysis of updates. While this practice
doesn’t stop app updates that are pushed to a device, it does reduce the window of exposure for a
potentially vulnerable updated app.

10 See Section 5.2 for an overview of MAM technology.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

4 App Testing and Vulnerability Classifiers

During the app testing process, test tools are used to test for the existence of app vulnerabilities
and malicious behavior. Often, such tools are based on standards such as NIAP and thus, may be
used to used determine the satisfaction of general app security requirements. This section covers
some of the strategies and approaches used by test tools and services to analyze mobile apps for
vulnerabilities. It also describes various classifiers and quantifiers used to describe
vulnerabilities.

4.1 Testing Approaches

Test tools employ several different analysis techniques including correctness testing, analysis of
source code or binary code, use of static or dynamic analysis, and manual or automatic app
testing.

4.1.1 Correctness Testing

One approach for testing an app is software correctness testing [18]. Software correctness testing
is the process of executing a program to detect errors. Although the objective of software
correctness testing is improving quality assurance as well as verifying and validating described
functionality or estimating reliability, it also can help reveal potential security vulnerabilities that
often can have a negative effect on the quality, functionality and reliability of the software. For
example, software that crashes or exhibits unexpected behavior is often indicative of a security
flaw. A prime advantage of software correctness testing is that it is traditionally based on
specifications of the software to be tested. These specifications can be transformed into
requirements that specify how the software is expected to behave while undergoing testing. This
is distinguished from security assessment approaches that often require the tester to derive
requirements themselves; often such requirements are largely based on security requirements that
are common across many different software artifacts and may not test for vulnerabilities that are
unique to the software under test. Nonetheless, because of the tight coupling between security
and quality, and functionality and reliability, it is recommended that software correctness testing
be performed when possible.

4.1.2 Source and Binary Code Testing

A major factor in performing app testing is whether source code is available. Typically, apps
downloaded from an app store do not come with access to source code. When source code is
available, such as in the case of an open-source app, a variety of tools can be used to analyze it.
The goals of a source code review are to find vulnerabilities in the source code and to verify the
results of test tools. Even with automated aids, the analysis is labor-intensive. Benefits to using
automated static analysis tools include introducing consistency between different reviews and
making possible reviews of large codebases. Reviewers should generally use automated static
analysis tools whether they are conducting an automated or a manual review and they should
express their findings in terms of Common Weakness Enumeration (CWE) identifiers or some
other widely accepted nomenclature. Performing a secure code review requires software
development and domain-specific knowledge in the area of app security. Organizations should
ensure the individuals performing source code reviews have the required skills and expertise.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Organizations that intend to develop apps in-house also should refer to guidance on secure
programming techniques and software quality assurance processes to appropriately address the
entire software development lifecycle [19] [20].

When an app’s source code is not available, its binary code can be analyzed instead. In the
context of apps, the term “binary code” can refer to either byte-code or machine code. For
example, Android apps are compiled to byte code that is executed on a virtual machine, similar
to the Java Virtual Machine (JVM), but they can also come with custom libraries that are
provided in the form of machine code, i.e., code executed directly on a mobile device’s CPU.
Android binary apps include byte-code that can be analyzed without hardware support using
emulated and virtual environments.

4.1.3 Static and Dynamic Testing

Analysis tools are often characterized as either static or dynamic.11 Static analysis examines the
app source code and binary code and attempts to reason all possible behaviors that might arise at
runtime. It provides a level of assurance that analysis results accurately describe the program’s
behavior regardless of the input or execution environment. Dynamic analysis operates by
executing a program using a set of input use-cases and analyzing the program’s runtime
behavior. In some cases, the enumeration of input test cases is large, resulting in lengthy
processing times. However, methods such as combinatorial testing can reduce the number of
dynamic input test case combinations, reducing the amount of time needed to derive analysis
results [22]. However, dynamic analysis is unlikely to provide 100 percent code coverage [23].
Organizations should consider the technical tradeoff differences between what static and
dynamic tools offer and balance their usage given the organization’s software assurance goals.

Static analysis requires that binary code be reverse engineered when source code is not available,
which is relatively easy for byte code12 but can be difficult for machine code. Many commercial
static analysis tools already support bytecode as do a number of open-source and academic
tools.13 For machine code, it is especially hard to track the flow of control across many functions
and to track data flow through variables, since most variables are stored in anonymous memory
locations that can be accessed in different ways. The most common way to reverse engineer
machine code is to use a disassembler or a decompiler that attempts to recover the original
source code. These techniques are especially useful if the purpose of reverse engineering is to
allow humans to examine the code because the outputs are in a form that can be understood by
humans with appropriate skills. However, even the best disassemblers make mistakes [25]. If the
code is being reverse engineered for static analysis, it is preferable to disassemble the machine
code directly to a form that the static analyzer understands rather than creating human-readable
code as an intermediate byproduct. A static analysis tool aimed at machine code is likely to
automate this process.

11 For mobile devices, there are analysis tools that label themselves as performing behavioral testing. Behavioral testing (also
known as behavioral analysis) is a form of static and dynamic testing that attempts to detect malicious or risky behavior such
as the oft-cited example of a flashlight app that accesses a contact list [21]. This publication assumes that any mention of
static or dynamic testing also includes behavioral testing as a subset of its capabilities.

12 The ASM framework [24] is a commonly used framework for byte code analysis.
13 Such as [24–27].

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

In contrast to static analysis, the most important dynamic analysis requirement is to see the
workings of the code as it is being executed. There are two primary ways to obtain this
information. First, an executing app can be connected to a remote debugger. Second, the code
can be run on an emulator that has built-in debugging capabilities. Running the code on the
intended mobile device allows the test tool to select the exact characteristics of the device and
can provide a more accurate view about how the app will be behave. On the other hand, an
emulator provides more control, especially when the emulator is open-source and can be
modified by the evaluator to capture whatever information is needed. Although emulators can
simulate different devices, they do not simulate all of them and therefore the simulation may not
be completely accurate. Note that malware increasingly detects the use of emulators as a testing
platform and changes its behavior accordingly to avoid detection. Therefore, it is recommended
that test tools use a combination of emulated and physical mobile devices to avoid false-
negatives from malware that employs anti-detection techniques.

Useful information can be gleaned by observing an app’s behavior even without knowing the
purposes of individual functions. For example, a test tool can observe how the app interacts with
its external resources, recording the services it requests from the operating system and the
permissions it exercises. Although many of the device capabilities used by an app may be
inferred by a test tool (e.g., access to a device’s camera will be required of a camera app), an app
may be permitted access to additional device capabilities that are beyond the scope of its
described functionality (e.g., a camera app accessing the device’s network). Moreover, if the
behavior of the app is observed for specific inputs, the evaluator can ask whether the capabilities
being exercised make sense in the context of those particular inputs. For example, a calendar app
may legitimately have permission to send calendar data across the network to sync across
multiple devices, but if the user merely has asked for a list of the day’s appointments and the app
sends data that is not part of the handshaking process needed to retrieve data, the test tool might
investigate what data is being sent and for what purpose.

4.2 Vulnerability Classifiers and Quantifiers

It is advantageous to use a common language to describe vulnerabilities in mobile apps. The
following sections describe some of the more commonly used classifiers and quantifiers used to
identify, describe, and measure the severity of vulnerabilities.

4.2.1 Common Weakness Enumeration (CWE)

CWE is a software weakness classification system maintained by the MITRE Corporation [28].
CWE serves as a common language of sorts for software weakness categories. Different
programming languages can create language-specific versions of the same software error. CWE
ensures terminology exists to refer to the same error across disparate languages and offers
mitigation strategies for each. The CWE is used worldwide in industry, government and
academia.

4.2.2 Common Vulnerabilities and Exposures (CVE)

The CVE dictionary is a naming scheme for software vulnerabilities [12] that also is hosted by
MITRE. When a vulnerability is identified, it can be reported to a CVE Numbering Authority,
which provides a unique, industrywide identifier for the vulnerability. CVEs are reported to the

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

NVD for scoring and description. The NVD is the U.S. government repository of standards-
based vulnerability management data and collects, analyzes and stores data describing specific
computer system vulnerabilities. Additionally, the NVD hosts databases of security checklists,
security-related software flaws, misconfigurations, product names, and impact metrics. NVD
extensively uses the CWE as well as the CVE to accomplish its mission.

4.2.3 Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System Version (CVSS) is a vulnerability scoring system
owned and maintained by the Forum of Incident Response and Security Teams (FIRST) [29].
The CVSS model attempts to ensure repeatable and accurate measurement, while enabling users
to view the underlying vulnerability characteristics used to generate numerical scores. This
common measurement system can be used by industries, organizations and governments that
require accurate and consistent vulnerability exploit and impact scores. The algorithm used to
calculate vulnerability scores is open to all and is derived principally by human analyst-provided
inputs for three metric categories: base, temporal and environmental. Common uses of CVSS are
calculating the severity and prioritization of vulnerability remediation activities. The NVD
provides vulnerability scores via the CVSS.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

5 App Vetting Considerations

This section describes additional criteria that organizations should consider when establishing
their app vetting processes.

5.1 Managed and Unmanaged Apps

Enterprise applications, or third-party applications deployed on enterprise devices (or personal
devices used for enterprise tasks), may be managed throughout the deployment lifecycle, from
initial deployment and configuration through removal of the app from a device. Administering
such managed applications can be performed using enterprise Mobile Application Management
(MAM) systems which are designed to enable enterprise control over mobile applications that
access enterprise services and/or data. Unmanaged (personal use) applications are applications
that are not administered by MAM (or similar) systems.

One benefit of managing only applications (as opposed to the entire device) is that MAM
systems do not require the user/owner to enroll the entire device under enterprise management,
nor must the owner accept installation of an enterprise profile on the device. MAM solutions can
enable an enterprise to integrate an in-house enterprise applications catalog with a mobile device
vendor’s App Store (e.g., Apple’s App Store, Google Play, or the Microsoft Store) to allow
mobile users to easily install an enterprise app. Enterprise system administrators may be able to
deploy apps or push out over-the-air app updates to mobile users; they may also be able to
restrict app functionalities without affecting the entire device, which may be preferred by Bring
Your Own Device (BYOD) users. Some Mobile Device Management (MDM) systems also
include MAM functionality, enabling fine grained control over different applications on a single
managed device. MDM and MAM features can be used to restrict flow of enterprise data
between managed and unmanaged applications.

An enterprise should consider the tradeoffs between managed and unmanaged apps when
designing its mobility solutions, requirements, and policies for managing mobile applications
(examples of such security requirements can be found in the DoD Chief Information Officer
memo on “Mobile Application Security Requirements” [30]). Tradeoffs may include the
administrative overhead and extra cost versus the security guarantees obtained by allowing only
managed apps on mobile devices that access enterprise networks and services.

5.2 App Whitelisting and App Blacklisting

Application whitelisting and blacklisting refers to allowing or disallowing the use of applications
based on a pre-specified list to protect against installation of malicious, vulnerable, or flawed
applications. NIST SP 800-53 Rev. 4 [31] defines these control enhancements under
configuration management (CM) control number CM-7, least functionality, as follows:

• Enhancement CM-7 (4) Least Functionality, Unauthorized Software‒Blacklisting is an
allow-all, deny-by-exception policy that prohibits the execution of unauthorized software
programs on a system. Blacklisting requires the organization to develop and maintain a
list of unauthorized software (apps)

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

• Enhancement CM-7 (5) Least Functionality, Unauthorized Software−Whitelisting is a
deny-all, permit-by-exception policy to allow the execution of only authorized software
programs on the system. This requires the organization to develop and maintain a list of
authorized software (apps)

Both whitelisting and blacklisting can be augmented and facilitated via MAM/MDM software.
For federal organizations it is important to note at the time of this document’s publication, 800-
53 Rev. 4 recommends blacklisting for systems in the moderate baseline allocation and
whitelisting for systems with high baseline allocation. Future revisions of 800-5314 may also
recommend blacklisting and whitelisting in both the moderate and high baseline allocations.

5.3 App Vetting Limitations

As with any software assurance process, there is no guarantee that even the most thorough
vetting process will uncover all potential vulnerabilities or malicious behavior. Organizations
should be made aware that although app security assessments generally improve the security
posture of the organization, the degree to which they do so may not be easily or immediately
ascertained. Organizations should also be made aware of what the vetting process does and does
not provide in terms of security.

Organizations should also be educated on the value of humans in security assessment processes
and ensure that their app vetting does not rely solely on automated tests. Security analysis is
primarily a human-driven process [19] [32]; automated tools by themselves cannot address many
of the contextual and nuanced interdependencies that underlie software security. The most
obvious reason for this is that fully understanding software behavior is one of the classic
impossible problems of computer science [33], and in fact current technology has not even
reached the limits of what is theoretically possible. Complex, multifaceted software architectures
cannot be fully analyzed by automated means.

Additionally, current software analysis tools do not inherently understand what software has to
do to behave in a secure manner in a particular context. For example, failure to encrypt data
transmitted to the cloud may not be a security issue if the transmission is tunneled through a
virtual private network (VPN). Even if the security requirements for an app have been correctly
predicted and are completely understood, there is no current technology for unambiguously
translating human-readable requirements into a form that can be understood by machines.

For these reasons, security analysis requires human analysts be in the loop, and by extension the
quality of the outcome depends, among other things, on the level of human effort and expertise
available for an evaluation. Analysts should be familiar with standard processes and best
practices for software security assessment [19] [34–36]. In order to be successful, a robust app
vetting process should use a toolbox approach where multiple assessment tools and processes, as
well as human interaction work together. Reliance on only a single tool, even with human
interaction, is a significant risk because of the inherent limitations of each tool.

14 https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/draft

https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/draft

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

5.4 Local and Remote Tools and Services

There are many tools and services dedicated to analyzing mobile apps [37] [38]. Depending on
the model employed by the tool/service provider, app analysis may occur in different physical
locations. For example, an analysis tool may be installed and run within the network of the
organization for whom the app is intended. Other vendors may host their test services offsite.
Offsite tools may reside on premise of the tool/service provider or may reside in a cloud
infrastructure. Each of these scenarios should be understood by an organization prior to
employing a vetting tool/service, especially in those cases where the app’s code base may
contain sensitive or classified information.

5.5 Automated Approval/Rejection

In some cases, the activities conducted by analysts to derive recommendations for approving or
rejecting an app can be automated, particularly if no organization-specific policies, regulation,
etc. are required. Here, an app vetting system used to support the specification of rules can be
configured to automatically approve or reject an app based on risk assessments from multiple
tools. For example, an app vetting system could be configured to automatically recommend an
app if all test tools deem the app as having “LOW” risk. Similarly, an app vetting system could
be configured to automatically enforce organization-specific requirements. For example, using
metadata extracted during the preprocessing of an app, an app vetting system could automatically
reject an app from a specific vendor.

5.6 Reciprocity

Reciprocity involves sharing results across app vetting teams to reduce re-work; it occurs when a
federal agency’s app vetting process leverages results from another agency that has previously
performed app vetting on the same app [39]. It enables the receiving agency to reuse the app
testing results when making their own risk determination on deployment of the app. To share the
security vetting results, the testing agency captures the results of app security testing against a
common set of security requirements (e.g., NIAP) in a standardized reciprocity report format,
with the intention to make the information available for use by other agencies.

Given the different potential uses any individual app may have and different mobile architectures
between different agencies, sharing risk decisions (approval/rejection) is not recommended. The
alternative is to make findings from tests conducted by one federal agency available to other
federal agencies, allowing agencies to make their own risk-based determinations without having
to repeat tests already conducted by other agencies. This sharing of an organization's findings for
an app can greatly reduce the duplication and cost of app vetting efforts for other organizations.
Information sharing within the software assurance community is vital and can help test tools
benefit from the collective efforts of security professionals around the world. The National
Vulnerability Database (NVD) [40] is the U.S. government repository of standards-based
vulnerability management data represented using the Security Content Automation Protocol
(SCAP) [41]. This data enables automation of vulnerability management, security measurement,
and compliance. The NVD includes databases of security checklists, security-related software
flaws, misconfigurations, product names, and impact metrics. SCAP is a suite of specifications
that standardize the format and nomenclature by which security software products communicate

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

software flaw and security configuration information. SCAP is a multipurpose protocol that
supports automated vulnerability checking, technical control compliance activities, and security
measurements. Goals for the development of SCAP include standardizing system security
management, promoting interoperability of security products, and fostering the use of standard
expressions of security content. The CWE [28] and Common Attack Pattern Enumeration and
Classification (CAPEC) [42] collections can provide a useful list of weaknesses and attack
approaches to drive a binary or live system penetration test. Classifying and expressing software
vulnerabilities is an ongoing and developing effort in the software assurance community, as is
how to prioritize among the various weaknesses that can be in an app so that an organization can
know that those that pose the most danger to the app, given its intended use/mission, are
addressed by the vetting activity given the difference in the effectiveness and coverage of the
various available tools and techniques.

5.7 Tool Report Analysis

One issue related to report and risk analysis stems from the difficulty in collating, normalizing
and interpreting different reports and risk assessments due to the wide variety of security-related
definitions, semantics, nomenclature and metrics used by different test tools. For example, one
test tool may classify the estimated risk for using an app as low, moderate, high or severe risk,
while another may classify the estimated risk as pass, warning or fail. While some standards
exist for expressing risk assessment15 and vulnerability reporting16 the current adoption of these
standards by test tools is low. To the extent possible, it is recommended that an organization use
test tools that leverage vulnerability reporting and risk assessment standards. If this approach is
not possible, it is recommended that the organization provide sufficient training to analysts on
the interpretation of reports and risk assessments generated by test tools.

5.8 Compliance versus Certification

For mobile application vetting, two terms are frequently used to demonstrate proof of successful
implementation of mobile app security requirements. For a mobile application that has been
developed to include security aimed at a particular requirement (e.g. National Information
Assurance Partnership – Requirements for Vetting Mobile Apps from the Protection Profile for
Application Software [7]) developers may choose to note that they are compliant or certified.
The difference depends on the organization’s need for compliance or certification.

Compliance for mobile application security means either self-attestation or attestation from an
unofficial third party that has validated the mobile app meets such security requirements. For
example an enterprise may choose to use their own internally developed mobile application
vetting process to validate the security and privacy of a mobile application. By going through
their own internal process they approve the mobile application for use in their organization or on

15 An example standard, the Common Vulnerability Scoring System CVSS, is discussed in Section 4.2.3.

16 Examples are described in Section 2.1.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

their organization’s mobile assets.

On the other hand, certification means successful validation from the authorized validator. For
example, for NIAP certification, a formal NIAP validation process must be followed.17 In this
case, vendors may choose an approved Common Criterial Testing Lab to conduct the product
evaluation against an applicable NIAP-approved Protection Profile. Following successful
completion of the validation process, a formal certification would be granted and listed on an
approved product list.

NIAP lists products on a product-compliant list [43] when a certification has been successfully
granted. This is an official list and requires NIAP’s official certification for use in federal
information systems. It should be noted that the certification requirements evaluated by NIAP
certification may not map directly into non-federal requirements. In the case of regulated
industries, such as the financial and health industries, it is important that organizations should
follow their respective compliance requirements as appropriate. This distinction may also extend
to state and local organizations as well.

5.9 Budget and Staffing

App software assurance activity costs should be included in project budgets and should not be an
afterthought. Such costs may be significant and can include licensing costs for test tools and
salaries for analysts, approvers, and administrators. Organizations that hire contractors to
develop apps should specify that app assessment costs be included as part of the app
development process. Note, however, that for apps developed in-house, attempting to implement
app vetting solely at the end of the development effort will lead to increased costs and
lengthened project timelines. It is strongly recommended to identify potential vulnerabilities or
weaknesses during the development process when they can still be addressed by the original
developers. Identifying and fixing errors during the development process is also significantly
cheaper than fixing errors once a product is released [44].

To provide an optimal app vetting process implementation, it is critical for the organization to
hire personnel with appropriate expertise. For example, organizations should hire analysts
experienced in software security and information assurance as well as administrators experienced
in mobile security.

17 https://www.niap-ccevs.org/Ref/Evals.cfm

https://www.niap-ccevs.org/Ref/Evals.cfm

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

6 App Vetting Systems

While an app vetting process may be performed manually, it is typically advantageous to
perform an app vetting process in a semi-or full-automated fashion using an app vetting system
(e.g., the DHS AppVet system [16]). An app vetting system is a system that manages and
automates an app vetting process and may be implemented as a web-based service and is
typically part of a larger app vetting ecosystem that comprises test tools/services, app stores,
EMMs, and users.

An app vetting system is used by a security analyst (often an enterprise system administrator) to
identify app security issues before an app is deployed to a user’s mobile device. After the system
analyzes the app, the security analyst considers the vetting results within the context of the
security posture of the larger enterprise environment and makes a security recommendation. An
authorizing official then decides whether to approve the use of the app, given the user’s role, the
mission need addressed by the app, and the security recommendation of the security analyst.
Figure 7 depicts a reference architecture for an app vetting system.

Figure 7 - Example app vetting system architecture.

At the center of the diagram is the app vetting system. This system is the central hub to the larger
app vetting ecosystem. The app vetting system coordinates requests and responses among all the

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

other system components, the security analyst and the authorizing official. A crucial component
and function of the vetting system is that it serves as the long-term memory and decision
repository for the app vetting process. In the diagram, this is represented by the database symbol
connected to the app vetting system. This database should store testing reports as well as the
inputs of the security analyst and authorizing official for posterity.

An enterprise mobile device seeking to use an app may do so in several ways. The enterprise
may host a specific app store that only contains vetted applications. Alternately, the device may
have policy rules enforced by an enterprise mobility management (EMM) system that regulates
what apps may be installed from any source. These systems are represented by the box in the
upper left corner of the diagram. Information about the requested app (usually app binary code,
but sometimes app source code for apps developed “in house”) is sent from this system to the
app vetting coordination hub to begin the app vetting process

There are many different strategies for examining an app and evaluating its security
characteristics. No single algorithm, tool or product offers a complete picture of an app’s
security characteristics. The reference architecture shows how an organization might take input
from multiple (three are shown at right in the figure) test tools to better inform the security
analyst. After the request for app vetting is sent from the App Store or EMM system to the
vetting hub, the hub contacts each of the three test tools in the diagram. Each tool receives a
copy of the information provided about the app (e.g., binary or source code), performs its
independent assessment and returns a vulnerability report and some form of risk score.

The vetting hub then gathers the results reported by the various test tools, potentially
summarizing those results and offering them to the security analyst in a dashboard view. After
reviewing the results of the various tests, the security analyst submits a recommendation, which
is recorded by the vetting hub. The authorizing official can then consider the security analyst’s
recommendation together with mission needs to approve or reject the use of the app by the
mobile user. If the app is approved for installation, the vetting hub can provide digitally-signed
artifacts, including digitally-signed apps, back to the App Store or EMM system to enable the
app deployment.

While the figure depicts a locally hosted app vetting system (i.e., the app vetting hub, test tools,
database and App Store are shown as residing on hosts), many app vetting systems may be
hosted in a cloud environment. In a cloud-hosted scenario, the boxes shown in the diagram
would be hosted by a private or public cloud service provider and much of the functionality
would be virtualized. The security analyst and authorizing official need not know how the
vetting system is implemented. In either type of deployment, users in these roles would interact
with the system through a dashboard providing the appropriate services and views. Both types of
deployment enable modular extension of the app vetting system to accommodate new vetting test
tools as these become available.

An app vetting system uses application programming interfaces (APIs), network protocols and
schemas to integrate with distributed third-party test tools as well as clients including app stores.
An app vetting system may also include a user interface (UI) dashboard that allows users such as
administrators, analysts and authorizing officials to view reports and risk assessments, provide
recommendations and approve or reject apps. Figure 7 shows an example of how an app vetting

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

system utilizing APIs and a UI can be used to support integration with all components and users
in an app vetting ecosystem.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Appendix A—Threats to Mobile Applications

Like all software, mobile apps often contain vulnerabilities (introduced by errors in design or
implementation or by malicious intent) that can expose a user, a mobile device and its data or
enterprise services or its data to attacks. There are a number of common classes of mobile
software errors that can create such vulnerabilities, including errors in the use or implementation
of cryptographic primitives and other security services, risky interactions among software
components on a mobile device, and risky interactions between the mobile device and systems
within its environment. Common errors in using security services or cryptography include weak
authentication of users or systems, incorrect implementation of cryptographic primitives,
choosing outdated or broken cryptographic algorithms or parameters, or failure to encrypt app
traffic between a mobile device and web- or enterprise-hosted services. Risky interactions among
software components on a mobile device include the use of data from untrustworthy sources as
input to security-sensitive operations, use of vulnerable third-party-provided software libraries,
and app code that leaks sensitive data outside of the app (e.g., through logs of app activity). Also,
mobile systems may be exposed to malicious code or injections of data through communication
with a compromised web or enterprise service.

Vetting mobile apps before deploying them onto a user’s mobile device can enable an enterprise
system administrator to detect software or configuration flaws that may create vulnerabilities or
violate enterprise security or privacy policies. Mobile app vetting systems typically include
automated testing and analysis tools and may interact with externally hosted vetting services.
This section will discuss different classes of malware that affect mobile devices. Mobile app
vetting systems are designed to look for evidence of such malware.

It is important to recognize the constantly shifting attack landscape while considering the
following classes of mobile application threats. This list is not intended to be exhaustive, nor
should it be taken a conclusive and/or prescriptive rubric to evaluate the strength of a vetting
solution, legislation, or security posture. Rather, it is intended to be an illustrative list of
currently observed threats.

A.1 Ransomware

Ransomware is malware that encrypts data and holds the decryption key hostage for payment
[45]. In the mobile environment, new ransomware [46] has been observed that not only encrypts
the data of users, but also locks them out of their devices by changing the lock screen PIN. Such
ransomware has been spreading as a fake software updates via compromised websites.

A.2 Spyware

Spyware [47] is malware designed to gather information about an individual or organization
without their knowledge and send that information to the attacker's systems. While spyware
often has been used to track internet user’s movements on the Web, it may also be used to
capture short messing service (SMS) messages, photos, phone call logs or sensitive data such as
user logins or banking information. Most spyware is installed without a device user’s (or the
organization’s) knowledge, often using deceptive tactics that trick the user into installation.
Nation-state actors also have used spyware to gather information from mobile users [48].

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

A.3 Adware

Adware is malware that is embedded within or loaded as part of advertisements and is one of the
most common threats to mobile devices worldwide. Mobile ads are instrumental to the current
mobile ecosystem because they provide a source of funding for software developers that offer
free mobile apps. Ads may be served from third-party websites and may contain that often is
used to capture personal information without a user’s permission or knowledge. Recent reports
[49] have shown some low-end mobile devices were shipped from the manufacturer with adware
pre-installed. Users with affected phones experience popup ads and other annoying problems and
because the adware is installed at the firmware level it is incredibly difficult to remove.

A.4 Rooting

 “Rooting” is the process of enabling users to gain privileged (root) access on the device’s
operating system (OS)18. Rooting is often performed to overcome restrictions that carriers and
device manufacturers enforce on some mobile devices. Rooting enables alteration or replacement
of a system’s applications and settings, execution of specialized apps requiring administrative
privileges, or performance of carrier-prohibited operations. There are two types of rooting [50]

• “Soft rooting” typically is performed via a third-party application that uses a security
vulnerability called a “root exploit”.

• “Hard rooting” requires flashing binary executables and provides super-user privileges.

On some mobile platforms (e.g., Android), techniques beyond rooting exist which unlock the
device bootloader to facilitate the complete removal and replacement of the device's OS, e.g., to
install a newer or modified version of it.

A.5 Trojan Horse

A Trojan horse (or a Trojan) is malware that poses as legitimate and often familiar software,
thereby tricking a user into running it. For traditional computing platforms, attackers typically
hide malware using file names with well-known extensions, such as .doc or .jpg. Users open the
Trojan file and the malware begins to execute. In the mobile environment, mobile banking
Trojans are a worrisome new trend [51] that describes malware installed after victims respond to
a phishing message that appears to be from their bank. The malware gathers financial
information, login credentials and sometimes credit card information.

A.6 Infostealer

An infostealer is a Trojan horse that gathers information, including confidential data, from an
infected system and sends it to an attacker’s system. The most common types of information stolen
include user credentials (e.g., login user name and password) or financial data. Infostealers
commonly have affected traditional computing platforms but have more recently begun impacting

18 Note, the term jailbreaking is commonly used in industry to describe rooting an iOS device.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

mobile platforms. Recent reports [52] describe malware that poses as a Google Chrome update for
Android devices and disables antivirus applications. The malware can harvest user banking
information, call logs, SMS data and browser history, which are sent to remote servers.

A.7 Hostile Downloader

A Hostile Downloader is malware whose primary purpose is to download content, usually from
the Internet. Downloaded content may often include other malicious apps (which often are
launched by the downloader), configurations or commands for the downloader or for other
software installed on the system, and additional software components to facilitate an attack. For
example, in 2017, attackers used a malicious PowerPoint presentation embedded in a spam email
to launch a banking Trojan [53]. Opening the PowerPoint file and just hovering the mouse
pointer over a displayed hyperlink—no clicking required–caused PowerPoint to execute a
malicious script that downloaded a Trojan horse.

A.8 SMS Fraud

Scams once perpetrated via email now are perpetrated via SMS messaging. Fraudulent business
transactions, phishing (called “smishing” when delivered via SMS messages), phony requests for
donations, fees to claim lottery prizes and cons originating from dating sites are all SMS scams
[54]. Users must be wary of unsolicited texts from strangers or unknown numbers, especially
requests for money or personal/sensitive information.

A.9 Call Fraud

Call fraud refers to several malicious and illegal activities. For example, some users of cellular
services may receive calls that appear to originate from domestic area codes but are actually
associated with international pay-per-call services. These calls often disconnect after one ring.
When the target returns the call he or she is connected to an international line that charges a fee
for connecting in addition to significant per-minute fees if the victim stays on the line. These
charges usually show up on the victim’s cellular bill as premium services.

A.10 Man in the Middle Attack (MITM)

A Man in the Middle attack (MiTM) is defined simply as any method of intercepting
communication between two systems [55]. Mobile applications are specifically vulnerable to
these types of attacks because the misuse/misconfiguration of the primary defense against it:
Transport Layer Security (TLS). The acceptance of untrusted SSL certificates, permitting the use
of weaker TLS modes, and vulnerabilities in the trust model itself can leave a mobile application
vulnerable to MiTM attacks leading to potential information leaks and privacy violations.

A.11 Toll Fraud

Toll fraud occurs when a mobile device user makes a call—often using premium services—that
is charged to a third-party that did not authorize the call. A common attack involves a hacker
leasing phone numbers from a web-based service that charges callers for each call and provides a
percentage of the profit to the hacker. To make a lucrative fraud-based business, the hacker

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

breaches an independent business’s Voice Over IP (VoIP) network to forward calls to the
hacker’s premium service numbers. The independent company is billed for the calls by the web-
based service and the hacker gets a percentage of the profits. To resist these type of attacks,
organizations must implement strong network security protections.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Appendix B—Android App Vulnerability Types

This appendix identifies vulnerabilities specific to apps running on Android mobile devices. The
scope of this appendix includes app vulnerabilities for Android-based mobile devices running
apps written in Java. The scope does not include vulnerabilities in the mobile platform hardware
and communications networks. Although some of the vulnerabilities described below are
common across mobile device environments, this appendix focuses only on Android-specific
vulnerabilities.

The vulnerabilities in this appendix are broken into three hierarchical levels, A, B, and C. The A
level is referred to as the vulnerability class and is the broadest description for the vulnerabilities
specified under that level. The B level is referred to as the sub-class and attempts to narrow down
the scope of the vulnerability class into a smaller, common group of vulnerabilities. The C level
specifies the individual vulnerabilities that have been identified. The purpose of this hierarchy is
to guide the reader to finding the type of vulnerability they are looking for as quickly as possible.

Table 3 shows the A level general categories of Android app vulnerabilities.

Table 3 - Android Vulnerabilities, A Level.

Type Description Negative Consequence
Incorrect
Permissions

Permissions allow accessing controlled
functionality such as the camera or Global
Positioning System (GPS) and are
requested in the program. Permissions can
be implicitly granted to an app without the
user’s consent.

An app with too many permissions may perform
unintended functions outside the scope of the
app’s intended functionality. Additionally, the
permissions are vulnerable to hijacking by
another app. If too few permissions are
granted, the app will not be able to perform the
functions required.

Exposed
Communications

Internal communications protocols are the
means by which an app passes messages
internally within the device, either to itself
or to other apps. External communications
allow information to leave the device.

Exposed internal communications allow apps to
gather unintended information and inject new
information. Exposed external communication
(data network, Wi-Fi, Bluetooth, Near-Field
Communication (NFC), etc.) leave information
open to disclosure or man-in-the-middle
attacks.

Exposed Data
Storage

Files created by apps on Android can be
stored in Internal Storage, External
Storage, or the Keystore. Files stored in
External Storage may be read and
modified by all other apps with the External
Storage permission.

Sensitive data can be exfiltrated or tampered by
other apps, or unintentionally transferred to
another system in a backup. It should be noted,
there are cases when apps require this
behavior to function as intended.

Potentially
Dangerous
Functionality

Controlled functionality that accesses
system-critical resources or the user’s
personal information. This functionality can
be invoked through API calls or hard coded
into an app.

Unintended functions could be performed
outside the scope of the app’s functionality.

App Collusion Two or more apps passing information to
each other in order to increase the
capabilities of one or both apps beyond
their declared scope.

Collusion can allow apps to obtain data that
was unintended such as a gaming app
obtaining access to the user’s contact list.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Type Description Negative Consequence
Obfuscation Functionality or control flows that are

hidden or obscured from the user. For the
purposes of this appendix, obfuscation was
defined as three criteria: external library
calls, reflection, and native code usage.

1. External libraries can contain unexpected
and/or malicious functionality.
2. Reflective calls can obscure the control flow
of an app and/or subvert permissions within an
app.
3. Native code (code written in languages other
than Java in Android) can perform unexpected
and/or malicious functionality.

Excessive Power
Consumption

Excessive functions or unintended apps
running on a device which intentionally or
unintentionally drain the battery.

Shortened battery life could affect the ability to
perform mission-critical functions.

Traditional
Software
Vulnerabilities

All vulnerabilities associated with traditional
Java code including: Authentication and
Access Control, Buffer Handling, Control
Flow Management, Encryption and
Randomness, Error Handling, File
Handling, Information Leaks, Initialization
and Shutdown, Injection, Malicious Logic,
Number Handling, and Pointer and
Reference Handling.

Common consequences include unexpected
outputs, resource exhaustion, denial of service,
etc.

Table 4 shows the hierarchy of Android app vulnerabilities from A level to C level.

Table 4 - Android Vulnerabilities by level.

Level A Level B Level C
Incorrect Permissions Over Granting Over Granting in Code

Over Granting in API
Under Granting Under Granting in Code

Under Granting in API
Developer Created Permissions Developer Created in Code

Developer Created in API
Implicit Permission Granted through API

Granted through Other Permissions
Granted through Grandfathering

Exposed Communications External Communications Bluetooth
GPS
Network/Data Communications
NFC Access

Internal Communications Unprotected Intents
Unprotected Activities
Unprotected Services
Unprotected Content Providers
Unprotected Broadcast Receivers
Debug Flag

Exposed Data Storage Over Exposing Data Over exposing sensitive data in external
storage
Over exposing data as world readable in

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Level A Level B Level C
internal storage

Potentially Dangerous
Functionality

Direct Addressing Memory Access
Internet Access

Potentially Dangerous API Cost Sensitive APIs
Personal Information APIs
Device Management APIs

Privilege Escalation Altering File Privileges
Accessing Super User/Root

App Collusion Content Provider/Intents Unprotected Content Providers
Permission Protected Content Providers
Pending Intents

Broadcast Receiver Broadcast Receiver for Critical Messages
Data Creation/Changes/Deletion Creation/Changes/Deletion to File

Resources
Creation/Changes/Deletion to Database
Resources

Number of Services Excessive Checks for Service State
Obfuscation Library Calls Use of Potentially Dangerous Libraries

Potentially Malicious Libraries Packaged but
Not Used

Native Code Detection
Reflection
Packed Code

Excessive Power
Consumption

CPU Usage
I/O

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Appendix C—iOS App Vulnerability Types

This appendix identifies and defines the various types of vulnerabilities that are specific to apps
running on mobile devices utilizing the Apple iOS operating system. The scope does not include
vulnerabilities in the mobile platform hardware and communications networks. Although some
of the vulnerabilities described below are common across mobile device environments, this
appendix focuses on iOS-specific vulnerabilities.

The vulnerabilities in this appendix are broken into three hierarchical levels, A, B, and C. The A
level is referred to as the vulnerability class and is the broadest description for the vulnerabilities
specified under that level. The B level is referred to as the sub-class and attempts to narrow down
the scope of the vulnerability class into a smaller, common group of vulnerabilities. The C level
specifies the individual vulnerabilities that have been identified. The purpose of this hierarchy is
to guide the reader to finding the type of vulnerability they are looking for as quickly as possible.

Table 5 shows the A level general categories of iOS app vulnerabilities.

Table 5 - iOS Vulnerability Descriptions, A Level.

Type Description Negative Consequence
Incorrect
Permissions

Permissions allow accessing controlled
functionality such as the camera or GPS
and are requested in the program.
Permissions can be implicitly granted to
an app without the user’s consent.

An app with too many permissions may
perform unintended functions outside the
scope of the app’s intended functionality.
Additionally, the permissions are vulnerable to
hijacking by another app. If too few
permissions are granted, the app will not be
able to perform the functions required.

Exposed
Communication-
Internal and
External

Internal communications protocols allow
apps to process information and
communicate with other apps. External
communications allow information to leave
the device.

Exposed internal communications allow apps
to gather unintended information and inject
new information. Exposed external
communication (data network, Wi-Fi,
Bluetooth, etc.) leave information open to
disclosure or man-in-the-middle attacks.

Potentially
Dangerous
Functionality

Controlled functionality that accesses
system-critical resources or the user’s
personal information. This functionality
can be invoked through API calls or hard
coded into an app.

Unintended functions could be performed
outside the scope of the app’s functionality.

App Collusion Two or more apps passing information to
each other in order to increase the
capabilities of one or both apps beyond
their declared scope.

Collusion can allow apps to obtain data that
was unintended such as a gaming app
obtaining access to the user’s contact list.

Obfuscation Functionality or control flow that is hidden
or obscured from the user. For the
purposes of this appendix, obfuscation
was defined as three criteria: external
library calls, reflection, and packed code.

1. External libraries can contain unexpected
and/or malicious functionality.
2. Reflective calls can obscure the control flow
of an app and/or subvert permissions within an
app.
3. Packed code prevents code reverse
engineering and can be used to hide malware.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Type Description Negative Consequence
Excessive Power
Consumption

Excessive functions or unintended apps
running on a device which intentionally or
unintentionally drain the battery.

Shortened battery life could affect the ability to
perform mission-critical functions.

Traditional
Software
Vulnerabilities

All vulnerabilities associated with
Objective C and others. This includes:
Authentication and Access Control, Buffer
Handling, Control Flow Management,
Encryption and Randomness, Error
Handling, File Handling, Information
Leaks, Initialization and Shutdown,
Injection, Malicious Logic, Number
Handling and Pointer and Reference
Handling.

Common consequences include unexpected
outputs, resource exhaustion, denial of
service, etc.

Exposed Data
Storage

All files and keychain items on iOS are
assigned Data Protection classes. These
dictate whether the item is 1) accessible
while the device is locked, 2) accessible
when the associated app is closed, and 3)
if the item can be transferred to another
device.

Sensitive data can be less protected on the file
system while not being used, or unintentionally
transferred to another system in a backup.
However, restricting the use of this mechanism
may impair an app’s ability to perform desired
functionality

Table 6 shows the hierarchy of iOS app vulnerabilities from A level to C level.

Table 6 - iOS Vulnerabilities by level.

Level A Level B Level C
Incorrect Permissions Sensitive Information Contacts

Calendar Information
Tasks
Reminders
Photos
Bluetooth Access

Exposed Communications External Communications Telephony
Bluetooth
GPS
SMS/MMS
Network/Data Communications

Internal Communications Abusing Protocol Handlers
Potentially Dangerous Functionality Direct Memory Mapping Memory Access

File System Access
Potentially Dangerous API Cost Sensitive APIs

Device Management APIs
Personal Information APIs

App Collusion Data Change Changes to Shared File Resources
Changes to Shared Database Resources
Changes to Shared Content Providers

Data Creation/Deletion Creation/Deletion to Shared File Resources

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Level A Level B Level C
Obfuscation Number of Services Excessive Checks for Service State

Native Code Potentially Malicious Libraries Packaged but
not Used
Use of Potentially Dangerous Libraries
Reflection Identification
Class Introspection

Library Calls Constructor Introspection
Field Introspection
Method Introspection

Packed Code
Excessive Power Consumption CPU Usage

I/O
Exposed Data Storage Over Exposing Data Over Granting File Data Protection Class

Over Granting Keychain Data Protection
Class

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Appendix D—Acronyms

Selected acronyms and abbreviations used in this paper are defined below

API Application Programming Interface

BYOD Bring Your Own Device

CAPEC Common Attack Pattern Enumeration and Classification

CERT Computer Emergency Response Team

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DHS Department of Homeland Security

DoD Department of Defense

EMM Enterprise Mobility Management

GPS Global Positioning System

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IoT Internet of Things

ISO International Organization for Standardization

ITL Information Technology Laboratory

JVM Java Virtual Machine

NFC Near Field Communication

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

OMB Office of Management and Budget

PII Personally Identifiable Information

PIN Personal Identification Number

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

PIV Personal Identity Verification

SAMATE Software Assurance Metrics and Tool Evaluation

SCAP Security Content Automation Protocol

SLA Service Level Agreement

SP Special Publication

UI User Interface

VPN Virtual Private Network

Wi-Fi Wireless Fidelity.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Appendix E—Glossary

The definition of selected terms used in this publication are below

Administrator A member of an organization who is responsible for deploying,
maintaining and securing the organization’s mobile devices as well as
ensuring deployed devices and their installed apps conform to security
requirements.

Analyst A member of an organization who inspects reports and risk
assessments from one or more test tools as well as organization-
specific criteria to verify an app meets the organization’s security
requirements.

App Vetting Process A sequence of activities performed by an organization to determine if
a mobile app conforms to the organization’s security requirements.

App Vetting System A system for managing and automating an app vetting process.

Authorizing Official An organization member who decides whether an app is approved or
denied for use by the organization.

Dynamic Analysis Detecting software vulnerabilities by executing an app using a set of
input use-cases and analyzing the app’s runtime behavior.

Enterprise Mobility
Manager

A set of people, processes and technology focused on
managing mobile devices, wireless networks and other mobile
computing services in a business environment.

Functionality Testing Verifying an app’s user interface content and features perform and
display as designed.

General App Security
Requirements

The software and behavioral characteristics of an app that should or
should not be present in order to ensure the security of the app.

Malware Software or firmware intended to perform an unauthorized process
that will have adverse impact on the confidentiality, integrity, or
availability of an information system. A virus, worm, Trojan horse, or
other code-based entity that infects a host. Spyware and some forms
of adware are also examples of malicious code [31].

Mobile Device
Management

The administration of mobile devices such as smartphones, tablet
computers, laptops and desktop computers. MDM usually is
implemented through a third-party product that has management
features for particular vendors of mobile devices.

https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Laptop

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

National Security
System

Any information system, including any telecommunications system,
used or operated by an agency or by a contractor of an agency or other
organization on behalf of an agency:

The function, operation or use of which--

involves intelligence activities;

involves cryptologic activities related to national security;

involves command and control of military forces;

involves equipment that is an integral part of a weapon or weapons
system; or

subject to subparagraph (B) is critical to the direct fulfillment of
military or intelligence missions; or

Is protected at all times by procedures established for information that
have been specifically authorized under criteria established by an
Executive Order or an Act of Congress to be kept classified in the
interest of national defense or foreign policy [56].

Organization-Specific
Security
Requirements

Policies, regulations, and guidance that an organization must follow to
ensure the security posture of an organization

Personally
Identifiable
Information

Information about an individual that can be used by a malicious actor
to distinguish or trace the individual’s identity and any other
information that is linked or linkable to the individual [45].

Risk Assessment A value that states a test tool’s estimated level of security risk when
an app is used. Risk assessments typically are based on the likelihood
that a detected vulnerability will be exploited and the impact the
detected vulnerability may have on the app or its related device or
network. Risk assessments typically are represented as categories
(e.g., low-, moderate- and high-risk).

Static Analysis Detecting software vulnerabilities by examining an app’s source code
and binary and attempting to determine all possible behaviors that
might arise at runtime.

Software Assurance The level of confidence that software is free from vulnerabilities—
either intentionally designed into the software or accidentally inserted
during its lifecycle—and functions in the intended manner.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Software Correctness
Testing

The process of executing a program to finding errors. The purpose of
this testing is to improve quality assurance, verify and validate
described functionality, or estimate reliability.

Software
Vulnerability

A security flaw, glitch or weakness found in software that can be
exploited by an attacker.

Test Tool A tool or service that tests an app to determine if specific software
vulnerabilities are present.

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 44

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

Appendix F—References

[1] P. E. Black, L. Badger, B. Guttman, and E. Fong, Dramatically Reducing Software
Vulnerabilities: Report to the White House Office of Science and Technology Policy,
NIST IR 8151, National Institute of Standards and Technology, Gaithersburg,
Maryland, November 2016. https://doi.org/10.6028/NIST.IR.8151

[2] National Institute of Standards and Technology, Software Assurance, Computer
Security Resource Center: Glossary [Web site]. Available at
https://csrc.nist.gov/glossary/term/software-assurance

[3] M. Souppaya and K. Scarfone, Guidelines for Managing the Security of Mobile
Devices in the Enterprise, NIST Special Publication (SP) 800-124 Revision 1,
National Institute of Standards and Technology, Gaithersburg, Maryland, June 2013.
https://doi.org/10.6028/NIST.SP.800-124r1

[4] National Information Assurance Partnership, Protection Profile for Mobile Device
Fundamentals, Version 3.1, June 16, 2017. Available at https://www.niap-
ccevs.org/MMO/PP/pp_md_v3.1.pdf

[5] Joint Task Force Transformation Initiative, Security and Privacy Controls for
Federal Information Systems and Organizations, NIST Special Publication (SP) 800-
53 Revision 4, National Institute of Standards and Technology, Gaithersburg,
Maryland, April 2013 (including updates as of 01-15-2014),
https://doi.org/10.6028/NIST.SP.800-53r4.

[6] International Organization for Standardization/International Electrotechnical
Commission, Information technology – Security techniques – Evaluation criteria for
IT security – Part 1: Introduction and general model, ISO/IEC 15408-1:2009,
December 2009 (Corrected January 2014). Available at
https://www.iso.org/standard/50341.html

[7] National Information Assurance Partnership, Requirements for Vetting Mobile Apps
from the Protection Profile for Application Software, Version 1.2, April 22, 2016.
Available at https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-
reqs.htm

[8] OWASP Foundation, Mobile AppSec Verification, Version 1.1.3, January 2019.
Available at https://github.com/OWASP/owasp-
masvs/releases/download/1.1.3/OWASP_Mobile_AppSec_Verification_Standard_1.
1.3_Document.pdf

[9] OWASP Foundation, Mobile Security Testing Guide (MSTG), 1.1.0 Release,
November 30, 2018. Available at
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

https://doi.org/10.6028/NIST.IR.8151
https://csrc.nist.gov/glossary/term/software-assurance
https://doi.org/10.6028/NIST.SP.800-124r1
https://www.niap-ccevs.org/MMO/PP/pp_md_v3.1.pdf
https://www.niap-ccevs.org/MMO/PP/pp_md_v3.1.pdf
https://doi.org/10.6028/NIST.SP.800-53r4
https://www.iso.org/standard/50341.html
https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm
https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm
https://github.com/OWASP/owasp-masvs/releases/download/1.1.3/OWASP_Mobile_AppSec_Verification_Standard_1.1.3_Document.pdf
https://github.com/OWASP/owasp-masvs/releases/download/1.1.3/OWASP_Mobile_AppSec_Verification_Standard_1.1.3_Document.pdf
https://github.com/OWASP/owasp-masvs/releases/download/1.1.3/OWASP_Mobile_AppSec_Verification_Standard_1.1.3_Document.pdf
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 45

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

[10] M. Peck and C. Northern, Analyzing the Effectiveness of App Vetting Tools in the
Enterprise, The MITRE Corporation, August 22, 2016. Available at
https://www.mitre.org/sites/default/files/publications/pr-16-4772-analyzing-
effectiveness-mobile-app-vetting-tools-report.pdf

[11] Department of Homeland Security, Build Security In, US-CERT [Web site].
Available at https://www.us-cert.gov/bsi#ques

[12] The MITRE Corporation, CVE - Common Vulnerabilities and Exposures [Web site].
Available at https://cve.mitre.org

[13] Joint Task Force Transformation Initiative, Guide for Conducting Risk Assessments,
NIST Special Publication (SP) 800-30 Revision 1, National Institute of Standards
and Technology, Gaithersburg, Maryland, September 2012.
https://doi.org/10.6028/NIST.SP.800-30r1

[14] Joint Task Force, Risk Management Framework for Information Systems and
Organizations: A Security Life Cycle Approach for Security and Privacy, NIST
Special Publication (SP) 800-37 Revision 2, National Institute of Standards and
Technology, December 2018, Gaithersburg, Maryland.
https://doi.org/10.6028/NIST.SP.800-37r2

[15] National Institute of Standards and Technology, Risk Tolerance, Computer Security
Resource Center: Glossary [Web site]. Available at
https://csrc.nist.gov/glossary/term/risk-tolerance

[16] Department of Homeland Security, AppVet Mobile App Vetting Service [Web site].
Available at https://sharedservices.dhs.gov/appvet_info/about/

[17] K. Beck, et al., Manifesto for Agile Software Development [Web site]. Available at
http://agilemanifesto.org/

[18] M. Pezzè and M. Young, Software Testing and Analysis: Process, Principles and
Techniques, Hoboken, New Jersey: John Wiley & Sons, Inc., 2008.

[19] G. McGraw, Software Security: Building Security In, Upper Saddle River, New
Jersey: Addison-Wesley, 2006.

[20] G. G. Schulmeyer, Handbook of Software Quality Assurance, Fourth Edition.
Norwood, Massachusetts: Artech House, Inc., 2008.

[21] B. B. Agarwal, S. P. Tayal, and M. Gupta, Software Engineering & Testing: An
Introduction, Sudbury, Massachusetts: Jones and Bartlett, 2010.

[22] J. R. Maximoff, D. R. Kuhn, M. D. Trela, and R. Kacker, “A method for analyzing
system state-space coverage within a t-wise testing framework,” 2010 IEEE
International Systems Conference, San Diego, California, April 5-8, 2010, pp. 598-
603. https://doi.org/10.1109/SYSTEMS.2010.5482481

[23] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software testing,
3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2012.

https://www.mitre.org/sites/default/files/publications/pr-16-4772-analyzing-effectiveness-mobile-app-vetting-tools-report.pdf
https://www.mitre.org/sites/default/files/publications/pr-16-4772-analyzing-effectiveness-mobile-app-vetting-tools-report.pdf
https://www.us-cert.gov/bsi#ques
https://cve.mitre.org/
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-37r2
https://csrc.nist.gov/glossary/term/risk-tolerance
https://sharedservices.dhs.gov/appvet_info/about/
http://agilemanifesto.org/
https://doi.org/10.1109/SYSTEMS.2010.5482481

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 46

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

[24] H. Chen, T. Zou, and D. Wang, “Data-flow Based Vulnerability Analysis and Java
Bytecode,” 7th WSEAS International Conference on Applied Computer Science,
Venice, Italy, November 21-23, 2007, pp. 201-207. Available at
http://www.wseas.us/e-library/conferences/2007venice/papers/570-602.pdf

[25] University of Maryland, FindBugs - Find Bugs in Java Programs [Web site].
Available at http://findbugs.sourceforge.net/

[26] R. Shah, Vulnerability Assessment of Java Bytecode [Thesis], Auburn University,
December 16, 2005. http://hdl.handle.net/10415/203

[27] 2008 The Ninth International Conference on Web-Age Information Management,
WAIM 2008. Piscataway, New Jersey: IEEE [Web site].
http://ieeexplore.ieee.org/servlet/opac?punumber=4596966

[28] The MITRE Corporation, CWE - Common Weakness Enumeration [Web site].
Available at https://cwe.mitre.org

[29] Common Vulnerability Scoring System v3.0: Specification Document, v1.8,
FIRST.Org, Inc., [August 2017]. Available at https://www.first.org/cvss/cvss-v30-
specification-v1.8.pdf

[30] Department of Defense (DoD), Mobile Application Security Requirements, DoD
Memorandum, October 6, 2017. Available at
https://iasecontent.disa.mil/stigs/pdf/2017-10-
06_DoD_CIO_Mobile_Applications_Security_Memo_Signed.pdf

[31] National Institute of Standards and Technology, NIST Special Publication 800-53,
[Web site]. Available at https://nvd.nist.gov/800-53

[32] M. Dowd, J. McDonald, and J. Schuh, The art of software security assessment:
identifying and preventing software vulnerabilities. Upper Saddle River, New Jersey:
Addison-Wesley, 2007.

[33] H. G. Rice, “Classes of recursively enumerable sets and their decision problems,”
Transactions of the American Mathematical Society, vol. 74, no. 2, pp. 358-366,
March 1953. https://doi.org/10.2307/1990888

[34] J. H. Allen, Ed., Software security engineering: a guide for project managers. Upper
Saddle River, New Jersey: Addison-Wesley, 2008.

[35] Microsoft Corporation, The STRIDE Threat Model [Web site], November 11, 2009.
Available at https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v%3dcs.20)

[36] B. Larcom, and E. Saitta, Trike [Web site]. Available at
http://www.octotrike.org/home.shtml

[37] National Institute of Standards and Technology, SAMATE: Tool Survey [Web site],
https://samate.nist.gov/index.php/Tool_Survey.html

[38] G. Howell and M. Ogata, An Overview of Mobile Application Vetting Services for
Public Safety, NIST IR 8136, National Institute of Standards and Technology,
Gaithersburg, Maryland, January 2017. https://doi.org/10.6028/NIST.IR.8136

http://www.wseas.us/e-library/conferences/2007venice/papers/570-602.pdf
http://findbugs.sourceforge.net/
http://hdl.handle.net/10415/203
http://ieeexplore.ieee.org/servlet/opac?punumber=4596966
https://cwe.mitre.org/
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://iasecontent.disa.mil/stigs/pdf/2017-10-06_DoD_CIO_Mobile_Applications_Security_Memo_Signed.pdf
https://iasecontent.disa.mil/stigs/pdf/2017-10-06_DoD_CIO_Mobile_Applications_Security_Memo_Signed.pdf
https://nvd.nist.gov/800-53
https://doi.org/10.2307/1990888
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v%3dcs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v%3dcs.20)
http://www.octotrike.org/home.shtml
https://samate.nist.gov/index.php/Tool_Survey.html
https://doi.org/10.6028/NIST.IR.8136

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 47

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

[39] Committee on National Security Systems, Committee on National Security Systems
(CNSS) Glossary, CNSSI No. 4009, April 2015. Available at https://rmf.org/wp-
content/uploads/2017/10/CNSSI-4009.pdf

[40] National Institute of Standards and Technology, National Vulnerability Database
[Web site]. Available at https://nvd.nist.gov/

[41] National Institute of Standards and Technology, Security Content Automation
Protocol [Web site]. Available at https://csrc.nist.gov/projects/security-content-
automation-protocol

[42] The MITRE Corporation, CAPEC - Common Attack Pattern Enumeration and
Classification [Web site]. Available at https://capec.mitre.org

[43] National Information Assurance Partnership (NIAP), Product Compliant List [Web
site]. Available at https://www.niap-ccevs.org/Product/

[44] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and G. Moroney, “Error
Cost Escalation Through the Project Life Cycle,” 14th Annual International
Symposium, Toulouse, France, 2004. Available at
https://ntrs.nasa.gov/search.jsp?R=20100036670

[45] M. Bartock, M. Souppaya, J. Cichonski, M. Smith, G. Witte, and K. Scarfone, Guide
for Cybersecurity Event Recovery, NIST Special Publication (SP) 800-184, National
Institute of Standards and Technology, Gaithersburg, Maryland, December 2016.
https://doi.org/10.6028/NIST.SP.800-184

[46] S. Khandelwal, “New Ransomware Not Just Encrypts Your Android But Also
Changes PIN Lock,” The Hacker News, October 13, 2017. Available at
https://thehackernews.com/2017/10/android-ransomware-pin.html

[47] W. A. Jansen, T. Winograd, and K. Scarfone, Guidelines on Active Content and
Mobile Code, NIST Special Publication (SP) 800-28 Version 2, National Institute of
Standards and Technology, Gaithersburg, Maryland, March 2008.
https://doi.org/10.6028/NIST.SP.800-28ver2

[48] T. Brewster, “When ‘Grandma-Proof’ Android Spyware Is Good Enough For
International Espionage,” Forbes, May 15, 2018. Available at
https://www.forbes.com/sites/thomasbrewster/2018/05/15/apple-iphone-spouseware-
used-in-pakistan-government-attacks/#74f2e2515668

[49] S. Dent, “Report finds Android malware pre-installed on hundreds of phones,”
Engadget, May 24, 2018. Available at https://www.engadget.com/2018/05/24/report-
finds-android-malware-pre-installed-on-hundreds-of-phones

[50] H. Zhang, D. She, and Z. Qian, “Android Root and its Providers: A Double-Edged
Sword,” Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15), Denver, Colorado, October 12-16, 2015, pp.
1093–1104. https://doi.org/10.1145/2810103.2813714

[51] J. P. Mello, Jr, “Marcher Malware Poses Triple Threat to Android Users,” Tech News
World, November 7, 2017. Available at
https://www.technewsworld.com/story/84936.html

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://nvd.nist.gov/
https://csrc.nist.gov/projects/security-content-automation-protocol
https://csrc.nist.gov/projects/security-content-automation-protocol
https://capec.mitre.org/
https://www.niap-ccevs.org/Product/
https://ntrs.nasa.gov/search.jsp?R=20100036670
https://doi.org/10.6028/NIST.SP.800-184
https://thehackernews.com/2017/10/android-ransomware-pin.html
https://www.forbes.com/sites/thomasbrewster/2018/05/15/apple-iphone-spouseware-used-in-pakistan-government-attacks/#74f2e2515668
https://www.forbes.com/sites/thomasbrewster/2018/05/15/apple-iphone-spouseware-used-in-pakistan-government-attacks/#74f2e2515668
https://www.engadget.com/2018/05/24/report-finds-android-malware-pre-installed-on-hundreds-of-phones
https://www.engadget.com/2018/05/24/report-finds-android-malware-pre-installed-on-hundreds-of-phones
https://doi.org/10.1145/2810103.2813714
https://www.technewsworld.com/story/84936.html

NIST SP 800-163 REV. 1 VETTING THE SECURITY OF MOBILE APPS

 48

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-163r1

[52] D. Palmer, “Irremovable bank data-stealing Android malware poses as Google
Chrome update,” ZDNet, April 29, 2016. Available at
https://www.zdnet.com/article/irremovable-bank-detail-stealing-android-malware-
poses-as-google-chrome-update

[53] M. Moon, “Malware downloader infects your PC without a mouse click,” Engadget,
June 11, 2017. Available at https://www.engadget.com/2017/06/11/malware-
downloader-infects-your-pc-without-a-mouse-click

[54] L. Spector, “5 common SMS text scams, and how to avoid them,” PC World, March
1, 2016. Available at https://www.pcworld.com/article/3034696/mobile/5-common-
sms-text-scams-and-how-to-avoid-them.html

[55] OWASP, Man-in-the-middle attack [Web site]. Available at
https://www.owasp.org/index.php/Man-in-the-middle_attack

[56] Federal Information Security Modernization Act of 2014, Pub. L. 113-283, 128 Stat.
3073. https://www.govinfo.gov/app/details/PLAW-113publ283

https://www.zdnet.com/article/irremovable-bank-detail-stealing-android-malware-poses-as-google-chrome-update
https://www.zdnet.com/article/irremovable-bank-detail-stealing-android-malware-poses-as-google-chrome-update
https://www.engadget.com/2017/06/11/malware-downloader-infects-your-pc-without-a-mouse-click
https://www.engadget.com/2017/06/11/malware-downloader-infects-your-pc-without-a-mouse-click
https://www.pcworld.com/article/3034696/mobile/5-common-sms-text-scams-and-how-to-avoid-them.html
https://www.pcworld.com/article/3034696/mobile/5-common-sms-text-scams-and-how-to-avoid-them.html
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.govinfo.gov/app/details/PLAW-113publ283

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Intended Audience
	1.4 Document Structure
	1.5 Document Conventions

	2 App Security Requirements
	2.1 General Requirements
	2.1.1 National Information Assurance Partnership (NIAP)
	2.1.2 OWASP Mobile Risks, Controls and App Testing Guidance
	2.1.3 MITRE App Evaluation Criteria
	2.1.4 NIST SP 800-53

	2.2 Organization-Specific Requirements
	2.3 Risk Management and Risk Tolerance

	3 App Vetting Process
	3.1 App Intake
	3.2 App Testing
	3.3 App Approval/Rejection
	3.4 Results Submission
	3.5 App Re-Vetting

	4 App Testing and Vulnerability Classifiers
	4.1 Testing Approaches
	4.1.1 Correctness Testing
	4.1.2 Source and Binary Code Testing
	4.1.3 Static and Dynamic Testing

	4.2 Vulnerability Classifiers and Quantifiers
	4.2.1 Common Weakness Enumeration (CWE)
	4.2.2 Common Vulnerabilities and Exposures (CVE)
	4.2.3 Common Vulnerability Scoring System (CVSS)

	5 App Vetting Considerations
	5.1 Managed and Unmanaged Apps
	5.2 App Whitelisting and App Blacklisting
	5.3 App Vetting Limitations
	5.4 Local and Remote Tools and Services
	5.5 Automated Approval/Rejection
	5.6 Reciprocity
	5.7 Tool Report Analysis
	5.8 Compliance versus Certification
	5.9 Budget and Staffing

	6 App Vetting Systems
	Appendix A— Threats to Mobile Applications
	A.1 Ransomware
	A.2 Spyware
	A.3 Adware
	A.4 Rooting
	A.5 Trojan Horse
	A.6 Infostealer
	A.7 Hostile Downloader
	A.8 SMS Fraud
	A.9 Call Fraud
	A.10 Man in the Middle Attack (MITM)
	A.11 Toll Fraud
	Appendix B— Android App Vulnerability Types
	Appendix C— iOS App Vulnerability Types
	Appendix D— Acronyms
	Appendix E— Glossary
	Appendix F— References

