Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn and is provided solely for historical purposes. It has been superseded by the document identified below.

Withdrawal Date February 10, 2022
Original Release Date August 20, 2021

Superseding Document

Status 2nd Public Draft (2PD)
Series/Number NIST Special Publication 800-140C Rev. 1
Title CMVP Approved Security Functions: CMVP Validation Authority Updates to ISO/IEC 24759
Publication Date February 2022
DOI https://doi.org/10.6028/NIST.SP.800-140Cr1-draft2

Additional Information
CMVP Approved Security Functions:

CMVP Validation Authority Updates to ISO/IEC 24759

Kim Schaffer

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-140Cr1-draft
CMVP Approved Security Functions:
CMVP Validation Authority Updates to ISO/IEC 24759

Kim Schaffer
Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-140Cr1-draft

August 2021
Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

Public comment period: August 20, 2021 – September 20, 2021

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: sp800-140-comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).
Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in information system security, and its collaborative activities with industry, government, and academic organizations.

Abstract

NIST Special Publication (SP) 800-140C replaces the approved security functions of ISO/IEC 19790 Annex C. As a validation authority, the Cryptographic Module Validation Program (CMVP) may supersede this Annex in its entirety. This document supersedes ISO/IEC 19790 Annex C and ISO/IEC 24759 6.15.

Keywords

Cryptographic Module Validation Program; CMVP; FIPS 140 testing; FIPS 140; ISO/IEC 19790; ISO/IEC 24759; testing requirement; vendor evidence; vendor documentation; security policy.

Audience

This document is focused toward the vendors, testing labs, and CMVP for the purpose of addressing issues in cryptographic module testing.
Table of Contents

1. **Scope** ... 1
2. **Normative references** .. 1
3. **Terms and definitions** .. 1
4. **Symbols and abbreviated terms** ... 1
5. **Document organization** .. 2
 5.1 General ... 2
 5.2 Modifications ... 2
6. **CMVP-approved security function requirements** .. 2
 6.1 Purpose .. 2
 6.2 Approved security functions .. 2
 6.2.1 Transitions ... 2
 6.2.2 Symmetric Key Encryption and Decryption (AES, TDEA, SKIPJACK) 2
 6.2.3 Digital Signatures .. 4
 6.2.4 Secure Hash Standard (SHS) ... 4
 6.2.5 SHA-3 Standard .. 4
 6.2.6 Message Authentication (Triple-DES, AES and HMAC) 5
 6.2.7 Other Security Functions ... 6
7. **Document Revisions** ... 7
1 Scope

This document specifies the Cryptographic Module Validation Program (CMVP) modifications of the methods to be used by a Cryptographic and Security Testing Laboratory (CSTL) to demonstrate conformance. This document also specifies the modification of methods for evidence that a vendor or testing laboratory provides to demonstrate conformity. The approved security functions specified in this document supersede those specified in ISO/IEC 19790 Annex C and ISO/IEC 24759 paragraph 6.15.

2 Normative references

This section identifies the normative references cited as ISO/IEC 19790 and ISO/IEC 24759. The specific editions to be used are ISO/IEC 19790:2012 and ISO/IEC 24759:2017. Please note that the version 19790:2012 referenced here includes the corrections made in 2015.

3 Terms and definitions

The following terms and definitions supersede or are in addition to ISO/IEC 19790

None at this time

4 Symbols and abbreviated terms

The following symbols and abbreviated terms supersede or are in addition to ISO/IEC 19790 throughout this document:

CCCS Canadian Centre for Cyber Security
CMVP Cryptographic Module Validation Program
CSD Computer Security Division
CSTL Cryptographic and Security Testing Laboratory
FIPS Federal Information Processing Standard
FISMA Federal Information Security Management/Modernization Act
NIST National Institute of Standards and Technology
5 Document organization

5.1 General

Section 6 of this document replaces the approved security functions of ISO/IEC 19790 Annex C and ISO/IEC 24759 paragraph 6.15.

5.2 Modifications

 Modifications will follow a similar format to that used in ISO/IEC 24759. For additions to test requirements, new Test Evidence (TEs) or Vendor Evidence (VEs) will be listed by increasing the “sequence_number.” Modifications can include a combination of additions using underline and deletions using strikethrough. If no changes are required, the paragraph will indicate “No change.”

6 CMVP-approved security function requirements

6.1 Purpose

This document identifies CMVP-approved security functions. It supersedes security functions identified in ISO/IEC 19790 and ISO/IEC 24759.

6.2 Approved security functions

The categories include transitions, symmetric key encryption and decryption, digital signatures, hashing and message authentication.

6.2.1 Transitions

Barker EB, Roginsky AL (2019) Transitioning the Use of Cryptographic Algorithms and Key Lengths. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-131A, Rev. 2. https://doi.org/10.6028/NIST.SP.800-131Ar2

- Relevant Sections: 1, 2, 3, 9 and 10.

6.2.2 Symmetric Key Encryption and Decryption (AES, TDEA, SKIPJACK)

Advanced Encryption Standard (AES)

Dworkin MJ (2001) *Recommendation for Block Cipher Modes of Operation: Methods and Techniques.* (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38A. https://doi.org/10.6028/NIST.SP.800-38A

Dworkin MJ (2007) *Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.* (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38D. https://doi.org/10.6028/NIST.SP.800-38D

Dworkin MJ (2010) *Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices.* (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38E. https://doi.org/10.6028/NIST.SP.800-38E

Dworkin MJ (2012) *Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.* (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38F. https://doi.org/10.6028/NIST.SP.800-38F

Triple-DES Encryption Algorithm (TDEA)

Barker EB, Mouha N (2017) *Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher.* (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-67, Rev. 2. https://doi.org/10.6028/NIST.SP.800-67r2

Dworkin MJ (2001) *Recommendation for Block Cipher Modes of Operation: Methods and Techniques.* (National Institute of Standards and Technology, Gaithersburg, MD),
Appendix E references modes of the Triple-DES algorithm.

The use of SKIPJACK is approved for decryption only. The SKIPJACK algorithm has been documented in Federal Information Processing Standards Publication (FIPS) 185. This publication is obsolete and has been withdrawn.

6.2.3 Digital Signatures

Digital Signature Standard (DSS) (DSA, RSA, ECDSA)

Stateful Hash-Based Signature Schemes (LMS, HSS, XMSS, XMSSMT)

Cooper DA, Apon D, Dang QH, Davidson MS, Dworkin MJ, Miller CA (2020) Recommendation for Stateful Hash-Based Signature Schemes. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-208. https://doi.org/10.6028/NIST.SP.800-208

6.2.4 Secure Hash Standard (SHS)

Secure Hash Standard (SHS) (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256)

6.2.5 SHA-3 Standard

SHA-3 Hash Algorithms (SHA3-224, SHA3-256, SHA3-384, SHA3-512)

SHA-3 Extendable-Output Functions (XOF) (SHAKE128, SHAKE256)

SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash

Kelsey JM, Chang S-jH, Perlner RA (2016) SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-185. https://doi.org/10.6028/NIST.SP.800-185

6.2.6 Message Authentication (Triple-DES, AES and HMAC)

Triple-DES

AES

Dworkin MJ (2007) Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38D. https://doi.org/10.6028/NIST.SP.800-38D

HMAC

6.2.7 Other Security Functions

Schaffer K (2020) *CMVP Approved Sensitive Security Parameter Generation and Establishment Methods: CMVP Validation Authority Updates to ISO/IEC 24759*. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-140D. https://doi.org/10.6028/NIST.SP.800-140D
<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 1</td>
<td>[date]</td>
<td>§ 6.2.3 Digital Signatures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added: SP 800-208, October 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ 6.2.7 Other Security Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added: SP 800-140D, September 2020</td>
</tr>
</tbody>
</table>