

NIST Special Publication 800-125A
Revision 1

Security Recommendations for
Server-based Hypervisor Platforms

Ramaswamy Chandramouli

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-125Ar1

C O M P U T E R S E C U R I T Y

NIST Special Publication 800-125A
Revision 1

Security Recommendations for
Server-based Hypervisor Platforms

Ramaswamy Chandramouli

Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-125Ar1

June 2018

U.S. Department of Commerce

Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

i

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-125A Revision 1
Natl. Inst. Stand. Technol. Spec. Publ. 800-125A Rev. 1, 38 Pages (June 2018)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-125Ar1

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: sp800-125A-comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:sp800-125A-comments@nist.gov

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
Federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities with
industry, government, and academic organizations.

Abstract

The Hypervisor platform is a collection of software modules that provides virtualization of
hardware resources (such as CPU, Memory, Network and Storage) and thus enables multiple
computing stacks (made of an operating system (OS) and application programs) called Virtual
Machines (VMs) to be run on a single physical host. In addition, it may have the functionality
to define a network within the single physical host (called virtual network) to enable
communication among the VMs resident on that host as well as with physical and virtual
machines outside the host. With all this functionality, the hypervisor has the responsibility to
mediate access to physical resources, provide run time isolation among resident VMs and enable
a virtual network that provides security-preserving communication flow among the VMs and
between the VMs and the external network. The architecture of a hypervisor can be classified in
different ways. The security recommendations in this document relate to ensuring the secure
execution of baseline functions of the hypervisor and are therefore agnostic to the hypervisor
architecture. Further, the recommendations are in the context of a hypervisor deployed for server
virtualization and not for other use cases such as embedded systems and desktops.
Recommendations for secure configuration of a virtual network are dealt with in a separate NIST
document (Special Publication 800-125B).

Keywords

Virtualization; Hypervisor; Virtual Machine; Virtual Network; Secure Configuration; Security
Monitoring; Guest OS

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

iii

Acknowledgements

The author, Ramaswamy Chandramouli wishes to thank his colleague Tim Grance for his
personal input on the content and in helping with the logistics of the publication. Special thanks
to Andreas Bartelt from Bosch Center of Competence Security for valuable input regarding
technologies for device virtualization. He also thanks Michael Bartock for his valuable review
and feedback as a division reader. Last but not the least, he expresses his thanks to Isabel Van
Wyk for her detailed editorial review.

Note to Reviewers

This revision includes additional technologies for device virtualization such as para-
virtualization, passthrough and self-virtualizing hardware devices as well as associated security
recommendations. Major content changes in this revision are in: Section 1.1, Section 2.2.2 and
Section 5.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

iv

Table of Contents

EXECUTIVE SUMMARY ... v
1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE ... 1

1.1 Hypervisor Baseline Functions (HY-BF) .. 1
1.2 Scope of this document ... 3
1.3 Target Audience .. 4
1.4 Relationship to other NIST Guidance Documents ... 4

2. APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS .. 5
2.1 Hypervisor Platform Threat Sources .. 5
2.2 Potential Threats to Hypervisor Baseline Functions .. 6

3. SECURITY RECOMMENDATION FOR OVERALL PLATFORM INTEGRITY 10
4.SECURITY RECOMMENDATION HY-BF1 ... 12

4.1 Hardware Assistance for Virtualization .. 12
4.2 VM Memory Allocation Scheduling Options .. 13
4.3 VM CPU Allocation Options .. 14

5. SECURITY RECOMMENDATIONS FOR HY-BF2.. 15
6. SECURITY RECOMMENDATIONS FOR HY-BF4.. 16

6.1 VM Image Management .. 16
6.2 VM Live Migration .. 16
6.3 VM Monitoring and Security Policy Enforcement ... 17
6.4 VM Configuration Management .. 19
6.5 Fine-grained Administrative Privileges for VM Management ... 19

7. SECURITY RECOMMENDATIONS FOR HY-BF5 .. 21
7.1 Centralized Administration .. 21
7.2 Securing the Management Network... 21

8. SECURITY RECOMMENDATION SUMMARY .. 23
Appendix A: Description of Hypervisor Baseline Functions ... 24
Appendix B: Traceability of Security Recommendation to Hypervisor Baseline Functions 27
Appendix C: Glossary ... 31
Appendix D: References ... 32

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

v

EXECUTIVE SUMMARY

Server Virtualization is now an established technology for enterprise Information Technology (IT)
infrastructure in data centers and cloud services as it provides better utilization of hardware resources,
reduces physical space required, and reduces power consumption and administrative overhead. The core
software used for server virtualization is called the Hypervisor which directly provides Central Processing
Unit (CPU) and memory virtualization. Together with its supporting modules, it enables virtualization of
all hardware resources (e.g., CPU, Memory, Network and Storage) and thus enables multiple computing
stacks called Virtual Machines (VMs) or Guests, each hosting an Operating System (OS) (Guest OS)
and application programs, to be run on a single physical host. This physical host is referred to as
Virtualized Host or Hypervisor Host. Since the hypervisor by itself cannot provide all functions needed
for server virtualization, it has supporting software modules (e.g., device drivers) for devices (e.g.,
Network and Storage devices) virtualization in addition to management modules for VM lifecycle
operations and hypervisor configuration. The hypervisor together with these supporting modules and the
hosting hardware constitute the hypervisor platform. The hypervisor can be installed either directly on
the hardware or bare metal (Type 1 Hypervisor) or on top of a full-fledged conventional OS called Host
OS (Type 2 Hypervisor).

At first glance, it might appear that all activities related to secure management of a hypervisor and its
hardware host (collectively called Hypervisor Platform) should consist of just the established state of the
art practices for any server class software and its hosting environment. However, closer examination
reveals that functions for supporting hardware virtualization that a hypervisor provides have extensive
security ramifications and therefore require a focused set of security recommendations based on an
analysis of threats to the secure execution of these functions.

Since there are multiple ways by which an architecture of a hypervisor can be classified, the approach
taken in this document is to identify the baseline functions that a hypervisor performs, the tasks
involved in each baseline function, the potential threats to the secure execution of the task, and the
countermeasures that can provide assurance against exploitation of these threats in the form of security
recommendations.

The following five are identified as baseline functions of a hypervisor platform:

• VM Process Isolation
• Devices Mediation and Access Control
• Direct Execution of commands from Guest VMs
• VM Lifecycle Management
• Management of hypervisor platform

Apart from providing security recommendations for ensuring the secure execution of the baseline
functions listed above, a recommendation for ensuring the overall integrity of all components of a
hypervisor platform is also provided. The recommendations cover both Type 1 and Type 2 hypervisors.

Secure execution of routine administrative functions for the physical host where the hypervisor is
installed is not covered in this document. The protection requirements for countering physical access
threats, as well as those for Guest OS and applications running on VMs and associated security
recommendations, are also beyond the scope of this document. Further, the security recommendations
pertain to hypervisors deployed for server virtualization and do not cover other use cases such as the use
of hypervisor for desktops and embedded systems.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

1

1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE

The Hypervisor is the core software that provides server virtualization. Along with its supporting modules,
it enables virtualization of all hardware resources (e.g., CPU, Memory, Network, and Storage) and thus
enables multiple computing stacks (basically made of an OS and application programs) to be run on a
single physical host. Such a physical host is called a Virtualized Host (also referred to as a Hypervisor
Host in this document), and the individual computing stacks are encapsulated in an artifact called Virtual
Machines (VMs). To be an independent executable entity, the definition of a VM should include resources
(e.g., CPU, Memory, etc.) allocated to it. The VMs are also called “Guests,” and the operating system
(OS) running inside each of them is called “Guest OS.” The resources associated with a VM are virtual
resources as opposed to physical resources associated with a physical host. The hypervisor together with
these supporting modules and the hosting hardware constitute the hypervisor platform.

The primary function of the hypervisor is to enforce guest OS isolation as well as controlled resource sharing
among guest VMs. Thus, it plays many of the roles a conventional OS does on a non-virtualized host (server).
Just as a conventional OS provides isolation between the various applications (or processes) running on a
server, the hypervisor provides isolation between one or more VMs running on it. Also, similar to an OS, the
hypervisor mediates access to physical resources (devices) across multiple VMs. While access to CPU and
memory (to ensure process isolation) are handled directly by the hypervisor (through instruction set (CPU)
virtualization and memory virtualization respectively with or without assistance from hardware), it handles
the mediation of access to devices (devices virtualization) by calling on software modules running either
in the kernel or in dedicated VMs called Device-driver VMs. The hypervisor can be installed either directly
on the hardware or bare metal (Type 1 Hypervisor) or on top of a full-fledged conventional OS called Host
OS (Type 2 Hypervisor).

At first glance, it might appear that all activities related to the secure management of a hypervisor and its
hardware host (collectively called Hypervisor Platform) should consist of just the established state of the art
practices for any server class software and its hosting environment. However, closer examination reveals that
the functions for supporting hardware virtualization that a hypervisor provides have extensive security
ramifications and therefore require a focused set of security recommendations based on an analysis of threats
to the integrity of these functions. In this document, these functions are called hypervisor baseline functions.

The hypervisor baseline functions consist of:

• VM Process Isolation
• Devices Mediation and Access Control
• Direct Execution of commands from Guest VMs
• VM Lifecycle Management
• Management of hypervisor platform

A brief description of the above functions is given in section 1.1 below.

1.1 Hypervisor Baseline Functions (HY-BF)

While the basic function of a hypervisor is to virtualize hardware (a physical host) to enable the operation
of multiple virtual hosts (popularly known as VMs), commercial hypervisor offerings come with differing
feature sets. The modules that provide the same set of features are given different names in different product
offerings. Hence, for accomplishing the goals of this document, it is necessary to identify a set of baseline
features of a hypervisor that covers all functions for supporting hardware virtualization. In some instances,
the module that just presents a set of virtualized resources to the VMs is called the Virtual Machine Manager

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

2

(VMM). When VMMs are combined with the modules that provide OS-level services, such as the scheduling
of VMs in the CPU, they are called the hypervisor. These hypervisor baseline features or functions are:
• HY-BF1: VM Process Isolation – Provides scheduling of VMs for execution, Management of the

application processes running in VMs such as CPU and Memory Management, and context switching
between various processor states during the running of applications in VMs. In order to ensure VM
process isolation, memory access from Direct Memory Access (DMA) capable devices needs to be under
hypervisor control as well (e.g., via Input Output Memory Management Unit (IOMMU)). However, this
function is considered under HY-BF2 since it pertains to devices mediation.

• HY-BF2: Devices Mediation and Access Control – Makes devices available to VMs (e.g., via
emulation, para-virtualization, passthrough or self-virtualizing hardware devices) and controlling
which VMs are allowed to access which devices (e.g., Network Interface Card (NIC), storage device
such as IDE drive, etc.).

• HY-BF3: Direct Execution of commands from Guest VMs – Certain commands from Guest OSs are
executed directly by the hypervisor instead of being triggered through interrupts and context
switching. This function applies to hypervisors that have implemented para-virtualization instead of full
virtualization

• HY-BF4: VM Lifecycle Management – All functions including creation and management of VM images,
control of VM states (Start, Pause, Stop), VM migration, making snapshots, VM monitoring, and policy
enforcement

• HY-BF5: Management of hypervisor platform – Defining artifacts and setting values for various
configuration parameters in hypervisor software modules including those for configuration of a Virtual
Network inside the hypervisor and updates and patching to those modules.

The brief description of the five baseline functions is sufficient to guide discussion in the rest of the
document. Detailed descriptions of the functions are provided in Appendix A.

The above functions are carried out by different hypervisor components or software modules. There are some
minor differences among hypervisor products in the way functions are distributed. The mapping of these
functions to hypervisor components and the location of these components in overall hypervisor architecture
are given in Table 1 below:

Table 1: Hypervisor Platform Baseline functions

Baseline function Component
(Software Module)

Location

VM Process Isolation (HY-
BF1)

Hypervisor Kernel Either an OS kernel (along with a kernel module)
itself or a component installed on a full-fledged
OS (Host OS)

Devices Mediation and
Access Control (HY-BF2)

Device emulator or
Device driver

Either in a dedicated VM (called Device-driver
VM) or in the hypervisor kernel itself

Direct Execution of
commands from Guest VMs
(HY-BF3)

Hypervisor Kernel Pertains to only para-virtualized hypervisors and
handled by hypercall interfaces in that type of
hypervisor

VM Lifecycle Management
(HY-BF4)

A management
daemon

Installed on top of hypervisor kernel but runs in
unprivileged mode

Management of hypervisor
platform (HY-BF5)

A set of tools with
CLI (command line
interface) or a GUI
(Graphical User
Interface)

A console or shell running on top of hypervisor
kernel

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

3

In general, functions HY-BF1 and HY-BF3 are offered by modules running in a kernel collectively called
“Hypervisor” while HY-BF2 is enabled by a software module that runs either in a dedicated VM (called
Device-driver VM) or in the hypervisor kernel itself. The functions HY-BF4 and HY-BF5 are performed by
a module called management or service console or through a kernel module. Just like the module that performs
the HY-BF2 function, the console is a software layer that is generally not built into the hypervisor kernel
but runs on top of it as a privileged VM and could be built either with a full-fledged OS installed inside it or
with an ultra-light OS used to present an Application Programming Interface (API) (shell and network
access) with utility functions that facilitate performing only the hypervisor-specific configuration and
administrative tasks.

1.2 Scope of this document

The architecture of a hypervisor deployed for server virtualization can be classified in different
ways:

(a) Based on the entity over which the hypervisor installs – Type 1 Hypervisor or Type 2
Hypervisor (already described)

(b) Based on the type of virtualization
- Full Virtualization – The hypervisor will expose the interface of a hardware device that

is available in the real world to the VM and for which drivers are available for guest OS,
and it will completely emulate the behavior of that device. Emulation allows the
programs running in VMs to use the VM OS drivers that were designed to interact with
the emulated device without installing any special driver or tool specified by the
hypervisor vendor.

- Para Virtualization - The hypervisor exposes a device that does not exists in the real
world, which is just software only, and presents a lightweight interface. However, this
scenario calls for having special drivers in the VM, sometimes requiring modification to
the guest OS. This approach is intended to increase the performance level of the
applications running in the VM, compared to the emulation approach adopted in full
virtualization.

The trust model assumed for the hypervisor platform described in this document is as follows:
• All components in a VM are untrusted including the guest OS and its associated utilities (e.g.,

guest device drivers) that run in the kernel space and all applications that run in the user space
• The device drivers that are implemented within the hypervisor platform are untrusted unless they

carry a security certification
• The hypervisor kernel component that provides isolation between VMs is trusted
• The host OS is trusted for Type 2 hypervisors
• The hardware of the hypervisor host is trusted

With the background information on hypervisor architecture and the assumed trust model, the
scope of security recommendations for the five baseline functions (HY-BF1 through HY-BF5)
covers the following:
• All tasks that relate to functions HY-BF1, HY-BF2, and HY-BF4
• HY-BF3, which relates to the handling of hypercalls in para-virtualized hypervisors, is a

trusted function of the hypervisor and not included in the security recommendations
• All tasks under HY-BF5 are included, except for those related to the definition and

configuration of virtual network (secure configuration of virtual networks is covered under a
separate NIST document, SP 800-125B)

Recommendations to ensure overall platform integrity are also provided.

The security recommendations do not cover the following:

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

4

• Hypervisor host user account management
• Hypervisor host authentication and access control
• Routine administration of Host OS (e.g., keeping patches current)
• Routine administration of Guest OS
• Security of Guest OSs running on VMs
• Security of Applications/Services running on VMs

1.3 Target Audience

The target audience for the security recommendations in this document is the following:
• The Chief Security Officer (CSO) or the Chief Technology Officer (CTO) of an Enterprise IT department

in a private enterprise or government agency who wants to develop a virtualization infrastructure to host
various Line of Business (LOB) application systems on Virtual Machines (VM)

• Managers of data centers who want to offer virtualization infrastructure for hosting secure cloud
services, such as Infrastructure as a Service (IaaS), for cloud service customers.

1.4 Relationship to other NIST Guidance Documents

In terms of technology area, the NIST Guidance document that is related to this document is NIST
Special Publication (SP) 800-125, Guide to Security for Full Virtualization Technologies. Consistent with
the state of technology adoption at that time (SP 800-125 was published in January 2011), SP 800-125
provided higher-level security recommendations for use of components in two applications of virtualization
paradigm: Server Virtualization and Desktop Virtualization. Since then, Server Virtualization has found
widespread adoption in IT data centers both for hosting in-house or on-premises (enterprise) applications as
well as for hosting applications and providing computing units for cloud services.

Accompanying this technology adoption trend is the increase in feature sets of hypervisors, as well as market
availability of the set of tools used for configuration and administration of the virtualized infrastructure
spawned by the hypervisor. The objective of this document is to focus on the development of a set of
security recommendations for deployment of the hypervisor (with all of its constituent modules) including
the steps involved in the creation and provisioning of VMs. The distinguishing features of the set of security
recommendations provided in this document in the context of similar NIST Guidance documents are
given below:

• A focused set of security recommendations that are architecture agnostic for the deployment of

hypervisors is provided.
• Since real world deployment includes provisioning of VMs, all VM life-cycle operations, from creation

and management of VM images to their administration using granular privileges, is covered.
• Recognizing that the hypervisor is a purpose-built Operating System (OS) kernel and t h a t the

security of a server OS depends upon its weakest link regardless of the distribution (e.g., driver
software), security recommendations relating to these components have been provided as well.

• Recognizing that the hypervisor performs certain privileged operations without interference from any
other entity in the virtualized host and that leveraging hardware support for these operations will make
a significant difference to the overall security of hypervisor deployment, the security recommendations
also improve performance when virtualization-specific functions (e.g., memory tables for multiple
VMs) are offloaded (leveraged) to the processor instead of through software functions.

• All security recommendations are intended to provide assurance against exploitation of threats to tasks
involved in the hypervisor’s baseline functions.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

5

2. APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS
2. APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS

Developing security recommendations for the deployment and use of a complex software such as the
hypervisor requires knowledge of potential threats that, when exploited, would affect the three basic
security properties of confidentiality, integrity, and availability of hypervisor functions. The approach
adopted for developing security recommendations for deployment of hypervisor in this document is as follows:

• Ensure the integrity of all components of the hypervisor platform, starting from the host Basic Input Output

System (BIOS) to all software modules of the hypervisor. This is accomplished through a secure boot process
outlined as recommendation HY-SR1 in section 3.

• Identify the threat sources in a typical hypervisor platform. The nature of threats from rogue or
compromised VMs are briefly discussed (Section 2.1).

• For each of the five baseline functions HY-BF1 through HY-BF5 (with the exception of HY-BF3, the
execution of privileged operations by the hypervisor), identify the different tasks under each function, and
for each of the tasks, identify the potential threats to the secure execution of the task. The counter measures
that will provide assurance against exploitation of these threats form the basis for security
recommendations (Section 2.2).

It must be noted that in some cases of large open-source and commercial software environments (e.g., Database
Management System (DBMS) platform), the approach adopted for secure deployment and usage is to
study the reports published in the public vulnerability databases for various product offerings, seek out
available patches through online public forums or the software vendor, and look for recommended secure
configuration settings (also via online public forums or the software vendor websites). We do not adopt this
approach in this document since the intended purpose is not to provide security recommendations for a specific
open source or commercial hypervisor product offering but rather for the entire product class based on its
baseline functions.

2.1 Hypervisor Platform Threat Sources

The hypervisor software is resident on a physical host that is connected to the enterprise network. It has the
capability to be remotely administered. At the same time, it supports multiple virtual hosts (virtual machines
or VMs) that are generally nodes of a software-defined virtual network inside that physical host. In some cases,
they could be nodes of an isolated network or sharing the host network. Based on this scenario, one can identify
three basic sources of threats to a hypervisor platform, each of which is identified by using the symbol HY-TS#:

• HY-TS1: Threats from and through the enterpr ise network in which the hypervisor host (virtualized

host) resides
• HY-TS2: Threats emanating from rogue or compromised VMs through channels such as shared hypervisor

memory and virtual network inside the hypervisor host
• HY-TS3: Threats from web interfaces to VM management daemon and hypervisor management consoles

Threats from sources HY-TS1 and HY-TS3 are common to all server class software and are well known and
addressed in other NIST documents. Threats from source HY-TS2 is unique to the virtualization environment
defined by the hypervisor. We look at the nature of threats from HY-TS2 in the next subsection.

The hypervisor controls VM access to physical hardware resources as well as provides isolation among VMs.
VM access to hardware resources such as CPU and memory are directly controlled by the hypervisor while
access to resources such as network and storage devices are controlled through modules (drivers) that reside
in the kernel module or in a privileged VM (i.e., Management VM). The network isolation among VMs is
provided by assigning a unique Internet Protocol (IP) or Media Access Control (MAC) address to each VM,
defining virtual local area networks (VLANs) or overlay networks, and assigning the appropriate network

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

6

identifier to each VM. The nature of threats to the hypervisor from rogue or compromised VMs can manifest
in the following ways:

Note that each threat is identified by the symbol HYP-T#, where HYP stands for hypervisor, T stands for
threat, and # stands for the sequence number.

• Breach of Process Isolation - VM Escape (HYP-T1): Major threats to any hypervisor come from rogue

VMs. Rogue VMs manage to subvert the isolation function provided by the VMM/hypervisor to hardware
resources such as memory pages and storage devices. In other words, the rogue or compromised VMs
may access areas of memory belonging to the hypervisor or other VMs and storage devices they are not
authorized to access. Possible reasons for this threat include (a) hypervisor design vulnerabilities or (b)
malicious or vulnerable device drivers. Potential downstream impacts of a rogue VM taking control of the
hypervisor include the installation of rootkits or attacks on other VMs on the same virtualized host.

• Breach of Network Isolation (HYP-T2): Potential threats to isolation include attacks such as IP or MAC
address spoofing by a rogue VM and Traffic Snooping, or the interception of virtual network traffic,
intended for a VM on the same virtual network segment. The impact of the subversion of these network
controls is loss of confidentiality. Some VMs will be viewing information for which they are not
authorized.

• Denial of Service (HYP-T3): Misconfigured or malicious VMs may be consuming a disproportionately
high percentage of host resources, resulting in denial-of-service to other VMs on the hypervisor host.

2.2 Potential Threats to Hypervisor Baseline Functions

In this section, the tasks in each of the five hypervisor baseline functions (with the exception of HY-BF3) are
examined, and the threats to the secure execution of those tasks are analyzed by relating to the causes identified
in the previous section.

2.2.1 Potential Threats to HY-BF1

The primary threat to hypervisor’s HY-BF1 function (VM Process Isolation) is breach of process isolation
(HYP-T1). As mentioned in section 2.1, one of the causes for this threat is hypervisor design vulnerability.
Some potential design vulnerabilities that pertain to this threat are discussed here with an explanation of the
context under which they may manifest. Each vulnerability is identified by the symbol HYP-DV#, where
HYP stands for hypervisor, DV stands for design vulnerability, and # stands for the sequence number.

• Virtual Machine Control Structure (HYP-DV1): To properly schedule an individual VM’s tasks (i.e.,

since each guest VM is allocated a set of virtual CPUs(vCPUs) they are called vCPU tasks), the register
states must be handled appropriately. To enable the saving and loading of the state of each vCPU, the
hypervisor uses a data structure called Virtual Machine Control Structure (VMCS). Faulty implementation
of this data structure has been known to cause hypervisor memory leaks.

• Handling Sensitive Instructions (HY-DV2): On hardware platforms that do not provide assistance for
virtualization, there should be a software mechanism to discover sensitive or critical instructions, send
them to the VMM (hypervisor), and replace them with safer instructions using techniques such as binary
translation before executing them on the hardware. Any error in not trapping the critical instructions or
faulty translation may have security implications in the form of a guest OS being allowed to execute
privileged instructions.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

7

• Memory Management Unit-MMU (HYP-DV3): The hypervisor runs a software-based Memory
Management Unit (MMU) that allocates a shadow page table for each VM since guest VMs cannot be
granted direct access to the hardware-based MMU as that would potentially enable them to access memory
belonging to the hypervisor and other co-hosted VMs (under some situations). However, a faulty
implementation of software-based MMU could lead to disclosure of data in arbitrary address spaces, such
as memory segments belonging to the hypervisor and co-located VMs, thus resulting in a breach of
memory isolation.

• Input/Output Memory Management Unit, IOMMU (HY-DV4): The hypervisor leverages the hardware

I/O Memory Management Unit to enforce memory separation for device drivers and processes using direct
memory access (DMA). This feature is built into the hypervisor and enabled in the hardware using a
firmware switch. If unused, it may result in a vulnerability whereby the DMA could potentially be used
as a common attack vector by one VM to overwrite physical memory used by other VMs and processes.

Out of these, the vulnerabilities HYP-DV1 and HYP-DV2 should be addressed through proper coding and
testing of those modules. Therefore, no security protection measures can be applied at the deployment and
usage stage. However, the memory violation vulnerability HYP-DV3 and DMA violation vulnerability HY-
DV4 can be addressed by hosting the hypervisor on a hardware platform that provides assistance for memory
virtualization through a virtualization-aware hardware memory management unit and DMA transfers through
the re-mapping of DMA transfers, respectively. Due to these two vulnerabilities, the threat HYP-T1, a breach
of process isolation, has been addressed through security recommendation HY-SR-2 in section 4.

Further, correct execution isolation requires that each VM obtains the proper memory and CPU resources
necessary for its hosting applications and that there is no denial of service. Ensuring adequate memory through
proper configuration of memory allocation options is addressed through security recommendation HY-SR-3,
and ensuring proper allocation of virtual CPUs through the appropriate configuration of vCPU allocation
options are addressed through security recommendations HY-SR-4 and HY-SR-5.

2.2.2 Potential Threat to HY-BF2

The applications executing in VMs need to access devices such as network and storage. Mediation of access
to devices is handled in hypervisor hosts through device virtualization (also called IO virtualization). There
are three common approaches to device virtualization: (a) Emulation, (b) Para-virtualization, and (c)
Passthrough or self-virtualizing hardware devices.

In emulation, code is implemented to present a virtual device that has a corresponding real (hardware) device
for which the guest OS already has a driver. This enables running of unmodified guests (VMs), thus
implementing full virtualization. This emulation code runs in the hypervisor. An I/O call from a guest VM
application (through its guest OS) is intercepted by the hypervisor kernel and forwarded to this code since
guest VMs cannot access the physical devices directly under this setup. This emulation code traps all device
access instructions and converts them to calls on the physical device driver for the physical device attached to
the hypervisor host. It also multiplexes accesses from guest VMs’ emulated virtual devices to the underlying
physical device.

In the para-virtualization approach, the hypervisor presents to the guest an interface of an artificial device that
has no corresponding hardware counterpart. This enables special, simplified hypervisor-aware I/O drivers
(called para-virtualized drivers) to be installed in the guest. The calls from these para-virtualized device
drivers in guest VMs are handled by another device driver (called back-end driver) which directly interfaces
with the physical device and mediates access to that physical device from para-virtualized guests. In some
instances, the calls from para-virtualized guest drivers are handled directly by the hypervisor through its
hypercall interface (the corresponding calls are called hypercalls). Analysis of threats due to these hypercalls
is provided in the next subsection.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

8

The third approach to device virtualization, the passthrough approach (or direct device assignment), is
deployed for situations where a VM needs exclusive access to a device (e.g., NIC, disk controller, Host Bus
Adapter (HBA), USB controller, serial port, firewire controller, soundcard, etc.) for performance reasons so
as to avoid overhead due to emulation. Since generally this is required for Peripheral Component Interconnect
(PCI) devices, this is also called as PCI Passthrough. Since many of these devices have a memory-mapped
interface, they can read or write directly to or from main memory and are also called Direct Memory Access
(DMA) capable devices. To provide exclusive access to a DMA capable device for a VM, the memory pages
of the device are mapped into guest VM’s address space. The following is the threat due to DMA capable
devices.

Threat due to DMA-capable hardware devices (HY-DV5): The security threat from a DMA-capable device is
that, since the VM controls the device, it can program the device to perform DMA operations directed at any
physical (host) memory location, including the areas belonging to other VMs or the hypervisor [6]. Thus, the
direct device assignment has the potential to subvert the isolation between VMs (rather making the MMU
enforced isolation function (part of HY-BF1) meaningless).

In addition to three types of device virtualization described above, hypervisor hosts can support self-
virtualizing hardware devices. These devices have interfaces that can export a set of virtual functions (VFs)
corresponding to a physical function (PF). The hypervisor then can assign these VFs to multiple guest VMs,
while it retains control of the PF. These devices conform to Single Root I/O Virtualization (SR-IOV)
specification and thus enable DMA capable devices to be shared among VMs (as virtualization and
multiplexing are done by the devices themselves) instead of being dedicated to a single VM as in passthrough
mode.

2.2.3 Potential Threat to HY-BF3

The previous subsection presented a scenario (i.e., para-virtualization) where the hypervisor has to execute
certain instructions through its hypercall interface. A potential security issue with hypercalls is that the lack
of proper validation of certain operations (e.g., not verifying the operation scope and allowing a full dump
of a VM’s Virtual Machine Control Block) can potentially cause the entire hypervisor host to crash. This is
again a design vulnerability that must be addressed through proper validation and testing of the relevant
hypervisor code rather than through configuration or deployment procedures.

2.2.4 Potential Threats to HY-BF4

Potential threats to the secure execution of tasks under this function (i.e., VM Lifecycle Management) include:

• Presence of non-standard VM images in the library, including those with outdated OS versions and

patches, which could result in any of the platform-level threats (HYP-T1 through HYP-T3)
• Presence of non-standard running VM instances due to their creation from non-standard images,

restoration from snapshots, a drift from standard as a result of a lapse in monitoring, and updates that
could result in any of the platform-level threats (HYP-T1 through HYP-T3)

 In most instances, the management operations on VMs are performed using commands submitted through a
GUI or a scripting environment, both of which are supported by a management daemon at the back-end. Secure
execution of the above operations is addressed through security recommendations HY-SR9 through HY-SR18
in section 6.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

9

2.2.5 Potential Threats to HY-BF5

The tasks under this function relate to the overall administration of a hypervisor host (i.e., virtualized host)
and the hypervisor software and are usually performed through user-friendly web interfaces or network-facing
virtual consoles. Threats to the secure execution of these tasks are common in any remote administration and
are therefore not addressed in this document. However, the core requirement in a data center with virtualized
hosts is to have a uniform configuration for hypervisors based on different criteria such as sensitivity of
applications based on the set of hosted VMs, line of business or client in cloud service environments, etc.
Thus, the security recommendations include a centralized management of hypervisor configuration (HY-SR-
19) and a dedicated network segment for management traffic (HY-SR-20).

Some conventional security fixes may not be practical in the case of hosts hosting a hypervisor. For example,
in the case of a network attack on a physical server that is not virtualized, merely turning off the offending port
is a solution to preventing the server from spamming the network with a bot attack. However, such a solution
is not practical in the case of a hypervisor host since the same port in the physical network interface card of
the hypervisor host could be shared by several running VMs. Instead, a specialized security fix, such as
disabling the virtual NICs of VMs that use those ports, is needed.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

10

3. SECURITY RECOMMENDATION FOR OVERALL PLATFORM INTEGRITY

Configuration changes, module version changes, and patches affect the content of the hypervisor platform
components such as BIOS, hypervisor kernel, and back-end device drivers running in the kernel. To ensure
that each of these components that are part of the hypervisor stack can be trusted, it is necessary to check
their integrity through a hardware-rooted attestation scheme that provides assurance of boot integrity.
Checking integrity is done by cryptographically authenticating the hypervisor components that are launched.
This authentication verifies that only authorized code runs on the system. Specifically, in the context of the
hypervisor, the assurance of integrity protects against tampering and low-level targeted attacks such as root
kits. If the assertion of integrity is deferred to a trusted third party that fulfills the role of trusted authority, the
verification process is known as trusted attestation. Trusted attestation provides assurance that the code of the
hypervisor components has not been tampered with. In this approach, trust in the hypervisor’s components is
established based on trusted hardware. In other words, a chain of trust from hardware to hypervisor is
established with the initial component called the root of trust. This service can be provided by a
hardware/firmware infrastructure of the hypervisor host that supports boot integrity measurement and the
attestation process. In short, a measured launch environment (MLE) is needed in the hypervisor host.

Some hardware platforms provide support for MLE with firmware routines for measuring the identity (usually
the hash of the binary code) of the components in a boot sequence. An example of a hardware-based
cryptographic storage module that implements the measured boot process is the standards-based Trusted
Platform Module (TPM), which has been standardized by the Trusted Computing Group (TCG) [4]. The
three main components of a TPM are: (a) Root of Trust for Measurement (RTM) – makes integrity
measurements (generally a cryptographic hash) and converts them into assertions, (b) Root of Trust for Integrity
(RTI) - provides protected storage, integrity protection, and a protected interface to store and manage
assertions, and (c) Root of Trust for Reporting (RTR) - provides a protected environment and interface to
manage identities and sign assertions. The RTM measures the next piece of code following the boot sequence.
The measurements are stored in special registers called Platform Configuration Registers (PCRs).

The measured boot process is briefly explained here using TPM as an example. The measured boot process
starts with the execution of a trusted immutable piece of code in the BIOS, which also measures the next piece
of code to be executed. The result of this measurement is extended into the PCR of the TPM before the control
is transferred to the next program in the sequence. Since each component in the sequence in turn measures
the next before handing off control, a chain of trust is established. If the measurement chain continues through
the entire boot sequence, the resultant PCR values reflect the measurement of all components.

The attestation process starts with the requester invoking, via an agent on the host, the TPM Quote command.
It specifies an Attestation Identity Key (AIK) to perform the digital signature on the contents of the set of
PCRs that contain the measurements of all components in the boot sequence to quote and a cryptographic
nonce to ensure freshness of the digital signature. After receiving the signed quotes, the requester validates
the signature and determines the trust of the launched components by comparing the measurements in the
TPM quote with known good measurements.

The MLE can be incorporated in the hypervisor host as follows:

• The hardware hosting the hypervisor is established as a root-of-trust, and a trust chain is established from

the hardware through the BIOS and to all hypervisor components.
• For the hardware consisting of the processor and chipset to be established as the root-of-trust and to build

a chain of trust, it should have a hardware-based module that supports an MLE. The outcome of launching
a hypervisor in MLE-supporting hardware is a measured launch of the firmware, BIOS, and either all or
a key subset of hypervisor (kernel) modules, thus forming a trusted chain from the hardware to the
hypervisor.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

11

• The hypervisor offering must be able to utilize the MLE feature. In other words, the hypervisor should be
able to invoke the secure launch process, which is usually done by integrating a pre-kernel module into
the hypervisor’s code base since the kernel is the first module installed in a hypervisor boot up. The
purpose of this pre-kernel module is to ensure the selection of the right authenticated module in the
hardware that performs an orderly evaluation or measurement of the launch components of the hypervisor
or any software launched on that hardware. The Tboot is an example of a mechanism that enables the
hypervisor to take advantage of the MLE feature of the hardware.

• All hypervisor components that are intended to be part of the Trusted Computing Base (TCB) must be
included within the scope of the MLE-enabling mechanism so that they are measured as part of their
launch process.

The MLE feature with storage and reporting mechanisms on the hardware of the virtualized host can be
leveraged to provide boot integrity assurance for hypervisor components by measuring the identity of all
entities in the boot sequence, starting with firmware, BIOS, hypervisor and hypervisor modules; comparing
them to “known good values;” and reporting any discrepancies. If the measured boot process is to be extended
to cover VMs and its contents (guest OS and applications), a software-based extension to the hardware-based
MLE implementation within the hypervisor kernel is required. The security recommendation for ensuring a
secure boot process for all components of a hypervisor platform can now be stated as follows:

Security Recommendation HY-SR-1: The hypervisor that is launched should be part of a platform
and an overall infrastructure that contains: (a) hardware that supports an MLE with standards-based
cryptographic measurement capabilities and storage devices and (b) an attestation process with the
capability to provide a chain of trust starting from the hardware to all hypervisor components.
Moreover, the measured elements should include, at minimum, the core kernel, kernel support modules,
device drivers, and the hypervisor’s native management applications for VM Lifecycle Management
and Management of Hypervisor. The chain of trust should provide assurance that all measured
components have not been tampered with and that their versions are correct (i.e., overall boot integrity).
If the chain of trust is to be extended to guest VMs, the hypervisor should provide a virtual interface to
the hardware-based MLE.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

12

4.SECURITY RECOMMENDATION HY-BF1

To ensure the isolation of processes running in VMs, the following requirements must be met:

(a) The privileged commands or instructions from a Guest OS to the host processor must be mediated such

that the basic function of the VMM/hypervisor as the controller of virtualized resources is maintained.
(b) The integrity of the memory management function of the hypervisor host must be protected against attacks

such as buffer overflows and illegal code execution, especially in the presence of translation tables that
are needed for managing memory access by multiple VMs.

(c) Memory allocation algorithms must ensure that payloads in all VMs are able to perform their functions.
(d) CPU allocation algorithms must ensure that payloads in all VMs are able to perform their functions.

The requirements (a) and (b) can be met using software-based modules. However, hardware-based assistance
for virtualization, such as Instruction Set Virtualization and Memory Virtualization, provide better assurance
than software-based solutions in meeting those requirements and are therefore recommended in section 4.1.
The hardware-assisted virtualization features are briefly discussed prior to stating the recommendations. The
requirements (c) and (d) are meant to ensure the availability of application services running in VMs. The
enablers are some features in memory allocation and CPU allocation algorithms, and their associated
configuration parameters are stated as recommendations in sections 4.2 and 4.3, respectively.

4.1 Hardware Assistance for Virtualization

Instruction Set Virtualization: Processor architectures that support Instruction Set Virtualization provide two
modes of operation: root mode and non-root mode, each of which have four hierarchical privilege levels with
Level 0 being the highest and Level 3 being the lowest. Additionally, among the two modes, the root mode
has a higher privilege for executing CPU instructions than non-root mode. By running the hypervisor in root
mode and VMs (Guests) OS in non-root mode at privilege or ring level 0, the hypervisor is guaranteed safety
from at least any instruction set-type attacks by any Guest OS. However, VM escape can take place through
normal networking protocols. This safety is ensured by allowing the hardware trapping privileged instructions
to run in non-root mode and execution in root mode. Additionally, when the hypervisor does not have to
perform additional functions (e.g., translating sensitive instructions using techniques such as binary
translation), the code executing with privileges is reduced in the hypervisor, making the TCB smaller and
enabling better assurance verification.

Memory Virtualization: Hardware-assisted memory virtualization is provided when the hardware enables the
mapping of the Guest OS’s physical addresses in their respective page tables to the host’s physical addresses
using hardware-based page tables instead of hypervisor-generated shadow page tables. The subsequent
reduction in privileged code executing this function provides the same security advantage mentioned for
Instruction Set Virtualization above.

The security advantages of hardware-assisted virtualization platforms include the following:

• One of the potential security vulnerabilities for hypervisors is the buffer overflow attacks from VMs

resident on the virtualized host platform. The hardware support for memory management (e.g.,
Extended Page Tables, or EPT) that comes as part of the hardware-assisted virtualization can be
leveraged to prevent code execution from memory locations reserved for data storage, thus preventing
buffer overflow attacks.

• Hardware extensions for Virtualization provide two modes of execution: host or root mode and guest
or non-root mode. The host mode runs at a higher privilege than guest mode. The hypervisor code,
which provides the baseline functionality HY-BF1 (processor allocation and memory management),
runs in host mode while the guest OS and applications in VMs run in guest mode. Hence any exploit
code in guest OS cannot subvert the controls provided by the hypervisor code.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

13

• A common threat in virtualization platforms involves a malicious VM accessing areas of memory
belonging to other VMs. This is called a VM Escape attack. Hardware platforms with IOMMU provide
safety against this through features such as Direct Memory Access (DMA) remapping, which limits
allowed DMA access to the assigned protection domain (i.e., preventing a device from performing
DMA beyond its allocated area).

• The advantage of hardware providing assistance for both forms of virtualization is that the emulation
module of the hypervisor can present the true hardware architecture of the physical host instead of
modified hardware architecture. The consequence of this feature is that an unmodified Guest OS, along
with their native device drivers, can be run in VMs. The security implication of enabling this feature
is that significantly more CVE data is available for a Guest OS, as well as patch versions and certified
device drivers for each OS version.

Security Recommendation HY-SR-2: The hardware of the virtualized host should provide assistance for
virtualization for instruction sets and memory management using MMU since the hardware support provides
the following security assurances that cannot be guaranteed with purely software-based virtualization:

• Better memory management controls can prevent attacks such as buffer overflow.
• The feature for re-mapping of DMA transfers in IOMMU provides better isolation of I/O devices.

Further, the feature to directly assign I/O devices to a specific VM and enable direct access to those
resources eliminates the need for providing emulated device drivers for that VM, thus reducing the size
of trusted code.

• Guest OS code and hypervisor code execute in different processor modes, providing better isolation.
• Privilege-level isolation can provide better protection for device access mediation functions, and

hardware-based memory protection can provide better VM-level protection.
• By supporting full virtualization, COTS versions of OSs can allow for easier patching and updating than

having to perform the same operations on modified or ported versions of OSs that are the only types that
can be run on para-virtualized platforms.

• Since many features of virtualization are now available in hardware, the size of the hypervisor code will
be small, enabling better security attestation and verification.

4.2 VM Memory Allocation Scheduling Options

The hypervisor's memory scheduler is responsible for meeting the memory requirements for all workloads
running in all VMs at all times. Like an OS, a typical hypervisor meets this requirement by using a
combination of physical RAM and swap files called hypervisor kernel swap files. Further, a typical VM does
not always require the entire memory it has been configured for. For these reasons, it is a viable overall
virtualization configuration decision to have the combined configured memory of all VMs running on a
virtualized host to exceed the total physical RAM, provided that there are no memory-sensitive applications
running in VMs. However, over-commit—the ratio of the total configured memory of VMs to host physical
RAM—should not be too high as it may result in performance degradation of certain VM workloads that
require a significant amount of memory.

Another factor affecting the availability of the virtualized host or hypervisor for certain workloads in a VM is
the ratio of the physical RAM size to kernel swap file size that is maintained by the memory scheduler of the
hypervisor. Since a low ratio will deny execution of certain workloads for certain VMs, there should be a
configuration option available in the hypervisor to specify a guaranteed physical amount of RAM for each
VM. Also, in order to avoid a situation in which a particular VM makes use of the physical RAM for its entire
configured memory, there should be a feature to specify a limit on the guaranteed physical RAM. Finally,
there may be certain workloads that are time-sensitive, and the VMs hosting them should have some priority
in getting the required memory resources compared to other running VMs. Therefore, a configuration option
to specify a priority value for each VM should also exist.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

14

Based on the above issues relating to hypervisor memory scheduling, the following are the security
recommendations:

Security Recommendation HY-SR-3: The hypervisor should have configuration options to specify a
guaranteed physical RAM for every VM that requires it, as well as a limit to this value, and a priority
value for obtaining the required RAM resource in situations of contention among multiple VMs.
Further, the over-commit feature that enables the total configured memory for all VMs to exceed the
host physical RAM should be disabled by default.

4.3 VM CPU Allocation Options

The security goal in VM CPU allocation is to guarantee availability for all VMs. This can be achieved by
proper use of configuration options dealing with the allocation of physical resources such as CPU cores and
CPU clock cycles. For example, one of the configuration options commonly available is to set a minimum
CPU requirement, or reservation, in terms of clock cycles. The architectural parameter to be observed here
is that the number of VMs that can be deployed can be no more than the ratio of the total CPU clock cycles
that the hypervisor host can offer to the average reservation required by each VM. In a scenario where the
hypervisor host has 6000 MHz of CPU capacity and the average reservation for each VM is 1000 MHZ, then
no more than 6 VMs can be active in that hypervisor host. The reservation thus sets a lower bound
(guaranteed) on the CPU clock cycles required for each VM. Similarly, there should be a feature to set an
upper bound, or Limit, for the CPU cycles that each VM can use so that no single VM (sometimes a rogue
or a compromised one) consumes all CPU resources of the host and denies services to other co-resident VMs.
Further, to facilitate scheduling of hypervisor host CPU clock cycles in situations where multiple VMs
require clock cycles above the lower bound but below the upper bound, there should be a feature to assign a
priority score, or shares, to each VM. Summarizing the above desired features for ensuring fair share for all
VMs deployed, the security recommendations for VM CPU allocation are as follows:

Security Recommendation HY-SR-4: The hypervisor should have robust configuration features for
provisioning virtual resources to all hosted VMs such that it does not exceed a key physical resource
(e.g., number of CPU cores).

Security Recommendation HY-SR-5: The hypervisor should provide features to specify a lower and
upper bound for CPU clock cycles needed for every deployed VM as well as a feature to specify a
priority score for each VM to facilitate scheduling in situations of contention for CPU resources from
multiple VMs.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

15

5. SECURITY RECOMMENDATIONS FOR HY-BF2

Security recommendations for all three forms of device virtualization discussed in section 2.2.2 as well as for
self-virtualized devices are provided in this section.

Security Recommendation HY-SR-6A (Emulation): Because of the complexity of emulating a
hardware device through software, emulation, apart from suffering performance penalties, also
increases the size of the TCB especially in situations where the guest OS has native device drivers and
the device emulation code runs as a kernel module with the same privilege level as the hypervisor.
Hence emulation should only be used where complexity is manageable (e.g., USB host controller).

Security Recommendation HY-SR-6B (Para-virtualization): In situations where para-virtualized
device drivers are used in VMs, mediation of access to physical devices should be enabled by
running back-end device drivers (which control the physical device attached to the hypervisor host)
in a dedicated VM rather than in the hypervisor. This facilitates running the back-end device driver
code at a privilege level lower than that of the hypervisor. Additionally, the hypervisor platform
should include hardware support in the form of I/O Memory Management Unit (IOMMU) for
validating and translating access from the driver domain’s underlying hardware device to host
memory. The specific IOMMU feature that is mandatory is DMA remapping where the DMA call
from a device to guest physical address (GPA) must be translated to host physical address (HPA) and
then checked whether the HPA address falls within the protection domain assigned to that device.
Combining these mechanisms enables reducing the size of the TCB as well as reducing the impact of
faulty device or device driver behavior (restricted to device-driver VM as opposed to the hypervisor).

Security Recommendation HY-SR-6C (Passthrough or self-virtualizing hardware devices): For
situations where VMs need to be given dedicated access to DMA capable devices, the hypervisor
platform should include hardware support in the form of I/O Memory Management Unit (IOMMU)
for validating and translating all device access to host memory. This recommendation also applies to
use of self-virtualizing hardware devices (based on SR-IOV specification). The specific IOMMU
feature that is mandatory is DMA remapping where the DMA call from a device to guest physical
address (GPA) must be translated to host physical address (HPA) and then checked whether the HPA
address falls within the protection domain assigned to that device.

The following security recommendations are applicable irrespective of the type of device
virtualization:

Security Recommendation HY-SR-7 (Device access): It should be possible to set up an Access
Control List (ACL) to restrict the access of each VM process to only the devices assigned to that VM.
To enable this, the hypervisor configuration should support a feature to mark VMs (semantically, a set
of tasks) and/or have a feature to specify a whitelist, or list of allowable of devices, for each VM.

Security Recommendation HY-SR-8 (Device Usage): It should be possible to set resource limits for
network bandwidth and I/O bandwidth (e.g., disk read/write speeds) for each VM to prevent denial-of-
service (DOS) attacks. Additionally, the proper use of resource limits localizes the impact of a DOS to
the VM or the cluster for which the resource limit is defined.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

16

6. SECURITY RECOMMENDATIONS FOR HY-BF4

6.1 VM Image Management

Since VM-based software (e.g., Guest OS, Middleware, and Applications) shares physical memory of the
virtualized host with hypervisor software, it is no surprise that a VM is the biggest source of all attacks
directed at the hypervisor. In operational virtualized environments, VMs are rarely created from scratch, but
rather from VM Images. VM Images are templates used for creating running versions of VMs. An
organization may have its own criteria for classifying the different VM Images it uses in its VM Library.
Some commonly used criteria include: processor load (VM used for compute-intensive applications);
memory load (VM used for memory-intensive applications, such as Database processing); and application
sensitivity (VM running mission-critical applications utilizing mission-critical data). For each VM image
type, the following practices must be followed to ensure that the resulting operational VMs are secure:

• Documentation on the Gold Image for each VM Image type. A Gold Image is defined by a set of

configuration variables associated with the VM Image. The configuration variables should include, at
the minimum, the Guest OS make, version, patch level, date of creation, number of vCPU cores, and
memory size.

• Each VM Image in the VM Image Library must have an associated digital signature.
• Access privileges to the VM Image Library must be controlled through a robust access control

mechanism.
• Access to the server storing VM Images should have a secure protocol.

The security recommendations relating to the above practices are as follows:

Security Recommendation HY-SR-9: Gold standard must be defined for VMs of all types, and VM
Images that do not conform to the standard should not be allowed to be stored in the VM Image server
or library. Images in the VM Image library should be periodically scanned for outdated OS versions and
patches, which could result in a drift from the standard.

Security Recommendation HY-SR-10: Every VM Image stored in the image server should have a digital
signature attached to it as a mark of authenticity and integrity, signed using trustworthy, robust
cryptographic keys.

Security Recommendation HY-SR-11: Permissions for checking into and out of images from the
VM Image library should be enforced through a robust access control mechanism and limited to an
authorized set of administrators. In the absence of an access control mechanism, VM image files
should be stored in encrypted devices that can only be opened or closed by a limited set of authorized
administrators with passphrases of sufficient complexity.

Security Recommendation HY-SR-12: Access to the server storing VM images should always
be through a secure protocol such as Transport Layer Security (TLS).

6.2 VM Live Migration

 Live migration is a functionality present in all hypervisors, which enables a VM to be migrated or moved
from one virtualized host to another while the guest OS and applications on it are still running. This
functionality provides key benefits such as fault tolerance, load balancing, and host maintenance, upgrades,
and patching. In live migration, the state of the guest OS on the source host must be replicated on the
destination host. This requires migrating memory content, processor state, storage (unless the two hosts share
a common storage), and network state.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

17

The most common memory migration technique adopted in most hypervisors is called pre-copy. In this
approach, memory pages belonging to the VM are transferred to the destination host while the VM continues
to run on the source host [5]. Memory pages modified during migration are sent again to the destination to
ensure memory consistency. During this phase, the exact state of all the processor registers currently operating
on the VM are also transferred, and the migrating VM is suspended on the source host. Processor registers at
the destination are modified to replicate the state at the source, and the newly migrated VM resumes its
operation. Storage migration is provided by a feature that allows admins to move a VM's file system from one
storage location to another without downtime. This storage migration can even take place in situations where
there is no VM migration. For example, a VM may continue to run on the host server while the files that make
up the VM are moved among storage arrays or Logical Unit Numbers (LUNs).

In the process described above, the memory and processor-state migration functions are inherent aspects of
hypervisor design. The storage migration function is an integral part of storage management and is applicable
to both virtualized and non-virtualized infrastructures. The network state is maintained after a VM migration
because each VM carries its own unique MAC address, and the migration process places some restrictions on
the migration target (e.g., the source and target host should be on the same VLAN). Hence, from the security
protection point of view, the only aspects to consider are proper authentication and a secure network path for
the migration process.

Security Recommendation HY-SR-13: During VM live migration, a secure authentication protocol
must be employed; the credentials of the administrator performing the migration are passed only to the
destination host; the migration of memory content and processor state takes place over a secure network
connection; and a dedicated virtual network segment is used in both source and destination hosts for
carrying this traffic.

6.3 VM Monitoring and Security Policy Enforcement

Since VMs are prime sources of threats to the hypervisor, continuous monitoring of the state of VMs and the
traffic going in and out of those VMs is necessary for: (a) controlling the type of traffic, (b) intrusion detection
and prevention, and (c) detecting viruses and other malware. This function can be accomplished in two ways:

• VM-based Security Monitoring and Intervention Solution
• Security Monitoring and Intervention by a Hypervisor Module with enforcement of traffic rules

at the point of a VM or at the virtual network object level (i.e., Virtual Switch's Port/Port Group)

In a VM-based Security Monitoring and Intervention approach, software or a software-agent (i.e., a security
tool) is run inside a VM to monitor security-relevant events. This approach is similar to running host-based
IDS. The advantage of this approach is that it provides good visibility and good context analysis for the code
running within the VM. However, because of the dependency of the security tool on the underlying Guest
OS, any attack on the latter will also disable the function of the security tool, thus disabling the
countermeasure. Another disadvantage of running the security tool as a virtualized workload is the
performance impact it will have on itself and other application workloads running on that VM.

Virtual Network-based Security Monitoring can come in two forms:

(a) A dedicated security appliance for protecting each VM;
(b) A security appliance that runs in the virtual network and can protect

multiple VMs inside the hypervisor host.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

18

The dedicated security appliance is deployed in the virtual network in front of the monitored VM and
monitors all traffic going in and out of the VM. The main disadvantage of this approach is that if the VM is
migrated to some other physical host, the dedicated appliance must be migrated as well.

A generic security appliance deployed on a virtual network and configured to monitor multiple VMs may
have to be continuously reconfigured for the following reasons:

• The set of VMs to be monitored is continuously in a state of flux since VMs are subject to migration

from one virtualized host to another due to load balancing, performance, and even security reasons.
• If virtual LANs (VLANs) are used to provide communication-level isolation among VMs, the

configuration of VLANs may undergo continuous change as the workload patterns shift on VMs.
This may require re-configuration of the network traffic mirroring capabilities to ensure that all
virtual network traffic flows through the monitoring tool impacting the overall performance of the
workloads inside that virtualized host.

In a hypervisor-based security monitoring solution, the security tool that monitors and protects VMs (User
VMs) is run outside of the VMs hosting business applications in a special security-hardened VM. A security
tool designed and configured to run in this mode is called Security Virtual Appliance (SVA). The SVA obtains
its visibility into the state of a VM (e.g., CPU, registers, memory, and I/O devices) as well as network traffic
amongst VMs and between VMs and the hypervisor through the virtual machine introspection API of the
hypervisor. This is the preferable solution since:

(a) It is not vulnerable to a flaw in the Guest OS.
(b) It is independent of the Virtual Network Configuration and does not have to be reconfigured every

time the virtual network configuration changes due to migration of VMs or change in connectivity
among VMs resident on the hypervisor host.

Therefore, the security recommendations, with respect to creating the VM monitoring solution for the
protection of the hypervisor, are as follows:

Security Recommendation HY-SR-14: There should be a mechanism for security monitoring, security
policy enforcement of VM operations, and detecting malicious processes running inside VMs and
malicious traffic going into and out of a VM. This monitoring and enforcement mechanism forms the
foundation for building Anti-Virus (AV) and Intrusion Detection & Prevention System (IDPS)
solutions.

Security Recommendation HY-SR-15: Solutions for Security Monitoring and security policy
enforcement of VMs should be based outside of VMs and leverage the virtual machine introspection
capabilities of the hypervisor. Generally, such solutions involve running a security tool as a Security
Virtual Appliance (SVA) in a security-hardened or trusted VM.

Security Recommendation HY-SR-16: All anti-malware tools (e.g., virus checkers, firewalls, and IDPS)
running in the virtualized host should have the capability to perform autonomous signature or reference
file updates on a periodic basis.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

19

6.4 VM Configuration Management

The configuration of every VM should be monitored and managed throughout its lifecycle. In most instances,
this is accomplished using dedicated third-party tools in addition to native features that come with the
hypervisor. The desired features for these tools are provided in the form of security recommendation below:

Security Recommendation HY-SR-17: VM configuration management tools should have the capability
to compile logs and alert administrators when configuration changes are detected in any VM that is
being monitored.

6.5 Fine-grained Administrative Privileges for VM Management

Having the ability to assign fine-grained administrative permissions for the virtualized infrastructure enables
the establishment of different administrative models and associated delegations. To see the need for granular
permissions, it would be helpful to look at some use-case scenarios for administrative operations in the
virtualized infrastructure:

• VM Administration Use Case 1: A quality assurance group wants to set up a few virtual machines

with some definite profiles (resource quotas such as Memory, CPUs) to test some applications that
may soon go into production. In this situation, it may be useful for one or more administrators
assigned exclusively to the quality assurance group to be given administrative permissions on
specific virtual machines set up for testing purposes.

• VM Administration Use Case 2: A capacity planner assigned the task of determining the operating

loads on various virtualized servers and the need for additional virtualized hosts may need
permission to view the list of virtual machines in each of the virtualized hosts but not permissions
to perform any administrative operations on those VMs. In this situation, it is desirable to have the
ability to grant view rights to the list of VMs in a virtualized host but deny the user the rights to
interact with any of the visible objects.

• VM Administration Use Case 3: In virtualized data centers where VMs of different sensitivity

levels are run on the same virtualized host, an administrator who is given administrative privileges
at the hypervisor level should sometimes be prevented from accessing a specific VM because of
the sensitive nature of the workload (i.e., set of applications) running on that VM. The desired
capability in this scenario is to negate a permission, obtained through inheritance, for a specific
child object.

• VM Administration Use Case 4: In some cases, assign permissions are needed for a group of

administrators controlling a set of VMs for a particular organizational division or department. A
corollary to this type of administrative entity is the need for a class of administrators wanting to
administer VMs running a particular type of work load (e.g., web server), irrespective of its location
within the organizational structure. This class of administrators may not require the entire set of
administrative functions on a VM but rather some arbitrary set of management functions such as
Configure CD Media, Configure Floppy Media, Console Interaction, Device Connection, Power
On, Power Off, Reset, or Suspend. This scenario calls for the capability to create custom roles that
can contain an arbitrary set of permissions relating to a VM as well as the ability to create a custom
object that contains an arbitrary set of VMs carrying a particular type of workload (e.g., web server).

Summing up the capabilities required in all four administrative scenarios, the overall security recommendation
with required permission granularity is as follows:

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

20

Security Recommendation HY-SR-18: The access control solution for VM administration should have a
granular capability, both at the permission assignment level and the object level (i.e., the specification of
the target of the permission can be a single VM or any logical grouping of VMs based on function or
location). In addition, the ability to deny permission to some specific objects within a VM group (e.g.,
VMs running workloads of a particular sensitivity level) in spite of having access permission to the VM
group should exist.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

21

7. SECURITY RECOMMENDATIONS FOR HY-BF5

Secure operation of administrative functions is critical for any server class software, and hypervisor is no
exception to this. The outcome is a secure configuration that can provide the necessary protections against
security violations. In the case of hypervisor, impact of insecure configuration can be more severe than in
many server software instances since the compromise of a hypervisor can result in the compromise of many
VMs operating on top of it. While the composition of the configuration parameters depends upon the design
features of a hypervisor offering, the latitude in choosing the values for each individual parameter results in
different configuration options. Many configuration options relate functional features and performance.
However, there are some options that have a direct impact on the secure execution of the hypervisor, and it is
those configuration options that are discussed in this document.

The following are some security practices that are generic for any server class software. Although applicable
to the hypervisor, these are not addressed in this document:

(a) Control of administrative accounts on the hypervisor host itself and least privilege assignment for

different administrators
(b) Patch management for hypervisor software and host OS
(c) Communicating with the hypervisor through a secure protocol such as TLS or Secure Shell (SSH)

7.1 Centralized Administration

The administration of a hypervisor and hypervisor host can be performed in two ways:

• Having administrative accounts set up in each hypervisor host
• Centralized administration of all hypervisors and hypervisor hosts through enterprise virtualization

management software.

Central management of all hypervisor platforms in the enterprise through enterprise virtualization
management software (EVMS) is preferable since a gold-standard configuration for all hypervisors in the
enterprise can be defined and easily enforced through EVMS. For any IT data center to operate efficiently,
it is necessary to implement load balancing and fault tolerance measures, which can be realized by defining
hypervisor clusters. Creation, assignment of application workloads, and management of clusters can be
performed only with a centralized management software, making the deployment and usage of an enterprise
virtualization management software mandatory.

Hence the recommendation for the architecture for hypervisor administration is as follows:

Security Recommendation HY-SR-19: The administration of all hypervisor installations in the
enterprise should be performed centrally using an enterprise virtualization management system
(EVMS). Enterprise gold-standard hypervisor configurations for different types of workloads and
clusters must be managed and enforced through EVMS. The gold-standard configurations should, at
minimum, cover CPU, Memory, Storage, Network bandwidth, and Host OS hardening, if required.

7.2 Securing the Management Network

To connect multiple VMs to each other and to the enterprise network in which the virtualized host is a node,
the hypervisor allows for a software-defined communication fabric, or a virtual network, through its
management console or command line interface (CLI). This capability can be provided by a dedicated

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

22

management VM or directly in the hypervisor kernel through a kernel module. The virtual network is a software-
defined artifact that resides entirely within the virtualized host and has the VMs residing inside it as its nodes.
The components of this virtual network are (a) the virtual network interface cards (vNICs) that are defined
for each VM and provide connection for each VM to the virtual network; (b) the virtual switches that provide
selective connectivity among VMs and whose configuration determines the topology of the virtual network;
and (c) the physical network interface cards (pNICs) of the virtualized hosts that provide connectivity for
VMs to the enterprise network.

While considering the security impact of the virtual network, the following three main functions must be
considered:

• Providing selective connectivity or isolation between groups of VMs belonging to different logical

groupings (e.g., different tenants in the case of an Infrastructure as a Service (IaaS) cloud service;
different application tiers such as Web Server or Database Server; or different Line of Business
applications of an enterprise)

• Dedicating subnets for key functions such as (a) migration of VMs from one hypervisor host to
another for security or performance reasons, (b) attaching network-based storage devices, and (c)
fault Tolerant Logging

• Providing access to the management interface in the management VM (a node of the virtual
network), which is used for performing key hypervisor baseline functions of VM lifecycle
management (HY-BF4) and Management of hypervisor platform (HY-BF5)

Out of the three functionalities stated above, selective connectivity and isolation between groups of VMs is
required for providing security to the applications running on those VMs and therefore outside of the scope of
this document. The same criteria apply to dedicating subnets for network-based storage administration. We
have already discussed secure VM migration under VM lifecycle management in section 6. Hence, our focus
on virtual network configuration is limited to providing protection for the network interfaces used for
performing VM management and hypervisor administrative functions. A commonly adopted approach is to
allocate a dedicated physical network interface card (NIC) for handling management traffic, and, if that is not
feasible, a virtual network segment (vLAN ID) exclusively for it.

Security Recommendation HY-SR-20: Protection for hypervisor host and software administration
functions should be ensured by allocating a dedicated physical NIC or, if that is not feasible, placing the
management interface of the hypervisor in a dedicated virtual network segment and enforcing traffic
controls using a firewall (e.g., designating the subnets in the enterprise network from which incoming
traffic into the management interface is allowed).

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

23

8. SECURITY RECOMMENDATION SUMMARY

The hypervisor is a complex server class software that virtualizes hardware resources to enable the
execution of multiple computing stacks (VMs) with heterogeneous OSs and multiple applications hosted
within them. Secure configuration of the hypervisor, together with its physical host (i.e., hypervisor host
or virtualized host), is collectively called the hypervisor platform and is needed to provide a safe platform
for the execution of mission-critical applications.

Since there are multiple ways by which an architecture of a hypervisor can be classified, the approach
taken in this document is to identify the five baseline functions that a hypervisor performs, the tasks
involved in each baseline function, the potential threats to secure execution of the task, and to express the
countermeasures that provide assurance against exploitation of these threats in the form of security
recommendations.

Overall, twenty security recommendations are provided for secure deployment of hypervisors. All but two
(HY-SR-1 and HY-SR-2) relate to the configuration of parameters of software modules in the hypervisor
platform. These parameters include integrity metrics for software modules (e.g., device drivers and VM
images), the setting of access controls (e.g., device access, VM image access, and VM administration),
and the configuration of secure protocols (e.g., VM image server access and VM migration). The mapping
of the security recommendations to a hypervisor’s baseline functions is provided in Appendix B.

The trust model outlined in this document (refer to section 1.2) assumes that the hardware of the hypervisor
host is trusted. However, it must be mentioned that there have been reported case of attacks (e.g., side channel
attacks regarding some implicitly shared hardware resources such as CPU caches and Translation Lookaside
Buffers (TLB)). More recently published attacks concerning CPU-level performance optimizations (e.g.,
Spectre and Meltdown) also limit the assurance of trust on current hardware platforms used for hypervisor
deployment.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

24

Appendix A: Description of Hypervisor Baseline Functions

Detailed descriptions of each of the five hypervisor baseline functions are provided below:

• HY-BF1: VM Process Isolation – Provides scheduling of VMs for execution, management of the

application processes running in VMs such as CPU and Memory Management, and context switching
between various processor states during the running of applications in VMs. If DMA capable devices are
used in the hypervisor host, memory access to those devices need to be controlled as well. However, this
function is considered under HY-BF2 since it pertains to devices mediation.

• HY-BF2: Devices Mediation & Access Control – Makes devices available to VMs (e.g., via
emulation, para-virtualization, passthrough or self-virtualizing hardware devices) and controlling
which VMs are allowed to access which devices (e.g., Network Interface Card (NIC), storage device
such as IDE drive, etc.).

• HY-BF3: Direct Execution of commands from Guest VMs – Certain commands from Guest OSs are
executed directly by the hypervisor instead of being triggered through interrupts and context switching.
This function applies to hypervisors that have implemented para-virtualization instead of full
virtualization.

.• HY-BF4: VM Lifecycle Management – This involves all functions from creation and management of VM
images, control of VM states (Start, Pause, Stop), VM migration, VM monitoring and policy enforcement.

• HY-BF5: Management of hypervisor platform– This involves defining some artifacts and setting values
for various configuration parameters in hypervisor software modules including those for configuration
of a Virtual Network inside the hypervisor.

A detailed description of the above baseline functions is given below:

A.1 HY-BF1 (VM Process Isolation)

Provides scheduling of VMs for execution, management of the application processes running in VMs such
as CPU and Memory Management, and context switching between various processor states during the
running of applications in VMs. In order to ensure VM process isolation, memory access from DMA capable
devices needs to be under hypervisor control as well (e.g., via IOMMU). However, this function is
considered under HY-BF2 since it pertains to devices mediation.

A.2 HY-BF2 (Devices Mediation & Access Control)

The applications executing in VMs need to access devices such as network and storage. Mediation of access
to devices is handled in hypervisor hosts through device virtualization (also called IO virtualization). There
are three common approaches to device virtualization: (a) Emulation, (b) Para-virtualization, and (c)
Passthrough or self-virtualizing hardware devices.

In emulation, code is implemented to present a virtual device that has a corresponding real (hardware) device
for which the guest OS already has a driver. This enables running of unmodified guests (VMs), thus
implementing full virtualization. This emulation code runs in the hypervisor. An I/O call from a guest VM
application (through its guest OS) is intercepted by the hypervisor kernel and forwarded to this code since
guest VMs cannot access the physical devices directly under this setup. This emulation code traps all device
access instructions and converts them to calls on the physical device driver for the physical device attached to
the hypervisor host. It also multiplexes accesses from guest VMs’ emulated virtual devices to the underlying
physical device.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

25

In the para-virtualization approach, the hypervisor presents to the guest an interface of an artificial device that
has no corresponding hardware counterpart. This enables special, simplified hypervisor-aware I/O drivers
(called para-virtualized drivers) to be installed in the guest. The calls from these para-virtualized device
drivers in guest VMs are handled by another device driver (called back-end driver) which directly interfaces
with the physical device and mediates access to that physical device from para-virtualized guests. In some
instances, the calls from para-virtualized guest drivers are handled directly by the hypervisor through its
hypercall interface (the corresponding calls are called hypercalls).

The third approach to device virtualization, the passthrough approach (or direct device assignment), is
deployed for situations where a VM needs exclusive access to a device (e.g., NIC, disk controller, HBA, USB
controller, serial port, firewire controller, soundcard) for performance reasons to avoid overhead due to
emulation. Generally this is required for PCI devices and is also called PCI Passthrough. Since many of these
devices have a memory-mapped interface, they can read or write directly to or from main memory and are
also called Direct Memory Access (DMA) capable devices. To provide exclusive access to a DMA capable
device for a VM, the memory pages of the device are mapped into guest VM’s address space.

Apart from the three types of device virtualization described above, hypervisor hosts can support self-
virtualizing hardware devices. These devices have interfaces that can export a set of virtual functions (VFs)
corresponding to a physical function (PF). The hypervisor then can assign these VFs to multiple guest VMs,
while it retains control of the PF. These devices conform to Single Root I/O Virtualization (SR-IOV)
specification and thus enable DMA capable devices to be shared among VMs (as virtualization and
multiplexing are done by the devices themselves) instead of being dedicated to a single VM as in passthrough
mode.

A.3 HY-BF3 (Direct Execution of commands from Guest VMs):

Certain commands from Guest OSs are executed directly by the hypervisor instead of being triggered
through interrupts and context switching. These commands are called hypercalls and are supported by a
special interface in the hypervisor. This function applies only to hypervisors that have implemented para-
virtualization instead of full virtualization.

A.4 HY-BF4 (VM Lifecycle Management)

This encompasses all administrative operations on VMs throughout its life cycle. They include but are not
limited to:

• Creation of VMs conforming to a standard image, ensuring integrity of images and secure storage and

retrieval of images; provisioning images with appropriate vCPU, RAM, network, and storage
• Migration of VMs from one hypervisor host to another
• Monitoring of VM execution and traffic flows into and out of VMs & overall configuration

management
• Fine-grained access control for VM administration including the basic operations that alter the state of

VMs – Start, Pause, Stop.
• Access control and management of snapshots

Management tasks are enabled using a management daemon which provides network interfaces. These
interfaces are generally implemented not as part of the hypervisor kernel modules but on a privileged VM
(management VM) that is booted up as an integral part of the hypervisor platform boot process.

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

26

A.5 HY-BF5 (Management of hypervisor platform)

These tasks include those that are involved in the configuration of the hypervisor host (virtualized host) and
the hypervisor software itself. Important tasks include: provisioning of VMs to hypervisor hosts, creating
and managing hypervisor clusters and configuration of the virtual network inside the hypervisor host. A
virtual network is a software-defined network inside the hypervisor host that enables connectivity among
VMs, as well as connectivity of VMs to external network (e.g., LAN, WAN, etc.).

27

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

Appendix B: Traceability of Security Recommendation to Hypervisor
Baseline Functions

NO SECURITY RECOMMENDATION BASELINE

FUNCTION
HY-SR-1 The hypervisor that is launched should be part of a platform

and an overall infrastructure that contains: (a) Hardware that
supports a MLE with standards-based cryptographic measurement
capability and storage device and (b) Attestation process that should
contain capabilities to take advantage of these to provide a chain of
trust starting from the Hardware to all Hypervisor components. The
measured elements (components) should include at the minimum the
following: the core kernel, kernel support modules, device drivers and
the hypervisor’s native management applications (for VM Lifecycle
Management and Management of Hypervisor). The chain of trust should
provide assurance that all measured components have not been
tampered with and that their versions are correct (i.e., overall boot
integrity). If the chain of trust is to be extended to guest VMs, the
hypervisor should provide a virtual interface to the hardware-based
MLE.

N/A

HY-SR-2 The hardware of the virtualized host should provide assistance for
virtualization for instruction sets and memory management using MMU
since the hardware support provides the following security assurances that
cannot be guaranteed with purely software-based virtualization:

• Better memory management controls can prevent attacks such as buffer

overflow.
• The feature for re-mapping of DMA transfers in IOMMU provides

better isolation of I/O devices. Further, the feature to directly assign
I/O devices to a specific VM and enable direct access to those resources
eliminates the need for providing emulated device drivers for that VM,
thus reducing the size of trusted code.

• Guest OS code and hypervisor code execute in different processor
modes, providing better isolation.

• Privilege-level isolation can provide better protection for device access
mediation functions, and hardware-based memory protection can
provide better VM-level protection.

• By supporting full virtualization, COTS versions of OSs can allow for
easier patching and updating than having to perform the same
operations on modified or ported versions of OSs that are the only types
that can be run on para-virtualized platforms.

• Since many features of virtualization are now available in hardware,
the size of the hypervisor code will be small, enabling better security
attestation and verification.

HY-BF1 (VM
Process Isolation)

28

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

HY-SR-3 The hypervisor should have configuration options to specify a
guaranteed physical RAM for every VM (that requires it) along with a
limit to this value, and to specify a priority value for obtaining the
required RAM resource in situations of contention among multiple VMs.
Further, the over-commit feature (if available) that enables the total
configured memory for all VMs to exceed the host physical RAM should
be disabled by default.

HY-BF1 (VM
Process Isolation)

HY-SR-4 The hypervisor should have robust configuration features for
provisioning virtual resources to all hosted VMs in a way that it
does not exceed a key physical resource such as number of CPU
cores.

HY-BF1 (VM
Process Isolation)

HY-SR-5 The hypervisor should provide features to specify a lower and upper
bound for CPU clock cycles needed for every deployed VM as well as a
feature to specify a priority score for each VM, to facilitate scheduling in
situations of contention for CPU resources from multiple VMs.

HY-BF1 (VM
Process Isolation)

HY-SR-6A,
HY-SR-6B,
HY-SR-6C

Security Recommendation HY-SR-6A (Emulation): Because of the
complexity of emulating a hardware device through software,
emulation, apart from suffering performance penalties, also increases
the size of the TCB especially in situations where the guest OS has
native device drivers and the device emulation code runs as a kernel
module with the same privilege level as the hypervisor. Hence
emulation should only be used where complexity is manageable (e.g.,
USB host controller).

Security Recommendation HY-SR-6B (Para-virtualization): In
situations where para-virtualized device drivers are used in VMs,
mediation of access to physical devices should be enabled by running
back-end device drivers (which control the physical device attached
to the hypervisor host) in a dedicated VM rather than in the
hypervisor. This facilitates running the back-end device driver code
at a privilege level lower than that of the hypervisor. Additionally,
the hypervisor platform should include hardware support in the form
of I/O Memory Management Unit (IOMMU) for validating and
translating access from the driver domain’s underlying hardware
device to host memory. The specific IOMMU feature that is
mandatory is DMA remapping where the DMA call from a device to
guest physical address (GPA) must be translated to host physical
address (HPA) and then checked whether the HPA address falls
within the protection domain assigned to that device. Combining
these mechanisms enables reducing the size of TCB as well as
reducing the impact of faulty device or device driver behavior
(restricted to device-driver VM as opposed to the hypervisor).

Security Recommendation HY-SR-6C (Passthrough or self-
virtualizing hardware devices): For situations, where VMs needs to
be given dedicated access to DMA capable devices, the hypervisor
platform should include hardware support in the form of I/O Memory
Management Unit (IOMMU) for validating and translating all device
access to host memory. This recommendation also applies to use of
virtualization-enabled hardware devices (based on SR-IOV
specification). The specific IOMMU feature that is mandatory is DMA

HY-BF2
(Devices
Mediation &
Access Control)

29

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

remapping where the DMA call from a device to guest physical
address (GPA) must be translated to host physical address (HPA) and
then checked whether the HPA address falls within the protection
domain assigned to that device.

HY-SR-7 It should be possible to set up an Access Control List (ACL) to restrict
access of each VM process to only the devices assigned to that VM. To
enable this, the hypervisor configuration should support a feature to
mark (label) VMs (semantically a set of tasks) and/or has a feature to
specify a whitelist (list of allowable) of devices for each VM.

HY-BF2
(Devices
Mediation &
Access Control)

HY-SR-8 It should be possible to set resource limits for network bandwidth and
I/O bandwidth (e.g., disk read/write speeds) for each VM to prevent
denial of service (DOS) attacks. Further, the proper use of resource
limits, localizes the impact of a DOS to the VM or the cluster for which
the resource limit is defined.

HY-BF2
(Devices
Mediation &
Access Control)

HY-SR-9 Gold-standard must be defined for VMs of all types and VM Images not
conforming to the standard should not be allowed to be stored in the VM
Image server/library. Further images in the VM Image library should be
periodically scanned for OS versions and patches going out of date and
thus have drifted from the standard.

HY-BF4 (VM
Lifecycle
Management)

HY-SR-10 Every VM Image stored in the image server should have a digital signature
attached to it as a mark of authenticity and integrity, signed using
trustworthy, robust cryptographic keys.

HY-BF4 (VM
Lifecycle
Management)

HY-SR-11 Permissions for checking in to and checking out images from
VM Image library should be enforced through a robust access
control mechanism and limited to an authorized set of
administrators. In the absence of an access control mechanism, VM
image files should be stored in encrypted devices that can only be
opened/closed by a limited set of authorized administrators with

HY-BF4 (VM
Lifecycle
Management)

HY-SR-12 Access to the server storing VM images should always be through a
secure protocol such as TLS.

 HY-BF4 (VM
 Lifecycle
 Management)

HY-SR-13 During VM live migration, care should be taken to see that a secure
 authentication protocol is used for performing live migration, that
 the credentials of the administrator performing the migration is
 passed only to the destination host, the migration of memory content
 and processor state takes place over a secure network connection
 and a dedicated virtual network segment is used in both source and
 destination hosts for carrying this traffic.

HY-BF4 (VM
Lifecycle
Management)

HY-SR-14 There should be a mechanism for security monitoring and security policy
enforcement of VM operations –malicious processes running inside VMs
and malicious traffic going in and out of a VM. This monitoring and
enforcement mechanism forms the foundation for building Anti-Virus
(AV) and Intrusion Detection & Prevention System (IDPS) solutions.

HY-BF4 (VM
Lifecycle
Management)

30

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

HY-SR-15 Solutions for Security Monitoring and security policy enforcement of
VMs should be based “outside of VMs” and should leverage the virtual
machine introspection capabilities of the hypervisor. Generally, such
solutions involve running a security tool as a Security Virtual Appliance
(SVA) in a security-hardened or trusted VM..

HY-BF4 (VM
Lifecycle
Management)

HY-SR-16 All antimalware tools (virus checkers, firewalls and IDPS)
running in the virtualized host should have the capability to
perform autonomous signature or reference file updates on a
periodic basis.

HY-BF4 (VM
Lifecycle
Management)

HY-SR-17 VM configuration management tools should have the capability to compile
logs and alert administrators when configuration changes are detected in
any VM that is being monitored.

HY-BF4 (VM
Lifecycle
Management)

HY-SR-18 The access control solution for VM administration should have the
granular capability both at the permission assignment level as well as at
the object level (i.e., the specification of the target of the permission can
be a single VM or any logical grouping of VMs - based on function or
location). In addition, the ability to deny permission to some specific
objects within a VM group (e.g., VMs running workloads of a particular
sensitivity level) despite having access permission to the VM group

HY-BF4 (VM
Lifecycle
Management)

HY-SR-19 The administration of all hypervisor installations in the enterprise should
be performed centrally using an enterprise virtualization management
system (EVMS). Further enterprise gold-standard hypervisor
configurations for different types of workloads and clusters must
managed (enforced) through EVMS. The gold-standard configurations
should at the minimum cover the following aspects – CPU, Memory,
Storage, Network bandwidth and Host OS hardening (if required).

HY-BF5
(Management of
hypervisor
Platform)

HY-SR-20 Protection for Hypervisor Host & Software administration functions
should be ensured by allocating a dedicated physical NIC, or if that is
not feasible, by placing the management interface of the hypervisor in a
dedicated virtual network segment and enforcing traffic controls using a
firewall (e.g., designating the subnets in the enterprise network from
which incoming traffic into the management interface is allowed).

HY-BF5
(Management of
hypervisor
Platform)

31

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

Appendix C: Glossary

Full Virtualization: A form of Virtualization in which the hypervisor presents virtualized resources
that reflect the architecture of the underlying hardware and hence unmodified guest OSs can be run.

Guest Operating System (OS): The operating system component of the execution stack of a
Virtual Machine (see below), others being Virtual Hardware, Middleware and Applications.

Hypervisor: A software built using a specialized kernel of an OS, along with supporting kernel modules
that provides isolation for various execution stacks represented by Virtual Machines (see below).

Virtualized Host: The physical host on which the virtualization software such as the Hypervisor
is installed. Usually, the virtualized host will contain a special hardware platform that assists
virtualization - specifically Instruction Set and Memory virtualization.

Virtual Machine (VM): A software-defined complete execution stack consisting of virtualized
hardware, operating system (guest OS), and applications.

Virtualization: A methodology for emulation or abstraction of hardware resources that enables
complete execution stacks including software applications to run on it.

32

NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR
 SERVER-BASED HYPERVISOR PLATFORMS

Appendix D: References

1. Mastering VMware vSphere 5.5, Scott Lowe et al., Wiley Publishing Incorporated (2013)
2. Running Xen: A Hands-On Guide to the Art of Virtualization, J.N. Matthews et al., Prentice Hall

(2008)
3. Building the Infrastructure for Cloud Security: A Solutions View, R.Yeluri, and E.Castro-Leon,

Apress Media/Springer Science (2014)
4. Trusted Platform Module (TPM) Main Specification:

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
5. S.Shirinbab, L. Lundberg and D. Ilie, Performance Comparison of KVM, VMware and Xenserver

using a Large Telecommunication Application, Proceedings of the Fifth International Conference
on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING), 2014. http://bth.diva-
portal.org/smash/record.jsf?pid=diva2%3A834000

6. E. Bugnion, J. Nieh and D. Tsafrir, Hardware and Software Support for Virtualization,

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://bth.diva-portal.org/smash/record.jsf?pid=diva2%3A834000
http://bth.diva-portal.org/smash/record.jsf?pid=diva2%3A834000

	EXECUTIVE SUMMARY
	1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE
	1.1 Hypervisor Baseline Functions (HY-BF)
	1.2 Scope of this document
	1.3 Target Audience
	1.4 Relationship to other NIST Guidance Documents

	2. APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS
	2.1 Hypervisor Platform Threat Sources
	2.2 Potential Threats to Hypervisor Baseline Functions

	3. SECURITY RECOMMENDATION FOR OVERALL PLATFORM INTEGRITY
	4.SECURITY RECOMMENDATION HY-BF1
	4.1 Hardware Assistance for Virtualization
	4.2 VM Memory Allocation Scheduling Options
	4.3 VM CPU Allocation Options

	5. SECURITY RECOMMENDATIONS FOR HY-BF2
	6. SECURITY RECOMMENDATIONS FOR HY-BF4
	6.1 VM Image Management
	6.2 VM Live Migration
	6.3 VM Monitoring and Security Policy Enforcement
	6.4 VM Configuration Management
	6.5 Fine-grained Administrative Privileges for VM Management

	7. SECURITY RECOMMENDATIONS FOR HY-BF5
	7.1 Centralized Administration
	7.2 Securing the Management Network

	8. SECURITY RECOMMENDATION SUMMARY
	Appendix A: Description of Hypervisor Baseline Functions
	Appendix B: Traceability of Security Recommendation to Hypervisor Baseline Functions
	Appendix C: Glossary
	Appendix D: References

