NIST Special Publication 260-229

Certification of Standard Reference Material[®] 1568c Rice Flour

Laura J. Wood Charles A. Barber Colleen E. Bryan Sallee Monique E. Johnson Shaun Kotoski Stephen E. Long Rick Paul Nicholas Sharp John R. Sieber Maria Vega James H. Yen Lee L. Yu

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-229

This page intentionally blank.

NIST Special Publication 260-229

Certification of Standard Reference Material[®] 1568c Rice Flour

Laura J. Wood Charles A. Barber Colleen E. Bryan Sallee Monique E. Johnson Shaun Kotoski Stephen E. Long Rick Paul Nicholas Sharp John R. Sieber Maria Vega Lee L. Yu Chemical Sciences Division Material Measurement Laboratory

James H. Yen Statistical Engineering Division Information Technology Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-229

July 2022

U.S. Department of Commerce Gina M. Raimondo, Secretary

National Institute of Standards and Technology Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 260-229 Natl. Inst. Stand. Technol. Spec. Publ. 260-229, 77 pages (July 2022) CODEN: NSPUE2

> This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-229

Abstract

The National Institute of Standards and Technology (NIST) SRM 1568c Rice Flour has value assignments for over 30 analytes, including arsenic species. This material is intended to be used for the evaluation of methods for the determination of elements and arsenic species in this and similar matrices. The material was purchased from commercial vendors. Measurement results were obtained from NIST and interlaboratory comparison exercises. This document describes the material, sample preparations, results, and data analysis.

Keywords:

Arsenic Species Elements Moisture Standard Reference Material (SRM) Rice Flour

Technical Information Contact for this SRM

Please address technical questions you may have about this SRM to <u>srms@nist.gov</u> where they will be assigned to the appropriate Technical Project Leader responsible for support of this material. For sales and customer service inquiries, please contact <u>srminfo@nist.gov</u>.

Table of Contents

T	Intro	duction	1
2	Mate	rial	3
	2.1 A	Acquisition & Packaging	3
	2.2 I	rradiation	3
	2.3 S	torage	3
3	Elem	ent-Related Analytes	4
3	Eith		т
4	Expe	rimental Procedures	J
	4.1 N	IST Methods and Procedures	5
	4.1.1	Desiccator Drying	ว
	4.1.2	Forced Air Drying	C
	4.1.3	ICP-OES Analysis	/
	4.1.4	ID-CV-ICP-IVIS Analysis	9
	4.1.3	INA A polyzia	· 12
	4.1.0	TNDCAA Analysis	10
	4.1.7	WDYRE Analysis	. 17
	4.1.0	I C ICP MS	· 25 26
	4.1.9	LC-ICI -IMS	. 20
	4.2 1	Iteriaboratory Studies	. 29
	4.2.1	HAMQAP Exercise 5	. 29
_	4.2.2	HAMQAP Exercise 0	. 29
5	Meas	surement Results	. 30
	5.1 N	Ioisture	. 30
	5.1.1	Moisture Results	. 30
	5.1.2	Moisture Value Assignment and Dry-Mass Conversions	. 31
	5.2 E	lements	. 31
	5.2.1	Aluminum Results	. 31
	5.2.2	Arsenic Results	. 32
	5.2.3	Bromine Results	. 34
	5.2.4	Cadmium Results	. 35
	5.2.5	Calcium Results	. 36
	5.2.6	Chlorine Results	. 37
	5.2.7	Copper Results	. 39
	5.2.8	Iron Results	.40
	5.2.9		.41
	5.2.1	J Magnesium Results	.43
	5.2.1		. 44
	- / /	Manganese Results	16
	5.2.1	 Manganese Results Mercury Results Malyhdoww Pasults 	. 46
	5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results 	. 46 . 47
	5.2.1 5.2.1 5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results 	. 46 . 47 . 48
	5.2.1 5.2.1 5.2.1 5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results Rubidium Results 	. 46 . 47 . 48 . 49 50
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results Rubidium Results Selenium Results 	. 46 . 47 . 48 . 49 . 50 51
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results Rubidium Results Selenium Results Sodium Results 	. 46 . 47 . 48 . 49 . 50 . 51 . 51
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results Rubidium Results Selenium Results Sodium Results Strontium Results 	. 46 . 47 . 48 . 49 . 50 . 51 . 53 . 53
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results Rubidium Results Selenium Results Sodium Results Strontium Results Sulfur Results 	. 46 . 47 . 48 . 49 . 50 . 51 . 53 . 54 . 55
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.2 5.2.2	 Manganese Results Mercury Results Molybdenum Results Phosphorus Results Potassium Results Rubidium Results Selenium Results Sodium Results Strontium Results Sulfur Results Jufur Results 	.46 .47 .48 .49 .50 .51 .53 .54 .55 .56

5.	3 A	Arsenic Species	
	5.3.1	Organic Acids Results	
	5.3.2	Inorganic Species Results	
5.	4 I	Proximates	
	5.4.1	Fat Results	
	5.4.2	Protein Results	
	5.4.3	Carbohydrates Results	
	5.4.4	Solids Results	
	5.4.5	Ash Results	
	5.4.6	Calories Results	
6	Stati	stical Approaches for Value Assignment	
7	Cert	ificate of Analysis	
8	Refe	rences	

Table of Tables

Table 1. Methods Used for Elemental Determinations	4
Table 2. Microwave Settings for Digestion of SRM 1568c Samples for ICP-OES Analysis	7
Table 3. Standards and Approximate Mass Fractions for ICP OES Analyses	8
Table 4. ICP-OES Parameters Used to Measure Element Mass Fractions	8
Table 5. Uncertainty Budget for ICP-OES Analysis	9
Table 6. Microwave Settings for Digestion of SRM 1568c Samples for ID-CV-ICP-MS Analysis.	9
Table 7. Uncertainty Budget for ID-CV-ICP-MS Analysis	.11
Table 8. Standards and Approximate Mass Fractions for ICP-MS Analyses	.12
Table 9. ICP-MS Parameters Used to Measure Element	. 13
Table 10. Uncertainty Budget for ICP-MS Analysis	.14
Table 11. SRM solutions and final standard mass fractions for INAA analysis	. 15
Table 12. Nuclides measured, gamma-ray peak energies, and interferences	.16
Table 13. Uncertainty Budget for INAA Analysis	.18
Table 14. H sensitivities for urea standards	. 19
Table 15. Sensitivities for S/H ratio standards	.20
Table 16. Uncertainty Budget for TNPGAA Analysis	.23
Table 17. Absorption Corrections for WDXRF Measurements	.24
Table 18. Elements Excluded from Use as Calibration Materials Used for XRF Measurements	.25
Table 19. Uncertainty Budget for WDXRF Analysis	.26
Table 20. LC Parameters for Separating Arsenic Species in Rice Samples	.27
Table 21. Uncertainty Budget for LC-ICP-MS Analysis	. 29
Table 22. NIST Results for Moisture, %	. 30
Table 23. Summary of Results for Aluminum (Al), mg/kg	.31
Table 24. Summary of NIST Results for Arsenic (As), mg/kg	.32
Table 25. Summary of HAMQAP Exercise 6 Results for Arsenic (As), mg/kg ^a	.33
Table 26. Summary of Results for Bromine (Br), mg/kg	.34
Table 27. Summary of Results for Cadmium (Cd), mg/kg	.35
Table 28. Summary of Results for Calcium (Ca), mg/kg	.36
Table 29. Summary of HAMQAP Exercise 5 Results for Calcium (Ca), mg/kg a	.37
Table 30. Summary of Results for Chlorine (Cl), mg/kg	.38
Table 31. Summary of Results for Copper (Cu), mg/kg	. 39
Table 32. Summary of NIST Results for Iron (Fe), mg/kg	.40
Table 33. Summary of HAMQAP Exercise 5 Results for Iron (Fe), mg/kg ^a	.41
Table 34. Summary of Results for Lead (Pb), mg/kg	.42

Table 35. Summary of Results for Magnesium (Mg), mg/kg	43
Table 36. Summary of Results for Manganese (Mn), mg/kg	45
Table 37. Summary of Results for Mercury (Hg), mg/kg	46
Table 38. Summary of Results for Molybdenum (Mo), mg/kg	47
Table 39. Summary of Results for Phosphorus (P), mg/kg	48
Table 40. Summary of NIST Results for Potassium (K), mg/kg	49
Table 41. Summary of HAMQAP Results for Potassium (K), mg/kg	50
Table 42. Summary of Results for Rubidium (Rb), mg/kg	51
Table 43. Summary of Results for Selenium (Se), mg/kg	52
Table 44. Summary of Results for Sodium (Na), mg/kg	53
Table 45. Summary of Results for Strontium (Sr), mg/kg	54
Table 46. Summary of Results for Sulfur (S), mg/kg	55
Table 47. Summary of Results for Zinc (Zn), mg/kg	56
Table 48. Summary of Results for Silicon (Si), mg/kg	57
Table 49. Summary of Results for Organic Arsenic Acids: MMA and DMA; mg/kg	58
Table 50. Summary of Results for Inorganic Arsenic Species: AsIII, AsV, and iAs; mg/kg	59
Table 51. Summary of Results for Total Fat, % ^a	60
Table 52. Summary of Results for Protein, % a	61
Table 53. Summary of Results for Carbohydrates, % ^a	61
Table 54. Summary of HAMQAP 6 Results for Solids, % ^a	62
Table 55. Summary of Results for Ash, % a	62
Table 56. Summary of Results for Calories, kcal/100 g ^a	63

Table of Figures

Figure 1. 1	NIST adaptation of the AOAC INTERNATIONAL food composition triangle.	1
Figure 2. S	Sales History of Rice Flour SRMs	2
Figure 3. I	Location of Customers for the Rice Flour SRMs	2
Figure 4.	Гурісаl Chromatogram of a Candidate SRM 1568с Sample Spiked with TMAO	27
Figure 5. M	Mass Loss (% Moisture) of SRM 1568c as a Function of Method/Time	30
Figure 6. A	Aluminum (Al) Mass Fraction as a Function of Box Number	32
Figure 7. A	Arsenic (As) Mass Fraction as a Function of Box Number.	33
Figure 8. (Comparison of Arsenic (As) Mass Fraction Values by Method	34
Figure 9. 1	Bromine (Br) Mass Fraction as a Function of Box Number.	34
Figure 10.	Cadmium (Cd) Mass Fraction as a Function of Box Number	35
Figure 11.	Comparison of Cadmium (Cd) Mass Fraction Values by Method	36
Figure 12.	Calcium (Ca) Mass Fraction as a Function of Box Number.	36
Figure 13.	Comparison of Calcium (Ca) Mass Fraction Values by Method.	37
Figure 14.	Chlorine (Cl) Mass Fraction as a Function of Box Number	38
Figure 15.	Copper (Cu) Mass Fraction as a Function of Box Number	39
Figure 16.	Comparison of Copper (Cu) Mass Fraction Values by Method.	39
Figure 17.	Iron (Fe) Mass Fraction as a Function of Box Number	40
Figure 18.	Comparison of Iron (Fe) Mass Fraction Values by Method	41
Figure 19.	Lead (Pb) Mass Fraction as a Function of Box Number.	42
Figure 20.	Comparison of Lead (Pb) Mass Fraction Values by Method.	43
Figure 21.	Magnesium (Mg) Mass Fraction as a Function of Box Number	44
Figure 22.	Comparison of Magnesium (Mg) Mass Fraction Values by Method	44
Figure 23.	Manganese (Mn) Mass Fraction as a Function of Box Number	45
Figure 24.	Comparison of Manganese (Mn) Mass Fraction Values by Method	45
Figure 25.	Mercury (Hg) Mass Fraction as a Function of Box Number	46
Figure 26.	Comparison of Mercury (Hg) Mass Fraction Values by Method	47

47
48
48
49
49
. 50
. 51
52
52
. 53
. 54
54
55
55
56
57
57
57
58
. 59

Glossary						
AAS	atomic absorption spectrometry					
ANOVA	analysis of variance					
CNPGAA	cold neutron prompt gamma-ray neutron activation analysis					
COA	Certificate of Analysis					
cps	counts per second					
DMA	dimethylarsinic acid					
FEP	fluorinated ethylene propylene					
HAMQAP	Health Assessment Measurements Quality Assurance Program					
ICP-MS	inductively coupled plasma mass spectrometry					
ICP-OES	inductively coupled plasma optical emission spectrometry					
ID-CV-ICP-MS	isotope dilution cold vapor inductively coupled plasma mass spectrometry					
INAA	instrumental neutron activation analysis					
LC-ICP-MS	liquid chromatography inductively coupled plasma mass spectrometry					
MMA	monomethylarsonic acid					
NCNR	NIST Center for Neutron Research					
NIST	National Institute of Standards and Technology					
PTFE	polytetrafluoroethylene					
SI	International System of Units					
SRM	Standard Reference Material					
TMAO	trimethylarsine oxide					
TNPGAA	thermal neutron prompt gamma-ray activation analysis					
WDXRF	wavelength dispersive X-ray fluorescence spectrometry					

1 Introduction

The elemental mass fraction and composition of rice is reflective of the environment in which is it is grown, yielding information both about the agricultural area of origin and the dietary exposure to environmental contaminants. Rice flour is the basis of numerous food products including cereals, crackers, and biscuits for infants whose developing central nervous systems are particularly vulnerable to the presence of environmental toxins such as lead, cadmium, mercury, and arsenic. Because toxicity depends on the form (species) of the toxin, it becomes necessary not only to determine total element content, but to also differentiate and quantitate the various inorganic and organic forms of these metals. The U.S. Food and Drug Administration (FDA) monitors levels of arsenic and arsenic species in certain foods, dietary supplements, and cosmetics [1].

The National Institute of Standards and Technology (NIST)'s first rice flour Standard Reference Material[®] (SRM[®]), SRM 1568 Rice Flour [2], became available in 1978. This SRM delivered values for 17 elements, including arsenic, cadmium, and mercury. SRM 1568 was replaced by SRM 1568a [3] in 1988, delivering values for 26 elements including lead. SRM 1568a was replaced by SRM 1568b [4] in 2013, currently delivering values for 20 elements and three arsenic species. Inventory of SRM 1568b is expected to become depleted in 2023 and will be replaced by SRM 1568c Rice Flour, which at release will deliver values for 21 elements, three arsenic species, and six proximates.

The Standard Reference Material[®] (SRM[®]) 1568 Rice Flour series of certified reference materials are located in sector 5 of the AOAC INTERNATIONAL food composition triangle [5, 6] (Figure 1). The information provided in this diagram is used by measurement laboratories in support of nutrition labeling. Laboratories needing a rice flour or similar material for the demonstration of method validity and accuracy when analyzing food products to generate data for nutrition labels can use the currently available edition of SRM 1568. The SRM can also be used to test methodologies for food safety.

Figure 1. NIST adaptation of the AOAC INTERNATIONAL food composition triangle. The white "+" depict the location of available food-matrix reference materials.

Figure 2 displays the sales history of the SRM 1568 series from the first available sales record in 1990 to the version date of this document. Figure 3 displays the proportion of sales to various countries or geographical regions over the past 32 years.

Figure 2. Sales History of Rice Flour SRMs

The thick black line depicts the cumulative distribution of sales as a function of the order date, plotted using the "Units Sold" axis at the left of the graph. The thin blue line depicts the sales rate (the first derivative of the cumulative distribution), plotted using the "Sales Rate, Units per Year" axis to the right of the graph.

Figure 3. Location of Customers for the Rice Flour SRMs

From left to right, the three charts display the proportion of sales to various countries or geographic regions from the first extant record in 1990 to 31 December 2002, 01 January 2003 to 31 December 2012, and 01 January 2013 to 30 April 2022. Slices are shown for individual countries only when they account for at least 3 % of the units sold during that interval. The area of the circle is proportional to the number of units sold during the interval.

2 Material

2.1 Acquisition & Packaging

The material used to produce SRM 1568c Rice Flour was procured from three commercial vendors of brown rice flour. Eighty-eight kilograms of brown rice flour were blended and bottled at NIST (Gaithersburg, MD). All 88 kg of rice flour were double blended for 30 min using a ceramic lined cone blender. Fifty grams of material were placed into pre-washed amber bottles under an environmental hood with a dust collector using a polytetrafluoroethylene (PTFE) lined hopper and trough. A total of 1723 bottles were filled.

2.2 Irradiation

The bottled units of SRM 1568c were irradiated by Neutron Products, Inc. (Dickerson, MD) in the six cardboard containers sent from NIST. The target for the absorbed dose was 6 kGy to 10 kGy. The actual absorbed doses measured by Neutron Products were 6.0 kGy to 8.6 kGy.

2.3 Storage

The bottles of SRM 1568c have been stored at room temperature (18 °C to 22 °C) at NIST since their production.

Element-Related Analytes 3

A summary of the element-related analytes (total element, inorganic arsenic species, organic arsenic acids) analyzed for value assignment in SRM 1568c is listed in Table 1. The table also lists the methods used by participants in NIST's Health Assessment Measurements Quality Assurance Program (HAMQAP) interlaboratory studies (see Section 4.2).

Name	Symbol	NIST Methods	HAMQAP Methods ^a
Aluminum	Al	ICP-MS	
Arsenic	As	ICP-MS, INAA	ICP-OES, ICP-MS
Inorganic Arsenic	iAs	LC-ICP-MS	
Arsenic Acid	As III	LC-ICP-MS	
Arsenous Acid	As V	LC-ICP-MS	
Dimethylarsinic Acid	DMA	LC-ICP-MS	
Monomethylarsonic Acid	MMA	LC-ICP-MS	
Bromine	Br	INAA	
Cadmium	Cd	ICP-MS	AAS, ICP-MS, ICP-OES, ID ICP-MS
Calcium	Са	ICP-OES, WDXRF	ICP-MS, ICP-OES, ID ICP-MS
Chlorine	Cl	WDXRF	
Copper	Cu	ICP-OES, WDXRF	
Iron	Fe	ICP-OES, WDXRF	ICP-MS, ICP-OES, ID ICP-MS
Lead	Pb	ICP-MS	ICP-MS, ICP-OES, ID ICP-MS
Magnesium	Mg	ICP-OES, WDXRF	
Manganese	Mn	ICP-OES, WDXRF	
Mercury	Hg	ID-CV-ICP-MS	
Molybdenum	Мо	ICP-MS, INAA	
Phosphorus	Р	ICP-OES, WDXRF	
Potassium	Κ	ICP-OES, WDXRF	ICP-MS, ICP-OES, ID ICP-MS
Rubidium	Rb	ICP-MS	
Selenium	Se	ICP-MS, INAA	
Strontium	Sr	ICP-MS, ICP-OES	
Sodium	Na	ICP-OES	ICP-MS, ICP-OES
Sulfur	S	TNPGAA, WDXRF	
Zinc	Zn	ICP-OES, WDXRF	

Table 1. Methods Used for Elemental Determinations

^a Not all participants in the HAMQAP studies reported the method they used.

Acronyms: AAS **ICP-MS ICP-OES ID ICP-MS ID-CV-ICP-MS** INAA TNPGAA WDXRF

Atomic Absorption Spectroscopy Inductively Coupled Plasma Mass Spectrometry Inductively Coupled Plasma Optical Emission Spectrometry Isotope Dilution Inductively Coupled Plasma Mass Spectrometry Isotope Dilution Cold Vapor Inductively Coupled Plasma Mass Spectrometry Instrumental Neutron Activation Analysis Thermal Neutron Prompt Gamma-Ray Activation Analysis Wavelength Dispersive X-ray Fluorescence Spectrometry

4 Experimental Procedures

4.1 NIST Methods and Procedures

4.1.1 Desiccator Drying

Single aliquots from each of 12 freshly opened bottles were placed in pre-weighed, glass weighing vessels (m_b) to an approximate depth of 1 cm. The bottles were rotated to mix prior to sampling. The vessels were again weighed (m_w) and placed in a desiccator over magnesium perchlorate (Mg(ClO₄)₂). The samples were removed from the desiccator on day 5, weighed, returned to the desiccator, and the results (m_d) recorded. The weighing process was repeated on day 7, day 14, day 22, day 28, day 35, and day 42. All weighings were performed using the same balance, serviced and calibrated annually by Mettler Toledo, LLC. Prior to each use, balance calibration was verified by using standard masses ranging from 0.5 g to 20 g that are traceable to the International System of Units (SI) through the standard mass set maintained by the Inorganic Chemical Metrology Group.

The moisture was calculated, assuming that all changes in mass were due to loss of moisture alone, using the following equations,

Moisture content =
$$100 * \frac{m_w - m_d}{m_w - m_b}$$
 [1]

$$U_{95}$$
(Moisture content) = $2.2 * \sqrt{u_a^2 + u_{b1}^2 + u_{b2}^2 + u_{b3}^2}$ [2]

- where: u_a = standard deviation for the sample weighings (where n=12 refers to the individual number of samples taken from the bottles),
 - u_{bi} = standard uncertainties of each weighing, each estimated to be $\pm 0.01/\sqrt{3}$ mg. For each u_{bi} this value is converted to moisture content by division of the mean sample mass value.
 - U_{95} = the expanded uncertainty, expressed at an approximate confidence level of 95 % by choosing the expansion factor 2.2, calculated based on degrees of freedom.

4.1.2 Forced Air Drying

Single aliquots from each of 12 freshly opened bottles were placed in pre-weighed, glass weighing vessels (m_b) to an approximate depth of 1 cm. The bottles were rotated to mix prior to sampling. The vessels were again weighed (m_w) and placed in a forced-air drying oven set at 90 °C with caps removed. After 4 h, the samples were removed, capped, and allowed to cool to room temperature in a desiccator. Cooled samples were removed from the desiccator, weighed, and the results (m_d) recorded. All weighings were performed using the same balance, serviced and calibrated annually by Mettler Toledo, LLC. Prior to each use, balance calibration was verified by using standard masses ranging from 0.5 g to 20 g that are traceable to the SI through the standard mass set maintained by the Inorganic Chemical Metrology Group.

The moisture was calculated, assuming that all changes in mass were due to loss of moisture alone, using the following equations,

Moisture content =
$$100 * \frac{m_w - m_d}{m_w - m_b}$$
 [3]

$$U_{95}$$
(Moisture content) = $2.2 * \sqrt{u_a^2 + u_{b1}^2 + u_{b2}^2 + u_{b3}^2}$ [4]

- where: u_a = standard deviation for the sample weighings (where n=12 refers to the individual number of samples taken from the bottles),
 - u_{bi} = standard uncertainties of each weighing, each estimated to be $\pm 0.01/\sqrt{3}$ mg. For each u_{bi} this value is converted to moisture content by division of the mean sample mass value.
 - U_{95} = the expanded uncertainty, expressed at an approximate confidence level of 95 % by choosing the expansion factor 2.2, calculated based on degrees of freedom.

4.1.3 ICP-OES Analysis

Mass fractions of Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, and Zn in SRM 1568c Rice Flour were determined at NIST using ICP-OES. Two 0.5 g aliquots were taken from each of 10 bottles of SRM 1568c Rice Flour and were placed into PTFE microwave vessels. Two 0.5 g aliquots were taken from each of two bottles of SRM 1568b Rice Flour and prepared along with the samples for quality assurance. For the determination of Fe, four aliquots were taken from one bottle of SRM 1568b for quality assurance and for the determination of Na, four aliquots were taken from one bottle of 1567b Wheat Flour for quality assurance. All samples were analyzed in as-received Twelve procedural reagent blanks were also prepared along with the samples. condition. Concentrated nitric acid (HNO₃, 10 mL) was added to each vessel, and indium (0.25 mL of a 100 mg/kg In solution) and scandium (0.5 mL of a 100 mg/kg Sc solution) were added as internal standards to improve the precision of the instrumental measurements to all samples except those to be analyzed for Na. The In solution was prepared in-house from Indium Corporation of America Lot # JK 1171 to a final concentration of 1.5 % (volume fraction) HNO₃. The Sc solution was prepared from SRM 3148a Scandium (Sc) Standard Solution Lot No. 100701 to a final concentration of 1.5 % (volume fraction) HNO₃. For Na measurements, strontium (0.25 mL of a 0.1 μ g/kg Sr solution) was added as an internal standard. The Sr solution was prepared from SRM 3153a Strontium (Sr) Standard Solution Lot # 990906) to a final concentration of 1.5 % (volume fraction) HNO₃. All weighings were performed using a Mettler AT261 Delta Range analytical balance serviced and calibrated annually by Mettler Toledo, LLC. Prior to each use, calibration is verified by using standard masses ranging from 0.5 g to 20 g that are traceable to the SI through the standard mass set maintained by the Inorganic Chemical Metrology Group.

All prepared samples, controls, and blanks were digested using a CEM MARS microwave sample preparation system according to the microwave procedure in Table 2. After microwave digestion, solutions were transferred to PTFE beakers and were heated on a hot plate with a surface temperature of approximately 180 °C until the volume was reduced to near dryness. Samples were then diluted using 1.5 % (volume fraction) HNO₃ and transferred to polyethylene bottles.

All samples were prepared using Optima grade HNO₃ from Fisher Scientific. Samples and acids were diluted using 18 M Ω ·cm water. All dilute acid concentrations are expressed in volume fractions with respect to the concentrated acid.

	Power	Power Setting	Ramp Time	Temperature	Hold Time
Step	(W)	(%)	(min)	(°C)	(min)
1	1600	85	20	170	20
2	1600	100	20	195	20

Table 2. Microwave Settings for Digestion of SRM 1568c Samples for ICP-OES Analysis

Analyte mass fractions were calculated by the method of standard additions to compensate for any matrix effects. Sample solutions contained the approximate analyte mass factions list in Table 3. From each sample solution, two aliquots were taken, and a matrix matched spike was added to one. The mass fraction in sample solution, mass fractions added (spike) to the second aliquot, and the total mass fraction expected in the spiked solution are listed in Table 3. Analyte mass fractions for Fe were calculated by the method of external standard calibration.

r				Mass Fraction in	Mass Fraction	Total Mass Fraction
Analy	te	SRM		Sample Solution	Added (Spike)	in Spiked Aliquot
Element	Symbol	Number	Lot	(mg/kg)	(mg/kg)	(mg/kg)
Calcium	Ca	3109a	130213	0.07	0.14	0.21
Copper	Cu	3114	120618	0.03	0.09	0.12
Iron	Fe	3126a	140812	0.4	0.0	0.4
Potassium	K	3141a	140813	0.4	0.7	1.1
Magnesium	Mg	3131a	140110	0.3	0.4	0.7
Manganese	Mn	3132	050429	0.3	0.7	1.0
Sodium	Na	3152a	120715	0.4	0.45	0.85
Phosphorus	Р	3139a	060717	0.4	0.9	1.3
Strontium	Sr	3153a	990906	0.007	0.006	0.13
Zinc	Zn	3168a	120629	0.3	0.8	1.1

Table 3. Standards and Approximate Mass Fractions for ICP OES Analyses

A Perkin-Elmer Optima 8300 Dual View ICP-OES was used for analysis. The mass fractions of the analytes in the sample, control, and blank solutions were measured according to the parameters in Table 4.

A 1-4					n 1 m!	
Analy	vte	Wavelength		Integration Time	Read Time	Number
Element	Symbol	(nm)	Plasma View	(s)	(s)	of Runs
Calcium	Ca	317.933	Axial	0.10	1	2
Copper	Cu	224.700	Axial	0.10	1	2
Iron	Fe	259.939	Axial	0.10	1	2
Potassium	Κ	766.550	Radial	0.10	1	2
Magnesium	Mg	285.213	Axial	0.10	1	2
Manganese	Mn	257.610	Axial	0.10	1	2
Sodium	Na	589.478	Radial	0.10	1	2
Phosphorus	Р	214.914	Axial	0.20	1	2
Zinc	Zn	213.857	Axial	0.10	1	2
Indium	In	230.606	Axial	0.10/0.20	1	2
Scandium	Sc	361.383	Axial/Radial	0.10	1	2
Strontium	Sr	421.552	Axial/Radial	0.10	1	2
Yttrium	Y	324.227	Axial	0.10	1	2

Table 4. ICP-OES Parameters Used to Measure Element Mass Fractions

Four instrumental measurements were averaged for each sample aliquot and each spiked aliquot. All results were corrected for the mean blank values from their corresponding runs by subtracting the mean total micrograms found in the blanks from the total micrograms found in each individual sample. After exporting raw data to Microsoft Excel, final mass fractions were calculated using the method of standard additions.

Table 5 describes the uncertainty budget for determination of Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, and Zn by ICP-OES. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

~		-	
Component	Basis	Туре	DF
Sample Replication, s _{sample}	The uncertainty due to sample preparation and measurement is estimated by calculating the standard deviation of the mean. ($n = 4$ or 6,19 or 21; SRM 1568b and SRM 1568c respectively)	А	3,5 (1568b) 18,20 (1568c)
Blank Replication, <i>s</i> _{blank}	The uncertainty due to blank preparation and measurement is estimated by calculating the standard deviation of the mean. $(n = 10)$	А	9
Moisture Correction, S _{moisture}	The uncertainty due to the moisture correction is estimated by calculating the standard deviation of the mean then converting percent moisture to mass. $(n = 10)$	А	9
Primary Standard, us	The uncertainty associated with the primary standards is calculated to be the expanded uncertainty divided by the expansion factor, k , obtained from the Certificate of Analysis for each SRM used as the standard addition spike.	В	> 60
Weighing of Standards, u_{b1}	The uncertainty for each weighing of the standard is ± 0.01 mg based on the certificate of calibration for the balance. This uncertainty is normalized by division by $\sqrt{3}$.	В	> 60
Weighing of Samples, u_{b2}	The uncertainty for each weighing of the sample is ± 0.01 mg based on the certificate of calibration for the balance. This uncertainty is normalized by division by $\sqrt{3}$.	В	> 60

Table 5. Uncertainty Budget for ICP-OES Analysis

4.1.4 ID-CV-ICP-MS Analysis

The mass fraction of Hg in SRM 1568c Rice Flour was determined at NIST using ID-CV-ICP-MS. Single 0.5 g aliquots were taken from each of 6 bottles of SRM 1568c Rice Flour and four 0.5 aliquots from a single bottle of SRM 1568b, used for quality assurance, were placed into quartz microwave vessels. Each sample was spiked with an accurately weighed aliquot of ²⁰¹Hg followed by the addition of 6 g high purity HNO₃ (Fisher Scientific, Suwanee, GA). Four procedural blanks, containing a small aliquot of ²⁰¹Hg spike only, were carried through the entire sample processing and measurement scheme. All weighings were performed using a Sartorius MSE524S analytical balance serviced and calibrated annually by Pipette Repair Service, Inc. Prior to each use, calibration was verified by using standard masses ranging from 0.5 g to 20 g that are traceable to the SI through the standard mass set maintained by the Inorganic Chemical Metrology Group.

Microwave digestion was carried out in an Anton Paar (Ashland, VA) Multiwave 3000 microwave using the program described in Table 6.

Step	Power (W)	Ramp Time (min)	Hold Time (min)
1	600	10	5
2	1400	5	20

Table 6. Microwave Settings for Digestion of SRM 1568c Samples for ID-CV-ICP-MS Analysis

Microwave settings for digestion in Table 6 includes a 30 min cool down. After cooling to room temperature, the contents were transferred to 50 mL polypropylene centrifuge tubes and diluted to approximately 0.15 ng/g ²⁰¹Hg, which was suitable for measurement by cold-vapor ICP-MS. Approximately 0.5 g of high purity hydrochloric acid (HCl) (Fisher Scientific, Suwanee, GA) was added to each sample for additional Hg stabilization. Analytical measurements were completed

within one day of dilution to reduce the risk of external contamination and Hg losses from the solutions during storage.

Mercury measurements were made using cold-vapor Hg generation coupled with ICP-MS isotope ratio measurements. The Hg vapor was generated using tin (II) chloride reductant (10 % mass fraction in 7 % volume fraction HCl) and separated from the liquid phase using a commercial (CETAC) glass reaction/separator cell. The vapor was transferred to Thermo Electron X Series II ICP-MS (Bremen, Germany) with 1/16 inch (1.6 mm) internal diameter Viton tubing, using an argon carrier gas flow rate of approximately 100 mL/min. This gas stream was mixed with the plasma injector gas stream using a plastic T piece. The ICP-MS was operated in a dry plasma mode, which necessitated slight re-tuning of the ion lenses relative to an aqueous aerosol sample introduction system. All samples were transferred to the instrument in manual sequence, and the timing of the sample uptake was adjusted to allow sufficient time to measure the instrument background prior to measurement of the sample. The ²⁰¹Hg and ²⁰²Hg isotopes were monitored for a duration of 60 s in a pulse counting Time-Resolved-Analysis (TRA) mode to recover the individual ion count rates. The isotope-time profiles were downloaded to a Microsoft Excel spreadsheet for calculation of background corrected ²⁰¹Hg/²⁰²Hg ratios using Isotope Dilution Assistant (IDA) v0.9 [7,8]. The instrument detector dead-time was 33 ns.

The working ²⁰¹Hg isotopic spike solution was prepared by accurate gravimetric dilution of a master stock solution, which was calibrated by reverse isotope dilution using a high-purity primary standard (SRM 3133 Mercury (Hg) Standard Solution, Lot # 160921). Two separate stock solutions were prepared by serial dilution. Two spike calibration mixtures were prepared from each of these solutions, generating four spike mixtures, and these were measured using cold-vapor ICP-MS, under the same conditions as the samples (double IDMS).

Moisture content was determined from a single sub-sample for each bottle of candidate SRM 1568c and four replicate subsamples from a single bottle of SRM 1568b. Approximately 1 g of each sample was weighed into a glass weighing bottle, dried for 2 h at 90 °C in an ED 23-UL oven (Binder, Inc., Bohemia, NY), stored in a glass desiccator over DRIERITE desiccant (W. A. Hammond DRIERITE Co. LTD, Xenia, OH) until cooled to room temperature, and weighed again for moisture mass loss.

The following functional relationship was used to calculate each of the individual replicate ID ICP-MS mass fraction results:

$$c_{\rm s} = \left(\frac{M_{\rm s}K(A_{\rm s} - B_{\rm s}FR)}{(BFR - A)} - S_{\rm B}\right) * \frac{D_{\rm C}}{W}$$
[3]

where C_s = wet mass fraction of mercury in the sample (μ g/g),

 $M_{\rm s}$ = absolute mass of ²⁰¹Hg spike added (µg),

K = natural to spike (²⁰²Hg/²⁰¹Hg) atomic weight ratio,

 $A_{\rm s}$ = fractional abundance of the reference isotope (²⁰²Hg) in the spike,

 $B_{\rm s}$ = fractional abundance of the spike isotope (²⁰¹Hg) in the spike,

F = discrimination correction factor for measured ratio R,

 $R = \text{detector dead-time corrected } {}^{202}\text{Hg}/{}^{201}\text{Hg ratio},$

B = natural fractional abundance of the spike isotope (²⁰¹Hg),

A = natural fractional abundance of the reference isotope (²⁰²Hg),

 $S_{\rm B}$ = absolute mean measured blank (µg),

 $D_{\rm c}$ = wet-dry mass correction factor,

W = mass of sample aliquot taken (g).

The overall mean of the four procedural blank measurements (S_B) was not used to correct the sample measurement data since the ²⁰²Hg counts in the blanks were extremely low and were not greater than the instrument background signal.

Table 7 describes the uncertainty budget for determination of Hg by ID-CV-ICP-MS. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

Uncertainty	Basis	Туре	DF
Sample Replication, R_1	Standard uncertainty of sample measurements based on four or five replicate measurements incorporating sample heterogeneity and sample digestion, with degrees of freedom n - 1	A	2 or 5
Calibration of isotopic spike, R_2	Standard uncertainty of the spike calibration measurements (reverse IDMS) using four independently prepared calibration mixes	А	3
Moisture Correction, D _c	Standard deviation of moisture correction factor repeatability as a percentage of the mean Hg mass fraction	А	3 or 5
Natural / spike atomic weight ratio, <i>K</i>	Uncertainty of the factor K, the IUPAC atomic weight for mercury divided by the atomic weight of the spike determined by isotopic measurements	В	> 60
Abundance of 202 Hg in the spike, A_s	Uncertainty of the spike isotopic composition, and relative impact on the measurement of Hg in SRM 1568b and SRM 1568c by double IDMS	В	> 60
Abudance of 201 Hg in the spike, B_s	Uncertainty of the spike isotopic composition, and relative impact on the measurement of Hg in SRM 1568b and SRM 1568c by double IDMS	В	> 60
²⁰¹ Hg/ ²⁰² Hg ratio measurement, <i>R</i>	Uncertainty of the dead-time corrected ICP-MS isotope ratio measurements based on pooled standard deviation of approximately 500 ratio measurement points and subtraction of the instrument blank counts on each isotope	В	> 60
Mass discrimination correction, <i>F</i>	Uncertainty of the correction factor (T/E) for the instrument mass bias / mass discrimination and the impact on the measured mass fraction of Hg in SRM 1568b and SRM 1568c using a double IDMS approach	В	> 60
Abundance of 201 Hg in the sample, <i>B</i>	Uncertainty of the sample isotopic composition, and relative impact on the measurement of Hg in SRM 1568b and SRM 1568c by double IDMS	В	> 60
Abundance of 202 Hg in the sample, A	Uncertainty of the sample isotopic composition, and relative impact on the measurement of Hg in SRM 1568b and SRM 1568c by double IDMS	В	> 60
Mass measurement of sample aliquot, <i>W</i>	Relative standard uncertainty due to weighing on a four- place balance, calculated using observed standard deviation and assuming a rectangular distribution	В	> 60
Mass of 201 Hg added, $M_{\rm s}$	Relative standard uncertainty of the primary calibrant SRM 3133, the stated COA expanded uncertainty divided by coverage factor $k = 2.183$	В	> 60

Table 7. Uncertainty Budget for ID-CV-ICP-MS Analysis

4.1.5 ICP-MS Analysis

Mass fractions of Al, As, Cd, Mo, Pb, Rb, Se, and Sr in SRM 1568c Rice Flour were determined at NIST using ICP-MS. Two 0.5 g aliquots were taken from each of 10 bottles of SRM 1568c Rice Flour and were placed into PTFE microwave vessels. Four 0.5 g aliquots of were taken from one bottle of SRM 1568b Rice Flour and prepared along with the samples for quality assurance. Ten procedural reagent blanks were also prepared along with the samples. To each vessel, 10 mL of concentrated HNO₃ were added along with 0.5 mL of an internal standard solution containing 200 ng/g Bi, 200 ng/g Sb, and 200 ng/g Y to improve the precision of the instrumental measurements. The internal standard solution was prepared from SRM 3106 Bismuth (Bi) Standard Solution Lot # 180815, SRM 3102a Antimony (Sb) Standard Solution Lot # 149011, and SRM 3167a Yttrium (Y) Standard Solution Lot # 120314 with a final acid concentration of 1.5 % HNO₃ (volume fraction). All weighings were performed using a Mettler AT261 Delta Range analytical balance serviced and calibrated annually by Mettler Toledo, LLC. Prior to each use, calibration was verified by using standard masses ranging from 0.5 g to 20 g that are traceable to the SI through the standard mass set maintained by the Inorganic Chemical Metrology Group.

All prepared samples, controls, and blanks were digested using a CEM MARS microwave sample preparation system according to the microwave procedure in Table 2. After microwave digestion, solutions were transferred to PTFE beakers and were heated on a hot plate with a surface temperature of approximately 180 °C until the volume was reduced to near dryness. Samples were then diluted using 1.5 % (volume fraction) HNO₃ and transferred to polyethylene bottles.

All samples were prepared using Optima grade HNO₃ from Fisher Scientific. Samples and acids were diluted using 18 M Ω ·cm water. All dilute acid concentrations are expressed in volume fractions with respect to the concentrated acid.

All samples were analyzed in as-received condition. The results for SRM 1568b were corrected for moisture content determined by drying at 90 °C for 2 h, a procedure described in the COA for SRM 1568b. The results for SRM 1568c were corrected for moisture content according to the procedure listed above in Section 3.1.1.2. The moisture content was determined at the time samples were taken and values were reported on a dry-mass basis.

Analyte mass fractions were calculated by the method of standard additions to compensate for any matrix effects. From each sample dilution, two aliquots were taken; a matrix matched spike was added to one. The sample mass fraction dilutions, mass fractions of the matrix matched spike solution added to the second aliquot, and the total mass fraction expected in the spiked solution are listed in Table 8.

				Mass Fraction in	Mass Fraction	Total Mass Fraction
Analyt	e	SRM		Sample Solution	Added (Spike)	in Spiked Aliquot
Element	Symbol	Number	Lot	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	Al	3101a	140903	0.07	0.14	0.21
Arsenic	As	3103a	100818	0.03	0.09	0.12
Cadmium	Cd	3108	130116	0.4	0.0	0.4
Molybdenum	Mo	3134	130418	0.4	0.7	1.1
Lead	Pb	3128	301026	0.3	0.4	0.7
Rubidium	Rb	3145a	150622	0.3	0.7	1.0
Selenium	Se	3149	100901	0.4	0.45	0.85
Strontium	Sr	3153a	990906	0.4	0.9	1.3

Table 8. Standards and Approximate Mass Fractions for ICP-MS Analyses

An Agilent 7500cs ICP-MS, equipped with a Peltier-cooled, inert sample introduction system, was used for analysis. The mass fractions of analytes in the solutions were measured according to the parameters in Table 9 using H_2 as a collision gas to minimize polyatomic interferences. Ten instrumental measurements were taken and averaged for each sample aliquot and each spiked aliquot. All results were corrected for the mean blank values from their corresponding runs by subtracting the mean total micrograms found in the blanks from the total micrograms found in each individual sample.

Analyte		Mass	Integration Time	Read Time	Number
Element	Symbol	(amu)	(s)	(s)	of Runs
Aluminum	Al	27	0.1	3	3
Arsenic	As	75	0.1	3	2
Cadmium	Cd	114	0.1	3	2
Molybdenum	Mo	98	0.1	3	2
Lead	Pb	206	0.1	3	2
Rubidium	Rb	85	0.1	3	2
Selenium	Se	78	0.1	3	2
Strontium	Sr	86	0.1	3	2
Scandium	Sc	45	0.1	3	2
Bismuth	Bi	209	0.1	3	2
Strontium	Sr	121	0.1	3	2
Yttrium	Y	89	0.1	3	2

Table 9. ICP-MS Parameters Used to Measure Element

Table 10 describes the uncertainty budget for determination of Al, As, Cd, Pb, Mo, Rb, Se, and Sr by ICP-MS. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

Uncertainty	Basis	Type	DF
Sample Replication,	The uncertainty due to sample preparation and measurement is estimated by calculating the standard deviation of the mean. ($n = 4, 19, 20$; SRM 1568b and SRM 1568c respectively)	A	3, 18, 19
Blank Replication, <i>s</i> blank	The uncertainty due to blank preparation and measurement is estimated by calculating the standard deviation of the mean. $(n = 10, 8 \text{ for Al})$	А	9, 7
Moisture Correction, _{Smoisture}	The uncertainty due to the moisture correction is estimated by calculating the standard deviation of the mean then converting percent moisture to mass. $(n = 10)$	А	9
Primary Standard, <i>u</i> s	The uncertainty associated with the primary standards is calculated to be the expanded uncertainty divided by the expansion factor, k , obtained from the COA for each SRM used as the standard addition spike.	В	> 60
Weighing of Standards, u_{b1}	The uncertainty for each weighing of the standard is ± 0.01 mg based on the certificate of calibration for the balance. This uncertainty is normalized by division by $\sqrt{3}$.	В	> 60
Weighing of Samples, u_{b2}	The uncertainty for each weighing of the sample is ± 0.01 mg based on the certificate of calibration for the balance. This uncertainty is normalized by division by $\sqrt{3}$.	В	> 60

Table 10. Uncertainty Budget for ICP-MS Analysis

4.1.6 INAA Analysis

Mass fractions of As, Br, Mo, and Se in SRM 1568c Rice Flour were determined at NIST using INAA. A total of 10 bottles of candidate SRM 1568c were sampled for analysis by INAA. Bottles were inverted and rotated to mix the material before sampling. Two aliquots of the rice flour powder were removed from each bottle, each weighing nominally 300 mg to 335 mg, exact masses known, and placed into polyethylene irradiation vials obtained from Posthumus Plastics (Beverwijk, Netherlands), which are cylinders approximately 8 mm wide and 9 mm long. Vials were weighed to \pm 0.01 mg on an analytical balance before and after addition of powder. All weighings were performed using a Mettler Toledo XP205DR analytical balance with calibration verified using Troemner calibrated masses. Each vial was sealed with a snap-cap after sample addition. Six aliquots weighing nominally 250 g to 275 mg, exact masses known, from a single bottle of SRM 1568b Rice Flour were also analyzed as described previously for quality assurance.

Standard solutions were prepared by gravimetrically diluting and mixing selected single element SRM 3100 series solutions with either dilute nitric acid (< 5 % volume fraction) for As, Cd, Mo, and Se and ultrapure water for Br as shown in Table 11. Cadmium and selenium were also included in the intermediate solution, however the Cd level was below the limit of detection in the samples and is not reported here. Measurement of 75Se (t1/2 = 120 d) requires a longer decay time for samples to allow for decay of shorter lived nuclides that can create high Compton background in the Se peak energy region (264 keV), therefore Se will be included in an upcoming report of analysis after additional counts have been performed. For preparation of standards for irradiation, 18 vials were filled to maximum capacity with approximately 0.15 g of cellulose (SPEX 2642 cellulose binder with particle size at or below 20 µm) to create identical sample geometries to rice flour samples and controls. Approximately 0.15 g of a mixed solution containing As and Mo were pipetted into 9 vials and approximately 0.15 g of Br solution was pipetted into the other 9 vials. Vials were weighed before and after addition of cellulose to determine cellulose mass, and again after deposition of solution to determine solution mass. Vials were placed in a fume hood to air-dry overnight before being sealed with a snap-cap. Previous results have shown that the deposited solution is distributed

sufficiently uniformly that geometry effects are not observable when the vials are measured at-contact with HPGe detector heads. To determine whether blank corrections were necessary for As, Br, or Mo in the cellulose, four vials containing approximately 0.15 g cellulose each were also prepared and sealed with no solution added.

			Mass Fraction in	
		Lot	Solution	Uncertainty
Element	SRM Number	Number	(mg/kg)	(mg/kg)
Arsenic (As)	3103a	100818	13.43	0.01
Bromine (Br)	3184	151130	15.79	0.02
Molybdenum (Mo)	3134	130418	13.60	0.02
Selenium (Se)	3149	100901	12.974	0.033

Table 11. SRM solutions and final standard mass fractions for INAA analysis

Irradiation Procedure: Two polyethylene irradiation capsule, rabbits, were prepared for analysis of candidate SRM 1568c. Each rabbit contained 24 vials, a mixture of standards, controls, samples, and cellulose blanks, placed perpendicular to the neutron field in three columns of eight. Additionally, each rabbit contained 27 polyethylene-sealed iron foils (mass of approximately 0.007 g, 6 mm diameter, and 0.1 mm thick) that were placed before and after each vial to measure and correct for neutron flux gradients during irradiation and between each rabbit shot. Due to concerns that Br might be present in the vials as well as the cellulose (necessitating a blank correction for the samples as well as standards), a third rabbit was later prepared containing four Br standards, 3 empty vials, and 1 vial with cellulose. This rabbit was irradiated in an identical manner to the other two.

The rabbits were irradiated at the NIST Center for Neutron Research (NCNR) RT-2 irradiation facility [9]. RT-2 has a thermal neutron flux of approximately 3×10^{13} cm⁻²s⁻¹ and a dimensionless thermal/epithermal ratio of approximately 350. Each rabbit was irradiated for 16 h, but because of a known neutron flux gradient from one end of the rabbit to the other [10], the rabbit was flipped midway through the irradiation, resulting in 8 h irradiation in each orientation.

Gamma-Ray Spectrometry: The rabbits were stored in a lead cave for approximately 2 d before being unpacked and prepared for counting. Samples, controls, standards, and flux monitors were counted using the sample changer attached to the "Alena" detector (Model: GEM-45P4-76-PL) from ORTEC® and a LYNX-MCA digital signal processor from Mirion Technologies (formerly Canberra). The detector was configured to have a shaping time of 12 μ s and a gamma-energy range of 13 keV to 3000 keV and was energy-calibrated using a Eu-152 source. Pileup rejection circuitry was used to minimize the need for potential pileup corrections, and because the dead-time between the samples, standards, and controls was nominally identical, no pileup correction was performed. A subsequent pileup calibration study indicated that any pileup effects were insignificant.

Arsenic, Mo, and Br were determined by counting after 3 d of decay for 2.5 h for the samples, standards, controls, and blanks at 10 cm. The samples, standards, and controls were stored in a radioactivity hood for 7 to 8 months after irradiation to allow decay of short lived and intermediate nuclides prior to counting for Se determination. Selenium was determined by counting after 7 months to 8 months of decay for 20 h for SRM 1568c samples, 10 h for SRM 1568b controls, and 8 h for blanks at 5 cm. Due to an oversight, only 19 of the original 20 irradiated vials of SRM 1568c were measured for Se.

Spectrum and Data Evaluation: Gamma-ray spectra were evaluated using the Nuclear Data/Canberra VAX/VMS neutron-activation analysis software package. Peak identifications and peak area calculations for each spectrum were done with the program ND-PEAK V16.9. Peak area calculations

were checked with an interactive peak-fitting utility that is part of the Nuclear Data/Canberra SPECTROSCOPY ASSISTANT PROGRAM V2.5. Additional peak integrations were performed using the SUM4 algorithm [11]. All gamma-ray count rates for samples and standards were corrected for radioactive decay between the end of irradiation and the start of count, for radioactive decay during data acquisition, neutron flux gradients, and neutron flux differences between each rabbit irradiation, and spectral interferences where applicable. Bromine count rate for both standards and samples were also for Br in the cellulose and vials (see below). Table 12 lists the nuclides analyzed, their corresponding half-lives, and energies of the gamma rays used in the analysis.

Anal	yte	Half-Life	Gamma Energy	Count,	Detector,	Number of
Element	Nuclide	(d)	(KeV)	Decay	Geometry	Standards
Arsenic	⁷⁶ As	1.097	559.08	2.5 h, 3 d	Alena, 10 cm	9
Bromine	⁸² Br	1.4708	554.3	2.5 h, 3 d	Alena, 10 cm	9
Molybdenum	⁹⁹ Mo	2.7477	140.47	2.5 h, 3 d	Alena, 10 cm	9
Selenium	⁷⁵ Se	119.78	264.66	20 h, 7 m – 8 m	Alena, 5 cm	9

Table 12. Nuclides measured, gamma-ray peak energies, and interferences

The program AUTONAA was used to perform the quantitative evaluation by first calculating massic count rates for each element based on the irradiated standards. Massic count-rate values and statistical uncertainties for multiple standards were combined and propagated to yield one value and associated uncertainty for each of one or more gamma-ray lines in each element being assayed. Count rates of the elements in the samples were compared to those of the standards for the calculation of elemental mass fractions. The resulting elemental mass fraction values were exported to a spreadsheet for the final statistical evaluation.

While there may be some uncertainty sources defined in the equation that are not applied to this analysis since their contributions were significantly (> 1000 times) less than other sources of uncertainty, the following is the general-use equation for propagating uncertainties for concentration determination using INAA:

$$w_{x(unk)} = \frac{w_{x(std)} + M_{std}}{M_{unk}} \left(\frac{A_{0(unk)}}{A_{0(std)}}\right) R_{\theta} R_{\phi} R_{\sigma} R_{\varepsilon} \left(1 - \frac{blank}{m_{x(unk)}}\right) / DF$$
[4]

where $w_{x(unk)}$ = mass fraction of element x in the unknown sample (mg/kg).

 $w_{x(std)}$ = mass fraction of element x in the comparator standard (mg/kg).

 $M_{\rm std}$ = total mass of the comparator standard (mg).

 M_{unk} = total mass of the unknown sample (mg).

 $A_{0(\text{unk})}$ = decay corrected count rate of the unknown sample (Counts per second). This uncertainty is accounted for in the sample measurement replication.

- $A_{0(\text{std})}$ = decay and blank corrected count rate of the comparator standard (Counts per second). This uncertainty is accounted for in the standard measurement replication.
- R_{θ} = ratio of isotopic abundances for the unknown and standard (dimensionless). This ratio is typically not mentioned because the isotopic abundances for most elements are identical, and thus the uncertainty contribution is significantly less than other sources.
- R_{φ} = ratio of neutron fluences (dimensionless). This uncertainty includes contributions from neutron self-shielding and irradiation geometries.
- R_{σ} = ratio of effective cross sections between comparator and sample (usually 1) (dimensionless) This ratio is usually never an issue unless neutron shielding in a sample causes the neutron energy spectrum to change between the samples and comparators; which would be a rare event.
- R_{ε} = ratio of counting efficiencies between the standard and sample (dimensionless). This uncertainty is accounted for in counting geometry and photon attenuation.

 $\frac{blank}{m_{x(unk)}}$

creates a relative correction factor for the contribution of the blank on the total mass fraction (mg/mg). This uncertainty is typically not reported unless a blank correction is performed. Typically, blanks only become an issue when the samples and standards are packaged differently and elements which are known to exist in blank materials are being reported.

= mass of element x in the blank divided by the mass of x in the unknown;

DF = the drying factor of the rice flour sample or control as determined from moisture determination on replicate portions of the material. See below.

The use of the vials and cellulose matrix for the standards resulted in no necessary geometry corrections. Neutron self-shielding corrections were negligible due to the similarity in matrix between the rice flour and cellulose.

Flux monitor corrections were calculated by measuring the activity of each flux monitor in each rabbit. The flux monitors were then treated as standards in the VMS program and standard constants, or essentially counts per second (cps) per mg, values were calculated. The difference in standard constant between bracketing foils was calculated and then applied to the standards, samples, and controls to account for axial flux dependence in RT-2. Additionally, the average iron flux value for each rabbit was compared to the other two rabbits to determine if there were any changes in the neutron fluence each rabbit experienced. Typical in-rabbit flux corrections ranged from ± 2 % while rabbit-to-rabbit variation was less than 0.1 %.

No blank corrections were necessary for As, Se, and Mo. However, Br was found to be present in both the cellulose and empty vials. Corrections were made to the standards data by using Br standards data to determine the mass of Br in the blank cellulose, adjusting the calculated Br content of the standards to reflect the additional Br from the cellulose, followed by recalculation of Br in the cellulose using the adjusted standards data. Successive iterations were performed until the calculated

Br content of the standards remained constant to at least 3 significant figures in successive iterations. Because the cellulose contained a significant fraction of Br, the blank correction resulted in about a 36 % correction in the calculated Br content of the standards. Subsequent analysis of the three empty vials yielded an average of 2.6 ng \pm 0.3 ng with the uncertainty equal to 1 standard deviation (1s) of Br per vial. This resulted in a correction of 0.8 % to the mass fractions determined for SRM 1568c.

Elemental mass fractions were measured relative to dry mass for both the SRM and control. Moisture determination was performed by drying 1 g portions of SRM 1568c (one portion from each of 10 bottles) and SRM 1568b (five portions from one bottle) in an oven at 90° C for 4 h, as described on the COA for SRM 1568b. Drying factors determined from the two materials were 0.8973 ± 0.0004 (1s) for SRM 1568c and 0.9125 ± 0.0003 (1s) for SRM 1568b. Because pellets prepared from SRM 1568c were found to lose mass a week or two after preparation and because the original drying determination was a few weeks before sample preparation for INAA, a second drying determination was performed using 1 g aliquots about two weeks after pellet preparation. The new drying factor was found to be 0.8988 ± 0.0008 (1s) indicating that the material in the bottles had lost about 0.016 % of moisture content over the 2 month to 3 month period. Interpolating between the two dates of moisture determination, and assuming a constant H loss, the drying factor for SRM 1568c determined for the date of sample preparation and weighing was 0.8978.

Table 13 describes the uncertainty budget for determination of As, Br, Mo, and Se by INAA. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

Uncertainty	Basis	Туре	DF
Sample Measurement Replication	s/\sqrt{n} , where s is standard deviation of the sample data, and n is the number of samples analyzed. (n=19 for Se, n=20 for As, Br, and Mo)	А	18, 19
Standard Measurement Replication	s/\sqrt{n} , where s is standard deviation of the standard data, and n is the number of standards analyzed.	А	8
Dry Mass Determination	Standard deviation of the mean of values from drying of multiple samples.	В	4
Neutron Flux Correction	Estimated from counting statistics of the Fe 1098 keV and 1291 keV peaks.	В	> 60
Standard Mass (Purity)	Calculated as the uncertainty in the elemental mass fraction in NIST standard solutions (listed on the certificate) divided by 2, assuming the certificate uncertainty is an expanded uncertainty with coverage factor of 2.	В	> 60
Peak Integration	Estimated from results of peak integration by 2 different methods using the normal distribution method.	В	> 60
Blank Correction (Br only)	Uncertainty in the corrected Br standard mass fraction, calculated as the relative uncertainty on Br mass fraction determined in the four cellulose blanks ($s/\sqrt{4} = 0.6$ %) times the correction as a fraction of the uncorrected value (0.355) = 0.355 * 0.6 % = 0.21 % (n=4 cellulose, n=3 vials)	В	3, 2

Table 13. Uncertainty Budget for INAA Analysis

4.1.7 TNPGAA Analysis

The mass fraction of S in SRM 1568c Rice Flour was determined at NIST using TNPGAA. A total of 6 bottles were inverted and rotated to mix the material before sampling for analysis of sulfur by PGAA. Sulfur was measured by first determining H mass fraction by TNPGAA, followed by determination of S/H mass fraction ratio by CNPGAA (see below). For H determination, two aliquots nominally weighing 750 mg were removed from each bottle and pressed into 12.7 mm diameter pellets using a stainless-steel die and hydraulic press at 10 000 pounds' force (44 000 Newtons) for 3 s to 5 s. For S/H determination, one pellet weighing between 1500 mg and 1800 mg was removed from each bottle and pelletized in an identical manner. Each pellet was then weighed to \pm 0.01 mg using an analytical balance and sealed into a bag of fluorinated ethylene propylene (FEP) film. All weighings were performed using a Mettler Toledo XP205DR analytical balance, with calibration verified using Troemner calibrated masses. One bottle of SRM 1568b Rice Flour was analyzed for quality assurance. Five nominal 750 mg portions and five portions weighing between 1600 mg and 1900 mg were pelletized as described above and used for determination of H and S/H respectively. Weighing of pellets and packaging in FEP were performed as described above.

Standards for measurement of H by TNPGAA were prepared by pressing five nominal 750 mg portions of SRM 912b Urea in the manner described previously. Urea was used as a H standard because its hydrogen density when pelletized (determined as cps H as a function of pellet thickness) was in better agreement to that of the pelletized rice flour samples than other H containing compounds (e.g., mannitol, benzoic acid, tris hydroxymethyl aminomethane). Pellets were weighed and packaged in FEP as previously described. Pellet masses and H sensitivities were determined by TNPGAA and are given in Table 14.

	Pellet mass	Measured H sensitivity
Standard	(mg)	(cps H / mg H)
А	720.14	2.411
В	722.88	2.400
С	761.81	2.418
D	753.11	2.404
Е	773.09	2.391
	Mean	2.405
	SD	0.010
	% SD	0.425

Table 14. H sensitivities for urea standards

Standards for the NIST PGAA measurements were created from a mixture of NIST SRMs and from high purity reagents. The standard for measurement of S/H ratios were pressed pellets of mixtures of L-cystine (SRM 143d Cystine), graphite (Spectrographic Services, 200 mesh), and urea (SRM 912a Urea), and sodium sulfate (Alpha Puratronic, 99.9955 % metals basis), graphite, and urea. These pellets were previously prepared for measurement of sulfur in SRM 2684c Bituminous Coal [12] and in SRM 2718a Green Petroleum Coke [13] by TNPGAA. Mixtures were prepared by weighing of components into a plastic vial and shaking the vial in a Spex Mixer Mill for approximately 20 min. Samples weighing from 750 mg to 1000 mg were pelletized, weighed, and sealed into FEP bags as described above. Pellet compositions and sensitivity ratios measured by CNPGAA are given in Table 15.

Standard	Composition	Measured H/S sensitivity
Standard	Composition	(cps H/mg H)/(cps S/mg S)
UGNa3_2	Urea, graphite, Na ₂ SO ₄ 7.045 % S, 2.452 % H	16.33
UGNa3_3	Urea, graphite, Na ₂ SO ₄ 7.045 % S, 2.452 % H	16.43
UGC2a	Urea, cystine, graphite 5.115 % S, 3.994 % H	16.27
UGC3a	Urea, cystine, graphite 5.264 % S, 3.398 % H	16.40
UGC3C	Urea, cystine, graphite 5.264 % S, 3.398 % H	16.45
UGC5a	Urea, cystine, graphite 5.373 % S, 3.691 % H	16.30
UGC5E	Urea, cystine, graphite 5.373 % S, 3.691 % H	16.58
	Mean	16.39
	SD	0.11
	% SD	0.657

Table 15. Sensitivities for S/H ratio standards

Elemental mass fractions were measured relative to dry mass for both SRM 1568c and the control, SRM 1568b. Moisture determination was performed by drying 1 g portions of SRM 1568c (one portion from each of 10 bottles) and SRM 1568b (five portions from one bottle) in an oven at 90 °C for 4 h, as described on the COA for SRM 1568b. Drying factors determined from the two materials were 0.8973 ± 0.0004 (1s) for SRM 1568c and 0.9125 ± 0.0003 (1s) for SRM 1568b. Because pellets prepared from SRM 1568c were found to lose mass a week or two after preparation and because the original drying determination was performed approximately two months before preparation of pellets for PGAA, a second drying determination was performed using 1 g aliquots about two weeks after pellet preparation. The new drying factor was found to be 0.8988 ± 0.0008 (1s) indicating that the material in the bottles had lost about 0.016 % of moisture content over the 2 month to 3 month period. Interpolating between the two dates of moisture determination, and assuming a constant H loss, the drying factor for SRM 1568c determined for the date of sample preparation and weighing was 0.8985.

Analytical Method: Although the NIST TNPGAA instrument at vertical tube (VT) 5 has ample sensitivity to measure H in rice flour with less than 1 % counting statistics with a few minutes of irradiation, achieving 1 % counting statistics for sulfur at the level present in the rice flour would take irradiation times of greater than one week per sample. By contrast, elemental sensitivities measured using the neutron guide "D" (NGD) cold neutron PGAA instrument are 15 times to 20 times greater than thermal, hence elemental mass fractions can be measured in a fraction of the time necessary for TNPGAA. However, elemental sensitivities are difficult to calibrate in hydrogenous targets for CNPGAA due to energy change of cold neutrons in a room temperature target [14], while accurate sensitivity calibration is much more easily achieved in TNPGAA allows us to combine the improved sensitivity of CNPGAA with the accurate calibration of TNPGAA. The method takes advantage of the fact that element sensitivity ratios are not affected by differences in neutron scattering power and sample geometry [17] and utilizes measurement of H mass fractions by TNPGAA combined with measurement of the ratio of S/H mass fraction by CNPGAA [18].

Irradiations: Measurement of H was performed using the TNPGAA instrument at VT5 at the NCNR. Six samples, controls, and urea standards in FEP bags were irradiated in an aluminum sample chamber in air, suspended by PTFE strings in an aluminum sample frame, for 10 minutes each. This

irradiation was sufficient to yield counting statistics of 0.4 % for the H peak at 2223 keV. A 139 mg titanium foil was irradiated at regular intervals to monitor any variation in the neutron fluence rate and sample positioning within the beam over the course of the investigation. Prompt gamma rays were measured using a high purity germanium detector (designated as "TNPGAA", Canberra (Mirion) Model GC4018) with 40 % efficiency (relative to NaI). The signal was processed using a digital signal processor (Canberra (Mirion) Lynx) and gamma-ray spectra up to 11 MeV were collected on a computer workstation using Canberra (Mirion) software.

Measurement of H/S ratio was performed using the CNPGAA instrument at NGD at the NCNR [19]. Samples, controls, and mixed H/S standards in FEP bags were irradiated in an aluminum sample chamber in air, suspended by PTFE strings in an aluminum sample frame. Samples and controls were irradiated for approximately 24 h to achieve counting statistics of 1.2 % or better for the sulfur peak at 841 keV. Mixed standards for H/S determination were irradiated for 10 min to 20 min to achieve counting statistics of 0.5 % or better for H and S peaks. To correct for spectral interferences by K and Cl at the sulfur energy, pellets of K_2CO_3 and NH_4Cl mixed with graphite were irradiated overnight. Prompt gamma rays were measured using a high purity germanium detector (designated as "Homer", Canberra (Mirion) Model GR3519, Serial Number 6470) with 40 % efficiency (relative to NaI). The signal was processed using a digital signal processor (Canberra (Mirion) Lynx) and gamma-ray spectra up to 11 MeV were collected on a computer workstation using Canberra (Mirion) software.

Data Evaluation: All spectra for both TNPGAA and CNPGAA were analyzed using Canberra (Mirion) software. H peaks (2223 keV) for TNPGAA and H and S peaks (841 keV) for CNPGAA were analyzed using the standard Canberra (Mirion) peak search and the interactive peak search, as well as PeakEasy software and the SUM4 code [11]. No pileup corrections were necessary since pileup rejection circuitry was used. Corrections for neutron self-absorption and Gamma-ray self-shielding were minimal for TNPGAA irradiations due to the similarity between sample and urea standard matrices, and unnecessary for CNPGAA since element ratios were measured. For determination of Cl and K spectral interferences by CNPGAA, Cl and K peaks at 787 keV and 770 keV, respectively, were also integrated. For K, the interference factor was calculated from the ratio of the sulfur interference peak at 843 keV to the K reference peak at 770 keV measured in the K₂CO₃ spectrum, and the magnitude (cps) of the K interference for each sample determined by multiplying this ratio by the count rate of K at 770 keV in the sample spectrum. A similar procedure was used for correction of Cl interference using data from the NH₄Cl/graphite pellet and the reference peak at 787 keV. Correction for Cl interference resulted in an approximately 0.25 % correction in the S count rate for both samples and controls. The K interference resulted in an approximately 7.5 % correction in S count rate for SRM 1568b controls, while the correction for SRM 1568c samples was significantly greater (approximately 16 %) due to a greater K count rate.

Because S was measured relative to H, careful monitoring of the mass of the pressed pellets was necessary since a change in moisture content over the course of the investigation would result in a change in H content. Sample and control pellets for both CNPGAA and TNPGAA were reweighed both before and after irradiation. Pellets of SRM 1568c lost mass since initial preparation, presumably due to loss of moisture upon exposure to air. Relative mass loss was between 0.7 % and 2 % for all pellets. Corrections for loss of H were made assuming all mass was lost as H₂O and using a fraction of 0.1119 for H in H₂O, resulting in relative corrections of about 0.2 % for H determined by TNPGAA and 0.4 % for determination of S. For SRM 1568b, a slight gain (a few tenths of a percent relative) in mass since pellet preparation was noted, presumably due to absorption of moisture, resulting in a correction of less than 0.2 % for both measured H and S.

Hydrogen for use as a comparator was calculated using the average H sensitivity (S_H) from five urea standard pellets and determined as cps H/(mass of pellet * 0.0671), where 0.0671 is the mass fraction of H in urea. Since no significant variation in H sensitivity was observed with urea pellet mass (which ranged from about 720 mg to 770 mg) and since all rice flour pellets for TNPGAA were within this mass range, the H sensitivity was assumed to be constant over this mass range. The H count rate for each sample or control was corrected for differences in neutron flux between samples and standards as determined from Ti flux monitor irradiation, and for moisture change from exposure to air as described above. H mass fraction, w_H in each rice flour pellet was then determined, relative to pellet dry mass, as:

$$w_{\rm H} = 100[[(C_{\rm H}/S_{\rm H})(\phi_{\rm corr})] - H_{\rm change}]/(m_{\rm sa}DF)$$
^[5]

where: C_H = count rate of H in the sample or control by TNPGAA,

 $S_{\rm H}$ = average sensitivity of H (cps H/mg H) determined from standards,

 ϕ_{corr} = correction for differences in neutron flux between samples and standards,

 $m_{\rm sa}$ = wet (as received) mass of the sample,

 $H_{change} = loss or gain of H in the pellet since preparation, and$

DF = drying factor for that material.

The sulfur mass fraction, *w*_S, was then calculated using the hydrogen mass fraction determined by TNPGAA and S and H count rates and sensitivity ratio determined by CNPGAA, using:

$$w_{\rm S} = w_{\rm H}[(C'_{\rm S} - INT_{K+Cl})/C'_{\rm H}][S'_{\rm H}/S'_{\rm S}]H_{changecorr}$$
^[6]

where: C's = count rates (cps) for S for each sample or control as determined by CNPGAA,
C'_H = count rates (cps) for H for each sample or control as determined by CNPGAA, *INT*_{K+Cl} = total interference correction for K and Cl in cps, determined as above,
S'_H/S'_S = average sensitivity ratio for H/S, (cps H/mg H)/(cps S/mg S), as determined from the 7 mixed standards by CNPGAA, and

 $H_{changecorr}$ = correction for H loss or gain in the CNPGAA pellet since sample preparation. In Equation 5, H was determined in this investigation as a comparator element for determination of S. Although total H in the samples was determined from this equation relative to dry mass by determination of H in a wet sample and applying a drying factor, this value does not reflect the true H mass fraction of a dry sample. To obtain the true dry sample hydrogen content, the hydrogen mass fraction calculated from Equation 5 must be further corrected to account for hydrogen lost as H₂O upon drying. The "dry" hydrogen mass fraction, w_{HDry} , in %, is calculated using:

$$w_{\rm HDry} = 100[[(C_{\rm H} - INT_{K+Cl}/S_{\rm H})(\phi_{\rm corr})] - m_{\rm sa} \, mf \, 0.1119]/(m_{\rm sa} \, DF)H_{changecorr}$$
[7]

where: $m_{\rm sa}$ = wet mass of the sample in mg,

mf = moisture mass fraction determined by oven drying, and

0.1119 = mass fraction of H in water.

Table 16 describes the uncertainty budget for determination of S by TNPGAA. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

Uncertainty	Basis	Type	DF
Sample Measurement Replication	s/\sqrt{n} , where s is standard deviation of the sample data, and n is the number of samples analyzed.	A	11
Urea Standard Measurement Replication	s/\sqrt{n} , where s is standard deviation of the standard data, and n is the number of standards analyzed.	А	4
Dry Mass Determination	Standard deviation of the mean of values from drying of multiple samples.	А	4
Neutron fluence rate variation/Sample positioning	Estimated from the standard deviation of repeated measurements of a titanium foil, n=25.	А	24
Standard Mass (Purity)	Estimated from manufacturers specification of material purity or (for NIST standard solutions) uncertainty in spectrometric standard mass fraction (given on the certificate)/2, assuming the certificate uncertainty is an expanded uncertainty with coverage factor of 2.	В	> 60
Peak Integration	Estimated from results of peak integration by 2 different methods using the normal distribution method.	В	> 60
Matrix Match Uncertainty	An added uncertainty of 0.2 % was added to account for the fact that the urea was not an exact matrix match for the rice flour samples. Hence the effects of neutron scattering for the urea could differ slightly from that observed by the samples resulting in a slightly higher or lower H sensitivity.	В	> 60
Loss or gain of H as moisture during the investigation	Estimated as 25 % of the moisture loss or gain.	В	> 60

Table 16. Uncertainty Budget for TNPGAA Analysis

4.1.8 WDXRF Analysis

Mass fractions of Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, and Rb in SRM 1568c Rice Flour were determined at NIST using WDXRF. Two 4.5 g aliquots were taken from each of six bottles of SRM 1568c Rice Flour and four 4.5 g aliquots of were taken from one bottle of SRM 1568b Rice Flour and prepared along with the samples for quality assurance. Aliquots were weighed into glass containers and stored under vacuum in a desiccator over $Mg(ClO_4)_2$ for at least 21 d. Briquettes were pressed from approximately 4 g of each dried powder sample using a steel pressing die containing an aluminum cap. A polished steel die pellet was inserted, along with the ram cylinder, and the die was pressed at 20 tons (18143.7 kg) for 24 s. Briquettes were immediately placed into liquid sample cells fitted with 6 μ m polypropylene film, which prevents loose powder from dropping into the spectrometer, and the sample cells were placed into a second desiccator. When all briquettes had been prepared, the desiccator was evacuated, and the briquettes were stored under vacuum for two weeks prior to analysis. Blanks of cellulose were prepared from Alfa Aesar Microcrystalline Cellulose A17730, lot 10200883 and Whatman Cellulose Powder CF11. The cellulose powders were pressed into briquettes without drying.

A Malvern Panalytical Model ZETIUM Ultimate wavelength dispersive X-ray fluorescence spectrometer was used to perform measurements of the K-L_{2,3} characteristic X-ray lines of all elements. Background measurement and subtraction was made for each of the following elements: Na, Mg, Al, Si, Cl, Ca, Mn, Fe, Cu, and Zn. All measurements were performed in a helium environment with the generator operated at 4.0 kW of X-ray power. Sample holders with 32 mm inner diameter support rings were used to carry all briquettes in liquid cells into the spectrometer and to hold them in the measurement position. The mask between the sample and the collimator was set

to view a 29 mm circular area of the sample, and the spinner was used. Counting times were chosen to obtain relative counting statistical errors ranging from 0.1 % to 1.0 % depending on the X-ray count rate for each element and the number of measurements of background.

Calibration curves were calculated in the software provided with the X-ray spectrometer (SuperQ). The general calibration algorithm is:

$$C_i = D_i + L_k R_k + E_i R_i \frac{R_i}{R_{Rh}} \left(1 + \sum_j \frac{a_{ij}}{R_j} \right)$$
[8]

where: C = mass fraction

0	muss mustion,
D	= intercept,
Ε	= inverse sensitivity,
L	= slope,
R_i	= net or gross count rate,
$R_{ m Rh}$	= gross Compton scatter count rate
i	= analyte element index,
j	= interfering element, and
k	= presenting a spectral overlap.

The R_{Rh} term is for the Rh tube used as an internal reference for Mn, Fe, Cu, Zn, and Rb. For Si, the single calibrant and the Whatman cellulose blank defined the calibration line. For Rb, the single calibrant and both cellulose blanks defined the calibration line.

The term containing the α factor for X-ray absorption was used for elements for which an internal reference approach did not correct for all interelement effects (i.e., Mg, P, S, Cl, K, Ca, Mn, Fe, and Zn). The absorption factors were calculated empirically based on the measured count rates of the interfering elements. Absorption corrections were made as described in Table 17.

	Self-Absorption	Other Absorption
Element	Correction	Corrections
Mg	No	S, Cl, K, Ca, Fe
Р	Yes	Mg, S, Cl, K, Ca, Fe
S	No	Cl, K, Ca
Cl	Yes	S, K, Ca
Κ	Yes	P, S, Cl, Fe
Са	Yes	P, S, K
Mn	No	P, S, K, Ca, Fe
Fe	No	K, Ca
Zn	No	K, Ca, Fe

 Table 17. Absorption Corrections for WDXRF Measurements

For all other combinations of elements, the product of the mass fraction of interfering element and any calculated correction factor was too low to have a significant effect.

A line overlap correction was used for the overlap of Zn L-series lines on Na. Line overlaps for S and Ca on Mg had no effect on calculated model parameters, indicating there are no effects of higher order S and Ca peaks on Mg.

Calibration standards were chosen from among the available powdered food and vegetable matter SRMs as described in Table 18 and were prepared in the same way as the samples of candidate

SRM 1568c and SRM 1568b. For some analytes, selected certified and reference values were observed to be obvious outliers and were excluded from use as listed below in Table 18:

	Na	Mg	Al	Si	Р	S	Cl	Κ	Ca	Fe	Cu	Zn
SRM 1515	Х					Х						
SRM 1547	Х							Х				
SRM 1549		Х	Х									
SRM 1566b		Х			Х			Х				
SRM 1571		Х				Х						
SRM 1572			Х									
SRM 1573a	Х									Х	Х	Х
SRM 1575		Х	Х									
SRM 1575a		Х										
SRM 1577b			Х									
SRM 3232	Х		Х					Х	Х	Х		
SRM 3233										Х		
SRM 3234	Х											
SRM 3252		Х			Х		Х	Х				
SRM 3281		Х			Х							
SRM 3287		Х										
SRM 3290		Х			Х							Х

Table 18. Elements Excluded from Use as Calibration Materials Used for XRF Measurements

Both cellulose blanks were found to be contaminated with Cl and K and thus were not included in the Cl and K calibrations. The Alfa Aesar cellulose was found to be contaminated with Si and was not used in the Si calibration. Bromine was measured, but no calibrants were available to enable quantification.

Except for Si and Rb, statistical weighting was applied to emphasize lower mass fraction calibration points in the regression calculations because XRF data is heteroscedastic. The weighting, called "square-root" weighting in the SuperQ software, was done during regression in the calculation of goodness of fit, K, calculated using

$$K = \sqrt{\frac{1}{m-k} \sum \frac{(C_{chem} - C_{calc})^2}{(C_{chem} - C_0)}}$$
[9]

where: m = the number of calibration standards,

k

= the number of calculated parameters in Equation 8,

 C_{chem} = the assigned value for the calibration standard,

 C_{calc} = the value for the calibration standard calculated from the fit to Equation 8, and

 C_0 = a constant called the weighting factor.

The weighting factor is set manually. The lower is the value of C_0 ; the greater is the weight on the lowest mass fraction points. With only one calibrant each for Si and Rb, the mass fraction range was narrow making weighting unnecessary.

Table 19 describes the uncertainty budget for determination of Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, and Rb using WDXRF. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with

large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

Uncertainty	Basis	Туре	DF
Variability of Sample Preparation and Measurement, <i>s</i>	Standard deviation of the calculated mass fractions for <i>n</i> specimens.	А	n-1
Uncertainty of Calibrant Measurement and Empirical Model Fit, u_f	Estimated from the fit of Eq. 8 to the calibration data. This estimator accounts for repeatability of briquette preparation and measurement and for biases among the calibration standards. The estimate is calculated from the <i>K</i> factor (see Eq. 9), using the equation below, where C_{calc} is now the calculated result for each sample of candidate SRM 1568c. $U_f = K\sqrt{(C_{calc} - C_0)}$ Each analyte has a different number of calibrants, <i>m</i> , and calculated correction coefficients, <i>k</i> . For Si with one calibrant, this value was set equal to the combined standard uncertainty of the certificate value for the calibrant SRM. For Rb, this value was set equal to the mean difference between zero and the calculated values for the cellulose blanks = 0.4 mg/kg.	А	(m – k)
Combined standard uncertainty, <i>u</i> c	$U_c = \sqrt{\frac{s^2}{n} + \frac{u_f^2}{(m-k)}}$		
U _{k=2}	Expanded uncertainty estimate with expansion factor, k, set equal to 2, <i>i.e.</i> , $U_{k=2} = 2u_c$.		

Table 19. Uncertainty Budget for WDXRF Analysis

4.1.9 LC-ICP-MS

Arsenic species including monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and inorganic arsenic (iAs), defined as the sum of arsenic from arsenous acid (AsIII) and arsenic acid (AsV), were determined in SRM 1568c Rice Flour at NIST using LC-ICP-MS. Duplicate 1 g samples from each of six bottles of candidate SRM 1568c and one bottle of SRM 1568b, used as a control, were weighed into 50 mL polyethylene tubes.

A Mettler model AT261 Delta Range analytical balance was used for weighing during the preparation of samples and standards. The balance is serviced and calibrated annually by Mettler Toledo, LLC. Prior to use, calibration of the balance was verified using standard masses ranging from 0.5 g to 50 g that are traceable to the SI through the standard mass set maintained by the Inorganic Chemical Metrology Group. A 10 mL solution containing 0.2 mol/L HNO₃ and 6 % H₂O₂ in water was added to each tube. Four procedural blanks were prepared similarly. The samples and the blanks were loosely capped and transferred to a Fisher Scientific Isotemp oven (model 737F), preheated to 90 °C. The samples and blanks were removed from the oven after 3 h. After the temperature was equilibrated with the room temperature at 21 °C, the samples were centrifuged at 4000 RPM in a Jouan model C312 centrifuge for 30 min. The supernatant of each sample was manually filtered through a 0.45 µm syringe filter and transferred to a 50 mL polystyrene tube. An unspiked sample was prepared by weighing 2 g of the filtrate into a 4 mL polypropylene tube containing 0.1 g of 1 mg/kg trimethylarsine oxide (TMAO) serving as the internal standard. A spiked sample was prepared by weighing 0.5 g of the unspiked sample and 0.1 g of spiking standard into a 0.75 mL polypropylene autosampler vial for calibration by the method of standard addition. The spiking standard contained 0.01 mg/kg AsIII and 0.1 mg/kg each of MMA, DMA, and AsV. The spiking standard was prepared
from SRM 3030 Monomethylarsonic Acid Standard Solution, SRM 3031 Dimethylarsinic Acid Standard Solution, SRM 3036 Arsenic Acid (AsV) Standard Solution, and SRM 3037 Arsenous Acid (AsIII) Standard Solution. A separate measurement of AsIII and AsV was made of the unspiked samples using a six-point external calibration curve. Independently, 1 g samples from each bottle of candidate SRM 1568c and SRM 1568b were transferred into weighing vessels and dried in the oven preheated to 90 °C for 2 h. The difference between the masses before and after drying was used to determine the moisture content of the sample.

All samples were prepared using Optima grade HNO_3 , Fisher brand ACS Reagent grade H_2O_2 , and Puratronic grade ammonium carbonate purchased from Fisher Scientific. TMAO was obtained from Waco Chemical. Locally prepared sub-boiling distilled water was used as a solvent in the preparation of samples, standards, and dilute acids. The concentration of dilute acid is expressed as the volume fraction of the acid relative to the solution.

A Perkin-Elmer LC system coupled to a Perkin-Elmer model Elan DRC II ICP-MS was used for analysis. The LC system consisted of a Peltier-cooled Series 200 autosampler and a Series 200 quaternary pump. Separation of As species was performed using a PRP-X100 anion exchange column from Hamilton and arsenic from each species was determined at 75 amu by ICP-MS in normal mode. Table 20 lists the parameters for the LC method. Set up and optimization of the ICP-MS were performed daily.

Table 20. LC Parameters for Separating Arsenic Species in Rice Samples

Parameter	Value
Guard Column	PEEK X-100 Guard Column
Analytical Column	PRP X-100 (4.1 mm x 250 mm, 10 μm)
Mobile Phase (1.0 mL/min)	20 mmol/L ammonium carbonate in water, pH 10

The dilute HNO_3 and H_2O_2 in the extraction solution are strong oxidizers that can oxidize AsIII to AsV. Yet, AsIII was found in the extract of rice flour samples as shown in Figure 4.

Figure 4. Typical Chromatogram of a Candidate SRM 1568c Sample Spiked with TMAO.

Therefore, the standard addition approach cannot be used for the calibration of iAs measurement because some of the AsIII in the spike can be oxidized to AsV. An external calibration curve approach was used for the calibration of AsIII and AsV measurements. The *p*-values of one-way analysis of variance (ANOVA) of the duplicate samples of MMA, DMA, and iAs are 0.043, 0.443, and 0.533, respectively. The *p*-value of MMA is less than the 0.05 criterion. The *p* values for other As species are greater than 0.05 and, hence, these species have no detectable inhomogeneity. For this report, all As species are

considered homogeneous in the data analysis by treating the duplicates of each bottle as independent samples.

The mass fractions of MMA and DMA were calculated according to the method of standard addition:

$$x = \frac{usp}{sp-usp} \frac{w_{sp}}{w_{sa}} c \frac{dil}{1-F}$$
[10]

where:: *x*

= mass fraction of the analyte in the sample,

sp = internal-standard-corrected count rate of the spiked measurement sample,

usp = internal-standard-corrected count rate of the unspiked measurement sample,

 w_{sa} = mass of the sample,

 w_{sp} = mass of the spike solution,

c = mass fraction of the analyte in the spike solution,

dil = dilution factor of the sample, and

F = mass fraction of moisture in the sample.

The mass fractions of AsIII and AsV were calculated according to the method of external calibration:

$$y = \frac{s-b}{r} * \frac{dil}{1-F}$$
[11]

where: y= mass fraction of the analyte in the sample,s= intensity of the sample,b= intercept and the slope of the calibration curve, andr= slope of the calibration curve.

The uncertainty of the measurement is calculated using the following:

$$U = k_{\nu} \sqrt{u_{\text{reps}}^2 + u_{\text{repb}}^2 + u_{\text{curve}}^2 + u_{b1}^2 + u_{b2}^2 + u_{b3}^2}$$
[12]

where: k_v

 $u_{\rm reps}$

= Student's *t* coverage factor for a 95 % confidence level with the *v* degrees of freedom,
= Standard uncertainty of replicate LC-ICP-MS measurements of 12 candidate SRM 1568c samples,

 u_{repb} = Standard uncertainty of replicate LC-ICP-MS measurements of 2 blanks,

 u_{curve} = Standard uncertainty of the slope of the calibration curve multiplied by the sample mean, and

 u_{bi} = uncertainty in the three weighings.

Table 21 describes the uncertainty budget for determination of arsenic species by LC-ICP-MS. The table provides the names and symbols for recognized uncertainty components, the basis for determining the contributions to the total uncertainty, whether the contributions are determined by current experiment (Type A) or from other sources (Type B), and the number of associated degrees of freedom (DF). Type B components typically are associated with large numbers of degrees of freedom, where "large" can be any value greater than 60, the number of DF for a Student's t 95 % confidence expansion factor of 2.0.

Source	Basis	Туре	DF
Sample replication (<i>u_{reps}</i>)	Standard uncertainty of replicate LC-ICP-MS measurements of 12 candidate SRM 1568c samples	А	11
Blank replication (u_{reps})	Standard uncertainty of replicate LC-ICP-MS measurements of 2 blanks	А	1
Curve fitting (<i>u</i> _{curve})	Standard uncertainty of the slope of the calibration curve multiplied by the sample mean	А	4
Calibrant (B_1)	Taken from the Certificate of Analysis of SRMs 3030-3037. Converted from expanded uncertainty to standard uncertainty by dividing by 2.	В	> 60
Density (B_2)	Estimated 0.001 g/mL uncertainty in density measurement, assuming uniform distribution, normalized by dividing by $\sqrt{3}$.	В	> 60
Weighing (B_3)	Estimated 0.082 mg weighing uncertainty due to the calibration of the balance used for weighing the mass of the samples [6], assuming uniform distribution, normalized by dividing by $\sqrt{3}$.	В	> 60

Table 21. Uncertainty Budget for LC-ICP-MS Analysis

4.2 Interlaboratory Studies

Laboratories participating in NIST's HAMQAP Exercise 5 and HAMQAP Exercise 6 reported values for Ca, Fe, K, Na, As, Cd, Pb, Hg, and proximates in SRM 1568c. The quantitative results from these exercises are reported here in full. The reported results from each participating organization have been assigned an arbitrary numeric code, and specific method information reported by each laboratory is provided below in the appropriate subsection of Section 5 Measurement Results.

4.2.1 HAMQAP Exercise 5

For Exercise 5 [20], NIST distributed candidate SRM 1568c Rice Flour to 29 laboratories for the determination of Ca, K, and Na and to 30 laboratories for the determination of Fe. Participants were asked to use in-house analytical methods to determine Ca, Fe, K, and Na in three samples (0.5 g or greater) taken from one bottle of the rice flour material. Results were to be reported in mg/kg.

4.2.2 HAMQAP Exercise 6

For Exercise 6 [21], NIST distributed candidate SRM 1568c Rice Flour to 41 laboratories for the determination of As and Cd, 43 laboratories for the determination of Pb, and 40 laboratories for the determination of Hg. Participants were asked to use in-house analytical methods to determine As, Cd, Pb, and Hg in three samples (0.5 g or greater) taken from one bottle of the rice flour material. Results were to be reported in mg/kg on an as-received basis.

NIST also distributed SRM 1568c Rice Flour for the determination of proximates, in which 18 laboratories received samples for the determination of fat, 20 laboratories received samples for the determination of carbohydrates and solids, 21 laboratories received samples for the measurement of ash, and 14 laboratories received samples for the determination of calories. Participants were asked to use in-house analytical methods to determine proximates in three samples taken from one bottle of the rice flour material. Participants were to use a sample size appropriate for their in-house method of analysis and to report results in g/100 g except for calories which were to be reported in kcal/100g.

5 Measurement Results

5.1 Moisture

5.1.1 Moisture Results

A combination of NIST results for 28 d in a desiccator over magnesium perchlorate and 4 h at 90 °C in a forced-air drying oven were used for conversion of HAMQAP results from as-received to a dry-mass basis. Moisture results from two NIST methods are tabulated in Table 22, including summary statistics where N = number of values and SD = standard deviation of values.

	Desiccator ^a								Comb	oined ^c
Bottle #	5 Day	7 Day	14 Day	22 Day	28 Day	35 Day	42 Day		Mean	SD
39	7.30	7.94	9.00	9.48	9.68	9.90	10.01	10.45	10.07	0.540
183	7.54	8.10	9.07	9.53	9.70	9.90	10.01	9.27	9.49	0.305
326	7.29	7.92	8.96	9.46	9.65	9.85	9.97	10.15	9.90	0.350
470	6.94	7.62	8.74	9.29	9.51	9.74	9.87	9.60	9.56	0.064
613	6.95	7.61	8.71	9.25	9.47	9.70	9.83	9.72	9.59	0.173
757	7.05	7.70	8.79	9.33	9.54	9.76	9.88	9.54	9.54	0.005
901	6.87	7.59	8.77	9.30	9.53	9.75	9.89	9.41	9.47	0.083
1044	7.16	7.81	8.90	9.40	9.59	9.80	9.91	9.64	9.62	0.037
1188	7.04	7.71	8.84	9.34	9.55	9.75	9.88	9.70	9.62	0.107
1331	7.03	7.68	8.84	9.33	9.53	9.74	9.86	9.60	9.57	0.046
1475	6.97	7.63	8.77	9.30	9.52	9.73	9.86	9.54	9.53	0.016
1618	7.14	7.79	8.89	9.39	9.61	9.80	9.92	9.56	9.59	0.035
N:	12	12	12	12	12	12	12	12	12	
Mean:	7.11	7.76	8.86	9.37	9.57	9.79	9.91	9.68	9.62	
SD:	0.19	0.16	0.11	0.09	0.07	0.07	0.06	0.32	0.18	

Table 22. NIST Results for Moisture, %

^a Desiccator drying over magnesium perchlorate

^b Forced air drying for 4 h @ 90° C

° Combination of results from 28-d desiccator drying and forced air drying replicates

Moisture results from the two NIST methods are visualized in Figure 5, displaying results from multiple days of desiccator drying and 4 h forced-air drying at 90 °C.

Figure 5. Mass Loss (% Moisture) of SRM 1568c as a Function of Method/Time.

5.1.2 Moisture Value Assignment and Dry-Mass Conversions

The assigned value for moisture content was determined using two NIST techniques. The average of the two method means was used to estimate a dry-mass proportion of (0.9037 \pm 0.0011), which was used to convert HAMQAP data from an as-received to a dry-mass basis. The uncertainty shown on this value is an expanded uncertainty. A relative uncertainty component for the conversion factor (0.1 %) obtained from the moisture measurements is incorporated in the uncertainties of the estimated analyte values, reported on a dry-mass basis. The uncertainty shown on this value is an approximate 95 % level of confidence expanded uncertainty, U_{95} .

The moisture correction of the HAMQAP results was achieved by multiplying the as-received measurements by a conversion factor equal to the inverse of the dry-mass proportion. The HAMQAP results for ash and solids are not moisture-corrected due to the nature of the analytes.

5.2 Elements

All NIST total element results were determined on a dry-mass basis. In all cases, the quality assurance measurement results were concordant with the certified values delivered by the control material, SRM 1568b Rice Flour. No bottling-order trend was apparent for any element.

Results from the HAMQAP participants were provided on an as-received basis. Prior to combination with NIST results, HAMQAP results were converted to a dry-mass basis assuming a moisture content of 9.62 % (see Section 5.1.2).

In addition to the measurement results, the summary table or tables for each analyte also list the number of accepted results (N), the arithmetic mean of the accepted results (Mean), the standard deviation of the accepted results (SD), and the square root of the sum of the squares of the measurement SDs (Pooled SD).

5.2.1 Aluminum Results

The NIST ICP-MS results for aluminum (Al) on a dry-mass basis are summarized in Table 23. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 6 displays these results as a function of the sample bottle number. The uncertainty budget for determination of Al using this method is presented in Section 4.1.5.

NIST ICP-MS									
Bottle #	Α	В	Mean	SD					
15	2.82	2.06	2.44	0.54					
187	2.53	2.66	2.59	0.09					
360	2.64	2.47	2.55	0.12					
532	2.36		2.36						
704	1.60	1.85	1.73	0.18					
877	2.75	1.93	2.34	0.58					
1049	4.30	2.10	3.20	1.56					
1221	2.03	4.42	3.22	1.70					
1393	1.72	3.88	2.80	1.53					
1651	4.48	6.69	5.58	1.56					
		10							
Μ	lean, Po	2.88	1.09						
		SD:	1.04						

Table 23.	Summary	of Results for	Aluminum	(Al).	mg/kg
				(/)	

Figure 6. Aluminum (Al) Mass Fraction as a Function of Box Number.

5.2.2 Arsenic Results

The NIST ICP-MS and INAA results for arsenic (As) on a dry-mass basis are summarized in Table 24. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 7 displays these results as a function of the sample bottle number. The uncertainty budgets for determination of As using these methods are presented in Sections 4.1.5 and 4.1.6.

NIST ICP-MS						NIST INAA					
Bottle #	А	В	Mean	SD		Bottle #	А	В	Mean	SD	
2	0.360	0.378	0.369	0.013		20	0.371	0.360	0.366	0.008	
15	0.234	0.346	0.290	0.079		154	0.358	0.369	0.364	0.008	
187	0.298	0.431	0.365	0.094		441	0.358	0.358	0.358	0.000	
356	0.359	0.375	0.367	0.011		728	0.362	0.358	0.360	0.003	
360	0.394	0.442	0.418	0.033		872	0.344	0.361	0.353	0.012	
532	0.377	0.398	0.388	0.015		882	0.372	0.353	0.363	0.013	
704	0.391	0.209	0.300	0.129		1159	0.354	0.364	0.359	0.007	
877	0.391	0.309	0.350	0.058		1302	0.356	0.349	0.353	0.005	
1049	0.454	0.410	0.432	0.031		1456	0.358	0.352	0.355	0.004	
1221	0.329	0.213	0.271	0.082		1589	0.347	0.365	0.356	0.013	
1393	0.343	0.351	0.347	0.006				N:	10		
1651		0.409	0.409			Ν	Mean, Po	oled SD:	0.359	0.008	
N: 12								SD:	0.005		
1	Mean, Po	oled SD:	0.359	0.064							
SD: 0.051											

Table 24. Summary of NIST Results for Arsenic (As), mg/kg

Figure 7. Arsenic (As) Mass Fraction as a Function of Box Number.

The as-received results for As from HAMQAP Exercise 6 are summarized in Table 25. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken by each participating laboratory from a single bottle.

HAMQAP Exercise 6										
Lab	Α	В	С	Mean	SD	Method				
1	0.36	0.36	0.37	0.360	0.005	ICP-MS				
2	0.32	0.32	0.32	0.322	0.001	ICP-MS				
11	0.34	0.34	0.33	0.335	0.009	ICP-MS				
15	0.36	0.38	0.37	0.372	0.010	ICP-MS				
17	0.31	0.31	0.32	0.316	0.007	ICP-MS				
19	0.37	0.37	0.40	0.380	0.017	ICP-MS				
20	0.36	0.35	0.34	0.350	0.010	ICP-MS				
21	0.37	0.38	0.39	0.380	0.010	ICP-OES				
27	0.31	0.30	0.30	0.302	0.008	ICP-MS				
30	0.37	0.38	0.38	0.375	0.005	ICP-MS				
33	0.33	0.32	0.34	0.328	0.008	ICP-MS				
34	0.29	0.29	0.29	0.286	0.001	ICP-MS				
39	0.37	0.36	0.38	0.367	0.009	ICP-MS				
46	0.34	0.31	0.32	0.323	0.015	ICP-MS				
63	0.32	0.34	0.33	0.331	0.007	ICP-OES				
66	0.31	0.31	0.30	0.306	0.002	ICP-MS				
69	0.34	0.35	0.36	0.350	0.010	ICP-MS				
70	0.36	0.35	0.34	0.353	0.010	ICP-MS				
73	0.40	0.38	0.39	0.389	0.008	ICP-MS				
			N:	19						
	Μ	ean, Poo	oled SD:	0.343	0.008	5				
			SD:	0.029						

Table 25. Summary of HAMQAP Exercise 6 Results for Arsenic (As), mg/kg ^a

^a Five results excluded on the basis of being outside the dataset's consensus tolerance limits and seven results for incorrect or no analytical method reported.

Figure 8 compares the summary results for the three datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %.

Figure 8. Comparison of Arsenic (As) Mass Fraction Values by Method.

5.2.3 Bromine Results

The NIST INAA results for bromine (Br) on a dry-mass basis are summarized in Table 26. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 9 displays the results as a function of the sample bottle number. The uncertainty budget for determination of Br using this method is presented in Section 4.1.6.

Table 26.	Summary	of Results	for	Bromine	(Br)	$, m_{s}$	g/k	g
					· /			

	NIST INAA									
Bottle #	Α	В	Mean	SD						
20	0.997	0.957	0.977	0.028						
154	0.95	0.969	0.960	0.013						
441	0.967	0.956	0.962	0.008						
728	0.977	0.977	0.977	0.000						
872	0.935	0.978	0.957	0.030						
882	0.999	0.977	0.988	0.016						
1159	0.966	1.009	0.988	0.030						
1302	0.964	0.958	0.961	0.004						
1456	0.965	0.933	0.949	0.023						
1589	0.946	0.979	0.963	0.023						
		N:	10							
Me	an, Poo	0.968	0.020							
		0.013								

Figure 9. Bromine (Br) Mass Fraction as a Function of Box Number.

5.2.4 Cadmium Results

The NIST ICP-MS and HAMQAP Exercise 5 results for cadmium (Cd) are summarized in Table 27. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken from each bottle or by each participating laboratory from a single bottle. The NIST results are reported on a dry-mass basis; the HAMQAP results are reported on an as-received basis. Figure 10 displays the NIST results as a function of the sample bottle number. The uncertainty budget for the determination of Cd by the NIST ICP-MS method is presented in Section 4.1.5.

NIST ICP-MS						HAMQAP Exercise 5 a					
Bottle #	А	В	Mean	SD	Lab	Α	В	С	Mean	SD	Method
15	0.0111	0.0097	0.0104	0.0010	1	0.008	0.009	0.010	0.009	0.001	ICP-MS
187	0.0103	0.0089	0.0096	0.0009	2	0.011	0.012	0.011	0.011	0.001	ICP-MS
360	0.0103	0.0085	0.0094	0.0013	5	0.009	0.008	0.009	0.009	0.000	ICP-MS
532	0.0093	0.0103	0.0098	0.0007	11	0.007	0.009	0.007	0.008	0.001	ICP-MS
704	0.0096	0.0092	0.0094	0.0003	15	0.009	0.009	0.009	0.009	0.000	ICP-MS
877	0.0096	0.0091	0.0094	0.0003	20	0.009	0.010	0.009	0.009	0.001	ICP-MS
1049	0.0097	0.0101	0.0099	0.0003	21	0.010	0.010	0.010	0.010	0.000	ICP-OES
1221	0.0102	0.0111	0.0107	0.0007	27	0.008	0.007	0.008	0.008	0.000	ICP-MS
1393	0.0092	0.0094	0.0093	0.0002	30	0.009	0.009	0.009	0.009	0.000	ICP-MS
1651	0.0095		0.0095		33	0.010	0.010	0.009	0.010	0.000	AAS
		N:	10		42	0.008	0.008	0.009	0.008	0.000	ID ICP-MS
Ν	Mean, Poo	oled SD:	0.0097	0.0007	52	0.012	0.010	0.013	0.012	0.002	ICP-OES
		SD:	0.0005		56	0.011			0.011		ICP-MS
					59	0.009	0.009	0.009	0.009	0.000	ID ICP-MS
					69	0.010	0.010	0.010	0.010	0.000	ICP-MS
					74	0.008			0.008		ID ICP-MS
								N:	16		
						Mea	n, Pool	led SD:	0.009	0.001	
								SD	0.001		

^a Twelve results excluded on the basis of being below the participant's detection limit or outside the dataset's consensus tolerance limits and one result for no analytical method reported.

Figure 10. Cadmium (Cd) Mass Fraction as a Function of Box Number.

Figure 11 compares the summary results for the two datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %.

Figure 11. Comparison of Cadmium (Cd) Mass Fraction Values by Method.

5.2.5 Calcium Results

The NIST ICP-OES and WDXRF results for calcium (Ca) on a dry-mass basis are summarized in Table 28. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 12 displays the results as a function of the sample bottle number. The uncertainty budgets for these methods are presented in Sections 4.1.3 and 4.1.8.

NIST ICP-OES NIST WDXRF Bottle # SD Bottle # SD A В Mean A В Mean 95.7 13 97.6 96.6 1.4 101.5 86.5 94.0 10.7 57 13-1 112.0 112.0 344 87.6 87.5 87.5 0.0 108.2 74.2 88.4 85.2 185 91.2 24.0 631 86.8 2.3 90.7 358 138.0 123.6 130.8 10.2 919 86.6 88.7 2.9 530 111.3 93.6 102.5 12.5 1206 91.4 91.4 702 89.1 96.0 92.6 4.9 1493 87.4 91.3 89.4 2.8 875 105.7 102.1 N: 103.9 2.5 6 1048 90.4 122.6 106.5 22.8 Mean, Pooled SD: 89.6 4.8 1219 212.2 104.3 158.2 76.3 SD: 2.7 1392 88.1 108.6 98.4 14.5 1564 88.5 101.0 94.7 8.8 11 N: Mean, Pooled SD: 108 27 SD 20 240 A(ICP-OES) B(ICP-OES) Total Mean • 0 A(WDXRF) B(WDXRF) ±2 Total SD 200 Calcium (mg/kg) 160 120 . 0 9 0 A 80 40 500 1000 1500 0 **Bottle Number**

Table 28. Summary of Results for Calcium (Ca), mg/kg

Figure 12. Calcium (Ca) Mass Fraction as a Function of Box Number.

The as-received results for Ca from HAMQAP Exercise 5 are summarized in Table 29. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken by each participating laboratory from a single bottle.

HAMQAP Exercise 5 ^a									
Lab	Α	В	С	Mean	SD	Method			
1	115.0	111.0	110.0	112.0	2.6	ID ICP-MS			
2	132.4	129.7	111.8	124.6	11.2	ICP-OES			
3	84.7	78.2	81.5	81.5	3.3	ICP-MS			
5	114.0	116.0	92.0	107.3	13.3	ICP-OES			
7	93.5	93.8	94.5	94.0	0.5	ICP-OES			
15	91.9	92.9	112.0	98.9	11.3	ICP-OES			
16	114.6	121.9	101.8	112.8	10.2	ICP-OES			
25	82.9	90.1	86.4	86.5	3.6	ICP-OES			
29	89.8	93.9	91.4	91.7	2.1	ICP-OES			
30	90.3	103.0	112.0	101.8	10.9	ICP-OES			
33	100.0	96.3	100.9	99.0	2.4	ICP-MS			
34	93.1	97.7	94.3	95.0	2.4	ICP-MS			
35	99.7	106.0	104.0	103.2	3.2	ICP-OES			
41	98.5	118.2	119.3	112.0	11.7	ICP-MS			
45	120.2	134.9	143.6	132.9	11.8	ICP-OES			
47	99.2	80.1	87.2	88.8	9.7	ICP-OES			
51	88.1	87.5	89.0	88.2	0.8	ICP-MS			
			N:	17					
	Μ	ean, Poc	led SD:	102	6				
			SD:	14					

Table 29. Summary of HAMQAP Exercise 5 Results for Calcium (Ca), mg/kg^a

^a One result excluded on the basis of being outside the dataset's consensus tolerance limits and one result for no analytical method reported.

Figure 13 compares the summary results for the three datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %.

Figure 13. Comparison of Calcium (Ca) Mass Fraction Values by Method.

5.2.6 Chlorine Results

The NIST WDXRF results for chlorine (Cl) on a dry-mass basis are summarized in Table 30. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 14 displays the results as a function of the sample bottle number. The uncertainty budget for determination of Cl using this method is presented in Section 4.1.8.

		NI	RF		
]	Box	Α	Mean	SD	
	57	290.7	289.4	1.8	
	344	278.1	284.4	8.9	
	631	290.8	299.9	295.4	6.4
9	919	292.3	300.7	11.9	
1	206	302.1	302.1		
1	493	284.7	286.3	285.5	1.1
			6		
	Μ	lean, Po	293.0	7.3	
			7.6		

Table 30. Summary of Results for Chlorine (Cl), mg/kg

Figure 14. Chlorine (Cl) Mass Fraction as a Function of Box Number.

5.2.7 Copper Results

The NIST ICP-OES and WDXRF results for copper (Cu) on a dry-mass basis are summarized in Table 31. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 15 displays the NIST Cu results as a function of the sample bottle number. Figure 16 compares the two methods' summary results. The uncertainty budgets for determination of Cu using these methods are presented in Sections 4.1.3 and 4.1.8.

Table 31. Summary of Results for Copper (Cu), mg/kg

Figure 15. Copper (Cu) Mass Fraction as a Function of Box Number.

Figure 16. Comparison of Copper (Cu) Mass Fraction Values by Method.

5.2.8 Iron Results

The NIST ICP-OES and WDXRF results for iron (Fe) on a dry-mass basis are summarized in Table 32. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 17 displays the results as a function of the sample bottle number. The uncertainty budgets for determination of Fe using these methods are presented in Sections 4.1.3 and 4.1.8.

Table 32. Summary of NIST Results for Iron (Fe), mg/kg

Figure 17. Iron (Fe) Mass Fraction as a Function of Box Number.

The as-received results for Fe from HAMQAP Exercise 5 are summarized in Table 33. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken by each participating laboratory from a single bottle.

			HA	MQAP I	Exercise	5
Lab	Α	В	С	Mean	SD	Method
1	15.1	14.3	13.8	14.4	0.7	ID ICP-MS
2	20.7	19.2	19.8	19.9	0.8	ICP-OES
3	11.0	11.0	11.0	11.0	0.0	ICP-MS
5	8.0	7.0	6.0	7.0	1.0	ICP-OES
7	11.7	11.7	11.9	11.8	0.1	ICP-OES
16	11.0	9.8	9.0	9.9	1.0	ICP-OES
25	11.7	11.0	11.1	11.3	0.4	ICP-OES
29	19.7	17.5	17.9	18.4	1.2	ICP-OES
30	16.7	17.3	17.1	17.0	0.3	ID ICP-MS
33	14.7	12.4	12.1	13.1	1.4	ICP-MS
34	11.8	12.1	10.5	11.5	0.9	ICP-MS
35	11.8	12.0	11.9	11.9	0.1	ICP-OES
41	13.2	15.9	17.9	15.7	2.4	ICP-MS
47	12.1	9.3	10.4	10.6	1.4	ICP-OES
51	12.2	11.9	11.8	12.0	0.2	ICP-MS
			N:	15		
	Med	lian, Poc	oled SD:	13.0	0.8	
			SD:	3.6		

Table 33. Summary of HAMQAP Exercise 5 Results for Iron (Fe), mg/kg^a

^a Two results excluded on the basis of being outside the dataset's consensus tolerance limits and one result for incomplete analytical method reported.

Figure 18 compares the summary results for the three datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %.

Figure 18. Comparison of Iron (Fe) Mass Fraction Values by Method.

5.2.9 Lead Results

The NIST ICP-MS and HAMQAP Exercise 6 results for lead (Pb) are summarized in Table 34. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken from each bottle or by each participating laboratory from a single bottle. The NIST results are reported on a dry-mass basis; the HAMQAP results are reported on an as-received basis. Figure 19 displays the NIST results as a function of the sample bottle number. The uncertainty budget for determination of Pb using the NIST ICP-MS method is presented in Section 4.1.5.

	NIS	T ICP-N	/IS			HAMQAP Exercise 6						
Bottle #	А	В	Mean	SD	Lab	Α	В	С	Mean	SD	Method	
15	0.027	0.013	0.0202	0.0098	1	0.012	0.012	0.012	0.012	0.000	ICP-MS	
187	0.025	0.012	0.0186	0.0096	2	0.013	0.012	0.013	0.013	0.001	ICP-MS	
360	0.020	0.020	0.0201	0.0002	5	0.024	0.018	0.019	0.02	0.003	ICP-MS	
532	0.014	0.047	0.0305	0.0234	11	0.015	0.014	0.009	0.013	0.003	ICP-MS	
704	0.011	0.019	0.0146	0.0058	15	0.016	0.014	0.014	0.015	0.001	ICP-MS	
877	0.012	0.012	0.0120	0.0001	17	0.025	0.021	0.026	0.024	0.003	ICP-OES	
1049	0.037	0.017	0.0266	0.0140	22	0.025	0.027	0.025	0.026	0.001	ICP-MS	
1221	0.011	0.018	0.0145	0.0048	27	0.033	0.025	0.022	0.027	0.006	ICP-MS	
1393	0.009	0.015	0.0121	0.0041	31	0.024	0.024	0.028	0.025	0.002	ID ICP-MS	
1651 0.014 0.0137 33 0.014 0.014 0.014 0.000 IC											ICP-MS	
N: 10 39 0.016 0.013 0.015 0.015 0.002 ICP-1											ICP-MS	
Mean, Pooled SD: 0.0183 0.0011 42 0.012 0.011 0.011 0.011 0.000 ID ICP											ID ICP-MS	
		SD:	0.0063		52	0.008	0.008	0.008	0.008	0.000	ICP-OES	
					56	0.019			0.019		ICP-MS	
59 0.01 0.01 0.01 0.01 0.00 ID ICP-M											ID ICP-MS	
66 0.013 0.013 0.013 0.013 0.000 ICP-MS											ICP-MS	
69 0.01 0.01 0.01 0.01 0.000 ICP-MS											ICP-MS	
74 0.0135 0.0135 ID ICP-MS												
N: 19												
						Me	an, Poo	led SD:	0.016	0.001		
	SD: 0.006											

Table 34. Summary of Results for Lead (Pb), mg/kg

^a Twelve results excluded on the basis of being below the participant's detection limit or outside the dataset's consensus tolerance limits and one result for no analytical method reported.

Figure 19. Lead (Pb) Mass Fraction as a Function of Box Number.

Figure 20 compares the summary results for the two datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %.

Figure 20. Comparison of Lead (Pb) Mass Fraction Values by Method.

5.2.10 Magnesium Results

The NIST ICP-OES and WDXRF results for magnesium (Mg) on a dry-mass basis are summarized in Table 35. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 21 displays the results as a function of the sample bottle number. Figure 22 compares the summary results for these datasets. The uncertainty budgets for determination of Mg using these methods are presented in Sections 4.1.3 and 4.1.8.

Table 35. Summary of Results for Magnesium (Mg), mg/kg

	NIST ICP-OES NIST WDXRF									
Bottle #	А	В	Mean	SD		Bottle #	А	В	Mean	SD
13	1362	1341	1352	15		57	1596	1624	1610	20
13-1	1440		1440			344	1520	1594	1557	52
185	1287	1360	1324	52		631	1534	1535	1535	1
358	1370	1356	1363	9		919	1574	1601	1588	19
530	1367	1357	1362	7		1206	1530	1588	1559	41
702	1377	1342	1360	25		1493	1559	1557	1558	1
875	1354	1355	1355	1				N:	6	
1048	1309	1345	1327	25				Mean:	1568	29
1219	1442	1330	1386	79				SD:	27	
1392	1361	1331	1346	21						
1564	1365	1353	1359	8						
		N:	11							
		Mean:	1361	33	ĺ					
		SD:	31							

Figure 21. Magnesium (Mg) Mass Fraction as a Function of Box Number.

Figure 22. Comparison of Magnesium (Mg) Mass Fraction Values by Method.

5.2.11 Manganese Results

The NIST ICP-OES and NIST WDXRF results for manganese (Mn) on a dry-mass basis are summarized in Table 36. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 23 displays the results as a function of the sample bottle number. Figure 24 compares the summary results for these methods. The uncertainty budgets for determination of Mn using these methods are presented in Sections 4.1.3 and 4.1.8.

Table 36. Summary of Results for Manganese (Mn), mg/kg

Figure 23. Manganese (Mn) Mass Fraction as a Function of Box Number.

Figure 24. Comparison of Manganese (Mn) Mass Fraction Values by Method.

5.2.12 Mercury Results

The NIST ID-CV-ICP-MS and the HAMQAP Exercise 6 results for mercury (Hg) are summarized in Table 37. HAMQAP Exercise 6 results for Hg were used for confirmation of NIST data. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken from each bottle or by each participating laboratory from a single bottle. The NIST results are reported on a dry-mass basis; the HAMQAP results are reported on an as-received basis. Figure 25 displays the NIST results as a function of the sample bottle number. The uncertainty budget for the NIST ID-CV-ICP-MS method is presented in Section 4.1.4.

NIST ID-C	V-ICP-MS				HAMQ	AP Exe	rcise 6 ^a	
Bottle #	А	Lab	А	В	С	Mean	SD	Method
53	0.00174	1	0.000	0.000	0.001	0.0003	0.0002	Microwave digestion
340	0.00182	2	0.002	0.003	0.002	0.0023	0.0006	Microwave digestion
627	0.00186	5	0.003	0.005	0.004	0.0039	0.0006	Hot block digestion
915	0.00179	11	0.001	0.001	0.001	0.0013	0.0001	Microwave digestion
1202	0.00175	27	0.007	0.015	0.009	0.0102	0.0043	Microwave digestion
1489	0.00175	42	0.002	0.001	0.002	0.0015	0.0001	Microwave digestion
<i>N</i> :	6	52	0.010	0.010	0.011	0.0102	0.0003	Microwave digestion
Mean:	0.00179	69	0.010	0.010	0.010	0.0100	0.0000	Microwave digestion
SD:	0.00005	74	0.003			0.0035		Microwave digestion
		79	0.001	0.001	0.001	0.0011	0.0003	Microwave digestion
					N:	11		
					Mean:	0.0042	0.0014	
					SD:	0.0040		

	Table 37.	Summary	of Results	for Me	ercury (Hg),	mg/kg
--	-----------	---------	------------	--------	----------	------	-------

^a Seventeen results excluded on the basis of being below the participant's detection limit or outside the dataset's consensus tolerance limits.

Figure 25. Mercury (Hg) Mass Fraction as a Function of Box Number.

Figure 26 compares the summary results for the two datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %. Error bars are present for the NIST ID-CV-ICP-MS data, but the magnitude is small enough not to be seen, as indicated by the data in Table 37.

Figure 26. Comparison of Mercury (Hg) Mass Fraction Values by Method.

5.2.13 Molybdenum Results

The NIST ICP-MS and INAA results for molybdenum (Mo) on a dry-mass basis summarized in Table 38. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 27 displays these results as a function of the sample bottle number. Figure 28 compares the summary results for these methods. The uncertainty budgets for determination of Mo using these methods are presented in Sections 4.1.5 and 4.1.6.

Table 38. Summary of Results for Molybdenum (Mo), mg/kg

	NIS	ST ICP-M	S		NIST INAA						
Bottle #	Α	В	Mean	SD		Bottle #	А	В	Mean	SD	
15	0.636	0.644	0.640	0.006		20	0.68	0.793	0.737	0.080	
187	0.679	0.634	0.657	0.032		154	0.52	0.637	0.579	0.083	
360	0.654	0.620	0.637	0.025		441	0.738	0.73	0.734	0.006	
532	0.626	0.580	0.603	0.032		728	0.623	0.732	0.678	0.077	
704	0.608	0.628	0.618	0.014		872	0.488	0.462	0.475	0.018	
877	0.672	0.634	0.653	0.027		882	0.682	0.613	0.648	0.049	
1049	0.647	0.643	0.645	0.003		1159	0.675	0.696	0.686	0.015	
1221	0.666	0.662	0.664	0.003		1302	0.605	0.635	0.620	0.021	
1393	0.677	0.642	0.659	0.025		1456	0.532	0.72	0.626	0.133	
1651	0.601	0.656	0.629	0.039		1589	0.622	0.529	0.576	0.066	
		N:	10					N:	10		
		Mean:	0.640	0.024				Mean:	0.636	0.067	
		SD:	0.019					SD:	0.080		
			(ICP-MS)			B(ICP-MS)		Fotal Mean	٦		
		• A	(INAA)			B(INAA)		£2 Total SD			
	ົພ ^{0.8}	Þ									
	g/k	}	8						- 1		
	<u>E</u> 0.7	•				2		-			
	Б	 	•			· ·		-	_		
	0.6	-					0	Ŭ.			
	ybc	1						0			
	₽ 0.5					0			1		
	2	1									
	0.4	1	· · ·		•						
		0	500)		1000		1500			
				Bottle	Nι	umber					

Figure 27. Molybdenum (Mo) Mass Fraction as a Function of Box Number.

Figure 28. Comparison of Molybdenum (Mo) Mass Fraction Values by Method.

5.2.14 Phosphorus Results

The NIST ICP-OES and WDXRF results for phosphorous (P) on a dry-mass basis are summarized in Table 39. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 29 displays the results as a function of the sample bottle number. Figure 30 compares the summary results for these methods. The uncertainty budgets for determination of P using these methods are presented in Sections 4.1.3 and 4.1.8.

	NIST		NIST WDXRF							
Bottle #	А	В	Mean	SD		Bottle #	А	В	Mean	SD
13	3813	3569	3691	173		57	4966	4937	4951	20
13	3587		3587			344	4848	4916	4882	48
185	3348	3818	3583	332		631	4890	4842	4866	34
358	3696	3663	3680	23		919	4955	4916	4935	28
530	3404	3400	3402	2		1206	4873	4954	4914	57
702	3789	3577	3683	150		1493	4907	4873	4890	24
875	3727	3628	3677	70				N:	6	
1048	3699	3431	3565	190		Ν	Aean, Po	oled SD:	4906	38
1219	4064	3858	3961	146				SD:	33	
1392	3749	3786	3768	26						
1564	3496	3654	3575	112						
		N:	11							
	Mean, Po	oled SD:	3650	150						
		SD:	140							
		• A(I	CP-OES)			B(ICP-OES)		– Total Mean	1	
5500 A(WDXRF)						B(WDXRF)		±2 Total SD)	
	(kg)	1							-1	
	/gu		9			8	8	۵		
	لے 1500 د	-								
	no.	1								
	ioho	•	•	•		•				
	8 3500	•		. •		•				
	2500	1							<u>_</u>	
		0	50	0		1000		1500		
				Bottle	٩	lumber				

Table 39. Summary of Results for Phosphorus (P), mg/kg

Figure 29. Phosphorous (P) Mass Fraction as a Function of Box Number.

Figure 30. Comparison of Phosphorous (P) Mass Fraction Values by Method.

5.2.15 Potassium Results

The NIST ICP-OES and WDXRF results for potassium (K) on a dry-mass basis are summarized in Table 40. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 31 displays the results as a function of the sample bottle number. The uncertainty budgets for determination of K using these methods are presented in Sections 4.1.3 and 4.1.8.

Table 40. Summary of NIST Results for Potassium (K), mg/kg

	NIST	ICP-OE	5			NIST WDXRF					
Bottle #	А	В	Mean	SD		Bottle #	А	В	Mean	SD	
15	2862	2871	2867	6		57	3425	3383	3404	29	
187	2861	2958	2910	69		344	3370	3375	3372	4	
360	3034	2890	2962	102		631	3353	3383	3368	21	
532	2936	2950	2943	10		919	3376	3390	3383	10	
704	2928	2908	2918	14		1206	3340	3369	3354	20	
877	3061	2940	3001	86		1493	3400	3333	3367	47	
1049	2904	2910	2907	4				N:	6		
1221	3025	2910	2968	81		Ν	Mean, Po	oled SD:	3375	26	
1393	2960	2995	2978	25				SD:	17		
1651	2837	3047	2942	148							
		N:	10								
	Mean, Poo	oled SD:	2939	72							
		SD:	40								
		• A(ICP-OES)			B(ICP-OES)		– Total Mean			
	3700 -	• A(WDXRF)		ונ	B(WDXRF)		±2 Total SD			
	6 area										
	3500	a la	_	_			_	0			
	Ĕ 3300 ÷		0	θ		Ð	Ð	ŏ			
	ے 3100 -	ļ							_		
	assi	•	•				•				
	2900 -	• •	•			- •		•			
	2700	.									
	2500	<u> </u>	<u> </u>								
	2000	0	50	0	•	1000		1500	-		
				Bottle	e Nu	umber					

Figure 31. Potassium (K) Mass Fraction as a Function of Box Number.

The as-received results for K from HAMQAP Exercise 5 are summarized in Table 41. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken by each participating laboratory from a single bottle.

nawiQar Exercise 5"										
Lab	А	В	С	Mean	SD	Method				
1	2770	2760	2780	2770	10	ID ICP-MS				
2	3176	3215	3211	3201	21	ICP-OES				
3	2465	2320	2393	2393	73	ICP-MS				
5	2887	2774	2697	2786	96	ICP-OES				
7	2580	2550	2620	2583	35	ICP-OES				
15	2439	2360	2398	2399	40	ICP-OES				
25	2467	2588	2470	2508	69	ICP-OES				
29	2922	2854	2954	2910	51	ICP-OES				
30	2720	2750	2632	2701	61	ID ICP-MS				
33	2765	2803	2776	2781	20	ICP-MS				
35	2480	2620	2530	2543	71	ICP-OES				
41	2253	2566	2726	2515	241	ICP-MS				
45	2941	2948		2945	5	ICP-OES				
47	2630	2730	2820	2727	95	ICP-OES				
51	2726	2766	2726	2739	23	ICP-MS				
			N:	15						
	М	ean, Poc	oled SD:	2700	61					
			SD:	226						

Table 41. Summary of HAMQAP Results for Potassium (K), mg/kg

E a

TAMOADE

^a Two results excluded on the basis of being outside the dataset's consensus tolerance limits and one result for no analytical method reported.

Figure 32 compares the summary results for the three datasets, with the HAMQAP results corrected to a dry-mass basis assuming a moisture content of 9.62 %.

Figure 32. Comparison of Potassium (K) Mass Fraction Values by Method.

5.2.16 Rubidium Results

The NIST ICP-MS results for rubidium (Rb) on a dry-mass basis are summarized in Table 42. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 33 displays these results as a function of the sample bottle number. The uncertainty budget for determination of Rb using this method is presented in Section 4.1.5.

			NI	ST ICP-N	1S		
		Bottle #	А	В	Mean	SD	
		15	9.63	8.54	9.09	0.77	
		187	8.64	9.37	9.00	0.52	
		360	9.21	8.52	8.86	0.49	
		532	9.07	9.17	9.12	0.07	
		704	8.34	9.61	8.98	0.90	
		877	10.06	8.73	9.39	0.94	
		1049	8.88		8.88		
		1221	8.82	8.76	8.79	0.04	
		1393	8.93	8.36	8.64	0.40	
		1651	8.11	8.24	8.17	0.09	
				N:	10		
				Mean:	8.89	0.58	
				SD:	0.32		
	1	A(ICP-	MS) 🔳	B(ICP-MS)			
		Mean		±2 SD			
ĥ	10.0						
3/k							
Ű Ű	9.5						1
Ę	3		•				
idit	9.0		•			•	
٩n۶	1	•					
	8.5		•				
	+			•			
	8.0 1						•
	0		500		1000	150	00
			BOI	tie Numb	er		

Table 42. Summary of Results for Rubidium (Rb), mg/kg

Figure 33. Rubidium (Rb) Mass Fraction as a Function of Box Number.

5.2.17 Selenium Results

The NIST ICP-MS and INAA results for selenium (Se) on a dry-mass basis are summarized in Table 43. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 34 displays these results as a function of the sample bottle number. Figure 35 compares the summary results for these methods. The uncertainty budgets for determination of Se using these methods are presented in Sections 4.1.5 and 4.1.6.

	NI	ST IC	P-M	S			NIST INAA						
Bottle #	А	E	3	Mean	SD		Bottle #	А	В	Mean	SD		
15	0.0643	0.06	676	0.0659	0.0024	4	20	0.0684	0.0628	0.0656	0.0040		
187	0.0633	0.06	663	0.0648	0.002	1	154	0.0600	0.0641	0.0621	0.0029		
360	0.0528	0.06	580	0.0604	0.010	8	441	0.0703	0.0658	0.0681	0.0032		
532	0.0665	0.05	598	0.0632	0.004	7	728	0.0671	0.0638	0.0655	0.0023		
704	0.0680	0.06	593	0.0687	0.000	9	872	0.0625	0.0728	0.0677	0.0073		
877	0.0674	0.06	577	0.0675	0.0002	2	882	0.0658		0.0658			
1049	0.0677	0.06	656	0.0667	0.001	5	1159	0.0599	0.0647	0.0623	0.0034		
1221	0.0644	0.06	578	0.0661	0.0024	4	1302	0.0542	0.0635	0.0589	0.0066		
1393	0.0705	0.06	572	0.0689	0.002	3	1456	0.0634	0.0588	0.0611	0.0033		
1651		0.06	656	0.0656			1589	0.0606	0.0593	0.0600	0.0009		
			N:	10					N:	10			
		Μ	ean:	0.0658	0.0042	2			Mean:	0.0637	0.040		
			SD:	0.0026					SD:	0.0032			
			_						-				
		Г	-			-	R/ICD MS)		Total Moar				
		-	0	A(INAA)		ō	B(INAA)		±2 Total SE)			
		1					•						
	<u></u> <u> </u> 0.	.07 -		ه					,	·			
	/gu	1		•	•	•		1.1					
	u.)	•		•	•••	0	<u> </u>			
	, iur	_ر آ	~		-		0	0	0				
	le .		<u>-</u>						- 0 0	·			
	Š	1						0					
]		•				0					
	0.	05 +				•				_			
		0			500		1000		1500				
					Bott	le l	Number						

Table 43. Summary of Results for Selenium (Se), mg/kg

Figure 34. Rubidium (Rb) Mass Fraction as a Function of Box Number.

Figure 35. Comparison of Selenium (Se) Mass Fraction Values by Method.

5.2.18 Sodium Results

The NIST ICP-OES and HAMQAP Exercise 5 results for sodium (Na) are summarized in Table 44. Columns A, B, and C are used in the table below to distinguish between the different aliquots taken from each bottle or by each participating laboratory from a single bottle. The NIST results are reported on a dry-mass basis; the HAMQAP results are reported on an as-received basis. Figure 36 displays the NIST results as a function of the sample bottle number. The uncertainty budget for determination of Na using the NIST ICP-OES method is presented in Section 4.1.3.

	NIST	ICP-C	DES			HAMQAP Exercise 5 ^a							
Bottle #	А	В	Mean	SD	Lab	Α	В	С	Mean	SD	Method		
15	15.0	15.1	15.0	0.1	2	25.0	23.5	21.6	23.4	1.7	ICP-OES		
187	15.3	15.5	15.4	0.2	3	19.0	16.0	18.0	17.7	1.5	ICP-MS		
360	15.3	17.1	16.2	1.3	7	12.3	12.9	12.4	12.5	0.3	ICP-OES		
532	14.8	16.1	15.4	0.9	16	6.0	8.3	7.5	7.3	1.1	ICP-OES		
704	15.2	15.4	15.3	0.1	25	14.3	14.9	14.5	14.6	0.3	ICP-OES		
877	16.6	15.7	16.2	0.6	29	17.8	17.2	17.7	17.5	0.3	ICP-OES		
1049	15.0	17.5	16.3	1.7	30	14.8	13.8	13.5	14	0.7	ICP-OES		
1221		17.0	17.0		33	26.3	15.3	23.8	21.8	5.8	ICP-OES		
1393	16.4	16.8	16.6	0.3	35	19.4	18.4	18.8	18.9	0.5	ICP-OES		
1651	15.1	15.5	15.3	0.3	41	11.7	13.2	15.0	13.3	1.7	ICP-MS		
		N:	10		47	14.1	10.8	12.2	12.4	1.7	ICP-OES		
Mea	n, Poole	d SD:	15.87	0.83	51	14.8	14.3	14.3	14.5	0.3	ICP-MS		
		SD:	0.65										
	N:												
Mean, Pooled SD:								led SD:	15.7	1.3			
SD:													

Table 44. Summary of Results for Sodium (Na), mg/kg

^a Two results excluded on the basis of being below the participant's detection limit or outside the dataset's consensus tolerance limits and two results for incorrect analytical method reported.

Figure 36. Sodium (Na) Mass Fraction as a Function of Box Number.

Figure 37 compares the summary results for these two datasets.

Figure 37. Comparison of Sodium (Na) Mass Fraction Values by Method.

5.2.19 Strontium Results

The NIST ICP-MS and ICP-OES results for strontium (Sr) on a dry-mass basis are summarized in Table 45. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 38 displays these results as a function of the sample bottle number. Figure 39 compares the summary results for these methods. The uncertainty budgets for determination of Sr using these methods are presented in Sections 4.1.5 and 4.1.3.

	NIS		NIST ICP-OES								
Bottle #	А	В	Mean	SD		Bottle #	Α		В	Mean	SD
15	0.4931	0.4768	0.4850	0.0115		13	0.49	0	0.640	0.565	0.106
187	0.4884	0.4868	0.4876	0.0012		185	0.45	0	0.470	0.460	0.014
360	0.4821	0.4868	0.4844	0.0033		358	0.47	0	0.460	0.465	0.007
532	0.4913	0.4920	0.4917	0.0005		530	0.45	0	0.490	0.470	0.028
704	0.4795	0.4738	0.4767	0.0040		702	0.51	0	0.450	0.480	0.042
877	0.4860	0.4846	0.4853	0.0009		875	0.55	0	0.500	0.525	0.035
1049	0.4802	0.4995	0.4899	0.0137		1048	0.46	0	0.470	0.465	0.007
1221	0.4710	0.4898	0.4804	0.0133		1219	0.45	0	0.470	0.460	0.014
1393	0.4746	0.4784	0.4765	0.0026		1392	0.44	0	0.450	0.445	0.007
1651		0.4806	0.4806			1564	0.45	0	0.510	0.480	
		N:	10						N:	10	
	Mean, Po	oled SD:	0.4838	0.0077		ľ	Mean, I	Poole	ed SD:	0.482	0.042
		SD:	0.0052						SD:	0.036	
	0.7		(ICP-MS)		E	B(ICP-MS)		- Tot	al Mean	7	
	0.65		(ICP-OES)		E	B(ICP-OES)		- ±2	Total SD		
	9.0 <mark>/kg</mark>										
	ຍັ 0.55					0					
	.0 Jtium		_	0						1	
	0.45		ē	0			0	8	0	1	
	0.4					·]	
		0	5	00		1000		1	500		
				Bottle	Νı	ımber					

Table 45. Summary of Results for Strontium (Sr), mg/kg

Figure 38. Strontium (Sr) Mass Fraction as a Function of Box Number.

Figure 39. Comparison of Strontium (Sr) Mass Fraction Values by Method.

5.2.20 Sulfur Results

The NIST TNPGAA and WDXRF results for sulfur (S) on a dry-mass basis are summarized in Table 46. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 40 displays these results as a function of the sample bottle number. Figure 41 compares the summary results for these methods. The uncertainty budgets for these methods are presented in Sections 4.1.7 and 4.1.8.

Table 46. Summary of Results for Sulfur (S), mg/kg

NIST T	NPGAA		N	IST WDX	KRF					
Bottle #	Α	Bottle #	А	В	Mean	SD				
20	1159	57	1156.5	1166.8	1161.7	7.3				
154	1149	344	1144.2	1147.9	1146.1	2.6				
441	1170	631	1153.2	1159.4	1156.3	4.4				
728	1147	919	1169.4	1156.9	1163.2	8.8				
1456	1126	1206	1178.7	1163.0	1170.9	11.1				
1589	1158	1493	1148.0	1169.8	1158.9	15.4				
N:	6			N:	6					
Mean:	1152		Mean, Po	ooled SD:	1159.5	9.3				
SD:	15			SD:	8.2					
A(ICP-TNPGAA) O A(ICP-WDXRF) B(ICP-WDXRF)										
	Tot	Total Mean ±2 Total SD								
1180	1									
(g)	1				_					
l/B		•	C	, _						
는 1160	•_	0	· .			•				
lfui	•	П			0					
S 1140	1	0								
1140	-									
	1				•	1				
1120	<u> </u>									
	0	500		150	D					
	Bottle Number									

Figure 40. Sulfur (S) Mass Fraction as a Function of Box Number.

Figure 41. Comparison of Sulfur (S) Mass Fraction Values by Method.

5.2.21 Zinc Results

The NIST ICP-OES and WDXRF results for zinc (Zn) on a dry-mass basis are summarized in Table 47. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 42 displays the results as a function of the sample bottle number. Figure 43 compares the summary results for these methods. The uncertainty budgets for determination of Zn using these methods are presented in Sections 4.1.3 and 4.1.8.

NIST ICP-OES							NIST WDXRF						
Bottle #	Α		В	Mean	SD		Bottle #	Α	В	Mean	SD		
13	23.10	23	00.	23.05	0.07		57	24.11	23.31	23.71	0.57		
13	23.60			23.60			344	23.92	24.04	23.98	0.08		
185	23.60	23	5.40	23.50	0.14		631	23.34	23.33	23.34	0.01		
358	23.40	22	2.80	23.10	0.42		919	23.12	24.02	23.57	0.64		
530	24.10	23	5.40	23.75	0.49		1206	23.08	23.15	23.12	0.05		
702	24.20	23	5.20	23.70	0.71		1493	23.23	23.05	23.14	0.13		
875	23.80	23	6.80	23.80	0.00				Mean:	6			
1048	23.00	23	5.40	23.20	0.28			Mean, P	ooled SD:	23.48	0.35		
1219	24.20	22	2.60	23.40	1.13				SD:	0.34			
1392	23.20	23	.30	23.25	0.07								
1564	23.50	23	5.20	23.35	0.21								
			N:	11									
	Mean, l	Poole	1 SD:	23.43	0.49								
			SD:	0.26									
		245 -	٠	A(ICP-OES)			B(ICP-OES)		Total Mean				
		24.5	0	A(WDXRF)			B(WDXRF)		±2 Total SD				
	(in		0	_	• •			•					
	/kg	24.0 -		0			0			• •			
	Шg	-											
) cu	23.5 -	•	•	_				•				
	Zi	-		•	••_			1	0 -				
			•				•	8					
		23.0								••			
		22.5 -	-				· · · · ·						
		()	5	00 Detti-		1000 Iumhar		1500				
	Bottle Number												

Table 47. Summary of Results for Zinc (Zn), mg/kg

Figure 42. Zinc (Zn) Mass Fraction as a Function of Box Number.

5.2.22 Silicon Results

The NIST WDXRF results for silicon (Si) on a dry-mass basis are summarized in Table 48. Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 44 displays the results as a function of the sample bottle number. The uncertainty budget for determination of Si using this method is presented in Section 4.1.8.

Table 48. Summary of Results for Silicon (Si), mg/kg

NIST WDXRF									
Bottle #	А	В	Mean	SD					
57	205.3	222.1	213.7	11.9					
344	196.6	188.6	192.6	5.7					
631	186.5	195.8	191.2	6.6					
919	196.9	206.7	201.8	6.9					
1206		205.5	205.5						
1493	196.6	199.3	198.0	1.9					
		N:	6						
	Mean, Po	200.5	6.7						
		8.5							

Figure 44. Silicon (Si) Mass Fraction as a Function of Box Number.

5.3 Arsenic Species

All of NIST's organic and inorganic arsenic species were determined using the NIST LC-ICP-MS method on a dry-mass basis. In all cases, the quality assurance measurement results were concordant with the values delivered by the control material, SRM 1568b Rice Flour. The uncertainty budget for determination of arsenic species by the NIST LC-ICP-MS method is presented in Section 4.1.9.

5.3.1 Organic Acids Results

Table 49 summarizes the NIST LC-ICP-MS results for monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 45 displays the results as functions of the sample bottle number.

Monomethylarsonic acid (MMA) Dimethylarsinic acid (DMA) Mean Bottle A В Mean SD Mean SD SD 0.1805 0.0108 0.0112 0.0110 0.0003 0.1825 0.1784 0.0029 63 0.0105 0.0109 0.0107 0.0002 0.1800 0.1818 0.1809 0.0013 350 0.0113 0.0002 637 0.0111 0.0112 0.1803 0.1925 0.1864 0.0086 1214 0.0104 0.0098 0.0101 0.0004 0.1769 0.1822 0.1796 0.0037 1499 0.0109 0.0111 0.0110 0.0001 0.1868 0.1873 0.1871 0.0004 0.0109 0.0110 0.0108 0.0002 0.1863 0.1813 0.1838 0.0035 1569 N 6 6 Mean, Pooled SD 0.0108 0.003 0.1830 0.0043 0.0004 SD 0.0032 0.200 A(MMA) B(MMA) A(DMA) B(DMA) • ±2 SD ±2 SD Mean Mean 0.012 0.195 MMA (mg/kg) DMA (mg/kg) 0.190 0.011 0.185 0.180 0.010 0.175 0.009 0.170 500 1000 1500 500 1000 1500 0 0 Bottle Number **Bottle Number**

Table 49. Summary of Results for Organic Arsenic Acids: MMA and DMA; mg/kg

Figure 45. Organic Arsenic Acids Mass Fractions as Functions of Box Number.

5.3.2 Inorganic Species Results

Table 50 summarizes the NIST LC-ICP-MS results for arsenous acid (AsIII), arsenic acid (AsV), and total inorganic arsenic (iAs). Columns A and B are used in the table below to distinguish between the first and second aliquot taken from each bottle. Figure 46 displays the results as functions of the sample bottle number.

Table 50. Summary of Results for Inorganic Arsenic Species: AsIII, AsV, and iAs; mg/kg

Figure 46. Inorganic Arsenic Species Mass Fractions as Functions of Box Number.

5.4 Proximates

HAMQAP Exercise 6 participants provided results for proximates on an as-received basis. In addition to the individual measurement results from each participating HAMQAP laboratory, the summary table for each of the proximates also lists the number of accepted results (N), the arithmetic mean of the accepted results (Mean), the standard deviation of the accepted results (SD), and the square root of the sum of the squares of the measurement SDs (Pooled SD).

The results in provided in Sections 5.4.1 through 5.4.6 are provided on an as-received basis; tabulated results provided in the COA for SRM 1568c Rice Flour (Section 7) for fat, protein, carbohydrates, and calories have been converted to a dry-mass basis.

5.4.1 Fat Results

The HAMQAP Exercise 6 results for total fat are summarized in Table 51. Columns A, B, and C are used in the table below to distinguish between the aliquots taken by each participating laboratory from a single bottle.

Lab	Α	В	С	Mean	SD	Method
5	3.16	3.22	3.17	3.18	0.03	Not specified or Other
9	3.2	3.1	3.4	3.23	0.15	RG/M acid digestion
20	3	3.1	2.9	3.00	0.10	Not specified or Other
30	2.7	2.67	2.77	2.71	0.05	RG/M acid digestion
31	3.11	3.04	3	3.05	0.06	Gravimetry
39	2.64	2.66	2.63	2.64	0.02	Not specified or Other
59	3.05	3.04	3.18	3.09	0.08	Oven drying
61	2.84	3.08	3.12	3.01	0.15	Gravimetry
62	2.83	2.7	2.67	2.73	0.09	Not specified or Other
79	3.49	3.4	3.4	3.43	0.05	Not specified or Other
80	2.6	2.74	2.64	2.66	0.07	Not specified or Other
			N:	11		
		Mean, Po	oled SD:	2.98	0.09	
			SD:	0.26		

Table 51. Summary of Results for Total Fat, %^a

^a One result excluded on the basis of being outside the dataset's consensus tolerance limits.

5.4.2 Protein Results

The HAMQAP Exercise 6 results for total protein are summarized in Table 52. Columns A, B, and C are used in the table below to distinguish between the aliquots taken by each participating laboratory from a single bottle.

			•			
Lab	Α	В	С	Mean	SD	Method
9	8.2	8	8	8.07	0.12	Kjeldahl
17	7.8	8.06	8.05	7.97	0.15	Combustion
20	8	7.9	7.93	7.94	0.05	Combustion
30	8.22	8.27	8.25	8.25	0.03	Kjeldahl
31	8.06	8.16	7.98	8.07	0.09	Kjeldahl
39	7.97	7.97	7.79	7.91	0.10	Kjeldahl
59	7.87	7.87	7.99	7.91	0.07	Not specified or Other
61	8.36	8.39	8.39	8.38	0.02	Kjeldahl
62	8.3	8.27	8.28	8.28	0.02	Kjeldahl
79	7.65	7.64	7.58	7.62	0.04	Not specified or Other
80	8.03	8	8.03	8.02	0.02	Combustion
			N:	11		
Mean, Pooled SD:			8.04	0.08		
			SD:	0.21		

Table 52. Summary of Results for Protein, %^a

^a Two results excluded on the basis of being outside the dataset's consensus tolerance limits.

5.4.3 Carbohydrates Results

The HAMQAP Exercise 6 results for total carbohydrates are summarized in Table 53. Columns A, B, and C are used in the table below to distinguish between the aliquots taken by each participating laboratory from a single bottle.

Lab	Α	В	С	Mean	SD	Method
9	76.4	76.9	76.6	76.63	0.25	100-Solids-Protein-Fat-Ash
20	74.8	75.1	75.4	75.10	0.30	100-Solids-Protein-Fat-Ash
31	76	75.9	75.9	75.93	0.06	100-Solids-Protein-Fat-Ash
39	76.63	76.42	76.82	76.62	0.20	100-Solids-Protein-Fat-Ash
79	75.85	76.05	76.08	75.99	0.13	Not specified
80	76.23	76.39	76.38	76.33	0.09	100-Solids-Protein-Fat-Ash
			<i>N</i> :	6		
		Mean, Po	ooled SD:	76.10	0.19	
			SD:	0.57		

Table 53. Summary of Results for Carbohydrates, %^a

^a Three results excluded on the basis of being outside the dataset's consensus tolerance limits.

5.4.4 Solids Results

The HAMQAP Exercise 6 results for solids are summarized in Table 54. Columns A, B, and C are used in the table below to distinguish between the aliquots taken by each participating laboratory from a single bottle.

Lab	Α	В	С	Mean	SD	Method
5	89.6	90.4	90.5	90.17	0.49	Vacuum oven
9	89.5	89.6	89.7	89.60	0.10	Forced-air oven
19	89.35	89.48	89.49	89.44	0.08	Not specified or Other
30	88.66	88.59	88.66	88.64	0.04	Thermogravimetric
31	88.53	88.49	88.28	88.43	0.13	Forced-air oven
39	88.63	88.45	88.63	88.57	0.10	Forced-air oven
59	88.81	89.08	89.14	89.01	0.18	Vacuum oven
61	89.4	89.4	89.4	89.40	0.00	Gravimetry
79	88.36	88.42	88.45	88.41	0.05	Not specified or Other
80	88.15	88.4	88.33	88.29	0.13	Forced-air oven
			<i>N</i> :	10		
		Mean, Po	ooled SD:	89.00	0.18	
			SD:	0.63		

Table 54. Summary of HAMQAP 6 Results for Solids, %^a

^a One result excluded on the basis of being outside the dataset's consensus tolerance limits.

5.4.5 Ash Results

The HAMQAP Exercise 6 results for ash are summarized in Table 55. Columns A, B, and C are used in the table below to distinguish between the aliquots taken by each participating laboratory from a single bottle.

				•		
Lab	А	В	С	Mean	SD	Method
5	1.5	1.46	1.44	1.467	0.031	Weight loss after ignition
11	1.14	1.35	1.3	1.263	0.110	Weight loss after ignition
17	1.45	1.47	1.57	1.497	0.064	Weight loss after ignition
19	1.52	1.45	1.51	1.493	0.038	Not specified or Other
20	1.5	1.5	1.5	1.500	0.000	Weight loss after ignition
30	1.36	1.36	1.32	1.347	0.023	Thermogravimetric
31	1.41	1.39	1.37	1.390	0.020	Gravimetry
39	1.39	1.4	1.39	1.393	0.006	Weight loss after ignition
59	1.31	1.28	1.28	1.290	0.017	Weight loss after ignition
61	1.35	1.37	1.39	1.370	0.020	Gravimetry
62	1.38	1.33	1.38	1.363	0.029	Not specified or Other
79	1.37	1.36	1.36	1.363	0.006	Weight loss after ignition
80	1.29	1.27	1.28	1.280	0.010	Weight loss after ignition
88	1.334	1.326	1.304	1.321	0.016	Not specified or Other
			N:	14		
	Ν	Aean, Poo	oled SD:	1.381	0.039	
			SD:	0.081		

Table 55. Summary of Results for Ash, %^a

^a Two results excluded on the basis of being outside the dataset's consensus tolerance limits.
5.4.6 Calories Results

The HAMQAP Exercise 6 results for calories are summarized in Table 56. Columns A, B, and C are used in the table below to distinguish between the aliquots taken by each participating laboratory from a single bottle.

Lab	Α	В	С	Mean	SD	Method
	367	368	369	368.0	1.0	9(Fat)+4(Protein)+4(Carbohydrate)
31	373	372	371	372.0	1.0	9(Fat)+4(Protein)+4(Carbohydrate)
39	392	392	392	392.0	0.0	Not specified or Other
79	365	365	365	365.0	0.0	Not specified or Other
80	360.44	362.22	361.4	361.4	0.9	9(Fat)+4(Protein)+4(Carbohydrate)
			N:	5		
Mean, Pooled SD:				371.7	0.7	
SD:				12.0		

Table 56. Summary of Results for Calories, kcal/100 g ^a

^a One result excluded on the basis of being outside the dataset's consensus tolerance limits.

6 Statistical Approaches for Value Assignment

Statistical analysis was provided by the NIST Statistical Engineering Division. Where more than one method was available or when interlaboratory study data was available in addition to a NIST method for a measured analyte, the estimated value is the mean of the method and the interlaboratory study data estimates available for this analyte. The uncertainty was estimated using a bootstrap procedure based on a Gaussian random effects model for the between-method effects [22–25]. If only one method was available for an analyte, then that method estimate is the analyte estimate.

The uncertainties of all values except ash and solids incorporate a relative uncertainty of 0.1 % due to moisture correction.

To identify possible inhomogeneity of the SRM, both ANOVA with 5 % significance level and graphical analyses were run on NIST data where bottle information was available. For MMA, the uncertainty incorporates a component for possible inhomogeneity based on the standard deviation of the LC-ICP-MS measurements. The uncertainties for Cd, Mg, Mn, and Na values incorporate an additional component for possible heterogeneity based on results from different NIST methods or from interlaboratory studies.

Very marked differences are often observed between the results from the laboratories participating in an interlaboratory study. For each interlaboratory study, the method estimate for that study for each analyte is the weighted median of the individual laboratory means for that analyte, where the weights are based on a Laplace random effects model [25]. For this SRM, the weighted median is equal to or very close to the unweighted median of laboratory means for most analytes. The uncertainty of the weighted median is estimated using a bootstrap procedure based on a Laplace random effects model for the between-laboratory and within-laboratory effects [22–26]. The weights and uncertainty of the weighted median are based in part on the uncertainties of the individual laboratory means. Here, the uncertainty assigned to each laboratory mean is the standard deviation of that mean. If a laboratory reported only one measurement for an analyte, then for the purposes of the computation that value is assigned an uncertainty equal to the maximum of the uncertainties reported by the other laboratories for that analyte.

A number of extreme outlier measurements from the interlaboratory studies were flagged by the analysts and omitted from the calculations. The deviance of these measurements from the others exceeded the usual variation, often differing by an order of magnitude or more. Other measurements may be questionable but could not be determined to be unrepresentative extreme outliers because of the sparseness and variation of the rest of the data.

7 Certificate of Analysis

The results of the statistical analysis for all analytes are presented in the COA for SRM 1568c Rice Flour. A NIST COA is defined below.

"In accordance with ISO Guide 31: 2000, a NIST SRM certificate is a document containing the name, description, and intended purpose of the material, the logo of the U.S. Department of Commerce, the name of NIST as a certifying body, instructions for proper use and storage of the material, certified property value(s) with associated uncertainty(ies), method(s) used to obtain property values, the period of validity, if appropriate, and any other technical information deemed necessary for its proper use. A Certificate is issued for an SRM certified for one or more specific physical or engineering performance properties and may contain NIST reference, information, or both values in addition to certified values. A Certificate of Analysis is issued for an SRM certified for one or more specific chemical properties. Note: ISO Guide 31 is updated periodically; check with ISO for the latest version." [27]

For the most current version of the COA for NIST SRM 1568c Rice Flour, please visit: <u>https://www-s.nist.gov/srmors/view_detail.cfm?srm=1568c</u>.

8 References

- U.S. FDA. Arsenic in Food and Dietary Supplements. <u>https://www.fda.gov/food/metals-and-your-food/arsenic-food-and-dietary-supplements</u>. Accessed on 4/7/2022.
- 2 National Institute of Standards, Certificate of Analysis, Standard Reference Material 1568 Rice Flour. 1978. <u>https://www-s.nist.gov/srmors/certificates/archives/1568.pdf</u>
- 3 National Institute of Standards, Certificate of Analysis, Standard Reference Material 1568a Rice Flour. 1995. <u>https://www-s.nist.gov/srmors/certificates/archives/1568a.pdf</u>
- 4 National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material SRM 1568b Rice Flour. 2021. <u>https://www-s.nist.gov/srmors/certificates/1568b.pdf</u>
- 5 Wolf WR. Reference materials; In "Methods of Analysis for Nutrition Labeling"; Sullivan DM. Carpenter DE, Eds; AOAC INTERNATIONAL: Arlington, VA, 1993; pp 111–122.
- 6 Sharpless KE, Greenberg RR, Schantz MM, Welch MJ, Wise SA, Ihnat M. Filling the AOAC triangle with food-matrix standard reference materials. Anal Bioanal Chem 2004;378(5):1161-1167. <u>https://doi.org/10.1007/s00216-003-2384-1</u>
- 7 Christopher SJ, Long SE, Rearick MS, Fassett JD. Development of High Accuracy Vapor Generation Inductively Coupled Plasma Mass Spectrometry and its Application to the Certification of Mercury in Standard Reference Materials. Anal Chem;2001:73(10):2190-2199. <u>https://doi.org/10.1021/AC0013002</u>
- 8 Ragland, J. M. (2022). Isotope Dilution Assistant (IDA) (Version 1.0) [Computer software]. https://github.com/jmr-nist-gov/IDA
- 9 Sahin D, Radulović V, Lindstrom RM, Trkov A., Reevaluation of neutron flux characterization parameters for NIST RT-2 facility. J Radioanal Nucl Chem 2014;300:499-506. <u>https://doi.org/10.1007/s10967-014-3076-3</u>
- 10 Greenberg RR, Fleming RF, Zeisler R. High sensitivity neutron activation analysis of environmental and biological standard reference materials. Environm Intern 1984;10(2):129-136. <u>https://doi.org/10.1016/0160-4120(84)90088-6</u>
- 11 Lindstrom RM. Sum and mean. Standard programs for activation analysis. Biol Trace Elem Res 1994;43-45:597-603. <u>https://doi.org/10.1007/978-1-4757-6025-5_69</u>
- 12 National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material SRM 2684c Bituminous Coal (Nominal Mass Fraction 3 % Sulfur). 2014. https://www-s.nist.gov/srmors/certificates/2684c.pdf
- 13 National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 2718a Green Petroleum Coke. 2017. <u>https://www-s.nist.gov/srmors/certificates/2718a.pd</u>f
- 14 Paul RL, Mackey EA. Neutron scattering by hydrogen in cold neutron prompt gamma-ray activation analysis. J Radioanal Nucl Chem. 1994;181(2):321-333. <u>https://doi.org/10.1007/bf02037638</u>
- 15 Mackey EA, Gordon GE, Lindstrom RM, Anderson DL. Effects of target shape and neutron scattering on element sensitivities for neutron capture prompt gamma-ray activation analysis. Anal Chem 1991;63(3):288-292. <u>https://doi.org/10.1021/ac00003a019</u>
- 16 Mackey EA, Gordon GE, Lindstrom RM, Anderson DL. Use of spherical targets to minimize effects of neutron scattering by hydrogen in neutron capture prompt gamma-ray activation analysis. Anal Chem 1992;64(20):2366-2371. <u>https://doi.org/10.1021/ac00044a012</u>

- 17 Paul RL. The use of element ratios to eliminate analytical bias in cold neutron prompt gammaray activation analysis. J Radioanal Nucl Chem 1995;191:245-256. <u>https://doi.org/10.1007/BF02038220</u>
- 18 Paul RL. Prompt gamma-ray activation analysis for certification of sulfur in fuel oil SRMs. J Radioanal Nucl Chem 2017;311:1149-1154. <u>https://doi.org/10.1007/s10967-016-4935-x</u>
- 19 Paul RL, Sahin D, Cook JC, Brocker C, Lindstrom RM, O'Kelly DJ. NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 2015;304:189-193. <u>https://doi.org/10.1007/s10967-014-3635-7</u>
- 20 Barber CA, Burdette CQ, Hayes HV, Luvonga C, Phillips MM, Rimmer CA, Wood LJ, Yu LL (2021) Health Assessment Measurements Quality Assurance Program: Exercise 5 Final Report. NIST Interagency Report (NIST IR) 8343. <u>https://doi.org/10.6028/NIST.IR.8343</u>
- 21 Barber CA, Burdette CQ, Hayes HV, Johnson ME, Kotoski SP, Murray JA, Phillips MM, Rimmer CA, Wood LJ, Yarberry AJ (2021) Health Assessment Measurements Quality Assurance Program: Exercise 6 Final Report. NIST Interagency Report (NIST IR) 8343. <u>https://doi.org/10.6028/NIST.IR.8394</u>
- 22 JCGM 101:2008, Evaluation of measurement data—Supplement 1 to the "Guide to the expression of uncertainty in measurement"—Propagation of distributions using a Monte Carlo method; Joint Committee for Guides in Metrology (2008), https://www.bipm.org/en/publications/guides
- 23 Efron B, Tibshirani RJ. (1993) An Introduction to the Bootstrap, Chapman & Hall, UK.
- 24 Searle S, Casella G, McCulloch C. (1992) Variance Components; John Wiley, Hoboken, NJ.
- 25 Rukhin AL, Possolo A. Laplace random effects models for interlaboratory studies, Computational Statistics and Data Analysis 2011;55:1815-1827. <u>https://doi.org/10.1016/j.csda.2010.11.016</u>
- 26 JCGM 100:2008, Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement (ISO GUM 1995 with Minor Corrections); Joint Committee for Guides in Metrology (2008); <u>https://www.bipm.org/en/publications/guides</u> See also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; <u>https://doi.org/10.6028/NIST.TN.1297</u>
- 27 NIST. SRM Definitions. https://www.nist.gov/srm/srm-definitions