
NIST Special Publication 500-326

SATE V Report:

Ten Years of

Static Analysis Tool Expositions

Aurelien Delaitre

Bertrand Stivalet

Paul E. Black

Vadim Okun

Athos Ribeiro

Terry S. Cohen

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.500-326

NIST Special Publication 500-326

SATE V Report:

Ten Years of

Static Analysis Tool Expositions

Aurelien Delaitre

Prometheus Computing LLC

Bertrand Stivalet

Paul E. Black

Vadim Okun

Athos Ribeiro

Terry S. Cohen

Information Technology Laboratory

Software and Systems Division

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.500-326

October 2018

U.S. Department of Commerce

Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 500-326

Natl. Inst. Stand. Technol. Spec. Publ. 500-326, 180 pages (October 2018)

CODEN: NSPUE2

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.500-326

i

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Abstract

Software assurance has been the focus of the National Institute of Standards and Technology

(NIST) Software Assurance Metrics and Tool Evaluation (SAMATE) team for many years.

The Static Analysis Tool Exposition (SATE) is one of the team’s prominent projects to

advance research in and adoption of static analysis, one of several software assurance

methods. This report describes our approach and methodology. It then presents and discusses

the results collected from the fifth edition of SATE.

Overall, the goal of SATE was not to rank static analysis tools, but rather to propose a

methodology to assess tool effectiveness. Others can use this methodology to determine

which tools fit their requirements. The results in this report are presented as examples and

used as a basis for further discussion.

Our methodology relies on metrics, such as recall and precision, to determine tool

effectiveness. To calculate these metrics, we designed test cases that exhibit certain

characteristics. Most of the test cases were large pieces of software with cybersecurity

implications. Fourteen participants ran their tools on these test cases and sent us a report of

their findings. We analyzed these reports and calculated the metrics to assess the tools’

effectiveness.

Although a few results remained inconclusive, many key elements could be inferred based on

our methodology, test cases, and analysis. In particular, we were able to estimate the

propensity of tools to find critical vulnerabilities in real software, the degree of noise they

produced, and the type of weaknesses they were able to find. Some shortcomings in the

methodology and test cases were also identified and solutions proposed for the next edition

of SATE.

Key words

Security Weaknesses; Software Assurance; Static Analysis Tools; Vulnerability.

ii

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Caution on Interpreting and Using the SATE Data

SATE V, as well as its predecessors, taught us many valuable lessons. Most importantly, our

analysis should NOT be used as a basis for rating or choosing tools; this was never the goal.

There is no single metric or set of metrics that is considered by the research community to

indicate or quantify all aspects of tool performance. We caution readers not to apply

unjustified metrics based on the SATE data.

Due to the nature and variety of security weaknesses, defining clear and comprehensive

analysis criteria is difficult. While the analysis criteria have been much improved since the

first SATE, further refinements are necessary.

The test data and analysis procedure employed have limitations and might not indicate how

these tools perform in practice. The results may not generalize to other software because the

choice of test cases, as well as the size of test cases, can greatly influence tool performance.

Also, we analyzed only a small subset of tool warnings.

The procedure that we used for finding CVE locations in the CVE-selected test cases and

selecting related tool warnings has limitations, so the results may not indicate tools’ actual

abilities to find important security weaknesses.

Synthetic test cases are much smaller and less complex than production software.

Weaknesses may not occur with the same frequency in production software. Additionally, for

every synthetic test case with a weakness, there is one test case without a weakness, whereas,

in practice, sites with weaknesses appear much less frequently than sites without weaknesses.

Due to these limitations, tool results, including false positive rates, on synthetic test cases

may differ from results on production software.

The tools were used differently in this exposition from their typical use. We analyzed tool

warnings for correctness and looked for related warnings from other tools. Developers, on

the other hand, use tools to determine what changes need to be made to software. Auditors

look for evidence of assurance. Also, in practice, users write special rules, suppress false

positives, and write code in certain ways to minimize tool warnings.

We did not consider the tools’ user interfaces, integration with the development environment,

and many other aspects of the tools, which are important for a user to efficiently and

correctly understand a weakness report.

Teams ran their tools against the test sets in June through September 2013. The tools

continue to progress rapidly, so some observations from the SATE data may already be out

of date.

Because of the stated limitations, SATE should not be interpreted as a tool testing exercise.

The results should not be used to make conclusions regarding which tools are best for a given

application or the general benefit of using static analysis tools.

iii

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table of Contents

1. Introduction ... 1

1.1. Goals ... 1

1.2. Scope ... 2

1.3. Target Audience .. 2

1.4. Terminology ... 2

1.5. Metrics ... 3

1.6. Types of Test Cases ... 4

1.7. Related Work .. 6

1.8. Evolution of SATE .. 8

2. Overall Procedure ... 10

2.1. Changes Since SATE IV ... 10

2.1.1. Confidentiality .. 10

2.1.2. Environment ... 10

2.1.3. Fairness ... 11

2.1.4. Soundness ... 11

2.2. Steps / Organization .. 11

2.3. Participation .. 12

2.4. Data Anonymization ... 14

3. Procedure and Results for Classic Tracks .. 14

3.1. Production Software ... 14

3.1.1. Test Sets ... 15

3.1.2. Procedure .. 16

3.1.3. Results .. 18

3.2. CVEs ... 22

3.2.1. Test Sets ... 23

3.2.2. Procedure .. 23

3.2.3. Results .. 24

3.3. Synthetic Test Suites ... 35

3.3.1. Test Sets ... 35

3.3.2. Procedure .. 36

3.3.3. Analysis Cycles .. 37

3.3.4. Complexity ... 39

3.3.5. Results .. 39

4. Analysis Result Summary for Classic Tracks .. 54

5. Ockham Criteria ... 58

5.1. The Criteria ... 58

5.1.1. Details ... 59

5.1.2. Definition of “Site” .. 60

5.1.3. About “Sound” and “Complete” Analysis ... 60

5.2. Frama-C Evaluation ... 61

5.2.1. Undefined Behavior Stops Analysis ... 62

5.2.2. Warnings Are Union of Two Runs ... 62

5.2.3. Frama-C Gives Findings for Good Sites .. 62

5.2.4. Implementation ... 63

5.2.5. Analysis Termination after RAND32() macro ... 63

5.2.6. Cases Under CWE-191 Not Processed ... 64

5.3. Evaluation by Weakness Classes ... 64

iv

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

5.3.1. Write Outside Buffer .. 65

5.3.2. CWE-123: Write-what-where Condition .. 66

5.3.3. Read Outside Buffer ... 66

5.3.4. CWE-476: NULL Pointer Dereference .. 67

5.3.5. CWE-190: Integer Overflow or Wraparound... 67

5.3.6. CWE-369: Divide By Zero ... 67

5.3.7. CWE-457: Use of Uninitialized Variable ... 68

5.3.8. CWE-562: Return of Stack Variable Address .. 69

5.3.9. Summary of the Evaluation by Weakness Classes ... 69

5.4. General Observations ... 70

5.4.1. Warnings Handled as Exceptions ... 70

5.5. Ockham Criteria Summary ... 71

5.6. Future Plans for Ockham Criteria .. 71

5.6.1. Weakness Classes ... 71

5.6.2. Definition of “Site” .. 71

5.6.3. Use of the Term “Sound” ... 72

6. Workshop Outcome .. 72

7. Conclusion ... 74

7.1 Future Plans .. 74

8. Acknowledgments ... 75

8.1 Ockham Criteria Acknowledgements ... 75

9. References .. 75

Appendix A: CWE Groups .. 79

Appendix B: Seven Pernicious Kingdoms .. 99

Appendix C: Discrimination Details on CVEs ... 130

Appendix D: Recall Details on CVEs .. 132

Appendix E: Reported and Unreported Weakness Classes on Juliet 134

Appendix F: Recall per CWE on Juliet C and Java .. 146

Appendix G: Applicable Recall per CWE on Juliet .. 158

Appendix H: Complete Versions of Tables of CVEs Found and Missed....................... 166

v

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

List of Tables

TABLE 1. GLOSSARY OF TERMS. .. 2

TABLE 2. MAPPING METRICS TO TEST CASE TYPES. ... 6

TABLE 3. EVOLUTION OF SATES. ... 10

TABLE 4. OVERALL PARTICIPATION PER TRACK OVER SATES. .. 12

TABLE 5. PARTICIPATION IN THE C/C++ TRACK OVER SATES. .. 13

TABLE 6. PARTICIPATION IN THE JAVA TRACK OVER SATES. ... 13

TABLE 7. ALIASES FOR THE SEVEN PERNICIOUS KINGDOMS CLASSES. 14

TABLE 8. TEST SETS. ... 15

TABLE 9. WARNINGS REPORTED BY TOOLS PER C TEST CASE. ... 16

TABLE 10. WARNINGS REPORTED BY TOOLS PER JAVA TEST CASE. 17

TABLE 11. WARNINGS REPORTED BY TOOLS PER PHP TEST CASE. .. 17

TABLE 12. WARNING RATING CATEGORIES. ... 17

TABLE 13. ANALYSIS RESULTS PER LANGUAGE. ... 18

TABLE 14. ANALYSIS OF WARNING RESULTS PER TOOL IN THE C/C++ TRACK. 19

TABLE 15. ANALYSIS OF WARNING RESULTS PER TOOL IN THE JAVA TRACK. 19

TABLE 16. USEFUL PRECISION PER TOOL AND PER TRACK. ... 20

TABLE 17. SECURITY-RATED WARNINGS PER 7PK FOR THE C/C++ TRACK. 21

TABLE 18. SECURITY-RATED WARNINGS PER 7PK FOR THE JAVA TRACK............................... 21

TABLE 19. SECURITY-RATED WARNINGS PER 7PK FOR THE PHP TRACK. 22

TABLE 20. CVE-BASED TEST SETS. .. 23

TABLE 21. RECALL AND DISCRIMINATION RATE ON THE CVE TEST CASES (C/C++ TRACK). 25

TABLE 22. RECALL AND DISCRIMINATION RATE ON THE CVE TEST CASES (JAVA AND PHP

TRACKS). ... 25

TABLE 23. CVES’ WEAKNESS CATEGORIES FOUND BY TOOLS IN ASTERISK. 27

TABLE 24. CVES’ WEAKNESS CATEGORIES FOUND BY TOOLS IN WIRESHARK. 27

TABLE 25. CVES’ WEAKNESS CATEGORIES FOUND BY TOOLS IN JSPWIKI. 27

TABLE 26. CVES’ WEAKNESS CATEGORIES FOUND BY TOOLS IN OPENFIRE. 28

TABLE 27. CVES’ WEAKNESS CATEGORIES FOUND BY TOOLS IN WORDPRESS. 28

TABLE 28. WEAKNESS TYPES OF CVES IN SATE V. ... 29

TABLE 29. CVES FOUND AND MISSED ON ASTERISK. ... 30

TABLE 30. SIMPLE-RATED CVES FOUND AND MISSED ON WIRESHARK. 30

TABLE 31. MEDIUM-RATED CVES FOUND AND MISSED ON WIRESHARK. 31

vi

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

TABLE 32. HARD-RATED CVES FOUND AND MISSED ON WIRESHARK. 32

TABLE 33. EXTREME-RATED CVES FOUND AND MISSED ON WIRESHARK. 32

TABLE 34. CVES FOUND AND MISSED ON JSPWIKI. ... 33

TABLE 35. CVES FOUND AND MISSED ON OPENFIRE. ... 33

TABLE 36. CVES FOUND AND MISSED ON WORDPRESS. .. 34

TABLE 37. OVERLAP PER CVE TEST CASE. ... 35

TABLE 38. JULIET 1.2 STATISTICS. .. 35

TABLE 39. COVERAGE PER CATEGORY FOR SYNTHETIC C/C++. ... 41

TABLE 40. COVERAGE PER CATEGORY FOR SYNTHETIC JAVA. .. 41

TABLE 41. RECALL PER CATEGORY FOR SYNTHETIC C/C++. .. 42

TABLE 42. RECALL PER CATEGORY FOR SYNTHETIC JAVA. ... 42

TABLE 43. RECALL VS. APPLICABLE RECALL FOR SYNTHETIC C/C++. 43

TABLE 44. RECALL VS. APPLICABLE RECALL FOR SYNTHETIC JAVA. 44

TABLE 45. PRECISION FOR 50 % PREVALENCE PER CATEGORY FOR SYNTHETIC C/C++. 44

TABLE 46. PRECISION FOR 50 % PREVALENCE PER CATEGORY FOR SYNTHETIC JAVA. 45

TABLE 47. DISCRIMINATION RATE PER CATEGORY FOR SYNTHETIC C/C++. 46

TABLE 48. DISCRIMINATION RATE PER CATEGORY FOR SYNTHETIC JAVA. 46

TABLE 49. APPLICABLE RECALL, COVERAGE, AND DISCRIMINATION RATE FOR SYNTHETIC

C/C++. ... 48

TABLE 50. APPLICABLE RECALL, COVERAGE, AND DISCRIMINATION RATE FOR SYNTHETIC

JAVA. ... 48

TABLE 51. OVERLAP PER TRACK FOR THE SYNTHETIC TEST CASES. 50

TABLE 52. OVERLAP BETWEEN TOOL PAIRS FOR SYNTHETIC C/C++. 51

TABLE 53. OVERLAP BETWEEN TOOL PAIRS FOR SYNTHETIC JAVA. .. 51

TABLE 54. EFFECT OF CODE COMPLEXITY ON TOOL METRICS FOR C/C++. 52

TABLE 55. EFFECT OF CODE COMPLEXITY ON TOOL METRICS FOR JAVA. 52

TABLE 56. EFFECT OF COMPLEXITY ON RECALL FOR C/C++ .. 52

TABLE 57. EFFECT OF COMPLEXITY ON DISCRIMINATION RATE FOR C/C++. 53

TABLE 58. EFFECT OF COMPLEXITY ON RECALL FOR JAVA. .. 53

TABLE 59. EFFECT OF COMPLEXITY ON DISCRIMINATION RATE FOR JAVA. 53

TABLE 60. REDUCTION IN THE NUMBER OF WEAKNESSES PER COMPLEXITY. 54

TABLE 61. METRICS PER TOOL IN SATE V. .. 55

TABLE 62. CWE GROUPS MOST REPRESENTED IN THE CVE AND SYNTHETIC TEST CASES IN

THE C/C++ TRACK. .. 56

vii

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

TABLE 63. NUMBER OF SITES, WARNINGS, FINDINGS, AND BUGGY SITES FOR EACH WEAKNESS

CLASS. ... 70

TABLE 64. REPORTED AND UNREPORTED WEAKNESS CLASSES ON JULIET C/C++. 134

TABLE 65. REPORTED AND UNREPORTED WEAKNESS CLASSES ON JULIET JAVA. 141

TABLE 66. RECALL PER CWE ON JULIET C/C++. .. 146

TABLE 67. RECALL PER CWE ON JULIET JAVA. .. 153

TABLE 68. APPLICABLE RECALL PER CWE ON JULIET C/C++. ... 158

TABLE 69. APPLICABLE RECALL PER CWE ON JULIET JAVA. .. 163

TABLE 70. CVES FOUND AND MISSED ON ASTERISK. ... 166

TABLE 71. SIMPLE-RATED CVES FOUND AND MISSED ON WIRESHARK. 166

TABLE 72. MEDIUM-RATED CVES FOUND AND MISSED ON WIRESHARK. 167

TABLE 73. HARD-RATED CVES FOUND AND MISSED ON WIRESHARK. 168

TABLE 74. EXTREME-RATED CVES FOUND AND MISSED ON WIRESHARK. 169

viii

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

List of Figures

FIGURE 1. TYPES OF TEST CASES. ... 5

FIGURE 2. SATE PROCEDURE. .. 12

FIGURE 3. DISTRIBUTION OF CVE TYPES PER TEST CASE. .. 26

FIGURE 4. EVALUATION PROCESS FOR SYNTHETIC TEST CASES. .. 36

FIGURE 5. SYNTHETIC TEST CASE ANALYSIS CYCLE. ... 37

FIGURE 6. IMPROVEMENT IN THE EVALUATION ACCURACY FOR C/C++. 38

FIGURE 7. IMPROVEMENT IN THE EVALUATION ACCURACY FOR JAVA. 38

FIGURE 8. CWE COUNT PER CATEGORY IN JULIET 1.2 C/C++ AND JAVA. 39

FIGURE 9. TEST CASE COUNT PER CATEGORY IN JULIET C/C++ AND JAVA. 40

FIGURE 10. PRECISION FOR 50 % PREVALENCE VS. DISCRIMINATION RATE FOR SYNTHETIC

C/C++. ... 47

FIGURE 11. PRECISION FOR 50 % PREVALENCE VS. DISCRIMINATION RATE FOR SYNTHETIC

JAVA. ... 47

FIGURE 12. OVERLAP DISTRIBUTION FOR SYNTHETIC C/C++ TEST CASES. 56

FIGURE 13. RECALL FOR SYNTHETIC VS. CVE TEST CASES FOR TOOL B IN THE C/C++ TRACK.

 ... 57

FIGURE 14. RECALL FOR SYNTHETIC VS. CVE TEST CASES FOR TOOL H IN THE C/C++ TRACK.

 ... 57

FIGURE 15. RECALL FOR SYNTHETIC VS. CVE TEST CASES FOR TOOL A IN THE C/C++ TRACK.

 ... 58

1

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

1. Introduction

Nowadays software is ubiquitous. Most critical infrastructures heavily rely on software;

we use it to control air traffic, computerize self-driving vehicles, and manage power

plants. These successes depend upon our trust in software, noting that the more elaborate

the system, the more complex and inevitable the defects.

Software assurance is a set of methods and processes to prevent, mitigate or remove

vulnerabilities and ensure that the software functions as intended. Multiple techniques

and tools have been used for software assurance [1]. One technique is static analysis,

which examines software for weaknesses without executing it [2]. As sophisticated static

security analysis tools were beginning to appear in the mid-2000s, users required a better

understanding of their effectiveness. The National Institute of Standards and Technology

(NIST) Software Assurance Metrics and Tool Evaluation (SAMATE) project has been

evaluating these tools. The SAMATE team initially built a specification listing weakness

classes which should be reported by static analysis tools [3]. Bill Pugh, Professor

Emeritus at the University of Maryland and author of the static analysis tool Findbugs,

proposed following the NIST Text REtrieval Conference (TREC) approach as a more

practical way for testing tools [4, 5]. Instead of directing toolmakers to find specific

weakness classes, we shifted our focus to determining what weaknesses existed in real

software and could be found by tools.

In 2008, we initiated the first large-scale public event, inviting toolmakers to demonstrate

the use of their tools. We labeled it the Static Analysis Tool Exposition (SATE) and

refined it over five instances [6–9]. SATE is designed to advance research in static

analysis tools that find security-relevant weaknesses in source code.

Definition and classification of such security weaknesses in software are necessary to

communicate and analyze security findings. While many classifications have been

proposed, Common Weakness Enumeration (CWE) is the most prominent effort [10].

We explain the SATE procedure, including the use of CWEs, and present the results of

SATE V in this report.

1.1. Goals

A number of studies have compared static analysis tools [11–17]. SATE chose to

encourage participation by creating a neutral space for sharing, rather than competing, to

advance research in static analysis tools. This broader participation brings more results,

on which we build and assess stronger metrics. We use these indicators to measure the

strengths of tools and understand how to leverage their value. In addition, we identify

their shortcomings and the challenges they face.

Users want to understand how effective tools are in meeting their requirements. The

SATE metrics provide assessments of tools’ features. Such features include weakness

types, the accuracy in detecting such weaknesses, and the rate of missing weaknesses in

source code.

As a by-product, the exposition provides participating toolmakers with quality feedback,

enabling them to assess their strengths and weaknesses. The results produced by their

2

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

tools are partially reviewed and rated by experts. In one type of analysis, the tool

warnings are matched to real vulnerabilities from the Common Vulnerabilities and

Exposures (CVE) database [18].

Finally, demonstrating the use of tools on production software fosters their adoption by

the user community. In fact, several toolmakers informally reported that their current and

prospective customers demanded that they participate in SATE.

1.2. Scope

Due to high cost of security incidents, SATE focuses on tools capable of finding security

defects. Although its parent project, SAMATE, considers all types of software assurance

tools, SATE is only concerned with tools that statically analyze software, i.e., without

executing the code.

1.3. Target Audience

The target audiences for this report are static analysis toolmakers, security researchers,

and tool users.

1.4. Terminology

This report uses the concepts defined in Table 1.

Table 1. Glossary of Terms.

Term Definition

Weakness, flaw, defect, bug
Defect in a system that may (or may not) lead to a

vulnerability.

Vulnerability

A weakness in system security requirements, design,

implementation, or operation, that could be accidentally

triggered or intentionally exploited and result in a violation

of the system’s security policy [19].

Site
Conceptual place in a program where an operation is

performed.

Finding, claim
A definitive statement provided by a tool about a site, e.g.,

the presence or absence of a weakness.

Warning Claim reporting the presence of a potential weakness.

Report
Collection of warnings reported by a tool on a specific test

case.

Location
A representation of a site, e.g., by file name and line number

in source code.

Complexity
Code construct encapsulating a site, making the latter more

or less difficult to analyze.

Control flow complexity

Amount of control flow statements, e.g., conditionals, loops,

and function calls, that make a program more or less

difficult to analyze.

Data flow complexity

Amount of data flow transfers, e.g., copying data, passing

parameters to a function, and validation, that make a

program more or less difficult to analyze.

Synthetic code Artificial code generated and documented automatically.

3

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Term Definition

True positive (TP) Flawed code reported correctly by a tool.

True negative (TN) Non-flawed code not reported by a tool.

False positive (FP) Non-flawed code reported by a tool as flawed.

False negative (FN) Flawed code not reported by a tool.

Ground truth
Knowledge of all weaknesses in a test case, including their

location in code and weakness class.

Track

An area of focus, such as a programming language (C/C++,

Java, and PHP1), sometimes collectively called “classic

tracks,” or methodology (Ockham Criteria).

Good code, fixed code, non-

buggy code
Code that should not contain any weakness.

Bad code, flawed code, buggy

code
Code that contains at least one weakness.

1.5. Metrics

Since we have assembled a large set of test cases, we need to establish an objective way

of measuring the tools' outputs. The following metrics address some basic questions:

• Coverage ‒ What kinds of weaknesses can a tool find?

Coverage is determined by the types of weaknesses found by a tool. It is measured by the

number of unique weakness types reported over the total number of weakness types

tested.

• Recall ‒ What proportion of weaknesses can a tool find?

Recall is defined by the number of correct findings by a tool compared with the total

number of weaknesses present in the code. It is calculated by dividing the number of True

Positives (TP) by the total number of weaknesses, i.e., the sum of the number of True

Positives (TP) and the number of False Negatives (FN).

Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (1)

• Applicable Recall ‒ What proportion of covered weaknesses can a tool find?

Applicable Recall is recall reduced to the types of weaknesses a tool can find. It is

calculated by dividing the number of True Positives (TP) by the number of weaknesses

covered by a tool. We consider False Negatives (FN) only if they belong to a weakness

class the tool supports, i.e., Applicable False Negatives (App.FN). In other words, a tool’s

performance is not penalized if it does not report weaknesses for which it does not search.

 App.Recall =
𝑇𝑃

(𝑇𝑃 + 𝐴𝑝𝑝.𝐹𝑁)
 (2)

1 PHP: Hypertext Preprocessor, a recursive acronym for PHP, an open-source scripting language

(http://php.net/manual/en/intro-whatis.php)

4

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

• Precision ‒ How much can I trust a tool?

Precision is the proportion of correct warnings produced by a tool and is calculated by

dividing the number of True Positives (TP) by the total number of warnings. The total

number of warnings is the sum of the number of True Positives (TP) and the number of

False Positives (FP).

 Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (3)

Note that we calculate precision differently for production software. We call this “useful

precision,” as described in Sec. 3.1.3.2. Also, precision for synthetic test cases is based

on 50 % prevalence of weaknesses, as described in Sec. 3.3.5.4.

• Discrimination Rate ‒ How smart is a tool?

Buggy and good code often look similar. It is useful to determine whether the tools can

differentiate between the two. Although precision captures that aspect of tool efficiency,

it is relevant only when good sites dominate buggy sites. When there is parity in the

number of good and bad sites, e.g., in some synthetic test suites, a tool could

indiscriminately flag both good and bad sites as flawed and still achieve a precision of

50 %. Discrimination, however, recognizes a true positive on a specific flawed test case

only if a tool did not report a false positive on the corresponding fixed test case [11]. For

each weakness instance, a tool is assigned a discrimination of 1 if the tool reports a

weakness for a bad site but not for the corresponding good site; otherwise it is assigned a

discrimination of 0. Over a set of test cases, the Discrimination Rate is the number of

discriminations divided by the total number of weakness instances. A tool that flags all

sites (good and bad) indiscriminately would achieve a discrimination rate of 0 %.

• Overlap ‒ Can the findings be confirmed by other tools?

Overlap represents the proportion of weaknesses found by more than one tool. This

metric identifies which tools behave similarly and which weaknesses are easy or difficult

for tools to find. The use of multiple tools would find more weaknesses (higher recall),

whereas the use of independent tools would provide a better confidence in the common

warnings’ accuracy.

1.6. Types of Test Cases

The only way to understand how static analysis tools behave in any given situation is to

run them on all existing software and analyze their outputs. This would be a colossal

effort, so we should start with a few examples. But which examples should we choose as

our test cases?

We want to generalize the knowledge acquired by running the tools on our test cases.

Therefore, we must select programs that are representative of real, existing software. For

example, their development should follow industry practices. Their size should align with

similar software. Their programming language should be widely used for their purpose.

We also need a sufficient number and diversity of weaknesses in code to achieve

statistical significance. The results must demonstrate all the capabilities of the tools and

in different instances. If some features remain unexposed, the generalization would be

inaccurate.

5

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Lastly, we must know all the defect locations in the test cases, i.e., the ground truth. This

enables faster tool warning evaluations and, more importantly, the identification of

undetected weaknesses.

However, thoroughly analyzing large production software to find all defects is

impractical. Consequently, no candidate test case exhibits the three ideal characteristics:

1) representative of real, existing code, 2) large amounts of test data to yield statistical

significance, and 3) ground truth. But software showing two of the three characteristics

exists (Fig. 1). There are three possible combinations of two features, corresponding to

three types of test cases.

Figure 1. Types of Test Cases.

The first type of test cases is production software. It is large enough for statistical

significance and is representative of real-world software. However, the defects it contains

are only partially known. Section 3.1 describes the procedure and results obtained from

this type of test case. We refer to these test cases as Production Software test cases.

Publicly reported vulnerabilities from the Common Vulnerabilities and Exposures (CVE)

database [18] form a prime source of known defects in production software.

Unfortunately, they are still too few to achieve statistical significance. In Sec. 3.2, we

discuss the performance of tools in finding these genuine vulnerabilities. We refer to

these test cases as Software with CVEs test cases.

Computer-assisted code generation provides us with large sets of test cases, containing

known weaknesses of many types. Because these programs are usually short and

artificially express a pre-determined flaw, they are not representative of real-world

software. Section 3.3 discusses the performance of tools on these Synthetic Test Cases.

To calculate the metrics described in Sec. 1.5 we must select appropriate test cases. Table

2 summarizes the applicability of the metrics to the three types of test cases. Label

Applicable means that the metric can be calculated, Limited states that there are some

6

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

limitations with the calculation, and N/A (not applicable) means that the calculation is not

possible.

Recall cannot be calculated on the Production Software test cases, because we do not

know all the weaknesses contained in the applications. Discrimination rate requires a

flawless version of a test case to check whether tools report the same warnings in the

corresponding vulnerable version, but none exist in Production Software.

While weakness categories reported by a tool give an idea of tool’s coverage, the

coverage calculation is limited to the types of weaknesses present in Production

Software. Similarly, coverage for the Software with CVEs is limited to the types of

weaknesses represented by the CVEs.

The precision of the tools cannot be measured using the Software with CVEs test cases,

because we have too few CVEs per program to achieve statistical significance.

While discrimination can usually be determined for the Software with CVEs, there are

practical limitations. For example, the buggy code is sometimes removed in the fixed

version, or heavily modified.

We can apply all the metrics to the Synthetic Test Cases, but we should keep in mind that

these test cases were automatically generated. The tools’ behavior on artificial code could

differ from their behavior on production code.

Table 2. Mapping Metrics to Test Case Types.

Metric
Production

Software

Software with

CVEs

Synthetic Test

Cases

Coverage Limited Limited Applicable

Recall N/A Applicable Applicable

Precision Applicable N/A Applicable

Discrimination N/A Limited Applicable

Overlap Applicable Applicable Applicable

1.7. Related Work

In Sec. 1.6, we described the three properties of an ideal test suite: realism, ground truth,

and statistical significance. In this section, we review some relevant test suites and their

use in evaluating static analysis tools with respect to the desired properties.

Synthetic test suites satisfy the requirements of having ground truth and statistical

significance. Kendra Kratkiewicz and Richard Lippmann [12] developed a

comprehensive taxonomy of buffer overflows and created 291 test cases, comprised of

small C programs, to evaluate tools for detecting buffer overflows. Each test case has

three vulnerable versions with buffer overflows just outside, moderately outside, and far

outside the buffer, in addition to a fourth, fixed, version. Kratkiewicz’s taxonomy [12]

lists different attributes, or code complexities, including aliasing, control flow, and loops,

which may complicate analysis by the tools.

7

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

The largest synthetic test suite in the NIST Software Assurance Reference Dataset

(SARD) [20] was created by the U.S. National Security Agency’s (NSA) Center for

Assured Software (CAS). Juliet 1.0 consists of about 60 000 synthetic test cases, covering

177 CWEs and a wide range of code complexities [11]. CAS ran nine tools on the test

suite and found that static analysis tools differed significantly with respect to precision

and recall. Also, tools’ precision and recall ranking varied for different weaknesses. CAS

concluded that sophisticated use of multiple tools would increase the rate of finding

weaknesses and decrease the false positive rate. A newer version of the test suite, Juliet

1.2, correcting several errors and covering a wider range of CWEs and code constructs,

was used in SATE V. (Since then Juliet 1.3 has been released. It has additional coverage

and corrects many errors in version 1.2 [21].)

Wagner and Sametinger [22] evaluated several source code analysis tools on the Juliet

test suite. Most of these tools were free and open source tools. Tools detected a minority

of weaknesses only. Using a security rule set significantly improved the performance of

one of the tools, PMD. Testing tools on a synthetic test suite provides an overview of

their capabilities. However, these results may differ from the results obtained when

running these tools on real-world software.

Evaluating tools on production software has the advantages of realism and statistical

significance. Rutar et. al. [17] ran five static analysis tools on five open source Java

programs, including Apache Tomcat, of varying size and functionality. Due to many tool

warnings, Rutar et al. did not categorize every false positive and false negative reported

by the tools. Instead, the tool outputs were cross-checked with each other. Additionally, a

subset of warnings was examined manually. SATE also analyzed a subset of tool

warnings for production software. One of the conclusions of Rutar et al. was that there

was little overlap among warnings from different tools. Another conclusion was that a

meta-tool combining and cross-referencing output from multiple tools could be used to

prioritize warnings.

Several tool evaluation studies identified ground truth in production software. The

earliest such effort was by Zitser et al. [13]. At the time of their 2004 publication,

sophisticated tools could not handle realistic software, so they extracted source code for

model programs. They created fourteen small model programs from three popular, open

source, Internet server programs (BIND, Sendmail, and WU-FTP), which contained

publicly known, exploitable buffer overflows. The model programs had both vulnerable

and patched source code. Complexity of the model programs related to the buffer

overflows was similar to the real programs, while the size was much smaller. Now, many

sophisticated tools can handle large software out of the box or with minimal

configuration. The study analyzed different characteristics of buffer overflows and

evaluated true positive rates, false positive rates, and discrimination counts of static

analysis tools.

Walden et al. [23] measured the effect of code complexity on the quality of static analysis

on open source software. Thirty-five format string vulnerabilities were selected, and both

vulnerable and fixed versions of the software were analyzed. We took a similar approach

with the CVE-selected test cases. Walden et al. concluded that detection rates of format

string vulnerabilities decreased with an increase in code size or code complexity.

8

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kupsch and Miller [24] evaluated the effectiveness of static analysis tools by comparing

their results with the results of an in-depth manual vulnerability assessment. Of the

vulnerabilities found by manual assessment, the tools found simple implementation bugs,

but did not find any vulnerabilities requiring a deep understanding of the code or design.

For SATE 2009, SATE 2010, and SATE IV, we used a similar approach [7–9]. Security

experts performed time-limited analyses of some of the test cases to identify the most

important weaknesses. We evaluated the tool outputs to correlate warnings with these

manual findings.

The Intelligence Advanced Research Projects Activity (IARPA) attempted to combine all

three properties of an ideal test suite in its Securely Taking On New Executable Software

of Uncertain Provenance STONESOUP program [25, 26]. IARPA created 7770 test cases

by injecting small code snippets, containing weaknesses, into sixteen open source base

programs. Input/output pairs were also created as part of the test case generation process.

Although the base programs were real-world software, the inserted code snippets, or

cysts, were unrelated to the control and data flow of the base programs. The resulting

weaknesses were not representative of bugs made by real programmers. Thus, further

improvement is still needed to satisfy the property of realism.

IARPA STONESOUP and many of the test cases mentioned above are available from the

SARD [20].

SATE and most of the above-mentioned studies analyze tool outputs on a selected set of

programs. A different approach to studying tools is gathering software development data

over a period of time. This takes into consideration additional factors, such as

development and failure history. Zheng et. al [27] analyzed the effectiveness of static

analysis tools by looking at test and customer-reported failures for three large-scale

network service software systems. One of the conclusions in Ref. [27] was that static

analysis tools are effective at identifying code-level defects.

1.8. Evolution of SATE

Test cases in SATE 2008 were production software only: three C and three Java open

source programs [6]. We analyzed a subset of warnings, focusing on the high severity

warnings. The large number of tool warnings and the lack of the ground truth

complicated our analysis.

To address this problem in SATE 2009 [7] and the following SATEs, we randomly

selected a subset of thirty warnings from each tool report, based on weakness category

and severity. The selection procedure assigned higher weight to higher severity warnings.

We then analyzed the selected warnings for correctness. We also searched for related

warnings from other tools, which allowed us to study overlap of warnings between tools.

We found that a binary true/false positive verdict on tool warnings did not provide

adequate resolution to communicate the relationship of the warning to the underlying

weakness. We expanded the number of correctness categories to four in SATE 2009 [7]

and five in SATE 2010 [8]: true security, true quality, true but insignificant, unknown,

and false. At the same time, we improved the warning analysis criteria.

9

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Also in SATE 2009, we asked security experts to perform a time-limited analysis of some

of the test cases. The expert analysis identified both design and source code weaknesses,

focusing on the latter weaknesses. The expert analysis combined multiple weaknesses

with the same root cause. That is, the security experts did not look for every weakness

instance, but instead identified one or more instances per root cause. Threat modeling

was used to guide specific testing activities, including code review, automated analysis,

penetration testing, and fuzzing. Tools were used to aid expert analysis, but tools were

not the main source of manual findings. We then selected tool warnings related to

findings by security experts. Expert analysis was also used in SATE 2010 and SATE IV.

In SATE 2010, we included an additional approach to this problem: CVE-selected test

cases. The CVE-selected test cases are pairs of programs: an older vulnerable version

with publicly reported vulnerabilities (CVEs) and a fixed version, i.e., a newer version

where some or all of the CVEs were fixed. For the CVE-selected test cases, we focused

on tool warnings that corresponded to the CVEs.

Overall, we used three methods to select tool warnings for analysis from natural (non-

synthetic) software: 1) random selection, 2) selection of warnings related to manual

findings by experts, and 3) selection of warnings related to CVEs.

We used three different degrees of association or relation: equivalent (same weakness

category and location or path), strongly-related (same weakness category and similar

path) or weakly-related (Weakness categories are similar; weakness paths have an

important attribute, e.g., a filter location, in common). The degrees of association are

described in detail in the SATE IV report [9].

In the first three SATEs, weakness categories used for matching tool warnings were

based on weakness names assigned by tools. In SATE IV, we started using a more

systematic approach, based upon groups of CWE IDs.

In SATE IV, we introduced a large number of synthetic test cases, called the Juliet 1.0

test suite, which contain precisely characterized weaknesses. Thus, warnings for these

weaknesses were amenable to mechanical analysis.

In SATE V, we introduced the Ockham Criteria [28] to evaluate sound static analysis

tools. Sound tools in theory never report incorrect findings. This and other changes

introduced in SATE V are explained later.

Table 3 presents a summary of the evolution of SATE over its five editions.

10

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 3. Evolution of SATEs.

SATE 2008 2009 2010 IV V

Production Yes Yes Yes Yes Yes

Expert

Analysisa
No Yes Yes Yes No

CVEs No No Yes Yes Yes

Synthetic No No No Yes Yes

Ockham

Criteria
No No No No Yes

Random

Sampling
No Yes Yes Yes Yes

Matching

Method

Warning

Names

Warning

Names

Warning

Names
CWE Groups CWE Groups

Warning

Rating

(Manual

Analysis)

True,

False,

Unknown

True, False,

Insignificant,

Unknown

Security,

Quality,

False,

Insignificant,

Unknown

Security,

Quality,

False,

Insignificant,

Unknown

Security,

Quality,

Falseb,

Insignificant,

Unknown
aTime-limited analysis, including threat modeling and white box penetration testing, conducted by

third-party experts
bIn SATE V, we used a different method for calculating precision for production software: True

(security + quality), False (false + insignificant), and Unknown. We called this “useful precision” in

Sec. 3.1.3.2.

2. Overall Procedure

SATE follows the TREC model [4] and is divided into tracks. Early SATEs had only

C/C++ and Java tracks. PHP track was introduced in SATE IV (but it had no participants)

and its use was continued in SATE V. These three languages represented most of the

marketspace in 2014, according to TIOBE Software2 [29]. Each track contains a set of

test cases of each type (Sec. 1.6), i.e., production software containing CVEs and synthetic

test cases (except for PHP). Toolmakers are free to participate in any track and to analyze

any test case.

2.1. Changes Since SATE IV

SATE V brings four significant changes compared to SATE IV.

2.1.1. Confidentiality

Some toolmakers shared concerns about publicly releasing the detailed analysis of their

reports. We decided to accommodate their unease and keep the data confidential to

encourage participation. Teams, however, are free to publish their own results. The data

from previous SATEs [30–33] remain in the public domain. We exhort everyone to use

them in their studies.

2.1.2. Environment

In the past SATEs, participants spent a substantial amount of resources compiling test

cases. We addressed this issue in SATE IV by pre-compiling these test cases in a virtual

2 C# and Objective-C were other candidates, but, unfortunately, potential test cases remain sparse.

11

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

machine (VM). Participants simply needed to run their tools inside the VM. For SATE V,

we expanded the use of VMs by having VMs hosted by the Software Assurance

Marketplace (SWAMP) [34], a cloud computing platform providing software security

testing as a service. Toolmakers installed and ran their tools inside a private VM,

containing pre-loaded test cases and hosted within the SWAMP cloud. This partnership

was very successful. The SWAMP support team greatly facilitated the participants’ tasks.

2.1.3. Fairness

Several metrics, such as recall, precision, and discrimination rate, can be used for

measuring tool performance. However, it was unfair to rate tools on all weakness types if

they only covered a few specific types. Therefore, we asked each participant to file a

Coverage Claims Representation (CCR) [35] to identify the weakness classes his tool

detected. We introduced a new metric, applicable recall (Sec. 1.5), that measures recall

only on the weakness types supported by each tool. By removing the coverage factor

from the metrics, we provide a fairer and more precise measure of each tool’s ability to

find code defects.

2.1.4. Soundness

Until now, we had not differentiated between static analyzers. There are, however,

several approaches to tackling the static analysis problem. The large test cases we use

tend to favor general-purpose tools that use heuristics, but are impractical for sound static

analyzer tools, which, in theory, never report incorrect findings. We recognize the latter

by introducing the Ockham Criteria [28], a list of requirements to validate tool

soundness.

2.2. Steps / Organization

SATE follows a 6-step procedure (Fig. 2):

1. Preparation: We (NIST researchers) select the test data, while toolmakers are invited

to sign up.

2. Kickoff: Test cases are released, and each team starts its analysis in SWAMP.

3. Submission: Each team sends its tool’s findings back to us.

4. Analysis: We analyze tool reports, using methods specific to each test case type.

5. Workshop: Teams, NIST researchers, and others from industry and academia gather

to share their experiences.

6. Publication: We release the SATE report, summarizing SATE V results.

12

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Figure 2. SATE Procedure.

2.3. Participation

Participation3 in SATE V was the highest of all SATE events (2008, 2009, 2010, IV and

V) with 14 unique participants (Table 4).

Table 4. Overall Participation per Track over SATEs.

SATE C/C++ Java PHP
Unique

Participants

2008 4 7 9

2009 5 5 8

2010 8 4 10

IV 7 3 0 8

V 11 6 1 14

Our partnership with SWAMP generated additional interest from the toolmakers. Most

teams took part in only one track. However, some toolmakers participated in two or three

tracks (Tables 5 and 6).

3 Certain commercial equipment, instruments, or materials are identified in this paper to foster

understanding. Such identification does not imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that the materials or equipment identified are

necessarily the best available for the purpose.

13

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 5. Participation in the C/C++ Track over SATEs.

Tool 2008 2009 2010 IV V

Clang Yes

Coverity Yes Yes Yes

Cppcheck Yes Yes Yes

Flawfinder Yes

Fortifya Yes Yes

Frama-C Yes

Grammatech Yes Yes Yes Yes Yes

Klocwork Yes

LDRA Yes Yes Yes Yes

MARFCAT Yes Yes

Monoidics Yes

Parasoft Yes Yes

Programing

Research
 Yes

Red Lizard Yes Yes Yes

Sparrow Yes

Veracode Yes Yes Yes

Viva 64 Yes
a HP acquired Fortify in 2010.

Table 6. Participation in the Java Track over SATEs.

Tool 2008 2009 2010 IV V

Armorize Yes Yes

Aspect Yes

Buguroo Yes Yes

Checkmarx Yes Yes

Coverity Yes

FindBugs Yes Yes

Fortifya Yes Yes

HP DevInspect Yes

Klocwork Yes

MARFCAT Yes Yes

Parasoft Yes Yes

PMD Yes

SofCheck Yes Yes Yes

Veracode Yes Yes Yes

a HP acquired Fortify in 2010.

14

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

The PHP track was introduced in SATE IV, but it had no participants in SATE IV and

only one participant in SATE V: HP Fortify.

The sound tool track (Ockham Criteria) also had a single participant: Frama-C. To

differentiate from the sound tool track and to underline their historical precedence, the

C/C++, Java, and PHP tracks are sometimes collectively called classic tracks in this

report.

2.4. Data Anonymization

SATE is not a competition. To prevent endorsement and protect the intellectual property

of toolmakers, aliases will be used to identify their products from this point on. Tools will

be referred to as Tools A through R consistently throughout the report.

3. Procedure and Results for Classic Tracks

Our analysis used several dozen CWE categories (Appendix A). In this report, however,

we present the results using the simpler Seven Pernicious Kingdoms (7PK) classification

(“seven-plus-one”, which includes Environment) [36]. Appendix B details the CWE

distribution across the kingdoms. Note that both classifications contain overlap, i.e.,

CWEs can belong to several groups, and some categories contain many more CWEs than

others.

Table 7 lists the original 7PK names and the abbreviated aliases we used in this report.

Table 7. Aliases for the Seven Pernicious Kingdoms Classes.

Original 7PK Names Alias

Indicator of Poor Code Quality Code Qual.

Improper Input Validation Input Val.

Security Features Sec. Feat.

Improper Fulfillment of API Contract ('API Abuse') API

Time and State T. & S.

Insufficient Encapsulation Encap.

Error Handling Error H.

Environment Env.

3.1. Production Software

The original idea of SATE, as presented by Bill Pugh, was to run static analysis tools on

large software4 to observe their capabilities in conditions similar to real-world use. The

4 Software with a large code base

15

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

toolmakers themselves would run their tools on code bases of our choice, in an approach

combining expertise with impartiality.

We selected open source software for test cases. Selection was based upon their attack

surface and their size, ranging from tens of thousands to several million lines of code.

Production software combines two of the three ideal test case characteristics: realism and

statistical significance, due to the large number of warnings issued by tools. However, it

lacks ground truth, since we do not know all of the bugs it contains. Precision, coverage,

and overlap can be measured.

3.1.1. Test Sets

We carefully selected test cases, covering three different programming languages:

C/C++, Java, and PHP (Table 8). We focused our attention on these test cases, because

they are widely used, well maintained, and supported by a large open source community.

They provide sufficient information to track down known vulnerabilities and perform our

analyses.

For C/C++ and Java, we chose two common, open source programs per track. For the

C/C++ track, we used Asterisk, an IP PBX platform5, and Wireshark, a network traffic

analyzer. Both of these programs were written in C. For the Java track, we used JSPWiki,

a WikiWiki engine, and Openfire, a groupchat server. For the PHP track, we used

WordPress, a blogging platform, which was an unused SATE IV test case. Each program

included security-related aspects.

The test cases can be downloaded from the SARD [20].

Table 8. Test Sets.

Track Test Case Description Version
Lines of

Code

SARD

Test Suite

C/C++

Asteriska IP PBX platform 10.2.0 > 500k 90

Wiresharkb
Network traffic

analyzer
1.8.0 > 2M 94

Java
JSPWikic WikiWiki engine 2.5.124 > 60k 97

Openfired Groupchat server 3.6.0 > 200k 98

PHP WordPresse Blogging platform 2.0 ~ 24k 99

a http://www.asterisk.org/

b https://www.wireshark.org/

c https://jspwiki.apache.org/

d https://www.igniterealtime.org/projects/openfire/

e https://wordpress.com/

5 IP PBX is a private branch exchange telephone switching system within an enterprise, which can be

connected to traditional and voice over Internet protocol (VoIP) phones.

16

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.1.2. Procedure

Upon receipt of all SATE reports from the toolmakers, we randomly selected thirty

warnings from each tool report, except for one tool report, which contained less than

thirty warnings. We used the same sampling procedure as in earlier SATEs. It is

described in detail in the SATE IV report [9, Sec. 2.8.1, Method 1]. Briefly, the selection

was based on the types of weaknesses and severity ratings reported by each tool.

Warnings of higher severity were selected more frequently than warnings of lower

severity. Hence, the procedure produced a diverse sample that was heavy on more

dangerous weaknesses.

We excluded from the selection process the warnings that referred exclusively to test

code, parser generator code, and external header files.

In Sec. 2.3 we pointed out that there were eleven participants for the C/C++ track.

However, one of them only submitted results for the synthetic test cases. In this section,

we focus our analysis on ten reports for the C test cases, six for Java test cases, and one

for PHP. In total, the reports contained about 500 000 warnings, of which we sampled

879 warnings for analysis. These numbers are detailed in Table 9 for C, Table 10 for

Java, and Table 11 for PHP. When a tool was not run on a test case, the corresponding

entry in Table 9 is 0. In particular, Tool F was run on synthetic test cases only.

Table 9. Warnings Reported by Tools per C Test Case.

Test Case Asterisk Wireshark

Participants 8 9

Tool A 1482 13 829

Tool B 3283 1072

Tool C 63 288 76 360

Tool D 0 1729

Tool E 837 3362

Tool F 0 0

Tool G 2118 0

Tool H 12 357 14 739

Tool I 0 197 269

Tool J 2643 6873

Tool K 109 10

Total 86 117 315 243

Selected 240 249a
a Tool K reported less than 30 warnings for Wireshark,

nine of which were selected. One warning was omitted,

because it was reported in a utility tool external to

Wireshark.

17

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 10. Warnings Reported by Tools per Java Test Case.

Test Case Openfire JSPWiki

Participants 6 6

Tool L 13 568 2165

Tool M 87 631 19 734

Tool N 1144 753

Tool O 950 186

Tool P 1863 97

Tool Q 573 90

Total 105 729 23 025

Selected 180 180

Table 11. Warnings Reported by Tools per PHP Test Case.

Test Case WordPress

Participants 1

Tool R 1321

Total 1321

Selected 30

After sampling the 879 warnings, our team (NIST researchers) reviewed them manually

for correctness. We rated each warning using the categories described in Table 12.

Table 12. Warning Rating Categories.

Label Description

Security A confirmed weakness related to security

Quality
A confirmed weakness unrelated to security, but requiring

developers’ attention

Insignificant A true but insignificant claim

False A false positive and invalid conclusion about the code

Unknown The correctness of the claim could not be determined

Except for the Unknown category, the categories were ordered by relative importance

(highest to lowest): Security, Quality, Insignificant, and False.

18

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.1.3. Results

3.1.3.1. Tool Warning Ratings

Table 13 presents the distribution of the sampled tool warnings across the evaluation

categories. Overall, the C/C++ track appeared more difficult for tools to analyze than the

Java and PHP tracks. The majority of analyzed warnings for the C/C++ track were False

or Insignificant and only a minority of warnings were Security-rated. Several factors

could be at play, including the fact that the test case size was significantly larger for the

C/C++ track than for the other tracks. The number of tools in the exposition that analyzed

C/C++ programs (sometimes referred to as C tools for brevity) was also greater, so the

results from less advanced tools might have lowered the average ratings. Additionally,

the Java and PHP test cases were all web applications, which tend to have a simpler

architecture. On the Java and PHP tracks, over half the warnings were rated as Security or

Quality.

Table 13. Analysis Results per Language.

Language Security Quality Insignificant False Unknown

C 8 % 24 % 35 % 30 % 3 %

Java 23 % 37 % 17 % 22 % 1 %

PHP 30 % 20 % 17 % 33 % 0 %

On the C/C++ track, we discerned two main groups based on manual analysis (Table 14).

The first group was comprised of Tools J, H, B, A, E, and G. Table 14 shows that these

tools reported a significant proportion of Security- and Quality-rated warnings, but also a

large number of False claims. The other group included Tools C, D and I. These tools did

not report many, if any, Security-rated warnings. However, they reported a few Quality-

rated warnings (17 % to 23 %). Most of their warnings were rated as Insignificant (67 %

to 73 %). It should be noted, however, that Tools C, D, and I also reported a number of

False claims (10 %, 3 %, and 13 %, respectively). In contrast, Tool K reported a

significant number of Quality-rated warnings (74 %), with a few Insignificant and False

claims (15 % and 10 %, respectively.) However, because the number of warnings

produced by Tool K was very small, this result may be statistically insignificant.

19

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 14. Analysis of Warning Results per Tool in the C/C++ Track.

Tool Security Quality Insignificant False Unknown

Tool J 17 % 17 % 15 % 45 % 7 %

Tool H 15 % 10 % 25 % 48 % 2 %

Tool B 13 % 30 % 22 % 28 % 7 %

Tool A 8 % 28 % 20 % 42 % 2 %

Tool E 8 % 22 % 33 % 37 % 0 %

Tool G 7 % 3 % 30 % 47 % 13 %

Tool C 2 % 17 % 72 % 10 % 0 %

Tool D 0 % 23 % 73 % 3 % 0 %

Tool I 0 % 17 % 67 % 13 % 3 %

Tool K 0 % 74 % 15 % 10 % 0 %

On the Java track (Table 15), our analysis also revealed two main groups of tools. One

group included Tools L and Q, which reported 58 % and 55 % Security-rated findings,

respectively. The other group was comprised of Tools N, O and M. These tools mostly

reported Quality-rated warnings (62 %, 65 %, and 79 %, respectively), with few (0 % to

5 %) False claims. One tool, Tool P, stood out with a large proportion of False Positives

(70 %).

Table 15. Analysis of Warning Results per Tool in the Java Track.

Tool Security Quality Insignificant False Unknown

Tool L 58 % 15 % 12 % 15 % 0 %

Tool Q 55 % 10 % 7 % 28 % 0 %

Tool N 13 % 62 % 12 % 8 % 5 %

Tool O 3 % 65 % 23 % 5 % 3 %

Tool M 0 % 79 % 14 % 7 % 0 %

Tool P 5 % 17 % 8 % 70 % 0 %

Only Tool R participated in the PHP track. Table 13 shows that 50 % of its claims were

Security- or Quality-rated and 33 % were False Positives.

3.1.3.2. Useful Precision

We calculated the precision for each tool, using the formula in Sec.1.5, Eq. 3. We rated

both Quality-rated and Security-rated warnings as true positives and both Insignificant

and False warnings as false positives. Precision in this context strays from its original

definition, because we counted Insignificant warnings as false positives, although they

were true. We call it “useful precision”, as it is the number of “useful” warnings

20

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

(Security-rated and Quality-rated) divided by the total number of warnings, comprised of

the sum of the “useful warnings” and “noise”, i.e., Insignificant and False claims. These

results are listed in Table 16.

On the C/C++ track, Tool K scored a significantly higher precision (68 %) than the next

best tool (Tool B with 47 %). Interestingly, regarding “useful” warnings, Tool K reported

only Quality issues (74 %) and no Security weaknesses (Table 14). Because we rated

Security and Quality warnings equally for “useful precision”, the metric ranks Tool K as

the most precise tool in this context. The other tools reported less than 50 % precision,

ranging from 47 % for Tool B down to 12 % for Tool G. The average precision for the

tools in the C/C++ track was 31 %.

On the Java track, precision ranged from 79 % for Tool N down to 55 % for Tool M.

Tool P reported a significantly lower precision of 22 %. Table 15 shows that Tool P had

reported mostly False claims (70 %). The average precision for the tools in the Java track

was 61 %.

On the PHP track, Tool R achieved 50 % precision.

Table 16. Useful Precision per Tool and per Track.

Track Tool
Useful

Precision

C/C++

Tool K 68 %

Tool B 47 %

Tool A 37 %

Tool J 36 %

Tool E 30 %

Tool H 26 %

Tool D 23 %

Tool C 18 %

Tool I 17 %

Tool G 12 %

Java

Tool N 79 %

Tool L 73 %

Tool O 71 %

Tool Q 65 %

Tool M 55 %

Tool P 22 %

PHP Tool R 50 %

21

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.1.3.3. Covered Weakness Types

Tables 17 to 19 present the number of security-rated warnings reported by tools per

kingdom in the Seven Pernicious Kingdoms (7PK) [36]. (Appendix B details the

grouping of CWEs into kingdoms.)

Note that the 7PK classification has overlap, i.e., the same weakness can belong to

several categories. For example, CWE-119: Improper Restriction of Operations within

the Bounds of a Memory Buffer [10] belongs to 7PK categories Improper Input

Validation and Indicator of Poor Code Quality. The last column, Unique Security

Warnings, is the total number of security-rated warnings per tool, where each warning is

counted once even if it belongs to multiple 7PK categories. The bottom row, Tool Count,

is the number of tools with security-rated warnings for the corresponding 7PK category.

The columns are sorted in descending order by the tool count.

Table 17. Security-rated Warnings per 7PK for the C/C++ Track.

Tool
Code

Qual.

Input

Val.
API

T. &

S.

Error

H.

Sec.

Feat.
Env. Encap.

Unique

Security

Warnings

Tool J 9 5 1 11

Tool H 2 5 1 3 1 9

Tool B 7 3 1 8

Tool E 4 2 3 6

Tool A 5 4 1 1 5

Tool G 2 2

Tool C 1 1

Tool D 0

Tool I 0

Tool K 0

Tool

Count
7 5 4 2 2 0 0 0

Table 18. Security-rated Warnings per 7PK for the Java Track.

Tool
Input

Val.

Sec.

Feat.
T. & S. Encap.

Code

Qual.
API Env.

Error

H.

Unique

Security

Warnings

Tool L 16 7 5 14 4 3 36

Tool Q 24 10 19 35

Tool N 6 2 8

Tool P 3 1 3

Tool O 2 2

Tool M 0

Tool

Count
4 3 3 2 1 1 0 0

22

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 19. Security-rated Warnings per 7PK for the PHP Track.

Tool
Input

Val.
Encap.

Sec.

Feat.

T. &

S.

Code

Qual.
API Env.

Error

H.

Unique

Security

Warnings

Tool R 5 4 3 12

Tables 17 to 19 reveal Input Validation as the best handled weakness class for the Java

and PHP tracks and the second best for the C/C++ track. Code Quality issues were

mostly found by tools in the C/C++ track. Our Java and PHP test cases were all web

applications, so, unsurprisingly, tools reported predominantly the same weakness classes

for both languages. However, because the PHP track had only one participant and one

test case, the results may not generalize well.

Table 17 indicates two separate groups of tools in the C/C++ track:

• Tools J, H, B, E and A reported several Security-rated warnings in several 7PK

categories.

• Tools G, C, D, I, and K reported few or no Security-rated warnings.

Table 18 shows two separate groups among the tools in the Java track:

• Tools L, Q and N reported several Security-rated warnings in several 7PK categories.

• Tools P, O and M reported few or no Security-rated warnings.

On average, Java tools seem more effective than C/C++ tools at reporting security

weaknesses in real-world software. Hypothetically, the larger size and higher complexity

of the C test cases made them harder to analyze than their Java counterparts. Java may

also be an easier language to analyze.

3.2. CVEs

Paul Anderson, VP of engineering at Grammatech, insisted that tools should be studied

on vulnerabilities that matter [37]. He proposed the use of Common Vulnerabilities and

Exposures (CVEs) [18] as test cases to determine whether tools could identify

vulnerabilities and prevent substantial defects. We have included CVEs in SATEs since

SATE 2010 [8, Sec. 2.9].

Unfortunately, only a relatively small number of CVEs contain a sufficiently precise

description to pinpoint the vulnerability in affected software. Our team browsed hundreds

of entries and gathered information from bug tracking systems and other sources to turn

these into usable test cases.

The work was well worth the effort. These test cases contain vulnerabilities found in the

wild, thus, exhibiting two ideal qualities: ground truth and realism. They bear the

certitude of exploitability and the complexity lacking in synthetic test cases. Therefore,

recall, coverage, discrimination rate, and overlap can be measured (Sec. 1.5).

23

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.2.1. Test Sets

The test cases used in the warning subset analysis (Sec. 3.1.1) were selected because they

contain numerous CVEs, allowing us to perform CVE-based analysis on the same test

sets. Additionally, we asked participants to analyze a later version of the same test cases,

which had the aforementioned CVEs fixed. We refer to these two versions as flawed and

fixed. Table 20 lists the versions of the test sets used in SATE V.

Table 20. CVE-based Test Sets.

Track Software Description
Flawed

Version

Fixed

Version

C/C++
Asteriska IP PBX platform 10.2.0 10.12.2

Wiresharkb Network traffic analyzer 1.8.0 1.8.7

Java JSPWikic WikiWiki engine 2.5.124 2.5.139

 Openfired Groupchat server 3.6.0 3.6.4

PHP WordPresse Blogging platform 2 2.2.3
a http://www.asterisk.org/
b https://www.wireshark.org/
c https://jspwiki.apache.org/
d https://www.igniterealtime.org/projects/openfire/
e https://wordpress.com/

3.2.2. Procedure

The CVEs in the production software test cases are precisely characterized by metadata.

We extracted the execution paths leading to the vulnerabilities, CWEs and other

information useful for comparison against tool warnings. The metadata were rich enough

to determine automatically whether tools found the CVEs. Due to the low number of

entries, the results were also manually reviewed by experts to ensure accuracy.

For each CVE, we selected the tool findings reported at the corresponding lines of code.

We only considered findings when their CWE and the CVE’s CWE belonged to the same

group. When this was the case, the expert was notified to review the suggested match. If

the expert agreed with the automated analysis, the match was confirmed. If not, the

suggestion was rejected. The experts also manually checked for matches that the

algorithm might have missed.

Additionally, the experts rated the quality of the matches. Occasionally, a tool will

precisely and completely report a CVE. Sometimes, tool warnings may be general,

coincidental or only hint at a CVE. The experts rated a warning as equivalent or strongly-

related if it precisely reported a CVE and as weakly-related if the warning only hinted at

the vulnerability. In this section, we use the terms Found and Hinted to describe the two

rating qualities.

Two versions of each test case were used: one containing the CVEs and one with the

CVEs fixed. We refer to these variants as the flawed and fixed versions of the test case. If

the expert validated a match in a flawed test case, it was rated a true positive. When no

match for a CVE was detected in the flawed version, then it was rated a false negative. If

24

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

the expert found a warning corresponding to the CVE in the fixed version, it was rated a

false positive and a true negative otherwise.

3.2.3. Results

Before presenting the results, we would like to note a few changes to the CVE list that we

made during the analysis phase of SATE V. A number of CVEs were removed from our

analysis. Some others were merged into a single entry.

CVE-2006-7233 was removed from our CVE list, because the version of Openfire we

used did not contain this vulnerability. Likewise, CVE-2004-1544 was removed, because

it was fixed in our version of JSPWiki. We removed CVE-2007-1049 and CVE-2007-

4893, because the flawed code was introduced in a slightly later release of WordPress

than the version we had used. CVE-2013-4934 was not applicable to the version of

Wireshark we had used and was, therefore, ignored.

CVE-2012-4294 and CVE-2012-4295 were duplicates and have been merged as CVE-

2012-4294/4295. CVE-2007-5106 was a subset of CVE-2006-1263 and was also merged.

CVE-2013-3559, CVE-2013-3561, and CVE-2009-0496 each contain several unrelated

vulnerabilities, which we separated and labelled as CVE-2013-3559 (1) and (2), CVE-

2013-3561 (1) and (2), and CVE-2009-0496 (1) to (6), respectively.

3.2.3.1.Recall and Discrimination Rate

The C/C++ track proved difficult for tools (Table 21). In Asterisk, the best-performing

tool found three CVEs out of fourteen, and half of the tools found none. With one

exception, tools that found CVEs did not report false positives, i.e., weaknesses in the

fixed version of the test case.

Most tools that analyzed Wireshark found CVEs, but only a fraction of the 84 were

identified. The three best performers (Tools A, I, and C) each found 12 CVEs, yielding a

recall of 14 %. Discrimination rate varied significantly across tools, regardless of their

recall. For example, these three best performers with respect to recall had a

discrimination rate of 83 %, 55 %, and 33 %, respectively.

Tools performed vastly better on the Java track (Table 22). Tool L found all of the CVEs,

except one in both JSPWiki and Openfire. Tool Q found about half that number. Tool O

found one in Openfire; the remaining tools missed the mark entirely. Discrimination rate

was poor, regardless of the tool.

Tool R, which analyzed WordPress on the PHP track, performed remarkably well (Table

22). It found seven out of thirteen CVEs and reported only two false positives.

Applicable recall was nearly identical to recall, suggesting that most missed CVEs were

of a type supported by the tools, which were unable to detect the vulnerabilities.

Regarding discrimination rate, CVEs that were found, i.e., that pointed directly to the

vulnerability, were generally reported with a much higher discrimination rate than CVEs

that were only hinted at (e.g., coincidental findings.)

25

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Tables 21 and 22 summarize these results. Appendix C details how discrimination rate

was calculated and Appendix D details how recall and applicable recall were obtained.

Table 21. Recall and Discrimination Rate on the CVE Test Cases (C/C++ Track).

Track Test Case Tool
Recall App. Recall Discrimination Rate

All Found All Found All Found Hinted

C
/C

+
+

Asterisk

Tool H 21 % 21 % 21 % 21 % 67 % 67 %

Tool J 14 % 14 % 18 % 18 % 100 % 100 %

Tool A 7 % 7 % 9 % 9 % 100 % 100 %

Tool B 7 % 7 % 8 % 8 % 100 % 100 %

Tool K 0 % 0 % 0 % 0 %

Tool G 0 % 0 % 0 % 0 %

Tool C 0 % 0 % 0 % 0 %

Tool E 0 % 0 % 0 % 0 %

Wireshark

Tool A 14 % 11 % 17 % 13 % 83 % 100 % 33 %

Tool I 14 % 6 % 14 % 6 % 55 % 100 % 29 %

Tool C 14 % 11 % 15 % 11 % 33 % 33 % 33 %

Tool J 7 % 7 % 8 % 8 % 33 % 33 %

Tool H 5 % 5 % 6 % 6 % 25 % 25 %

Tool B 4 % 2 % 4 % 2 % 67 % 100 % 0 %

Tool E 1 % 1 % 2 % 2 % 100 % 100 %

Tool K 0 % 0 % 0 % 0 %

Tool D 0 % 0 % 0 % 0 %

Table 22. Recall and Discrimination Rate on the CVE Test Cases (Java and PHP Tracks).

Track Test Case Tool
Recall App. Recall Discrimination Rate

All Found All Found All Found Hinted

J
a

v
a

JSPWiki

Tool L 100 % 100 % 100 % 100 % 0 % 0 %

Tool Q 100 % 0 % 100 % 0 % 0 % 0 %

Tool N 0 % 0 % 0 % 0 %

Tool O 0 % 0 % 0 % 0 %

Tool P 0 % 0 %

Tool M 0 % 0 %

Openfire

Tool L 90 % 80 % 90 % 80 % 11 % 13 % 0 %

Tool Q 60 % 60 % 67 % 67 % 33 % 33 %

Tool O 10 % 0 % 11 % 0 % 0 % 0 %

Tool N 0 % 0 % 0 % 0 %

Tool M 0 % 0 % 0 % 0 %

Tool P 0 % 0 % 0 % 0 %

PHP WordPress Tool R 54 % 54 % 54 % 54 % 67 % 67 %

26

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.2.3.2. Coverage

The CVEs and tool warnings were associated with a large number of CWEs. To simplify

the results’ representation, we used the simpler Seven Pernicious Kingdoms (7PK) [36]

classification instead of CWEs. Note that the 7PK contain overlap, i.e., the same

weakness can belong to several groups.

Most CVEs from the C/C++ track (Wireshark and Asterisk) belonged to the Input

Validation and Poor Code Quality categories, dominated by buffer overflows and pointer

issues. Wireshark also presented a large number of Time and State-related CVEs, mainly

infinite loops.

The Java and PHP test cases (Openfire, JSPWiki and WordPress) are all web

applications, which contain CVEs related to Input Validation and Encapsulation issues,

mostly cross-site scripting and path traversal.

Figure 3 displays a detailed distribution of CVE types per test case. No single test case

contains all of the CVE types.

Figure 3. Distribution of CVE Types per Test Case.

Tables 23 to 27 summarize the types of CVEs tools detected in each test case. A

weakness type was rated Found if, at least, one CVE of that type was directly reported by

a tool. It was rated Hinted if a tool reported a coincidental warning that might lead a user

to the discovery of the CVE. Note that if a tool missed all of vulnerabilities of a certain

type and, therefore, scored a Missed rating for that category, it did not mean that the tool

could not find that type of defect. Rather, that tool was unable to detect it in this

particular context.

0%

25%

50%

75%

100%

Asterisk Wireshark JSPWiki Openfire WordPress

Code Qual.

Input Val.

Encap.

T. & S.

Sec. Feat.

Error H.

Env.

API

27

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 23. CVEs’ Weakness Categories Found by Tools in Asterisk.

Tool Code Qual. Input Val. Sec. Feat.

Tool A Found Found Missed

Tool B Found Found Missed

Tool H Found Found Missed

Tool J Found Found Missed

Tool C Missed Missed Missed

Tool E Missed Missed Missed

Tool G Missed Missed Missed

Tool K Missed Missed Missed

Table 24. CVEs’ Weakness Categories Found by Tools in Wireshark.

Tool
Code

Qual.

Input

Val.
T. & S. API Error H. Env.

Tool J Found Found Missed Found Found Missed

Tool A Found Found Found Hinted Hinted Missed

Tool I Found Found Found Hinted Hinted Missed

Tool B Found Found Missed Hinted Hinted Missed

Tool C Found Found Found Missed Missed Missed

Tool H Found Found Missed Missed Missed Missed

Tool E Found Missed Missed Missed Missed Missed

Tool D Missed Missed Missed Missed Missed Missed

Tool K Missed Missed Missed Missed Missed Missed

Table 25. CVEs’ Weakness Categories Found by Tools in JSPWiki.

Tool Encap. Input Val.

Tool L Found Found

Tool Q Hinted Hinted

Tool M Missed Missed

Tool N Missed Missed

Tool O Missed Missed

Tool P Missed Missed

28

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 26. CVEs’ Weakness Categories Found by Tools in Openfire.

Tool Input Val. Encap. Sec. Feat.

Tool L Found Found Missed

Tool Q Found Found Missed

Tool O Hinted Missed Missed

Tool M Missed Missed Missed

Tool N Missed Missed Missed

Tool P Missed Missed Missed

Table 27. CVEs’ Weakness Categories Found by Tools in WordPress.

Tool Encap. Input Val. Code Qual.

Tool R Found Found Missed

3.2.3.3. Unreported Vulnerabilities

In Ref. [38], Arthur Hicken, Chief Evangelist at Parasoft, expressed an interest in

vulnerabilities that were not reported by tools. We refined this idea by rating CVEs to

bring out the low-hanging fruits that we thought tools were capable of finding.

The CVEs were given a grade, ranging from Simple to Extreme (Simple, Medium, Hard,

and Extreme). Considering the diversity of cases and the difficulty of the task, the ratings

carry a subjective bias that we tried to mitigate using criteria [8, Sec. 3.6], such as control

and data flow complexity and calculations. Extreme cases were usually out of the scope

of static analysis, e.g., design problems.

Tables 29 to 36 list which CVEs were found by tools and which were not. Since CVEs

are complex and a binary match/no match classification is insufficient, we used the

following markings to classify tool findings:

• Match - a tool completely identified a CVE,

• Partial - a tool found one element of a CVE chain, such as an integer overflow in

an integer overflow to buffer overflow vulnerability,

• Hint - a tool reported a coincidental warning that could lead a user to find a CVE,

• Miss - a tool did not find a CVE, but supported the same weakness type as the

CVE,

• Blank cell - a tool did not support the weakness type of that CVE.

Support of weakness types was approximately determined by analyzing all warnings for

each tool.

29

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 28 displays types of weaknesses (both abbreviations and short descriptions) of the

CVEs in the SATE V test cases.

Table 28. Weakness types of CVEs in SATE V.

Type Description

ASRT Reachable assertion

BOF Buffer error

DIV Division by zero

FREE Memory freeing error

FSTR Format string issue

IAC Incorrect access control

IEX Information exposure

INI Initialization issue

LOOP Loop issue

NPD Null pointer dereference

PTR Pointer issue

REX Resource exhaustion

SQLI SQL Injection

XSS Cross-site scripting

In Asterisk (Table 29), Tools H, J, B, and A found only a few Simple CVEs. Most of the

tools supported all of the vulnerability types in the Simple and Medium categories. For

readability, Table 29 omits columns for tools G, C, E, and K, since they did not find any

CVEs in Asterisk. A version of the table including columns for all tools is provided in

Appendix H.

In Wireshark (Tables 30 to 33), we ranked match quality from high to low: Match >

Partial > Hint > Miss. For readability, Tables 30 to 33 omit columns for tools D and K,

since they did not find any CVEs in Asterisk. Versions of the tables including columns

for all tools are provided in Appendix H.

Most of the Match findings were generated for the Simple CVEs. The tools reported

fewer Match findings and more Partial and Hint findings for Medium CVEs. Hard CVEs

also exhibited mostly Partial and Hint findings, but in fewer numbers. Only one Match

finding was reported for Extreme cases. These tables demonstrate clearly that as the

difficulty of the CVEs increased, tools reported fewer, lower quality findings.

On the Java track (Tables 34 and 35), Tool L found all of the Simple and Medium CVEs,

while Tool P reported mostly Simple CVEs. Tools O and N, despite supporting the

weakness classes for both Simple and Medium CVEs, did not report any of them, while

Tools M and Q did not seem to support the most basic Java weakness classes.

30

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

On the PHP track (Table 36), Tool R found all of the Simple and Medium CVEs, but

missed the more complex CVEs.

Overall, tools reported most low-hanging fruits in the Java and PHP test cases, whereas

the C test cases proved significantly more difficult, even for simpler vulnerabilities. As a

recommendation, we would suggest that participants identify which shortcomings cause

their tools to miss Simple and Medium vulnerabilities. Detailed information about these

CVEs is available in the SARD [20].

Table 29. CVEs Found and Missed on Asterisk.

Difficulty CVE Type
Tool

H

Tool

J

Tool

B

Tool

A

Simple

CVE-2012-1183 BOF Match Match Match Miss

CVE-2013-2686 REX Match Match Miss Match

CVE-2012-2415 BOF Match Miss Miss Miss

CVE-2012-1184 BOF Miss Miss Miss Miss

CVE-2012-2416 NPD Miss Miss Miss Miss

CVE-2012-2947 NPD Miss Miss Miss Miss

CVE-2012-3553 NPD Miss Miss Miss Miss

CVE-2012-2948 NPD Miss Miss Miss Miss

Medium CVE-2012-3812 FREE Miss Miss Miss Miss

Extreme

CVE-2012-5977 REX Miss Miss Miss Miss

CVE-2012-4737 IAC Miss Miss

CVE-2012-3863 REX Miss Miss Miss Miss

CVE-2012-2186 IAC Miss

CVE-2012-2414 IAC Miss

Table 30. Simple-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

E

Simple

CVE-2012-5240 BOF Match Miss Match Miss Match Match Miss

CVE-2013-2475 NPD Match Miss Match Miss Match Miss Match

CVE-2013-2481 REX Match Miss Miss Hint Miss Miss Miss

CVE-2012-4285 DIV Match Miss Miss Miss Miss Miss Miss

CVE-2012-4286 DIV Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4296 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1587 ASRT Miss Miss Miss Miss Miss Miss

CVE-2012-4293 ASRT Miss Miss Miss Miss Miss

CVE-2012-5238 ASRT Miss Miss Miss Miss Miss

31

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 31. Medium-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

E

Medium

CVE-2013-3559

(1)
BOF Miss Partial Match Partial Miss Miss Miss

CVE-2012-4298 BOF Partial Miss Miss Miss Miss Match Miss

CVE-2013-3559

(2)
BOF Miss Partial Miss Partial Miss Miss Miss

CVE-2013-4074 REX Hint Miss Match Hint Hint Miss Miss

CVE-2013-4082 BOF Miss Partial Miss Miss Miss Partial Miss

CVE-2013-3562 REX Miss Hint Miss Match Miss Miss Miss

CVE-2012-4294 /

CVE-2012-4295
BOF Match Miss Miss Miss Miss Miss Miss

CVE-2013-2480 BOF Miss Hint Miss Hint Miss Miss Miss

CVE-2013-2487 LOOP Miss Hint Miss Hint Miss Miss Miss

CVE-2012-4048 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4049 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4297 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6059 PTR Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1579 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1582 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1588 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1590 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2483 DIV Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2484 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2488 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-3557 INI Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4076 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4935 INI Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4081 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-3548 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-1575 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-2476 LOOP Miss Hint Miss

CVE-2013-4933 REX Miss Miss Miss Miss

CVE-2012-5237 LOOP Miss Miss Miss

CVE-2013-2485 LOOP Miss Miss Miss

CVE-2013-4080 LOOP Miss Miss Miss

32

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 32. Hard-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

E

Hard

CVE-2012-6062 LOOP Partial Miss Miss Miss Miss Miss

CVE-2013-1573 LOOP Miss Partial Miss Miss Miss Miss

CVE-2013-4930 REX Miss Miss Match Miss Miss Miss Miss

CVE-2013-1585 BOF Partial Miss Miss Miss Miss Miss Miss

CVE-2013-2478 BOF Miss Miss Miss Miss Miss Miss

CVE-2012-6061 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-1574 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-1580 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-1572 LOOP Hint Miss Miss Hint Miss Miss Miss

CVE-2013-2482 LOOP Miss Miss Miss Hint Miss Miss Miss

CVE-2012-4292 PTR Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6060 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1583 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1584 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1586 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4075 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4077 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6056 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6058 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4287 LOOP Miss Miss Miss Miss Miss Miss

CVE-2012-6055 LOOP Miss Miss Miss Miss Miss Miss

CVE-2012-6053 LOOP Miss Miss Miss

CVE-2013-2479 LOOP Miss Miss Miss

Table 33. Extreme-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

E

Extreme

CVE-2013-3558 BOF Miss Miss Match Miss Miss Miss Miss

CVE-2012-4288 LOOP Miss Miss Miss Miss Miss Miss

CVE-2012-4289 LOOP Miss Miss Miss Miss Miss Miss

CVE-2012-4290 LOOP Miss Miss Miss Miss Miss Miss

CVE-2012-6054 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-3560 FSTR Miss Miss Miss Miss Miss Miss

CVE-2012-4291 REX Miss Miss Miss Miss

33

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

E

CVE-2013-4078 LOOP Miss Miss Miss

CVE-2013-3561 (2) LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-3561 (1) LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4927 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-1581 LOOP Miss Miss Miss

CVE-2013-4079 LOOP Miss Miss Miss

CVE-2013-4929 LOOP Miss Miss Miss

CVE-2012-6057 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-4083 BOF Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4931 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1577 LOOP Miss Miss Miss Miss Miss

CVE-2013-1578 REX Miss Miss Miss Miss Miss

CVE-2013-1576 LOOP Miss Miss Miss

Table 34. CVEs Found and Missed on JSPWiki.

Difficulty CVE Type Tool L Tool Q Tool N Tool O Tool M Tool P

Simple CVE-2007-5120 XSS Match Hint Miss Miss

Table 35. CVEs Found and Missed on Openfire.

Difficulty CVE Type
Tool

L

Tool

P

Tool

O

Tool

N

Tool

M

Tool

Q

Simple

CVE-2009-0496 (1) IAC Match Match Miss Miss

CVE-2009-0496 (2) SQLI Match Match Miss Miss

CVE-2009-0496 (3) XSS Match Match Miss Miss

CVE-2009-0496 (4) XSS Match Match Miss Miss

CVE-2009-0496 (5) XSS Match Miss Miss Miss

CVE-2009-0496 (6) XSS Match Match Miss Miss

CVE-2009-0497 XSS Match Match Miss Miss

Medium CVE-2008-6509 XSS Match Miss Miss Miss Miss

Extreme
CVE-2008-6508 IAC Hint Miss Hint Miss

CVE-2009-1596 IAC Miss Miss Miss

34

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 36. CVEs Found and Missed on WordPress.

Difficulty CVE Type Tool R

Simple

CVE-2006-0985 XSS Match

CVE-2006-1263 /

CVE-2007-5106
XSS Match

CVE-2006-1796 XSS Match

CVE-2006-6808 IEX Match

CVE-2007-5105 XSS Match

Medium
CVE-2007-0233 IEX Match

CVE-2007-1894 SQLI Match

Hard CVE-2007-1622 REX Miss

Extreme

CVE-2006-3389 IEX Miss

CVE-2007-0109 XSS Miss

CVE-2007-0540 XSS Miss

CVE-2007-0541 XSS Miss

CVE-2013-7233 IAC Miss

3.2.3.4. Overlap

Overlap represents the number of CVEs found by more than one tool. This metric

identifies which tools behave similarly and which vulnerabilities are easy or difficult for

tools to find.

Tables 29 to 36 detail which CVEs were found and missed by each tool. On the other

hand, overlap is the number of tools that found the same weakness. Table 37 summarizes

the overlap for each test case. An overlap of zero means that no tools found the CVE. An

overlap of one means that only one tool reported the CVE. An overlap of two means that

two tools reported the CVE, and so forth. By definition, the overlap cannot be greater

than the number of participants for each test case.

On the C/C++ track, most CVEs remained undetected, as was demonstrated in Sec.

3.2.3.3. However, when a CVE was found, it was usually detected by more than one tool.

In Asterisk, two CVEs were found by three tools and only one by a single tool. In

Wireshark, 16 % of the reported CVEs were detected by one tool, whereas 18 % were

found by two to four tools.

On the Java track, most of the CVEs were discovered by two tools.

Because the PHP track had only one participant, there was no overlap.

Overall and despite a weak recall for C, the overlap on the CVEs was higher than in

previous SATEs [9, Fig. 6-7]. Broader participation, different test cases, tool

improvement or the use of CVEs as a benchmark might be factors in that increase.

35

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 37. Overlap per CVE Test Case.

Track Test Case Participants CVEs
Overlap

0 1 2 3 4

C/C++
Asterisk 8 14 79 % 7 % 0 % 14 % 0 %

Wireshark 9 83 66 % 16 % 13 % 1 % 4 %

Java
JSPWiki 6 1 0 % 0 % 100 % 0 % 0 %

Openfire 6 10 10 % 20 % 70 % 0 % 0 %

PHP WordPress 1 13 46 % 54 % N/A N/A N/A

3.3. Synthetic Test Suites

Synthetic test cases were introduced in SATE IV after the U.S. National Security Agency

(NSA) Center for Assured Software (CAS) issued Juliet, an extensive test suite for

C/C++ and Java [11]. This collection covered a vast number of weakness types

embedded in different code constructs. It exhibited two desired qualities: statistical

significance and ground truth, because the many planted weaknesses’ locations were

known. However, it lacked realism, because each program was computer-generated and

served no other purpose than modeling a specific defect.

3.3.1. Test Sets

During SATE IV’s preparation stage, CAS released Juliet 1.0 [39, 40], the first large-

scale synthetic test suite. We seized the opportunity to study static analysis results in

greater depth than in previous SATEs. In SATE V, participants ran their tools on Juliet

1.2 [41, 42], which had corrected several bugs and covered a wider range of CWEs and

code constructs. (Since then Juliet 1.3 has been released. It has additional coverage and

corrects many errors in version 1.2 [21].)

The Juliet 1.2 test suite is divided into a C/C++ and a Java component. Each component

contains thousands of test cases comprised of matched functions with and without

weaknesses. We refer to these as bad code and good code, respectively. The defect in bad

code is marked with a CWE [10], so identifying the weakness was straightforward.

Table 38 summarizes a few statistics regarding the Juliet 1.2 test suite. The CWEs column

contains the number of different CWE IDs covered by the test suite. The Test cases and

Files columns are self-explanatory. The LoC column lists the number of non-blank, non-

comment lines of code (LoC) for each language.

Table 38. Juliet 1.2 Statistics.

Track CWEs Test cases Files LoC a

C/C++ 118 61 387 102 092
4 719 409 (C)

3 882 727 (C++)

Java 112 25 477 41 170 4 565 713
aAccording to SLOCCount, which counts source lines of code (SLOC).

https://www.dwheeler.com/sloccount/

36

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

To elucidate smart static analyzer functionality, Juliet’s test cases were designed to

incorporate specific flaws within a number of code constructs of diverse complexities. A

basic case contained a straightforward weakness, whereas a more complex case harbored

the same defect wrapped in intricate control or data flow code structures. An

unsophisticated tool might find the weakness in the simple case, but it would miss the

weakness embedded in a more complex structure. A more discerning tool would detect

the second case, thus finding both vulnerabilities.

3.3.2. Procedure

The weaknesses in the synthetic test cases were precisely characterized by metadata. We

extracted the different blocks of code (good and bad), the weakness locations, their

associated CWEs and other information to compare tool warnings. The metadata were

rich enough to allow automated assessment of tool outputs, enabling analysis of all tool

warnings, in contrast to the sample analysis method used in the production test cases

(Sec. 3.1).

For each synthetic test case, we selected the tool warnings reported in their associated

files. We only considered a warning when its CWE and the test case’s CWE belonged to

the same CWE group, and the warning location was in an appropriate block of the test

case, detailed as follows. When the tool reported a defect in good code, it was rated a

false positive (FP). When the tool reported a defect in bad code, we assumed that the tool

correctly found the weakness and rated it as a true positive (TP). If no warning was

generated from bad code, it was rated a false negative (FN), because the tool had missed

the defect. Finally, an absence of warnings reported in good code resulted in a true

negative (TN) rating. Figure 4 summarizes this evaluation process.

Figure 4. Evaluation Process for Synthetic Test Cases.

37

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.3.3. Analysis Cycles

Since we used an automated evaluation algorithm, we required an assessment and

improvement process. This was achieved through review cycles. First, we ran the

automated analysis, and then we sampled a subset of results. An expert reviewed the

results, correcting the metadata (in particular, modifying CWE groups) or algorithm, as

needed. For example, if a weakness was manifested in a specific function call, a tool

warning location was matched to a specific line, instead of anywhere in the bad code.

Then the process was repeated (Fig. 5).

At the end of each cycle, the expert also assessed the accuracy of the analysis. The

process was repeated until the expert had obtained acceptable accuracy. Figures 6 and 7

show the improvement in accuracy over the review cycles of SATE V for both the C/C++

and Java tracks. Please note that the results for stage 6 are based on the samples taken

during the previous five stages. After Stage 6, the results averaged 99 % accuracy, with a

minimum of 98 %. The remaining discrepancies were mostly caused by defects in some

test cases.

Figure 5. Synthetic Test Case Analysis Cycle.

Corrections

Result
Sampling

Automated
Processing

Manual
Review

38

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Figure 6. Improvement in the Evaluation Accuracy for C/C++.

Figure 7. Improvement in the Evaluation Accuracy for Java.

0%

25%

50%

75%

100%

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Tool G

Tool H

0%

25%

50%

75%

100%

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Tool L

Tool M

Tool N

Tool O

39

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.3.4. Complexity

The Juliet test suites (C/C++ and Java) contained examples of most of the flaws

detectable by a static analysis tool. The flaws, embedded in a broad range of code

constructs, demonstrated the ability of a given tool to follow complex control and data

flows. Each weakness existed in a simple form and, when possible, in a variety of more

complex programs. Section 3.3 and Appendix C of both Ref. [43] and Ref. [44] describe

the different constructs used in the Juliet 1.2 test suites for C/C++ and Java, respectively.

3.3.5. Results

Our automated analysis used the CWE categories described in Appendix A. As in the rest

of this report, we represented the results using the simpler Seven Pernicious Kingdoms

(7PK) [36], detailed in Appendix B. Again, both categorizations contain overlap, i.e.,

CWEs can belong to several groups. Figure 8 demonstrates that some categories

contained many more CWEs than others, the largest categories being Code Quality and

Input Validation.

Figure 8. CWE Count per Category in Juliet 1.2 C/C++ and Java.

This imbalance was magnified by the dissymmetry in the number of test cases

implementing each CWE. Indeed, some defect classes were represented by only a handful

of test cases and others by several thousand test cases. Also, there were many more test

cases in the C/C++ track than in the Java track. Figure 9 displays the test case distribution

across the categories for C/C++ and Java. Input Validation and Code Quality were over-

represented compared to the other 7PK, due to both having more CWEs and more test

cases per CWE.

0

10

20

30

40

50

60

Code

Qual.

Input

Val.

Sec.

Feat.

API T. & S. Encap. Error

H.

Env.

C/C++

Java

40

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Figure 9. Test Case Count per Category in Juliet C/C++ and Java.

With these caveats in mind, the 7PK categorization offered a simple, semantically

coherent way to present our results.

3.3.5.1. Coverage

As a reminder, coverage is determined by the type of weaknesses found by a tool. It is

measured by the number of unique CWEs reported over the total number of CWEs tested

(Sec. 1.5). These synthetic test suites provided a set of test cases for each CWE tested. If

a tool reported a true positive on a given test case, then we assumed it was capable of

detecting that type of CWE.

In the following tables, the CWEs were grouped by category according to the 7PK.

Coverage represents the proportion of CWEs correctly identified in each group. For

example, if a category contained four CWEs, of which a tool detected two, then the tool

scored a coverage of 50 % for that category.

Tables 39 and 40 show significant variation in tools’ coverage. Tool B from Table 39

reported far greater coverage than Tool F. Tool L from Table 40 detected more CWEs in

most categories than other tools in the study. Please note that the average reported for

Input Validation (33 %) was unexpectedly low due to the very low value for Tool M

(4 %). If the value for Tool M were excluded, the average would be 43 %, ranking second

in coverage per category.

Coverage of weakness categories varied by language. For C, Code Quality issues and

Input Validation dominated, whereas for Java, Code Quality issues were predominant,

Other categories in the C/C++ track exhibited less extensive coverage. In particular, tools

found very few Security Features-related flaws. In the Java track, coverage was more

uniform for Input Validation, Code Quality, Time and State, API Abuse, and Error

Handling weaknesses. Other categories were covered by fewer tools or not as well.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Input

Val.

Code

Qual.

API Error

H.

T. & S. Encap. Env. Sec.

Feat.

C/C++

Java

41

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 39. Coverage per Category for Synthetic C/C++.

Tool
Code

Qual.

Input

Val.

Error

H.
Env.

T. &

S.
API Encap.

Sec.

Feat.
Average

Tool B 65 % 53 % 50 % 38 % 38 % 33 % 17 % 0 % 37 %

Tool H 42 % 47 % 25 % 25 % 31 % 22 % 33 % 0 % 28 %

Tool G 65 % 44 % 13 % 38 % 13 % 28 % 0 % 6 % 26 %

Tool A 50 % 63 % 13 % 25 % 19 % 11 % 17 % 0 % 25 %

Tool C 23 % 28 % 50 % 0 % 13 % 33 % 17 % 6 % 21 %

Tool D 35 % 28 % 13 % 25 % 13 % 6 % 17 % 0 % 17 %

Tool E 31 % 16 % 0 % 13 % 19 % 17 % 0 % 0 % 12 %

Tool F 19 % 25 % 0 % 0 % 13 % 0 % 0 % 0 % 7 %

Average 41 % 38 % 21 % 21 % 20 % 19 % 13 % 2 %

Table 40. Coverage per Category for Synthetic Java.

Tool
Code

Qual.

T. &

S.
API

Input

Val.

Error

H.

Sec.

Feat.
Env. Encap. Average

Tool L 47 % 53 % 56 % 62 % 50 % 70 % 75 % 50 % 58 %

Tool N 53 % 41 % 39 % 31 % 20 % 5 % 0 % 6 % 24 %

Tool M 41 % 53 % 33 % 4 % 50 % 0 % 0 % 6 % 23 %

Tool O 47 % 24 % 22 % 35 % 10 % 25 % 0 % 6 % 21 %

Average 47 % 43 % 38 % 33 % 33 % 25 % 19 % 17 %

Appendix E summarizes the coverage of the Juliet test suites for each tool. Note that

coverage is only one aspect of tool effectiveness, so although some tools seemed to

surpass others with respect to coverage, users should not select a tool based on coverage

alone. In addition, a user’s coverage requirements might be met by several tools. Other

factors, e.g., recall and precision, should be examined to determine the most suitable tool

for that user.

3.3.5.2. Recall

Recall is defined by the number of correct findings compared to the total number of

defects present in the code (Sec. 1.5). The higher the recall, the more weaknesses the tool

found.

Table 41 shows a greater propensity of tools finding the following C/C++ weakness

categories: Time and State, Code Quality, API Abuse, and Input Validation. Arguably,

these were the most prominent problems in C.

For Java, Table 42 indicates that only API Abuse and Time and State issues were found

by all of the tools to a significant extent. Tool L detected nearly all of the Environment-

related defects, but other tools found none. More surprisingly, Input Validation

42

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

weaknesses were largely missed by the tools, although the low average was partly due to

poor results by tool M.

Note that because the 7PK classification contains overlap, the numbers may add up to

over 100 % in Tables 41 and 42.

Table 41. Recall per Category for Synthetic C/C++.

Tool T. & S.
Code

Qual.
API

Input

Val.
Encap.

Error

H.
Env.

Sec.

Feat.

Tool B 33 % 21 % 38 % 11 % 23 % 11 % 14 % 0 %

Tool A 11 % 21 % 18 % 18 % 20 % 10 % 11 % 0 %

Tool H 12 % 18 % 2 % 19 % 12 % 25 % 6 % 0 %

Tool F 30 % 29 % 0 % 27 % 0 % 0 % 0 % 0 %

Tool E 23 % 12 % 28 % 1 % 0 % 0 % 1 % 0 %

Tool C 2 % 10 % 11 % 13 % 0 % 14 % 0 % 3 %

Tool D 8 % 1 % 1 % 4 % 14 % 1 % 9 % 0 %

Tool G 1 % 1 % 1 % 1 % 0 % 2 % 1 % 0 %

Avg.

Recall
15 % 14 % 12 % 12 % 9 % 8 % 5 % 0 %

Table 42. Recall per Category for Synthetic Java.

Tool API Encap. T. & S.
Sec.

Feat.
Env.

Error

H.

Input

Val.

Code

Qual.

Tool L 59 % 80 % 27 % 73 % 97 % 55 % 33 % 5 %

Tool O 26 % 35 % 18 % 25 % 0 % 4 % 17 % 2 %

Tool M 32 % 2 % 34 % 0 % 0 % 20 % 0 % 3 %

Tool N 33 % 2 % 21 % 1 % 0 % 8 % 11 % 2 %

Avg.

Recall
38 % 30 % 25 % 25 % 24 % 22 % 15 % 3 %

Regarding the C/C++ test cases (Table 41), Tool B found significantly more weaknesses

across all 7PK categories than other tools. Tools A and H detected many weaknesses in

many different categories as well, while Tools F and E seemed to find more defects but in

fewer categories.

Regarding Java test cases (Table 42), Tool L outperformed other tools, detecting about

twice as many weaknesses as the other tools.

Except for Tool L, recall remained fairly low for both C/C++ and Java test cases. Tools

struggled to find 25 % of defects in these test suites. The synthetic code used unusual

constructs, possibly making weakness detection more difficult. However, this test case

43

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

complexity was still fairly low compared to large software. This suggests that recall

would be even lower on real-world software.

Appendix F summarizes the recall results from each tool, for all of the CWEs in the Juliet

test suites.

3.3.5.3. Applicable Recall

The tools did not typically support all of the types of flaws contained in our test suites,

and, therefore, they scored a null recall for those categories, lowering their average recall

values. Consequently, tools focused on only a few weakness types were penalized. At the

SATE V Workshop [45], we introduced the concept of applicable recall6, i.e., recall

calculated only for the weakness categories supported by each tool (Sec. 1.5). Combined

with the coverage metric, applicable recall provided a better assessment of a tool’s

capabilities.

Tables 43 and 44 list the results for recall, applicable recall, and coverage. Tools with the

lowest coverage produced the highest recall increase when calculated solely on the tool’s

supported weakness categories. That is, tools with the lowest coverage exhibited the

highest positive differences between recall and applicable recall.

However, this did not mean that general tools performed worse than more specialized

tools in the categories they both supported. For example, Tool E exhibited the second

highest recall increase (from 8 % to 19 %) and Tool A the second lowest (from 17 % to

21 %) (Table 43). Yet, Tool A scored a higher applicable recall than Tool E on many

CWEs, including CWE-195: Signed to Unsigned Conversion Error [10], where Tool A

found 87 % of the flaws and Tool E only 11 %, as shown in Appendix G.

Applicable recall per CWE for each tool is detailed in Appendix G.

Note that these numbers do not match the results in Tables 41 and 42, which were

calculated using the overlapping 7PK groups.

Table 43. Recall vs. Applicable Recall for Synthetic C/C++.

Tool Recall
App.

Recall
Coverage

Tool F 20 % 56 % 9 %

Tool H 18 % 25 % 31 %

Tool B 18 % 25 % 42 %

Tool A 17 % 21 % 29 %

Tool C 10 % 18 % 22 %

Tool E 8 % 19 % 15 %

Tool D 4 % 8 % 19 %

Tool G 1 % 2 % 35 %

6 Labelled condensed recall at the time.

44

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 44. Recall vs. Applicable Recall for Synthetic Java.

Tool Recall
App.

Recall
Coverage

Tool L 34 % 73 % 56 %

Tool O 16 % 52 % 29 %

Tool N 11 % 39 % 29 %

Tool M 2 % 78 % 25 %

3.3.5.4. Precision for 50 % Prevalence

Precision is the proportion of correct warnings produced by a tool (Sec. 1.5). The higher

the precision, the less noise, i.e., false positives, a tool generates.

Precision depends on the prevalence of weaknesses in the software, where prevalence is

the proportion of test cases with weaknesses. The higher the prevalence of weaknesses,

the higher the precision [46]. In Juliet, 50 % of test cases have a weakness, in contrast

with production software made by competent programmers, where a much smaller

proportion of code is buggy. Accordingly, the precision for Synthetic test cases is based

on 50 % prevalence, and it is not directly comparable with precision results for

production software, Sec. 3.1.3.2.

In the rest of this paper, when we use term “precision” for Synthetic test cases, we mean

“precision for 50 % prevalence.”

Tables 45 and 46 present precision for 50 % prevalence for each tool per 7PK category.

Note that the blank cells in Tables 45 and 46 indicate that a given weakness category was

not supported by that tool. Also, the Average columns in both tables contain the average

precision values per category, which is not the same as the average precision over the

entire C/C++ and Java tracks, since there is some overlap between categories.

Table 45. Precision for 50 % Prevalence per Category for Synthetic C/C++.

Tool Encap. API
Error

H.
Env.

Code

Qual.

Input

Val.
T. & S.

Sec.

Feat.
Average

Tool D 100 % 100 % 100 % 100 % 93 % 61 % 80 % 89 %

Tool B 100 % 95 % 89 % 94 % 88 % 80 % 70 % 86 %

Tool A 96 % 90 % 88 % 96 % 73 % 70 % 73 % 82 %

Tool H 100 % 63 % 81 % 100 % 83 % 72 % 66 % 78 %

Tool C 100 % 100 % 95 % 90 % 72 % 51 % 50 % 76 %

Tool G 87 % 92 % 73 % 72 % 52 % 74 % 100 % 79 %

Tool E 100 % 50 % 92 % 92 % 70 % 81 %

Tool F 94 % 93 % 100 % 96 %

Average 99 % 91 % 91 % 86 % 86 % 74 % 73 % 75 %

45

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

In the C/C++ track (Table 45), tools achieved 84 % precision on average in all categories.

Most warnings reported were correct. Interestingly, precision was rather uniform across

tools for each category. This could indicate that some flaws are more prone to confuse

tools than others. For example, Encapsulation weaknesses were correctly reported 99 %

of the time, whereas Input Validation warnings were correct only 74 % of the time.

In the Java track (Table 46), the average precision reached 85 %. Claims about API

Abuse were mostly correct for all of the tools, whereas tools’ precision was disparate for

other categories of warnings.

Table 46. Precision for 50 % Prevalence per Category for Synthetic Java.

Tool API Encap. T. & S.
Code

Qual.

Error

H.

Input

Val.

Sec.

Feat.
Env. Average

Tool N 96 % 100 % 77 % 96 % 68 % 93 % 100 % 90 %

Tool M 98 % 100 % 90 % 74 % 100 % 100 % 94 %

Tool O 100 % 59 % 91 % 98 % 100 % 53 % 62 % 80 %

Tool L 99 % 92 % 86 % 60 % 61 % 72 % 56 % 95 % 78 %

Average 98 % 88 % 86 % 82 % 82 % 80 % 73 % 95 %

In Table 45, Tool F scored a high average precision of 96 % in the three categories it

specialized in (Time and State, Code Quality, and Input Validation). Tool D was slightly

less noisy (i.e., less precise) than Tool B (89 % vs. 86 %). Tool B was less noisy than

Tool A (86 % vs. 82 %). Overall, all of the tools achieved a precision of 76 % to 96 %.

Tools D, B, A, and H exhibited a similar profile, while the other tools presented different

profiles.

For Java (Table 46), tools scored precision results ranging from 78 % to 94 %.

Interestingly, Tool L generated the lowest average precision (78 %), but also by far the

highest recall (34 %) and applicable recall (73 %) (Table 44). This suggests that

toolmakers might have to consider a tradeoff between precision and recall.

3.3.5.5. Discrimination Rate

As noted in the previous section, one feature of the Juliet test suites is the near-symmetry

between flawed (i.e., bad) and fixed (i.e., good) test cases (Sec. 3.3.1). The ratio of bad to

good sites in production software is much lower than Juliet’s approximately 1:1 ratio.

On real-world code, a tool that blindly reports every site, whether good or not, would

score a low precision value, because good sites are preponderant. For code containing 19

good sites per bad site, precision would be 5 % (1 / (1 + 19) = 5 %).

On the Juliet test suite, however, the same tool would have a precision of about 50 % due

to the near-parity between flawed and fixed code (i.e., 1:1 ratio). CAS mitigated this bias

by introducing the discrimination rate metric [11, Sec. 2.3.2], which reported a true

positive for a flawed test case only if a true negative was reported on the associated fixed

test case.

46

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Note that the blank cells in Table 47 indicate that a given weakness category was not

supported by that tool. Also, the Average columns in Tables 47 and 48 contain the

average discrimination rates per category. This is not the same as the average

discrimination rate over the entire C/C++ track, which is summarized in Table 61 in Sec.

4. Recall that there is some overlap between categories.

Table 47 shows how well tools discriminated between good and bad test cases on the

C/C++ test suite. For example, Tool F was vastly “smarter” than Tool D when analyzing

Input Validation test cases (93 % vs. 36 %). Interestingly, Tools D, B, A, and H exhibited

a similar profile, while the other tools were different. Note that the Environment category

value determined for Tool E (0 %) was excluded from the overall average discrimination

rate for that category, because Tool E had a very low recall for this category (1 %) (Table

41). The results for the Security Features category are irrelevant, because recall was very

low (0 % to 3 %).

In Java (Table 48), Tools N and M surpassed the overall discrimination rate of the other

participating tools. They had reported few false positives, although their average recall

values had been lower (11% and 2 %, respectively). The other tools exhibited different

profiles. The API Abuse category once again appeared easier for tools to detect. All tools

performed similarly well for Time and State issues, with discrimination rate ranging from

72 % to 90 %.

Table 47. Discrimination Rate per Category for Synthetic C/C++.

Tool Encap. Env. API
Error

H.

Code

Qual.

T. &

S.

Input

Val.

Sec.

Feat.
Average

Tool F 93 % 100 % 93 % 95 %

Tool D 100 % 100 % 100 % 100 % 93 % 75 % 36 % 86 %

Tool B 93 % 95 % 88 % 88 % 64 % 75 % 84 %

Tool A 100 % 100 % 97 % 86 % 70 % 63 % 66 % 83 %

Tool H 100 % 100 % 84 % 76 % 79 % 71 % 61 % 82 %

Tool G 100 % 94 % 91 % 66 % 65 % 14 % 100 % 76 %

Tool E 0 % 100 % 93 % 67 % 91 % 70 %

Tool C 100 % 100 % 95 % 99 % 5 % 69 % 0 % 67 %

Average 100 % 99 % 96 % 89 % 85 % 64 % 63 % 50 %

Table 48. Discrimination Rate per Category for Synthetic Java.

Tool API
Error

H.

T. &

S.
Encap.

Code

Qual.

Input

Val.

Sec.

Feat.
Env. Average

Tool N 96 % 100 % 72 % 100 % 96 % 93 % 100 % 0 % 82 %

Tool M 98 % 100 % 88 % 100 % 66 % 100 % 0 % 0 % 69 %

Tool L 99 % 50 % 84 % 92 % 37 % 62 % 24 % 95 % 68 %

Tool O 100 % 100 % 90 % 30 % 100 % 10 % 39 % 0 % 59 %

Average 98 % 88 % 84 % 81 % 75 % 66 % 41 % 24 %

47

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.3.5.6. Precision for 50 % Prevalence vs. Discrimination Rate

On the Juliet test suites, precision results were similar across all of the tools for both the

C/C++ and Java tracks, whereas the discrimination rate results were not (Fig. 10 and 11).

As discussed earlier, Juliet test cases were designed to have a similar number of flawed

and fixed sites. Thus, discrimination rate is a better metric to differentiate tools. Note that

for real-world software, most of the sites are fixed and only a small proportion of the sites

are flawed, so reported precision would be very low for a tool that reports a warning for

every site, flawed or not.

Figure 10. Precision for 50 % Prevalence vs. Discrimination Rate for Synthetic C/C++.

Figure 11. Precision for 50 % Prevalence vs. Discrimination Rate for Synthetic Java.

3.3.5.7. Combination of Metrics

Using a combination of metrics helps demonstrate tool efficiency. Tables 49 and 50

combine the three most significant metric results when analyzing the Juliet test suites:

applicable recall, coverage and discrimination rate. These are with respect to the entire

C/C++ and Java tracks.

0%

25%

50%

75%

100%

Discrimination Rate Precision

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Tool G

Tool H

0%

25%

50%

75%

100%

Discrimination Rate Precision

Tool L

Tool M

Tool N

Tool O

48

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

For C/C++, Table 49 shows that Tool F exhibited the highest applicable recall and

discrimination rate (56 % and 93 %, respectively), but the lowest coverage (9 %). Tool B,

on the other hand, demonstrated the broadest coverage (42 %) and lower discrimination

rate than that of Tool F (86 % vs. 93 %). Based upon these results, Tool B would be an

effective general tool. On the other hand, Tool F emerged as an excellent specialized tool,

with the best applicable recall and prime discrimination rate on a narrow band of

weaknesses, as indicated by its low coverage.

For Java, Table 50 shows that Tool L reported higher values for all three metrics:

applicable recall, coverage, and discrimination rate (73 %, 56 %, and 57 %, respectively).

Tool M reported higher values for applicable recall and coverage (78 % and 76 %,

respectively), but it demonstrated much lower coverage (25 %). Like Tool B, Tool L

would be an effective general tool.

Tool N reported lower applicable recall and coverage than Tools L and M. However,

because it exhibited the highest discrimination rate (93 %), Tool N would be a candidate

for testing code, where noise is a significant factor.

As demonstrated, tools each have strengths and weaknesses. Using these metrics, which

cover only some technical aspects of tool effectiveness, users can assess tools more

objectively against their requirements and make more informed decisions.

Table 49. Applicable Recall, Coverage, and Discrimination Rate for Synthetic C/C++.

Tool App. Recall Coverage
Discrimination

Rate

Tool A 21 % 29 % 74 %

Tool B 25 % 42 % 86 %

Tool C 18 % 22 % 70 %

Tool D 8 % 19 % 47 %

Tool E 19 % 15 % 92 %

Tool F 56 % 9 % 93 %

Tool G 2 % 35 % 45 %

Tool H 25 % 31 % 64 %

Table 50. Applicable Recall, Coverage, and Discrimination Rate for Synthetic Java.

Tool App. Recall Coverage
Discrimination

Rate

Tool L 73 % 56 % 57 %

Tool M 78 % 25 % 76 %

Tool N 39 % 29 % 93 %

Tool O 52 % 29 % 19 %

49

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

3.3.5.8. Unreported Weaknesses

As discussed in Sec. 3.2.3.3, Arthur Hicken expressed an interest in vulnerabilities that

were not reported by tools [38]. The SATE team reviewed the CWEs and divided them

into two categories: those that at least one tool had found and those that remained

completely unreported.

We classified a tool as supporting a particular CWE if it scored at least one true positive

on the test cases for that CWE. Conversely, if a tool did not report a true positive on the

test cases for that CWE, we classified it as not supporting that CWE.

Appendix E details the support of each tool for all of Juliet’s CWEs. Tables 64 and 65 are

divided in three sections: CWEs supported by all tools, CWEs supported by some tools

and CWEs that are completely unsupported.

In C/C++, only two CWEs were reported by all eight tools: CWE-121: Stack-based

Buffer Overflow and CWE-457: Use of Uninitialized Variable [10]. In Java, eleven CWEs

were found by all four tools. Considering the difference in participation on both of the

C/C++ and Java tracks, the diversity of the tools and the difference in the two test suites,

we cannot draw any direct comparison between these two results.

The central sections of Tables 64 and 65 list CWEs that are supported by at least one tool,

demonstrating that these weakness classes are within reach of static analysis. This could

be an area of improvement for the tools that did not report these CWEs.

The last sections of Tables 64 and 65 contain CWEs that remained completely inscrutable

for tools. Some, such as CWE-835: Loop with Unreachable Exit Condition ('Infinite

Loop') [10], seem technically manageable and could be supported in the future. Others,

like CWE-15: External Control of System or Configuration Setting [10], would require

the user to provide context or specifications, so a tool could determine what is proper

behavior and what is not.

3.3.5.9. Overlap

Overlap demonstrates how similar tools are. There was overlap when more than one tool

correctly reported a weakness in a given test case. For example, if a weakness was

reported by three tools, it was listed under the “3 tools” category in Table 51.

The Test Cases Found column provides the number of test cases found by the

corresponding number of tools. The case of 0 tools gives the number of test cases missed

by all tools. The Overlap column contains the proportions of test cases found by the

corresponding number of tools. In the case of 0 tools, the Overlap column contains the

proportion of test cases missed by all tools. The Overlap column demonstrates that 49 %

of the C/C++ test cases and 63 % of the Java test cases went unreported by tools.

Furthermore, the Proportion Found column, which contains the proportion of test cases

that were correctly reported by the corresponding number of tools, shows that about half

of the identified test cases for both C/C++ and Java test cases were reported by only one

tool (50 % and 49 %, respectively). Less than a third of the findings were reported by two

tools. Test cases correctly identified by more than two tools made up less than a quarter

of the findings.

50

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Considering that there was no overlap for nearly half of the findings, using multiple tools

on target software can significantly increase recall. Additionally, warnings reported by

two or more independent tools are more likely to be true positives.

Table 51. Overlap per Track for the Synthetic Test Cases.

Track Participants
Number

of Tools

Test Cases

Found
Overlap

Proportion

Found

C/C++

8 0 30 160 49 % N/A

 1 15 663 26 % 50 %

 2 8006 13 % 26 %

 3 4279 7 % 14 %

 4 2479 4 % 8 %

 5 593 1 % 2 %

 6 191 0 % 1 %

 7 16 0 % 0 %

 8 0 0 % 0 %

Java

4 0 16 052 63 % N/A

 1 4659 18 % 49 %

 2 2944 12 % 31 %

 3 1747 7 % 19 %

 4 75 0 % 1 %

Tables 52 and 53 detail the overlap between tool pairs. The entry in a row for tool X and

column for tool Y is the proportion of weaknesses found by tool Y that is also found by

tool X. Note that the tables are not symmetric, because the overlap depends on tool recall.

For example, in Table 52, Tool A overlaps at 47 % with Tool B, but Tool B overlaps at

51 % with Tool A, because Tool A had a lower average recall than Tool B (17 % vs.

18 %) (Table 43). That is, Tool A found fewer defects.

On the C/C++ track, Tool B overlapped at 68 % with Tool E, indicating that about two

thirds of the defects reported by Tool E were found by Tool B. Because Tool B reported

higher recall than Tool E, only 30 % of its warnings overlapped with Tool E’s. Tool B

almost superseded Tool E with respect to recall. Moreover, Tool E could be considered a

good companion to Tool B, if the goal was to increase confidence in Tool B’s results by

supporting its claims with Tool E’s.

Tools B, H and A have similar overlap with each other of about 50 % and similar recall

rates (Tables 43 and 52). Tool F, on the other hand, has little overlap with other tools

despite its high recall and it stands out as an independent tool.

51

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 52. Overlap between tool pairs for Synthetic C/C++.

 Tool F Tool B Tool H Tool A Tool C Tool E Tool D Tool G Recall

Tool F 16 % 18 % 25 % 29 % 15 % 13 % 15 % 20 %

Tool B 15 % 48 % 51 % 38 % 68 % 36 % 38 % 18 %

Tool H 17 % 48 % 47 % 51 % 35 % 45 % 26 % 18 %

Tool A 21 % 47 % 44 % 31 % 47 % 31 % 37 % 17 %

Tool C 15 % 22 % 30 % 19 % 13 % 32 % 10 % 10 %

Tool E 6 % 30 % 16 % 22 % 10 % 11 % 12 % 8 %

Tool D 2 % 8 % 10 % 7 % 12 % 5 % 16 % 4 %

Tool G 1 % 2 % 1 % 2 % 1 % 1 % 4 % 1 %

Recall 20 % 18 % 18 % 17 % 10 % 8 % 4 % 1 %

On the Java track, more extreme imbalances appeared (Table 53). Tool L outperformed

Tools O and N almost entirely. However, recall that Tool N had reported the highest

discrimination rate (93 %) (Table 50), so one should not judge a tool solely on a single

metric.

Table 53. Overlap between tool pairs for Synthetic Java.

 Tool L Tool O Tool N Tool M Recall

Tool L 94 % 87 % 43 % 34 %

Tool O 45 % 68 % 24 % 16 %

Tool N 28 % 45 % 25 % 11 %

Tool M 3 % 3 % 5 % 2 %

Recall 34 % 16 % 11 % 2 %

3.3.5.10. Code Complexity

As one would expect, the less complex the test cases, the easier it was for tools to

correctly assess them. The Juliet test suite contains four broad complexity categories.

First, baseline test cases comprise the simplest weakness instances without added control

or data flow complexity. Second, control flow test cases cover various control flow

constructs. Third, data flow test cases cover various types of data flow constructs.

Finally, data/control flow test cases combine control and data flow constructs. Note that

there were a small number of data/control flow test cases in the C/C++ track and no

data/control flow test cases in the Java track.

Tables 54 and 55 present, for each complexity category, the percentage of test cases

found by at least one tool, as well as averages of tool recall, precision for 50 %

prevalence and discrimination rate. On the C/C++ track (Table 54), tools correctly

identified flaws in 67 % of the simple (i.e., non-complex) test cases. This number

dropped to 58 % when control flow complexity was introduced. It was 50 % or less when

data flow complexity was introduced in combination with control flow or separately.

52

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Average recall, precision for 50 % prevalence, and discrimination rate followed the same

general pattern. For each metric, the numbers were significantly lower when the test

cases included data complexity.

Table 54. Effect of Code Complexity on Tool Metrics for C/C++.

Complexity
Test Cases

Found

Average

Recall

Average

Precision

Average

Discrimination

Rate

None 67 % 19 % 88 % 82 %

Control 58 % 15 % 89 % 83 %

Data 44 % 8 % 78 % 64 %

Data/Control 50 % 9 % 79 % 68 %

On the Java track (Table 55), tools correctly identified 41 % of simple test cases. This

number dropped slightly when control or data flow complexities were introduced.

Average recall and precision for 50 % prevalence followed the same pattern, but average

discrimination rate dropped significantly when data flow complexity was introduced

separately.

Table 55. Effect of Code Complexity on Tool Metrics for Java.

Complexity
Test Cases

Found

Average

Recall

Average

Precision

Average

Discrimination

Rate

None 41 % 9 % 79 % 68 %

Control 39 % 8 % 74 % 61 %

Data 35 % 7 % 69 % 41 %

But do some individual tools exhibit resistance to complexity? Table 56 demonstrates

that most C/C++ tools found fewer defects as complexity increased. Tools C and F,

however, performed consistently regardless of complexity.

Table 56. Effect of Complexity on Recall for C/C++

 None Control Data Data/Control

Tool A 30 % 26 % 8 % 5 %

Tool B 27 % 26 % 11 % 3 %

Tool C 11 % 11 % 10 % 10 %

Tool D 8 % 4 % 3 % 3 %

Tool E 14 % 13 % 8 % 12 %

Tool F 21 % 22 % 26 % 27 %

Tool G 23 % 0 % 0 % 0 %

Tool H 21 % 21 % 15 % 16 %

53

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Tools C and F indicated the same resistance with respect to discrimination rate, whereas

the other tools were affected by the level of complexity (Table 57). Note that Tool E

performed better when data and control flow complexities were combined. However, this

could be specific to the Juliet test suite, because there were fewer test cases in this

category.

Table 57. Effect of Complexity on Discrimination Rate for C/C++.

 None Control Data Data/Control

Tool A 94 % 82 % 31 % 0 %

Tool B 92 % 86 % 67 % 49 %

Tool C 74 % 72 % 67 % 69 %

Tool D 80 % 54 % 34 % 32 %

Tool E 100 % 91 % 72 % 100 %

Tool F 94 % 93 % 93 % 93 %

Tool G 38 % 61 % 15 % 0 %

Tool H 81 % 77 % 43 % 45 %

On the Java track, tools performed more consistently with respect to recall (Table 58).

Discrimination rate, however, was significantly impacted by the level of complexity.

Tool N performed significantly better than the other tools for both types of complexities

(Table 59). Since there were no true positives from Tool M on the data flow complexity

test cases, the corresponding entry in Table 59 is N/A. Note that there were no

data/control flow complexity test cases on the Java track, so there is no corresponding

column in Tables 58 and 59.

Table 58. Effect of Complexity on Recall for Java.

 None Control Data

Tool L 36 % 35 % 33 %

Tool M 6 % 4 % 0 %

Tool N 13 % 12 % 11 %

Tool O 17 % 17 % 16 %

Table 59. Effect of Complexity on Discrimination Rate for Java.

 None Control Data

Tool L 69 % 62 % 48 %

Tool M 82 % 76 % N/A

Tool N 88 % 99 % 82 %

Tool O 43 % 29 % 3 %

54

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Finally, Table 60 shows the number of weaknesses initially contained in the C/C++ and

Java test suites and the number remaining after all tools were run on the test cases and the

reported weaknesses in the test cases were fixed. In addition, the resulting percent

reduction in the number of weaknesses is displayed. In other words, the last column lists

the percentage of test cases found by at least one tool, the same numbers as in the

corresponding columns in Tables 54 and 55. For C/C++, static analyzers had more

difficulty identifying weaknesses with respect to data flow complexity than control flow

complexity.

Table 60. Reduction in the Number of Weaknesses per Complexity.

Track Complexity Before After Reduction

C/C++

None 1617 529 67 %

Control 27 983 11 866 58 %

Data 29 453 16 599 44 %

Data/Control 2334 1166 50 %

Java

None 840 495 41 %

Control 13 199 8078 39 %

Data 11 437 7478 35 %

4. Analysis Result Summary for Classic Tracks

To summarize the results on the three types of test cases (Production Software, Software

with CVEs, and Synthetic Test Cases), we compiled their metrics in Table 61. If a tool

did not analyze all the test cases, the corresponding cells in Table 61 were left blank. The

table was sorted by tool name, because we did not want to indicate a preference for one

metric over another. We gathered coverage results only from the Synthetic test cases,

because the results were not directly relevant to the other test sets.

We did not include precision for 50 % prevalence for the Synthetic test cases, since, as

discussed in Sec. 3.3.5.6, discrimination rate better explains tool performance on

Synthetic test cases.

Please note that grouping all results, regardless of weakness types, offers an imprecise

overview of the tools’ effectiveness. Ideally, we would need to use groups more granular

than the 7PK to properly depict tool profiles, but at the cost of losing the bird’s eye view.

On the C/C++ track, Tools A and B scored above average useful precision, coverage, and

applicable recall. Tool H generated similar applicable recall and coverage results, but it

reported a lower discrimination rate. Tool F achieved the best applicable recall and

discrimination rate, but it had lower coverage.

On the Java track, Tool L exhibited above average coverage, applicable recall, and useful

precision, but a lower discrimination rate.

55

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

On the PHP track, Tool R performed well, finding more than half the CVEs.

Table 61. Metrics per Tool in SATE V.

Track Tool

Production CVEs Synthetic

Useful

Precision

Applicable

Recall

Discrimina-

tion Rate

Applicable

Recall

Discrimina-

tion Rate
Coverage

C/C++

Tool A 37 % 13 % 92 % 21 % 74 % 29 %

Tool B 47 % 6 % 83 % 25 % 86 % 42 %

Tool C 18 % 7 % 33 % 18 % 70 % 22 %

Tool D 23 % 0 % 8 % 47 % 19 %

Tool E 30 % 1 % 100 % 19 % 92 % 15 %

Tool F 56 % 93 % 9 %

Tool G 12 % 0 % 2 % 45 % 35 %

Tool H 26 % 14 % 46 % 25 % 64 % 31 %

Tool I 17 % 14 % 55 %

Tool J 36 % 13 % 67 %

Tool K 68 % 0 %

Java

Tool L 73 % 95 % 6 % 73 % 57 % 56 %

Tool M 55 % 0 % 78 % 76 % 25 %

Tool N 79 % 0 % 39 % 93 % 29 %

Tool O 71 % 6 % 0 % 52 % 19 % 29 %

Tool P 22 % 0 %

Tool Q 65 % 83 % 17 %

PHP Tool R 50 % 54 % 67 %

Table 61 demonstrates differences between the three types of test cases, which makes

generalization difficult. Later in this section, we explore this issue in more detail by

considering results for groups of CWEs.

Figure 12 shows overlap distribution for the Synthetic C/C++ test cases. The figure

indicates that there was very little overlap between tools, that is, the tools mostly did not

report the same weaknesses.

56

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Figure 12. Overlap Distribution for Synthetic C/C++ Test Cases.

The SATE team had grouped CWEs to facilitate the analysis of the SATE V results

reported by toolmakers. These varied in number and range. Table 62 lists the nine CWE

groups most represented in the Synthetic and CVE-selected test cases in the C/C++ track.

Most of the results were associated with buffer operations, input validation, and numeric

errors. Some CWEs under the loop and recursion CWE group were easy to detect,

whereas others were very difficult to detect. Consequently, these results were lower for

these Synthetic test cases compared to other CWE groups.

Table 62. CWE Groups Most Represented in the CVE and Synthetic Test Cases in the

C/C++ Track.

CWE Group CVE Count Synthetic Count

Loop and recursion 42 488

Post buffer operation 39 13 170

Numeric errors 27 7992

Ante buffer operation 21 4276

Input validation 11 9216

Invalid pointer 8 1406

Type-related 8 1384

Initialization 6 1141

Memory allocation 6 960

Figures 13 to 15 display the results for a subset of tools, which had reported results from

the C/C++ track. We selected Tools B, H, and A as examples to demonstrate the

differences between the recall results for the Synthetic and CVE-selected test cases. Note

that the horizontal axis ends at 60 %.

0%

10%

20%

30%

40%

50%

60%

0 tools 1 tool 2 tools 3 tools 4 tools 5 tools

57

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Figure 13. Recall for Synthetic vs. CVE Test Cases for Tool B in the C/C++ Track.

Figure 14. Recall for Synthetic vs. CVE Test Cases for Tool H in the C/C++ Track.

58

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Figure 15. Recall for Synthetic vs. CVE Test Cases for Tool A in the C/C++ Track.

For the most part, recall was higher for the Synthetic test cases than for the CVE-selected

test cases, probably because of the lower complexity of the Synthetic test cases. For the

Production test cases, recall could not be determined due to lack of ground truth.

In summary, the differences between the three types of test cases make generalization

challenging. We discussed this issue and a different approach, bug injection, that we plan

to use for SATE VI, in more detail in Ref. [47].

5. Ockham Criteria

This section explains some details of SATE V Ockham Sound Analysis Criteria. The

complete report is NIST-IR 8113 [48]. We introduced the Criteria in SATE V to

recognize static analyzers whose findings were always correct.

Only one tool’s results were submitted to be reviewed. Pascal Cuoq, Chief Scientist at

Trust-in-Soft, and Florent Kirchner, Head of Laboratory at CEA, ran the August 2013

development version of Frama-C on pertinent parts of the Juliet 1.2 test suite. This

section details some of the technical and theoretical challenges we addressed to evaluate

Frama-C’s results against the Criteria. It also describes anomalies, our observations, and

interpretations.

Frama-C reports led us to discover three unintentional, systematic flaws in the Juliet 1.2

test suite, involving 416 test cases. Our conclusion is that Frama-C satisfied the SATE V

Ockham Sound Analysis Criteria.

5.1. The Criteria

The Criteria is named for William of Ockham, best known for Ockham’s Razor. Since

the details of the Criteria will likely change in the future, the Criteria name always

includes a time reference: SATE V Ockham Sound Analysis Criteria.

59

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

The value of a sound analyzer is that every one of its findings can be assumed to be

correct, even if it cannot handle enormous pieces of software or does not handle dozens

of weakness classes. In brief, the Criteria are:

1. The tool is claimed to be sound.

2. For at least one weakness class and one test case, the tool produces findings for a

minimum of 60 % of buggy sites OR of non-buggy sites.

3. Even one incorrect finding disqualifies a tool.

An implicit criterion is that the tool is useful, not merely a toy.

We use the term warning to mean a single report produced by a tool. For example,

integer overflow at line 14 is a warning. A finding may be a warning or it

may be a site with no warning. For example, a tool may be implemented to

overapproximate and sometimes produce warnings about (possible) bugs at sites that are

actually bug free. If it never misses a bug, then any site without a warning is sure to be

correct. Toolmakers may declare that sites without warnings are findings, and that all

findings are correct.

5.1.1. Details

This subsection covers the details of the Criteria. First, we give the three formal Criteria,

then we follow with definitions, informative statements, and discussion.

We set requirements that communicated our intent, ruled out trivial satisfaction, and were

understandable.

No manual editing of the tool output was allowed. No automated filtering specialized to a

test case or to SATE V was allowed.

Criterion 1 stated, “The tool is claimed to be sound.” We used the term sound to mean

that every finding was correct. The tool need not produce a finding for every site; that is

completeness. Section 5.1.3 discusses our use of the terms “sound” and “complete.”

A tool may have settings that allow unsound analysis. The tool still qualified if it had

clearly sound settings. A more inclusive statement of Criterion 1 is: “The tool is claimed

to be sound or has a mode, in which analysis is sound.”

Criterion 2 deals with the number of findings produced: the tool produces findings for a

minimum of 60 % of sites.

After consultation with the SATE program committee, we chose this as a level that is

useful, yet achievable by current tools.

A site is a location in code where a weakness might occur. For example, every buffer

access in a C program is a site where buffer overflow might occur if the code is buggy. In

other words, sites for a weakness are places that must be checked for that weakness.

Section 5.1.2 provides more details regarding what constitutes a site.

60

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

A buggy site is one that has an instance of the weakness. That is, there is some input that

will cause a violation. A non-buggy site is one that does not have an instance of the

weakness.

A finding is a definitive report about a site. In other words, the site has a specific

weakness (is buggy) or the site does not have a specific weakness (is not buggy).

We offered SATE V test cases as Ockham test cases. Participants designated weaknesses

that their tool could find and chose the test cases to use.

5.1.2. Definition of “Site”

As stated above, a site is a location in code where a weakness might occur. In other

words, sites are places that must be checked. The determination of a site depends on local

information. That is, global or flow-sensitive information is not required for determining

where sites are in code.

For example, the following code comes from SARD Test Case 62 804 [20]. It has one

site of writing to a buffer, data[i] =, which needs to be checked for a write-outside-

buffer bug. There is also one site of reading from a buffer, source[i], where the

program might read outside the buffer if there is a bug.

for (i = 0; i < 10; i++)

{

data[i] = source[i];

}

In addition, the code has sites of uninitialized variable, i.e., every place that i is used, and

an integer overflow site, i.e., i++. Thus, the assignment statement in the body of the loop

has several sites: a write buffer site, a read buffer site, and sites where variables are used.

Locations in code may be excluded as sites because of local information. For example,

for the weakness class CWE-369: Divide By Zero [10], a simple definition of site is every

occurrence of a division operator (/). Consider the following code fragment: mid =

height/2. Since division by a constant other than zero is never a divide by zero and

this situation can be detected easily, we may exclude division by a non-zero constant as a

site for divide by zero.

5.1.3. About “Sound” and “Complete” Analysis

The terms sound and complete are used differently by different communities. The two

different pairs of meanings both have valid reasons.

Most of the theorem proving, formal methods, and static analysis communities use

“sound” to mean that all bugs are reported and “complete” to mean that every bug report

is a correct report. In other words, sound analysis in this sense may produce false alarms

(false positives), but never misses a possible problem (no false negatives). By analogous

argument, complete analysis never produces false alarms, but it may miss some

problems.

61

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

For the Ockham Criteria, we used “sound” to mean that every finding7 was correct. We

used “complete” to convey the meaning of a finding for every site.

5.2. Frama-C Evaluation

There was only one participant in SATE V Ockham Sound Analysis Criteria: Frama-C.

Pascal Cuoq and Florent Kirchner ran the August 2013 development version. (Changes

were released to the open source engine in version 20140301 “Neon.”)

Frama-C is a suite of tools for analyzing software written in C [49]. It is free software

licensed under the GNU Lesser General Public License (LGPL) v2.1 license8.

By its own definition, Frama-C claimed to be sound: “it aims at being correct, that is,

never to remain silent for a location in the source code where an error can happen at run-

time” [49].

This satisfies Criterion 1.

The following general procedure was used to evaluate a tool for Criteria 2 and 3. This

procedure was repeated for each weakness.

1. Decide what constitutes a site.

2. Determine the list of sites

U = the set of all sites

3. Determine the list of findings

F = the set of all findings

4. Check that all findings are at sites

F ⊆ U (4)

5. Determine which sites are buggy or non-buggy

B = the set of all buggy (bad) sites

G = the set of all non-buggy (good) sites

6. Check that

|F| ≥ 0.6 × |G| (5)

where |F| is the number of items in set F, i.e., the number of findings, and |G| is

the number of good sites. If that is true, Criterion 2 is satisfied.

7. Check that

7 For Frama-C, a finding is a site that does not have a bug report. That is, it is sure that it is not buggy.

8 http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

62

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

F ∩ B = (6)

If that is true, Criterion 3 is satisfied.

When problems or mismatches were found, we reviewed and compared the definitions of

site or warning and checked for errors in our programs.

These general procedures were instantiated for Frama-C.

5.2.1. Undefined Behavior Stops Analysis

The first elaboration is for undefined states. Some situations in the C programming

language have “undefined behavior,” which is more drastic than “the result may be any

number.” In fact, no further analysis is reasonable. Section 5.2.5 provides more details

about undefined behavior.

Frama-C issues a warning and terminates analysis when it detects that the resulting state

may be undefined. Consequently, sites following a terminating failure (T) have no

judgments made at all, neither buggy nor non-buggy. The universe of sites is, therefore,

syntactic sites (S) Until (U) a terminating failure.

U = S U T (7)

5.2.2. Warnings Are Union of Two Runs

Pascal Cuoq and Florent Kirchner sent two files of warnings each from a different set of

runs of Frama-C. One set of runs modeled that every allocation failed, and the other set of

runs modeled that every allocation succeeded. Frama-C must assume allocation failure to

catch a possible NULL pointer dereference, e.g., in the following code, which comes

from SARD Test Case 74 328 [20]:

char * dataBuffer = (char *) malloc(100*sizeof(char));

memset(dataBuffer, 'A', 100-1);

Because Frama-C could not model both allocation failure and allocation success in one

run, Warnings are the union of warnings from both files.

5.2.3. Frama-C Gives Findings for Good Sites

Frama-C always warns about a bug at a site when there is a bug, i.e., there are no false

negatives. Note that because of the limitations of Frama-C’s models, it may report a bug

when there is no bug, i.e., there may be false alarms. Such false alarms are allowed,

because for Frama-C, a finding is that a site is not buggy. If Frama-C does not produce a

warning for a site, then that site is definitely not buggy. In other words, given that W is

the set of all warnings, the set of all findings is the difference of the set of all sites and the

set of all warnings:

F = U − W (8)

By definition, the consistency check in Step 4, F ⊆ U, was trivially satisfied. However,

we gained confidence by checking that all warnings are sites. Therefore, we replaced the

consistency check from Step 4:

63

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

4. Check that

W ⊆ U (9)

To determine buggy sites, we developed a “master list” from the comments and repeated

structures in the Juliet code. This master list was produced by converters and extractors.

When we found inconsistencies, we investigated and resolved them, improving the code

as needed. Since findings were good sites for Frama-C, the Criteria checks were Eq. (5)

and Eq. (6) from Steps 6 to 7:

6. Check that:

|F| ≥ 0.6 × |G|

7. Check that:

F ∩ B =

If that was not true, the reasons, including the definition of the site and the assignment of

the warning, were investigated. Since G = U − B (and B ⊆ U) 9, we rewrote Step 6, so

only buggy (B) sites were used:

6. Check that:

|F| ≥ 0.6 × (|U|−|B|) (10)

5.2.4. Implementation

We performed the bulk of the analysis with automated scripts and custom programs. The

general flow was to:

1. Extract appropriate sites from the Juliet tests

2. Extract and interpret appropriate warnings from the Frama-C report

3. Match and process the two extracts in various ways

Automated scripts allowed us to rerun them with relative ease, as needed.

Some exclusions and special handling were built into the code. These are mentioned

where we discuss the exclusions or special handling, e.g., Sec. 5.3.1, 5.3.5, and 5.3.7.

All of the scripts and files are available in a TAR file with XZ compression [50] at

https://s3. amazonaws.com/nist-ockham-criteria-satevdata

/ockhamCriteriaSATEVdata.tar.xz

5.2.5. Analysis Termination after RAND32() macro

The Juliet 1.2 test suite uses a macro, RAND32(), defined as follows:

9 We need to know that B ⊆ U, because, in general, |U − B| = |U|−|B| + |B − U|. Since B ⊆ U, then

|B − U| = 0 and, therefore, |U − B| = |U|−|B|.

64

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

#define RAND32() \

((rand()<<30) ˆ (rand()<<15) ˆ rand())

The International Organization for Standardization and the International Electrotechnical

Commission (ISO/IEC) C 2011 standard Sec. 6.5.7 Bitwise shift operators states, “If the

value of the right operand is negative or is greater than or equal to the width in bits of the

promoted left operand, the behavior is undefined.” [51]

Frama-C models rand() as returning a type that is less than 30 bits. According to the

standard, the result of executing a statement with RAND32() is undefined. Frama-C

stops analyzing the code after an undefined state is encountered.

Our site extraction is largely syntactic or local, so it was difficult to exclude sites that

followed undefined behavior. Given this limitation to our analysis, we completely

excluded the 76 test cases, comprising a total of 112 files, that use RAND32().

Frama-C produced 2101 warnings about integer overflow for many uses of left shift (<<)

in RAND32() and RAND64(). These are legitimate warnings, but since they do not

correspond to our weakness classes, we excluded them.

5.2.6. Cases Under CWE-191 Not Processed

During our evaluation, we observed that there were no warnings for CWE-191: Integer

Underflow (Wrap or Wraparound) [10] in the test cases. Upon inquiry, we learned that

because of a simple human mistake, Frama-C was not run on any cases under CWE-191.

Consequently, we excluded all sites under the CWE-191 subdirectory from our analysis

to avoid misinterpretations in the final results.

The developers later submitted files with the warnings. However, we did not evaluate

them, since they were obtained, using a later version of Frama-C.

5.3. Evaluation by Weakness Classes

We sent a set of Juliet 1.2 test cases, containing the following CWEs to those running

Frama-C:

● CWE-121: Stack-based Buffer Overflow

● CWE-122: Heap-based Buffer Overflow

● CWE-123: Write-what-where Condition

● CWE-124: Buffer Underwrite ('Buffer Underflow')

● CWE-126: Buffer Over-read

● CWE-127: Buffer Under-read

● CWE-190: Integer Overflow or Wraparound

● CWE-191: Integer Underflow (Wrap or Wraparound)

65

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

● CWE-369: Divide by Zero

● CWE-457: Use of Uninitialized Variable

● CWE-476: NULL Pointer Dereference

● CWE-562: Return of Stack Variable Address

The result we received from them contained the following nine warnings:

● division by zero

● floating-point NaN10 or infinity

● invalid arguments to library function

● invalid memory access

● making use of address of object past its lifetime

● overflow in conversion

● passing INT_MIN to standard function abs()

● reading from uninitialized lvalue

● undefined arithmetic overflow

The warnings did not match simply to CWE classes, so we created nine classes of

weaknesses. By examining verbose information that Frama-C supplied with each

warning, we matched most warnings to one of the weakness classes. Some warnings did

not fit into these classes or were not readily handled by our automatic processing. We

explain some of these in Sec. 5.4.1.

Sections 5.3.1 through 5.3.8 describe each weakness class and its evaluation with respect

to Criteria 2 and 3. The results for these weakness classes are summarized in Sec. 5.3.9,

Table 63. Note that only eight weakness classes are discussed below, because CWE-191

was excluded, as explained in Sec. 5.2.6.

5.3.1. Write Outside Buffer

The Write Outside Buffer weakness class includes CWE-121: Stack-based Buffer

Overflow, CWE-122: Heap-based Buffer Overflow, and CWE-124: Buffer Underwrite

('Buffer Underflow') [10]. Frama-C did not distinguish between stack-based and heap-

based buffers. For the Ockham Criteria, the distinction between stack-based and heap-

based or between underflow and overflow is not important.

10 NaN = not a number

66

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

5.3.1.1. Site Definition

This site is defined by a write to an array (buffer), either by [] or unary * operation,

specifically by array access on the left-hand side of an assignment or used as a

destination in a standard library function. The exception is that memcpy()or

memmove()into a structure is not a site.

5.3.1.2. Anomalies, Observations, and Interpretations

The version of Frama-C that was used for the Ockham Criteria, the August 2013

development version, did not support wide string literals, e.g., L"Good", nor the format

specifier for wide string (%ls). Consequently, we excluded sites with wide string literals,

the wide string format specifier, or wide character arrays passed to printWLine().

5.3.1.3. Results

The results for this weakness class were: 97 678 sites (|U|), 18 767 warnings (|W|),

78 911 findings (|F|), and 7400 buggy sites (|B|).

For Write Outside Buffer, which includes CWE-121, CWE-122 and CWE-124, Frama-C

satisfied the Criteria.

5.3.2. CWE-123: Write-what-where Condition

The CWE-123: Write-what-where Condition weakness class describes the condition

whereby code can be written at any location.

5.3.2.1. Site Definition

This site is defined by the use of *, ->, or [] operators.

5.3.2.2. Results

The results for this weakness class were: 72 084 sites (|U|), 791 warnings (|W|), 71 293

findings (|F|), and 228 buggy sites (|B|).

For CWE-123: Write-what-where Condition [10], Frama-C satisfied the Criteria.

5.3.3. Read Outside Buffer

The Read Outside Buffer weakness class includes CWE-126: Buffer Over-read and

CWE-127: Buffer Under-read [10]. Frama-C did not distinguish between read before the

beginning of buffer and read after the end of buffer. For the Ockham Criteria, the

difference is not important.

5.3.3.1. Site Definition

This site is defined by a read from an array (buffer), either by [] or unary *. The access

could be in an expression or it could be embedded in the left-hand side of an assignment.

For example, a[b[i]] = … reads buffer b.

5.3.3.2. Anomalies, Observations, and Interpretations

Some warnings dealt with an invalid argument to printf(): invalid

arguments to library function for printf. We assigned them as Read

Outside Buffer warnings, since they only happened to strings that were not null

terminated that could lead printf() to an overread.

67

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

5.3.3.3. Results

The results for this weakness class were: 65 615 sites (|U|), 3396 warnings (|W|), 62 219

findings (|F|), and 2168 buggy sites (|B|).

For Read Outside Buffer, which includes CWE-126 and CWE-127 [10], Frama-C

satisfied the Criteria.

5.3.4. CWE-476: NULL Pointer Dereference

The CWE-476: NULL Pointer Dereference weakness class covers NULL pointer

dereference warnings.

5.3.4.1. Site Definition

This site is defined by the use of *, ->, or [] operators.

5.3.4.2. Anomalies, Observations, and Interpretations

It was very difficult to distinguish the Frama-C warnings for this class from those for

array access out-of-bounds. Therefore, we only included “invalid memory access”

warnings for test cases in the CWE-476 subdirectory.

5.3.4.3. Results

The results for this weakness class were: 72 084 sites (|U|), 303 warnings (|W|), 71 781

findings (|F|), and 271 buggy sites (|B|).

For CWE-476: NULL Pointer Dereference [10], Frama-C satisfied the criteria.

5.3.5. CWE-190: Integer Overflow or Wraparound

The CWE-190: Integer Overflow or Wraparound weakness class covers integer overflow

warnings.

5.3.5.1.Site Definition

This site is defined by the use of +, ++, * (multiplication), +=, and *=. This includes

array indexing (and array index scaling), hence the use of []is included, too. The version

of Frama-C used in the Ockham Criteria only identified signed arithmetic overflows,

involving types of width int or greater. We excluded sites from files with _char_,

short, or _unsigned_ in the file name. This excluded 7113 files in 4876 test

cases.

5.3.5.2. Results

The results for this weakness class were: 40 570 sites (|U|), 1356 warnings (|W|), 39 214

findings (|F|), and 1026 buggy sites (|B|).

For CWE-190: Integer Overflow or Wraparound [10], Frama-C satisfied the Criteria.

5.3.6. CWE-369: Divide By Zero

The CWE-369: Divide By Zero weakness class is characterized by variables divided by

zero.

68

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

5.3.6.1. Site Definition

This site is defined by the use of /, %, /=, and %=11. This includes all arithmetic types,

including float and double computations. However, this does not include cases in which

the right-hand side is a constant, e.g., height/2.

5.3.6.2. Anomalies, Observations, and Interpretations

Frama-C’s implementation of abstract interpretation could not handle a range with an

“omitted middle.” For example, consider checking for a divide-by-zero failure in the

following code fragment:

int x = readInput();

if (x != 0) {

x = 1776/x;

}

After the first line, x can have any int value. This can be represented exactly as a range

from the minimum int to the maximum int. Immediately after the if conditional, the

possible values of x, that is, all values except zero, cannot be represented. One solution is

to represent the possible values as the entire range. When analysis checks the next line,

zero is found to be a possible value. Analysis reports a (possible) divide-by-zero, even

though it is properly guarded.

The incorrect warnings and, therefore, the relatively low number of findings, were

attributed to this implementation.

5.3.6.3. Results

The results for this weakness class were: 3018 sites (|U|), 1399 warnings (|W|), 1619

findings (|F|), and 684 buggy sites (|B|).

For CWE-369: Divide By Zero [10], Frama-C satisfied the Criteria.

5.3.7. CWE-457: Use of Uninitialized Variable

The CWE-457: Use of Uninitialized Variable weakness class covers warnings where a

variable is uninitialized.

5.3.7.1. Site definition

The site is defined when the value of a variable is used. In some instances after an

uninitialized variable was reported, Frama-C did not produce additional warnings. We

could not determine whether this was due to an undefined program state, as explained in

Sec. 5.2.5, a cleanup to avoid repeated warnings about essentially the same problem, or

something else.

We handled this by only including the first buggy site in a file. That is, the first buggy

site is included, and subsequent buggy sites in the same file were excluded.

11 Juliet includes the modulo (%) operator in divide by zero.

69

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

5.3.7.2. Results

The results for this weakness class were: 263 520 sites (|U|), 770 warnings (|W|), 262 750

findings (|F|), and 560 buggy sites (|B|).

For CWE-457: Use of Uninitialized Variable [10], Frama-C satisfied the Criteria.

5.3.8. CWE-562: Return of Stack Variable Address

The CWE-562: Return of Stack Variable Address weakness class covers warnings of the

use of stack memory after its lifetime.

5.3.8.1. Site definition

The site is defined when return statements return an expression. Return of a constant,

e.g., return 0;, is not a site.

5.3.8.2. Anomalies, Observations, and Interpretations

There was significant mismatch between our site definition and Frama-C’s warning. Our

site definition was in the statement where a stack address is returned. Frama-C reported

the statement where an expired address was used. Consider the following code from

CWE562_Return_of_Stack_Variable_Address__return_buf_01.c in SARD Test Case

105 491 [20]:

static char *helperBad() {

char charString[] = "helperBad string";

return charString;

}

{

 …

printLine(helperBad());

…

}

Our extractor reported a site in the return statement, while Frama-C reported the

printLine(), where the invalid address is used. Both make sense. Since only two test cases

had examples of this condition, we checked them manually.

5.3.8.3. Results

The results for this weakness type were: 1838 sites (|U|), 2 warnings (|W|), 1836 findings

(|F|), and 2 buggy sites (|B|).

For CWE-562: Return of Stack Variable Address [10], Frama-C satisfied the criteria.

5.3.9. Summary of the Evaluation by Weakness Classes

The number of sites, warnings, findings, and buggy sites for each class is given in Table

63. In the test cases selected from the Juliet 1.2 test suite, we considered a total of

616 407 sites in eight classes of weaknesses. There were a total of 12 339 buggy sites.

Counting the excluded and the unclassified warnings, which are not listed above, we

processed a total of 31 955 unique Frama-C warnings. Frama-C satisfied the SATE V

Ockham Sound Analysis Criteria.

70

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 63. Number of Sites, Warnings, Findings, and Buggy Sites for Each Weakness

Class.

Class (Related CWE)
Sites

(|U|)

Warnings

(|W|)

Findings

(|F|)

Buggy

Sites

(|B|)

Write Outside Buffer Condition

(121, 122, 124)
97 678 18 767 78 911 7400

Write-what-where Condition (123) 72 084 791 71 293 228

Read Outside Buffer (126, 127) 65 615 3396 62 219 2168

NULL Pointer Dereference (476) 72 084 303 71 781 271

Integer Overflow (190) 40 570 1356 39 214 1026

Divide by Zero (369) 3018 1399 1619 684

Use of Uninitialized Variable (457) 263 520 770 262 750 560

Return Stack Variable Address (562) 1838 2 1836 2

5.4. General Observations

This section reports on other general observations we made while evaluating the

warnings.

5.4.1. Warnings Handled as Exceptions

Frama-C produced 152 “invalid memory access” warnings, specifically invalid write, for

calloc() when the allocation fails. We doubt that actual library code tries to zero

memory if allocation fails, so we considered these warnings to be model artifacts.

Frama-C warned about constructs that occurred in four test cases. The following is the

pertinent code from file CWE476_NULL_Pointer_Dereference__int_34.c in SARD Test

Case 104 717 [20]:

typedef union {

int * unionFirst;

int * unionSecond;

} CWE476_…int_34_unionType;

…

CWE476_…int_34_unionType myUnion;

{

int tmpData = 5;

data = &tmpData;

}

myUnion.unionFirst = data;

{

int *data = myUnion.unionSecond;

printIntLine(*data);

}

71

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

The ISO/IEC C 2011 standard 6.5.2.3 Structure and union members, footnote 95 says, “If

the member used to read the contents of a union object is not the same as the member last

used to store a value in the object, the appropriate part of the object representation of the

value is reinterpreted as an object representation in the new type… (a process sometimes

called “type punning”).” [51]

This construct is well defined in the C 2011 standard. However, since other versions of

the standard are not clear about how it should be treated, we believe that Frama-C was

reasonable to model this as incompatible access type.

In addition to this example, Frama-C’s warnings led us to discover three previously

unknown, systematic errors in Juliet 1.2. These are detailed in the Ockham report [47]

and the report on Juliet version 1.3 [21].

5.5. Ockham Criteria Summary

We processed a total of 31 955 unique warnings from Frama-C, covering over half a

million sites in the Juliet 1.2 test suite.

The version of Frama-C that was used, the August 2013 development version, did not

support wide string literals, e.g. L"Good", nor the format specifier for wide string

(%ls).

Frama-C satisfied the SATE V Ockham Sound Analysis Criteria.

5.6. Future Plans for Ockham Criteria

This section suggests changes for future Ockham Criteria.

5.6.1. Weakness Classes

Although the Ockham Criteria used the term “weakness classes,” the classes are not

specified. We had CWE classes in mind. In most cases Frama-C used classes of warnings

that did not correspond well to CWEs. For instance, Frama-C did not distinguish between

CWE-121: Stack-based Buffer Overflow, CWE-122: Heap-based Buffer Overflow, and

CWE-124: Buffer Underwrite ('Buffer Underflow'). In general, weakness classes that

tools use only approximately match CWE classes [9, Sec. 2.4].

In the future, we plan to use the weakness classes that the tools use.

For ease of information sharing, we are researching a more universal approach to

characterizing weakness classes.

5.6.2. Definition of “Site”

As mentioned in Sec. 5.1.2, it is not always clear what location in a flow of execution

should be a site. For instance, a function may have a few lines of code to copy a string,

which have sites of read buffer and write buffer. If the code instead calls the standard

library function strcpy(), the situation changes. If we consider sites to be within the

body of strcpy(), then thousands of invocations throughout the code base appear to

condense into a few places. In addition, the source code is probably not available.

A better definition may be that a site is the final place that the programmer can make any

checks that are necessary or arrange the state properly. When the programmer invokes a

72

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

library function or uses a built-in operator, the programmer must satisfy their

preconditions. This may justify declaring that sites are in the main line code.

This does not address the question of what should be declared as the site of missing code,

such as failure to check user input.

5.6.3. Use of the Term “Sound”

As explained in Sec. 5.1.3, the SATE V Ockham Criteria used the term “sound” and

“complete” in almost the reverse sense of that used by a large, well-established formal

methods community and their considerable body of published work. Although Ockham’s

use may have been reasonable, it would cause unnecessary and unproductive confusion

for the terms to be used very differently in similar contexts. Trying to change the

community’s use would require a huge effort for a relatively small gain. Future Ockham

Criteria should adopt a term other than “sound.” Some possibilities are “correct,”

“flawless,” “reliable,” “faithful,” “faultless,” or “exact.”

6. Workshop Outcome

On March 14, 2014, NIST welcomed participants, tool users and members of academia to

the SATE V Workshop. While the organizers presented initial results, toolmakers shared

their experiences in participating in SATE and tool users their practical tool use.

A few toolmakers disagreed with the rating our experts gave to some tool warnings

during manual analysis. The SAMATE team concluded that the execution path leading to

these weaknesses was infeasible, rating the warnings as false positives per our guidelines

[8, Sec. 2.7]. Although these weaknesses were unreachable, developers had the option to

fix them or not. Arguably, the warnings could have been rated as insignificant or quality-

related, but the outcome would have been more subjective.

Some toolmakers reported improving their tools in the process, fulfilling one of SATE’s

goals. For example, Franck Cassez mentioned that Goanna improved its CWE mapping

and refined its checkers.

SATE also increased the adoption of the Juliet test suite for tool assessment. The test

suite offers much value, but has shortcomings. For example, Arthur Hicken mentioned an

inconsistent use of memory allocation functions and an untypical amount of dead code.

Pascal Cuoq also reported several bugs in the test cases. Peter Henriksen noted that the

test suite did not compile out-of-the-box and argued that some test cases were too simple.

Some toolmakers expressed interest in having more tracks, such as C#, .NET, and

Android.

The use of CWEs elicited some cautionary comments from some toolmakers, because

many CWEs were too broad and ambiguous, and frequently misaligned with reported

tool warnings. SATE’s analysis automation is largely based on CWEs, but the

aforementioned issues were mitigated by the use of CWE groups for matching warnings

and weaknesses. Furthermore, the SAMATE team is developing the Bugs Framework, an

effort to formally define weakness classes and address some of these issues [52].

73

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

An interesting point was made by Arthur Hicken about code coverage. In large software,

it is not clear what code has been analyzed by tools and what has been overlooked. We

witnessed this behavior in Wireshark, where some tools did not produce warnings for

some dissectors. Retrospectively, it appears essential to know which parts of the code

have been analyzed and which have not.

The Common Weakness Scoring System (CWSS) [53] was mentioned as a useful

mechanism for tools, offering a risk-based approach to prioritizing warnings.

Arthur Hicken asserted that data integration is key to leverage the different software

assurance sources (e.g., static analysis, pen-test, bug tracking, and unit tests). This means

centralizing information throughout the entire software development lifecycle (SDLC),

since these data sources activate at different points in time. Peter Henriksen observed that

static analysis is being introduced earlier in the development process and now covers

most of the SDLC, including review, testing, and actual development.

The use of the Common Coverage Representation (CCR) [35] in SATE IV and V was not

met with enthusiasm by all tool makers. Some participants put serious effort in providing

a CCR, but others provided a document that was incomplete, incorrect or otherwise

nonexistent. CCR was judged by some as poorly designed and posing several questions.

From a SATE perspective, it helped the team map tool warnings to CWEs.

The Software Assurance Marketplace (SWAMP) [34], on the other hand, was praised for

its excellent work and support. The virtual machines (VMs) SWAMP had provided made

test case compilation and analysis much smoother for the participants. James Kupsch

presented SWAMP’s role as an online laboratory for software assessment. Its centralized

cloud computing platform offers a no-cost, high-performance array of open source and

commercial software security testing tools, as well as a comprehensive results viewer to

simplify vulnerability remediation.

The use of CVEs also brought positive feedback, although providing the details upfront

(the weakness location, in particular) would have helped the toolmakers improve their

analysis by checking whether their tool found the CVE and determining the cause of the

shortcoming.

John Keane shared the experience with static analysis at the Department of Defense,

finding that the use of automated tools by committed developers systematically leads to a

reduction in security vulnerabilities and directly results in code quality improvement. He

also observed that high failure rates during operational testing correlate to high security

defect density and high code quality technical debt.

Nathan Ryan offered some answers as to why static analysis did not fulfill some of its

past promises. Performance-wise, more complex software offset gains brought by more

powerful hardware. From a technical perspective, the focus had shifted, making past

expectations irrelevant. Ryan advocated that software should provide richer information

to facilitate analysis and also proposed reducing computational cost by limiting inter-

process analysis to where it is necessary and by favoring partial and incremental analyses.

Ryan recommended pre-processing prior to analysis, enabling querying and reuse of

results.

74

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

The workshop information and presentations are listed in Ref. [45].

7. Conclusion

In SATE V, we used three types of test cases to measure tool effectiveness: Production

Software, CVE-selected Test Cases and a Synthetic test suite. Each type of test case

offered two of three sought-after characteristics: ground truth, realism, and statistical

significance. Different types of test cases enabled measurement of different metrics.

Overall results showed several ways to describe, or separate, tools: sound vs. unsound,

basic vs. advanced, general vs. specialized, and security vs. quality. These dimensions

help narrow down the type of tool that might fit a user’s needs.

However, certain tools perform better than others of the same type. Tool effectiveness

also significantly depends on the codebase, on which the tools are tested. Users can

assess their candidate tools using the metrics presented in this paper and, therefore,

determine the tool or tools best fitting their requirements and codebases.

Results also showed limited overlap between tool reports. The use of multiple tools can

increase overall recall and boost confidence in overlapping results.

Code complexity appeared to pose the greatest challenge for advanced tools. Tools

performed better on the simpler test cases of the Java and PHP tracks, as compared to the

more complex test cases of the C/C++ track. Simpler CVEs were found in significant

numbers, however, as complexity increased, fewer and fewer were reported. Even the

Synthetic test cases showed diminishing effectiveness as code complexity increased.

Tools tended to perform better on more technical weaknesses, such as input validation

and code quality. Higher level weaknesses inherent to design, such as security features,

were seldom reported.

Altogether, the metrics we calculated on the three types of test cases in SATE V

produced three perspectives on tool effectiveness, which could not be generalized well.

Consequently, test suites, offering all three sought-after characteristics, are required.

Instead of having three disparate perspectives, a unified view of tools’ performance is

required.

7.1 Future Plans

In SATE VI, we plan to combine the three characteristics into one test suite by exploring

bug-injection. Injecting a sufficient number of realistic bugs into production software

should provide ground-truth, statistical significance, and realism. We are open to using

manual, assisted, and automated injection to achieve our goal.

SATE VI will be structured differently to accommodate its growth. We will combine

SATE V’s C/C++ and Java tracks into a new Classic track, keep Ockham as its own

track, and add a Mobile track for Android applications. The PHP track will likely be

abandoned, due to limited participation.

75

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

8. Acknowledgments

SATE V owes its success to many contributors. We would like to thank the Software

Assurance Marketplace (SWAMP), which provided the support and infrastructure to host

the SATE V virtual machines, used by the participants to analyze the test cases. SWAMP

also ran a set of open source tools (Clang, PMD, and FindBugs) on our test cases to

broaden our study.

Paul Anderson suggested the use of CVEs as vulnerabilities that matter for assessing the

tools’ capabilities in detecting and reporting real, effectual vulnerabilities.

Bill Pugh shared his vision of how a tool evaluation should be conducted without

hindering innovation. He suggested the adoption of the NIST TREC model that has since

been used in SATE.

Arthur Hicken expressed interest in vulnerabilities that were not reported by tools. Based

on his idea, we added a new axis of research to SATE V, summarized in Sec. 3.2.3.3 and

3.3.5.8.

The Center for Assured Software (CAS) provided the community with the Juliet test

suite, the largest synthetic benchmark for static analyzers. SATE IV and V used the suite

extensively.

The entire analysis in SATE V was performed by the NIST SAMATE team, including

Charles de Oliveira, Kamilla Holanda Crozara, and Yan Wu.

Most importantly, we want to thank the SATE V participants, some of whom have been

stepping up for SATE since 2008. We recognize and appreciate their contributions in the

ongoing efforts to improve software assurance.

8.1 Ockham Criteria Acknowledgements

We thank Yaacov Yesha and Irena Bojanova for their extensive comments, which greatly

improved the Ockham Criteria sections. We also thank Charles de Oliveira and

Christopher Long for their work in analysis. We are particularly indebted to Pascal Cuoq

and Florent Kirchner, who ran Frama-C and answered many questions about interpreting

the results.

9. References

[1] Larsen, G., Fong, E. K. H., Wheeler, D. A., & Moorthy, R. S. (2014, July). State-of-

the-art resources (SOAR) for software vulnerability detection, test, and evaluation.

Institute for Defense Analyses IDA Paper P-5061. Available:

http://www.dtic.mil/dtic/tr/fulltext/u2/a607954.pdf Accessed 19 July 2018.

[2] SAMATE. (2017). Source code security analyzers (SAMATE list of static analysis

tools). Available:

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

[3] Paul E. Black, Michael Kass, Michael Koo, Elizabeth Fong, “Source Code Security

Analysis Tool Functional Specification Version 1.1”, NIST Special Publication 500-

268 v1.1, February 2011,

http://www.dtic.mil/dtic/tr/fulltext/u2/a607954.pdf
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

76

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

https://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-

268_v1.1.pdf

[4] Text REtrieval Conference (TREC), http://trec.nist.gov

[5] Bill Pugh, “Judging the Value of Static Analysis”, 2007,

https://www.cs.umd.edu/~pugh/JudgingStaticAnalysis.pdf

[6] Okun, Vadim, Romain Gaucher, and Paul E. Black, editors, “Static Analysis Tool

Exposition (SATE) 2008”, NIST Special Publication 500-279, June 2009,

https://samate.nist.gov/docs/NIST_Special_Publication_500-279.pdf

[7] Okun, Vadim, Aurelien Delaitre, and Paul E. Black, “The Second Static Analysis

Tool Exposition (SATE) 2009”, NIST Special Publication 500-287, June 2010,

https://samate.nist.gov/docs/NIST_Special_Publication_500-287.pdf

[8] Okun, Vadim, Aurelien Delaitre, and Paul E. Black, editors, “Report on the Third

Static Analysis Tool Exposition (SATE) 2010”, NIST Special Publication 500-283,

October 2011, https://dx.doi.org/10.6028/NIST.SP.500-283.

[9] Okun, Vadim, Aurelien Delaitre, and Paul E. Black, “Report on the Static Analysis

Tool Exposition (SATE) IV”, NIST Special Publication 500-297, January 2013,

https://dx.doi.org/10.6028/NIST.SP.500-297.

[10] MITRE, “Common weakness enumeration (CWE),” https://cwe.mitre.org

[11] Center for Assured Software, U.S. National Security Agency, “CAS Static Analysis

Tool Study – Methodology”, December 2011,

http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf

[12] Kratkiewicz, K., and Lippmann, R., “Using a Diagnostic Corpus of C Programs to

Evaluate Buffer Overflow Detection by Static Analysis Tools”, Workshop on the

Evaluation of Software Defect Tools, 2005

[13] Zitser, M., Lippmann, R., Leek, T., “Testing Static Analysis Tools using Exploitable

Buffer Overflows from Open Source Code”, IGSOGT Software Engineering Notes,

29(6):97-106, ACM Press, New York (2004),

http://dx.doi.org/10.1145/1041685.1029911

[14] Emanuelsson, Par, and Ulf Nilsson, “A Comparative Study of Industrial Static

Analysis Tools (Extended Version)”, Linkoping University, Technical report 2008:3,

2008

[15] Johns, Martin and Moritz Jodeit, “Scanstud: A Methodology for Systematic, Fine-

grained Evaluation of Static Analysis Tools”, in Second International Workshop on

Security Testing (SECTEST’11), March 2011

[16] Michaud, Frédéric and Richard Carbone, “Practical verification & safeguard tools

for C/C++”, DRDC Canada – Valcartier, TR 2006-735, 2007

[17] Rutar, Nick, Christian B. Almazan, and Jeffrey. S. Foster, “A Comparison of Bug

Finding Tools for Java”, 15th IEEE Int. Symp. on Software Reliability Eng.

(ISSRE’04), France, November 2004, http://dx.doi.org/10.1109/ISSRE.2004.1

[18] MITRE, “Common Vulnerabilities and Exposures” (CVE), https://cve.mitre.org

[19] Stoneburner, G., Hayden, C., Feringa, A. (2004, June) “Engineering principles for

information technology security (a baseline for achieving security), revision A:

recommendations of the National Institute of Standards and Technology”, National

Institute of Standards and Technology Special Publication 800-27 Rev A,

https://dx.doi.org/10.6028/NIST.SP.800-27rA

https://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf
https://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf
http://trec.nist.gov/
https://www.cs.umd.edu/~pugh/JudgingStaticAnalysis.pdf
https://samate.nist.gov/docs/NIST_Special_Publication_500-279.pdf
https://samate.nist.gov/docs/NIST_Special_Publication_500-287.pdf
https://dx.doi.org/10.6028/NIST.SP.500-283
https://dx.doi.org/10.6028/NIST.SP.500-297
http://dx.doi.org/10.1145/1041685.1029911
http://dx.doi.org/10.1109/ISSRE.2004.1
https://cve.mitre.org/
https://dx.doi.org/10.6028/NIST.SP.800-27rA

77

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

[20] SAMATE, “Software Assurance Reference Dataset (SARD),”

https://samate.nist.gov/SARD/

[21] Black, Paul E., “Juliet 1.3 Test Suite: Changes From 1.2”, June 2018, NIST

Technical Note (TN) 1995, https://dx.doi.org/10.6028/NIST.TN.1995

[22] A. Wagner and J. Sametinger, “Using the Juliet Test Suite to compare static security

scanners,” 2014 11th International Conference on Security and Cryptography

(SECRYPT), Vienna, 2014, pp. 1-9.

[23] Walden, James, Adam Messer, and Alex Kuhl, Measuring the Effect of Code

Complexity on Static Analysis, International Symposium on Engineering Secure

Software and Systems (ESSoS), Leuven, Belgium, February 4-6, 2009.

[24] Kupsch, J. A., & Miller, B. P. (2009). Manual vs. automated vulnerability

assessment: A case study. In Proceedings of the 1st International Workshop on

Managing Insider Security Threats (MIST-2009), Purdue University, West Lafayette,

IN, June 15-19, 2009.

[25] De Oliveira, C., & Boland, F. (2015). Real world software assurance test suite:

STONESOUP (Presentation). IEEE 27th Software Technology Conference

(STC’2015) October 12-15, 2015.

[26] De Oliveira, C. D., Fong, E., & Black, P. E. (2017, February). Impact of code

complexity on software analysis. NISTIR 8165.

https://dx.doi.org/10.6028/NIST.IR.8165.

[27] Zheng, Jiang, Laurie Williams, Nachiappan Nagappan, Will Snipes, John. P.

Hudepohl, and Mladen A. Vouk, On the Value of Static Analysis for Fault Detection

in Software, IEEE Trans. on Software Engineering, v. 32, n. 4, Apr. 2006,

http://dx.doi.org/10.1109/TSE.2006.38.

[28] SAMATE, “SATE V Ockham Sound Analysis Criteria”, 2013,

https://samate.nist.gov/SATE5OckhamCriteria.html

[29] TIOBE Software, “TIOBE Index for April 2016”, 2016,

http://www.tiobe.com/tiobe_index?page=index

[30] SAMATE, “SATE 2008 Data”, 2008, https://samate.nist.gov/SATE2008.html

[31] SAMATE, “SATE 2009 Data”, 2009, https://samate.nist.gov/SATE2009.html

[32] SAMATE, “SATE 2010 Data”, 2010, https://samate.nist.gov/SATE2010.html

[33] SAMATE, “SATE IV Data”, 2012, https://samate.nist.gov/SATE4.html

[34] U.S. Department of Homeland Security (DHS), “Software Assurance Marketplace”

(SWAMP), 2016, https://continuousassurance.org

[35] MITRE, “Coverage Claims Representation”, 2011,

http://cwe.mitre.org/compatible/ccr.html

[36] Katrina Tsipenyuk, Brian Chess, and Gary McGraw, “The Seven Pernicious

Kingdoms”, December 2005,

https://cwe.mitre.org/documents/sources/SevenPerniciousKingdoms.pdf

[37] Paul Anderson, “Truth is Subjective”, 2009, SATE 2009 Workshop,

https://samate.nist.gov/docs/SATE2009/SATE09%2005%20Anderson.pdf

[38] Arthur Hicken, “What We’ve Learned from SATE”, March 2014,

https://samate.nist.gov/docs/SATE5/SATE%20V%2004%20Parasoft%20Hicken.pdf

[39] Center for Assured Software, U.S. National Security Agency, “Juliet Test Suite for

C/C++ v1.0”, December 2010, https://samate.nist.gov/SARD/testsuites/juliet/Juliet-

2010-12.c.cpp.zip

https://samate.nist.gov/SARD/
https://dx.doi.org/10.6028/NIST.TN.1995
https://dx.doi.org/10.6028/NIST.IR.8165
http://dx.doi.org/10.1109/TSE.2006.38
https://samate.nist.gov/SATE5OckhamCriteria.html
http://www.tiobe.com/tiobe_index?page=index
https://samate.nist.gov/SATE2008.html
https://samate.nist.gov/SATE2009.html
https://samate.nist.gov/SATE2010.html
https://samate.nist.gov/SATE4.html
https://continuousassurance.org/
http://cwe.mitre.org/compatible/ccr.html
https://cwe.mitre.org/documents/sources/SevenPerniciousKingdoms.pdf
https://samate.nist.gov/docs/SATE2009/SATE09%2005%20Anderson.pdf
https://samate.nist.gov/docs/SATE5/SATE%20V%2004%20Parasoft%20Hicken.pdf
https://samate.nist.gov/SARD/testsuites/juliet/Juliet-2010-12.c.cpp.zip
https://samate.nist.gov/SARD/testsuites/juliet/Juliet-2010-12.c.cpp.zip

78

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

[40] Center for Assured Software, U.S. National Security Agency, “Juliet Test Suite for

Java v1.0”, December 2010, https://samate.nist.gov/SARD/testsuites/juliet/Juliet-

2010-12.java.zip

[41] Center for Assured Software, U.S. National Security Agency, “Juliet Test Suite for

C/C++ v1.2”, May 2013,

https://samate.nist.gov/SARD/testsuites/juliet/Juliet_Test_Suite_v1.2_for_C_Cpp.zip

[42] Center for Assured Software, U.S. National Security Agency, “Juliet Test Suite for

Java v1.2”, May 2013,

https://samate.nist.gov/SARD/testsuites/juliet/Juliet_Test_Suite_v1.2_for_Java.zip

[43] Center for Assured Software, U.S. National Security Agency, “Juliet Test Suite v1.2

for C/C++ User Guide”, December 2012,

https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-

_User_Guide.pdf

[44] Center for Assured Software, U.S. National Security Agency, “Juliet Test Suite v1.2

for Java User Guide”, December 2012,

https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_Java_-

_User_Guide.pdf

[45] SAMATE, “SATE V Workshop information”, 2014,

https://samate.nist.gov/SATE5Workshop.html

[46] “Positive and Negative Predictive Values”, Wikipedia.

https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values.

[47] Terry S. Cohen, Damien Cupif, Aurelien Delaitre, Charles D. De Oliveira, Elizabeth

Fong, and Vadim Okun, “Improving Software Assurance through Static Analysis

Tool Expositions,” Journal of Cyber Security and Information Systems - Tools &

Testing Techniques for Assured Software - DoD Software Assurance Community of

Practice: Volume 2, 5(3):14-22, October 2017.

[48] Black, Paul E. and Athos Ribeiro, “SATE V Ockham Sound Analysis Criteria”,

NIST Internal Report 8113, March 2016, https://dx.doi.org/10.6028/NIST.IR.8113.

[49] What is Frama-C. Available: http://frama-c.com/what_is.html Accessed 13 July

2018.

[50] XZ Utils. Available: http://tukaani.org/xz/ Accessed 13 July 2018.

[51] “ISO/IEC 9899:2011 programming languages - C, Committee Draft - April 12, 2011

N1570),” The International Organization for Standardization and the International

Electrotechnical Commission (ISO/IEC) Joint Technical Committee JTC 1,

Information technology, Subcommittee SC 22, Programming languages, their

environments and system interfaces, Working Group WG 14 - C, Tech. Rep., 2011.

[52] Black, Paul E., Irena Bojanova, Yaacov Yesha, and Yan Wu (2015) “Towards a

Periodic Table of Bugs”, 15th High Confidence Software and Systems Conference

(HCSS), May 2015, Available: http://cps-vo.org/node/19235 Accessed 13 July 2018.

[53] MITRE, “Common Weakness Scoring System”, 2014, Available:

http://cwe.mitre.org/cwss/ Accessed 13 July 2018.

https://samate.nist.gov/SARD/testsuites/juliet/Juliet-2010-12.java.zip
https://samate.nist.gov/SARD/testsuites/juliet/Juliet-2010-12.java.zip
https://samate.nist.gov/SARD/testsuites/juliet/Juliet_Test_Suite_v1.2_for_C_Cpp.zip
https://samate.nist.gov/SARD/testsuites/juliet/Juliet_Test_Suite_v1.2_for_Java.zip
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SATE5Workshop.html
https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values
https://dx.doi.org/10.6028/NIST.IR.8113
http://frama-c.com/what_is.html
http://tukaani.org/xz/
http://cps-vo.org/node/19235
http://cwe.mitre.org/cwss/

79

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix A12: CWE Groups

Appendix A subdivides CWEs into 43 different CWE groups.

CWE Group CWE # Description

Access control 15 External Control of System or Configuration Setting

 264 Permissions, Privileges, and Access Controls

 284 Improper Access Control

 285 Improper Authorization

 377 Insecure Temporary File

 378 Creation of Temporary File With Insecure Permissions

 379
Creation of Temporary File in Directory with Incorrect

Permissions

 402
Transmission of Private Resources into a New Sphere

('Resource Leak')

 403
Exposure of File Descriptor to Unintended Control

Sphere ('File Descriptor Leak')

 552 Files or Directories Accessible to External Parties

 566
Authorization Bypass Through User-Controlled SQL

Primary Key

 582 Array Declared Public, Final, and Static

 591 Sensitive Data Storage in Improperly Locked Memory

 607 Public Static Final Field References Mutable Object

 639 Authorization Bypass Through User-Controlled Key

 642 External Control of Critical State Data

 653 Insufficient Compartmentalization

 668 Exposure of Resource to Wrong Sphere

 732 Incorrect Permission Assignment for Critical Resource

Ante buffer

operation
118 Improper Access of Indexable Resource ('Range Error')

 119
Improper Restriction of Operations within the Bounds

of a Memory Buffer

 123 Write-what-where Condition

 124 Buffer Underwrite ('Buffer Underflow')

 125 Out-of-bounds Read

 127 Buffer Under-read

12 Certain commercial equipment, instruments, or materials are identified in this paper to foster

understanding. Such identification does not imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that the materials or equipment identified are

necessarily the best available for the purpose.

80

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Ante buffer

operation
129 Improper Validation of Array Index

 188 Reliance on Data/Memory Layout

 466 Return of Pointer Value Outside of Expected Range

 740 CERT C Secure Coding Section 06 - Arrays (ARR)

 786 Access of Memory Location Before Start of Buffer

 787 Out-of-bounds Write

 805 Buffer Access with Incorrect Length Value

 823 Use of Out-of-range Pointer Offset

API 18 Source Code

 227 Improper Fulfillment of API Contract ('API Abuse')

 242 Use of Inherently Dangerous Function

 245
J2EE Bad Practices: Direct Management of

Connections

 246 J2EE Bad Practices: Direct Use of Sockets

 249 DEPRECATED: Often Misused: Path Manipulation

 382 J2EE Bad Practices: Use of System.exit()

 383 J2EE Bad Practices: Direct Use of Threads

 440 Expected Behavior Violation

 474 Use of Function with Inconsistent Implementations

 475 Undefined Behavior for Input to API

 477 Use of Obsolete Functions

 558 Use of getlogin() in Multithreaded Application

 560 Use of umask() with chmod-style Argument

 568 finalize() Method Without super.finalize()

 572 Call to Thread run() instead of start()

 573 Improper Following of Specification by Caller

 579
J2EE Bad Practices: Non-serializable Object Stored in

Session

 580 clone() Method Without super.clone()

 581
Object Model Violation: Just One of Equals and

Hashcode Defined

 586 Explicit Call to Finalize()

 605 Multiple Binds to the Same Port

 676 Use of Potentially Dangerous Function

 710 Coding Standards Violation

 785
Use of Path Manipulation Function without Maximum-

sized Buffer

81

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Authentication 247
DEPRECATED (Duplicate): Reliance on DNS

Lookups in a Security Decision

 292
DEPRECATED (Duplicate): Trusting Self-reported

DNS Name

 293 Using Referer Field for Authentication

 300
Channel Accessible by Non-Endpoint ('Man-in-the-

Middle')

 346 Origin Validation Error

 350
Reliance on Reverse DNS Resolution for a Security-

Critical Action

 565
Reliance on Cookies without Validation and Integrity

Checking

 603 Use of Client-Side Authentication

 613 Insufficient Session Expiration

 807 Reliance on Untrusted Inputs in a Security Decision

Calculation 131 Incorrect Calculation of Buffer Size

 135 Incorrect Calculation of Multi-Byte String Length

 193 Off-by-one Error

 369 Divide By Zero

 467 Use of sizeof() on a Pointer Type

 468 Incorrect Pointer Scaling

 469 Use of Pointer Subtraction to Determine Size

 682 Incorrect Calculation

 737
CERT C Secure Coding Section 03 - Expressions

(EXP)

 738 CERT C Secure Coding Section 04 - Integers (INT)

 739
CERT C Secure Coding Section 05 - Floating Point

(FLP)

 740 CERT C Secure Coding Section 06 - Arrays (ARR)

Cleanup 404 Improper Resource Shutdown or Release

 459 Incomplete Cleanup

 460 Improper Cleanup on Thrown Exception

 568 finalize() Method Without super.finalize()

 586 Explicit Call to Finalize()

Code quality 18 Source Code

 245
J2EE Bad Practices: Direct Management of

Connections

 246 J2EE Bad Practices: Direct Use of Sockets

 382 J2EE Bad Practices: Use of System.exit()

 383 J2EE Bad Practices: Direct Use of Threads

82

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Code quality 395
Use of NullPointerException Catch to Detect NULL

Pointer Dereference

 396 Declaration of Catch for Generic Exception

 397 Declaration of Throws for Generic Exception

 398 Indicator of Poor Code Quality

 407 Algorithmic Complexity

 484 Omitted Break Statement in Switch

 489 Leftover Debug Code

 546 Suspicious Comment

 561 Dead Code

 563 Unused Variable

 568 finalize() Method Without super.finalize()

 570 Expression is Always False

 571 Expression is Always True

 572 Call to Thread run() instead of start()

 579
J2EE Bad Practices: Non-serializable Object Stored in

Session

 580 clone() Method Without super.clone()

 581
Object Model Violation: Just One of Equals and

Hashcode Defined

 585 Empty Synchronized Block

 710 Coding Standards Violation

 747
CERT C Secure Coding Section 49 - Miscellaneous

(MSC)

Comparison 41 Improper Resolution of Path Equivalence

 185 Incorrect Regular Expression

 187 Partial Comparison

 478 Missing Default Case in Switch Statement

 481 Assigning instead of Comparing

 482 Comparing instead of Assigning

 486 Comparison of Classes by Name

 595
Comparison of Object References Instead of Object

Contents

 596 Incorrect Semantic Object Comparison

 597 Use of Wrong Operator in String Comparison

 697 Insufficient Comparison

 747
CERT C Secure Coding Section 49 - Miscellaneous

(MSC)

 768 Incorrect Short Circuit Evaluation

83

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Comparison 839 Numeric Range Comparison Without Minimum Check

Concurrency 362
Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')

 363 Race Condition Enabling Link Following

 364 Signal Handler Race Condition

 365 Race Condition in Switch

 366 Race Condition within a Thread

 367
Time-of-check Time-of-use (TOCTOU) Race

Condition

 368 Context Switching Race Condition

 373 DEPRECATED: State Synchronization Error

 383 J2EE Bad Practices: Direct Use of Threads

 411 Resource Locking Problems

 413 Improper Resource Locking

 479 Signal Handler Use of a Non-reentrant Function

 543
Use of Singleton Pattern Without Synchronization in a

Multithreaded Context

 557 Concurrency Issues

 558 Use of getlogin() in Multithreaded Application

 567
Unsynchronized Access to Shared Data in a

Multithreaded Context

 572 Call to Thread run() instead of start()

 585 Empty Synchronized Block

 609 Double-Checked Locking

 662 Improper Synchronization

 663
Use of a Non-reentrant Function in a Concurrent

Context

 667 Improper Locking

 764 Multiple Locks of a Critical Resource

 765 Multiple Unlocks of a Critical Resource

 820 Missing Synchronization

 821 Incorrect Synchronization

 832 Unlock of a Resource that is not Locked

 833 Deadlock

Confidentiality 200 Information Exposure

 204 Response Discrepancy Information Exposure

 209 Information Exposure Through an Error Message

 226 Sensitive Information Uncleared Before Release

84

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Confidentiality 244
Improper Clearing of Heap Memory Before Release

('Heap Inspection')

 256 Plaintext Storage of a Password

 257 Storing Passwords in a Recoverable Format

 261 Weak Cryptography for Passwords

 300
Channel Accessible by Non-Endpoint ('Man-in-the-

Middle')

 310 Cryptographic Issues

 311 Missing Encryption of Sensitive Data

 315 Cleartext Storage of Sensitive Information in a Cookie

 319 Cleartext Transmission of Sensitive Information

 325 Missing Required Cryptographic Step

 326 Inadequate Encryption Strength

 327 Use of a Broken or Risky Cryptographic Algorithm

 328 Reversible One-Way Hash

 329 Not Using a Random IV with CBC Mode

 330 Use of Insufficiently Random Values

 336 Same Seed in PRNG

 338 Use of Cryptographically Weak PRNG

 359 Privacy Violation

 402
Transmission of Private Resources into a New Sphere

('Resource Leak')

 403
Exposure of File Descriptor to Unintended Control

Sphere ('File Descriptor Leak')

 488 Exposure of Data Element to Wrong Session

 497
Exposure of System Data to an Unauthorized Control

Sphere

 499 Serializable Class Containing Sensitive Data

 501 Trust Boundary Violation

 523 Unprotected Transport of Credentials

 525 Information Exposure Through Browser Caching

 526
Information Exposure Through Environmental

Variables

 533 Information Exposure Through Server Log Files

 534 Information Exposure Through Debug Log Files

 535 Information Exposure Through Shell Error Message

 539 Information Exposure Through Persistent Cookies

 549 Missing Password Field Masking

 552 Files or Directories Accessible to External Parties

85

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Confidentiality 566
Authorization Bypass Through User-Controlled SQL

Primary Key

 591 Sensitive Data Storage in Improperly Locked Memory

 598
Information Exposure Through Query Strings in GET

Request

 614
Sensitive Cookie in HTTPS Session Without 'Secure'

Attribute

 615 Information Exposure Through Comments

 642 External Control of Critical State Data

 668 Exposure of Resource to Wrong Sphere

 756 Missing Custom Error Page

 759 Use of a One-Way Hash without a Salt

 760 Use of a One-Way Hash with a Predictable Salt

Control flow 179 Incorrect Behavior Order: Early Validation

 181 Incorrect Behavior Order: Validate Before Filter

 382 J2EE Bad Practices: Use of System.exit()

 480 Use of Incorrect Operator

 481 Assigning instead of Comparing

 482 Comparing instead of Assigning

 483 Incorrect Block Delimitation

 484 Omitted Break Statement in Switch

 583 finalize() Method Declared Public

 584 Return Inside Finally Block

 617 Reachable Assertion

 670 Always-Incorrect Control Flow Implementation

 691 Insufficient Control Flow Management

 696 Incorrect Behavior Order

 698 Execution After Redirect (EAR)

 705 Incorrect Control Flow Scoping

 768 Incorrect Short Circuit Evaluation

Credentials

management
13

ASP.NET Misconfiguration: Password in

Configuration File

 255 Credentials Management

 256 Plaintext Storage of a Password

 257 Storing Passwords in a Recoverable Format

 259 Use of Hard-coded Password

 260 Password in Configuration File

 261 Weak Cryptography for Passwords

86

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Credentials

management
523 Unprotected Transport of Credentials

 547 Use of Hard-coded, Security-relevant Constants

 555
J2EE Misconfiguration: Plaintext Password in

Configuration File

 613 Insufficient Session Expiration

 620 Unverified Password Change

 798 Use of Hard-coded Credentials

Data structure 130 Improper Handling of Length Parameter Inconsistency

 137 Representation Errors

 138 Improper Neutralization of Special Elements

 170 Improper Null Termination

 188 Reliance on Data/Memory Layout

 228 Improper Handling of Syntactically Invalid Structure

 234 Failure to Handle Missing Parameter

 237 Improper Handling of Structural Elements

 238 Improper Handling of Incomplete Structural Elements

 239 Failure to Handle Incomplete Element

 240 Improper Handling of Inconsistent Structural Elements

 463 Deletion of Data Structure Sentinel

 464 Addition of Data Structure Sentinel

 588 Attempt to Access Child of a Non-structure Pointer

 707 Improper Enforcement of Message or Data Structure

Denial of

Service
400

Uncontrolled Resource Consumption ('Resource

Exhaustion')

 401
Improper Release of Memory Before Removing Last

Reference ('Memory Leak')

 404 Improper Resource Shutdown or Release

 405 Asymmetric Resource Consumption (Amplification)

 674 Uncontrolled Recursion

 730
OWASP Top Ten 2004 Category A9 - Denial of

Service

 770 Allocation of Resources Without Limits or Throttling

 776
Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')

Design and

implementation
358 Improperly Implemented Security Check for Standard

 573 Improper Following of Specification by Caller

87

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

 Design and

implementation
657 Violation of Secure Design Principles

 693 Protection Mechanism Failure

 701 Weaknesses Introduced During Design

 710 Coding Standards Violation

Dynamic code 94
Improper Control of Generation of Code ('Code

Injection')

 95
Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')

 96
Improper Neutralization of Directives in Statically

Saved Code ('Static Code Injection')

 98

Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File

Inclusion')

 434 Unrestricted Upload of File with Dangerous Type

 470
Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')

 545 Use of Dynamic Class Loading

 578 EJB Bad Practices: Use of Class Loader

 913
Improper Control of Dynamically-Managed Code

Resources

Encapsulation 18 Source Code

 374 Passing Mutable Objects to an Untrusted Method

 375 Returning a Mutable Object to an Untrusted Caller

 485 Insufficient Encapsulation

 486 Comparison of Classes by Name

 488 Exposure of Data Element to Wrong Session

 489 Leftover Debug Code

 491
Public cloneable() Method Without Final ('Object

Hijack')

 493 Critical Public Variable Without Final Modifier

 497
Exposure of System Data to an Unauthorized Control

Sphere

 499 Serializable Class Containing Sensitive Data

 500 Public Static Field Not Marked Final

 501 Trust Boundary Violation

 545 Use of Dynamic Class Loading

 580 clone() Method Without super.clone()

 583 finalize() Method Declared Public

88

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

 Encapsulation 607 Public Static Final Field References Mutable Object

 766 Critical Variable Declared Public

Environment

induced
2 Environment

 14 Compiler Removal of Code to Clear Buffers

 15 External Control of System or Configuration Setting

 16 Configuration

 114 Process Control

 426 Untrusted Search Path

 435 Interaction Error

 436 Interpretation Conflict

 733
Compiler Optimization Removal or Modification of

Security-critical Code

Error condition 18 Source Code

 388 Error Handling

 389 Error Conditions, Return Values, Status Codes

 395
Use of NullPointerException Catch to Detect NULL

Pointer Dereference

 396 Declaration of Catch for Generic Exception

 397 Declaration of Throws for Generic Exception

 460 Improper Cleanup on Thrown Exception

 584 Return Inside Finally Block

 617 Reachable Assertion

 705 Incorrect Control Flow Scoping

Expired

memory
415 Double Free

 416 Use After Free

 562 Return of Stack Variable Address

 742
CERT C Secure Coding Section 08 - Memory

Management (MEM)

 825 Expired Pointer Dereference

Expression 480 Use of Incorrect Operator

 481 Assigning instead of Comparing

 482 Comparing instead of Assigning

 569 Expression Issues

 570 Expression is Always False

 571 Expression is Always True

 737
CERT C Secure Coding Section 03 - Expressions

(EXP)

89

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Expression 747
CERT C Secure Coding Section 49 - Miscellaneous

(MSC)

 768 Incorrect Short Circuit Evaluation

 783 Operator Precedence Logic Error

Free of stack

memory
590 Free of Memory not on the Heap

 742
CERT C Secure Coding Section 08 - Memory

Management (MEM)

 825 Expired Pointer Dereference

Function call 227 Improper Fulfillment of API Contract ('API Abuse')

 573 Improper Following of Specification by Caller

 628 Function Call with Incorrectly Specified Arguments

 685 Function Call With Incorrect Number of Arguments

 686 Function Call With Incorrect Argument Type

 687
Function Call With Incorrectly Specified Argument

Value

 688
Function Call With Incorrect Variable or Reference as

Argument

Information

loss
221 Information Loss or Omission

 222 Truncation of Security-relevant Information

 223 Omission of Security-relevant Information

 778 Insufficient Logging

Initialization 18 Source Code

 456 Missing Initialization of a Variable

 457 Use of Uninitialized Variable

 665 Improper Initialization

 736
CERT C Secure Coding Section 02 - Declarations and

Initialization (DCL)

 824 Access of Uninitialized Pointer

 908 Use of Uninitialized Resource

 909 Missing Initialization of Resource

Input

validation
20 Improper Input Validation

 73 External Control of File Name or Path

 74
Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')

 75
Failure to Sanitize Special Elements into a Different

Plane (Special Element Injection)

90

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Input

validation
76

Improper Neutralization of Equivalent Special

Elements

 77
Improper Neutralization of Special Elements used in a

Command ('Command Injection')

 78
Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')

 88 Argument Injection or Modification

 89
Improper Neutralization of Special Elements used in an

SQL Command ('SQL Injection')

 90
Improper Neutralization of Special Elements used in an

LDAP Query ('LDAP Injection')

 91 XML Injection (aka Blind XPath Injection)

 94
Improper Control of Generation of Code ('Code

Injection')

 95
Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')

 96
Improper Neutralization of Directives in Statically

Saved Code ('Static Code Injection')

 98

Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File

Inclusion')

 99
Improper Control of Resource Identifiers ('Resource

Injection')

 111 Direct Use of Unsafe JNI

 112 Missing XML Validation

 114 Process Control

 116 Improper Encoding or Escaping of Output

 117 Improper Output Neutralization for Logs

 134 Uncontrolled Format String

 138 Improper Neutralization of Special Elements

 140 Improper Neutralization of Delimiters

 141
Improper Neutralization of Parameter/Argument

Delimiters

 142 Improper Neutralization of Value Delimiters

 143 Improper Neutralization of Record Delimiters

 144 Improper Neutralization of Line Delimiters

 145 Improper Neutralization of Section Delimiters

 146
Improper Neutralization of Expression/Command

Delimiters

91

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Input

validation
147 Improper Neutralization of Input Terminators

 148 Improper Neutralization of Input Leaders

 149 Improper Neutralization of Quoting Syntax

 150
Improper Neutralization of Escape, Meta, or Control

Sequences

 151 Improper Neutralization of Comment Delimiters

 152 Improper Neutralization of Macro Symbols

 153 Improper Neutralization of Substitution Characters

 154 Improper Neutralization of Variable Name Delimiters

 155
Improper Neutralization of Wildcards or Matching

Symbols

 156 Improper Neutralization of Whitespace

 157 Failure to Sanitize Paired Delimiters

 158
Improper Neutralization of Null Byte or NUL

Character

 159 Failure to Sanitize Special Element

 160 Improper Neutralization of Leading Special Elements

 180
Incorrect Behavior Order: Validate Before

Canonicalize

 182 Collapse of Data into Unsafe Value

 228 Improper Handling of Syntactically Invalid Structure

 249 DEPRECATED: Often Misused: Path Manipulation

 470
Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')

 606 Unchecked Input for Loop Condition

 610
Externally Controlled Reference to a Resource in

Another Sphere

 611
Improper Restriction of XML External Entity

Reference ('XXE')

 641
Improper Restriction of Names for Files and Other

Resources

 643
Improper Neutralization of Data within XPath

Expressions ('XPath Injection')

 707 Improper Enforcement of Message or Data Structure

 743
CERT C Secure Coding Section 09 - Input Output

(FIO)

 896 SFP Cluster: Tainted Input

 917

Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression

Language Injection')

92

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Invalid pointer 18 Source Code

 395
Use of NullPointerException Catch to Detect NULL

Pointer Dereference

 465 Pointer Issues

 466 Return of Pointer Value Outside of Expected Range

 476 NULL Pointer Dereference

 587 Assignment of a Fixed Address to a Pointer

 588 Attempt to Access Child of a Non-structure Pointer

 690
Unchecked Return Value to NULL Pointer

Dereference

 763 Release of Invalid Pointer or Reference

 823 Use of Out-of-range Pointer Offset

 824 Access of Uninitialized Pointer

Loop and

recursion
606 Unchecked Input for Loop Condition

 674 Uncontrolled Recursion

 776
Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')

 835 Loop with Unreachable Exit Condition ('Infinite Loop')

Malware-

related
506 Embedded Malicious Code

 510 Trapdoor

 511 Logic/Time Bomb

 912 Hidden Functionality

Memory

allocation
742

CERT C Secure Coding Section 08 - Memory

Management (MEM)

 789 Uncontrolled Memory Allocation

Memory leak 401
Improper Release of Memory Before Removing Last

Reference ('Memory Leak')

 742
CERT C Secure Coding Section 08 - Memory

Management (MEM)

Memory release 590 Free of Memory not on the Heap

 742
CERT C Secure Coding Section 08 - Memory

Management (MEM)

 761 Free of Pointer not at Start of Buffer

 762 Mismatched Memory Management Routines

 763 Release of Invalid Pointer or Reference

 891 SFP Cluster: Memory Management

93

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Numeric errors 128 Wrap-around Error

 189 Numeric Errors

 190 Integer Overflow or Wraparound

 191 Integer Underflow (Wrap or Wraparound)

 192 Integer Coercion Error

 194 Unexpected Sign Extension

 195 Signed to Unsigned Conversion Error

 196 Unsigned to Signed Conversion Error

 197 Numeric Truncation Error

 680 Integer Overflow to Buffer Overflow

 681 Incorrect Conversion between Numeric Types

 682 Incorrect Calculation

 738 CERT C Secure Coding Section 04 - Integers (INT)

 739
CERT C Secure Coding Section 05 - Floating Point

(FLP)

Path-related 18 Source Code

 20 Improper Input Validation

 22
Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')

 23 Relative Path Traversal

 24 Path Traversal: '../filedir'

 25 Path Traversal: '/../filedir'

 26 Path Traversal: '/dir/../filename'

 27 Path Traversal: 'dir/../../filename'

 28 Path Traversal: '..\\filedir'

 29 Path Traversal: '\\..\\filename'

 30 Path Traversal: '\\dir\\..\\filename'

 31 Path Traversal: 'dir\\..\\..\\filename'

 32 Path Traversal: '...' (Triple Dot)

 33 Path Traversal: '....' (Multiple Dot)

 34 Path Traversal: '....//'

 35 Path Traversal: '.../...//'

 36 Absolute Path Traversal

 37 Path Traversal: '/absolute/pathname/here'

 38 Path Traversal: '\\absolute\\pathname\\here'

 39 Path Traversal: 'C:dirname'

 40
Path Traversal: '\\\\UNC\\share\\name\\' (Windows

UNC Share)

94

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Path-related 41 Improper Resolution of Path Equivalence

 59
Improper Link Resolution Before File Access ('Link

Following')

 73 External Control of File Name or Path

 182 Collapse of Data into Unsafe Value

 249 DEPRECATED: Often Misused: Path Manipulation

 426 Untrusted Search Path

 427 Uncontrolled Search Path Element

 610
Externally Controlled Reference to a Resource in

Another Sphere

 641
Improper Restriction of Names for Files and Other

Resources

 706 Use of Incorrectly-Resolved Name or Reference

Post buffer

operation
118 Improper Access of Indexable Resource ('Range Error')

 119
Improper Restriction of Operations within the Bounds

of a Memory Buffer

 120
Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

 121 Stack-based Buffer Overflow

 122 Heap-based Buffer Overflow

 123 Write-what-where Condition

 125 Out-of-bounds Read

 126 Buffer Over-read

 129 Improper Validation of Array Index

 130 Improper Handling of Length Parameter Inconsistency

 135 Incorrect Calculation of Multi-Byte String Length

 170 Improper Null Termination

 188 Reliance on Data/Memory Layout

 249 DEPRECATED: Often Misused: Path Manipulation

 466 Return of Pointer Value Outside of Expected Range

 467 Use of sizeof() on a Pointer Type

 680 Integer Overflow to Buffer Overflow

 740 CERT C Secure Coding Section 06 - Arrays (ARR)

 741
CERT C Secure Coding Section 07 - Characters and

Strings (STR)

 785
Use of Path Manipulation Function without Maximum-

sized Buffer

 787 Out-of-bounds Write

95

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

 Post buffer

operation
788 Access of Memory Location After End of Buffer

 805 Buffer Access with Incorrect Length Value

 823 Use of Out-of-range Pointer Offset

Privileges 250 Execution with Unnecessary Privileges

 265 Privilege / Sandbox Issues

 269 Improper Privilege Management

 271 Privilege Dropping / Lowering Errors

 272 Least Privilege Violation

 273 Improper Check for Dropped Privileges

 653 Insufficient Compartmentalization

Resource

management
99

Improper Control of Resource Identifiers ('Resource

Injection')

 399 Resource Management Errors

 400
Uncontrolled Resource Consumption ('Resource

Exhaustion')

 404 Improper Resource Shutdown or Release

 405 Asymmetric Resource Consumption (Amplification)

 413 Improper Resource Locking

 459 Incomplete Cleanup

 460 Improper Cleanup on Thrown Exception

 568 finalize() Method Without super.finalize()

 605 Multiple Binds to the Same Port

 610
Externally Controlled Reference to a Resource in

Another Sphere

 664 Improper Control of a Resource Through its Lifetime

 666 Operation on Resource in Wrong Phase of Lifetime

 672 Operation on a Resource after Expiration or Release

 675 Duplicate Operations on Resource

 770 Allocation of Resources Without Limits or Throttling

 772 Missing Release of Resource after Effective Lifetime

 773 Missing Reference to Active File Descriptor or Handle

 775
Missing Release of File Descriptor or Handle after

Effective Lifetime

 826
Premature Release of Resource During Expected

Lifetime

 908 Use of Uninitialized Resource

 909 Missing Initialization of Resource

Return value 252 Unchecked Return Value

96

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

Return value 253 Incorrect Check of Function Return Value

 273 Improper Check for Dropped Privileges

 389 Error Conditions, Return Values, Status Codes

 394 Unexpected Status Code or Return Value

 690
Unchecked Return Value to NULL Pointer

Dereference

Strings 133 String Errors

 134 Uncontrolled Format String

 135 Incorrect Calculation of Multi-Byte String Length

 251 Often Misused: String Management

 597 Use of Wrong Operator in String Comparison

 741
CERT C Secure Coding Section 07 - Characters and

Strings (STR)

Type-related 136 Type Errors

 195 Signed to Unsigned Conversion Error

 196 Unsigned to Signed Conversion Error

 588 Attempt to Access Child of a Non-structure Pointer

 681 Incorrect Conversion between Numeric Types

 686 Function Call With Incorrect Argument Type

 704 Incorrect Type Conversion or Cast

 747
CERT C Secure Coding Section 49 - Miscellaneous

(MSC)

 843
Access of Resource Using Incompatible Type ('Type

Confusion')

Undefined

behavior
188 Reliance on Data/Memory Layout

 234 Failure to Handle Missing Parameter

 374 Passing Mutable Objects to an Untrusted Method

 375 Returning a Mutable Object to an Untrusted Caller

 587 Assignment of a Fixed Address to a Pointer

 588 Attempt to Access Child of a Non-structure Pointer

 758
Reliance on Undefined, Unspecified, or

Implementation-Defined Behavior

Unhandled

errors
248 Uncaught Exception

 273 Improper Check for Dropped Privileges

 390 Detection of Error Condition Without Action

 391 Unchecked Error Condition

 392 Missing Report of Error Condition

97

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

 Unhandled

errors
431 Missing Handler

 600 Uncaught Exception in Servlet

 703
Improper Check or Handling of Exceptional

Conditions

 754 Improper Check for Unusual or Exceptional Conditions

 755 Improper Handling of Exceptional Conditions

 756 Missing Custom Error Page

Web 18 Source Code

 20 Improper Input Validation

 79
Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

 80
Improper Neutralization of Script-Related HTML Tags

in a Web Page (Basic XSS)

 81
Improper Neutralization of Script in an Error Message

Web Page

 82
Improper Neutralization of Script in Attributes of IMG

Tags in a Web Page

 83
Improper Neutralization of Script in Attributes in a

Web Page

 84
Improper Neutralization of Encoded URI Schemes in a

Web Page

 85 Doubled Character XSS Manipulations

 86
Improper Neutralization of Invalid Characters in

Identifiers in Web Pages

 87 Improper Neutralization of Alternate XSS Syntax

 113
Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Response Splitting')

 158
Improper Neutralization of Null Byte or NUL

Character

 346 Origin Validation Error

 352 Cross-Site Request Forgery (CSRF)

 384 Session Fixation

 436 Interpretation Conflict

 472
External Control of Assumed-Immutable Web

Parameter

 473 PHP External Variable Modification

 601 URL Redirection to Untrusted Site ('Open Redirect')

 611
Improper Restriction of XML External Entity

Reference ('XXE')

98

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

CWE Group CWE # Description

 Web 642 External Control of Critical State Data

 692 Incomplete Blacklist to Cross-Site Scripting

 776
Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')

 896 SFP Cluster: Tainted Input

99

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix B: Seven Pernicious Kingdoms

Appendix B subdivides CWEs into eight different kingdoms, using the simpler Seven

Pernicious Kingdoms (7PK) classification (“seven-plus-one,” which includes

Environment) [36].

Kingdom CWE # Description

Environment 2 Environment

 3 Technology-specific Environment Issues

 4 J2EE Environment Issues

 5 J2EE Misconfiguration: Data Transmission Without

Encryption

 6 J2EE Misconfiguration: Insufficient Session-ID Length

 7 J2EE Misconfiguration: Missing Custom Error Page

 8 J2EE Misconfiguration: Entity Bean Declared Remote

 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods

 10 ASP.NET Environment Issues

 11 ASP.NET Misconfiguration: Creating Debug Binary

 12 ASP.NET Misconfiguration: Missing Custom Error Page

 13 ASP.NET Misconfiguration: Password in Configuration

File

 14 Compiler Removal of Code to Clear Buffers

 15 External Control of System or Configuration Setting

 188 Reliance on Data/Memory Layout

 198 Use of Incorrect Byte Ordering

 260 Password in Configuration File

 427 Uncontrolled Search Path Element

 428 Unquoted Search Path or Element

 434 Unrestricted Upload of File with Dangerous Type

 435 Interaction Error

 436 Interpretation Conflict

 437 Incomplete Model of Endpoint Features

 439 Behavioral Change in New Version or Environment

 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request Smuggling')

 519 .NET Environment Issues

 520 .NET Misconfiguration: Use of Impersonation

 527 Exposure of CVS Repository to an Unauthorized Control

Sphere

100

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Environment 528 Exposure of Core Dump File to an Unauthorized Control

Sphere

 529 Exposure of Access Control List Files to an Unauthorized

Control Sphere

 530 Exposure of Backup File to an Unauthorized Control

Sphere

 532 Information Exposure Through Log Files

 533 Information Exposure Through Server Log Files

 534 Information Exposure Through Debug Log Files

 538 File and Directory Information Exposure

 540 Information Exposure Through Source Code

 541 Information Exposure Through Include Source Code

 542 Information Exposure Through Cleanup Log Files

 548 Information Exposure Through Directory Listing

 552 Files or Directories Accessible to External Parties

 553 Command Shell in Externally Accessible Directory

 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework

 555 J2EE Misconfiguration: Plaintext Password in

Configuration File

 556 ASP.NET Misconfiguration: Use of Identity

Impersonation

 587 Assignment of a Fixed Address to a Pointer

 588 Attempt to Access Child of a Non-structure Pointer

 589 Call to Non-ubiquitous API

 615 Information Exposure Through Comments

 626 Null Byte Interaction Error (Poison Null Byte)

 650 Trusting HTTP Permission Methods on the Server Side

 733 Compiler Optimization Removal or Modification of

Security-critical Code

 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior

 920 Improper Restriction of Power Consumption

Error

Handling

7 J2EE Misconfiguration: Missing Custom Error Page

 12 ASP.NET Misconfiguration: Missing Custom Error Page

 248 Uncaught Exception

 252 Unchecked Return Value

 253 Incorrect Check of Function Return Value

 273 Improper Check for Dropped Privileges

101

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Error

Handling

388 Error Handling

 389 Error Conditions, Return Values, Status Codes

 390 Detection of Error Condition Without Action

 391 Unchecked Error Condition

 392 Missing Report of Error Condition

 393 Return of Wrong Status Code

 394 Unexpected Status Code or Return Value

 395 Use of NullPointerException Catch to Detect NULL

Pointer Dereference

 396 Declaration of Catch for Generic Exception

 397 Declaration of Throws for Generic Exception

 455 Non-exit on Failed Initialization

 460 Improper Cleanup on Thrown Exception

 537 Information Exposure Through Java Runtime Error

Message

 544 Missing Standardized Error Handling Mechanism

 550 Information Exposure Through Server Error Message

 584 Return Inside Finally Block

 600 Uncaught Exception in Servlet

 636 Not Failing Securely ('Failing Open')

 690 Unchecked Return Value to NULL Pointer Dereference

 703 Improper Check or Handling of Exceptional Conditions

 705 Incorrect Control Flow Scoping

 754 Improper Check for Unusual or Exceptional Conditions

 755 Improper Handling of Exceptional Conditions

 756 Missing Custom Error Page

Improper

Fulfillment of

API Contract

('API Abuse')

102 Struts: Duplicate Validation Forms

 103 Struts: Incomplete validate() Method Definition

 104 Struts: Form Bean Does Not Extend Validation Class

 111 Direct Use of Unsafe JNI

 174 Double Decoding of the Same Data

 227 Improper Fulfillment of API Contract ('API Abuse')

 234 Failure to Handle Missing Parameter

 242 Use of Inherently Dangerous Function

102

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Improper

Fulfillment of

API Contract

('API Abuse')

243 Creation of chroot Jail Without Changing Working

Directory

 244 Improper Clearing of Heap Memory Before Release

('Heap Inspection')

 245 J2EE Bad Practices: Direct Management of Connections

 246 J2EE Bad Practices: Direct Use of Sockets

 247 DEPRECATED (Duplicate): Reliance on DNS Lookups in

a Security Decision

 248 Uncaught Exception

 250 Execution with Unnecessary Privileges

 251 Often Misused: String Management

 252 Unchecked Return Value

 253 Incorrect Check of Function Return Value

 273 Improper Check for Dropped Privileges

 296 Improper Following of a Certificate's Chain of Trust

 304 Missing Critical Step in Authentication

 325 Missing Required Cryptographic Step

 329 Not Using a Random IV with CBC Mode

 350 Reliance on Reverse DNS Resolution for a Security-

Critical Action

 358 Improperly Implemented Security Check for Standard

 370 Missing Check for Certificate Revocation after Initial

Check

 382 J2EE Bad Practices: Use of System.exit()

 383 J2EE Bad Practices: Direct Use of Threads

 440 Expected Behavior Violation

 446 UI Discrepancy for Security Feature

 447 Unimplemented or Unsupported Feature in UI

 448 Obsolete Feature in UI

 449 The UI Performs the Wrong Action

 450 Multiple Interpretations of UI Input

 451 UI Misrepresentation of Critical Information

 462 Duplicate Key in Associative List (Alist)

 474 Use of Function with Inconsistent Implementations

 475 Undefined Behavior for Input to API

 477 Use of Obsolete Functions

 558 Use of getlogin() in Multithreaded Application

103

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Improper

Fulfillment of

API Contract

('API Abuse')

559 Often Misused: Arguments and Parameters

 560 Use of umask() with chmod-style Argument

 568 finalize() Method Without super.finalize()

 572 Call to Thread run() instead of start()

 573 Improper Following of Specification by Caller

 574 EJB Bad Practices: Use of Synchronization Primitives

 575 EJB Bad Practices: Use of AWT Swing

 576 EJB Bad Practices: Use of Java I/O

 577 EJB Bad Practices: Use of Sockets

 578 EJB Bad Practices: Use of Class Loader

 579 J2EE Bad Practices: Non-serializable Object Stored in

Session

 580 clone() Method Without super.clone()

 581 Object Model Violation: Just One of Equals and Hashcode

Defined

 586 Explicit Call to Finalize()

 589 Call to Non-ubiquitous API

 605 Multiple Binds to the Same Port

 628 Function Call with Incorrectly Specified Arguments

 648 Incorrect Use of Privileged APIs

 650 Trusting HTTP Permission Methods on the Server Side

 675 Duplicate Operations on Resource

 676 Use of Potentially Dangerous Function

 683 Function Call With Incorrect Order of Arguments

 684 Incorrect Provision of Specified Functionality

 685 Function Call With Incorrect Number of Arguments

 686 Function Call With Incorrect Argument Type

 687 Function Call With Incorrectly Specified Argument Value

 688 Function Call With Incorrect Variable or Reference as

Argument

 694 Use of Multiple Resources with Duplicate Identifier

 695 Use of Low-Level Functionality

 710 Coding Standards Violation

 736 CERT C Secure Coding Section 02 - Declarations and

Initialization (DCL)

 742 CERT C Secure Coding Section 08 - Memory

Management (MEM)

104

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Improper

Fulfillment of

API Contract

('API Abuse')

758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior

 761 Free of Pointer not at Start of Buffer

 762 Mismatched Memory Management Routines

 763 Release of Invalid Pointer or Reference

 764 Multiple Locks of a Critical Resource

 765 Multiple Unlocks of a Critical Resource

 785 Use of Path Manipulation Function without Maximum-

sized Buffer

Improper

Input

Validation

15 External Control of System or Configuration Setting

 20 Improper Input Validation

 21 Pathname Traversal and Equivalence Errors

 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')

 23 Relative Path Traversal

 24 Path Traversal: '../filedir'

 25 Path Traversal: '/../filedir'

 26 Path Traversal: '/dir/../filename'

 27 Path Traversal: 'dir/../../filename'

 28 Path Traversal: '..\\filedir'

 29 Path Traversal: '\\..\\filename'

 30 Path Traversal: '\\dir\\..\\filename'

 31 Path Traversal: 'dir\\..\\..\\filename'

 32 Path Traversal: '...' (Triple Dot)

 33 Path Traversal: '....' (Multiple Dot)

 34 Path Traversal: '....//'

 35 Path Traversal: '.../...//'

 36 Absolute Path Traversal

 37 Path Traversal: '/absolute/pathname/here'

 38 Path Traversal: '\\absolute\\pathname\\here'

 39 Path Traversal: 'C:dirname'

 40 Path Traversal: '\\\\UNC\\share\\name\\' (Windows UNC

Share)

 41 Improper Resolution of Path Equivalence

 42 Path Equivalence: 'filename.' (Trailing Dot)

105

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Improper

Input

Validation

43 Path Equivalence: 'filename....' (Multiple Trailing Dot)

 44 Path Equivalence: 'file.name' (Internal Dot)

 45 Path Equivalence: 'file...name' (Multiple Internal Dot)

 46 Path Equivalence: 'filename ' (Trailing Space)

 47 Path Equivalence: ' filename' (Leading Space)

 48 Path Equivalence: 'file name' (Internal Whitespace)

 49 Path Equivalence: 'filename/' (Trailing Slash)

 50 Path Equivalence: '//multiple/leading/slash'

 51 Path Equivalence: '/multiple//internal/slash'

 52 Path Equivalence: '/multiple/trailing/slash//'

 53 Path Equivalence: '\\multiple\\\\internal\\backslash'

 54 Path Equivalence: 'filedir\\' (Trailing Backslash)

 55 Path Equivalence: '/./' (Single Dot Directory)

 56 Path Equivalence: 'filedir*' (Wildcard)

 57 Path Equivalence: 'fakedir/../realdir/filename'

 58 Path Equivalence: Windows 8.3 Filename

 59 Improper Link Resolution Before File Access ('Link

Following')

 60 UNIX Path Link Problems

 62 UNIX Hard Link

 63 Windows Path Link Problems

 64 Windows Shortcut Following (.LNK)

 65 Windows Hard Link

 66 Improper Handling of File Names that Identify Virtual

Resources

 67 Improper Handling of Windows Device Names

 68 Windows Virtual File Problems

 69 Improper Handling of Windows ::DATA Alternate Data

Stream

 70 Mac Virtual File Problems

 71 Apple '.DS_Store'

 72 Improper Handling of Apple HFS+ Alternate Data Stream

Path

 73 External Control of File Name or Path

 74 Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')

106

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Improper

Input

Validation

75 Failure to Sanitize Special Elements into a Different Plane

(Special Element Injection)

 76 Improper Neutralization of Equivalent Special Elements

 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')

 78 Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')

 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

 80 Improper Neutralization of Script-Related HTML Tags in

a Web Page (Basic XSS)

 81 Improper Neutralization of Script in an Error Message

Web Page

 82 Improper Neutralization of Script in Attributes of IMG

Tags in a Web Page

 83 Improper Neutralization of Script in Attributes in a Web

Page

 84 Improper Neutralization of Encoded URI Schemes in a

Web Page

 85 Doubled Character XSS Manipulations

 86 Improper Neutralization of Invalid Characters in

Identifiers in Web Pages

 87 Improper Neutralization of Alternate XSS Syntax

 88 Argument Injection or Modification

 89 Improper Neutralization of Special Elements used in an

SQL Command ('SQL Injection')

 90 Improper Neutralization of Special Elements used in an

LDAP Query ('LDAP Injection')

 91 XML Injection (aka Blind XPath Injection)

 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')

 94 Improper Control of Generation of Code ('Code Injection')

 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')

 96 Improper Neutralization of Directives in Statically Saved

Code ('Static Code Injection')

 97 Improper Neutralization of Server-Side Includes (SSI)

Within a Web Page

107

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Improper

Input

Validation

98 Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File Inclusion')

 99 Improper Control of Resource Identifiers ('Resource

Injection')

 100 Technology-Specific Input Validation Problems

 101 Struts Validation Problems

 102 Struts: Duplicate Validation Forms

 103 Struts: Incomplete validate() Method Definition

 104 Struts: Form Bean Does Not Extend Validation Class

 105 Struts: Form Field Without Validator

 106 Struts: Plug-in Framework not in Use

 107 Struts: Unused Validation Form

 108 Struts: Unvalidated Action Form

 109 Struts: Validator Turned Off

 110 Struts: Validator Without Form Field

 111 Direct Use of Unsafe JNI

 112 Missing XML Validation

 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Response Splitting')

 114 Process Control

 115 Misinterpretation of Input

 116 Improper Encoding or Escaping of Output

 117 Improper Output Neutralization for Logs

 118 Improper Access of Indexable Resource ('Range Error')

 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer

 120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

 121 Stack-based Buffer Overflow

 122 Heap-based Buffer Overflow

 123 Write-what-where Condition

 124 Buffer Underwrite ('Buffer Underflow')

 125 Out-of-bounds Read

 126 Buffer Over-read

 127 Buffer Under-read

 128 Wrap-around Error

 129 Improper Validation of Array Index

 130 Improper Handling of Length Parameter Inconsistency

108

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Improper

Input

Validation

131 Incorrect Calculation of Buffer Size

 133 String Errors

 134 Uncontrolled Format String

 135 Incorrect Calculation of Multi-Byte String Length

 136 Type Errors

 137 Representation Errors

 138 Improper Neutralization of Special Elements

 140 Improper Neutralization of Delimiters

 141 Improper Neutralization of Parameter/Argument

Delimiters

 142 Improper Neutralization of Value Delimiters

 143 Improper Neutralization of Record Delimiters

 144 Improper Neutralization of Line Delimiters

 145 Improper Neutralization of Section Delimiters

 146 Improper Neutralization of Expression/Command

Delimiters

 147 Improper Neutralization of Input Terminators

 148 Improper Neutralization of Input Leaders

 149 Improper Neutralization of Quoting Syntax

 150 Improper Neutralization of Escape, Meta, or Control

Sequences

 151 Improper Neutralization of Comment Delimiters

 152 Improper Neutralization of Macro Symbols

 153 Improper Neutralization of Substitution Characters

 154 Improper Neutralization of Variable Name Delimiters

 155 Improper Neutralization of Wildcards or Matching

Symbols

 156 Improper Neutralization of Whitespace

 157 Failure to Sanitize Paired Delimiters

 158 Improper Neutralization of Null Byte or NUL Character

 159 Failure to Sanitize Special Element

 160 Improper Neutralization of Leading Special Elements

 161 Improper Neutralization of Multiple Leading Special

Elements

 162 Improper Neutralization of Trailing Special Elements

 163 Improper Neutralization of Multiple Trailing Special

Elements

 164 Improper Neutralization of Internal Special Elements

109

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Improper

Input

Validation

165 Improper Neutralization of Multiple Internal Special

Elements

 166 Improper Handling of Missing Special Element

 167 Improper Handling of Additional Special Element

 168 Improper Handling of Inconsistent Special Elements

 169 Technology-Specific Special Elements

 170 Improper Null Termination

 171 Cleansing, Canonicalization, and Comparison Errors

 172 Encoding Error

 173 Improper Handling of Alternate Encoding

 174 Double Decoding of the Same Data

 175 Improper Handling of Mixed Encoding

 176 Improper Handling of Unicode Encoding

 177 Improper Handling of URL Encoding (Hex Encoding)

 178 Improper Handling of Case Sensitivity

 179 Incorrect Behavior Order: Early Validation

 180 Incorrect Behavior Order: Validate Before Canonicalize

 181 Incorrect Behavior Order: Validate Before Filter

 182 Collapse of Data into Unsafe Value

 183 Permissive Whitelist

 184 Incomplete Blacklist

 185 Incorrect Regular Expression

 186 Overly Restrictive Regular Expression

 187 Partial Comparison

 188 Reliance on Data/Memory Layout

 189 Numeric Errors

 190 Integer Overflow or Wraparound

 191 Integer Underflow (Wrap or Wraparound)

 192 Integer Coercion Error

 193 Off-by-one Error

 194 Unexpected Sign Extension

 195 Signed to Unsigned Conversion Error

 196 Unsigned to Signed Conversion Error

 197 Numeric Truncation Error

 198 Use of Incorrect Byte Ordering

 228 Improper Handling of Syntactically Invalid Structure

 231 Improper Handling of Extra Values

110

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Improper

Input

Validation

234 Failure to Handle Missing Parameter

 237 Improper Handling of Structural Elements

 239 Failure to Handle Incomplete Element

 240 Improper Handling of Inconsistent Structural Elements

 351 Insufficient Type Distinction

 352 Cross-Site Request Forgery (CSRF)

 369 Divide By Zero

 386 Symbolic Name not Mapping to Correct Object

 428 Unquoted Search Path or Element

 434 Unrestricted Upload of File with Dangerous Type

 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request Smuggling')

 454 External Initialization of Trusted Variables or Data Stores

 463 Deletion of Data Structure Sentinel

 464 Addition of Data Structure Sentinel

 465 Pointer Issues

 466 Return of Pointer Value Outside of Expected Range

 467 Use of sizeof() on a Pointer Type

 468 Incorrect Pointer Scaling

 469 Use of Pointer Subtraction to Determine Size

 470 Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')

 494 Download of Code Without Integrity Check

 502 Deserialization of Untrusted Data

 551 Incorrect Behavior Order: Authorization Before Parsing

and Canonicalization

 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework

 564 SQL Injection: Hibernate

 601 URL Redirection to Untrusted Site ('Open Redirect')

 606 Unchecked Input for Loop Condition

 616 Incomplete Identification of Uploaded File Variables

(PHP)

 618 Exposed Unsafe ActiveX Method

 621 Variable Extraction Error

 622 Improper Validation of Function Hook Arguments

 624 Executable Regular Expression Error

111

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Improper

Input

Validation

625 Permissive Regular Expression

 626 Null Byte Interaction Error (Poison Null Byte)

 627 Dynamic Variable Evaluation

 641 Improper Restriction of Names for Files and Other

Resources

 643 Improper Neutralization of Data within XPath Expressions

('XPath Injection')

 644 Improper Neutralization of HTTP Headers for Scripting

Syntax

 646 Reliance on File Name or Extension of Externally-

Supplied File

 652 Improper Neutralization of Data within XQuery

Expressions ('XQuery Injection')

 680 Integer Overflow to Buffer Overflow

 681 Incorrect Conversion between Numeric Types

 682 Incorrect Calculation

 690 Unchecked Return Value to NULL Pointer Dereference

 692 Incomplete Blacklist to Cross-Site Scripting

 706 Use of Incorrectly-Resolved Name or Reference

 707 Improper Enforcement of Message or Data Structure

 738 CERT C Secure Coding Section 04 - Integers (INT)

 739 CERT C Secure Coding Section 05 - Floating Point (FLP)

 740 CERT C Secure Coding Section 06 - Arrays (ARR)

 741 CERT C Secure Coding Section 07 - Characters and

Strings (STR)

 742 CERT C Secure Coding Section 08 - Memory

Management (MEM)

 743 CERT C Secure Coding Section 09 - Input Output (FIO)

 747 CERT C Secure Coding Section 49 - Miscellaneous

(MSC)

 777 Regular Expression without Anchors

 781 Improper Address Validation in IOCTL with

METHOD_NEITHER I/O Control Code

 785 Use of Path Manipulation Function without Maximum-

sized Buffer

 786 Access of Memory Location Before Start of Buffer

 787 Out-of-bounds Write

 788 Access of Memory Location After End of Buffer

112

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Improper

Input

Validation

789 Uncontrolled Memory Allocation

 790 Improper Filtering of Special Elements

 791 Incomplete Filtering of Special Elements

 792 Incomplete Filtering of One or More Instances of Special

Elements

 793 Only Filtering One Instance of a Special Element

 794 Incomplete Filtering of Multiple Instances of Special

Elements

 795 Only Filtering Special Elements at a Specified Location

 796 Only Filtering Special Elements Relative to a Marker

 797 Only Filtering Special Elements at an Absolute Position

 805 Buffer Access with Incorrect Length Value

 806 Buffer Access Using Size of Source Buffer

 822 Untrusted Pointer Dereference

 823 Use of Out-of-range Pointer Offset

 838 Inappropriate Encoding for Output Context

 839 Numeric Range Comparison Without Minimum Check

 896 SFP Cluster: Tainted Input

 917 Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression Language

Injection')

Indicator of

Poor Code

Quality

107 Struts: Unused Validation Form

 110 Struts: Validator Without Form Field

 118 Improper Access of Indexable Resource ('Range Error')

 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer

 121 Stack-based Buffer Overflow

 122 Heap-based Buffer Overflow

 124 Buffer Underwrite ('Buffer Underflow')

 125 Out-of-bounds Read

 126 Buffer Over-read

 127 Buffer Under-read

 128 Wrap-around Error

 129 Improper Validation of Array Index

 130 Improper Handling of Length Parameter Inconsistency

 131 Incorrect Calculation of Buffer Size

113

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Indicator of

Poor Code

Quality

136 Type Errors

 189 Numeric Errors

 190 Integer Overflow or Wraparound

 191 Integer Underflow (Wrap or Wraparound)

 192 Integer Coercion Error

 194 Unexpected Sign Extension

 195 Signed to Unsigned Conversion Error

 196 Unsigned to Signed Conversion Error

 197 Numeric Truncation Error

 252 Unchecked Return Value

 369 Divide By Zero

 398 Indicator of Poor Code Quality

 399 Resource Management Errors

 400 Uncontrolled Resource Consumption ('Resource

Exhaustion')

 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')

 402 Transmission of Private Resources into a New Sphere

('Resource Leak')

 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')

 404 Improper Resource Shutdown or Release

 405 Asymmetric Resource Consumption (Amplification)

 406 Insufficient Control of Network Message Volume

(Network Amplification)

 407 Algorithmic Complexity

 408 Incorrect Behavior Order: Early Amplification

 409 Improper Handling of Highly Compressed Data (Data

Amplification)

 410 Insufficient Resource Pool

 411 Resource Locking Problems

 412 Unrestricted Externally Accessible Lock

 413 Improper Resource Locking

 414 Missing Lock Check

 415 Double Free

 416 Use After Free

 417 Channel and Path Errors

114

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Indicator of

Poor Code

Quality

418 Channel Errors

 454 External Initialization of Trusted Variables or Data Stores

 456 Missing Initialization of a Variable

 457 Use of Uninitialized Variable

 459 Incomplete Cleanup

 460 Improper Cleanup on Thrown Exception

 465 Pointer Issues

 466 Return of Pointer Value Outside of Expected Range

 467 Use of sizeof() on a Pointer Type

 468 Incorrect Pointer Scaling

 469 Use of Pointer Subtraction to Determine Size

 474 Use of Function with Inconsistent Implementations

 475 Undefined Behavior for Input to API

 476 NULL Pointer Dereference

 477 Use of Obsolete Functions

 478 Missing Default Case in Switch Statement

 480 Use of Incorrect Operator

 481 Assigning instead of Comparing

 482 Comparing instead of Assigning

 483 Incorrect Block Delimitation

 484 Omitted Break Statement in Switch

 489 Leftover Debug Code

 546 Suspicious Comment

 547 Use of Hard-coded, Security-relevant Constants

 561 Dead Code

 562 Return of Stack Variable Address

 563 Unused Variable

 568 finalize() Method Without super.finalize()

 569 Expression Issues

 570 Expression is Always False

 571 Expression is Always True

 585 Empty Synchronized Block

 586 Explicit Call to Finalize()

 587 Assignment of a Fixed Address to a Pointer

 588 Attempt to Access Child of a Non-structure Pointer

 590 Free of Memory not on the Heap

115

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Indicator of

Poor Code

Quality

595 Comparison of Object References Instead of Object

Contents

 596 Incorrect Semantic Object Comparison

 597 Use of Wrong Operator in String Comparison

 617 Reachable Assertion

 670 Always-Incorrect Control Flow Implementation

 674 Uncontrolled Recursion

 676 Use of Potentially Dangerous Function

 681 Incorrect Conversion between Numeric Types

 682 Incorrect Calculation

 701 Weaknesses Introduced During Design

 704 Incorrect Type Conversion or Cast

 710 Coding Standards Violation

 730 OWASP Top Ten 2004 Category A9 - Denial of Service

 737 CERT C Secure Coding Section 03 - Expressions (EXP)

 738 CERT C Secure Coding Section 04 - Integers (INT)

 739 CERT C Secure Coding Section 05 - Floating Point (FLP)

 740 CERT C Secure Coding Section 06 - Arrays (ARR)

 741 CERT C Secure Coding Section 07 - Characters and

Strings (STR)

 742 CERT C Secure Coding Section 08 - Memory

Management (MEM)

 747 CERT C Secure Coding Section 49 - Miscellaneous

(MSC)

 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior

 761 Free of Pointer not at Start of Buffer

 762 Mismatched Memory Management Routines

 763 Release of Invalid Pointer or Reference

 769 File Descriptor Exhaustion

 770 Allocation of Resources Without Limits or Throttling

 771 Missing Reference to Active Allocated Resource

 772 Missing Release of Resource after Effective Lifetime

 773 Missing Reference to Active File Descriptor or Handle

 774 Allocation of File Descriptors or Handles Without Limits

or Throttling

 775 Missing Release of File Descriptor or Handle after

Effective Lifetime

116

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Indicator of

Poor Code

Quality

776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')

 783 Operator Precedence Logic Error

 786 Access of Memory Location Before Start of Buffer

 787 Out-of-bounds Write

 788 Access of Memory Location After End of Buffer

 789 Uncontrolled Memory Allocation

 805 Buffer Access with Incorrect Length Value

 806 Buffer Access Using Size of Source Buffer

 823 Use of Out-of-range Pointer Offset

 824 Access of Uninitialized Pointer

 825 Expired Pointer Dereference

 839 Numeric Range Comparison Without Minimum Check

 843 Access of Resource Using Incompatible Type ('Type

Confusion')

 891 SFP Cluster: Memory Management

 911 Improper Update of Reference Count

 912 Hidden Functionality

Insufficient

Encapsulation

73 External Control of File Name or Path

 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

 98 Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File Inclusion')

 200 Information Exposure

 201 Information Exposure Through Sent Data

 202 Exposure of Sensitive Data Through Data Queries

 203 Information Exposure Through Discrepancy

 204 Response Discrepancy Information Exposure

 205 Information Exposure Through Behavioral Discrepancy

 206 Information Exposure of Internal State Through

Behavioral Inconsistency

 207 Information Exposure Through an External Behavioral

Inconsistency

 208 Information Exposure Through Timing Discrepancy

 209 Information Exposure Through an Error Message

 210 Information Exposure Through Self-generated Error

Message

117

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Insufficient

Encapsulation

211 Information Exposure Through Externally-generated Error

Message

 212 Improper Cross-boundary Removal of Sensitive Data

 213 Intentional Information Exposure

 214 Information Exposure Through Process Environment

 215 Information Exposure Through Debug Information

 216 Containment Errors (Container Errors)

 219 Sensitive Data Under Web Root

 220 Sensitive Data Under FTP Root

 288 Authentication Bypass Using an Alternate Path or Channel

 374 Passing Mutable Objects to an Untrusted Method

 375 Returning a Mutable Object to an Untrusted Caller

 385 Covert Timing Channel

 386 Symbolic Name not Mapping to Correct Object

 402 Transmission of Private Resources into a New Sphere

('Resource Leak')

 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')

 417 Channel and Path Errors

 418 Channel Errors

 425 Direct Request ('Forced Browsing')

 427 Uncontrolled Search Path Element

 428 Unquoted Search Path or Element

 430 Deployment of Wrong Handler

 431 Missing Handler

 433 Unparsed Raw Web Content Delivery

 434 Unrestricted Upload of File with Dangerous Type

 441 Unintended Proxy or Intermediary ('Confused Deputy')

 454 External Initialization of Trusted Variables or Data Stores

 470 Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')

 471 Modification of Assumed-Immutable Data (MAID)

 472 External Control of Assumed-Immutable Web Parameter

 473 PHP External Variable Modification

 485 Insufficient Encapsulation

 486 Comparison of Classes by Name

 487 Reliance on Package-level Scope

 488 Exposure of Data Element to Wrong Session

118

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Insufficient

Encapsulation

489 Leftover Debug Code

 490 Mobile Code Issues

 491 Public cloneable() Method Without Final ('Object Hijack')

 492 Use of Inner Class Containing Sensitive Data

 493 Critical Public Variable Without Final Modifier

 494 Download of Code Without Integrity Check

 495 Private Array-Typed Field Returned From A Public

Method

 496 Public Data Assigned to Private Array-Typed Field

 497 Exposure of System Data to an Unauthorized Control

Sphere

 498 Cloneable Class Containing Sensitive Information

 499 Serializable Class Containing Sensitive Data

 500 Public Static Field Not Marked Final

 501 Trust Boundary Violation

 514 Covert Channel

 515 Covert Storage Channel

 524 Information Exposure Through Caching

 525 Information Exposure Through Browser Caching

 526 Information Exposure Through Environmental Variables

 527 Exposure of CVS Repository to an Unauthorized Control

Sphere

 528 Exposure of Core Dump File to an Unauthorized Control

Sphere

 529 Exposure of Access Control List Files to an Unauthorized

Control Sphere

 530 Exposure of Backup File to an Unauthorized Control

Sphere

 531 Information Exposure Through Test Code

 532 Information Exposure Through Log Files

 533 Information Exposure Through Server Log Files

 534 Information Exposure Through Debug Log Files

 535 Information Exposure Through Shell Error Message

 536 Information Exposure Through Servlet Runtime Error

Message

 537 Information Exposure Through Java Runtime Error

Message

 538 File and Directory Information Exposure

119

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Insufficient

Encapsulation

539 Information Exposure Through Persistent Cookies

 540 Information Exposure Through Source Code

 541 Information Exposure Through Include Source Code

 542 Information Exposure Through Cleanup Log Files

 545 Use of Dynamic Class Loading

 548 Information Exposure Through Directory Listing

 550 Information Exposure Through Server Error Message

 552 Files or Directories Accessible to External Parties

 553 Command Shell in Externally Accessible Directory

 567 Unsynchronized Access to Shared Data in a Multithreaded

Context

 580 clone() Method Without super.clone()

 582 Array Declared Public, Final, and Static

 583 finalize() Method Declared Public

 591 Sensitive Data Storage in Improperly Locked Memory

 594 J2EE Framework: Saving Unserializable Objects to Disk

 598 Information Exposure Through Query Strings in GET

Request

 601 URL Redirection to Untrusted Site ('Open Redirect')

 602 Client-Side Enforcement of Server-Side Security

 603 Use of Client-Side Authentication

 607 Public Static Final Field References Mutable Object

 608 Struts: Non-private Field in ActionForm Class

 610 Externally Controlled Reference to a Resource in Another

Sphere

 611 Improper Restriction of XML External Entity Reference

('XXE')

 612 Information Exposure Through Indexing of Private Data

 618 Exposed Unsafe ActiveX Method

 619 Dangling Database Cursor ('Cursor Injection')

 621 Variable Extraction Error

 623 Unsafe ActiveX Control Marked Safe For Scripting

 627 Dynamic Variable Evaluation

 651 Information Exposure Through WSDL File

 653 Insufficient Compartmentalization

 668 Exposure of Resource to Wrong Sphere

 669 Incorrect Resource Transfer Between Spheres

120

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Insufficient

Encapsulation

673 External Influence of Sphere Definition

 706 Use of Incorrectly-Resolved Name or Reference

 732 Incorrect Permission Assignment for Critical Resource

 749 Exposed Dangerous Method or Function

 766 Critical Variable Declared Public

 767 Access to Critical Private Variable via Public Method

 782 Exposed IOCTL with Insufficient Access Control

 827 Improper Control of Document Type Definition

 829 Inclusion of Functionality from Untrusted Control Sphere

 830 Inclusion of Web Functionality from an Untrusted Source

 913 Improper Control of Dynamically-Managed Code

Resources

 914 Improper Control of Dynamically-Identified Variables

 915 Improperly Controlled Modification of Dynamically-

Determined Object Attributes

 918 Server-Side Request Forgery (SSRF)

Security

Features

5 J2EE Misconfiguration: Data Transmission Without

Encryption

 6 J2EE Misconfiguration: Insufficient Session-ID Length

 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods

 13 ASP.NET Misconfiguration: Password in Configuration

File

 171 Cleansing, Canonicalization, and Comparison Errors

 183 Permissive Whitelist

 184 Incomplete Blacklist

 221 Information Loss or Omission

 222 Truncation of Security-relevant Information

 223 Omission of Security-relevant Information

 224 Obscured Security-relevant Information by Alternate

Name

 226 Sensitive Information Uncleared Before Release

 247 DEPRECATED (Duplicate): Reliance on DNS Lookups in

a Security Decision

 250 Execution with Unnecessary Privileges

 254 Security Features

 255 Credentials Management

 256 Plaintext Storage of a Password

121

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Security

Features

257 Storing Passwords in a Recoverable Format

 258 Empty Password in Configuration File

 259 Use of Hard-coded Password

 260 Password in Configuration File

 261 Weak Cryptography for Passwords

 262 Not Using Password Aging

 263 Password Aging with Long Expiration

 264 Permissions, Privileges, and Access Controls

 265 Privilege / Sandbox Issues

 266 Incorrect Privilege Assignment

 267 Privilege Defined With Unsafe Actions

 268 Privilege Chaining

 269 Improper Privilege Management

 270 Privilege Context Switching Error

 271 Privilege Dropping / Lowering Errors

 272 Least Privilege Violation

 273 Improper Check for Dropped Privileges

 274 Improper Handling of Insufficient Privileges

 275 Permission Issues

 276 Incorrect Default Permissions

 277 Insecure Inherited Permissions

 278 Insecure Preserved Inherited Permissions

 279 Incorrect Execution-Assigned Permissions

 280 Improper Handling of Insufficient Permissions or

Privileges

 281 Improper Preservation of Permissions

 282 Improper Ownership Management

 283 Unverified Ownership

 284 Improper Access Control

 285 Improper Authorization

 287 Improper Authentication

 288 Authentication Bypass Using an Alternate Path or Channel

 289 Authentication Bypass by Alternate Name

 290 Authentication Bypass by Spoofing

 291 Reliance on IP Address for Authentication

 293 Using Referer Field for Authentication

 294 Authentication Bypass by Capture-replay

122

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Security

Features

295 Improper Certificate Validation

 296 Improper Following of a Certificate's Chain of Trust

 297 Improper Validation of Certificate with Host Mismatch

 298 Improper Validation of Certificate Expiration

 299 Improper Check for Certificate Revocation

 300 Channel Accessible by Non-Endpoint ('Man-in-the-

Middle')

 301 Reflection Attack in an Authentication Protocol

 302 Authentication Bypass by Assumed-Immutable Data

 303 Incorrect Implementation of Authentication Algorithm

 304 Missing Critical Step in Authentication

 305 Authentication Bypass by Primary Weakness

 306 Missing Authentication for Critical Function

 307 Improper Restriction of Excessive Authentication

Attempts

 308 Use of Single-factor Authentication

 309 Use of Password System for Primary Authentication

 310 Cryptographic Issues

 311 Missing Encryption of Sensitive Data

 312 Cleartext Storage of Sensitive Information

 313 Cleartext Storage in a File or on Disk

 314 Cleartext Storage in the Registry

 315 Cleartext Storage of Sensitive Information in a Cookie

 316 Cleartext Storage of Sensitive Information in Memory

 317 Cleartext Storage of Sensitive Information in GUI

 318 Cleartext Storage of Sensitive Information in Executable

 319 Cleartext Transmission of Sensitive Information

 320 Key Management Errors

 321 Use of Hard-coded Cryptographic Key

 322 Key Exchange without Entity Authentication

 323 Reusing a Nonce, Key Pair in Encryption

 324 Use of a Key Past its Expiration Date

 325 Missing Required Cryptographic Step

 326 Inadequate Encryption Strength

 327 Use of a Broken or Risky Cryptographic Algorithm

 328 Reversible One-Way Hash

 329 Not Using a Random IV with CBC Mode

123

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Security

Features

330 Use of Insufficiently Random Values

 331 Insufficient Entropy

 332 Insufficient Entropy in PRNG

 333 Improper Handling of Insufficient Entropy in TRNG

 334 Small Space of Random Values

 335 PRNG Seed Error

 336 Same Seed in PRNG

 337 Predictable Seed in PRNG

 338 Use of Cryptographically Weak PRNG

 339 Small Seed Space in PRNG

 340 Predictability Problems

 341 Predictable from Observable State

 342 Predictable Exact Value from Previous Values

 343 Predictable Value Range from Previous Values

 344 Use of Invariant Value in Dynamically Changing Context

 345 Insufficient Verification of Data Authenticity

 346 Origin Validation Error

 347 Improper Verification of Cryptographic Signature

 348 Use of Less Trusted Source

 349 Acceptance of Extraneous Untrusted Data With Trusted

Data

 350 Reliance on Reverse DNS Resolution for a Security-

Critical Action

 351 Insufficient Type Distinction

 353 Missing Support for Integrity Check

 354 Improper Validation of Integrity Check Value

 355 User Interface Security Issues

 356 Product UI does not Warn User of Unsafe Actions

 357 Insufficient UI Warning of Dangerous Operations

 358 Improperly Implemented Security Check for Standard

 359 Privacy Violation

 360 Trust of System Event Data

 370 Missing Check for Certificate Revocation after Initial

Check

 372 Incomplete Internal State Distinction

 384 Session Fixation

 385 Covert Timing Channel

 412 Unrestricted Externally Accessible Lock

124

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Security

Features

417 Channel and Path Errors

 418 Channel Errors

 419 Unprotected Primary Channel

 420 Unprotected Alternate Channel

 421 Race Condition During Access to Alternate Channel

 422 Unprotected Windows Messaging Channel ('Shatter')

 424 Improper Protection of Alternate Path

 425 Direct Request ('Forced Browsing')

 446 UI Discrepancy for Security Feature

 447 Unimplemented or Unsupported Feature in UI

 450 Multiple Interpretations of UI Input

 451 UI Misrepresentation of Critical Information

 453 Insecure Default Variable Initialization

 454 External Initialization of Trusted Variables or Data Stores

 511 Logic/Time Bomb

 514 Covert Channel

 515 Covert Storage Channel

 520 .NET Misconfiguration: Use of Impersonation

 521 Weak Password Requirements

 522 Insufficiently Protected Credentials

 523 Unprotected Transport of Credentials

 547 Use of Hard-coded, Security-relevant Constants

 549 Missing Password Field Masking

 551 Incorrect Behavior Order: Authorization Before Parsing

and Canonicalization

 555 J2EE Misconfiguration: Plaintext Password in

Configuration File

 556 ASP.NET Misconfiguration: Use of Identity

Impersonation

 565 Reliance on Cookies without Validation and Integrity

Checking

 566 Authorization Bypass Through User-Controlled SQL

Primary Key

 592 Authentication Bypass Issues

 593 Authentication Bypass: OpenSSL CTX Object Modified

after SSL Objects are Created

 599 Missing Validation of OpenSSL Certificate

 602 Client-Side Enforcement of Server-Side Security

125

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Security

Features

603 Use of Client-Side Authentication

 613 Insufficient Session Expiration

 614 Sensitive Cookie in HTTPS Session Without 'Secure'

Attribute

 616 Incomplete Identification of Uploaded File Variables

(PHP)

 618 Exposed Unsafe ActiveX Method

 620 Unverified Password Change

 623 Unsafe ActiveX Control Marked Safe For Scripting

 625 Permissive Regular Expression

 636 Not Failing Securely ('Failing Open')

 638 Not Using Complete Mediation

 639 Authorization Bypass Through User-Controlled Key

 640 Weak Password Recovery Mechanism for Forgotten

Password

 645 Overly Restrictive Account Lockout Mechanism

 646 Reliance on File Name or Extension of Externally-

Supplied File

 647 Use of Non-Canonical URL Paths for Authorization

Decisions

 648 Incorrect Use of Privileged APIs

 649 Reliance on Obfuscation or Encryption of Security-

Relevant Inputs without Integrity Checking

 654 Reliance on a Single Factor in a Security Decision

 655 Insufficient Psychological Acceptability

 656 Reliance on Security Through Obscurity

 657 Violation of Secure Design Principles

 693 Protection Mechanism Failure

 697 Insufficient Comparison

 708 Incorrect Ownership Assignment

 732 Incorrect Permission Assignment for Critical Resource

 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')

 759 Use of a One-Way Hash without a Salt

 760 Use of a One-Way Hash with a Predictable Salt

 768 Incorrect Short Circuit Evaluation

 778 Insufficient Logging

 779 Logging of Excessive Data

126

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Security

Features

780 Use of RSA Algorithm without OAEP

 782 Exposed IOCTL with Insufficient Access Control

 784 Reliance on Cookies without Validation and Integrity

Checking in a Security Decision

 798 Use of Hard-coded Credentials

 804 Guessable CAPTCHA

 807 Reliance on Untrusted Inputs in a Security Decision

 836 Use of Password Hash Instead of Password for

Authentication

 841 Improper Enforcement of Behavioral Workflow

 842 Placement of User into Incorrect Group

 862 Missing Authorization

 863 Incorrect Authorization

 916 Use of Password Hash With Insufficient Computational

Effort

 921 Storage of Sensitive Data in a Mechanism without Access

Control

 922 Insecure Storage of Sensitive Information

 923 Improper Authentication of Endpoint in a Communication

Channel

 924 Improper Enforcement of Message Integrity During

Transmission in a Communication Channel

 925 Improper Verification of Intent by Broadcast Receiver

 926 Improper Restriction of Content Provider Export to Other

Applications

 927 Use of Implicit Intent for Sensitive Communication

Time and

State

8 J2EE Misconfiguration: Entity Bean Declared Remote

 179 Incorrect Behavior Order: Early Validation

 193 Off-by-one Error

 361 Time and State

 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')

 363 Race Condition Enabling Link Following

 364 Signal Handler Race Condition

 365 Race Condition in Switch

 366 Race Condition within a Thread

 367 Time-of-check Time-of-use (TOCTOU) Race Condition

 368 Context Switching Race Condition

127

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

 Time and

State

370 Missing Check for Certificate Revocation after Initial

Check

 371 State Issues

 372 Incomplete Internal State Distinction

 376 Temporary File Issues

 377 Insecure Temporary File

 378 Creation of Temporary File With Insecure Permissions

 379 Creation of Temporary File in Directory with Incorrect

Permissions

 380 Technology-Specific Time and State Issues

 381 J2EE Time and State Issues

 382 J2EE Bad Practices: Use of System.exit()

 383 J2EE Bad Practices: Direct Use of Threads

 385 Covert Timing Channel

 386 Symbolic Name not Mapping to Correct Object

 387 Signal Errors

 408 Incorrect Behavior Order: Early Amplification

 410 Insufficient Resource Pool

 411 Resource Locking Problems

 412 Unrestricted Externally Accessible Lock

 413 Improper Resource Locking

 414 Missing Lock Check

 421 Race Condition During Access to Alternate Channel

 430 Deployment of Wrong Handler

 431 Missing Handler

 432 Dangerous Signal Handler not Disabled During Sensitive

Operations

 434 Unrestricted Upload of File with Dangerous Type

 453 Insecure Default Variable Initialization

 456 Missing Initialization of a Variable

 457 Use of Uninitialized Variable

 479 Signal Handler Use of a Non-reentrant Function

 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context

 551 Incorrect Behavior Order: Authorization Before Parsing

and Canonicalization

 557 Concurrency Issues

 558 Use of getlogin() in Multithreaded Application

 562 Return of Stack Variable Address

128

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Time and

State

567 Unsynchronized Access to Shared Data in a Multithreaded

Context

 572 Call to Thread run() instead of start()

 574 EJB Bad Practices: Use of Synchronization Primitives

 585 Empty Synchronized Block

 591 Sensitive Data Storage in Improperly Locked Memory

 593 Authentication Bypass: OpenSSL CTX Object Modified

after SSL Objects are Created

 605 Multiple Binds to the Same Port

 609 Double-Checked Locking

 613 Insufficient Session Expiration

 642 External Control of Critical State Data

 662 Improper Synchronization

 663 Use of a Non-reentrant Function in a Concurrent Context

 664 Improper Control of a Resource Through its Lifetime

 665 Improper Initialization

 666 Operation on Resource in Wrong Phase of Lifetime

 667 Improper Locking

 672 Operation on a Resource after Expiration or Release

 675 Duplicate Operations on Resource

 691 Insufficient Control Flow Management

 696 Incorrect Behavior Order

 698 Execution After Redirect (EAR)

 705 Incorrect Control Flow Scoping

 736 CERT C Secure Coding Section 02 - Declarations and

Initialization (DCL)

 764 Multiple Locks of a Critical Resource

 765 Multiple Unlocks of a Critical Resource

 768 Incorrect Short Circuit Evaluation

 769 File Descriptor Exhaustion

 770 Allocation of Resources Without Limits or Throttling

 774 Allocation of File Descriptors or Handles Without Limits

or Throttling

 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')

 783 Operator Precedence Logic Error

 799 Improper Control of Interaction Frequency

 820 Missing Synchronization

129

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Kingdom CWE # Description

Time and

State

821 Incorrect Synchronization

 824 Access of Uninitialized Pointer

 825 Expired Pointer Dereference

 826 Premature Release of Resource During Expected Lifetime

 828 Signal Handler with Functionality that is not

Asynchronous-Safe

 831 Signal Handler Function Associated with Multiple Signals

 832 Unlock of a Resource that is not Locked

 833 Deadlock

 834 Excessive Iteration

 835 Loop with Unreachable Exit Condition ('Infinite Loop')

 837 Improper Enforcement of a Single, Unique Action

 908 Use of Uninitialized Resource

 909 Missing Initialization of Resource

 910 Use of Expired File Descriptor

 911 Improper Update of Reference Count

130

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix C: Discrimination Details on CVEs

Appendix C details how Discrimination Rate was calculated on the CVE-selected test

cases. The Reported CVEs (or True Positives (TP)) column indicates how many CVEs

were found in the vulnerable version of the test case by each tool. Subcolumn Found lists

the number of CVEs directly reported, subcolumn Hinted lists the number of CVEs

indirectly reported, and subcolumn All lists the sum of the previous two subcolumns. The

False Positives (FP) column displays the number of CVEs that were incorrectly reported

in the fixed version of the test case for which a TP was reported in the vulnerable version.

The N/A column shows the number of CVEs that cannot be used to calculate

discrimination rate, because the relevant code has been entirely removed from the fixed

version of the test case.

Discrimination rate is calculated based on the formulae:

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝐴𝑙𝑙)
= (𝑇𝑃(𝐴𝑙𝑙) − 𝐹𝑃(𝐴𝑙𝑙) − 𝑁/𝐴(𝐴𝑙𝑙)) / (𝑇𝑃(𝐴𝑙𝑙)
− 𝑁/𝐴(𝐴𝑙𝑙))

 (11)

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝐹𝑜𝑢𝑛𝑑)
= (𝑇𝑃(𝐹𝑜𝑢𝑛𝑑) − 𝐹𝑃(𝐹𝑜𝑢𝑛𝑑)
− 𝑁/𝐴(𝐹𝑜𝑢𝑛𝑑)) / (𝑇𝑃(𝐹𝑜𝑢𝑛𝑑) − 𝑁/𝐴(𝐹𝑜𝑢𝑛𝑑))

 (12)

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝐻𝑖𝑛𝑡𝑒𝑑)
= (𝑇𝑃(𝐻𝑖𝑛𝑡𝑒𝑑) − 𝐹𝑃(𝐻𝑖𝑛𝑡𝑒𝑑)
− 𝑁/𝐴(𝐻𝑖𝑛𝑡𝑒𝑑)) / (𝑇𝑃(𝐻𝑖𝑛𝑡𝑒𝑑) − 𝑁/𝐴(𝐻𝑖𝑛𝑡𝑒𝑑))

 (13)

Where

 𝐹𝑃(𝐴𝑙𝑙) = 𝐹𝑃(𝐹𝑜𝑢𝑛𝑑) + 𝐹𝑃(𝐻𝑖𝑛𝑡𝑒𝑑) (14)

 𝑁/𝐴(𝐴𝑙𝑙) = 𝑁/𝐴(𝐹𝑜𝑢𝑛𝑑) + 𝑁/𝐴(𝐻𝑖𝑛𝑡𝑒𝑑) (15)

131

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Track Test Case Tool

Reported CVEs (TP)
False Positives

(FP)
N/A Discrimination Rate

All Found Hinted Found Hinted Found Hinted All Found Hinted

C
/C

+
+

Asterisk

Tool J 2 2 0 0 0 100 % 100 %

Tool A 1 1 0 0 0 100 % 100 %

Tool B 1 1 0 0 0 100 % 100 %

Tool H 3 3 0 1 0 67 % 67 %

Tool C 0 0 0

Tool E 0 0 0

Tool G 0 0 0 0 0

Tool K 0 0 0 0 0

Wireshark

Tool E 1 1 0 0 0 100 % 100 %

Tool A 12 9 3 0 2 83 % 100 % 33 %

Tool B 3 2 1 0 1 67 % 100 % 0 %

Tool I 12 5 7 0 5 1 55 % 100 % 29 %

Tool C 12 9 3 6 2 33 % 33 % 33 %

Tool J 6 6 0 4 0 33 % 33 %

Tool H 4 4 0 3 0 25 % 25 %

Tool D 0 0 0 0 0

Tool K 0 0 0 0 0

J
a

v
a

JSPWiki

Tool L 1 1 0 1 0 0 % 0 %

Tool Q 1 0 1 0 1 0 % 0 %

Tool M 0 0 0 0 0

Tool N 0 0 0 0 0

Tool O 0 0 0

Tool P 0 0 0 0 0

Openfire

Tool Q 6 6 0 4 0 33 % 33 %

Tool L 9 8 1 7 1 11 % 13 % 0 %

Tool O 1 0 1 0 1 0 % 0 %

Tool M 0 0 0 0 0

Tool N 0 0 0 0 0

Tool P 0 0 0 0 0

PHP WordPress Tool R 7 7 0 2 0 1 67 % 67 %

132

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix D: Recall Details on CVEs

Appendix D details how Recall was calculated on the CVE-selected test cases. The Test

Case’s CVEs (or CVEs) column lists the number of CVEs contained in each test case

(subcolumn Present) and the number of CVE’s applicable to each tool (subcolumn App.).

The Reported CVEs (or True Positives (TP)) column indicates how many CVEs were

found in the vulnerable version of the test case by each tool. Subcolumn Found lists the

number of CVEs directly reported, subcolumn Hinted lists the number of CVEs indirectly

reported, and subcolumn All lists the sum of the previous two subcolumns. Recall and

applicable recall are calculated on Found CVEs and All CVEs.

Recall is calculated based on the formulae:

 𝑅𝑒𝑐𝑎𝑙𝑙(𝐴𝑙𝑙) = 𝑇𝑃(𝐴𝑙𝑙) / 𝐶𝑉𝐸𝑠(𝑃𝑟𝑒𝑠𝑒𝑛𝑡) (16)

 𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑜𝑢𝑛𝑑) = 𝑇𝑃(𝐹𝑜𝑢𝑛𝑑) / 𝐶𝑉𝐸𝑠(𝑃𝑟𝑒𝑠𝑒𝑛𝑡) (17)

Applicable Recall is calculated as follows:

 𝐴𝑝𝑝 𝑅𝑒𝑐𝑎𝑙𝑙(𝐴𝑙𝑙) = 𝑇𝑃(𝐴𝑙𝑙) / 𝐶𝑉𝐸𝑠(𝐴𝑝𝑝) (18)

 𝐴𝑝𝑝 𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑜𝑢𝑛𝑑) = 𝑇𝑃(𝐹𝑜𝑢𝑛𝑑) / 𝐶𝑉𝐸𝑠(𝐴𝑝𝑝) (19)

133

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Track Test Case Tool

Test Case’s

CVEs (CVEs)
Reported CVEs (TP) Recall App. Recall

Present App. All Found Hinted All Found All Found
C

/C
+

+

Asterisk

Tool

H
14 14 3 3 0 21 % 21 % 21 % 21 %

Tool

J
14 11 2 2 0 14 % 14 % 18 % 18 %

Tool

A
14 11 1 1 0 7 % 7 % 9 % 9 %

Tool

B
14 12 1 1 0 7 % 7 % 8 % 8 %

Tool

K
14 8 0 0 0 0 % 0 % 0 % 0 %

Tool

G
14 12 0 0 0 0 % 0 % 0 % 0 %

Tool

C
14 11 0 0 0 0 % 0 % 0 % 0 %

Tool

E
14 9 0 0 0 0 % 0 % 0 % 0 %

Wireshark

Tool

A
83 72 12 9 3 14 % 11 % 17 % 13 %

Tool

C
83 81 12 9 3 14 % 11 % 15 % 11 %

Tool I 83 83 12 5 7 14 % 6 % 14 % 6 %

Tool

J
83 72 6 6 0 7 % 7 % 8 % 8 %

Tool

H
83 66 4 4 0 5 % 5 % 6 % 6 %

Tool

B
83 83 3 2 1 4 % 2 % 4 % 2 %

Tool

E
83 55 1 1 0 1 % 1 % 2 % 2 %

Tool

K
83 40 0 0 0 0 % 0 % 0 % 0 %

Tool

D
83 69 0 0 0 0 % 0 % 0 % 0 %

J
a

v
a

JSPWiki

Tool

L
1 1 1 1 0 100 % 100 % 100 % 100 %

Tool

Q
1 1 1 0 1 100 % 0 % 100 % 0 %

Tool

N
1 1 0 0 0 0 % 0 % 0 % 0 %

Tool

O
1 1 0 0 0 0 % 0 % 0 % 0 %

Tool

P
1 0 0 0 0 0 % 0 %

Tool

M
1 0 0 0 0 0 % 0 %

Openfire

Tool

L
10 10 9 8 1 90 % 80 % 90 % 80 %

Tool

Q
10 9 6 6 0 60 % 60 % 67 % 67 %

Tool

O
10 9 1 0 1 10 % 0 % 11 % 0 %

Tool

N
10 10 0 0 0 0 % 0 % 0 % 0 %

Tool

M
10 1 0 0 0 0 % 0 % 0 % 0 %

Tool

P
10 1 0 0 0 0 % 0 % 0 % 0 %

PHP WordPress
Tool

R
13 13 7 7 0 54 % 54 % 54 % 54 %

134

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix E: Reported and Unreported Weakness Classes on Juliet

Appendix E summarizes which CWEs in the Juliet C/C++ and Juliet Java test cases were

reported and unreported by each tool. Yes means that the tool reported at least one True

Positive (TP) for a given CWE. No indicates that the tool did not report a single True

Positive for all test cases for this CWE.

Table 64 summarizes which CWEs in the Juliet C/C++ test cases were reported and

unreported by each tool.

Table 64. Reported and Unreported Weakness Classes on Juliet C/C++.

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-121: Stack-based Buffer

Overflow
Yes Yes Yes Yes Yes Yes Yes Yes

CWE-457: Use of

Uninitialized Variable
Yes Yes Yes Yes Yes Yes Yes Yes

CWE-122: Heap-based Buffer

Overflow
Yes No Yes Yes Yes Yes Yes Yes

CWE-126: Buffer Over-read Yes Yes Yes Yes Yes Yes No Yes

CWE-476: NULL Pointer

Dereference
Yes Yes Yes Yes No Yes Yes Yes

CWE-124: Buffer Underwrite

('Buffer Underflow')
Yes Yes Yes Yes Yes No No Yes

CWE-127: Buffer Under-read Yes Yes Yes Yes Yes No No Yes

CWE-134: Uncontrolled

Format String
Yes Yes Yes Yes Yes Yes No No

CWE-369: Divide By Zero Yes Yes No Yes No Yes Yes Yes

CWE-401: Memory Leak Yes Yes Yes Yes Yes No Yes No

CWE-415: Double Free Yes Yes Yes Yes No Yes Yes No

CWE-416: Use After Free Yes Yes Yes Yes Yes No Yes No

CWE-562: Return of Stack

Variable Address
Yes Yes No Yes No Yes Yes Yes

CWE-078: OS Command

Injection
Yes Yes Yes Yes Yes No No No

CWE-252: Unchecked Return

Value
Yes Yes Yes Yes Yes No No No

CWE-563: Unused Variable No Yes Yes Yes Yes No Yes No

CWE-762: Mismatched

Memory Management

Routines

Yes No No Yes Yes Yes Yes No

135

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-188: Reliance on

Data/Memory Layout
Yes Yes Yes Yes No No No No

CWE-194: Unexpected Sign

Extension
Yes No Yes Yes No No Yes No

CWE-195: Signed to Unsigned

Conversion Error
Yes No Yes Yes No No Yes No

CWE-242: Use of Inherently

Dangerous Function
No Yes Yes No Yes No Yes No

CWE-427: Uncontrolled

Search Path Element
Yes No Yes Yes No Yes No No

CWE-468: Incorrect Pointer

Scaling
Yes Yes Yes No No Yes No No

CWE-561: Dead Code Yes Yes Yes Yes No No No No

CWE-570: Expression is

Always False
Yes Yes No Yes No Yes No No

CWE-571: Expression is

Always True
Yes Yes No Yes No Yes No No

CWE-590: Free of Memory

not on the Heap
Yes Yes Yes No No No Yes No

CWE-680: Integer Overflow to

Buffer Overflow
Yes No Yes Yes Yes No No No

CWE-023: Relative Path

Traversal
No No Yes Yes No Yes No No

CWE-190: Integer Overflow or

Wraparound
No No No Yes No Yes No Yes

CWE-367: Time-of-check

Time-of-use (TOCTOU) Race

Condition

Yes No Yes No Yes No No No

CWE-377: Insecure

Temporary File
Yes No Yes No No No Yes No

CWE-400: Resource

Exhaustion
Yes No Yes No Yes No No No

CWE-404: Improper Resource

Shutdown or Release
Yes Yes Yes No No No No No

CWE-467: Use of sizeof() on a

Pointer Type
Yes Yes No Yes No No No No

CWE-481: Assigning instead

of Comparing
Yes Yes No No No Yes No No

CWE-483: Incorrect Block

Delimitation
Yes Yes No No No Yes No No

136

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-688: Function Call With

Incorrect Variable as

Argument

Yes Yes No No Yes No No No

CWE-690: Unchecked Return

Value to NULL Pointer

Dereference

Yes No Yes No Yes No No No

CWE-036: Absolute Path

Traversal
No No Yes Yes No No No No

CWE-191: Integer Underflow

(Wrap or Wraparound)
No No No Yes No Yes No No

CWE-196: Unsigned to Signed

Conversion Error
No Yes No Yes No No No No

CWE-197: Numeric

Truncation Error
No Yes No Yes No No No No

CWE-253: Incorrect Check of

Function Return Value
Yes No No No Yes No No No

CWE-390: Detection of Error

Condition Without Action
No No No No Yes Yes No No

CWE-398: Indicator of Poor

Code Quality
No Yes No No No Yes No No

CWE-480: Use of Incorrect

Operator
Yes Yes No No No No No No

CWE-482: Comparing instead

of Assigning
Yes Yes No No No No No No

CWE-484: Omitted Break

Statement in Switch
Yes Yes No No No No No No

CWE-587: Assignment of a

Fixed Address to a Pointer
No Yes No No No Yes No No

CWE-588: Attempt to Access

Child of a Non-structure

Pointer

Yes No No No No No Yes No

CWE-606: Unchecked Input

for Loop Condition
Yes Yes No No No No No No

CWE-675: Duplicate

Operations on Resource
Yes No Yes No No No No No

CWE-685: Function Call With

Incorrect Number of

Arguments

Yes No No No Yes No No No

137

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-773: Missing Reference

to Active File Descriptor or

Handle

Yes No Yes No No No No No

CWE-775: Missing Release of

File Descriptor after Effective

Lifetime

Yes No Yes No No No No No

CWE-789: Uncontrolled

Memory Allocation
Yes No No Yes No No No No

CWE-123: Write-what-where

Condition
No No No No No No No Yes

CWE-338: Use of

Cryptographically Weak

PRNG

No Yes No No No No No No

CWE-396: Declaration of

Catch for Generic Exception
Yes No No No No No No No

CWE-426: Untrusted Search

Path
No No No No Yes No No No

CWE-459: Incomplete

Cleanup
Yes No No No No No No No

CWE-469: Use of Pointer

Subtraction to Determine Size
No Yes No No No No No No

CWE-475: Undefined

Behavior for Input to API
No Yes No No No No No No

CWE-478: Missing Default

Case in Switch Statement
No Yes No No No No No No

CWE-500: Public Static Field

Not Marked Final
No No No No Yes No No No

CWE-506: Embedded

Malicious Code
No No No No Yes No No No

CWE-511: Logic/Time Bomb No No No No Yes No No No

CWE-526: Information

Exposure Through

Environmental Variables

No No Yes No No No No No

CWE-665: Improper

Initialization
No No Yes No No No No No

CWE-667: Improper Locking Yes No No No No No No No

CWE-672: Operation on a

Resource after Expiration or

Release

No No No Yes No No No No

138

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-674: Uncontrolled

Recursion
No Yes No No No No No No

CWE-676: Use of Potentially

Dangerous Function
No No Yes No No No No No

CWE-758: Reliance on

Undefined Behavior
No Yes No No No No No No

CWE-761: Free of Pointer not

at Start of Buffer
No No No No No No Yes No

CWE-015: External Control of

System or Configuration

Setting

No No No No No No No No

CWE-090: LDAP Injection No No No No No No No No

CWE-114: Process Control No No No No No No No No

CWE-176: Improper Handling

of Unicode Encoding
No No No No No No No No

CWE-222: Truncation of

Security-relevant Information
No No No No No No No No

CWE-223: Omission of

Security-relevant Information
No No No No No No No No

CWE-226: Sensitive

Information Uncleared Before

Release

No No No No No No No No

CWE-244: Heap Inspection No No No No No No No No

CWE-247: Reliance on DNS

Lookups in a Security Decision
No No No No No No No No

CWE-256: Plaintext Storage of

a Password
No No No No No No No No

CWE-259: Use of Hard-coded

Password
No No No No No No No No

CWE-272: Least Privilege

Violation
No No No No No No No No

CWE-273: Improper Check for

Dropped Privileges
No No No No No No No No

CWE-284: Improper Access

Control
No No No No No No No No

CWE-319: Cleartext

Transmission of Sensitive

Information

No No No No No No No No

139

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-321: Use of Hard-coded

Cryptographic Key
No No No No No No No No

CWE-325: Missing Required

Cryptographic Step
No No No No No No No No

CWE-327: Use of a Broken or

Risky Cryptographic

Algorithm

No No No No No No No No

CWE-328: Reversible One-

Way Hash
No No No No No No No No

CWE-364: Signal Handler

Race Condition
No No No No No No No No

CWE-366: Race Condition

within a Thread
No No No No No No No No

CWE-391: Unchecked Error

Condition
No No No No No No No No

CWE-397: Declaration of

Throws for Generic Exception
No No No No No No No No

CWE-440: Expected Behavior

Violation
No No No No No No No No

CWE-464: Addition of Data

Structure Sentinel
No No No No No No No No

CWE-479: Signal Handler Use

of a Non-reentrant Function
No No No No No No No No

CWE-510: Trapdoor No No No No No No No No

CWE-534: Information

Exposure Through Debug Log

Files

No No No No No No No No

CWE-535: Information

Exposure Through Shell Error

Message

No No No No No No No No

CWE-546: Suspicious

Comment
No No No No No No No No

CWE-591: Sensitive Data

Storage in Improperly Locked

Memory

No No No No No No No No

CWE-605: Multiple Binds to

the Same Port
No No No No No No No No

CWE-615: Information

Exposure Through Comments
No No No No No No No No

140

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet C/C++

CWE
Tool

B

Tool

G

Tool

H

Tool

A

Tool

C

Tool

D

Tool

E

Tool

F

CWE-617: Reachable

Assertion
No No No No No No No No

CWE-620: Unverified

Password Change
No No No No No No No No

CWE-666: Operation on

Resource in Wrong Phase of

Lifetime

No No No No No No No No

CWE-681: Incorrect

Conversion between Numeric

Types

No No No No No No No No

CWE-780: Use of RSA

Algorithm without OAEP
No No No No No No No No

CWE-785: Path Manipulation

Function w/o Max-sized Buffer
No No No No No No No No

CWE-832: Unlock of a

Resource that is not Locked
No No No No No No No No

CWE-835: Infinite Loop No No No No No No No No

CWE-843: Type Confusion No No No No No No No No

Number of supported CWEs

on Juliet C
49 41 36 34 26 22 18 11

Number of unsupported

CWEs on Juliet C
69 77 82 84 92 96 100 107

141

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 65 summarizes which CWEs in the Juliet Java test cases were reported and

unreported by each tool.

Table 65. Reported and Unreported Weakness Classes on Juliet Java.

Reported and Unreported Weakness Classes on Juliet Java

CWE
Tool

L

Tool

N

Tool

O

Tool

M

CWE-382: J2EE Bad Practices: Use of

System.exit()
Yes Yes Yes Yes

CWE-404: Improper Resource Shutdown or

Release
Yes Yes Yes Yes

CWE-481: Assigning instead of Comparing Yes Yes Yes Yes

CWE-563: Unused Variable Yes Yes Yes Yes

CWE-570: Expression is Always False Yes Yes Yes Yes

CWE-572: Call to Thread run() instead of start() Yes Yes Yes Yes

CWE-585: Empty Synchronized Block Yes Yes Yes Yes

CWE-586: Explicit Call to Finalize() Yes Yes Yes Yes

CWE-597: Use of Wrong Operator in String

Comparison
Yes Yes Yes Yes

CWE-772: Missing Release of Resource after

Effective Lifetime
Yes Yes Yes Yes

CWE-833: Deadlock Yes Yes Yes Yes

CWE-023: Relative Path Traversal Yes Yes Yes No

CWE-036: Absolute Path Traversal Yes Yes Yes No

CWE-078: Improper Neutralization of Special

Elements used in an OS Command ('OS Command

Injection')

Yes Yes Yes No

CWE-080: Improper Neutralization of Script-

Related HTML Tags in a Web Page (Basic XSS)
Yes Yes Yes No

CWE-083: Improper Neutralization of Script in

Attributes in a Web Page
Yes Yes Yes No

CWE-089: Improper Neutralization of Special

Elements used in an SQL Command ('SQL

Injection')

Yes Yes Yes No

CWE-113: Improper Neutralization of CRLF

Sequences in HTTP Headers ('HTTP Response

Splitting')

Yes Yes Yes No

CWE-252: Unchecked Return Value Yes Yes Yes No

CWE-259: Use of Hard-coded Password Yes Yes Yes No

CWE-398: Indicator of Poor Code Quality No Yes Yes Yes

CWE-476: NULL Pointer Dereference Yes Yes Yes No

CWE-482: Comparing instead of Assigning Yes Yes No Yes

142

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet Java

CWE
Tool

L

Tool

N

Tool

O

Tool

M

CWE-571: Expression is Always True Yes Yes No Yes

CWE-601: URL Redirection to Untrusted Site

('Open Redirect')
Yes Yes Yes No

CWE-764: Multiple Locks of a Critical Resource Yes Yes No Yes

CWE-765: Multiple Unlocks of a Critical Resource Yes Yes No Yes

CWE-775: Missing Release of File Descriptor or

Handle after Effective Lifetime
Yes Yes Yes No

CWE-832: Unlock of a Resource that is not

Locked
Yes Yes No Yes

CWE-081: Improper Neutralization of Script in an

Error Message Web Page
Yes No Yes No

CWE-114: Process Control Yes No No Yes

CWE-209: Information Exposure Through an Error

Message
Yes No No Yes

CWE-319: Cleartext Transmission of Sensitive

Information
Yes No Yes No

CWE-328: Reversible One-Way Hash Yes No Yes No

CWE-338: Use of Cryptographically Weak PRNG Yes No Yes No

CWE-383: J2EE Bad Practices: Direct Use of

Threads
Yes No No Yes

CWE-390: Detection of Error Condition Without

Action
Yes No No Yes

CWE-395: Use of NullPointerException Catch to

Detect NULL Pointer Dereference
Yes No No Yes

CWE-478: Missing Default Case in Switch

Statement
No No Yes Yes

CWE-483: Incorrect Block Delimitation No Yes No Yes

CWE-484: Omitted Break Statement in Switch No Yes Yes No

CWE-584: Return Inside Finally Block Yes No No Yes

CWE-609: Double-Checked Locking Yes No No Yes

CWE-674: Uncontrolled Recursion No Yes Yes No

CWE-760: Use of a One-Way Hash with a

Predictable Salt
Yes No Yes No

CWE-015: External Control of System or

Configuration Setting
Yes No No No

CWE-090: Improper Neutralization of Special

Elements used in an LDAP Query ('LDAP

Injection')

Yes No No No

CWE-111: Direct Use of Unsafe JNI Yes No No No

143

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet Java

CWE
Tool

L

Tool

N

Tool

O

Tool

M

CWE-226: Sensitive Information Uncleared Before

Release
Yes No No No

CWE-253: Incorrect Check of Function Return

Value
No Yes No No

CWE-256: Plaintext Storage of a Password Yes No No No

CWE-315: Cleartext Storage of Sensitive

Information in a Cookie
Yes No No No

CWE-327: Use of a Broken or Risky

Cryptographic Algorithm
Yes No No No

CWE-336: Same Seed in PRNG Yes No No No

CWE-396: Declaration of Catch for Generic

Exception
No No No Yes

CWE-397: Declaration of Throws for Generic

Exception
No No No Yes

CWE-400: Uncontrolled Resource Consumption

('Resource Exhaustion')
Yes No No No

CWE-470: Use of Externally-Controlled Input to

Select Classes or Code ('Unsafe Reflection')
Yes No No No

CWE-477: Use of Obsolete Functions Yes No No No

CWE-523: Unprotected Transport of Credentials Yes No No No

CWE-526: Information Exposure Through

Environmental Variables
Yes No No No

CWE-533: Information Exposure Through Server

Log Files
Yes No No No

CWE-534: Information Exposure Through Debug

Log Files
Yes No No No

CWE-535: Information Exposure Through Shell

Error Message
Yes No No No

CWE-539: Information Exposure Through

Persistent Cookies
Yes No No No

CWE-549: Missing Password Field Masking Yes No No No

CWE-566: Authorization Bypass Through User-

Controlled SQL Primary Key
Yes No No No

CWE-579: J2EE Bad Practices: Non-serializable

Object Stored in Session
Yes No No No

CWE-614: Sensitive Cookie in HTTPS Session

Without 'Secure' Attribute
Yes No No No

CWE-643: Improper Neutralization of Data within

XPath Expressions ('XPath Injection')
Yes No No No

144

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet Java

CWE
Tool

L

Tool

N

Tool

O

Tool

M

CWE-690: Unchecked Return Value to NULL

Pointer Dereference
Yes No No No

CWE-129: Improper Validation of Array Index No No No No

CWE-134: Uncontrolled Format String No No No No

CWE-190: Integer Overflow or Wraparound No No No No

CWE-191: Integer Underflow (Wrap or

Wraparound)
No No No No

CWE-193: Off-by-one Error No No No No

CWE-197: Numeric Truncation Error No No No No

CWE-248: Uncaught Exception No No No No

CWE-321: Use of Hard-coded Cryptographic Key No No No No

CWE-325: Missing Required Cryptographic Step No No No No

CWE-329: Not Using a Random IV with CBC

Mode
No No No No

CWE-369: Divide By Zero No No No No

CWE-378: Creation of Temporary File With

Insecure Permissions
No No No No

CWE-379: Creation of Temporary File in

Directory with Incorrect Permissions
No No No No

CWE-459: Incomplete Cleanup No No No No

CWE-486: Comparison of Classes by Name No No No No

CWE-491: Public cloneable() Method Without

Final ('Object Hijack')
No No No No

CWE-500: Public Static Field Not Marked Final No No No No

CWE-506: Embedded Malicious Code No No No No

CWE-510: Trapdoor No No No No

CWE-511: Logic/Time Bomb No No No No

CWE-546: Suspicious Comment No No No No

CWE-561: Dead Code No No No No

CWE-568: finalize() Method Without

super.finalize()
No No No No

CWE-580: clone() Method Without super.clone() No No No No

CWE-581: Object Model Violation: Just One of

Equals and Hashcode Defined
No No No No

CWE-582: Array Declared Public, Final, and Static No No No No

CWE-598: Information Exposure Through Query

Strings in GET Request
No No No No

CWE-600: Uncaught Exception in Servlet No No No No

145

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Reported and Unreported Weakness Classes on Juliet Java

CWE
Tool

L

Tool

N

Tool

O

Tool

M

CWE-605: Multiple Binds to the Same Port No No No No

CWE-606: Unchecked Input for Loop Condition No No No No

CWE-607: Public Static Final Field References

Mutable Object
No No No No

CWE-613: Insufficient Session Expiration No No No No

CWE-615: Information Exposure Through

Comments
No No No No

CWE-617: Reachable Assertion No No No No

CWE-667: Improper Locking No No No No

CWE-681: Incorrect Conversion between Numeric

Types
No No No No

CWE-698: Execution After Redirect (EAR) No No No No

CWE-759: Use of a One-Way Hash without a Salt No No No No

CWE-789: Uncontrolled Memory Allocation No No No No

CWE-835: Loop with Unreachable Exit Condition

('Infinite Loop')
No No No No

Number of supported CWEs on Juliet Java 63 33 32 28

Number of unsupported CWEs on Juliet Java 48 78 79 83

146

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix F: Recall per CWE on Juliet C and Java

Appendix F summarizes the recall results per CWE for each tool on the Juliet test suites

(C/C++ and Java).

Table 66 summarizes the recall results per CWE for each tool on the Juliet C/C++ test

cases.

Table 66. Recall per CWE on Juliet C/C++.

Recall per CWE on Juliet C/C++

CWE Tool Recall

CWE-23: Relative Path Traversal

Tool A 11 %

Tool D 20 %

Tool H 10 %

CWE-36: Absolute Path Traversal
Tool A 10 %

Tool H 10 %

CWE-78: Improper Neutralization of Special Elements used

in an OS Command ('OS Command Injection')

Tool A 11 %

Tool B 13 %

Tool C 20 %

Tool G 2 %

Tool H 20 %

CWE-121: Stack-based Buffer Overflow

Tool A 12 %

Tool B 14 %

Tool C 25 %

Tool D 2 %

Tool E 3 %

Tool F 74 %

Tool G 1 %

Tool H 21 %

CWE-122: Heap-based Buffer Overflow

Tool A 12 %

Tool B 5 %

Tool C 23 %

Tool D 1 %

Tool E 1 %

Tool F 38 %

Tool H 24 %

CWE-123: Write-what-where Condition Tool F 79 %

CWE-124: Buffer Underwrite ('Buffer Underflow')

Tool A 21 %

Tool B 5 %

Tool C 9 %

147

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet C/C++

CWE Tool Recall

Tool F 61 %

Tool G 0 %

Tool H 9 %

CWE-126: Buffer Over-read

Tool A 7 %

Tool B 7 %

Tool C 24 %

Tool D 0 %

Tool F 60 %

Tool G 0 %

Tool H 2 %

CWE-127: Buffer Under-read

Tool A 13 %

Tool B 14 %

Tool C 17 %

Tool F 61 %

Tool G 0 %

Tool H 9 %

CWE-134: Uncontrolled Format String

Tool A 19 %

Tool B 26 %

Tool C 25 %

Tool D 42 %

Tool G 2 %

Tool H 42 %

CWE-188: Reliance on Data/Memory Layout

Tool A 50 %

Tool B 47 %

Tool G 14 %

Tool H 50 %

CWE-190: Integer Overflow or Wraparound

Tool A 21 %

Tool D 0 %

Tool F 40 %

CWE-191: Integer Underflow (Wrap or Wraparound)
Tool A 18 %

Tool D 0 %

CWE-194: Unexpected Sign Extension

Tool A 72 %

Tool B 24 %

Tool E 7 %

Tool H 63 %

CWE-195: Signed to Unsigned Conversion Error
Tool A 87 %

Tool B 32 %

148

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet C/C++

CWE Tool Recall

Tool E 11 %

Tool H 59 %

CWE-196: Unsigned to Signed Conversion Error
Tool A 100 %

Tool G 6 %

CWE-197: Numeric Truncation Error
Tool A 25 %

Tool G 2 %

CWE-242: Use of Inherently Dangerous Function

Tool C 100 %

Tool E 100 %

Tool G 6 %

Tool H 100 %

CWE-252: Unchecked Return Value

Tool A 40 %

Tool B 34 %

Tool C 14 %

Tool G 7 %

Tool H 11 %

CWE-253: Incorrect Check of Function Return Value
Tool B 5 %

Tool C 13 %

CWE-338: Use of Cryptographically Weak PRNG Tool G 6 %

CWE-367: Time-of-check Time-of-use (TOCTOU) Race

Condition

Tool B 100 %

Tool C 100 %

Tool H 50 %

CWE-369: Divide By Zero

Tool A 31 %

Tool B 19 %

Tool D 1 %

Tool E 6 %

Tool F 79 %

Tool G 1 %

CWE-377: Insecure Temporary File

Tool B 38 %

Tool E 13 %

Tool H 38 %

CWE-390: Detection of Error Condition Without Action
Tool C 20 %

Tool D 20 %

CWE-396: Declaration of Catch for Generic Exception Tool B 33 %

CWE-398: Indicator of Poor Code Quality
Tool D 20 %

Tool G 2 %

CWE-400: Uncontrolled Resource Consumption ('Resource

Exhaustion')

Tool B 54 %

Tool C 5 %

149

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet C/C++

CWE Tool Recall

Tool H 24 %

CWE-401: Improper Release of Memory Before Removing

Last Reference ('Memory Leak')

Tool A 29 %

Tool B 54 %

Tool C 0 %

Tool E 31 %

Tool G 1 %

Tool H 67 %

CWE-404: Improper Resource Shutdown or Release

Tool B 3 %

Tool G 2 %

Tool H 4 %

CWE-415: Double Free

Tool A 35 %

Tool B 44 %

Tool D 2 %

Tool E 41 %

Tool G 1 %

Tool H 48 %

CWE-416: Use After Free

Tool A 55 %

Tool B 70 %

Tool C 0 %

Tool E 33 %

Tool G 2 %

Tool H 67 %

CWE-426: Untrusted Search Path Tool C 50 %

CWE-427: Uncontrolled Search Path Element

Tool A 27 %

Tool B 32 %

Tool D 20 %

Tool H 12 %

CWE-457: Use of Uninitialized Variable

Tool A 17 %

Tool B 43 %

Tool C 0 %

Tool D 15 %

Tool E 43 %

Tool F 59 %

Tool G 2 %

Tool H 15 %

CWE-459: Incomplete Cleanup Tool B 50 %

CWE-467: Use of sizeof() on a Pointer Type Tool A 100 %

150

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet C/C++

CWE Tool Recall

Tool B 100 %

Tool G 22 %

CWE-468: Incorrect Pointer Scaling

Tool B 51 %

Tool D 49 %

Tool G 30 %

Tool H 3 %

CWE-469: Use of Pointer Subtraction to Determine Size Tool G 28 %

CWE-475: Undefined Behavior for Input to API Tool G 28 %

CWE-476: NULL Pointer Dereference

Tool A 55 %

Tool B 60 %

Tool D 20 %

Tool E 52 %

Tool F 78 %

Tool G 4 %

Tool H 47 %

CWE-478: Missing Default Case in Switch Statement Tool G 39 %

CWE-480: Use of Incorrect Operator
Tool B 100 %

Tool G 6 %

CWE-481: Assigning instead of Comparing

Tool B 100 %

Tool D 100 %

Tool G 39 %

CWE-482: Comparing instead of Assigning
Tool B 100 %

Tool G 39 %

CWE-483: Incorrect Block Delimitation

Tool B 95 %

Tool D 5 %

Tool G 45 %

CWE-484: Omitted Break Statement in Switch
Tool B 100 %

Tool G 39 %

CWE-500: Public Static Field Not Marked Final Tool C 100 %

CWE-506: Embedded Malicious Code Tool C 22 %

CWE-511: Logic/Time Bomb Tool C 50 %

CWE-526: Information Exposure Through Environmental

Variables
Tool H 100 %

CWE-561: Dead Code

Tool A 100 %

Tool B 50 %

Tool G 50 %

Tool H 50 %

151

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet C/C++

CWE Tool Recall

CWE-562: Return of Stack Variable Address

Tool A 33 %

Tool B 67 %

Tool D 33 %

Tool E 100 %

Tool F 67 %

Tool G 67 %

CWE-563: Unused Variable

Tool A 64 %

Tool C 5 %

Tool E 36 %

Tool G 5 %

Tool H 43 %

CWE-570: Expression is Always False

Tool A 56 %

Tool B 13 %

Tool D 6 %

Tool G 38 %

CWE-571: Expression is Always True

Tool A 50 %

Tool B 19 %

Tool D 6 %

Tool G 38 %

CWE-587: Assignment of a Fixed Address to a Pointer
Tool D 100 %

Tool G 39 %

CWE-588: Attempt to Access Child of a Non-structure

Pointer

Tool B 15 %

Tool E 9 %

CWE-590: Free of Memory not on the Heap

Tool B 37 %

Tool E 27 %

Tool G 0 %

Tool H 7 %

CWE-606: Unchecked Input for Loop Condition
Tool B 32 %

Tool G 4 %

CWE-665: Improper Initialization Tool H 1 %

CWE-667: Improper Locking Tool B 6 %

CWE-672: Operation on a Resource after Expiration or

Release
Tool A 91 %

CWE-674: Uncontrolled Recursion Tool G 100 %

CWE-675: Duplicate Operations on Resource
Tool B 67 %

Tool H 2 %

CWE-676: Use of Potentially Dangerous Function Tool H 100 %

152

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet C/C++

CWE Tool Recall

CWE-680: Integer Overflow to Buffer Overflow

Tool A 30 %

Tool B 49 %

Tool C 17 %

Tool H 60 %

CWE-685: Function Call With Incorrect Number of

Arguments

Tool B 100 %

Tool C 100 %

CWE-688: Function Call With Incorrect Variable or

Reference as Argument

Tool B 100 %

Tool C 100 %

Tool G 39 %

CWE-690: Unchecked Return Value to NULL Pointer

Dereference

Tool B 2 %

Tool C 15 %

Tool H 59 %

CWE-758: Reliance on Undefined, Unspecified, or

Implementation-Defined Behavior
Tool G 1 %

CWE-761: Free of Pointer not at Start of Buffer Tool E 28 %

CWE-762: Mismatched Memory Management Routines

Tool A 25 %

Tool B 58 %

Tool C 14 %

Tool D 2 %

Tool E 47 %

CWE-773: Missing Reference to Active File Descriptor or

Handle

Tool B 51 %

Tool H 53 %

CWE-775: Missing Release of File Descriptor or Handle

after Effective Lifetime

Tool B 51 %

Tool H 53 %

CWE-789: Uncontrolled Memory Allocation
Tool A 20 %

Tool B 26 %

153

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 67 summarizes the recall results per CWE for each tool on the Juliet Java test

cases.

Table 67. Recall per CWE on Juliet Java.

Recall per CWE on Juliet Java

CWE Tool Recall

CWE-15: External Control of System or Configuration

Setting
Tool L 100 %

CWE-23: Relative Path Traversal Tool L 100 %

Tool N 43 %

Tool O 100 %

CWE-36: Absolute Path Traversal

Tool L 100 %

Tool N 43 %

Tool O 100 %

CWE-78: Improper Neutralization of Special Elements used

in an OS Command ('OS Command Injection')

Tool L 100 %

Tool N 47 %

Tool O 100 %

CWE-80: Improper Neutralization of Script-Related HTML

Tags in a Web Page (Basic XSS)

Tool L 54 %

Tool N 63 %

Tool O 3 %

CWE-81: Improper Neutralization of Script in an Error

Message Web Page

Tool L 54 %

Tool O 6 %

CWE-83: Improper Neutralization of Script in Attributes in a

Web Page

Tool L 54 %

Tool N 63 %

Tool O 6 %

CWE-89: Improper Neutralization of Special Elements used

in an SQL Command ('SQL Injection')

Tool L 100 %

Tool N 47 %

Tool O 80 %

CWE-90: Improper Neutralization of Special Elements used

in an LDAP Query ('LDAP Injection')
Tool L 100 %

CWE-111: Direct Use of Unsafe JNI Tool L 100 %

CWE-113: Improper Neutralization of CRLF Sequences in

HTTP Headers ('HTTP Response Splitting')

Tool L 41 %

Tool N 4 %

Tool O 4 %

CWE-114: Process Control
Tool L 100 %

Tool M 100 %

CWE-209: Information Exposure Through an Error Message
Tool L 100 %

Tool M 50 %

154

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet Java

CWE Tool Recall

CWE-226: Sensitive Information Uncleared Before Release Tool L 100 %

CWE-252: Unchecked Return Value

Tool L 100 %

Tool N 100 %

Tool O 100 %

CWE-253: Incorrect Check of Function Return Value Tool N 100 %

CWE-256: Plaintext Storage of a Password Tool L 100 %

CWE-259: Use of Hard-coded Password

Tool L 27 %

Tool N 9 %

Tool O 9 %

CWE-315: Cleartext Storage of Sensitive Information in a

Cookie
Tool L 100 %

CWE-319: Cleartext Transmission of Sensitive Information
Tool L 100 %

Tool O 40 %

CWE-327: Use of a Broken or Risky Cryptographic

Algorithm
Tool L 53 %

CWE-328: Reversible One-Way Hash
Tool L 100 %

Tool O 67 %

CWE-336: Same Seed in PRNG Tool L 100 %

CWE-338: Use of Cryptographically Weak PRNG
Tool L 100 %

Tool O 100 %

CWE-382: J2EE Bad Practices: Use of System.exit()

Tool L 50 %

Tool M 100 %

Tool N 50 %

Tool O 50 %

CWE-383: J2EE Bad Practices: Direct Use of Threads
Tool L 100 %

Tool M 100 %

CWE-390: Detection of Error Condition Without Action
Tool L 50 %

Tool M 50 %

CWE-395: Use of NullPointerException Catch to Detect

NULL Pointer Dereference

Tool L 100 %

Tool M 100 %

CWE-396: Declaration of Catch for Generic Exception Tool M 100 %

CWE-397: Declaration of Throws for Generic Exception Tool M 75 %

CWE-398: Indicator of Poor Code Quality

Tool M 76 %

Tool N 12 %

Tool O 12 %

155

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet Java

CWE Tool Recall

CWE-400: Uncontrolled Resource Consumption ('Resource

Exhaustion')
Tool L 24 %

CWE-404: Improper Resource Shutdown or Release

Tool L 60 %

Tool M 20 %

Tool N 60 %

Tool O 40 %

CWE-470: Use of Externally-Controlled Input to Select

Classes or Code ('Unsafe Reflection')
Tool L 100 %

CWE-476: NULL Pointer Dereference

Tool L 66 %

Tool N 80 %

Tool O 64 %

CWE-477: Use of Obsolete Functions Tool L 100 %

CWE-478: Missing Default Case in Switch Statement
Tool M 100 %

Tool O 100 %

CWE-481: Assigning instead of Comparing

Tool L 100 %

Tool M 6 %

Tool N 100 %

Tool O 100 %

CWE-482: Comparing instead of Assigning

Tool L 65 %

Tool M 6 %

Tool N 6 %

CWE-483: Incorrect Block Delimitation
Tool M 89 %

Tool N 95 %

CWE-484: Omitted Break Statement in Switch
Tool N 100 %

Tool O 100 %

CWE-523: Unprotected Transport of Credentials Tool L 100 %

CWE-526: Information Exposure Through Environmental

Variables
Tool L 100 %

CWE-533: Information Exposure Through Server Log Files Tool L 100 %

CWE-534: Information Exposure Through Debug Log Files Tool L 100 %

CWE-535: Information Exposure Through Shell Error

Message
Tool L 100 %

CWE-539: Information Exposure Through Persistent

Cookies
Tool L 100 %

CWE-549: Missing Password Field Masking Tool L 100 %

156

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet Java

CWE Tool Recall

CWE-563: Unused Variable

Tool L 29 %

Tool M 92 %

Tool N 15 %

Tool O 15 %

CWE-566: Authorization Bypass Through User-Controlled

SQL Primary Key
Tool L 100 %

CWE-570: Expression is Always False

Tool L 69 %

Tool M 6 %

Tool N 6 %

Tool O 6 %

CWE-571: Expression is Always True

Tool L 69 %

Tool M 6 %

Tool N 6 %

CWE-572: Call to Thread run() instead of start()

Tool L 100 %

Tool M 100 %

Tool N 100 %

Tool O 100 %

CWE-579: J2EE Bad Practices: Non-serializable Object

Stored in Session
Tool L 100 %

CWE-584: Return Inside Finally Block
Tool L 100 %

Tool M 100 %

CWE-585: Empty Synchronized Block

Tool L 100 %

Tool M 100 %

Tool N 100 %

Tool O 100 %

CWE-586: Explicit Call to Finalize()

Tool L 100 %

Tool M 100 %

Tool N 100 %

Tool O 100 %

CWE-597: Use of Wrong Operator in String Comparison

Tool L 100 %

Tool M 100 %

Tool N 94 %

Tool O 94 %

CWE-601: URL Redirection to Untrusted Site ('Open

Redirect')

Tool L 54 %

Tool N 6 %

Tool O 100 %

CWE-609: Double-Checked Locking Tool L 100 %

157

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Recall per CWE on Juliet Java

CWE Tool Recall

Tool M 100 %

CWE-614: Sensitive Cookie in HTTPS Session Without

'Secure' Attribute
Tool L 100 %

CWE-643: Improper Neutralization of Data within XPath

Expressions ('XPath Injection')
Tool L 100 %

CWE-674: Uncontrolled Recursion
Tool N 50 %

Tool O 50 %

CWE-690: Unchecked Return Value to NULL Pointer

Dereference
Tool L 59 %

CWE-760: Use of a One-Way Hash with a Predictable Salt
Tool L 100 %

Tool O 100 %

CWE-764: Multiple Locks of a Critical Resource

Tool L 50 %

Tool M 50 %

Tool N 100 %

CWE-765: Multiple Unlocks of a Critical Resource

Tool L 50 %

Tool M 50 %

Tool N 100 %

CWE-772: Missing Release of Resource after Effective

Lifetime

Tool L 50 %

Tool M 50 %

Tool N 50 %

Tool O 50 %

CWE-775: Missing Release of File Descriptor or Handle

after Effective Lifetime

Tool L 100 %

Tool N 100 %

Tool O 100 %

CWE-832: Unlock of a Resource that is not Locked

Tool L 50 %

Tool M 50 %

Tool N 50 %

CWE-833: Deadlock

Tool L 67 %

Tool M 50 %

Tool N 100 %

Tool O 67 %

158

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix G: Applicable Recall per CWE on Juliet

Appendix G summarizes the applicable recall results per CWE for each tool on the Juliet

test suites (C/C++ and Java).

Table 68 summarizes the applicable recall results per CWE for each tool on the Juliet

C/C++ test cases.

Table 68. Applicable Recall per CWE on Juliet C/C++.

Applicable Recall per CWE on Juliet C/C++

CWE
Tool

F

Tool

H

Tool

B

Tool

A

Tool

E

Tool

C

Tool

D

Tool

G
Recall/CWE

CWE-685: Function

Call With Incorrect

Number of Arguments

 100 % 100 % 100 %

CWE-676: Use of

Potentially Dangerous

Function

 100 % 100 %

CWE-674:

Uncontrolled Recursion
 100 % 100 %

CWE-526: Information

Exposure Through

Environmental

Variables

 100 % 100 %

CWE-500: Public Static

Field Not Marked Final
 100 % 100 %

CWE-672: Operation

on a Resource after

Expiration or Release

 91 % 91 %

CWE-367: Time-of-

check Time-of-use

(TOCTOU) Race

Condition

 50 % 100 % 100 % 83 %

CWE-688: Function

Call With Incorrect

Variable or Reference

as Argument

 100 % 100 % 39 % 80 %

CWE-481: Assigning

instead of Comparing
 100 % 100 % 39 % 80 %

CWE-123: Write-what-

where Condition
79 % 79 %

CWE-242: Use of

Inherently Dangerous

Function

 100 % 100 % 100 % 6 % 76 %

CWE-467: Use of

sizeof() on a Pointer

Type

 100 % 100 % 22 % 74 %

CWE-587: Assignment

of a Fixed Address to a

Pointer

 100 % 39 % 69 %

159

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Applicable Recall per CWE on Juliet C/C++

CWE
Tool

F

Tool

H

Tool

B

Tool

A

Tool

E

Tool

C

Tool

D

Tool

G
Recall/CWE

CWE-484: Omitted

Break Statement in

Switch

 100 % 39 % 69 %

CWE-482: Comparing

instead of Assigning
 100 % 39 % 69 %

CWE-561: Dead Code 50 % 50 % 100 % 50 % 63 %

CWE-562: Return of

Stack Variable Address
67 % 67 % 33 % 100 % 33 % 67 % 61 %

CWE-480: Use of

Incorrect Operator
 100 % 6 % 53 %

CWE-196: Unsigned to

Signed Conversion

Error

 100 % 6 % 53 %

CWE-775: Missing

Release of File

Descriptor or Handle

after Effective Lifetime

 53 % 51 % 52 %

CWE-773: Missing

Reference to Active

File Descriptor or

Handle

 53 % 51 % 52 %

CWE-511: Logic/Time

Bomb
 50 % 50 %

CWE-459: Incomplete

Cleanup
 50 % 50 %

CWE-426: Untrusted

Search Path
 50 % 50 %

CWE-483: Incorrect

Block Delimitation
 95 % 5 % 45 % 48 %

CWE-195: Signed to

Unsigned Conversion

Error

 59 % 32 % 87 % 11 % 47 %

CWE-476: NULL

Pointer Dereference
78 % 47 % 60 % 55 % 52 % 20 % 4 % 45 %

CWE-194: Unexpected

Sign Extension
 63 % 24 % 72 % 7 % 42 %

CWE-188: Reliance on

Data/Memory Layout
 50 % 47 % 50 % 14 % 40 %

CWE-478: Missing

Default Case in Switch

Statement

 39 % 39 %

CWE-680: Integer

Overflow to Buffer

Overflow

 60 % 49 % 30 % 17 % 39 %

CWE-416: Use After

Free
 67 % 70 % 55 % 33 % 0 % 2 % 38 %

CWE-675: Duplicate

Operations on Resource
 2 % 67 % 34 %

160

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Applicable Recall per CWE on Juliet C/C++

CWE
Tool

F

Tool

H

Tool

B

Tool

A

Tool

E

Tool

C

Tool

D

Tool

G
Recall/CWE

CWE-396: Declaration

of Catch for Generic

Exception

 33 % 33 %

CWE-468: Incorrect

Pointer Scaling
 3 % 51 % 49 % 30 % 33 %

CWE-563: Unused

Variable
 43 % 64 % 36 % 5 % 5 % 31 %

CWE-401: Improper

Release of Memory

Before Removing Last

Reference ('Memory

Leak')

 67 % 54 % 29 % 31 % 0 % 1 % 30 %

CWE-762: Mismatched

Memory Management

Routines

 58 % 25 % 47 % 14 % 2 % 29 %

CWE-377: Insecure

Temporary File
 38 % 38 % 13 % 29 %

CWE-415: Double Free 48 % 44 % 35 % 41 % 2 % 1 % 28 %

CWE-761: Free of

Pointer not at Start of

Buffer

 28 % 28 %

CWE-571: Expression

is Always True
 19 % 50 % 6 % 38 % 28 %

CWE-570: Expression

is Always False
 13 % 56 % 6 % 38 % 28 %

CWE-475: Undefined

Behavior for Input to

API

 28 % 28 %

CWE-469: Use of

Pointer Subtraction to

Determine Size

 28 % 28 %

CWE-400:

Uncontrolled Resource

Consumption

('Resource Exhaustion')

 24 % 54 % 5 % 27 %

CWE-134:

Uncontrolled Format

String

 42 % 26 % 19 % 25 % 42 % 2 % 26 %

CWE-690: Unchecked

Return Value to NULL

Pointer Dereference

 59 % 2 % 15 % 25 %

CWE-457: Use of

Uninitialized Variable
59 % 15 % 43 % 17 % 43 % 0 % 15 % 2 % 24 %

CWE-369: Divide By

Zero
79 % 19 % 31 % 6 % 1 % 1 % 23 %

CWE-427:

Uncontrolled Search

Path Element

 12 % 32 % 27 % 20 % 23 %

161

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Applicable Recall per CWE on Juliet C/C++

CWE
Tool

F

Tool

H

Tool

B

Tool

A

Tool

E

Tool

C

Tool

D

Tool

G
Recall/CWE

CWE-789:

Uncontrolled Memory

Allocation

 26 % 20 % 23 %

CWE-506: Embedded

Malicious Code
 22 % 22 %

CWE-252: Unchecked

Return Value
 11 % 34 % 40 % 14 % 7 % 21 %

CWE-190: Integer

Overflow or

Wraparound

40 % 21 % 0 % 20 %

CWE-390: Detection of

Error Condition

Without Action

 20 % 20 % 20 %

CWE-127: Buffer

Under-read
61 % 9 % 14 % 13 % 17 % 0 % 19 %

CWE-121: Stack-based

Buffer Overflow
74 % 21 % 14 % 12 % 3 % 25 % 2 % 1 % 19 %

CWE-606: Unchecked

Input for Loop

Condition

 32 % 4 % 18 %

CWE-590: Free of

Memory not on the

Heap

 7 % 37 % 27 % 0 % 18 %

CWE-124: Buffer

Underwrite ('Buffer

Underflow')

61 % 9 % 5 % 21 % 9 % 0 % 17 %

CWE-122: Heap-based

Buffer Overflow
38 % 24 % 5 % 12 % 1 % 23 % 1 % 15 %

CWE-126: Buffer

Over-read
60 % 2 % 7 % 7 % 24 % 0 % 0 % 14 %

CWE-23: Relative Path

Traversal
 10 % 11 % 20 % 14 %

CWE-197: Numeric

Truncation Error
 25 % 2 % 13 %

CWE-78: Improper

Neutralization of

Special Elements used

in an OS Command

('OS Command

Injection')

 20 % 13 % 11 % 20 % 2 % 13 %

CWE-588: Attempt to

Access Child of a Non-

structure Pointer

 15 % 9 % 12 %

CWE-398: Indicator of

Poor Code Quality
 20 % 2 % 11 %

CWE-36: Absolute Path

Traversal
 10 % 10 % 10 %

CWE-253: Incorrect

Check of Function

Return Value

 5 % 13 % 9 %

162

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Applicable Recall per CWE on Juliet C/C++

CWE
Tool

F

Tool

H

Tool

B

Tool

A

Tool

E

Tool

C

Tool

D

Tool

G
Recall/CWE

CWE-191: Integer

Underflow (Wrap or

Wraparound)

 18 % 0 % 9 %

CWE-667: Improper

Locking
 6 % 6 %

CWE-338: Use of

Cryptographically

Weak PRNG

 6 % 6 %

CWE-404: Improper

Resource Shutdown or

Release

 4 % 3 % 2 % 3 %

CWE-665: Improper

Initialization
 1 % 1 %

CWE-758: Reliance on

Undefined,

Unspecified, or

Implementation-

Defined Behavior

 1 % 1 %

Average Applicable

Recall
56 % 25 % 25 % 21 % 19 % 18 % 8 % 2 % 21 %

163

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 69 summarizes the applicable recall results per CWE for each tool on the Juliet

Java test cases.

Table 69. Applicable Recall per CWE on Juliet Java.

Applicable Recall per CWE on Juliet Java

CWE Tool M Tool L Tool O Tool N Recall /CWE

CWE-90: Improper Neutralization of Special

Elements used in an LDAP Query ('LDAP

Injection')

 100 % 100 %

CWE-775: Missing Release of File Descriptor

or Handle after Effective Lifetime
 100 % 100 % 100 % 100 %

CWE-760: Use of a One-Way Hash with a

Predictable Salt
 100 % 100 % 100 %

CWE-643: Improper Neutralization of Data

within XPath Expressions ('XPath Injection')
 100 % 100 %

CWE-614: Sensitive Cookie in HTTPS

Session Without 'Secure' Attribute
 100 % 100 %

CWE-609: Double-Checked Locking 100 % 100 % 100 %

CWE-586: Explicit Call to Finalize() 100 % 100 % 100 % 100 % 100 %

CWE-585: Empty Synchronized Block 100 % 100 % 100 % 100 % 100 %

CWE-584: Return Inside Finally Block 100 % 100 % 100 %

CWE-579: J2EE Bad Practices: Non-

serializable Object Stored in Session
 100 % 100 %

CWE-572: Call to Thread run() instead of

start()
100 % 100 % 100 % 100 % 100 %

CWE-566: Authorization Bypass Through

User-Controlled SQL Primary Key
 100 % 100 %

CWE-549: Missing Password Field Masking 100 % 100 %

CWE-539: Information Exposure Through

Persistent Cookies
 100 % 100 %

CWE-535: Information Exposure Through

Shell Error Message
 100 % 100 %

CWE-534: Information Exposure Through

Debug Log Files
 100 % 100 %

CWE-533: Information Exposure Through

Server Log Files
 100 % 100 %

CWE-526: Information Exposure Through

Environmental Variables
 100 % 100 %

CWE-523: Unprotected Transport of

Credentials
 100 % 100 %

CWE-484: Omitted Break Statement in Switch 100 % 100 % 100 %

CWE-478: Missing Default Case in Switch

Statement
100 % 100 % 100 %

CWE-477: Use of Obsolete Functions 100 % 100 %

CWE-470: Use of Externally-Controlled Input

to Select Classes or Code ('Unsafe Reflection')
 100 % 100 %

CWE-396: Declaration of Catch for Generic

Exception
100 % 100 %

164

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Applicable Recall per CWE on Juliet Java

CWE Tool M Tool L Tool O Tool N Recall /CWE

CWE-395: Use of NullPointerException Catch

to Detect NULL Pointer Dereference
100 % 100 % 100 %

CWE-383: J2EE Bad Practices: Direct Use of

Threads
100 % 100 % 100 %

CWE-338: Use of Cryptographically Weak

PRNG
 100 % 100 % 100 %

CWE-336: Same Seed in PRNG 100 % 100 %

CWE-315: Cleartext Storage of Sensitive

Information in a Cookie
 100 % 100 %

CWE-256: Plaintext Storage of a Password 100 % 100 %

CWE-253: Incorrect Check of Function

Return Value
 100 % 100 %

CWE-252: Unchecked Return Value 100 % 100 % 100 % 100 %

CWE-226: Sensitive Information Uncleared

Before Release
 100 % 100 %

CWE-15: External Control of System or

Configuration Setting
 100 % 100 %

CWE-114: Process Control 100 % 100 % 100 %

CWE-111: Direct Use of Unsafe JNI 100 % 100 %

CWE-597: Use of Wrong Operator in String

Comparison
100 % 100 % 94 % 94 % 97 %

CWE-483: Incorrect Block Delimitation 89 % 95 % 92 %

CWE-328: Reversible One-Way Hash 100 % 67 % 83 %

CWE-78: Improper Neutralization of Special

Elements used in an OS Command ('OS

Command Injection')

 100 % 100 % 47 % 82 %

CWE-36: Absolute Path Traversal 100 % 100 % 43 % 81 %

CWE-23: Relative Path Traversal 100 % 100 % 43 % 81 %

CWE-481: Assigning instead of Comparing 6 % 100 % 100 % 100 % 76 %

CWE-89: Improper Neutralization of Special

Elements used in an SQL Command ('SQL

Injection')

 100 % 80 % 47 % 76 %

CWE-397: Declaration of Throws for Generic

Exception
75 % 75 %

CWE-209: Information Exposure Through an

Error Message
50 % 100 % 75 %

CWE-833: Deadlock 50 % 67 % 67 % 100 % 71 %

CWE-319: Cleartext Transmission of

Sensitive Information
 100 % 40 % 70 %

CWE-476: NULL Pointer Dereference 66 % 64 % 80 % 70 %

CWE-765: Multiple Unlocks of a Critical

Resource
50 % 50 % 100 % 67 %

CWE-764: Multiple Locks of a Critical

Resource
50 % 50 % 100 % 67 %

CWE-382: J2EE Bad Practices: Use of

System.exit()
100 % 50 % 50 % 50 % 63 %

CWE-690: Unchecked Return Value to NULL

Pointer Dereference
 59 % 59 %

165

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Applicable Recall per CWE on Juliet Java

CWE Tool M Tool L Tool O Tool N Recall /CWE

CWE-601: URL Redirection to Untrusted Site

('Open Redirect')
 54 % 100 % 6 % 53 %

CWE-327: Use of a Broken or Risky

Cryptographic Algorithm
 53 % 53 %

CWE-832: Unlock of a Resource that is not

Locked
50 % 50 % 50 % 50 %

CWE-772: Missing Release of Resource after

Effective Lifetime
50 % 50 % 50 % 50 % 50 %

CWE-674: Uncontrolled Recursion 50 % 50 % 50 %

CWE-390: Detection of Error Condition

Without Action
50 % 50 % 50 %

CWE-404: Improper Resource Shutdown or

Release
20 % 60 % 40 % 60 % 45 %

CWE-83: Improper Neutralization of Script in

Attributes in a Web Page
 54 % 6 % 63 % 41 %

CWE-80: Improper Neutralization of Script-

Related HTML Tags in a Web Page (Basic

XSS)

 54 % 3 % 63 % 40 %

CWE-563: Unused Variable 92 % 29 % 15 % 15 % 38 %

CWE-398: Indicator of Poor Code Quality 76 % 12 % 12 % 34 %

CWE-81: Improper Neutralization of Script in

an Error Message Web Page
 54 % 6 % 30 %

CWE-571: Expression is Always True 6 % 69 % 6 % 27 %

CWE-482: Comparing instead of Assigning 6 % 65 % 6 % 25 %

CWE-400: Uncontrolled Resource

Consumption ('Resource Exhaustion')
 24 % 24 %

CWE-570: Expression is Always False 6 % 69 % 6 % 6 % 22 %

CWE-113: Improper Neutralization of CRLF

Sequences in HTTP Headers ('HTTP

Response Splitting')

 41 % 4 % 4 % 16 %

CWE-259: Use of Hard-coded Password 27 % 9 % 9 % 15 %

Average Applicable Recall 78 % 73 % 52 % 39 % 58 %

166

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Appendix H: Complete Versions of Tables of CVEs Found and Missed

For readability, in Sec. 3.2.3.3, Tables 29 to 33 omitted columns for tools that did not

find any CVE. For completeness, we include the versions of the tables with all columns

here.

Table 70. CVEs Found and Missed on Asterisk.

Difficulty CVE Type Tool H Tool J Tool B Tool A Tool G Tool C Tool E Tool K

Simple

CVE-2012-1183 BOF Match Match Match Miss Miss Miss Miss Miss

CVE-2013-2686 REX Match Match Miss Match Miss Miss Miss Miss

CVE-2012-2415 BOF Match Miss Miss Miss Miss Miss Miss Miss

CVE-2012-1184 BOF Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-2416 NPD Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-2947 NPD Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-3553 NPD Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-2948 NPD Miss Miss Miss Miss Miss Miss

Medium CVE-2012-3812 FREE Miss Miss Miss Miss Miss Miss

Extreme

CVE-2012-5977 REX Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4737 IAC Miss Miss Miss Miss

CVE-2012-3863 REX Miss Miss Miss Miss Miss Miss

CVE-2012-2186 IAC Miss

CVE-2012-2414 IAC Miss

Table 71. Simple-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

D

Tool

E

Tool

K

Simple

CVE-2012-5240 BOF Match Miss Match Miss Match Match Miss Miss Miss

CVE-2013-2475 NPD Match Miss Match Miss Match Miss Miss Match Miss

CVE-2013-2481 REX Match Miss Miss Hint Miss Miss Miss Miss

CVE-2012-4285 DIV Match Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4286 DIV Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4296 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1587 ASRT Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4293 ASRT Miss Miss Miss Miss Miss Miss

CVE-2012-5238 ASRT Miss Miss Miss Miss Miss Miss

167

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 72. Medium-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

D

Tool

E

Tool

K

Medium

CVE-2013-3559 (1) BOF Miss Partial Match Partial Miss Miss Miss Miss Miss

CVE-2012-4298 BOF Partial Miss Miss Miss Miss Match Miss Miss Miss

CVE-2013-3559 (2) BOF Miss Partial Miss Partial Miss Miss Miss Miss Miss

CVE-2013-4074 REX Hint Miss Match Hint Hint Miss Miss Miss Miss

CVE-2013-4082 BOF Miss Partial Miss Miss Miss Partial Miss Miss Miss

CVE-2013-3562 REX Miss Hint Miss Match Miss Miss Miss Miss Miss

CVE-2012-4294 /

CVE-2012-4295
BOF Match Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2480 BOF Miss Hint Miss Hint Miss Miss Miss Miss Miss

CVE-2013-2487 LOOP Miss Hint Miss Hint Miss Miss Miss Miss

CVE-2012-4048 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4049 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4297 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6059 PTR Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1579 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1582 LOOP Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1588 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1590 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2483 DIV Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2484 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2488 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-3557 INI Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4076 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4935 INI Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4081 LOOP Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-3548 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1575 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2476 LOOP Miss Hint Miss

CVE-2013-4933 REX Miss Miss Miss Miss

CVE-2012-5237 LOOP Miss Miss Miss

CVE-2013-2485 LOOP Miss Miss Miss

CVE-2013-4080 LOOP Miss Miss Miss

168

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 73. Hard-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

D

Tool

E

Tool

K

Hard

CVE-2012-6062 LOOP Partial Miss Miss Miss Miss Miss Miss

CVE-2013-1573 LOOP Miss Partial Miss Miss Miss Miss Miss

CVE-2013-4930 REX Miss Miss Match Miss Miss Miss Miss Miss

CVE-2013-1585 BOF Partial Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-2478 BOF Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6061 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1574 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1580 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1572 LOOP Hint Miss Miss Hint Miss Miss Miss Miss Miss

CVE-2013-2482 LOOP Miss Miss Miss Hint Miss Miss Miss Miss

CVE-2012-4292 PTR Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6060 LOOP Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1583 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1584 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1586 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4075 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4077 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6056 LOOP Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6058 LOOP Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4287 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6055 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6053 LOOP Miss Miss Miss

CVE-2013-2479 LOOP Miss Miss Miss

169

T
h

is
 p

u
b

lic
a

tio
n

 is
 a

v
a

ila
b

le
 fre

e
 o

f c
h
a

rg
e

 fro
m

: h
ttp

s
://d

o
i.o

rg
/1

0
.6

0
2

8
/N

IS
T

.S
P

.5
0

0
-3

2
6

Table 74. Extreme-rated CVEs Found and Missed on Wireshark.

Difficulty CVE Type
Tool

A

Tool

C

Tool

J

Tool

I

Tool

B

Tool

H

Tool

D

Tool

E

Tool

K

Extreme

CVE-2013-3558 BOF Miss Miss Match Miss Miss Miss Miss Miss Miss

CVE-2012-4288 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4289 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4290 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2012-6054 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-3560 FSTR Miss Miss Miss Miss Miss Miss Miss

CVE-2012-4291 REX Miss Miss Miss Miss

CVE-2013-4078 LOOP Miss Miss Miss

CVE-2013-3561 (2) LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-3561 (1) LOOP Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4927 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1581 LOOP Miss Miss Miss

CVE-2013-4079 LOOP Miss Miss Miss

CVE-2013-4929 LOOP Miss Miss Miss

CVE-2012-6057 LOOP Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4083 BOF Miss Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-4931 LOOP Miss Miss Miss Miss Miss Miss Miss Miss

CVE-2013-1577 LOOP Miss Miss Miss Miss Miss Miss

CVE-2013-1578 REX Miss Miss Miss Miss Miss Miss

CVE-2013-1576 LOOP Miss Miss Miss

