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Abstract 

Optical communication systems are expected to find use in new applications that require more 
intelligent and automated functionality. Optical networks are needed to address the high speeds 
and low latency of 5G wireless networks. The analog nature of optical transmission and the 
complexity of operation and management remain an impediment to greater use of software 
controls. The optical community at large has proposed many possible applications and avenues 
for using and implementing artificial intelligence and machine learning to improve 
functionality of optical systems for communications. However, broad agreement has yet to be 
reached due to both technical and non-technical reasons. On August 2nd , 2019 The National 
Institute of Standards and Technology (NIST) Communications Technology Laboratory (CTL) 
hosted a Workshop on Machine Learning for Optical Communication Systems to bring 
together industry, academia and government in order to discuss the roll of AI and ML in optical 
communication systems. This document provides an overview and summary of the workshop.   
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 Overview 

Optical communication systems are expected to find use in new applications that require more 
intelligent functionality. Optical networks are needed to address the high speeds and low 
latency of 5G wireless networks. The analog nature of optical transmission and the complexity 
of operation and management remain an impediment to greater use of software controls. 
Furthermore, optical systems are running up against spectral density limits that threaten 
traditional capacity-based scaling. New efficiency-based scaling methods are needed to further 
improve the cost/bit/s without relying on capacity improvements alone. Artificial intelligence 
(AI) and machine learning (ML) provide a new direction with the potential to both enable 
wider use of software controls and to further optimize the efficiency of optical systems across 
multiple dimensions. Reference data sets for ML would improve functionality and operability 
across industry further enabling scaling and efficiency.   

On August 2nd 2019, the National Institute of Standards and Technology (NIST) 
Communications Technology Lab (CTL) in partnership with the Laboratory for Information 
Technologies (ITL) held a Workshop on Machine Learning for Optical Communication at the 
Boulder Colorado campus. The purpose of this workshop was to bring together industry, 
academia and government to discuss the role of ML in optical communication systems 
(MLOS). Topics discussed during the workshop ranged from identifying applications of AI 
and ML in the context of accelerating the use of software-based networking in optical systems 
for improved performance and scalability, paths to realizing reference training data sets for 
ML in optical communications systems and needs and rolls of metrology and telemetry.  

 

 
Figure 1. Why Machine Learning for Optical Communications? There are many proposed reasons “Why”. 
 
The workshop attempted to spur open public discussion of the many perspectives from 
industry, government and academia as to “Why” machine learning might be a good idea to 
implement in optical communication systems and transport networks (see Fig. 1). The role and 
potential impact of ML on optical communications has been discussed at large from many 
points of view and with regards to many applications. However, a road map to implementation, 
realizing positive change, and actional paths toward progress have yet to be agreed upon. As 
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there are many, many facets to implementing ML on such a large scale, bringing together the 
many points of view in an open forum to share information is beneficial in identifying actional 
paths forward. The workshop was designed to stimulate questions, discuss, and collaboration, 
culminating in three breakout sessions covering three topics relevant to ML and optical 
communications systems: 1) Data from reconfigurable optical add drop multiplexer (ROADM) 
and optical layer, 2) Possible data sets from coherent transponders, 3) Cross layer end-to-end 
networking. These areas were chosen as they address overarching architectures present in 
optical communication networks including: core optical network, transponders, cross layer 
networking. The discussions which arose from these breakout sessions are summarized below.  

The workshop format was setup up to guide discussion through organized talks which lead to 
two panel discussions. The panel discussions then lead to three breakout sessions where all 
workshop attendees participated in discussion. Talks given by industry, academia and 
government speakers covered a wide range of topics including: an overview of Machine 
Learning Applications for Optical Transport Networks, Machine Learning Models, Data 
relevance-what Data Matters, Data starved systems, data from ROADM and the optical layer, 
cross layer and multi-vendor end-to-end networking. A summary of the breakout sessions is 
given below. The agenda, and slides from for the talks given at the workshop can also  be found  
at the website: https://www.nist.gov/news-events/events/2019/08/machine-learning-optical-
communication-systems 

 

 Talk Summaries 

2.1. Keynote: “Machine Learning for Optical Communication Systems”  
Speaker: Massimo Tornatore (Politecnico di Milano, Italy and University of California, 
Davis) 
 
Modern optical networks generate an extremely high and diverse set of data (e.g., signal quality 
indicators, network alarms, etc.). Machine Learning (ML) is being regarded as a promising 
solution to extract useful information from these large datasets and possibly enable advanced 
forms of network automation, e.g., network self-reconfiguration and cognitive fault 
management. The keynote talk was intended to provide an introductory reference for 
researchers and practitioners in the audience. It started by providing a high-level introduction 
to some important theoretical concepts in machine learning (supervised vs unsupervised 
learning, basic algorithms), assisted by some examples coming from the field of optical 
communications. Then, the most relevant applications of ML to optical communications and 
networking have been overviewed, with a specific focus on QoT estimation and failure 
management. As several use cases can benefit from the application of ML techniques,  in the 
talk these use cases were divided in i) physical layer and ii) network layer use cases, as 
graphically shown in Fig. 2. A good number of research papers appeared in the past years were 
covered. Finally, the talk discussed new possible research directions in the field. The talk was 
based on a recent survey [1] and a recent tutorial, [2] published by the speaker. 

 

https://www.nist.gov/news-events/events/2019/08/machine-learning-optical-communication-systems
https://www.nist.gov/news-events/events/2019/08/machine-learning-optical-communication-systems
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Figure 2. ML applied to the use cases of the physical layer and network layer.  

 

2.2. “What Data Matters” 
Speaker: Uiara de Moura (Technical University of Denmark) 
 

Starting the morning talks section, Uiara de Moura, from the Technical University of Denmark 
(DTU), introduced the vision of the Machine Learning in Photonic Systems (M-LiPS) group 
regarding what kind of data matters for optical communications and specifically for machine 
learning applications. She started introducing the M-LiPS group at DTU Fotonik department, 
a new group led by Assoc. Prof. Darko Zibar. The group was created at the beginning of 2019 
with the main goal of concentrate efforts in developing and applying machine learning 
techniques to photonic systems in general. More specifically, M-LiPS acts on the fields of 
advanced photonic classical and quantum measurements, communication and sensing systems, 
and device and subsystem designs. 

Following the short introduction, she presented the results of the group’s recent activities in 
the area of phase noise characterization for lasers and frequency combs [3,4], Raman amplifier 
inverse design and modelling [5-7], and auto-encoders for optical communication systems [8-
10]. Additionally, to have a comprehensive view of the main applications of machine learning 
in optical communications and the current state-of-the-art, she discussed the key point of a few 
relevant surveys on the topic [11-14]. 

She also highlighted the areas that will benefit from applying machine learning, such as: noise 
characterization of lasers at the quantum limit (low signal-to-noise ratio); (inverse) design of 
optical subsystems, components and devices for traditional and spatial division multiplexing 
systems; and techniques to increase the transmission rate through the nonlinear fiber optical 
channel. Moreover, as requested by Prof. Dan Kilper, she also pointed out the problems in 
optical communications that may not require the power machine learning to be addressed. As 
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examples she singled out linear impairment compensation (e.g. chromatic dispersion) in 
coherent systems and erbium doped fiber amplifier design for traditional systems.  

Before reaching the main topic of the presentation, she gave an overview of the most popular 
use cases of machine learning in optical communications, focusing on physical-layer 
applications. These use cases, retrieved from [12-14], are summarized in Table 1. They 
consider a machine learning model trained using a set of artificial (numerical) or experimental 
input and output data sets. Thus, Table 1 also highlights what data sets are relevant for each 
use case and how they are normally generated. 

Table 1. Most popular use cases of machine learning in optical communications and their data sets [12-14].  
Use case Input data sets Output data sets Data set generation 
Nonlinear 
mitigation 

Received constellations 
Received symbols 

Decoded symbols with 
impairment estimated or 
mitigated 
Nonlinearity mitigated 
constellation points 
Symbol decision boundaries 

Random sequence of 
bits 

Optical 
performance 
monitoring 

Amplitude histograms 
Constellations 
Eye diagrams 

OSNR1 
PMD2 
CD3 
Q-factor4 

Vary noise, CD, PMD, 
or a combination, and 
random sequence of bits 

Modulation 
format 
recognition 

Stokes space parameters 
Received symbols 
Amplitude histograms 

Modulation format Vary the modulation 
format, and random 
sequence of bits 

1. OSNR – optical signal-to-noise ratio, 2. PMD – polarization mode dispersion, 2. CD – chromatic dispersion, 
4. Q-factor – quality factor. 

From the examples in Table 1, she concluded that the relevant input/output data sets for optical 
communications depend on the specific use case. However, that mainly applies for the output 
data set. For most of the cases reported on the literature and related to the physical-layer, the 
input data can be represented by the received waveforms. 

Then, she summarized in Fig. 3 some general relevant data in optical communications for 
machine learning from the M-LiPS point of view. The red box presents the adjustable 
parameters at transmitter and receiver (Tx/Rx) and on the optical channel. Most of them are 
degrees of freedom that can be wisely adjusted by an artificial-intelligence approach. The pink 
box shows the different ways to represent the signal. These different signal representations can 
be retrieved from the waveforms (digital signals before digital to analog converter on the 
transmitter or after analog to digital converter on the receiver). Table 1 shows that they are 
extensively used as input data sets for machine learning models. The orange box shows the 
figures of merit of the system, obtained from the received signals. They can also be 
estimated/optimized by adjusting the parameters on the red box. And the purple box shows the 
penalties that can be mitigated, compensated and/or estimated from the received signals. Most 
of these penalties are introduced by the optical channel. 
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Figure 3. Not comprehensive summary of the relevant data that can be used in machine learning applications. 
Acronyms not defined yet: FEC – forward error correction, I/Q – In-phase and quadrature, BER – bit error rate, 
SNR – signal-to-noise ratio, AIR – achievable information rate, MI – mutual information, GMI – generalized MI, 
PDL – polarization dependent loss, SPM – self-phase modulation, XPM – cross-phase modulation, FWM – four 
wave mixing, ASE – amplified spontaneous emission.   
 
As an overall conclusion of the talk, from the most popular use cases applying machine 
learning on the physical layer shown in Table 1, all data-sets used to train the machine learning 
model are associated to the received waveforms. The waveforms are directly impacted by the 
‘penalties’ and ‘parameter’ changes/adjustments shown in Fig. 3 and from them it is possible 
to retrieve the ‘figure of merits’. Thus, having access to standardized waveforms (and labeled 
for most use cases) can provide fair comparison between different machine learning 
approaches. 

 

2.3. “Machine Learning Models for Optical Communication Systems & Networks” 
Speaker: Joao Pedro (Infinera)  
 
This talk introduced the scenarios where ML models are expected to find application. These 
include cases where (1) conventional approaches are not applicable or not efficient as a result 
of model-deficit (e.g. no physics-based mathematical model for the problem exists due to 
insufficient domain knowledge) and/or algorithm-deficit (e.g. mathematical model exists but 
algorithms to run it are too complex); (2) details of how the task is solved are not relevant (e.g. 
not necessary to explain how decisions are made); (3) phenomenon or function being learned 
is stationary for a sufficiently long period of time; and (4) sufficiently large labelled training 
data set exists or can be created. In addition, it emphasized that since ML models rely on data, 
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the cost of obtaining data in quantity and quality determines to a great extent the motivation to 
adopt ML models. 

Some of the key challenges faced by transport network operators were overviewed, such as the 
requirement to increase capacity while keeping capital and operational expenditures low. This 
demands not only reducing the cost per bit transported but also simplifying network operation, 
facilitating network expansion, fostering introduction of new features and reducing the time-
to-market of new services. A vision in line with these objectives is that of realizing an 
autonomous, self-learning and self-driving network (Fig. 4), which would be characterized by 
the ability to (1) auto-configure (e.g. routing / spectrum / modulation format adapted based on 
real-time physical layer data); (2) self-heal (e.g. route cause analysis and failure prediction 
complemented with automatic repair and preventive maintenance); and (3) predict traffic and 
self-optimize (e.g. avoid congestion, suggest network augmentation). ML models are well 
positioned to be a key ingredient in materializing this vision. Moreover, several developments 
in optical networks are helping to realize this vision and, in the process, to start employing ML 
models: (1) flexible coherent line interfaces, enabling to collect a rich set of performance data 
at the receiver end of an optical channel; (2) SDN control, whose centralized nature facilitates 
using virtually limitless CPU and storage; (3) real-time performance planning avoiding 
traditional margin stacking and overprovisioning, which is data intensive and demands 
estimating performance degradation and trend analysis; and (4) disaggregated transport 
platforms and line systems, which on one hand require open standards and protocols to ensure 
interoperability, while on the other hand, raise challenges related to end-to-end performance 
estimation that may need to be addressed via learning from the devices, systems or optical 
channels. 

 
Figure 4. Setting the vision: the autonomous, self-learning and self-driving network. 

An
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yt
ic

s M
L / AI



Proc. Wrkshp. Machn. Learn. for Opt. Com. Sys., NIST, Boulder CO, August 2nd, 2019  
NIST SP 2100-04 
 

9 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.2100-04 
 

Despite the enablers described above, it was highlighted that there are some specifics of optical 
networks that can delay, if not impede, the exploitation of ML in production scenarios. For 
instance, optical networks comprise a mature ecosystem and these networks have been 
successfully deployed and operated for decades. Particularly, (1) significant investments have 
been done in non-ML models and processes to operate them, which means the introduction of 
ML models will only occur if improvements in key metrics can be shown; (2) established 
practices and labor force are accustomed to deterministic approaches, i.e. a lengthy and 
possible costly shift in mindset is needed; and (3) existing network infrastructure may not be 
ready to exploit ML (e.g. data collection, storage and processing need to enhanced). 

The possible issues with access to data were also discussed. Different communities, namely 
the research community, system vendors and network operators, will have different privileges 
to directly access every source of data, as summarized in Table 2. In view of the importance 
of data to successfully apply ML, this highlights the need to establish partnerships within and 
between different communities as playing a central role in the creation and exploitation of 
meaningful and rich data sets. Nonetheless, attaining this requires addressing a wide array of 
concerns, such as identifying clear incentives for sharing data and finding trustworthy ways to 
handle confidential data. 

Table 2. User communities and the data sources they have access to. 

 

Finally, it was stressed that an important aspect to consider when deploying ML models in 
production is the need to guarantee ML model lifecycle management. Lifecycle management 
can include all or some of the following aspects: (1) fairness; (2) robustness; (3) assurance; 
and (4) explainability. Achieving fairness can require additional logic to help detect and 
remove bias from the ML models. Robustness focuses on granting the capability to detect and 
prevent data contamination and or tampering, whereas assurance intends to clarify questions 
such as why a dataset is created, who funded its creation, what preprocessing/cleaning was 
done, and will it be updated. While explainability remains a weak point of ML models, 
solutions for the other three aspects start to be readily available. For example, concerning 
assurance, recent efforts target the specification of datasheets for datasets [15]. 

The talk also included a discussion on possible use cases for ML models in optical networks. 
It was acknowledged that a wide array of use cases have started to be investigated. For instance, 
from modelling individual devices (e.g. EDFA) extending to capturing network-wide 
behaviors (e.g. optical channel QoT), as well as from modelling physical layer impairments 
(e.g. BER, OSNR) up to predicting traffic flows / patterns. Use cases also differ in their 
potential impact and complexity of use. The talked concluded by exemplifying two use cases 
where ML models can be applied to optical networks. 

User Community Data Sources

“Open Access”
(e.g. broad research community)

 Analytical and simulation-based models and databases that are public
 Academic lab setups (usually limited in size and with limited access to device and 

sub-systems internal details)

System Vendors  Same as “Open Access”, plus
 Detailed characterization of (their) devices and sub-systems properties (but with 

limited visibility of phenomena arising in a complex, heterogeneous, live network)

Network Operators  Same as “Open Access”, plus
 Specific deployment instances (with visibility over multiple planes, layers, 

domains, vendors, enforced policies, with impact of time-varying effects)
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2.4. “Small Data Deep Learning: AI Applied to Domain Datasets” 
Speaker: Michael Majurski (NIST, Information Technology Laboratory) 

The recent growth in deep learning methods has been fueled by large, publicly available 
research datasets like ImageNet which consists of 1.2 million images labeled with 1 of 1000 
categories. However, when operating within scientific domains, one cannot put forth those 
sorts of large-scale human annotation efforts. This talk focuses on how to take advantage of 
deep learning methods for computer vision when limited annotated data are available. We are 
motivated in domain applications to utilize deep learning methods, despite the dearth of 
annotations, because there are problems where it is easier to specify the desirable behavior than 
to explicitly write a program and because deep learning methods can deliver highly accurate 
results.  

In machine learning, the practitioner has two main goals: make the error on the training 
data small and make the gap between the training error and the test error as small as possible. 
Underfitting happens when a model cannot reach an acceptable training error. Overfitting 
happens when a model has too large a gap between the training and test errors. Modern high 
capacity of deep learning models have the ability to memorize a training dataset which is too 
small. Right now, there are two common approaches to mitigating the problems of building 
deep learning models with small datasets: 1) data augmentation, and 2) transfer learning.  

Data augmentation consists of expanding the dataset by performing label preserving 
transformations. Intuitively this adds invariances to the trained model. For example, a picture 
of a dog is still a dog if you flip the image left-right. Common data augmentation 
transformations include rotation, reflection, jitter, cropping, noise, photometric distortions, and 
zooming. Data augmentation provides a relatively time-efficient method for domain experts to 
specify what invariance should exist within the trained model. The state of the art in data 
augmentation is learning the set of transformations and the sequence in which they should be 
applied to a specific dataset as part of the model training process.  

Transfer learning is when you build a model using a large available dataset and then refine 
the trained model on the small data domain application. You can perform transfer learning 
from large research datasets like ImageNet or from representation learning utilizing 
unannotated data via Generative Adversarial Networks (GANs).  

The case study presented involves performing non-destructive quality assurance for 
Induced Pluripotent Stem Cell therapies for Age Related Macular Degeneration. Destructive 
testing was used to provide 1000 ground truth for an image-based measurement to predict stem 
cell implant quality based upon cell morphology. Morphology was extracted from single cell 
segmentation performed using an encoder-decoder convolutional neural network architecture 
called UNet. For this application transfer learning from a large research dataset Common 
Object is Context (COCO) outperformed both data augmentation and representation learning 
via GAN when quantifying single cell segmentation accuracy via the Adjusted Rand Index 
metric. Data augmentation using domain expert provided invariances was optimal when 
considering finding the edges between cells.  
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 Breakout Sessions 

The three breakout sessions broadly covered three main areas relevant to ML in optical 
communications systems. These areas were chosen as they address overarching architectures 
present in optical communication networks including: core optical network, transponders, 
cross layer networking. More specifically, breakout session topics were: 

• Data from reconfigurable optical add drop multiplexer (ROADM) and optical layer 
• Possible data sets from coherent transponders 
• Cross Layer End-to-end networking 

 
3.1. ROADM and Optical Layer 
 
Optical line systems within the optical layer of core networks were considered as a focus area 
of breakout group discussion.  Included in this scope are the ROADM switching nodes, optical 
amplifiers, and the network of fibers connecting them, but not the transceivers. Core optical 
networks were taken to be all metro and long-haul networks in which ROADM-based systems 
are used.  

Three aspects of optical line systems were identified as potential application focus areas for AI 
and ML techniques: 1) quality of transmission (QoT) estimation, 2) fault identification, and 3) 
failure prediction. Of these QoT estimation was considered the most promising application. 
Fault identification was considered to be difficult in terms of collecting data because of the 
sensitivity of this data to the network operator. Failure prediction would also be difficult for 
similar reasons but could be based on data related to the overall health of the network and 
therefore data might be more accessible.  

The three application areas can be further aligned to consider specific network use cases. The 
use cases identified by the group include system disaggregation, network defragmentation, and 
faster dynamic operation (i.e. faster add/drop and switching of optical signals). Disaggregated 
systems involve different components such as transceivers, amplifiers, and switches being 
supplied by different vendors, rather than being a part of a single proprietary or closed system 
designed, integrated, and performance guaranteed by a single vendor. There was consensus 
that disaggregation creates an environment in which there is a greater need for and benefit from 
machine learning approaches since the system has not been engineered end to end. The 
potential to use third party control and management systems through an SDN control plane 
also opens up the potential for innovation around machine learning based control. There might 
also be more opportunity to collect data from disaggregated systems since the systems are 
open. Defragmentation refers to re-organizing the wavelength routes in a system when there is 
a large amount of stranded or fragmented bandwidth due to a series of wavelength provisioning 
events that were not optimized for efficient use of the bandwidth (for example when these 
occur over a period of time and cannot be optimized altogether). Given the very complex nature 
of network defragmentation it was suggested that machine learning might provide some 
benefit. Faster dynamic operation, such as faster provisioning of channels, is also very complex 
and could benefit from machine learning. Dynamic operation could also make use of 
reinforcement learning as data is collected from each change applied to the system. 
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In addition to these applications, the group identified four types of data that are relevant to 
these applications: 1) component data, 2) path/network data, 3) operating data, and 4) fault 
management data. Component data refers to parameters related to the state and health of 
individual components such as the temperature of an amplifier pump laser. The path or network 
data include relevant line system and signal characteristics that influence the performance of 
the optical signals over the path from add to drop location. Operating data and fault 
management data go together in terms providing information about the system health and 
operating performance. Examples might be the ROADM alarm status or data regarding the 
frequency or root cause of failures. 

Discussion around the QoT application considered different sources and formats of data as 
well as the complications in obtaining such data. The sources of data included live network 
data from operators, field testbeds, and laboratory testbeds. The first two sources are preferred 
although laboratory testbed data could be useful for correlating with field data and 
understanding how training and data from the lab might be applied to systems in the field. 
Operator data is clearly the most difficult to obtain due to privacy and proprietary 
considerations. Research and education networks such as ESnet are likely easier to obtain data 
from and in fact already provide much data online. In some cases, there might be network 
segments that are not live or that are used for research purposes and these could be used to 
collect data. The COSMOS testbed is an example of a research testbed in the field that can be 
used to collect data. A number of academic, national lab, and industry lab testbeds might be 
good sources of data as well. Concerns were raised that industry labs might provide biased data 
sets that favor their products. 

For QoT estimation, the electrical signal to noise ratio and an associated bit error rate or Q-
factor are often available from the transceivers or standard performance monitoring telemetry. 
This information can be used for supervised learning based on other data collected from the 
system. Other data might include a wide variety of parameters the most important being the 
system parameters (fiber type, distances, etc.), optical power levels, and optical signal to noise 
ratio. An important resource of developing machine learning algorithms for QoT estimation 
would be the analytical models and their performance as a reference for comparison. The GNpy 
model is a recent public and open source QoT estimation tool that can be used for this purpose. 

Path data would be the most important type of data for QoT estimation. Key question includes 
the format of the data and what models are relevant. Wavelength dependent path data is 
particularly important and difficult to obtain. Filtering effects are also very important, but it 
might be difficult to obtain data about the filtering effects or parameters. 

This breakout session also considered the potential for launching a machine learning challenge 
for optical networks. QoT estimation was again considered the most appropriate application 
area. Many groups are already working on developing QoT estimation algorithms and could 
easily compete in such a challenge. Several sources of data could potentially be used for this: 
1) field trials such as SCinet at the SC conference, 2) field testbeds such as COSMOS, and 3) 
R&D labs. The breakout group agreed to investigate whether these data sources could be used 
to produce data for a challenge during the upcoming year. Data could potentially be collected 
during the turn up of the systems for SCinet and then a challenge run over the winter. Winners 
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could be announced at OFC. The goal of algorithm development in the challenge would be to 
predict the received bit error rate, Q-factor, or generalized optical signal to noise ratio (OSNR). 

 
3.2. Possible Data Sets from Coherent Transponders  
 
Coherent modems by their very nature generate a number of different optical parameters which 
historically have been difficult to measure in real time. This breakout session group reviewed 
the types of data that is now available or soon to be available from coherent modems in modern 
optical systems. We considered both directly measured parameters as well as computed ones 
derived from the observables. A list of the kinds of observables that are achievable from 
coherent modems follows, although the specific list will vary by vendor.  

Parameter Units Description 
Total Pwr mdBm Displays the total power (mdBm). 
Chan Pwr mdBm Displays the channel power (mdBm). 
FE Tx CD ps/nm Displays Far-End Tx Dispersion Pre-Compensation (ps/nm) 
Rx CD Comp ps/nm Displays the receive chromatic dispersion compensation (ps/nm). 
BER decimal BER Displays the Bit Error Rate (decimal). 
Fast BER decimal Displays the fast BER (decimal). 
FER decimal Displays the Frame Error Rate (decimal). 
Uncorrected Blocks blocks Displays the number of Uncorrected Blocks. 
Cycle Slip slips Displays the Cycle Slip count.  
PM Tick Count count  Displays the performance monitoring tick count. 
PMD ps Displays the (instantaneous) Polarization Mode Dispersion (ps). 
PDL dB, peak Displays the Polarization Dependent Loss (dB).  
SOPs1 decimal Displays the State of Polarization s1 (decimal). 
SOPs2 decimal Displays the State of Polarization s2 (decimal).  
SOPs3 decimal Displays the State of Polarization s3 (decimal). 
FreqOffset MHz Displays the frequency offset (MHz). 
MERx  dB Displays the Modulation Error Ratio for value X (dB). 
MERy dB Displays the Modulation Error Ratio for value Y (dB). 
SPM dB Displays the Self Phase Modulation (dB). SPM is a nonlinear optical effect of 
TNLE dB Displays the Total Non-Linear Noise (dB). 
ESNR dB Displays the Electrical Signal to Noise Ratio (dB).  
OSNR dB/0.1nm Displays the Optical Signal to Noise Ratio (dB).  

 
In this breakout session group the kinds of applications which could benefit from applying 
AI/ML techniques to datasets containing observables such as these were discussed. Candidate 
applications could include the following: 
 

• A predictive assessment of the health of the network equipment itself. 
• Analytics on the health and future viability of the fiber. 



Proc. Wrkshp. Machn. Learn. for Opt. Com. Sys., NIST, Boulder CO, August 2nd, 2019  
NIST SP 2100-04 
 

14 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.2100-04 
 

• Estimation of network performance at different operating points and different physical 
locations. 

• Remote sensing:  fiber type determination, fiber stress, intrusion detection, etc. 
 
There is also a potential tie-in with the ROADM and optical layers which can produce power 
level, spectral analysis, and OTDR data at each amp site that could then be used to augment 
the end-end observables that the modems produce. 
 
Key questions outstanding are the identification of additional problem sets that could use this 
data, and how to select the needed data and export it from the system in a way that is 
standardized and thus could be used cross platform. 
 
3.3. Machine Learning Data Sets for Cross-Layer and End-to-End Networks 
 
The emergence of cloud computing has had a profound impact, enabling for example, scalable 
compute and storage for enterprises, and cloud-based personal digital assistants based on 
artificial intelligence (AI) in homes. While considerable investment has gone into creating on-
demand cloud-compute resources, the flexibility of the underlying network, which is crucial 
to universal access to the cloud, has been largely under realized. This is despite steady 
improvements in network hardware to support such flexibility at the optical layer with the 
introduction of contentionless, directionless, flexgrid reconfigurable add-drop multiplexers 
(CDCF ROADMs) and wavelength, modulation format, and symbol-rate flexible optical 
transponders. Two recent technological advances have the potential to create a truly dynamic 
network infrastructure – the development of software-defined networks (SDN) and the 
application of AI and machine learning (ML) to the transport network. By combining the 
control and virtualization capabilities of SDN with network intelligence gained through 
streaming telemetry and ML, we can achieve a flexible and intelligent network infrastructure.  

One of the missing ingredients in the above formulation is the lack of available datasets 
that will allow for the development of AI and ML algorithms for intelligent network control. 
The development of reliable algorithms requires training of models, for example artificial 
neural networks, with large data sets. Of particular interest is network performance data across 
domains (e.g., access, cloud, metro, core) and layers (e.g., IP and optical) of the network. 
Unfortunately, data sets such as this are mostly not publicly available if at all, which is likely 
due to 2 main reasons: 1) network performance data is often considered proprietary by 
commercial network service providers. 2) Technologies and tools for easily collecting 
performance data from different network domains and layers have recently been developed 
and the data may not yet be widely collected and stored. Some examples from a survey of 
available datasets include optical backbone performance data from Microsoft [16], IP traffic 
traces from Internet exchange points [17], and optical network topology databases [18,19]. 
There are several datasets from large cloud data center operators that give cluster server usage 
data [20] and traffic characteristics inside data centers [21].  

At the Machine Learning for Optical Communication Systems Workshop, a breakout 
group addressed the topic of whose purpose is to make more data sets available for cross-layer 
and end-to-end (CLE2E) applications. The breakout group chose to focus on 2 main use cases: 
IP/optical cross-layer interaction, and end-to-end services for emerging 5G wireless networks.  
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3.3.1.  IP/optical cross-layer interaction 
 
Historically, IP and optical networks have been managed separately, even by different teams 
of engineers at the larger service providers. While IP traffic is carried by the underlying optical 
transport network, there is little visibility or coordination between them. However, two trends 
are working towards breaking this separation: increased dynamism in connectivity driven by 
the cloud era and 5G mobility; and the new flexibility in modulation format and symbol rate 
at the optical layer allowing adaptation to the network conditions to maximize capacity. 
Managing the IP and optical services jointly under these conditions is needed to achieve the 
desired efficiency and performance.  

Bell Labs, has explored cross-layer aware applications by introducing error awareness 
in a multi-layer network operating system [22]. Services at the packet layer can be 
automatically rerouted based on postFEC errors measured at the optical layer depending on the 
error tolerance of the packet service. In that work, optical errors were introduced by degrading 
the optical signal to noise ratio or by other intentional means. The development of multi-layer 
applications such as this would greatly benefit from field data collected from operational 
networks. For example, error data from the packet and optical layers that could be time 
correlated would be invaluable. Also, traffic traces at the granularity of packet flow-level 
would allow for the impact of optical errors on packet flows to be studied. This IP/optical 
interaction is arguably one of the most basic performance metrics of a wide-area transport 
network, and yet it is a metric on which the research community has no readily available data.    

Exploring possible sources of data that would allow the application of machine learning 
algorithms to tasks such as error correlation, the probability and distribution of errors, and the 
prediction of the impact of errors on the network performance was identified as a necessary 
step by the CLE2E breakout group. In this breakout group possible sources of data were also 
discussed. One promising source could be to work with operators of government-funded 
networks such as ESnet [23] and Internet2 [24], who may be willing to make such datasets 
available.  
 
3.3.2. End-to-End 5G Mobile Networks 
 
The migration to 5G mobile networks will have a major impact on networks, requiring 
increased capacity, ultra-reliability and low latency, and massively scalable connectivity for 
internet of things (IoT) devices. The impact of 5G mobility will reverberate across the network 
in ways that go beyond driving higher capacity. In particular, there will be a need to 
dynamically create virtual network slices that cross network domains and layers. Slicing 
creates partitions of the physical network resources to meet the service requirements of each 
application such as throughput, latency, and availability. Devices with demanding network 
service requirements, for example, cloud-controlled industrial robots, can be onboarded to 
slices that meet their needs. A high degree of network automation will be necessary to create 
and use end-to-end slices that cross network domains and layers. ML will be crucial to 
providing the intelligence for this automation.  

Some problems that can be addressed by ML include network performance prediction 
for slice creation, the optimization of the physical layer split processing available in eCPRI 
[25], the onboarding of IoT devices to network slices, and the placement of virtual network 
functions at distributed cloud data centers for the 5G mobile core [26]. Regarding data set 
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availability for ML, we find ourselves in a particularly open space as we are at the cusp of 5G 
mobile deployments that will be ramping up over the next few years. However, there are 
research-oriented field deployments of 5G technologies that we may look to for data collection, 
specifically, the COSMOS project, which is a 5G field research network in upper Manhattan 
[27], and the Berlin 5G testbed [28].  
 
3.3.3. Other CLE2E Breakout Group Topics 
Other topics that are worthy of being addressed and related to CLE2E are:  
 

• Further investigation of testbeds or sources of data that would aid in ML applications 
for the above two use cases. Also, identification of what types of data would be most 
useful. The possibility of getting data from the Utah Internet2 point of presence was 
also discussed.  

• The format of data sets will need to be discussed. 
• Suitable ML formulations, e.g., prediction, correlation, and classification should be 

discussed further to help define the requirements for the data sets. 
• Engaging other 5G testbeds, e.g., ADRENALINE in Spain [29]. 
• Other open challenges to data set availability should be identified, e.g., legal, 

business, practical. 

 
 Themes 

Themes relevant to data and machine learning arose as a result of the workshop presentations 
and breakout sessions. In general, these themes address data in the context of use cases, 
reliability and access. These themes are summarized in the following bullets:  
 
• More access to representative data sets as opposed to relying on simulated data or over-
controlled laboratory data 
 

• Data that is obtained from real world test beds. 
• Data that is obtained in-the-field. 

 
• More available training data sets to address specific use cases such as: 

• 5G  
• IoT  
• Cross later-end-to-end use cases 
• Physical layer/optical layer use cases 
• Hardware and components  
 

• Considerations on proper data normalization and guaranteeing reliability of data sets. 
• Can metrology play a role for normalization? 
• How does one guarantee data set reliability? 
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 Acronym List  

AI: Artificial Intelligence 
BER: Bit Error Rate 
CPU: Central Processing Unit 
EDFA: Erbium Doped Fiber Amplifier 
ESNR: Electrical Signal to Noise 
ML: Machine Learning 
NFV: Network Functions Virtualization 
OLS: Open Line Systems  
OPEX: Operating Expenditure 
OSNR: Optical Signal to Noise 
QoT: Quality of Transmission 
ROADM: Reconfigurable Optical Add Drop Multiplexer 
Rx: Receiver 
SDN: Software Defined Network 
Tx: Transmitter 
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 Appendix: NIST Resources 

The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing 
measurement science, standards, and technology in ways that enhance economic security and 
improve our quality of life. 

Communications Technology Laboratory  

The National Institute of Standards and Technology’s Communications Technology 
Laboratory (NIST CTL) was established in 2014 to unite NIST’s many wireless 
communications efforts into a unified research and development organization. Through 
metrology and research in physical phenomena, materials capabilities and complex high-
speed communications systems, we are establishing the technological basis upon which the 
ongoing wireless revolution depends. https://www.nist.gov/ctl 

Information Technology Laboratory  

The Information Technology Laboratory (ITL), one of six research laboratories within the 
National Institute of Standards and Technology (NIST), is a globally recognized and trusted 
source of high-quality, independent, and unbiased research and data. As a world-class 
measurement and testing laboratory encompassing a wide range of areas of computer 
science, mathematics, statistics, and systems engineering, ITL’s research program supports 
NIST’s mission to promote U.S. innovation and industrial competitiveness by advancing 
measurement science, standards, and related technology. https://www.nist.gov/itl 

https://www.nist.gov/ctl
https://www.nist.gov/itl
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