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Abstract 
 
The Hypervisor platform is a collection of software modules that provides virtualization of 
hardware resources (such as CPU, Memory, Network and Storage) and thus enables multiple 
computing stacks (made of an operating system (OS) and application programs) called Virtual 
Machines (VMs) to be run on a single physical host. In addition, it may have the functionality 
to define a network within the single physical host (called virtual network) to enable 
communication among the VMs resident on that host as well as with physical and virtual 
machines outside the host. With all this functionality, the hypervisor has the responsibility to 
mediate access to physical resources, provide run time isolation among resident VMs and enable 
a virtual network that provides security-preserving communication flow among the VMs and 
between the VMs and the external network. The architecture of a hypervisor can be classified in 
different ways. The security recommendations in this document relate to ensuring the secure 
execution of baseline functions of the hypervisor and are therefore agnostic to the hypervisor 
architecture. Further, the recommendations are in the context of a hypervisor deployed for server 
virtualization and not for other use cases such as embedded systems and desktops. 
Recommendations for secure configuration of a virtual network are dealt with in a separate NIST 
document (Special Publication 800-125B). 
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EXECUTIVE SUMMARY 
 

Server Virtualization is now an established technology for enterprise Information Technology (IT) 
infrastructure in data centers and cloud services as it provides better utilization of hardware resources, 
reduces physical space required, and reduces power consumption and administrative overhead. The core 
software used for server virtualization is called the Hypervisor which directly provides Central Processing 
Unit (CPU) and memory virtualization. Together with its supporting modules, it enables virtualization of 
all hardware resources (e.g., CPU, Memory, Network and Storage) and thus enables multiple computing 
stacks called Virtual Machines (VMs) or Guests, each hosting an Operating System (OS) (Guest OS) 
and application programs, to be run on a single physical host. This physical host is referred to as 
Virtualized Host or Hypervisor Host. Since the hypervisor by itself cannot provide all functions needed 
for server virtualization, it has supporting software modules (e.g., device drivers) for devices (e.g., 
Network and Storage devices) virtualization in addition to management modules for VM lifecycle 
operations and hypervisor configuration. The hypervisor together with these supporting modules and the 
hosting hardware constitute the hypervisor platform. The hypervisor can be installed either directly on 
the hardware or bare metal (Type 1 Hypervisor) or on top of a full-fledged conventional OS called Host 
OS (Type 2 Hypervisor). 

 
At first glance, it might appear that all activities related to secure management of a hypervisor and its 
hardware host (collectively called Hypervisor Platform) should consist of just the established state of the 
art practices for any server class software and its hosting environment. However, closer examination 
reveals that functions for supporting hardware virtualization that a hypervisor provides have extensive 
security ramifications and therefore require a focused set of security recommendations based on an 
analysis of threats to the secure execution of these functions.  
   
Since there are multiple ways by which an architecture of a hypervisor can be classified, the approach 
taken in this document is to identify the baseline functions that a hypervisor performs, the tasks 
involved in each baseline function, the potential threats to the secure execution of the task, and the 
countermeasures that can provide assurance against exploitation of these threats in the form of security 
recommendations. 
 
The following five are identified as baseline functions of a hypervisor platform: 

• VM Process Isolation 
• Devices Mediation and Access Control 
• Direct Execution of commands from Guest VMs  
• VM Lifecycle Management 
• Management of hypervisor platform 

 
Apart from providing security recommendations for ensuring the secure execution of the baseline 
functions listed above, a recommendation for ensuring the overall integrity of all components of a 
hypervisor platform is also provided. The recommendations cover both Type 1 and Type 2 hypervisors. 
  
Secure execution of routine administrative functions for the physical host where the hypervisor is 
installed is not covered in this document. The protection requirements for countering physical access 
threats, as well as those for Guest OS and applications running on VMs and associated security 
recommendations, are also beyond the scope of this document. Further, the security recommendations 
pertain to hypervisors deployed for server virtualization and do not cover other use cases such as the use 
of hypervisor for desktops and embedded systems.
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1. INTRODUCTION, SCOPE, AND TARGET AUDIENCE 
 

The Hypervisor is the core software that provides server virtualization. Along with its supporting modules, 
it enables virtualization of all hardware resources (e.g., CPU, Memory, Network, and Storage) and thus 
enables multiple computing stacks (basically made of an OS and application programs) to be run on a 
single physical host. Such a physical host is called a Virtualized Host (also referred to as a Hypervisor 
Host in this document), and the individual computing stacks are encapsulated in an artifact called Virtual 
Machines (VMs). To be an independent executable entity, the definition of a VM should include resources 
(e.g., CPU, Memory, etc.) allocated to it. The VMs are also called “Guests,” and the operating system 
(OS) running inside each of them is called “Guest OS.” The resources associated with a VM are virtual 
resources as opposed to physical resources associated with a physical host. The hypervisor together with 
these supporting modules and the hosting hardware constitute the hypervisor platform.  

 
The primary function of the hypervisor is to enforce guest OS isolation as well as controlled resource sharing 
among guest VMs. Thus, it plays many of the roles a conventional OS does on a non-virtualized host (server). 
Just as a conventional OS provides isolation between the various applications (or processes) running on a 
server, the hypervisor provides isolation between one or more VMs running on it. Also, similar to an OS, the 
hypervisor mediates access to physical resources (devices) across multiple VMs. While access to CPU and 
memory (to ensure process isolation) are handled directly by the hypervisor (through instruction set (CPU) 
virtualization and memory virtualization respectively with or without assistance from hardware), it handles 
the mediation of access to devices (devices virtualization) by calling on software modules running either 
in the kernel or in dedicated VMs called Device-driver VMs. The hypervisor can be installed either directly 
on the hardware or bare metal (Type 1 Hypervisor) or on top of a full-fledged conventional OS called Host 
OS (Type 2 Hypervisor). 
 
At first glance, it might appear that all activities related to the secure management of a hypervisor and its 
hardware host (collectively called Hypervisor Platform) should consist of just the established state of the art 
practices for any server class software and its hosting environment. However, closer examination reveals that 
the functions for supporting hardware virtualization that a hypervisor provides have extensive security 
ramifications and therefore require a focused set of security recommendations based on an analysis of threats 
to the integrity of these functions. In this document, these functions are called hypervisor baseline functions. 
   
The hypervisor baseline functions consist of:  

• VM Process Isolation 
• Devices Mediation and Access Control 
• Direct Execution of commands from Guest VMs  
• VM Lifecycle Management 
• Management of hypervisor platform 

 
A brief description of the above functions is given in section 1.1 below. 

1.1 Hypervisor Baseline Functions (HY-BF) 
 
While the basic function of a hypervisor is to virtualize hardware (a physical host) to enable the operation 
of multiple virtual hosts (popularly known as VMs), commercial hypervisor offerings come with differing 
feature sets. The modules that provide the same set of features are given different names in different product 
offerings. Hence, for accomplishing the goals of this document, it is necessary to identify a set of baseline 
features of a hypervisor that covers all functions for supporting hardware virtualization. In some instances, 
the module that just presents a set of virtualized resources to the VMs is called the Virtual Machine Manager 
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(VMM). When VMMs are combined with the modules that provide OS-level services, such as the scheduling 
of VMs in the CPU, they are called the hypervisor. These hypervisor baseline features or functions are: 
• HY-BF1: VM Process Isolation – Provides scheduling of VMs for execution, Management of the 

application processes running in VMs such as CPU and Memory Management, and context switching 
between various processor states during the running of applications in VMs. In order to ensure VM 
process isolation, memory access from Direct Memory Access (DMA) capable devices needs to be under 
hypervisor control as well (e.g., via Input Output Memory Management Unit (IOMMU)). However, this 
function is considered under HY-BF2 since it pertains to devices mediation. 

• HY-BF2: Devices Mediation and Access Control –  Makes devices available to VMs (e.g., via 
emulation, para-virtualization, passthrough or self-virtualizing hardware devices) and controlling 
which VMs are allowed to access which devices (e.g., Network Interface Card (NIC), storage device 
such as IDE drive, etc.).  

• HY-BF3: Direct Execution of commands from Guest VMs – Certain commands from Guest OSs are 
executed directly by the hypervisor instead of being triggered through interrupts and context 
switching. This function applies to hypervisors that have implemented para-virtualization instead of full 
virtualization 

• HY-BF4: VM Lifecycle Management – All functions including creation and management of VM images, 
control of VM states (Start, Pause, Stop), VM migration, making snapshots, VM monitoring, and policy 
enforcement 

• HY-BF5: Management of hypervisor platform – Defining artifacts and setting values for various 
configuration parameters in hypervisor software modules including those for configuration of a Virtual 
Network inside the hypervisor and updates and patching to those modules. 

 
The brief description of the five baseline functions is sufficient to guide discussion in the rest of the 
document. Detailed descriptions of the functions are provided in Appendix A. 
 
The above functions are carried out by different hypervisor components or software modules. There are some 
minor differences among hypervisor products in the way functions are distributed. The mapping of these 
functions to hypervisor components and the location of these components in overall hypervisor architecture 
are given in Table 1 below: 
 

Table 1: Hypervisor Platform Baseline functions 
 

Baseline function Component 
(Software Module) 

Location 

VM Process Isolation (HY-
BF1) 

Hypervisor Kernel Either an OS kernel (along with a kernel module) 
itself or a component installed on a full-fledged 
OS (Host OS) 

Devices Mediation and 
Access Control (HY-BF2) 

Device emulator or 
Device driver 

Either in a dedicated VM (called Device-driver 
VM) or in the hypervisor kernel itself 

Direct Execution of 
commands from Guest VMs 
(HY-BF3) 

Hypervisor Kernel Pertains to only para-virtualized hypervisors and 
handled by hypercall interfaces in that type of 
hypervisor 

VM Lifecycle Management 
(HY-BF4) 

A management 
daemon 

Installed on top of hypervisor kernel but runs in 
unprivileged mode 

Management of hypervisor 
platform (HY-BF5) 

A set of tools with 
CLI (command line 
interface) or a GUI 
(Graphical User 
Interface) 

A console or shell running on top of hypervisor 
kernel 
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In general, functions HY-BF1 and HY-BF3 are offered by modules running in a kernel collectively called 
“Hypervisor” while HY-BF2 is enabled by a software module that runs either in a dedicated VM (called 
Device-driver VM) or in the hypervisor kernel itself. The functions HY-BF4 and HY-BF5 are performed by 
a module called management or service console or through a kernel module. Just like the module that performs 
the HY-BF2 function, the console is a software layer that is generally not built into the hypervisor kernel 
but runs on top of it as a privileged VM and could be built either with a full-fledged OS installed inside it or 
with an ultra-light OS used to present an Application Programming Interface (API) (shell and network 
access) with utility functions that facilitate performing only the hypervisor-specific configuration and 
administrative tasks. 
 

1.2 Scope of this document 
 
The architecture of a hypervisor deployed for server virtualization can be classified in different 
ways: 

(a) Based on the entity over which the hypervisor installs – Type 1 Hypervisor or Type 2 
Hypervisor (already described) 

(b) Based on the type of virtualization 
- Full Virtualization – The hypervisor will expose the interface of a hardware device that 

is available in the real world to the VM and for which drivers are available for guest OS, 
and it will completely emulate the behavior of that device. Emulation allows the 
programs running in VMs to use the VM OS drivers that were designed to interact with 
the emulated device without installing any special driver or tool specified by the 
hypervisor vendor. 

- Para Virtualization -  The hypervisor exposes a device that does not exists in the real 
world, which is just software only, and presents a lightweight interface. However, this 
scenario calls for having special drivers in the VM, sometimes requiring modification to 
the guest OS. This approach is intended to increase the performance level of the 
applications running in the VM, compared to the emulation approach adopted in full 
virtualization. 

 
The trust model assumed for the hypervisor platform described in this document is as follows: 
• All components in a VM are untrusted including the guest OS and its associated utilities (e.g., 

guest device drivers) that run in the kernel space and all applications that run in the user space 
• The device drivers that are implemented within the hypervisor platform are untrusted unless they 

carry a security certification 
• The hypervisor kernel component that provides isolation between VMs is trusted 
• The host OS is trusted for Type 2 hypervisors 
• The hardware of the hypervisor host is trusted 
 
With the background information on hypervisor architecture and the assumed trust model, the 
scope of security recommendations for the five baseline functions (HY-BF1 through HY-BF5) 
covers the following: 
• All tasks that relate to functions HY-BF1, HY-BF2, and HY-BF4 
• HY-BF3, which relates to the handling of hypercalls in para-virtualized hypervisors, is a 

trusted function of the hypervisor and not included in the security recommendations 
• All tasks under HY-BF5 are included, except for those related to the definition and 

configuration of virtual network (secure configuration of virtual networks is covered under a 
separate NIST document, SP 800-125B) 

 
Recommendations to ensure overall platform integrity are also provided. 
 
The security recommendations do not cover the following: 



NIST SP 800-125A REV. 1 SECURITY RECOMMENDATIONS FOR 
 SERVER-BASED HYPERVISOR PLATFORMS 
 

4 
 

• Hypervisor host user account management 
• Hypervisor host authentication and access control 
• Routine administration of Host OS (e.g., keeping patches current) 
• Routine administration of Guest OS 
• Security of Guest OSs running on VMs 
• Security of Applications/Services running on VMs 

 

1.3 Target Audience 
 
The target audience for the security recommendations in this document is the following: 
• The Chief Security Officer (CSO) or the Chief Technology Officer (CTO) of an Enterprise IT department 

in a private enterprise or government agency who wants to develop a virtualization infrastructure to host 
various Line of Business (LOB) application systems on Virtual Machines (VM) 

• Managers of data centers who want to offer virtualization infrastructure for hosting secure cloud 
services, such as Infrastructure as a Service (IaaS), for cloud service customers. 

1.4 Relationship to other NIST Guidance Documents 
 

In terms of technology area, the NIST Guidance document that is related to this document is NIST 
Special Publication (SP) 800-125, Guide to Security for Full Virtualization Technologies. Consistent with 
the state of technology adoption at that time (SP 800-125 was published in January 2011), SP 800-125 
provided higher-level security recommendations for use of components in two applications of virtualization 
paradigm: Server Virtualization and Desktop Virtualization. Since then, Server Virtualization has found 
widespread adoption in IT data centers both for hosting in-house or on-premises (enterprise) applications as 
well as for hosting applications and providing computing units for cloud services. 

 
Accompanying this technology adoption trend is the increase in feature sets of hypervisors, as well as market 
availability of the set of tools used for configuration and administration of the virtualized infrastructure 
spawned by the hypervisor. The objective of this document is to focus on the development of a set of 
security recommendations for deployment of the hypervisor (with all of its constituent modules) including 
the steps involved in the creation and provisioning of VMs. The distinguishing features of the set of security 
recommendations provided in this document in the context of similar NIST Guidance documents are 
given below: 

 
• A focused set of security recommendations that are architecture agnostic for the deployment of 

hypervisors is provided.  
• Since real world deployment includes provisioning of VMs, all VM life-cycle operations, from creation 

and management of VM images to their administration using granular privileges, is covered. 
• Recognizing that the hypervisor is a purpose-built Operating System (OS) kernel and t h a t  the 

security of a server OS depends upon its weakest link regardless of the distribution (e.g., driver 
software), security recommendations relating to these components have been provided as well. 

• Recognizing that the hypervisor performs certain privileged operations without interference from any 
other entity in the virtualized host and that leveraging hardware support for these operations will make 
a significant difference to the overall security of hypervisor deployment, the security recommendations 
also improve performance when virtualization-specific functions (e.g., memory tables for multiple 
VMs) are offloaded (leveraged) to the processor instead of through software functions. 

• All security recommendations are intended to provide assurance against exploitation of threats to tasks 
involved in the hypervisor’s baseline functions. 
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2. APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS 
2.     APPROACH FOR DEVELOPING SECURITY RECOMMENDATIONS 

Developing security recommendations for the deployment and use of a complex software such as the 
hypervisor requires knowledge of potential threats that, when exploited, would affect the three basic 
security properties of confidentiality, integrity, and availability of hypervisor functions. The approach 
adopted for developing security recommendations for deployment of hypervisor in this document is as follows: 
 
• Ensure the integrity of all components of the hypervisor platform, starting from the host Basic Input Output 

System (BIOS) to all software modules of the hypervisor. This is accomplished through a secure boot process 
outlined as recommendation HY-SR1 in section 3. 

• Identify the threat sources in a typical hypervisor platform. The nature of threats from rogue or 
compromised VMs are briefly discussed (Section 2.1). 

• For each of the five baseline functions HY-BF1 through HY-BF5 (with the exception of HY-BF3, the 
execution of privileged operations by the hypervisor), identify the different tasks under each function, and 
for each of the tasks, identify the potential threats to the secure execution of the task. The counter measures 
that will provide assurance against exploitation of these threats form the basis for security 
recommendations (Section 2.2). 

 
It must be noted that in some cases of large open-source and commercial software environments (e.g., Database 
Management System (DBMS) platform), the   approach   adopted   for   secure deployment and usage is to 
study the reports published in the public vulnerability databases for various product offerings, seek out 
available patches through online public forums or the software vendor, and look for recommended secure 
configuration settings (also via online public forums or the software vendor websites). We do not adopt this 
approach in this document since the intended purpose is not to provide security recommendations for a specific 
open source or commercial hypervisor product offering but rather for the entire product class based on its 
baseline functions. 
 

2.1 Hypervisor Platform Threat Sources 
 
The hypervisor software is resident on a physical host that is connected to the enterprise network. It has the 
capability to be remotely administered. At the same time, it supports multiple virtual hosts (virtual machines 
or VMs) that are generally nodes of a software-defined virtual network inside that physical host. In some cases, 
they could be nodes of an isolated network or sharing the host network. Based on this scenario, one can identify 
three basic sources of threats to a hypervisor platform, each of which is identified by using the symbol HY-TS#:  
 
• HY-TS1: Threats from and through the enterpr ise  network in which the hypervisor host (virtualized 

host) resides 
• HY-TS2: Threats emanating from rogue or compromised VMs through channels such as shared hypervisor 

memory and virtual network inside the hypervisor host 
• HY-TS3: Threats from web interfaces to VM management daemon and hypervisor management consoles 
 
Threats from sources HY-TS1 and HY-TS3 are common to all server class software and are well known and 
addressed in other NIST documents. Threats from source HY-TS2 is unique to the virtualization environment 
defined by the hypervisor. We look at the nature of threats from HY-TS2 in the next subsection. 
 
The hypervisor controls VM access to physical hardware resources as well as provides isolation among VMs. 
VM access to hardware resources such as CPU and memory are directly controlled by the hypervisor while 
access to resources such as network and storage devices are controlled through modules (drivers) that reside 
in the kernel module or in a privileged VM (i.e., Management VM). The network isolation among VMs is 
provided by assigning a unique Internet Protocol (IP) or Media Access Control (MAC) address to each VM, 
defining virtual local area networks (VLANs) or overlay networks, and assigning the appropriate network 
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identifier to each VM. The nature of threats to the hypervisor from rogue or compromised VMs can manifest 
in the following ways:  
 
Note that each threat is identified by the symbol HYP-T#, where HYP stands for hypervisor, T stands for 
threat, and # stands for the sequence number. 
 
• Breach of Process Isolation - VM Escape (HYP-T1): Major threats to any hypervisor come from rogue 

VMs. Rogue VMs manage to subvert the isolation function provided by the VMM/hypervisor to hardware 
resources such as memory pages and storage devices. In other words, the rogue or compromised VMs 
may access areas of memory belonging to the hypervisor or other VMs and storage devices they are not 
authorized to access. Possible reasons for this threat include (a) hypervisor design vulnerabilities or (b) 
malicious or vulnerable device drivers. Potential downstream impacts of a rogue VM taking control of the 
hypervisor include the installation of rootkits or attacks on other VMs on the same virtualized host.  
 

• Breach of Network Isolation (HYP-T2): Potential threats to isolation include attacks such as IP or MAC 
address spoofing by a rogue VM and Traffic Snooping, or the interception of virtual network traffic, 
intended for a VM on the same virtual network segment. The impact of the subversion of these network 
controls is loss of confidentiality. Some VMs will be viewing information for which they are not 
authorized. 
 

• Denial of Service (HYP-T3): Misconfigured or malicious VMs may be consuming a disproportionately 
high percentage of host resources, resulting in denial-of-service to other VMs on the hypervisor host. 

 

2.2 Potential Threats to Hypervisor Baseline Functions 
 
In this section, the tasks in each of the five hypervisor baseline functions (with the exception of HY-BF3) are 
examined, and the threats to the secure execution of those tasks are analyzed by relating to the causes identified 
in the previous section. 
 
2.2.1 Potential Threats to HY-BF1 
  
The primary threat to hypervisor’s HY-BF1 function (VM Process Isolation) is breach of process isolation 
(HYP-T1). As mentioned in section 2.1, one of the causes for this threat is hypervisor design vulnerability. 
Some potential design vulnerabilities that pertain to this threat are discussed here with an explanation of the 
context under which they may manifest. Each vulnerability is identified by the symbol HYP-DV#, where 
HYP stands for hypervisor, DV stands for design vulnerability, and # stands for the sequence number. 
 
• Virtual Machine Control Structure (HYP-DV1): To properly schedule an individual VM’s tasks (i.e., 

since each guest VM is allocated a set of virtual CPUs(vCPUs) they are called vCPU tasks), the register 
states must be handled appropriately. To enable the saving and loading of the state of each vCPU, the 
hypervisor uses a data structure called Virtual Machine Control Structure (VMCS). Faulty implementation 
of this data structure has been known to cause hypervisor memory leaks. 
 

• Handling Sensitive Instructions (HY-DV2): On hardware platforms that do not provide assistance for 
virtualization, there should be a software mechanism to discover sensitive or critical instructions, send 
them to the VMM (hypervisor), and replace them with safer instructions using techniques such as binary 
translation before executing them on the hardware. Any error in not trapping the critical instructions or 
faulty translation may have security implications in the form of a guest OS being allowed to execute 
privileged instructions. 
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• Memory Management Unit-MMU (HYP-DV3): The hypervisor runs a software-based Memory 
Management Unit (MMU) that allocates a shadow page table for each VM since guest VMs cannot be 
granted direct access to the hardware-based MMU as that would potentially enable them to access memory 
belonging to the hypervisor and other co-hosted VMs (under some situations). However, a faulty 
implementation of software-based MMU could lead to disclosure of data in arbitrary address spaces, such 
as memory segments belonging to the hypervisor and co-located VMs, thus resulting in a breach of 
memory isolation. 

 
• Input/Output Memory Management Unit, IOMMU (HY-DV4): The hypervisor leverages the hardware 

I/O Memory Management Unit to enforce memory separation for device drivers and processes using direct 
memory access (DMA). This feature is built into the hypervisor and enabled in the hardware using a 
firmware switch. If unused, it may result in a vulnerability whereby the DMA could potentially be used 
as a common attack vector by one VM to overwrite physical memory used by other VMs and processes. 

 
Out of these, the vulnerabilities HYP-DV1 and HYP-DV2 should be addressed through proper coding and 
testing of those modules. Therefore, no security protection measures can be applied at the deployment and 
usage stage. However, the memory violation vulnerability HYP-DV3 and DMA violation vulnerability HY-
DV4 can be addressed by hosting the hypervisor on a hardware platform that provides assistance for memory 
virtualization through a virtualization-aware hardware memory management unit and DMA transfers through 
the re-mapping of DMA transfers, respectively. Due to these two vulnerabilities, the threat HYP-T1, a breach 
of process isolation, has been addressed through security recommendation HY-SR-2 in section 4. 
 
Further, correct execution isolation requires that each VM obtains the proper memory and CPU resources 
necessary for its hosting applications and that there is no denial of service. Ensuring adequate memory through 
proper configuration of memory allocation options is addressed through security recommendation HY-SR-3, 
and ensuring proper allocation of virtual CPUs through the appropriate configuration of vCPU allocation 
options are addressed through security recommendations HY-SR-4 and HY-SR-5. 
 
2.2.2   Potential Threat to HY-BF2 
 
The applications executing in VMs need to access devices such as network and storage. Mediation of access 
to devices is handled in hypervisor hosts through device virtualization (also called IO virtualization). There 
are three common approaches to device virtualization: (a) Emulation, (b) Para-virtualization, and (c) 
Passthrough or self-virtualizing hardware devices. 
 
In emulation, code is implemented to present a virtual device that has a corresponding real (hardware) device 
for which the guest OS already has a driver. This enables running of unmodified guests (VMs), thus 
implementing full virtualization. This emulation code runs in the hypervisor. An I/O call from a guest VM 
application (through its guest OS) is intercepted by the hypervisor kernel and forwarded to this code since 
guest VMs cannot access the physical devices directly under this setup. This emulation code traps all device 
access instructions and converts them to calls on the physical device driver for the physical device attached to 
the hypervisor host. It also multiplexes accesses from guest VMs’ emulated virtual devices to the underlying 
physical device.  
 
In the para-virtualization approach, the hypervisor presents to the guest an interface of an artificial device that 
has no corresponding hardware counterpart. This enables special, simplified hypervisor-aware I/O drivers 
(called para-virtualized drivers) to be installed in the guest.  The calls from these para-virtualized device 
drivers in guest VMs are handled by another device driver (called back-end driver) which directly interfaces 
with the physical device and mediates access to that physical device from para-virtualized guests. In some 
instances, the calls from para-virtualized guest drivers are handled directly by the hypervisor through its 
hypercall interface (the corresponding calls are called hypercalls). Analysis of threats due to these hypercalls 
is provided in the next subsection.  
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The third approach to device virtualization, the passthrough approach (or direct device assignment), is 
deployed for situations where a VM needs exclusive access to a device (e.g., NIC, disk controller, Host Bus 
Adapter (HBA), USB controller, serial port, firewire controller, soundcard, etc.) for performance reasons so 
as to avoid overhead due to emulation. Since generally this is required for Peripheral Component Interconnect 
(PCI) devices, this is also called as PCI Passthrough. Since many of these devices have a memory-mapped 
interface, they can read or write directly to or from main memory and are also called Direct Memory Access 
(DMA) capable devices. To provide exclusive access to a DMA capable device for a VM, the memory pages 
of the device are mapped into guest VM’s address space. The following is the threat due to DMA capable 
devices. 
 
Threat due to DMA-capable hardware devices (HY-DV5): The security threat from a DMA-capable device is 
that, since the VM controls the device, it can program the device to perform DMA operations directed at any 
physical (host) memory location, including the areas belonging to other VMs or the hypervisor [6]. Thus, the 
direct device assignment has the potential to subvert the isolation between VMs (rather making the MMU 
enforced isolation function (part of HY-BF1) meaningless). 
 
In addition to three types of device virtualization described above, hypervisor hosts can support self-
virtualizing hardware devices. These devices have interfaces that can export a set of virtual functions (VFs) 
corresponding to a physical function (PF). The hypervisor then can assign these VFs to multiple guest VMs, 
while it retains control of the PF. These devices conform to Single Root I/O Virtualization (SR-IOV) 
specification and thus enable DMA capable devices to be shared among VMs (as virtualization and 
multiplexing are done by the devices themselves) instead of being dedicated to a single VM as in passthrough 
mode. 
 
 
2.2.3   Potential Threat to HY-BF3 
 
The previous subsection presented a scenario (i.e., para-virtualization) where the hypervisor has to execute 
certain instructions through its hypercall interface. A potential security issue with hypercalls is that the lack 
of proper validation of certain operations (e.g., not verifying the operation scope and allowing a full dump 
of a VM’s Virtual Machine Control Block) can potentially cause the entire hypervisor host to crash. This is 
again a design vulnerability that must be addressed through proper validation and testing of the relevant 
hypervisor code rather than through configuration or deployment procedures. 
 

 
2.2.4   Potential Threats to HY-BF4 
 
Potential threats to the secure execution of tasks under this function (i.e., VM Lifecycle Management) include: 
 
• Presence of non-standard VM images in the library, including those with outdated OS versions and 

patches, which could result in any of the platform-level threats (HYP-T1 through HYP-T3) 
• Presence of non-standard running VM instances due to their creation from non-standard images, 

restoration from snapshots, a drift from standard as a result of a lapse in monitoring, and updates that 
could result in any of the platform-level threats (HYP-T1 through HYP-T3) 
 

 In most instances, the management operations on VMs are performed using commands submitted through a 
GUI or a scripting environment, both of which are supported by a management daemon at the back-end. Secure 
execution of the above operations is addressed through security recommendations HY-SR9 through HY-SR18 
in section 6. 
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2.2.5   Potential Threats to HY-BF5 
 
The tasks under this function relate to the overall administration of a hypervisor host (i.e., virtualized host) 
and the hypervisor software and are usually performed through user-friendly web interfaces or network-facing 
virtual consoles. Threats to the secure execution of these tasks are common in any remote administration and 
are therefore not addressed in this document. However, the core requirement in a data center with virtualized 
hosts is to have a uniform configuration for hypervisors based on different criteria such as sensitivity of 
applications based on the set of hosted VMs, line of business or client in cloud service environments, etc. 
Thus, the security recommendations include a centralized management of hypervisor configuration (HY-SR-
19) and a dedicated network segment for management traffic (HY-SR-20). 
 
Some conventional security fixes may not be practical in the case of hosts hosting a hypervisor. For example, 
in the case of a network attack on a physical server that is not virtualized, merely turning off the offending port 
is a solution to preventing the server from spamming the network with a bot attack. However, such a solution 
is not practical in the case of a hypervisor host since the same port in the physical network interface card of 
the hypervisor host could be shared by several running VMs. Instead, a specialized security fix, such as 
disabling the virtual NICs of VMs that use those ports, is needed.  
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3. SECURITY RECOMMENDATION FOR OVERALL PLATFORM INTEGRITY 
 
Configuration changes, module version changes, and patches affect the content of the hypervisor platform 
components such as BIOS, hypervisor kernel, and back-end device drivers running in the kernel. To ensure 
that each of these components that are part of the hypervisor stack can be trusted, it is necessary to check 
their integrity through a hardware-rooted attestation scheme that provides assurance of boot integrity. 
Checking integrity is done by cryptographically authenticating the hypervisor components that are launched. 
This authentication verifies that only authorized code runs on the system. Specifically, in the context of the 
hypervisor, the assurance of integrity protects against tampering and low-level targeted attacks such as root 
kits. If the assertion of integrity is deferred to a trusted third party that fulfills the role of trusted authority, the 
verification process is known as trusted attestation. Trusted attestation provides assurance that the code of the 
hypervisor components has not been tampered with. In this approach, trust in the hypervisor’s components is 
established based on trusted hardware. In other words, a chain of trust from hardware to hypervisor is 
established with the initial component called the root of trust. This service can be provided by a 
hardware/firmware infrastructure of the hypervisor host that supports boot integrity measurement and the 
attestation process. In short, a measured launch environment (MLE) is needed in the hypervisor host.  

 
Some hardware platforms provide support for MLE with firmware routines for measuring the identity (usually 
the hash of the binary code) of the components in a boot sequence. An example of a hardware-based 
cryptographic storage module that implements the measured boot process is the standards-based Trusted 
Platform Module (TPM), which has been standardized by the Trusted Computing Group (TCG) [4]. The 
three main components of a TPM are: (a) Root of Trust for Measurement (RTM) – makes integrity 
measurements (generally a cryptographic hash) and converts them into assertions, (b) Root of Trust for Integrity 
(RTI) - provides protected storage, integrity protection, and a protected interface to store and manage 
assertions, and (c) Root of Trust for Reporting (RTR) - provides a protected environment and interface to 
manage identities and sign assertions. The RTM measures the next piece of code following the boot sequence. 
The measurements are stored in special registers called Platform Configuration Registers (PCRs). 
 
The measured boot process is briefly explained here using TPM as an example. The measured boot process 
starts with the execution of a trusted immutable piece of code in the BIOS, which also measures the next piece 
of code to be executed. The result of this measurement is extended into the PCR of the TPM before the control 
is transferred to the next program in the sequence. Since each component in the sequence in turn measures 
the next before handing off control, a chain of trust is established. If the measurement chain continues through 
the entire boot sequence, the resultant PCR values reflect the measurement of all components. 
 
The attestation process starts with the requester invoking, via an agent on the host, the TPM Quote command. 
It specifies an Attestation Identity Key (AIK) to perform the digital signature on the contents of the set of 
PCRs that contain the measurements of all components in the boot sequence to quote and a cryptographic 
nonce to ensure freshness of the digital signature. After receiving the signed quotes, the requester validates 
the signature and determines the trust of the launched components by comparing the measurements in the 
TPM quote with known good measurements. 

 
The MLE can be incorporated in the hypervisor host as follows: 
 
• The hardware hosting the hypervisor is established as a root-of-trust, and a trust chain is established from 

the hardware through the BIOS and to all hypervisor components. 
• For the hardware consisting of the processor and chipset to be established as the root-of-trust and to build 

a chain of trust, it should have a hardware-based module that supports an MLE. The outcome of launching 
a hypervisor in MLE-supporting hardware is a measured launch of the firmware, BIOS, and either all or 
a key subset of hypervisor (kernel) modules, thus forming a trusted chain from the hardware to the 
hypervisor. 
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• The hypervisor offering must be able to utilize the MLE feature. In other words, the hypervisor should be 
able to invoke the secure launch process, which is usually done by integrating a pre-kernel module into 
the hypervisor’s code base since the kernel is the first module installed in a hypervisor boot up. The 
purpose of this pre-kernel module is to ensure the selection of the right authenticated module in the 
hardware that performs an orderly evaluation or measurement of the launch components of the hypervisor 
or any software launched on that hardware. The Tboot is an example of a mechanism that enables the 
hypervisor to take advantage of the MLE feature of the hardware. 

• All hypervisor components that are intended to be part of the Trusted Computing Base (TCB) must be 
included within the scope of the MLE-enabling mechanism so that they are measured as part of their 
launch process.  

 
The MLE feature with storage and reporting mechanisms on the hardware of the virtualized host can be 
leveraged to provide boot integrity assurance for hypervisor components by measuring the identity of all 
entities in the boot sequence, starting with firmware, BIOS, hypervisor and hypervisor modules; comparing 
them to “known good values;” and reporting any discrepancies. If the measured boot process is to be extended 
to cover VMs and its contents (guest OS and applications), a software-based extension to the hardware-based 
MLE implementation within the hypervisor kernel is required. The security recommendation for ensuring a 
secure boot process for all components of a hypervisor platform can now be stated as follows: 
 
Security Recommendation HY-SR-1: The hypervisor that is launched should be part of a platform 
and an overall infrastructure that contains: (a) hardware that supports an MLE with standards-based 
cryptographic measurement capabilities and storage devices and (b) an attestation process with the 
capability to provide a chain of trust starting from the hardware to all hypervisor components. 
Moreover, the measured elements should include, at minimum, the core kernel, kernel support modules, 
device drivers, and the hypervisor’s native management applications for VM Lifecycle Management 
and Management of Hypervisor. The chain of trust should provide assurance that all measured 
components have not been tampered with and that their versions are correct (i.e., overall boot integrity). 
If the chain of trust is to be extended to guest VMs, the hypervisor should provide a virtual interface to 
the hardware-based MLE. 
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4.SECURITY RECOMMENDATION HY-BF1 
 
To ensure the isolation of processes running in VMs, the following requirements must be met: 
 
(a) The privileged commands or instructions from a Guest OS to the host processor must be mediated such 

that the basic function of the VMM/hypervisor as the controller of virtualized resources is maintained. 
(b) The integrity of the memory management function of the hypervisor host must be protected against attacks 

such as buffer overflows and illegal code execution, especially in the presence of translation tables that 
are needed for managing memory access by multiple VMs. 

(c) Memory allocation algorithms must ensure that payloads in all VMs are able to perform their functions. 
(d) CPU allocation algorithms must ensure that payloads in all VMs are able to perform their functions. 
 
The requirements (a) and (b) can be met using software-based modules. However, hardware-based assistance 
for virtualization, such as Instruction Set Virtualization and Memory Virtualization, provide better assurance 
than software-based solutions in meeting those requirements and are therefore recommended in section 4.1. 
The hardware-assisted virtualization features are briefly discussed prior to stating the recommendations. The 
requirements (c) and (d) are meant to ensure the availability of application services running in VMs. The 
enablers are some features in memory allocation and CPU allocation algorithms, and their associated 
configuration parameters are stated as recommendations in sections 4.2 and 4.3, respectively. 

4.1 Hardware Assistance for Virtualization 
 
Instruction Set Virtualization: Processor architectures that support Instruction Set Virtualization provide two 
modes of operation: root mode and non-root mode, each of which have four hierarchical privilege levels with 
Level 0 being the highest and Level 3 being the lowest. Additionally, among the two modes, the root mode 
has a higher privilege for executing CPU instructions than non-root mode. By running the hypervisor in root 
mode and VMs (Guests) OS in non-root mode at privilege or ring level 0, the hypervisor is guaranteed safety 
from at least any instruction set-type attacks by any Guest OS. However, VM escape can take place through 
normal networking protocols. This safety is ensured by allowing the hardware trapping privileged instructions 
to run in non-root mode and execution in root mode. Additionally, when the hypervisor does not have to 
perform additional functions (e.g., translating sensitive instructions using techniques such as binary 
translation), the code executing with privileges is reduced in the hypervisor, making the TCB smaller and 
enabling better assurance verification. 
 
Memory Virtualization: Hardware-assisted memory virtualization is provided when the hardware enables the 
mapping of the Guest OS’s physical addresses in their respective page tables to the host’s physical addresses 
using hardware-based page tables instead of hypervisor-generated shadow page tables. The subsequent 
reduction in privileged code executing this function provides the same security advantage mentioned for 
Instruction Set Virtualization above. 
 
The security advantages of hardware-assisted virtualization platforms include the following: 
 
• One of the potential security vulnerabilities for hypervisors is the buffer overflow attacks from VMs 

resident on the virtualized host platform. The hardware support for memory management (e.g., 
Extended Page Tables, or EPT) that comes as part of the hardware-assisted virtualization can be 
leveraged to prevent code execution from memory locations reserved for data storage, thus preventing 
buffer overflow attacks. 

• Hardware extensions for Virtualization provide two modes of execution: host or root mode and guest 
or non-root mode. The host mode runs at a higher privilege than guest mode. The hypervisor code, 
which provides the baseline functionality HY-BF1 (processor allocation and memory management), 
runs in host mode while the guest OS and applications in VMs run in guest mode. Hence any exploit 
code in guest OS cannot subvert the controls provided by the hypervisor code. 
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• A common threat in virtualization platforms involves a malicious VM accessing areas of memory 
belonging to other VMs. This is called a VM Escape attack. Hardware platforms with IOMMU provide 
safety against this through features such as Direct Memory Access (DMA) remapping, which limits 
allowed DMA access to the assigned protection domain (i.e., preventing a device from performing 
DMA beyond its allocated area). 

• The advantage of hardware providing assistance for both forms of virtualization is that the emulation 
module of the hypervisor can present the true hardware architecture of the physical host instead of 
modified hardware architecture. The consequence of this feature is that an unmodified Guest OS, along 
with their native device drivers, can be run in VMs. The security implication of enabling this feature 
is that significantly more CVE data is available for a Guest OS, as well as patch versions and certified 
device drivers for each OS version. 

 
Security Recommendation HY-SR-2: The hardware of the virtualized host should provide assistance for 
virtualization for instruction sets and memory management using MMU since the hardware support provides 
the following security assurances that cannot be guaranteed with purely software-based virtualization: 
 
• Better memory management controls can prevent attacks such as buffer overflow. 
• The feature for re-mapping of DMA transfers in IOMMU provides better isolation of I/O devices. 

Further, the feature to directly assign I/O devices to a specific VM and enable direct access to those 
resources eliminates the need for providing emulated device drivers for that VM, thus reducing the size 
of trusted code. 

• Guest OS code and hypervisor code execute in different processor modes, providing better isolation. 
• Privilege-level isolation can provide better protection for device access mediation functions, and 

hardware-based memory protection can provide better VM-level protection. 
• By supporting full virtualization, COTS versions of OSs can allow for easier patching and updating than 

having to perform the same operations on modified or ported versions of OSs that are the only types that 
can be run on para-virtualized platforms. 

• Since many features of virtualization are now available in hardware, the size of the hypervisor code will 
be small, enabling better security attestation and verification. 

 

4.2 VM Memory Allocation Scheduling Options 
 
The hypervisor's memory scheduler is responsible for meeting the memory requirements for all workloads 
running in all VMs at all times. Like an OS, a typical hypervisor meets this requirement by using a 
combination of physical RAM and swap files called hypervisor kernel swap files. Further, a typical VM does 
not always require the entire memory it has been configured for. For these reasons, it is a viable overall 
virtualization configuration decision to have the combined configured memory of all VMs running on a 
virtualized host to exceed the total physical RAM, provided that there are no memory-sensitive applications 
running in VMs. However, over-commit—the ratio of the total configured memory of VMs to host physical 
RAM—should not be too high as it may result in performance degradation of certain VM workloads that 
require a significant amount of memory. 
 
Another factor affecting the availability of the virtualized host or hypervisor for certain workloads in a VM is 
the ratio of the physical RAM size to kernel swap file size that is maintained by the memory scheduler of the 
hypervisor. Since a low ratio will deny execution of certain workloads for certain VMs, there should be a 
configuration option available in the hypervisor to specify a guaranteed physical amount of RAM for each 
VM. Also, in order to avoid a situation in which a particular VM makes use of the physical RAM for its entire 
configured memory, there should be a feature to specify a limit on the guaranteed physical RAM. Finally, 
there may be certain workloads that are time-sensitive, and the VMs hosting them should have some priority 
in getting the required memory resources compared to other running VMs. Therefore, a configuration option 
to specify a priority value for each VM should also exist. 
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Based on the above issues relating to hypervisor memory scheduling, the following are the security 
recommendations: 

 
Security Recommendation HY-SR-3: The hypervisor should have configuration options to specify a 
guaranteed physical RAM for every VM that requires it, as well as a limit to this value, and a priority 
value for obtaining the required RAM resource in situations of contention among multiple VMs. 
Further, the over-commit feature that enables the total configured memory for all VMs to exceed the 
host physical RAM should be disabled by default. 
 

4.3 VM CPU Allocation Options 
 
The security goal in VM CPU allocation is to guarantee availability for all VMs. This can be achieved by 
proper use of configuration options dealing with the allocation of physical resources such as CPU cores and 
CPU clock cycles. For example, one of the configuration options commonly available is to set a minimum 
CPU requirement, or reservation, in terms of clock cycles. The architectural parameter to be observed here 
is that the number of VMs that can be deployed can be no more than the ratio of the total CPU clock cycles 
that the hypervisor host can offer to the average reservation required by each VM. In a scenario where the 
hypervisor host has 6000 MHz of CPU capacity and the average reservation for each VM is 1000 MHZ, then 
no more than 6 VMs can be active in that hypervisor host. The reservation thus sets a lower bound 
(guaranteed) on the CPU clock cycles required for each VM. Similarly, there should be a feature to set an 
upper bound, or Limit, for the CPU cycles that each VM can use so that no single VM (sometimes a rogue 
or a compromised one) consumes all CPU resources of the host and denies services to other co-resident VMs. 
Further, to facilitate scheduling of hypervisor host CPU clock cycles in situations where multiple VMs 
require clock cycles above the lower bound but below the upper bound, there should be a feature to assign a 
priority score, or shares, to each VM. Summarizing the above desired features for ensuring fair share for all 
VMs deployed, the security recommendations for VM CPU allocation are as follows: 
 
Security Recommendation HY-SR-4: The hypervisor should have robust configuration features for 
provisioning virtual resources to all hosted VMs such that it does not exceed a key physical resource 
(e.g., number of CPU cores). 
 
Security Recommendation HY-SR-5: The hypervisor should provide features to specify a lower and 
upper bound for CPU clock cycles needed for every deployed VM as well as a feature to specify a 
priority score for each VM to facilitate scheduling in situations of contention for CPU resources from 
multiple VMs. 
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5. SECURITY RECOMMENDATIONS FOR HY-BF2 
 
Security recommendations for all three forms of device virtualization discussed in section 2.2.2 as well as for 
self-virtualized devices are provided in this section. 

 
Security Recommendation HY-SR-6A (Emulation): Because of the complexity of emulating a 
hardware device through software, emulation, apart from suffering performance penalties, also 
increases the size of the TCB especially in situations where the guest OS has native device drivers and 
the device emulation code runs as a kernel module with the same privilege level as the hypervisor. 
Hence emulation should only be used where complexity is manageable (e.g., USB host controller). 
 
Security Recommendation HY-SR-6B (Para-virtualization): In situations where para-virtualized 
device drivers are used in VMs, mediation of access to physical devices should be enabled by 
running back-end device drivers (which control the physical device attached to the hypervisor host) 
in a dedicated VM rather than in the hypervisor. This facilitates running the back-end device driver 
code at a privilege level lower than that of the hypervisor. Additionally, the hypervisor platform 
should include hardware support in the form of I/O Memory Management Unit (IOMMU) for 
validating and translating access from the driver domain’s underlying hardware device to host 
memory. The specific IOMMU feature that is mandatory is DMA remapping where the DMA call 
from a device to guest physical address (GPA) must be translated to host physical address (HPA) and 
then checked whether the HPA address falls within the protection domain assigned to that device. 
Combining these mechanisms enables reducing the size of the TCB as well as reducing the impact of 
faulty device or device driver behavior (restricted to device-driver VM as opposed to the hypervisor). 
 
Security Recommendation HY-SR-6C (Passthrough or self-virtualizing hardware devices): For 
situations where VMs need to be given dedicated access to DMA capable devices, the hypervisor 
platform should include hardware support in the form of I/O Memory Management Unit (IOMMU) 
for validating and translating all device access to host memory. This recommendation also applies to 
use of self-virtualizing hardware devices (based on SR-IOV specification). The specific IOMMU 
feature that is mandatory is DMA remapping where the DMA call from a device to guest physical 
address (GPA) must be translated to host physical address (HPA) and then checked whether the HPA 
address falls within the protection domain assigned to that device. 
 
The following security recommendations are applicable irrespective of the type of device 
virtualization: 
 
Security Recommendation HY-SR-7 (Device access): It should be possible to set up an Access 
Control List (ACL) to restrict the access of each VM process to only the devices assigned to that VM. 
To enable this, the hypervisor configuration should support a feature to mark VMs (semantically, a set 
of tasks) and/or have a feature to specify a whitelist, or list of allowable of devices, for each VM. 

 
Security Recommendation HY-SR-8 (Device Usage): It should be possible to set resource limits for 
network bandwidth and I/O bandwidth (e.g., disk read/write speeds) for each VM to prevent denial-of-
service (DOS) attacks. Additionally, the proper use of resource limits localizes the impact of a DOS to 
the VM or the cluster for which the resource limit is defined. 
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6. SECURITY RECOMMENDATIONS FOR HY-BF4 

6.1 VM Image Management 
 
Since VM-based software (e.g., Guest OS, Middleware, and Applications) shares physical memory of the 
virtualized host with hypervisor software, it is no surprise that a VM is the biggest source of all attacks 
directed at the hypervisor. In operational virtualized environments, VMs are rarely created from scratch, but 
rather from VM Images. VM Images are templates used for creating running versions of VMs. An 
organization may have its own criteria for classifying the different VM Images it uses in its VM Library. 
Some commonly used criteria include: processor load (VM used for compute-intensive applications); 
memory load (VM used for memory-intensive applications, such as Database processing); and application 
sensitivity (VM running mission-critical applications utilizing mission-critical data). For each VM image 
type, the following practices must be followed to ensure that the resulting operational VMs are secure: 
 
• Documentation on the Gold Image for each VM Image type. A Gold Image is defined by a set of 

configuration variables associated with the VM Image. The configuration variables should include, at 
the minimum, the Guest OS make, version, patch level, date of creation, number of vCPU cores, and 
memory size. 

• Each VM Image in the VM Image Library must have an associated digital signature. 
• Access privileges to the VM Image Library must be controlled through a robust access control 

mechanism. 
• Access to the server storing VM Images should have a secure protocol.  

 
The security recommendations relating to the above practices are as follows: 
 
Security Recommendation HY-SR-9: Gold standard must be defined for VMs of all types, and VM 
Images that do not conform to the standard should not be allowed to be stored in the VM Image server 
or library. Images in the VM Image library should be periodically scanned for outdated OS versions and 
patches, which could result in a drift from the standard. 
 
Security Recommendation HY-SR-10: Every VM Image stored in the image server should have a digital 
signature attached to it as a mark of authenticity and integrity, signed using trustworthy, robust 
cryptographic keys.  
 
Security Recommendation HY-SR-11: Permissions for checking into and out of images from the 
VM Image library should be enforced through a robust access control mechanism and limited to an  
authorized set of administrators. In the absence of an access control mechanism, VM image files 
should be stored in encrypted devices that can only be opened or closed by a limited set of authorized  
administrators with passphrases of sufficient complexity. 
 
Security Recommendation HY-SR-12: Access to the server storing VM images should always  
be through a secure protocol such as Transport Layer Security (TLS). 

6.2 VM Live Migration 

 Live migration is a functionality present in all hypervisors, which enables a VM to be migrated or moved 
from one virtualized host to another while the guest OS and applications on it are still running. This 
functionality provides key benefits such as fault tolerance, load balancing, and host maintenance, upgrades, 
and patching. In live migration, the state of the guest OS on the source host must be replicated on the 
destination host. This requires migrating memory content, processor state, storage (unless the two hosts share 
a common storage), and network state.  
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The most common memory migration technique adopted in most hypervisors is called pre-copy. In this 
approach, memory pages belonging to the VM are transferred to the destination host while the VM continues 
to run on the source host [5]. Memory pages modified during migration are sent again to the destination to 
ensure memory consistency. During this phase, the exact state of all the processor registers currently operating 
on the VM are also transferred, and the migrating VM is suspended on the source host. Processor registers at 
the destination are modified to replicate the state at the source, and the newly migrated VM resumes its 
operation. Storage migration is provided by a feature that allows admins to move a VM's file system from one 
storage location to another without downtime. This storage migration can even take place in situations where 
there is no VM migration. For example, a VM may continue to run on the host server while the files that make 
up the VM are moved among storage arrays or Logical Unit Numbers (LUNs). 

In the process described above, the memory and processor-state migration functions are inherent aspects of 
hypervisor design. The storage migration function is an integral part of storage management and is applicable 
to both virtualized and non-virtualized infrastructures. The network state is maintained after a VM migration 
because each VM carries its own unique MAC address, and the migration process places some restrictions on 
the migration target (e.g., the source and target host should be on the same VLAN). Hence, from the security 
protection point of view, the only aspects to consider are proper authentication and a secure network path for 
the migration process. 
 
Security Recommendation HY-SR-13: During VM live migration, a secure authentication protocol 
must be employed; the credentials of the administrator performing the migration are passed only to the 
destination host; the migration of memory content and processor state takes place over a secure network 
connection; and a dedicated virtual network segment is used in both source and destination hosts for 
carrying this traffic. 

6.3 VM Monitoring and Security Policy Enforcement 
 
Since VMs are prime sources of threats to the hypervisor, continuous monitoring of the state of VMs and the 
traffic going in and out of those VMs is necessary for: (a) controlling the type of traffic, (b) intrusion detection 
and prevention, and (c) detecting viruses and other malware. This function can be accomplished in two ways: 
 

• VM-based Security Monitoring and Intervention Solution 
• Security Monitoring and Intervention by a Hypervisor Module with enforcement of traffic rules 

at the point of a VM or at the virtual network object level (i.e., Virtual Switch's Port/Port Group) 
 

In a VM-based Security Monitoring and Intervention approach, software or a software-agent (i.e., a security 
tool) is run inside a VM to monitor security-relevant events. This approach is similar to running host-based 
IDS. The advantage of this approach is that it provides good visibility and good context analysis for the code 
running within the VM. However, because of the dependency of the security tool on the underlying Guest 
OS, any attack on the latter will also disable the function of the security tool, thus disabling the 
countermeasure. Another disadvantage of running the security tool as a virtualized workload is the 
performance impact it will have on itself and other application workloads running on that VM. 
 
Virtual Network-based Security Monitoring can come in two forms:  

 
(a) A dedicated security appliance for protecting each VM; 
(b) A security appliance that runs in the virtual network and can protect 

multiple VMs inside the hypervisor host. 
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The dedicated security appliance is deployed in the virtual network in front of the monitored VM and 
monitors all traffic going in and out of the VM. The main disadvantage of this approach is that if the VM is 
migrated to some other physical host, the dedicated appliance must be migrated as well. 
 
A generic security appliance deployed on a virtual network and configured to monitor multiple VMs may 
have to be continuously reconfigured for the following reasons: 

 
• The set of VMs to be monitored is continuously in a state of flux since VMs are subject to migration 

from one virtualized host to another due to load balancing, performance, and even security reasons. 
• If virtual LANs (VLANs) are used to provide communication-level isolation among VMs, the 

configuration of VLANs may undergo continuous change as the workload patterns shift on VMs. 
This may require re-configuration of the network traffic mirroring capabilities to ensure that all 
virtual network traffic flows through the monitoring tool impacting the overall performance of the 
workloads inside that virtualized host. 

 
In a hypervisor-based security monitoring solution, the security tool that monitors and protects VMs (User 
VMs) is run outside of the VMs hosting business applications in a special security-hardened VM. A security 
tool designed and configured to run in this mode is called Security Virtual Appliance (SVA). The SVA obtains 
its visibility into the state of a VM (e.g., CPU, registers, memory, and I/O devices) as well as network traffic 
amongst VMs and between VMs and the hypervisor through the virtual machine introspection API of the 
hypervisor. This is the preferable solution since: 

 
(a) It is not vulnerable to a flaw in the Guest OS. 
(b) It is independent of the Virtual Network Configuration and does not have to be reconfigured every 

time the virtual network configuration changes due to migration of VMs or change in connectivity 
among VMs resident on the hypervisor host. 

 
Therefore, the security recommendations, with respect to creating the VM monitoring solution for the 
protection of the hypervisor, are as follows: 
 
Security Recommendation HY-SR-14:  There should be a mechanism for security monitoring, security 
policy enforcement of VM operations, and detecting malicious processes running inside VMs and 
malicious traffic going into and out of a VM. This monitoring and enforcement mechanism forms the 
foundation for building Anti-Virus (AV) and Intrusion Detection & Prevention System (IDPS) 
solutions. 
 
Security Recommendation HY-SR-15: Solutions for Security Monitoring and security policy 
enforcement of VMs should be based outside of VMs and leverage the virtual machine introspection 
capabilities of the hypervisor. Generally, such solutions involve running a security tool as a Security 
Virtual Appliance (SVA) in a security-hardened or trusted VM. 
 
Security Recommendation HY-SR-16: All anti-malware tools (e.g., virus checkers, firewalls, and IDPS) 
running in the virtualized host should have the capability to perform autonomous signature or reference 
file updates on a periodic basis. 
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6.4 VM Configuration Management 
 

The configuration of every VM should be monitored and managed throughout its lifecycle. In most instances, 
this is accomplished using dedicated third-party tools in addition to native features that come with the 
hypervisor. The desired features for these tools are provided in the form of security recommendation below: 

 
Security Recommendation HY-SR-17: VM configuration management tools should have the capability 
to compile logs and alert administrators when configuration changes are detected in any VM that is 
being monitored. 

6.5 Fine-grained Administrative Privileges for VM Management 
 
Having the ability to assign fine-grained administrative permissions for the virtualized infrastructure enables 
the establishment of different administrative models and associated delegations. To see the need for granular 
permissions, it would be helpful to look at some use-case scenarios for administrative operations in the 
virtualized infrastructure: 

 
• VM Administration Use Case 1: A quality assurance group wants to set up a few virtual machines 

with some definite profiles (resource quotas such as Memory, CPUs) to test some applications that 
may soon go into production. In this situation, it may be useful for one or more administrators 
assigned exclusively to the quality assurance group to be given administrative permissions on 
specific virtual machines set up for testing purposes. 

 
• VM Administration Use Case 2: A capacity planner assigned the task of determining the operating 

loads on various virtualized servers and the need for additional virtualized hosts may need 
permission to view the list of virtual machines in each of the virtualized hosts but not permissions 
to perform any administrative operations on those VMs. In this situation, it is desirable to have the 
ability to grant view rights to the list of VMs in a virtualized host but deny the user the rights to 
interact with any of the visible objects. 

 
• VM Administration Use Case 3: In virtualized data centers where VMs of different sensitivity 

levels are run on the same virtualized host, an administrator who is given administrative privileges 
at the hypervisor level should sometimes be prevented from accessing a specific VM because of 
the sensitive nature of the workload (i.e., set of applications) running on that VM. The desired 
capability in this scenario is to negate a permission, obtained through inheritance, for a specific 
child object. 

 
• VM Administration Use Case 4: In some cases, assign permissions are needed for a group of 

administrators controlling a set of VMs for a particular organizational division or department. A 
corollary to this type of administrative entity is the need for a class of administrators wanting to 
administer VMs running a particular type of work load (e.g., web server), irrespective of its location 
within the organizational structure. This class of administrators may not require the entire set of 
administrative functions on a VM but rather some arbitrary set of management functions such as 
Configure CD Media, Configure Floppy Media, Console Interaction, Device Connection, Power 
On, Power Off, Reset, or Suspend. This scenario calls for the capability to create custom roles that 
can contain an arbitrary set of permissions relating to a VM as well as the ability to create a custom 
object that contains an arbitrary set of VMs carrying a particular type of workload (e.g., web server). 

 
Summing up the capabilities required in all four administrative scenarios, the overall security recommendation 
with required permission granularity is as follows: 
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Security Recommendation HY-SR-18: The access control solution for VM administration should have a 
granular capability, both at the permission assignment level and the object level (i.e., the specification of 
the target of the permission can be a single VM or any logical grouping of VMs based on function or 
location). In addition, the ability to deny permission to some specific objects within a VM group (e.g., 
VMs running workloads of a particular sensitivity level) in spite of having access permission to the VM 
group should exist.  
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7. SECURITY RECOMMENDATIONS FOR HY-BF5  
 

Secure operation of administrative functions is critical for any server class software, and hypervisor is no 
exception to this. The outcome is a secure configuration that can provide the necessary protections against 
security violations. In the case of hypervisor, impact of insecure configuration can be more severe than in 
many server software instances since the compromise of a hypervisor can result in the compromise of many 
VMs operating on top of it. While the composition of the configuration parameters depends upon the design 
features of a hypervisor offering, the latitude in choosing the values for each individual parameter results in 
different configuration options. Many configuration options relate functional features and performance. 
However, there are some options that have a direct impact on the secure execution of the hypervisor, and it is 
those configuration options that are discussed in this document. 
 

The following are some security practices that are generic for any server class software. Although applicable 
to the hypervisor, these are not addressed in this document: 
 
(a) Control of administrative accounts on the hypervisor host itself and least privilege assignment for 

different administrators 
(b) Patch management for hypervisor software and host OS 
(c) Communicating with the hypervisor through a secure protocol such as TLS or Secure Shell (SSH) 

 

7.1 Centralized Administration 
 
The administration of a hypervisor and hypervisor host can be performed in two ways: 

 
• Having administrative accounts set up in each hypervisor host 
• Centralized administration of all hypervisors and hypervisor hosts through enterprise virtualization 

management software. 
 

Central management of all hypervisor platforms in the enterprise through enterprise virtualization 
management software (EVMS) is preferable since a gold-standard configuration for all hypervisors in the 
enterprise can be defined and easily enforced through EVMS. For any IT data center to operate efficiently, 
it is necessary to implement load balancing and fault tolerance measures, which can be realized by defining 
hypervisor clusters. Creation, assignment of application workloads, and management of clusters can be 
performed only with a centralized management software, making the deployment and usage of an enterprise 
virtualization management software mandatory. 

 
Hence the recommendation for the architecture for hypervisor administration is as follows: 

 
Security Recommendation HY-SR-19: The administration of all hypervisor installations in the 
enterprise should be performed centrally using an enterprise virtualization management system 
(EVMS). Enterprise gold-standard hypervisor configurations for different types of workloads and 
clusters must be managed and enforced through EVMS. The gold-standard configurations should, at 
minimum, cover CPU, Memory, Storage, Network bandwidth, and Host OS hardening, if required. 
 

7.2 Securing the Management Network 
 
To connect multiple VMs to each other and to the enterprise network in which the virtualized host is a node, 
the hypervisor allows for a software-defined communication fabric, or a virtual network, through its 
management console or command line interface (CLI). This capability can be provided by a dedicated 
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management VM or directly in the hypervisor kernel through a kernel module. The virtual network is a software-
defined artifact that resides entirely within the virtualized host and has the VMs residing inside it as its nodes. 
The components of this virtual network are (a) the virtual network interface cards (vNICs) that are defined 
for each VM and provide connection for each VM to the virtual network; (b) the virtual switches that provide 
selective connectivity among VMs and whose configuration determines the topology of the virtual network; 
and (c) the physical network interface cards (pNICs) of the virtualized hosts that provide connectivity for 
VMs to the enterprise network. 
 
While considering the security impact of the virtual network, the following three main functions must be 
considered: 

 
• Providing selective connectivity or isolation between groups of VMs belonging to different logical 

groupings (e.g., different tenants in the case of an Infrastructure as a Service (IaaS) cloud service; 
different application tiers such as Web Server or Database Server; or different Line of Business 
applications of an enterprise) 

• Dedicating subnets for key functions such as (a) migration of VMs from one hypervisor host to 
another for security or performance reasons, (b) attaching network-based storage devices, and (c) 
fault Tolerant Logging 

• Providing access to the management interface in the management VM (a node of the virtual 
network), which is used for performing key hypervisor baseline functions of VM lifecycle 
management (HY-BF4) and Management of hypervisor platform (HY-BF5) 
 

Out of the three functionalities stated above, selective connectivity and isolation between groups of VMs is 
required for providing security to the applications running on those VMs and therefore outside of the scope of 
this document. The same criteria apply to dedicating subnets for network-based storage administration. We 
have already discussed secure VM migration under VM lifecycle management in section 6. Hence, our focus 
on virtual network configuration is limited to providing protection for the network interfaces used for 
performing VM management and hypervisor administrative functions. A commonly adopted approach is to 
allocate a dedicated physical network interface card (NIC) for handling management traffic, and, if that is not 
feasible, a virtual network segment (vLAN ID) exclusively for it. 
 
Security Recommendation HY-SR-20: Protection for hypervisor host and software administration 
functions should be ensured by allocating a dedicated physical NIC or, if that is not feasible, placing the 
management interface of the hypervisor in a dedicated virtual network segment and enforcing traffic 
controls using a firewall (e.g., designating the subnets in the enterprise network from which incoming 
traffic into the management interface is allowed). 
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8. SECURITY RECOMMENDATION SUMMARY 
 

The hypervisor is a complex server class software that virtualizes hardware resources to enable the 
execution of multiple computing stacks (VMs) with heterogeneous OSs and multiple applications hosted 
within them. Secure configuration of the hypervisor, together with its physical host (i.e., hypervisor host 
or virtualized host), is collectively called the hypervisor platform and is needed to provide a safe platform 
for the execution of mission-critical applications. 
 
Since there are multiple ways by which an architecture of a hypervisor can be classified, the approach 
taken in this document is to identify the five baseline functions that a hypervisor performs, the tasks 
involved in each baseline function, the potential threats to secure execution of the task, and to express the 
countermeasures that provide assurance against exploitation of these threats in the form of security 
recommendations. 
 
Overall, twenty security recommendations are provided for secure deployment of hypervisors. All but two 
(HY-SR-1 and HY-SR-2) relate to the configuration of parameters of software modules in the hypervisor 
platform. These parameters include integrity metrics for software modules (e.g., device drivers and VM 
images), the setting of access controls (e.g., device access, VM image access, and VM administration), 
and the configuration of secure protocols (e.g., VM image server access and VM migration). The mapping 
of the security recommendations to a hypervisor’s baseline functions is provided in Appendix B.  
 

The trust model outlined in this document (refer to section 1.2) assumes that the hardware of the hypervisor 
host is trusted. However, it must be mentioned that there have been reported case of attacks (e.g., side channel 
attacks regarding some implicitly shared hardware resources such as CPU caches and Translation Lookaside 
Buffers (TLB)). More recently published attacks concerning CPU-level performance optimizations (e.g., 
Spectre and Meltdown) also limit the assurance of trust on current hardware platforms used for hypervisor 
deployment.
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Appendix A: Description of Hypervisor Baseline Functions 
 

Detailed descriptions of each of the five hypervisor baseline functions are provided below:  
 
• HY-BF1: VM Process Isolation – Provides scheduling of VMs for execution, management of the 

application processes running in VMs such as CPU and Memory Management, and context switching 
between various processor states during the running of applications in VMs. If DMA capable devices are 
used in the hypervisor host, memory access to those devices need to be controlled as well. However, this 
function is considered under HY-BF2 since it pertains to devices mediation. 

• HY-BF2: Devices Mediation & Access Control –  Makes devices available to VMs (e.g., via 
emulation, para-virtualization, passthrough or self-virtualizing hardware devices) and controlling 
which VMs are allowed to access which devices (e.g., Network Interface Card (NIC), storage device 
such as IDE drive, etc.).  

• HY-BF3: Direct Execution of commands from Guest VMs – Certain commands from Guest OSs are 
executed directly by the hypervisor instead of being triggered through interrupts and context switching. 
This function applies to hypervisors that have implemented para-virtualization instead of full 
virtualization. 

.• HY-BF4: VM Lifecycle Management – This involves all functions from creation and management of VM 
images, control of VM states (Start, Pause, Stop), VM migration, VM monitoring and policy enforcement. 

• HY-BF5: Management of hypervisor platform– This involves defining some artifacts and setting values 
for various configuration parameters in hypervisor software modules including those for configuration 
of a Virtual Network inside the hypervisor. 

 
A detailed description of the above baseline functions is given below: 
 
A.1 HY-BF1 (VM Process Isolation) 
 
Provides scheduling of VMs for execution, management of the application processes running in VMs such 
as CPU and Memory Management, and context switching between various processor states during the 
running of applications in VMs. In order to ensure VM process isolation, memory access from DMA capable 
devices needs to be under hypervisor control as well (e.g., via IOMMU). However, this function is 
considered under HY-BF2 since it pertains to devices mediation. 
 
A.2 HY-BF2 (Devices Mediation & Access Control) 
 
The applications executing in VMs need to access devices such as network and storage. Mediation of access 
to devices is handled in hypervisor hosts through device virtualization (also called IO virtualization). There 
are three common approaches to device virtualization: (a) Emulation, (b) Para-virtualization, and (c) 
Passthrough or self-virtualizing hardware devices. 
 
In emulation, code is implemented to present a virtual device that has a corresponding real (hardware) device 
for which the guest OS already has a driver. This enables running of unmodified guests (VMs), thus 
implementing full virtualization. This emulation code runs in the hypervisor. An I/O call from a guest VM 
application (through its guest OS) is intercepted by the hypervisor kernel and forwarded to this code since 
guest VMs cannot access the physical devices directly under this setup. This emulation code traps all device 
access instructions and converts them to calls on the physical device driver for the physical device attached to 
the hypervisor host. It also multiplexes accesses from guest VMs’ emulated virtual devices to the underlying 
physical device.  
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In the para-virtualization approach, the hypervisor presents to the guest an interface of an artificial device that 
has no corresponding hardware counterpart. This enables special, simplified hypervisor-aware I/O drivers 
(called para-virtualized drivers) to be installed in the guest.  The calls from these para-virtualized device 
drivers in guest VMs are handled by another device driver (called back-end driver) which directly interfaces 
with the physical device and mediates access to that physical device from para-virtualized guests. In some 
instances, the calls from para-virtualized guest drivers are handled directly by the hypervisor through its 
hypercall interface (the corresponding calls are called hypercalls).  
 
The third approach to device virtualization, the passthrough approach (or direct device assignment), is 
deployed for situations where a VM needs exclusive access to a device (e.g., NIC, disk controller, HBA, USB 
controller, serial port, firewire controller, soundcard) for performance reasons to avoid overhead due to 
emulation. Generally this is required for PCI devices and is also called PCI Passthrough. Since many of these 
devices have a memory-mapped interface, they can read or write directly to or from main memory and are 
also called Direct Memory Access (DMA) capable devices. To provide exclusive access to a DMA capable 
device for a VM, the memory pages of the device are mapped into guest VM’s address space.  
 
Apart from the three types of device virtualization described above, hypervisor hosts can support self-
virtualizing hardware devices. These devices have interfaces that can export a set of virtual functions (VFs) 
corresponding to a physical function (PF). The hypervisor then can assign these VFs to multiple guest VMs, 
while it retains control of the PF. These devices conform to Single Root I/O Virtualization (SR-IOV) 
specification and thus enable DMA capable devices to be shared among VMs (as virtualization and 
multiplexing are done by the devices themselves) instead of being dedicated to a single VM as in passthrough 
mode. 
 
 
A.3 HY-BF3 (Direct Execution of commands from Guest VMs): 
 
Certain commands from Guest OSs are executed directly by the hypervisor instead of being triggered 
through interrupts and context switching. These commands are called hypercalls and are supported by a 
special interface in the hypervisor. This function applies only to hypervisors that have implemented para-
virtualization instead of full virtualization. 
 
A.4 HY-BF4 (VM Lifecycle Management) 
 
This encompasses all administrative operations on VMs throughout its life cycle. They include but are not 
limited to: 
 
• Creation of VMs conforming to a standard image, ensuring integrity of images and secure storage and 

retrieval of images; provisioning images with appropriate vCPU, RAM, network, and storage 
• Migration of VMs from one hypervisor host to another 
• Monitoring of VM execution and traffic flows into and out of VMs & overall configuration 

management 
• Fine-grained access control for VM administration including the basic operations that alter the state of 

VMs – Start, Pause, Stop. 
• Access control and management of snapshots 
 

Management tasks are enabled using a management daemon which provides network interfaces. These 
interfaces are generally implemented not as part of the hypervisor kernel modules but on a privileged VM 
(management VM) that is booted up as an integral part of the hypervisor platform boot process. 
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A.5 HY-BF5 (Management of hypervisor platform) 
 
These tasks include those that are involved in the configuration of the hypervisor host (virtualized host) and 
the hypervisor software itself. Important tasks include: provisioning of VMs to hypervisor hosts, creating 
and managing hypervisor clusters and configuration of the virtual network inside the hypervisor host. A 
virtual network is a software-defined network inside the hypervisor host that enables connectivity among 
VMs, as well as connectivity of VMs to external network (e.g., LAN, WAN, etc.).  
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Appendix B: Traceability of Security Recommendation to Hypervisor 
Baseline Functions 

 
NO SECURITY RECOMMENDATION BASELINE 

FUNCTION 
HY-SR-1 The hypervisor that is launched should be part of a platform 

and an overall infrastructure that contains: (a) Hardware that 
supports a MLE with standards-based cryptographic measurement 
capability and storage device and (b) Attestation process that should 
contain capabilities to take advantage of these to provide a chain of 
trust starting from the Hardware to all Hypervisor components. The 
measured elements (components) should include at the minimum the 
following: the core kernel, kernel support modules, device drivers and 
the hypervisor’s native management applications (for VM Lifecycle 
Management and Management of Hypervisor). The chain of trust should 
provide assurance that all measured components have not been 
tampered with and that their versions are correct (i.e., overall boot 
integrity). If the chain of trust is to be extended to guest VMs, the 
hypervisor should provide a virtual interface to the hardware-based 
MLE.  

N/A 

HY-SR-2 The hardware of the virtualized host should provide assistance for 
virtualization for instruction sets and memory management using MMU 
since the hardware support provides the following security assurances that 
cannot be guaranteed with purely software-based virtualization: 
 
• Better memory management controls can prevent attacks such as buffer 

overflow. 
• The feature for re-mapping of DMA transfers in IOMMU provides 

better isolation of I/O devices. Further, the feature to directly assign 
I/O devices to a specific VM and enable direct access to those resources 
eliminates the need for providing emulated device drivers for that VM, 
thus reducing the size of trusted code. 

• Guest OS code and hypervisor code execute in different processor 
modes, providing better isolation. 

• Privilege-level isolation can provide better protection for device access 
mediation functions, and hardware-based memory protection can 
provide better VM-level protection. 

• By supporting full virtualization, COTS versions of OSs can allow for 
easier patching and updating than having to perform the same 
operations on modified or ported versions of OSs that are the only types 
that can be run on para-virtualized platforms. 

• Since many features of virtualization are now available in hardware, 
the size of the hypervisor code will be small, enabling better security 
attestation and verification. 

 
 

HY-BF1 (VM 
Process Isolation) 
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HY-SR-3 The hypervisor should have configuration options to specify a 
guaranteed physical RAM for every VM (that requires it) along with a 
limit to this value, and to specify a priority value for obtaining the 
required RAM resource in situations of contention among multiple VMs. 
Further, the over-commit feature (if available) that enables the total 
configured memory for all VMs to exceed the host physical RAM should 
be disabled by default. 
 
 

HY-BF1 (VM 
Process Isolation) 

HY-SR-4 The hypervisor should have robust configuration features for 
provisioning virtual resources to all hosted VMs in a way that it 
does not exceed a key physical resource such as number of CPU 
cores. 

 
 

HY-BF1 (VM 
Process Isolation) 

HY-SR-5 The hypervisor should provide features to specify a lower and upper 
bound for CPU clock cycles needed for every deployed VM as well as a 
feature to specify a priority score for each VM, to facilitate scheduling in 
situations of contention for CPU resources from multiple VMs. 

 

HY-BF1 (VM 
Process Isolation) 

HY-SR-6A, 
HY-SR-6B,  
HY-SR-6C 

Security Recommendation HY-SR-6A (Emulation): Because of the 
complexity of emulating a hardware device through software, 
emulation, apart from suffering performance penalties, also increases 
the size of the TCB especially in situations where the guest OS has 
native device drivers and the device emulation code runs as a kernel 
module with the same privilege level as the hypervisor. Hence 
emulation should only be used where complexity is manageable (e.g., 
USB host controller). 
 
Security Recommendation HY-SR-6B (Para-virtualization): In 
situations where para-virtualized device drivers are used in VMs, 
mediation of access to physical devices should be enabled by running 
back-end device drivers (which control the physical device attached 
to the hypervisor host) in a dedicated VM rather than in the 
hypervisor. This facilitates running the back-end device driver code 
at a privilege level lower than that of the hypervisor. Additionally, 
the hypervisor platform should include hardware support in the form 
of I/O Memory Management Unit (IOMMU) for validating and 
translating access from the driver domain’s underlying hardware 
device to host memory. The specific IOMMU feature that is 
mandatory is DMA remapping where the DMA call from a device to 
guest physical address (GPA) must be translated to host physical 
address (HPA) and then checked whether the HPA address falls 
within the protection domain assigned to that device. Combining 
these mechanisms enables reducing the size of TCB as well as 
reducing the impact of faulty device or device driver behavior 
(restricted to device-driver VM as opposed to the hypervisor). 
 
Security Recommendation HY-SR-6C (Passthrough or self-
virtualizing hardware devices): For situations, where VMs needs to 
be given dedicated access to DMA capable devices, the hypervisor 
platform should include hardware support in the form of I/O Memory 
Management Unit (IOMMU) for validating and translating all device 
access to host memory. This recommendation also applies to use of 
virtualization-enabled hardware devices (based on SR-IOV 
specification). The specific IOMMU feature that is mandatory is DMA 

HY-BF2 
(Devices 
Mediation & 
Access Control) 
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remapping where the DMA call from a device to guest physical 
address (GPA) must be translated to host physical address (HPA) and 
then checked whether the HPA address falls within the protection 
domain assigned to that device. 
 

HY-SR-7 It should be possible to set up an Access Control List (ACL) to restrict 
access of each VM process to only the devices assigned to that VM. To 
enable this, the hypervisor configuration should support a feature to 
mark (label) VMs (semantically a set of tasks) and/or has a feature to 
specify a whitelist (list of allowable) of devices for each VM. 
 

HY-BF2 
(Devices 
Mediation & 
Access Control) 

HY-SR-8 It should be possible to set resource limits for network bandwidth and 
I/O bandwidth (e.g., disk read/write speeds) for each VM to prevent 
denial of service (DOS) attacks. Further, the proper use of resource 
limits, localizes the impact of a DOS to the VM or the cluster for which 
the resource limit is defined. 
 
 

HY-BF2 
(Devices 
Mediation & 
Access Control) 

HY-SR-9 Gold-standard must be defined for VMs of all types and VM Images not 
conforming to the standard should not be allowed to be stored in the VM 
Image server/library. Further images in the VM Image library should be 
periodically scanned for OS versions and patches going out of date and 
thus have drifted from the standard. 

 
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-10 Every VM Image stored in the image server should have a digital signature 
attached to it as a mark of authenticity and integrity, signed using 
trustworthy, robust cryptographic keys.  
 
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-11  Permissions for checking in to and checking out images from 
VM Image library should be enforced through a robust access 
control mechanism and limited to an authorized set of 
administrators. In the absence of an access control mechanism, VM  
image files should be stored in encrypted devices that can only be 
opened/closed by a limited set of authorized administrators with 

    
 

      
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-12 Access to the server storing VM images should always be through a  
secure protocol such as TLS. 
 

  HY-BF4 (VM 
  Lifecycle 
  Management) 

HY-SR-13  During VM live migration, care should be taken to see that a secure  
 authentication protocol is used for performing live migration, that 
 the credentials of the administrator performing the migration is  
 passed only to the destination host, the migration of memory content 
 and processor state takes place over a secure network connection 
 and a dedicated virtual network segment is used in both source and 
 destination hosts for carrying this traffic. 
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-14 There should be a mechanism for security monitoring and security policy 
enforcement of VM operations –malicious processes running inside VMs 
and malicious traffic going in and out of a VM. This monitoring and 
enforcement mechanism forms the foundation for building Anti-Virus 
(AV) and Intrusion Detection & Prevention System (IDPS) solutions. 

 
 
 
 

HY-BF4 (VM 
Lifecycle 
Management) 
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HY-SR-15 Solutions for Security Monitoring and security policy enforcement of 
VMs should be based “outside of VMs” and should leverage the virtual 
machine introspection capabilities of the hypervisor. Generally, such 
solutions involve running a security tool as a Security Virtual Appliance 
(SVA) in a security-hardened or trusted VM.. 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-16 All antimalware tools (virus checkers, firewalls and IDPS) 
running in the virtualized host should have the capability to 
perform autonomous signature or reference file updates on a 
periodic basis. 
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-17 VM configuration management tools should have the capability to compile 
logs and alert administrators when configuration changes are detected in 
any VM that is being monitored. 
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-18 The access control solution for VM administration should have the 
granular capability both at the permission assignment level as well as at 
the object level (i.e., the specification of the target of the permission can 
be a single VM or any logical grouping of VMs - based on function or 
location). In addition, the ability to deny permission to some specific 
objects within a VM group (e.g., VMs running workloads of a particular 
sensitivity level) despite having access permission to the VM group  
 

HY-BF4 (VM 
Lifecycle 
Management) 

HY-SR-19 The administration of all hypervisor installations in the enterprise should 
be performed centrally using an enterprise virtualization management 
system (EVMS). Further enterprise gold-standard hypervisor 
configurations for different types of workloads and clusters must 
managed (enforced) through EVMS. The gold-standard configurations 
should at the minimum cover the following aspects – CPU, Memory, 
Storage, Network bandwidth and Host OS hardening (if required). 
 

HY-BF5 
(Management of 
hypervisor 
Platform) 

HY-SR-20 Protection for Hypervisor Host & Software administration functions 
should be ensured by allocating a dedicated physical NIC, or if that is 
not feasible, by placing the management interface of the hypervisor in a 
dedicated virtual network segment and enforcing traffic controls using a 
firewall (e.g., designating the subnets in the enterprise network from 
which incoming traffic into the management interface is allowed). 

HY-BF5 
(Management of 
hypervisor 
Platform) 
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Appendix C: Glossary 
 

Full Virtualization:   A form of Virtualization in which the hypervisor presents virtualized resources 
that reflect the architecture of the underlying hardware and hence unmodified guest OSs can be run. 

 
Guest Operating System (OS): The operating system component of the execution stack of a 
Virtual Machine (see below), others being Virtual Hardware, Middleware and Applications. 

 
Hypervisor: A software built using a specialized kernel of an OS, along with supporting kernel modules 
that provides isolation for various execution stacks represented by Virtual Machines (see below). 

 
Virtualized Host: The physical host on which the virtualization software such as the Hypervisor 
is installed. Usually, the virtualized host will contain a special hardware platform that assists 
virtualization - specifically Instruction Set and Memory virtualization. 

 
Virtual Machine (VM): A software-defined complete execution stack consisting of virtualized 
hardware, operating system (guest OS), and applications. 

 
Virtualization: A methodology for emulation or abstraction of hardware resources that enables 
complete execution stacks including software applications to run on it. 
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